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Abstract 
 A mathematical model is presented for magnetized nanofluid bio-tribological squeeze film flow 

between two approaching disks. The nanofluid comprises a suspension of metal oxide nanoparticles with 

an electrically-conducting base fluid, making the nano-suspension responsive to applied magnetic field. 

The governing viscous momentum, heat and species (nano-particle) conservation equations are normalized 

with appropriate transformations which renders the original coupled, nonlinear partial differential 

equation system into a more amenable ordinary differential boundary value problem. The emerging model 

is shown to be controlled by a number of parameters, viz nanoparticle volume fraction, squeeze number, 

Hartmann magnetic body force number, disk surface transpiration parameter, Brownian motion 

parameter, thermophoretic parameter, Prandtl number and Lewis number. Computations are conducted 

with a B-spline collocation numerical method. Validation with previous homotopy solutions is included. 

The numerical spline algorithm is shown to achieve excellent convergence and stability in nonlinear bio-

tribological boundary value problems. The interaction of heat and mass transfer with nanofluid velocity 

characteristics is explored. In particular smaller nanoparticle (high Brownian motion parameter) 

suspensions are studied. The study is relevant to enhanced lubrication performance in novel bio-sensors 

and intelligent knee joint (orthopaedic) systems. 
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1.INTRODUCTION 

 Nanofluids are suspensions of nanometre-sized particles in base fluids. Such 

fluids were introduced by Choi [1] and co-workers. The nanoparticles range from single-

walled (SWCNT) and multi-walled carbon nanotubes, to metal oxides (gold, silver, 

titanium, copper etc) and fullerene, and these have been shown to consistently elevate the 

thermal conductivity characteristics of base fluids (e.g. silicon oil, ethylene glycol etc). 

Numerous and ever-diversifying applications of such fluids have been explored. In 

lubrication sciences, such fluids have demonstrated great promise in recent years. Many 

experimental and computational studies in this regard have been communicated. Hwang 

et al. [2] showed experimentally that thermal conductivity of nanofluid lubricants, which 

aids in heat dissipation, increases with increasing particle volume fraction and that 

extreme pressure sustainable by nanofluids increases up to 225%. Shen et al. [3] 

investigated water-based Aluminium oxide and diamond nanofluids in minimum quality 

lubrication (MQL) grinding processes, showing that nanofluids dramatically decrease 

grinding forces, enhance surface roughness and mitigate workpiece burning. Khandekar 

et al. [4] studied performance of nano-cutting fluids (suspensions of ordinary cutting 

fluid and nanoparticles) using a macroscopic contact angle technique, demonstrating that 

introduction of nanoparticles successfully improves wettability, lubricating properties, 

and convective heat transfer coefficient (cooling properties) of nano-cutting fluids. They 

also found that nanofluids decrease workpiece surface roughness, tool wear and chip 

thickness compared with conventional dry machining or conventional cutting fluids. Mao 

et al. [5] used a pin-on-flat tribotester to investigate nanoparticles effects (Aluminium 

oxide) in nanofluid lubrication, showing that significant friction reduction is achieved and 

better anti-wear properties. Pendleton et al. [6] studied nanostructured fullerene and other 

particle additives in nanofluid tribological performance of titanium and its alloys for 

medical orthopedic applications. Sahoo et al. [7] employed Molybdenum sulphate 

nanoparticles to improve sliding lubrication in journal bearings. Nicoletti [8] utilized  

copper and silicon oxide nanoparticles, among others, to study thermal dissipation 

performance in nano-lubricants showing that greater volumetric heat capacity of the 

lubricant decreases temperature development in the bearing gap, leading to elevated 

viscosity distribution for the same operating conditions. Numerous other studies have 
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been communicated including Harta et al. [9] who used zinc oxide nanoparticle-oil 

nanofluids for metal-on-metal contacts, Wasan and Nikolov [10] who investigated 

spreading and adhesion charactersitics of nanofluids on solid surfaces  with surfactant 

micelles,  Binu et al. [11] who employed Titanium oxide nano-lubricants, Xu et al. [12], 

Kumar and Bushan [13] who considered commercial coatings of diamond-like-carbon 

and other materials for nitriding treatment on H-13 steel and Niyaghi et al. [14] who used 

zinc oxide metalworking nanofluids. Ghaednia et al. [15] conducted experiments on 

Copper oxide nanoparticles suspended in mineral base oil, using sodium oleate as a 

surfactant, observing that boundary lubricant temperature is decreased and viscosity of 

the nano-lubricants is enhanced with addition of more nanoparticles. Kang et al. [16] 

reported on performance-enhancing properties of Iron Nickel nanoscale fluids. 

