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ABSTRACT In this paper, a mathematical model is developed for magnetohydrodynamic (MHD), 

incompressible, dissipative and chemically reacting micropolar fluid flow, heat and mass transfer through 

a porous medium from a vertical plate with Hall current, Soret and Dufour effects. The entire system 

rotates with uniform angular velocity about an axis normal to the plate. Rosseland’s diffusion 

approximation is used to describe the radiative heat flux in the energy equation. The governing partial 

differential equations for momentum, heat, angular momentum and species conservation are transformed 

into dimensionless form under the assumption of low Reynolds number with appropriate dimensionless 

quantities. The emerging boundary value problem is then solved numerically with a Galerkin finite 

element method employing the weighted residual approach. The evolution of translational velocity, 

micro-rotation (angular velocity), temperature and concentration are studied in detail. The influence of 

many multi-physical parameters in these variables is illustrated graphically. Finally, the friction factor, 

surface heat transfer and mass transfer rate dependency on the emerging thermo-physical parameters are 

also tabulated. The finite element code is benchmarked with the results reported in the literature to check 

the validity and accuracy under some limiting cases and an excellent agreement with published solutions 

is achieved. The study is relevant to rotating MHD energy generators utilizing non-Newtonian working 

fluids and also magnetic rheo-dynamic materials processing systems. 

Keywords: Soret effect:  Dufour effect: Hall magnetohydrodynamics: Chemical reaction: Micropolar 

fluid: Galerkin finite element method; rotating plate; porous media; MHD energy generators. 
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Nomenclature 

oB   Applied magnetic field strength                                  xSh
 
  Sherwood number    

C     Concentration of the solute [
3mmol ]                     Sr     Soret number 

f
C  Skin friction coefficient                                               T      Temperature of the field in the boundary layer [ K ]

mC  Wall couple stress                                                        mT
   

Mean fluid temperature]      

pC   Specific heat at constant pressure [
11 

KkgJ ]          wT
   

Wall temperature of the fluid [ K ]                                       

sC   Concentration susceptability [
3mmol ]               T    Temperature of the fluid in free stream [ K ]   

wC  Concentration of the solute at the plate [
3mmol ]   v,u  Velocity component along x, y-direction [

1sm ] 

C   Free stream concentration [
3mmol ]                       rU    Uniform reference velocity  

mD   Molecular diffusivity [
12 sm ]                                   oV    Scale suction velocity at the Plate [

1sm ]                                                 

Du   Dufour number                                                            x      Axis along the plate [ m ]   

Ec    Eckert number                                                            y       Axis perpendicular to the plate [ m ] 

een   Electron charge                                                          
4,3,2,1 wwww      arbitrary test functions 

 F      Radiation-conduction parameter                                 t        Non-dimensional time                                                                                                             

g     Acceleration due to gravity [
1sm ]                           Greek letters                                                       

mG  Species Grashof number                                                    Eringen coupling number                    

mG  Species Grashof number                                              
f

   Coefficient of thermal expansion [
1

K ]          

rG   Thermal Grashof number                                             c    Coefficient of concentration expansion [
1

K ] 

H    Magnetic field strength                                                      Density of magneto-micropolar fluid [
3mkg ] 

Ho   The externally applied transverse magnetic field              Electrical conductivity of the fluid [
1mS ] 

 i      The imaginary unit                                                            Stefan-Boltzmann constant [
42  KmW ]    

J     Dimensionless micro inertia coefficient                            Thermal conductivity [
11 

KmW ]    

j


    Current strength                                                                 Mean absorption coefficient [
1m ]                                                        

K     Permeability of porous medium [
2m ]                              Kinematic viscosity [

12 sm ]                           

TK   Thermo diffusion ratio [
12 sm ]                                r    Kinematic vortex viscosity [

12 sm ]                                                         

M     Magnetic field parameter                                                  Homogeneous chemical reaction parameter                                               

wm   Concentration gradient                                                      Gyroscopic viscosity [
1smkg ]                                                           

n      Non-dimensional oscillation frequency                             Coefficient of gyro-viscosity [
11  smkg ]                      

Nu    Nusselt number                                                                 Fluid dynamic viscosity [ sPa ]                                                                                                                                        

p      Constant pressure                                                               Dimensionless temperature                                                                                                  

rP     Prandtl number                                                                  Dimensionless concentration                                                                          

rq     Thermal radiative heat flux [
2mW ]                            Microrotation component [

22 sm  ]
  
