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Abstract

A new model with a variable size of random effect is introduced for the

meta-analysis of 2 × 2 tables. The random-effects parameter has a simple

interpretation in terms of sample size and offers a new measure of hetero-

geneity.

1. Introduction

The focus of this article is binary-data meta-analysis applied in medicine

and epidemiology, and the language of those subjects is used. However, the

results here apply also to meta-analysis generally. Beyond medicine and

epidemiology, there is a very wide range of application areas, e.g. education.

By far the most common trial design for binary data is a parallel study,

in which one patient group receives treatment A, and the other receives

treatment B. Often but not always, ‘treatment A’ will be a placebo. An

event (some measure of recovery or the reverse, such as death) occurs to some

members of each group. There are usually no individual patient covariates

such as age or disease duration, so the results can be summarized in a 2× 2

table. In epidemiological studies, typically group A is the control group,
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and group B has been exposed to some hazard.

In a meta-analysis we seek to estimate the ‘treatment effect’ θ and its

standard error from a number of such 2 × 2 tables, each one giving the

results of a study that a systematic review has found to be of acceptable

quality. One major problem is that studies often disagree by more than

their quoted statistical errors would indicate. This disagreement may arise

in medicine because of differing patient mixes among the various studies,

varying operational procedures, or use of a wrong model of treatment effect

by the analyst. This problem appears in nearly half of binary-data meta-

analyses and is even more prevalent for continuous outcomes (Alba et al,

2016); the random effect is larger for ‘softer’ outcomes and lowest for ‘hard’

outcomes such as mortality (Turner et al, 2012). The Higgins et al (2003) I2

statistic is often used to give a measure of this extra variability (for caveats,

see Borenstein et al 2017).

A standard approach is to model the excess variability by assuming that

the observable treatment effect varies from study to study, so that the ith

study ‘sees’ θi = θ + ǫi, where ǫi ∼ N [0, τ2]. In this paper a modified form

for the random effect is introduced, in which rather than simply assuming

that the effective value of θ varies from study to study, it is considered that

this variation is induced by the probabilities of the event occurring under

treatments A and B varying randomly between studies, so that the ith

study has effective event probabilities that differ from the correct values,

for the reasons given. Modelling this variation in probabilities using the

beta distribution rather than modelling the variation in θi directly gives a

slightly different form for the random effect, in which its scale is geared to
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the variance that θ̂i would have for a constant sample size, say unity, in each

group.

Note that if the treatment A and B event probabilities do not vary much

from study to study, it does not matter which model of treatment effect

is used, and also the random effects model proposed here and conventional

models would give similar fits to data and give rise to similar conclusions.

However, these probabilities usually do vary appreciably across studies.

The new random-effects submodel is derived, some examples are given,

and the paper ends with some brief conclusions.

2. The new model

2.1. Some notation

Let there be n studies; table 1 gives notation for the observed data from

a study. Study suffices will often be suppressed for clarity.

Let p be the probability of an event for treatment A (often control/placebo)

and q the corresponding probability for treatment B. Let the treatment ef-

fect be θ = g(q, p). The currently-used treatment effects can all be written

as θ = T (q)− T (p), for some monotonic function T , but this simplification

is not needed here. Thus the widely-used log-odds ratio is

θ = ln(q/(1 − q))− ln(p/(1 − p)) = ln(q(1− p)/p(1 − q)). (1)

The methodology is exemplified using the log-odds ratio throughout, but is
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quite general. Two-stage models give

θ̂i = g(q̂i, p̂i) (2)

from the ith study, where θ̂i is assumed to be approximately normally dis-

tributed with mean θ. Sample sizes are taken as Nq, Np respectively.

2.2. Derivation of the model

The task is to find the variance of θ̂, which is assumed to be approx-

imately normally distributed. Besides sampling error, the variance must

include the random errors in P and Q; we use P to show the method,

and results are similar for Q. For small changes δp, δq we have that δθ ≃

(∂g/∂p)δp+(∂g/∂q)δq, and assuming that δp, δq are independent, the delta

method (e.g. Oehlert, 1992) gives

var(θ̂) ≃ {(∂g/∂p)}2var(P ) + {(∂g/∂q)}2var(Q).