Within tribology, squeeze film flows are frequently encountered. They arise in machine 

elements, automotive components, prosthetics, aerospace and bridge dampers, matching 

gears, wet-clutch plates etc. In general, research of squeeze film characteristics 

concentrates attention on the use of Newtonian lubricants and modifications of Reynolds 

celebrated equation. However a separate group of problems also arises in which nonlinear 

partial differential equation systems for the regime may be formulated and solved, often 

for non-Newtonian and other complex lubricants. Such “thin layer” boundary value 

problems are of great interest to computational mechanics researchers. An extensive 

range of numerical algorithms have been applied in recent years to study multi-physical 

squeeze-film problems. Magnetohydrodynamic squeeze films have in particular garnered 

much attention owing to developments in smart systems. Hayat et al. [17] used a 

homotopy analysis technique to study magneto-micropolar squeeze films. Bég et al. [18] 

used an Adomian decomposition code to investigate magnetic squeeze film lubrication at 

generalized Batchelor numbers. Daliri et al. [19] used MATLAB software to simulate 

squeeze film magnetic non-Newtonian flows in wide parallel rectangular conjunctions, 

showing that magneto-hydrodynamic couple stress fluids are more appropriate for high 

relatively steady load applications. Zueco and Bég [20] employed thermo-electric code, 

PSPICE to simulate magnetic Newtonian squeeze films in a dual-disk spinning 

lubrication system. Hayat et al. [21] used homotopy methods to study magnetic 

viscoelastic squeeze films. Bég et al. [22] studied gyration viscosity and squeeze number 
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effects on unsteady magnetized micropolar squeeze films in helicopter damper systems, 

with a meshless numerical method.  

The above studies [17-22] however did not consider nanofluid lubricants. In the present 

work we address magnetized nanofluid squeeze film flow in dual disk systems. A robust 

B-spline collocation numerical method is employed to solve the transformed nonlinear 

boundary value problem. Validation with earlier homotopy solutions is included. The 

current study is motivated by potential applications of magnetic nano-lubricants in heat 

dissipation and better flow control in dampers [23, 24]. We examine in detail the radial 

velocity evolution and modification by surface blowing/suction, nanofluid and magnetic 

field characteristics in magnetic nanofluid squeeze film flow between two parallel 

circular disks, one solid and the other porous. Solutions are further benchmarked with 

earlier homotopy solutions [25] where possible, although these are limited in the range of 

parameters examined. The present study also provides a useful benchmark for more 

complex computational fluid dynamics simulations with commercial software e.g. 

ADINA-F, FLUENT etc [26] and furthermore, it is hoped that it will stimulate some 

interest from experimental researchers engaged in nano-magnetic lubrication engineering 

in the medical arena. 

 

2. MAGNETIZED NANO-BIO-TRIBOLOGICAL SQUEEZE FILM MODEL   

The physical regime under investigation is illustrated in Fig. 1. Transient incompressible 

magnetized bio-nanofluid flow occurs between two parallel circular plates, in an (r,, z) 

coordinate system. The disks are parallel to the r- plane, with the z-axis normal to this 

plane. A magnetic field, B(t) =Bo(1-at)
-1/2

 is applied along the z-axis. The magnetic 

Reynolds number is small for the magneto-nano-lubricant regime, so that magnetic 

induction effects can be ignored. The disks are separated by a distance h(t) = H(1 - at)
1/2

. 

The upper disk at z = h(t) descends towards/ascends away from the stationary lower disk 

with the velocity dh=dt. The surface temperature and nanoparticle concentrations on both 

disks are constant and defined by Tw,Cw (lower) and Th,Ch (upper), respectively. A 

constant transpiration velocity, wo, is present at the lower disk; the upper disk is 

impervious. The conservations equations for mass, radial and axial momentum, heat and 
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nanoparticle concentration (species diffusion) may be presented, following Hashmi et al. 

[25]: 
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Figure 1: Physical Model and Coordinate System  
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Energy (Heat) Conservation 
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Nano-particle Species Conservation 
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We note that in Eq. (5), which is a statement of Fick’s law of mass (species) diffusion for 

nanoparticles, the first term on the left hand side is the transient concentration gradient, 

and the second and third terms are the convective mass transfer terms. The first bracketed 

term on the right hand side denotes the species diffusion and the last bracketed term is the 

relative contribution of thermophoresis to Brownian motion. The corresponding boundary 

conditions for the flow regime are prescribed as follows, which include the conventional 

no-slip boundary conditions at the disk surfaces:  

 

At  z = h(t):  u=0; w =dh/dt;  T=Th;   C=Ch   (6a) 

At  z = 0: u=0; w=-wo/(1-at);  T=Tw;   C=Cw   (6b) 

 

where u, w are radial and axial velocity components respectively, t is time, nf is the 

nanofluid density,  is the dynamic viscosity of the nanofluid, p is pressure, T denotes 

nanofluid temperature, C is nanoparticle concentration (volume fraction),  is thermal 

diffusivity of nanofluid, DB is the Brownian motion coefficient (species diffusivity of 

nanoparticles), DT is thermophoresis diffusion coefficient (relating to particle deposition 

induced by a temperature gradient), Tm denotes mean fluid temperature, k is nanofluid 

thermal conductivity, Th is upper disk surface temperature, Tw is lower disk surface 

temperature, Ch is upper disk surface nano-particle concentration, Ch is lower disk surface 

nano-particle concentration, wo is lower disk lateral mass flux velocity (suction/injection), 

 designates the ratio of effective heat capacity of nanoparticles to heat capacity of the 
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base fluid (a function of the type of nanomaterial e.g. copper oxide, titanium oxide, 

silicon oxide etc). Computational solutions to the nonlinear boundary value problem 

defined by eqns. (1)-(6) while tractable, are challenging. It is judicious to introduce 

normalization variables as similarity parameters which not only simplify the conservation 

equations, but introduce a set of important dimensionless parameters which provide 

interesting insights to the squeeze film mechanisms. Defining the following 

dimensionless variables: 
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The conservation equations then retract to the following ordinary differential equations: 
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Heat conservation 
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Nanoparticle species conservation 
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The associated boundary conditions for the squeezing flow contract to the following 

form:  