 

wq    Heat flux [
2mW ]                                                    e       Electron collision time                                                       

 

xRe
 
Local Reynolds number                                                     Angular velocity [

1sRd ]    

Sc     Schmidt number                                                                   Small constant quantity                                                                                                                                                                                                                                                                                                                      
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1.INTRODUCTION 

Non-Newtonian flows arise in many diverse branches of engineering, applied sciences and 

geophysics. These fluids are characterized by shear stress-strain relationships which substantially 

deviate from classical Newtonian fluids i.e. the Navier-Stokes equations. Modern developments 

in chemical and energy systems engineering have resulted in greater emphasis on microstructural 

rheological fluid mechanics in which suspensions are analysed with more sophisticated non-

Newtonian models. A leading development in this area was pioneered by Eringen in the 1960s 

and termed micro-continuum fluid mechanics. Eringen introduced simple microfluids [1] to 

simulate the behaviour of real industrial fluids such as propellants, polymeric suspensions etc. 

He later simplified this model to the micropolar fluid model [2]. Micropolar fluids successfully 

mimic non-Newtonian fluids containing micro-constituents such as physiological liquids, 

lubricants, colloidal fluids, liquid crystals, paints, polymers and gels which cannot be simulated 

via the classical Newtonian fluid model or even other non-Newtonian models (viscoplastic, 

viscoelastic etc.). The micropolar fluid model framework considers fluids consisting of rigid, 

randomly oriented particles suspended in viscous medium where the deformation of the particle 

is ignored. The theory of micropolar fluids is able to describe many complex fluids by taking into 

account the microscopic effects arising from the local structure and gyratory micro motions of 

the fluid elements. Comprehensive reviews of micropolar hydrodynamics and applications can be 

found in the articles of Ariman et al. [3, 4] and the book by Lukaszewicz [5]. Micropolar fluids 

have been studied in many contexts including tribology [6], microbial nano-fuel cells [7], micro-

machining processes [8], hemodynamics [9] and energy system thermodynamic optimization   

[10].  

In many physico-chemical heat and mass transfer studies, related to both Newtonian and non-

Newtonian fluids, thermo-diffusion (Soret) and diffuso-thermo (Dufour) effects play a prominent 

role. These effects are often of smaller order of magnitude in comparison with the diffusive 

effects associated with thermal conduction (Fourier’s law) and mass diffusion (Fick’s laws) and 

are frequently neglected. However these so-called cross diffusion effects become important if not 

dominant, in materials processing operations e.g. dendritic growth [11, 12], magnetic separation 

of colloids [13], MHD power generators [14] and aerospace combustion and flame dynamics 

[15, 16] where they arise in binary gas and supercritical fuel injection systems. Generally when 
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heat and mass transfer effects occur simultaneously in a moving fluid, the relationship between 

the fluxes and the driven potentials become significant. An energy flux can be generated not only 

by temperature gradient but also by composition gradient as well. The energy caused by a 

composition gradient is called the Dufour effect or diffusion-thermo effect.  The energy caused 

by a temperature gradient is called the Soret effect or thermo-diffusion effect. The thermal Soret 

effect can for example also generate a very strong coupling force between the species (solute) 

and heat transport. Due to the significance importance of Soret and Dufour diffusion phenomena 

for fluids with medium molecular weight as well as very light molecular weights, in recent years 

substantial interest has emerged in simulation of these effects in many multi-physical transport 

problems. Postelnicu [17] considered magnetic free convection in porous media with Soret and 

Dufour effects. Alam and Rahman [18] investigated combined Dufour and Soret effects on 

hydromagnetic natural convection flow in a porous medium. Further studies of Newtonian flows 

with Soret/Dufour effects include Vasu et al. [19] (for wall mass flux effects), Bég et al. [20] (for 

hydromagnetic flow from an extending sheet in porous media) and Partha et al. [21] (for non-

Darcian thermal convection). Non-Newtonian heat and mass transfer with Soret and/or Dufour 

effects has also attracted some attention. Bég et al. [22] used a finite element method to simulate 

two-dimensional micropolar boundary layer flows in Darcy-Forchheimer permeable materials 

with Soret and Dufour cross diffusion effects. Other representative studies include Bég et al. [23] 

and Kundu et al. [24] (again both for micropolar fluids) and Ashraf et al. [25] (for Maxwell 

viscoelastic fluids).  