Taking Np, Nq as fixed, assume that the effective probability of an event is

a random variable from some distribution. The beta distribution, as the

conjugate prior for the binomial distribution, is a natural choice here. With

parameters α, β the mean is p = α/(α + β). Then using the notation in

table 1, n11 is the realization of a beta-binomial random variate (see e.g.

Prentice, 1986), with mean Npα/(α + β), variance

var(n11) =
Npαβ(α+ β +Np)

(α+ β)2(α+ β + 1)
. (3)
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Reparameterizing, one parameter, the random effect size, is taken as ρ =

1/(α + β + 1), and this is also the intra-study correlation. The method of

moments gives p̂ = n11/Np = ρα̂/(1 − ρ). Hence β̂ = (1 − ρ)(1 − p̂)/ρ, and

so from (3) the estimated variance of p̂ is

var(n11/Np) ≃ p̂(1− p̂){1/Np + (1− 1/Np)ρ}. (4)

Hence finally

var(θ̂) ≃ {(∂g/∂p)}2 p̂(1−p̂){1/Np+(1−1/Np)ρ}+{(∂g/∂q)}2 q̂(1−q̂){1/Nq+(1−1/Nq)ρ},

(5)

which can be written for the ith study

var(θ̂i) = σ2
i + viρ.

The parameter ρ also has the meaning that α + β = (1 − ρ)/ρ is the

notional or effective sample size per group for the inter-study variation in

θi. The practical application of this is that there is little point in new

studies having much larger sample size than ρ−1. The statistic ρ̂, expressed

as a percentage, is a new measure of heterogeneity, not related to statistical

significance as is I2. For example, as sample size per study increases, I2 will

tend to 100%, but ρ̂ will remain constant. Borenstein et al (2017) stress that

I2 is not ‘an absolute measure of heterogeneity’ although it is often taken

as such; ρ̂ is an absolute measure.

This model has the implication that the size of random error for a study

is geared to the sizes of p̂ and q̂; for values of p̂, q̂, giving a tiny variance,
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the random effect variance is similarly tiny. Thus for the log-odds ratio

σ2
i = 1

q̂(1−q̂)Nq
+ 1

p̂(1−p̂)Np
, so that the extra variance ρ{ 1

q̂(1−q̂) +
1

p̂(1−p̂)} is

smallest when p̂, q̂ = 1/2. This is the difference from the standard model,

where the size of random error is constant.

Note that for the arc-sine transformation, designed to stabilize variance,

θ = sin−1(
√
q) − sin−1(

√
p), we have that vi = 1/2, so the new method

reduces to the old. For risk difference θ = q − p we have that vi = p̂(1 −

p̂)+ q̂(1− q̂). The size of the random effect is now greatest where p̂, q̂ ≃ 1/2.

Also, if Nq = Np is constant for all trials, the new method amounts to a

multiplicative rescaling of variance, like the methods used in particle physics

(Baker and Jackson, 2013 )

2.3. Changes to the DerSimonian and Laird and Mandel-Paule procedures

The DerSimonian and Laird (1986) method for random-effects meta-

analysis has been very popular in the life sciences. Writing wi = 1/σ2
i ,

the sum of squares Q =
∑n

i=1(θ̂i − θ̄)2/σ2
i (where θ̄ =

∑n
i=1wiθ̂i/

∑n
i=1wi)

is equated to its expectation, under the assumption that θ̂i has variance

σ2
i + τ2 = 1/w∗

i . This yields the DSL estimator

τ̂2 = max{0, Q− (n− 1)
∑n

i=1 wi −
∑n

i=1w
2
i /

∑n
i=1wi

},

where now θ is estimated as
∑n

i=1 w
∗

i θ̂i/
∑n

i=1 w
∗

i with standard error (
∑n

i=1 w
∗

i )
−1/2.