At   = 1 (Upper disk): F(1)= 0.5; dF(1)/d = 0; G(1)=N(1)=0  (11a) 

At   = 0 (Lower disk): F(0)= A; dF(0)/d = 0; G(0)=N(0)=1  (11b) 

A number of key parameters emerge in the new similarity equations and boundary 

conditions, and these take the following definitions: 
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Here A is the lower disk transpiration parameter (A>0 implies suction; A<0 corresponds 

to blowing), S is the squeezing number, Ha is the Hartmann magnetic body force number 

(ratio of Lorentz radial magnetic drag force to the viscous hydrodynamic force), Pr is 

Prandtl number, Le is Lewis number, Nb is Brownian motion parameter, Nt is 

thermophoresis parameter. We may also define key surface parameters, namely surface 

radial shear stress (disk skin friction), Cfr, Nusselt number, Nur, (disk surface heat 

transfer rate) and Sherwood number, Shr, (disk surface mass transfer rate) as follows: 
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In terms of the dimensionless variables (7), the non-dimensional upper disk shear stress, 

reduced heat transfer rate and reduced nanoparticle (mass) transfer rate take the form: 
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Where a radial Reynolds number is used and defined as, 
2

)1(
Re

2/1atraH
r


 . We note  

that a non-dimensional load carrying capacity and time of approach can also be derived 

to simulate squeezing effects and tribological performance. 
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3. B-SPLINE COLLOCATION NUMERICAL SOLUTIONS  

This method reduces the computational cost on a large domain with small step size and a 

range of parameters. For the application of the spline collocation method, the system of 

differential equations (8-10) can thus be rendered into a simpler system of differential 

equations: 

))(;()( wzfwns
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The numerical solver will produce the following vector solution:  
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After simplifying the system of differential equation(s) (16) as a function (fs; s=1, 2, 3) of 

the independent variable, , and the function z(w), under the boundary conditions (11a-

11b), we obtain the desired numerical solution. The method of spline collocation at 

Gaussian points using a B-spline basis has been implemented to calculate the B-splines 

and their derivates. The matrix has been simplified using the Gaussian elimination with 

partial pivoting [29]. B-Splines employ the mathematical principle of splines which are 

continuous piecewise curves used to approximate a solution to a mathematical problem. 

A spline curve is dependent upon a relationship between the basis function and the 

vertices of a defining polygon. The B-spline curve has its own type of basis function, 

known as the B-spline basis, to establish the relationship with the defining polygon. 

Many other types of splines are employed in numerical analysis including the Bezier 

spline (which deploys a Bernstein basis function to establish the relationship). However, 

the B-spline basis function is advantageous in that the order of the base function can be 

reduced, resulting in curves with a lower degree, without the penalty of a reduction in 

approximation accuracy. This allows increased computational speed and less memory 
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requirements during compilation. Furthermore B-splines allow relatively easy local 

refinement to the function. The nonlinear parts of the system are dealt by the use of a 

modified-Newton method. The mesh refinement has been controlled by the redistribution 

of mesh points for better accuracy and hence to reduce the error. To validate the B-spline 

numerical solutions, we benchmark against the earlier HAM solutions in [25]- see Tables 

1 and 2.  

Table 1: Benchmark solutions for upper disk surface friction with Nt=Nb=0.1, Le=1, Pr 

= 1, A= 2, for various values of Hartmann number and squeeze number. 

Ha S 
2

2 )1(

d

Fd
 

(HAM [25])  

2

2 )1(

d

Fd
 

(B-Spline collocation) 

0 1 7.533165 7.532158 

2 “ 8.263872 8.241627 

3 “ 9.097326 9.095184 

5 “ 11.34929 11.337581 

1 1 7.721946 7.718385 

 2 6.940773 6.939045 

Table 2: Benchmark solutions for reduced Nusselt number and reduced Sherwood 

number for various Nt and Nb with A=2, Ha=S=Le=Pr =1.0. 

 

Nb  Nt 
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(B-Spline 

collocation) 
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d
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  

(HAM [25]) 
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dN )1(
  

(B-Spline 

collocation) 

0.1 0.1 0.5263 0.5192 0.8660 0.8657 

0.5 “ 0.6343 0.63414 0.5301 0.5298 

1 “ 0.7864 0.78644 0.4860 0.4856 

1.5 “ 0.9557 0.9556 0.4698 0.4696 
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“ 0.5 1.1768 1.1767 0.4018 0.4016 

“ 1.0 1.4858 1.4849 0.1261 0.1256 

 

Inspection of the tables reveals that very close correlation is achieved between the present 

B-Spline collocation approach and established homotopy solutions in the literature. 