Magnetohydrodynamics (MHD) involves the simulation of flows in which electrically-

conducting liquids or gases interact with an applied magnetic field. MHD is exploited in 

numerous modern industrial processes including vortex control [26], ionized propulsion systems, 

nuclear heat transfer control, medical treatment and energy generators. These systems are 

increasingly deploying or already feature more complex working fluids containing suspensions. 

Magneto-micropolar flows are therefore greatly relevant to such systems. Many investigators 

have examined boundary value problems (BVPs) of such fluids in recent years using a range of 

computational solvers. These include Kim [27], Borrelli et al. [28], Rawat et al. [29] who used 

finite elements, Zueco et al.[30]  who employed network simulation, Bég et al. [31] who used 

finite difference methods, Vafeas et al. [32] who used boundary element methods and Bég et al. 

[33] who employed homotopy methods. 
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In the above investigations, the effect of Hall current in hydromagnetics has been excluded. 

However Hall currents characterize stronger magnetic field effects and generate cross-flows 

which are important in MHD energy generators and certain materials synthesis operations. 

Rotating flows in the presence of Hall currents are also of interest. Cowling [34] has shown that 

when the strength of the applied magnetic field is sufficiently large, Ohm’s law needs to be 

modified to include Hall current. However, to study the effects of strong magnetic fields on the 

electrically conducting fluid flow, we see that the influence of the electromagnetic force is 

noticeable and causes anisotropic electrical conductivity in the plasma. This anisotropy in the 

electrical conductivity of the plasma produces a current known as the Hall current. Takhar et al. 

[35] used a finite difference scheme to obtain numerical solutions for Hall 

magnetohydrodynamic flow from a rotating plate. Further studies include Ghosh et al. [36] who 

also considered magnetic induction effects and Seth et al. [37] who considered transient and 

ramped wall temperature effects. These studies verified the strong influence of Hall current on 

both flow and heat transfer.  

In the present investigation we generalize and extend existing studies [38, 39] to consider the 

combined effects of Hall current, Soret and Dufour cross diffusion, first order chemical reaction 

and viscous dissipation on radiative magnetohydrodynamic micropolar flow, heat and mass 

transfer from a rotating vertical plate adjacent to a porous medium. The non-dimensional 

conservation equations are solved with a Galerkin finite element method. The effect of various 

physical parameters on the translational velocity, micro-rotation velocity, temperature and 

concentration profiles as well as on local skin friction coefficient, wall couple stress, Sherwood 

number and Nusselt number are tabulated. Validation of the analysis has been performed by 

comparing the present results with those of Kundu et al. [24]. The current study is relevant to 

high temperature electromagnetic rheological flows in energy generators and magneto-

rheological materials fabrication systems (where thermal radiation heat transfer is also 

significant) and has not appeared in the technical literature thus far.  

 

 

 

2.MATHEMATICAL FORMULATION 
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Consider the unsteady free convection flow of an incompressible and electrically-conducting 

micropolar fluid, heat and mass transfer from an infinite vertical moving porous plate suspended 

in a homogenous, isotropic, porous medium. The physical configuration is illustrated in Fig. 1. 

Darcy’s law is assumed and low Reynolds number flow (viscous-dominated). The vertical plate 

is assumed to be subjected to a constant heat flux, wq  and a constant concentration gradient, wm . 

A magnetic field of uniform strength 0H is applied in a direction parallel to the z axis which is 

perpendicular to the flow direction. It is assumed that the induced magnetic field is negligible in 

comparison to the applied magnetic field. Magnetic Reynolds number is very small. Applied or 

polarized voltage is neglected so that no energy is added or extracted from the fluid by electrical 

means. The fluid is considered to be a gray, absorbing-emitting but non scattering medium and 

the Rosseland approximation is used to describe the radiative heat flux. The radiative heat flux in 

the xdirection is considered negligible in comparison with that of z direction. Heat generation 

and viscous dissipation is present as are Soret and Dufour effects. Ohmic (Joule) dissipation is 

ignored. The magnetic micropolar fluid contains a species which is reactive and obeys first order 

chemical reaction. Initially, the fluid as well as plate is at rest but for time 0t , the whole 

system is allowed to rotate with constant velocity, , in the micropolar-fluid saturated porous 

medium about the z axis. The plate velocity uoscillates in time t   with frequency n  which is 

given by  tnrUu  cos1  . It is assumed that the plate is infinite in extent and hence all 

physical quantities depend only on z and t  ; that is 0////  yvxvyuxu   

and so forth. When strength of magnetic field is very large, the generalized Ohm’s law in 

absence of electric field takes the following form: 

)1(
1

0
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
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Under the assumption that electron pressure (for weakly ionized fluid), the thermo-electric 

pressure and non-slip conditions are negligible, the above equation reduces to:      
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Figure .1:  Flow configuration and coordinate system 

Where u  is x -component of V


 v is y  component of V


 and )( eem   is Hall parameter. 

