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ABSTRACT

A novel methodology for intelligent music production has
been developed using evolutionary computation. Mixes are
generated by exploration of a “mix-space”, which consists
of a series of inter-channel volume ratios, allowing efficient
generation of random mixes. An interactive genetic algo-
rithm was used, allowing the user to rate mixes and guide
the system towards their ideal mix. Currently, fitness eval-
uation is subjective but can be aided by specific domain
knowledge obtained from a large-scale study of real mixes.

1. BACKGROUND

Intelligent music production (IMP) has been an active re-
search topic for over a decade. One aim is the development
of systems which perform common tasks: level-balancing,
equalisation, panning, dynamic range compression and ap-
plication of artificial reverberation. Many previous IMP
systems developed were modelled as expert systems wherein
a music production task is solved by optimisation, and do-
main knowledge, obtained by examining industry “best-
practice” methods, is used to determine the optimisation
target [[1]. Drawbacks to this method include the fallibil-
ity of this type of domain knowledge and the fundamen-
tal assumption that there is a global optimum, i.e. one mix
which all users would agree is best. Subjective evaluation
suggested that existing systems struggled to compete with
human-made mixes [2]], perhaps due to a lack of what we
would perceive as creativity. Additionally it has been sug-
gested that mix engineers prefer their own mix to those of
their peers [2]. Consequently, IMP tools would benefit from
increased interactivity and subjectivity, to determine user-
specific “personal” global optima in the solution space, in-
stead of a single “universal” global optimum.

2. CONCEPT

We propose to use interactive evolutionary computation
(IEC) to solve this problem, being well-suited to aesthetic
design problems which are non-linear and non-deterministic
[3]. The flowchart in Fig. E] demonstrates the method, with
an interactive genetic algorithm (IGA). The solution space
we explored is a “mix-space” which theoretically represents
all the mixes that it is possible to create with a finite set of
tools [4]. For level-balancing, the gains g of all n tracks are
selected from a unit hypersphere in R”. This hypersurface
has n — 1 dimensions, representing a series of inter-channel
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Figure 1: Flowchart of intelligent mixer using IGA
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Figure 2: k-means with cosine distance metric (spherical k-
means), clustered in gain-space, for a simple 3-track mixing
task. The population size is 1000 (deliberately large, for
visualisation purposes) and the number of clusters is 5.

volume ratios, ® (see Fig. [2). This method has the advan-
tage that all random mixes generated are unique and have
equal loudness (after normalising the loudness of tracks be-
forehand). The fitness function for optimisation is subjec-
tive, allowing mixes to be generated based on any percep-
tual description, such as “warmth”, “punch” or “clarity” or
simply “preference”.

3. METHOD

EC typically requires a large population of candidate solu-
tions. To increase the population size beyond that which a
user could realistically evaluate, before becoming fatigued,
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the fitness of a rated sub-population is extrapolated to nearby
solutions [3]]. Figure [2| shows the population clustered into
¢ clusters. The mixes closest to each cluster centroid are
chosen for audition and user-evaluation.

To aid this extrapolation we introduce findings from a
recent large-scale study of music mixes which revealed tol-
erance ranges for low-level audio features [6]. This can be
used to augment the fitness of the population alongside the
subjective ratings provided to a subset of the population, ef-
fectively adding a penalty to mixes which are unlikely to
be created by a real engineer, while still giving the user the
authority to override these heuristics.

While clustering is performed in the gain-space, genetic
operations take place in the mix-space. Currently, the sys-
tem uses roulette selection and uniform crossover with mu-
tation. These operations could also be performed in the
gain-space if solved on the sphere.

Typically, in EC, the optimal solution is considered to be
the solution with the highest fitness. However, many prob-
lems that can be addressed by IEC are perceptual and as
such do not require exact solutions but rather seek to iden-
tify an area of the solution space in which many fit solutions
exist which are perceptually similar [3]. In a music mixing
problem there is a limit to the precision required when de-
termining gain values, as small adjustments in the gain of
individual tracks will not be perceived.

Determining the region of optimal solutions employed
kernel density estimation (KDE). Figure [3] shows the uni-
variate KDE result, with the values of ¢ having evolved to-
wards specific modal values. These values are converted
back to gain-space in order to construct the final mix.

4. CONCLUSIONS

Early results indicate that the system can produce a vari-
ety of mixes, suited to varying personal taste. As this sys-
tem makes minimal assumptions as to what makes a good
mix, or possibly no assumptions, it learns from the expertise
of the user, rather than the traditional approach, which as-
sumes the novice user learns from the expert system. We be-
lieve this approach can be used to further expand the study
of IMP, to deliver personalised object-based audio to con-
sumers and to increase the understanding how music is mixed.
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Figure 3: Kernel density estimation, showing modes in mix-
space for a 6-track mixing session. The position of each
mode is highlighted along with the density value. These
values of ¢, are transformed to g;.., to create the final
mix. Note, that in this example, multiple optimal mixes are
possible, due to the multi-modal nature of ¢4.
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