Confidence in the B-spline collocation solutions is therefore justifiably high. Table 1 

shows that as Hartmann number (Ha) increases (with squeeze parameter, S, invariant at 

unity), there is a significant elevation in the upper disk friction,
2

2 )1(

d

Fd
. As Hartmann 

number is elevated, there is a corresponding increase in magnetic field, based on the 

definition of Ha in eqn. (12). The magnetic body force term,
2

2
2

d

Fd
Ha , in the 

momentum conservation eqn. (8) is inhibiting to the radial squeeze film flow (which is 

perpendicular to the line of application of the magnetic field in the axial direction). Via 

this Lorentzian drag force, the radial squeeze film flow is decelerated and this manifests 

in a enhancement of shear stress at the disk i.e. upper disk surface friction. With 

increasing squeeze film number, S, the converse response is observed and disk friction is 

markedly decreased. This implies that as the disk separation is increased (or as viscosity 

is decreased) the flow is accelerated, and this results in a decrease in shear stress i.e. disk 

friction. Evidently both Hartmann number and squeeze number are instrumental 

parameters in regulating the flow and particularly important since they can be 

manipulated relatively easily in real designs to achieve a desired performance. Table 2 

shows that with increasing Brownian motion parameter (Nb) there is a considerable 

increase in heat transfer rate i.e. reduced Nusselt number, 
d

dG )1(
 , at the upper disk. 

Greater Brownian motion therefore aids in the transport of thermal energy from the bio-

lubricant to the disk which achieves the desired effect of cooling the squeeze film. 

Conversely the mass transfer rate i.e. rate of nano-particle diffusion to the upper disk, 

d

dN )1(
  i.e. reduced Sherwood number is substantially lowered. This is a result of 

enhanced diffusion of nano-particles into the body of the squeeze film i.e. greater 
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concentration within the bio-lubricant. This is consistent therefore with the enhanced 

migration of nano-particles away from the upper disk. With greater thermophoretic 

parameter (Nt), the reduced Nusselt number at the upper disk is depressed. However there 

is a much more profound elevation in local Sherwood number. Thermophoresis is related 

to the encouraged trans-location of nano-particles under the force of a temperature 

gradient.  The enhanced heat transfer rate to the upper disk displaces nano-particles away 

from this zone. These nano-particles in the lubricant create an accelerated flow down the 

temperature gradient and this results in a noticeable decrease in nano-particle mass 

transfer rate to the upper disk i.e. decreasing reduced Sherwood number. The migration 

of nano-particles back into the main body of the squeeze film is also advantageous since 

more homogenous distributions can be achieved and better global cooling of the nano-

lubricant is sustainable, a key desire of bio-tribologists.  

   

4. B-SPLINE NUMERICAL SIMULATION RESULTS AND DISCUSSION  

Extensive computations have been conducted for a comprehensive range of the key bio-

tribological and nanoscale parameters. The present investigation considerably extends the 

analysis performed by Hashmi et al. [25] and in particular provides deeper interpretation 

of computations, which is of great interest to bio-tribologists.  

 

Fig. 2: Radial velocity distribution (dF/d) versus transverse coordinate () for various 
wall transpiration parameters (A) and various squeeze film parameters (S) with Le=1, Pr 

= 1, Nb = Nt = 0.2, Ha=2. 
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Fig. 2 depicts the evolution of radial velocity with different transpiration and squeeze 

film parameter values. With wall blowing present at the disk (A<0) there is a significant 

enhancement in velocity compared with wall suction (A>0).  

 

Fig. 3: Temperature distribution (G) versus transverse coordinate () for various wall 
transpiration parameters (A) and squeeze film parameters (S) with Le=1, Pr = 1, Nb = Nt 

= 0.2, Ha=2. 

 

Fig. 4: Nano-particle concentration distribution (N) versus transverse coordinate () for 

various wall transpiration parameters (A) and squeeze film parameters (S) with Le=1, Pr 

= 1, Nb = Nt = 0.2, Ha=2. 
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Fig. 5: Temperature (G) versus   for Le=1, Pr =1, Nt = 0.2, Ha=2, S= 1 with various 

Brownian motion numbers (Nb) and transpiration parameters (A). 

 

Fig. 6: Nano-particle concentration distribution (N) versus   for Le=1, Pr =1, Nt = 0.2, 

Ha=2, S= 1 with various Brownian motion numbers (Nb) and transpiration parameters 

(A). 
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Fig. 7: Nano-particle concentration distribution (N) versus   for Le=1, Pr =1, Nb = 0.2, 

Ha=2, S= 1 with various thermophoretic numbers (Nt) and transpiration parameters (A). 

 

Fig. 8: Temperature (G) versus   for Le=1, Pr =1, Nb = 0.2, Ha=2, S= 1 with various 

thermophoretic numbers (Nt) and transpiration parameters (A).   
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Fig 9: Radial velocity distribution versus   for Le=1, Pr =1, Nb = 0.2, Nt =0.3, A= 1, 

S= 1 with various Hartmann numbers (Ha) and transpiration parameters (A). 

 

Fig 10: Nano-particle concentration (N) distribution versus   for Le=1, Pr =1, Nb = 0.2, 

Nt =0.3, A= 1, S= 1 with various Hartmann numbers (Ha) and transpiration parameters 

(A). 
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The latter i.e. suction, causes adherence of the squeeze film to the disk surfaces and 

destroys momentum in the regime. The former i.e. blowing (injection) adds more bio-

lubricant via perforations in the disk surfaces to the squeeze film and this serves to 

accelerate the flow. Lateral mass flux via geometrical modification of the disk surface 

using machined pores is therefore a potent mechanism for controlling the flow in the 

squeeze film.  