We follow the same derivation, under the assumption that θ̂i has variance

σ2
i + viρ, which yields the estimator

ρ̂ = max{0, Q− (n− 1)
∑n

i=1 viwi −
∑n

i=1 viw
2
i /

∑n
i=1wi

},
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and σ2
i + viρ = 1/w∗

i , so that θ and its standard error are now estimated as

before.

The Mandel-Paule estimator (e.g. Hartung, Knapp and Sinha, 2008)

minimises Q(τ2) =
∑n

i=1
(θ̂i−θ̃)2

σ2

i
+τ2

for θ̃, so that θ̃ =
∑n

i=1
θ̂i/(σ2

i
+τ2)

∑n
i=1

1/(σ2

i
+τ2)

and es-

timates τ2 iteratively by setting Q = n − 1. It can be trivially changed

to Q(ρ) =
∑n

i=1
(θ̂i−θ̃)2

σ2

i
+viρ

, minimized for θ̃, and ρ then estimated by setting

Q(ρ) = n − 1. Hence the standard methods of meta-analysis can be easily

tweaked to make the adjustment recommended here.

2.4. Examples

Table 2 shows details of the 15 datasets used as examples. These were

datasets that were comparatively easily available, and some such as the

tuberculosis dataset are very well known and much studied.

The results are shown in table 3. A maximum likelihood fit for the

parameters θ and τ2 or ρ was done to evaluate the relative goodness of fit of

the conventional and proposed new model, but the estimates of treatment

effect θ shown with standard errors are derived using the DerSimonian and

Laird procedure, and the modified version of this. This was done rather

than quoting results from the maximum likelihood analysis, because the

DSL method is very widely used.

Of the 15 meta-analyses studied, 10 had higher likelihood with the new

method, 2 had lower likelihood (Eclamp and Resp), while 3 ( Lamo, Steroid

and Strep) fitted with random effect going to zero, so both methods gave

identical results. In two of these latter cases the results are shown, because

θ̂ differed using the DSL method. In the 2 cases where the new method gave
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a worse fit, the decrease in log-likelihood was small, not more than 0.25.

However when the fit was better, the improvement could be much larger,

of the order of 2.0. This shows convincingly that the new method fits data

better. The estimates of treatment effect have smaller modulus in 11 cases,

and are larger in 4, big enough changes to make the new model of practical

interest. The maximum change was something like 15% of treatment effect.

The standard errors were always slightly smaller for the new method, which

is another advantage.

The random effect ρ̂ estimated from the modified DerSimonian and Laird

method is also shown as a percentage. It correlates only weakly with the

I2 statistic, because I2, although a measure of heterogeneity, derives from a

measure of significance, whereas ρ is an absolute measure of heterogeneity.

3. Conclusions

A modification of the standard normal random effects model for 2 × 2

table data has been derived, where the size of the random effect is scaled

to the size of the variances for the event probabilities for treatments A and

B (at a fixed sample size). There is thus an effect on inference: a sample

treatment effect measure such as the log-odds ratio (1) has smallest variance

when p̂ ≃ 1/2, q̂ ≃ 1/2. The random effect will be smaller there, so that

studies where p̂ are small or large will have a larger random effect variance

ρ and so be downweighted. Thus the weighting accorded to the various

studies is altered. This model can be seen as the conversion of the beta-

binomial regression model mentioned by Kuss (2015) to a 2-stage model.

Hence the attractive properties of the beta-binomial model found by Kuss
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(2015) should carry over to the 2-stage model.

This modification of a familiar model gave slightly better fits to data

than the conventional model for most of the sample of datasets studied. It

can be used wherever random effects occur in binary-data meta-analysis,

e.g. in multivariate and network meta-analysis, in meta-regression, or in

diagnostic meta-analysis, where the diagnostic odds ratio (DOR) can be

given this type of random effect. Further experience with this model by

other workers is of course necessary, and its computation would require only

a small tweak of existing software.