The micro-elements in micropolar fluids are of dumbbell shaped and may sustain both rotary and 

translation motions, as elucidated by Eringen [2, 40] and more recently by Bég et al. [41]. 

Generally each micro-element of micropolar fluid possesses six degrees of freedom (three 

corresponding to translation and three corresponding to rotation). Micropolar fluids can therefore 

support couple stresses, force stresses and may possess rotational micro-inertia of particles. The 

general case is however greatly simplified for two-dimensional flows, as considered here. With 

these foregoing assumptions, the governing equations under Boussinesq approximation can be 

written in a Cartesian of reference as follows: 
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Here rU is the uniform reference velocity and   is a small quantity. The oscillatory plate 

velocity assumed in Eq. (10) is based on the model proposed by Ganapathy [42]. Integrating the 

mass conservation (continuity) equation (3) for variable suction velocity normal to the plate we 

consider a convenient solution to be: 

)11(
0

ww 
 

Where 0w is the normal velocity at the plate 00 w  for suction, 00 w for blowing. Following 

Rosseland’s approximation (Brewster [43]), the radiative heat flux term is given by  
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Here  is Stefan Boltzmann constant and  is mean absorption coefficient. Assuming that the 

difference in the temperature with in the flow such that 4T  can be expressed as a linear 
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combination of the temperature, using Taylor’s series expansion about

T , the expansion of  4T   

can be written as follows: 

    )13(...2263444 
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Neglecting higher order terms beyond the first degree in  

 TT  , we have: 

)14(43344
 TTTT                                                                                                                          

Now differentiating (12) w.r.t z using (13) and (14), we get: 
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We note that the Rosseland model is quite accurate for optically-thick media where thermal 

radiation propagates a limited distance prior to encountering scattering or absorption. The 

refractive index of the fluid-particle suspension is assumed to be constant, intensity within the 

fluid is nearly isotropic and uniform and wavelength regions exist where the optical thickness is 

usually in excess of five [44]. Introducing the following non-dimensional variables: 
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Where all quantities with a prime are dimensionless,  is dimensionless temperature function,   

is dimensionless concentration and   is the Eringen micropolar vortex viscosity parameter. 

Substituting equation (16) into equations (2)-(7) and dropping primes yields the following 

dimensionless equations: 
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To obtain desired solutions, we now simplify Eqns. (16) - (21) by formulating the translational 

velocity and angular velocity in complex form: 
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3. FINITE ELEMENT SOLUTIONS 

The set of time-dependent, reduced, non-dimensional, coupled partial differential equations (24)-

(27) subject to boundary conditions (28) are nonlinear, coupled and therefore cannot be solved 

analytically. The finite element method is a powerful technique for solving ordinary differential 

or partial differential equations as well as integral equations. It is equally versatile at solving 

Newtonian and non-Newtonian problems. The variational form is particularly popular for fluid 

mechanics simulations and general details of this methodology are available in many textbooks. 

Some recent examples of applications with associated computational details of finite element 

modelling of non-Newtonian magnetohydrodynamic flows include pulsating magneto-rheo-

hydrodynamics of Nakamura-Sawada bi-viscosity fluids [45], rotating extending sheet power-

law nanofluid dynamics [46], radiating magneto-micropolar shrinking sheet flow in porous 

media [47] and dissipative second order viscoelastic nanofluid extrusion flows [48]. The 

fundamental steps involved in the finite-element analysis of a problem are as follows:  
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Step 1: Discretization of the infinite fluid domain into finite elements:  

The whole domain is divided into a finite number of sub domains, processes known as 

discretization of the domain. Each sub domain is termed as finite element. The collection of 

elements is then denoted the finite-element mesh. 

 

Step 2: Derivation of element equations:  

The derivation of finite element equations .,.ei  algebraic equations among the unknown      

parameters of the finite element approximation, involves the following three stages. 

1.  Construct the variational formulation of the differential equation. 

2. Assume the form of the approximate solution over a typical finite element. 

3. Derive the finite element equations by substituting the approximate solution into variational 

formulation. 