Fig. 3 presents temperature profiles in the disk gap for various transpiration (A) and 

squeeze film parameter (S) values. There is a general decay in temperatures from the 

lower disk to the upper disk which becomes increasingly monotonic in nature (i.e. 

progressively less linear) with increasing squeeze film parameter. Greater squeezing 

effect therefore stifles temperatures and inhibits thermal diffusion in the nano-lubricant. 

This has important implications in sustaining cooling in the regime, which prolongs 

lubricant life. A similar response was computed by Hashim et al. [25] and furthermore 

has also been reported by Zhao et al. [30] and Mivake et al. [31]. The behaviour is 

similar to conventional lubricants, however the temperature reduction is more dramatic. 

With increasing suction effect at the disk, temperature is also significantly lower in 

magnitude than with transpiration. Furthermore with transpiration present, the 

supplementary injection of nano-lubricant into the gap serves to elevate temperatures 

with greater squeeze parameter. The squeezing effect is therefore reversed and for high S 

values, the profiles becoming increasingly parabolic i.e. they deviate from the gentler 

parabolic decays associated with lower S values.  

Fig. 4 illustrates the response in nano-particle concentration (N) with the combined 

effects of transpiration (A) and squeeze film parameter (S). As with temperature field, a 

significant suppression in N values is observed, with disk wall suction present (A= 2). For 

low squeeze parameter (S=0.5), the decay in nano-particle concentration is approximately 

linear. It evolves into a strongly parabolic distribution for high S values. Nano-particle 

concentrations achieve a maximum at the lower disk (=1) and consistently a minimum 

at the upper disk (=1). The Brownian motion (Nb=0.2) and thermophoresis parameter 

(Nt = 0.2) values prescribed are high and correspond to smaller nano-particles. With wall 

transpiration present (A =-2), the influence of increasing squeeze film parameter is 

reversed and nano-particle concentration magnitudes are significantly elevated. The 
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addition of lateral mass of nano-lubricant via the disk surfaces therefore assists in nano-

particle diffusion across the gap and disperses nano-particles more evenly between the 

two disks.  

Figs 5 and 6 illustrate the collective influence of transpiration parameter (A) and 

Brownian motion number (Nb) on temperature and nano-particle species distribution in 

the disk gap. A non-trivial elevation in the temperature (fig. 5) is induced either with 

suction present or injection present, with an increase in Nb values. However significantly 

greater magnitudes are attained with disk injection (blowing) across the entire inter-disk 

gap zone. There is an approximate reflective symmetry in the profiles for suction or 

injection present. Maximum temperature enhancement is achieved closer to the lower 

disk, with wall suction present and a short proximity from the lower disk, there is an 

asymptotic convergence in all the temperature profiles. Conversely with transpiration 

present, the maximum boost in temperature arises in the vicinity of the upper disk, with 

all profiles converging to a single value at the lower disk. Experimental works have also 

demonstrated similar findings, notably the study by Liu and Wang [32] and Kulkarni et 

al. [33], both considering metallic nano-particles, which are consistent with the model 

developed in the present article. The presence of wall injection also serves to enhance 

notably the nano-particle concentration (N), as shown in fig. 6, whereas disk wall suction   

generates significant reduction in N magnitudes. The reflective symmetry observed in 

temperature profiles is again present in the N-profiles. Increasing Brownian motion 

number, Nb however only enhances nano-particle concentration when wall injection is 

present, whereas it depresses concentration when wall suction is present. The influence of 

Brownian motion on nano-particle species diffusion is therefore dependent on the 

transpiration scenario at the disk, whereas for temperature it is independent. It has been 

observed experimentally [34] that for very small nanoparticles (i.e. higher Nb values), the 

random “walk” component of the particle displacement is of a similar order of magnitude 

to the displacement associated with the particle diffusion due to the interparticle repulsive 

forces. Brownian motion is the random thermally driven movement of particles 

suspended in the nano-lubricant. This random motion serves to convey energy directly by 

nanoparticles in addition to the micro-convection effect, which is attributable to the fluid 

mixing around nanoparticles. The exacerbated motion at higher Nb values is assisted with 
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the momentum boost (transpiration) whereas it is inhibited by momentum destruction 

(wall suction). Of course, there are many other factors which influence Brownian motion 

including the geometry of nano-particles, ballistic collisions and further experimental 

studies are required to exactly establish how these characteristics are modified in squeeze 

films [35]. Indeed molecular dynamics simulation may also provide an insight into these 

complex mechanisms in lubrication applications [36]. 

Figs. 7 and 8 illustrate the influence of thermophoresis parameter (Nt) and transpiration 

parameter (A) on respectively the nano-particle concentration and temperature profiles. A 

significant elevation is observed in the nano-particle concentrations (fig. 7) near the 

lower disk with increase in thermophoresis effect, with wall suction present (A=2). This 

growth in profiles is sustained to the upper disk although magnitudes decay quickly 

beyond the gap centre line. Conversely with increasing Nt values, and wall injection 

present at the disk, there is significant reduction in nano-particle concentrations, in 

particular close to the upper disk. Peak nano-particle concentration is computed therefore 

for strong suction and high Nt value, near the lower disk, whereas the minimum nano-

particle concentration arises for strong injection (blowing), near the upper disk, again 

with high Nt (=0.7).  As elaborated earlier thermophoresis is experienced by the nano-

particles owing to the thermophoretic force which acts in a direction opposite to the 

imposed temperature gradient, in the nano-lubrication squeeze film. Even though the 

fluid zone is confined, the thermophoresis effect is still prominent. It also exerts a 

different influence depending on the nature of the lateral mass flux at the disks i.e. 