A spin-off from this model is that the random-effects statistic ρ̂ derived

in section 2.2 is more meaningful than the usual variance τ2, being a measure

of heterogeneity on a scale from 0 to 1, and having the second meaning that

the effective sample size for the random variation is ≃ 1/ρ. As pointed out

by Borenstein (2017), the familiar I2 statistic has the drawback that it is

not an absolute measure of heterogeneity.

For 1-stage meta-analyses, this model offers a computationally simple

method that often gives better fits to data, confirming the results of Kuss

(2015). This analysis is available in appendix A in the supplementary ma-

terial available online for this paper. Future work could be the comparison

of the adjusted model with the standard model for a much larger sample of

meta-analyses.
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Tables

event↓,group→ Treatment A Treatment B

Yes n11 n12

No n21 n22

Total N1 or Np N2 or Nq

Table 1: Notation for 2 × 2 tables; columns are the group, rows the event, e.g. recovery

or death.
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Name Description Reference Studies

Amant Amantidine for influenza Higgins et al. [10] 8
Anti Anticonvulsants for alcoholism, dropouts Pani et al. [13] 17
Apro Aprotinin to reduce perioperative bleeding Fergusson [8] 64
Circum Circumcision and HIV prevalence Borenstein et al. [4] 33
Cis Cisapride for nonulcer dyspepsia Hartung et al. [9] 13
Eclamp Diuretics for pre-eclampsia Turner et al. [18] 9
Endo New surgical therapy for bleeding peptic ulcers Sidik and Jonkman [17] 41
Ibup Ibuprofen for post-operative pain Warn et al. [20] 46
Lamot Lamotrigine for drug-resistant partial epilepsy Ramaratnam et al. [15] 11
Resp Selective decontamination for RPI Turner et al. [18] 22
Sclero Endoscopic sclerotherapy for liver disease Sharp et al. [16] 19
Smoking Smoking cessation Baker & Jackson [2] 111
Steroid Steroids for reducing neonatal deaths Chen and Peace [5] 7
Strept Intravenous streptokinase in MI Egger et al. [7] 22
TB BCG vaccine for TB prevention Hartung et al. [9] 13

Table 2: Summary of the 15 datasets used in our empirical investigation. RPI denotes

respiratory tract infection and MI denotes myocardial infarction.

Name I2% −ℓ −ℓnew θ̂ θ̂new 100ρ̂

Amant 47.0 1.207 0.888 -1.098 (.231) -1.011 (.208) 0.73
Anti 57.7 4.584 4.403 -0.144 (.197) -0.156 (.195) 3.13
Apro 44.0 19.814 19.501 -1.032 (.088) -1.006 (.086) 1.41
Circum 92.3 6.999 5.983 -0.513 (.150) -0.586 (.129) 3.11
Cis 71.2 7.547 7.503 1.491 (.308) 1.361 (.306) 7.98
Eclamp 70.8 1.222 1.421 -0.518 (.204) -0.425 (.181) 0.74
Endo 54.6 32.468 30.480 -0.997 (.189) -0.924 (.184) 0.56
Ibup 50.7 30.475 29.022 2.022 (.151) 1.797 (.140) 2.55
Lamo 0 0.530 0.530 0.950 (.167) 0.950 (.167) 0.00
Resp 63.8 8.406 8.658 -1.221 (.167) -1.153 (.163) 2.09
Sclero 56.2 3.266 2.675 -0.339 (.175) -0.333 (.173) 2.96
Smoking 26.3 -31.947 -32.354 0.567 (.0392) 0.562 (.0387) 0.20
Steroid 12.5 -0.3851 -0.3851 -0.6292 (.192) -0.616 (.190) 0.13
Strept 33.3 -7.431 -7.431 -0.245 (.0622) -0.247 ( .0621) 0.09
TB 95.3 1.3964 -0.5435 -0.856 (.225) -1.009 (.145) 0.18

Table 3: 2-stage meta-analysis results using standard and new methods for the log-odds

ratio. Minus the log-likelihood is shown, plus treatment effect estimates obtained using the

DerSimonian and Laird procedure, with standard errors in parentheses, and the random-

effect correlation ρ̂.
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