whether suction or injection is present. Generally to achieve greater magnitudes and more 

homogenous distributions of nano-particles across the squeeze film gap, strong 

thermophoresis and suction are effective, however only in the vicinity of the lower disk 

(note in the boundary conditions 11a,b, transpiration is only imposed at the lower disk 

which is stationary; the upper disk which descends, is impervious). Temperature (fig. 8) 

is affected to a much lesser extent than nano-particle concentration. Thermophoresis 

parameter, Nt arises in both energy (heat) and nano-particle species conservation 

equations i.e. eqns. (9) and (10), in the terms 
2)(Pr

d

dG
Nt  and 

2

2

d

Gd

Nb

Nt
. Both terms 

evidently exert a significant effect.  However in the latter there is also a Brownian motion 



20 

 

parameter present. This leads to a more erratic response in the nano-particle 

concentration field than in the temperature field. Generally temperature is increased with 

greater thermophoretic effect, irrespective of whether suction or injection is prescribed at 

the lower disk. However the temperature magnitudes are significantly higher with 

injection (blowing) than they are for suction. Cooling of the squeeze film is therefore 

more effective when wall suction is applied at the lower disk and when weak 

thermophoresis is present. The temperature field is influenced in a more orderly fashion 

than the nano-particle concentration (fig. 7). In these computations, Prandtl number has 

been fixed at unity indicating that the energy and species diffusion rates are of the same 

order of magnitude. This is representative of certain bio-nano-lubricants as described in 

[35].  

Figs. 9, 10 present the evolution of velocity and nano-particle concentration distributions 

with Hartmann number (Ha) and transpiration parameter (A). Significant radial flow 

deceleration is achieved with an increase in Hartmann number when suction is present at 

the lower disk, as observed in fig. 9. However the converse behavior is observed with 

injection at the lower disk, and furthermore markedly greater velocities are computed 

with injection than with suction. The nature of the applied magnetic field, which is 

axially orientated, is to generate a transverse Lorentzian magnetohydrodynamic drag 

force. This acts in the radial direction and when Hartmann number increases, this drag 

force is accentuated. This leads to a retardation in radial velocity. The effect is however 

only achieved with suction present. However with injection present (wall blowing at the 

lower disk i.e. A =-2), the introduction of mass flux into the squeeze film regime counter-

acts the inhibiting nature of the magnetic field and in fact accelerates the radial flow. For 

bio-tribologists, therefore suction is best combined with strong magnetic field (Hartmann 

number is a function of magnetic field), to achieve greater control of the squeeze film 

dynamics. Similarly we observe in fig. 10, that the nano-particle concentration is also 

decreased with greater Hartmann number, when suction is present at the lower disk. 

Although the reduction is significantly less prominent than the radial velocity field (fig. 

9) it is still substantial. With wall injection present, however a very weak increase is 

computed in nano-particle concentration and the modifications to profiles are most 

pronounced in the intermediate gap zone i.e.at some distance from both disks. The 
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compaction in nano-particle profiles with strong suction may be attributable to the greater 

organization of the adsorption layer around the nanoparticle, which promotes the nano-

lubricant molecules arrangement and this will inevitably contribute to enhanced lubricant 

film strength and load-carrying capacity. 

 

5. CONCLUSIONS  

A mathematical model has been presented for the laminar, squeezing hydrodynamics, 

heat and mass transfer in magnetic nanofluid bio-tribological film flow between two 

approaching disks, the upper descending and the lower stationary. Wall suction/injection 

i.e. mass flux characteristics at the lower disk have been incorporated. The nano-lubricant 

is composed of suspension of metal oxide nanoparticles with an electrically-conducting 

base fluid. The Buongiornio model has been employed to simulate nanoparticle Brownian 

motion and thermophoresis effects, for the case of dilute nanofluid lubricants. The non-

dimensional momentum, heat and species (nano-particle) conservation equations are 

solved as an ordinary differential boundary value problem, subject to physically viable 

boundary conditions, using an efficient, stable B-spline collocation numerical method. 

The influence of squeeze number, Hartmann (magnetic body force) number, disk surface 

transpiration parameter, Brownian motion parameter and thermophoretic parameter are 

explored. Solutions are validated with the earlier homotopy method results of Hashmi et 

al. [25]. The present computations have shown: 

(i)Increasing Hartmann number (magnetic field parameter) causes strong retardation in 

the radial flow with suction present at the lower disk, whereas with injection present 

(wall blowing at the lower disk), a weak acceleration in the radial flow is generated. 

Increasing Hartmann number also lowers nano-particle concentration, when suction is 

present at the lower disk, whereas it slightly enhances concentration of nano-particles for 

the case of wall injection at the lower disk.  

(ii) Increasing Brownian motion parameter and also suction or injection at the lower disk 

serve to increase temperature in the nano-lubricant, although much greater magnitudes 

are achieved with injection. Nano-particle concentrations are also enhanced with greater 

Brownian motion parameter when wall injection is present, but reduced when wall 

suction is imposed at the lower disk.  
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(iii) Increasing thermophoresis parameter effectively enhances nano-particle 

concentrations near the lower disk when wall suction is present, whereas the reverse trend 

is observed when wall injection is present at the lower disk and the decrease is most 

pronounced near the upper disk. Temperature is also increased with greater 

thermophoretic effect, both when suction or injection are prescribed at the lower disk, 

although lower temperatures (enhanced cooling of the squeeze film) is achieved with 

suction.  

(iv)With increasing squeeze film parameter, there is a substantial reduction in 

temperatures and increasing suction effect at the disk also results in lesser temperature 

magnitudes i.e. more effective cooling of the nano-lubricant squeeze film.  A substantial 

decrease in nano-particle concentration is also accompanied with increasing squeeze film 

parameter with lower disk wall suction whereas with wall injection, the contrary trend is 

found and nano-particle concentration magnitudes are markedly enhanced.  

 

The present simulations provide a first step towards more generalized squeeze film nano-

bio-lubricant dynamics. Non-Newtonian effects have been neglected in the current model 

and these are currently being explored using couple stress, micropolar and also 

viscoelastic models, which may provide deeper insight into nano-lubricant rheology.  

 

REFERENCES  
[1]  S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, in: D.A. 

Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, 

Vol. FED 231, ASME, New York, 1995, pp. 99–105.  

 

[2]Y. Hwang, H.S. Park, J.K. Lee and W.H. Jung, Thermal conductivity and lubrication 

characteristics of nanofluids, Current Applied Physics, 6 (2006) e67–e71. 

 

[3] B. Shen, Albert J. Shih and Simon C. Tung, Application of nanofluids in minimum 

quantity lubrication grinding, Tribology Transactions, 51 (2008) 730-737. 

 

[4] S. Khandekar, M. Ravi Sankar, V. Agnihotri & J. Ramkumar, Nano-cutting fluid for 

enhancement of metal cutting performance,  Materials and Manufacturing Processes, 27 

(2012) 963-967.  

 

[5] Cong Mao, Yong Huang, Xin Zhou, Hangyu Gan, Jian Zhang, Zhixiong Zhou, The 

tribological properties of nanofluid used in minimum quantity lubrication grinding, The 

Int. J. Advanced Manufacturing Technology, 71 (2014) 1221-1228.  

http://link.springer.com/search?facet-author=%22Cong+Mao%22
http://link.springer.com/search?facet-author=%22Yong+Huang%22
http://link.springer.com/search?facet-author=%22Xin+Zhou%22
http://link.springer.com/search?facet-author=%22Hangyu+Gan%22
http://link.springer.com/search?facet-author=%22Jian+Zhang%22
http://link.springer.com/search?facet-author=%22Zhixiong+Zhou%22
http://link.springer.com/journal/170
http://link.springer.com/journal/170


23 

 

 

[6] Alice Pendleton; Prasenjit Kar; Subrata Kundu; Sahar Houssamy; Hong Liang, effects 

of nanostructured additives on boundary lubrication for potential artificial joint 

applications, ASME J. Tribol., 132 (2010) 031201-031201-5. 

 

[7] Rashmi R. Sahoo, Sanjay K. BiswasR. R. Sahoo and S. K. Biswas, Deformation and 

friction of MoS2 particles in liquid suspensions used to lubricate sliding contact, Thin 

Solid Films 518, 5995 (2010).  

 

[8] R. Nicoletti, The importance of the heat capacity of lubricants with nanoparticles in 

the static behavior of journal bearings, ASME J. Tribol., 136(2014) 044502-044502-5. 

 

[9] Harta, I., Owens, K., De Jesús Santiago, S., Schall, D. et al., Tribological performance 

of ZnO-oil nanofluids at elevated temperatures, SAE Int. J. Fuels Lubr. 6 (2013) 126-131, 

2013. 

 

[10] D. T. Wasan and Alex D. Nikolov, Spreading of nanofluids on solids, Nature 423 

(2003) 156-159. 

 

[11] K.G. Binu, B.S. Shenoy, D.S. Rao, R. Pai, Static characteristics of a fluid film 

bearing with TiO2 based nanolubricant using the modified Krieger–Dougherty viscosity 

model and couple stress model, Tribology International, 75 (2014) 69-79.  

 

[12] Z.Y. Xu, Y. Xu, K.H. Hu, Y.F. Xu, X.G. Hu, , Formation and tribological properties 

of hollow sphere-like nano-MoS2 precipitated in TiO2 particles, Tribology International, 

81 (2015) 139–148. 

 

[13] Aditya Kumar, Bharat Bhushan, Nanomechanical, nanotribological and 

macrotribological characterization of hard coatings and surface treatment of H-13 steel,  

Tribology International,  81 (2015) 149–158.  

 

[14] F. Niyaghi, Karl R. Haapala, Stacey L. Harper and Michael C. Weismiller, Stability 

and biological responses of zinc oxide metalworking nanofluids using dynamic light 

scattering and zebrafish assays, Tribology Transactions, 57 (2014) 730-739.  

 

[15] Hamed Ghaednia, Robert L. Jackson & Jeyhoon M. Khodadadi, Experimental 

analysis of stable CuO nanoparticle enhanced lubricants, J. Experimental Nanoscience, 

10 (2015) 1-18. 

 

[16] Yonghai Kang, Jun Yang, Licai Fu, Jiqiang Ma, Qinling B, Weimin Liu, 

Tribological behavior of Fe70Ni30 alloy with nanoscale twins under liquid paraffin 

lubrication, Proc. IMechE-Part J: J. Engineering Tribology, 227 (2013) 60-66. 

 

[17] T. Hayat, M. Nawaz, A. A. Hendi and S. Asghar, MHD squeezing flow of a 

micropolar fluid between parallel disks, ASME J. Fluids Eng., 133 (2011) 111206.  

 

http://www.sciencedirect.com/science/journal/0301679X/81/supp/C
http://www.sciencedirect.com/science/journal/0301679X
http://www.sciencedirect.com/science/journal/0301679X/81/supp/C


24 

 

[18] O. Anwar Bég, D. Tripathi, T. Sochi
 
and PK Gupta, Adomian decomposition method 

(ADM) simulation of magneto-bio-tribological squeeze film with magnetic induction 

effects, J. Mechanics Medicine Biology, 15, 1550072.1-1550072.23 (2015).  

 

[19] M Daliri, D Jalali-Vahid and H Rahnejat, Squeeze film lubrication of coupled stress 

electrically conducting inertial fluids in wide parallel rectangular conjunctions subjected 

to a magnetic field, Proc. IMechE.-Part J: J. Engineering Tribology, 228 (2014) 288-

302. 

 

[20] J. Zueco and O. Anwar Bég, Network numerical analysis of hydromagnetic squeeze 

film flow dynamics between two parallel rotating disks with induced magnetic field 

effects, Tribology International, 43, 532-543 (2010).  

 

[21] T. Hayat, Arshia Yousaf, M. Mustafa and S. Obaidat, MHD squeezing flow of 

second-grade fluid between two parallel disks, Int. J. Numerical Methods in Fluids, 69 

(2012) 399–410. 

 

[22] O. Anwar Bég, R. Bhargava, S. Singh and H. Maregere, Element-Free Galerkin 

method (EFGM) computation of transient micropolar magnetic squeeze film flow, Int. J. 

Applied Mathematics and Mechanics, 16, 1-21 (2013).  

 

[23] J. Wang, N. Feng, G. Meng and E. J. Hahn, Vibration control of rotor by squeeze 

film damper with magnetorheological fluid, J. Intelligent Material Systems and 

Structures, 17 (2006) 353-357.  

 

[24] C Carmignani, P Forte and E Rustighi, Design of a novel magneto-rheological 

squeeze-film damper, Smart Mater. Struct., 15 (2006) 164–170. 

 

[25] M.M. Hashimi, T. Hayat and A. Alsaedi, On the analytic solutions for squeezing 

flow of nanofluid between parallel disks, Nonlinear Analysis: Modelling and Control, 17 

(2012) 418-430. 

 

[26] K.P. Gertzos, P.G. Nikolakopoulos and C.A. Ppadopoulos, CFD analysis of journal 

bearing hydrodynamic lubrication by Bingham lubricant, Tribol. International, 41 (2008) 

1190-1204.  

 

[27] O. Anwar Bég, T.A. Bég, Ferromagnetic “intelligent” dampers for infrastructural 

and medical systems, Technical Report, FERRO-A-413/May, Gort Engovation, 

Bradford/Narvik/Stockholm, 115 pages, May (2013).  

 

[28] K. Zakaria, Sirwah MA, Fakharany M, Theoretical study of static and dynamic 

characteristics for eccentric cylinders lubricated with ferrofluid, ASME J Tribol 133 

(2011) 021701. 

 

[29] M.E. Davis, Numerical methods and modeling for chemical engineers. Courier 

Corporation (2013).  



25 

 

 

[30] W. Zhao, Ying Wang, Liping Wang, Mingwu Bai and Qunji Xue, Influence of heat 

treatment on the micro/nano-tribological properties of ultra-thin ionic liquid films on 

silicon, Colloids and Surfaces A Physicochemical and Engineering Aspects 361(1-3):118-

125 (2010).  

 

[31]S. Mivake, M. Wang, S. Ninomiya, Nanotribological properties of 

perfluoropolyether-coated magnetic disk evaluated by vertical and lateral vibration wear 

tests, Surf. Coat. Technol. 200 (2006) 6137–6154.  

 

[32]W. Liu and Xiaobo Wang, Nanolubricants made of metals, pp. 175-201, In  

Nanolubricants, Edited by Jean Michel Martin  and Nobuo Ohmae, John Wiley and Sons, 

UK (2008). 

 

[33] D.P. Kulkarni, Das, D.K. and Chukwu, G.A. Temperature dependent rheological 

property of copper oxide nanoparticles suspension (nanofluid). J. Nanosci. Nanotechnol. 

6, 1150–1154 (2006). 

 

[34] Ghaednia, H., Jackson, R.L., and Khodadadi, J.M. Experimental analysis of stable 

cuo nanoparticle enhanced lubricants, J. Experimental Nanoscience, 8, 1-18 (2013) 

 

[35] G. Vakili-Nezhaad and A. Dorany, Effect of single-walled carbon nanotube on the 

viscosity of lubricants, Energy Procedia, 14, 512–517 (2012). 

 

[36] C. Hu, M. Bai, J. Lv, X. Li, Molecular dynamics simulation of mechanism of 

nanoparticle in improving load-carrying capacity of lubricant film, Computational 

Materials Science, 109, 97–103 (2015). 

http://www.sciencedirect.com/science/article/pii/S1876610211043839
http://www.sciencedirect.com/science/article/pii/S1876610211043839