These steps results in a matrix equation of the form     eee FuK  , which defines the finite 

element model of the original equation. 

Step 3: Assembly of Element Equations:  

The algebraic equations so obtained are assembled by imposing the inter-element continuity 

conditions (i.e. the values of the nodal variables at the nodes are identical for two or more 

elements). This yields a large number of algebraic equations known as the global finite element 

model. This governs the whole flow domain.  

 

Step 4: Imposition of boundary conditions:  

The initial and final boundary conditions defined in equation (28) are imposed on the above 

obtained assembled equations. 

  

Step 5: Solution of assembled equations:  

The final matrix equation obtained can be solved by a direct or iterative method. 

Variational formulation 

The variational formulation associated with Eqs. (24) - (27) over a typical two-node linear 

element  1, ee yy  is given by 
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Where ,1w ,2w 3w  and 4w are arbitrary test functions and may be viewed as the variations in  U
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Finite Element formulation 

The finite element model may be obtained from Eqs. (33) - (36) by substituting finite element 

approximations of the form: 
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The finite element model of the equations for 
the  element thus formed is given by.  
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,1,( nm  )4,3,2,  denote the set of matrices of order 22  and 12   respectively and )(prime
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d

d .  
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A grid refinement test is carried out by dividing the whole domain into successively sized grids 

81x81, 101x101 and 121x121 in the z-axis direction. Furthermore we ran the finite element code 

for different grid sizes and finally we found that all the solutions are independent of grid size. 

After many tests we adopted a grid size of 101 intervals. Thus all the computations were carried 

out with 101 intervals of equal step size 0.01. At each node 4 functions are to be evaluated and 

after assembly of element equations, a set of 404 non-linear equations are obtained which may 

not produce closed form solutions; consequently an iterative scheme is adopted to solve the 

system by introducing the boundary conditions. Finally the solution is assumed to be convergent 

whenever the relative difference between two successive iterations is less than the value 10
-6

. 

Following computation of the principal variables i.e. velocity (U), angular velocity i.e. micro-

rotation (), temperature function () and concentration function (), certain gradients of these 

functions are also evaluated. These physical quantities are the skin-friction, wall couple stress, 

Nusselt number and Sherwood number. 

Skin-friction is obtained as, 
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Wall couple stress is defined as, 
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Nusselt number is computed as, 
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4. VALIDATION OF NUMERICAL RESULTS 

With reference to the validity and accuracy of current numerical results the skin-friction, couple 

wall stress, Nusselt number and Sherwood number are compared with the results reported 

analytically by Kundu et al. [24] in the absence of the Hall current, heat absorption, viscous 
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dissipation, Dufour number and chemical reaction parameters and are  presented quantitatively in 

Table 1. Very close correlation between the present finite element numerical results and the 

small perturbation solutions of Kundu et al. [24] is achieved. Therefore these favorable 

comparisons lend high confidence in the present finite element code accuracy. 

 

5. RESULTS AND INTERPRETATION 

The nonlinear boundary value problem solved in the previous section is dictated by an extensive 

number of thermal and hydrodynamic parameters. In order to gain a clear insight into the 

physical problem, numerical calculations for distribution of the translational velocity, 

microrotation (angular) velocity, temperature and concentration for different values of these 

parameters is conducted with graphical illustrations (Figs. 2-29). For the purpose of our 

computation, we adopted the following default parameters: ,01.0 ,10n ,1.0t ,2/nt  

and all graphs therefore correspond to these values unless specifically indicated otherwise on the 

appropriate graph. The permeability in all the Figures plotted is set at 0.5 which corresponds to a 

highly porous regime, characteristic of many materials operations and working MHD generators. 

The value of Pr is taken to be 0.71 which corresponds to air at 20°C and 1 atmospheric pressure 

and the value of Sc is 0.6 (water-vapour). Due to the presence of free convection currents, large 

positive values of Gr = 10 and Gm = 5 are selected which imply strong thermal and species 

buoyancy effects in the regime and where the thermal buoyancy is twice the intensity of species 

buoyancy. Numerical values of the coefficients proportional to the skin friction f
C , couple stress 

coefficient wC , Nusselt number Nu and Sherwood number Sh  are given in Table 2 for the 

general model with all parameters invoked.  

It is evident that as Eringen micropolar vortex parameter (), radiation parameter ( F ), Soret 

number ( Sr ) and Dufour number ( Du ) increase, the skin friction coefficient f
C

 
and wall couple 

stress coefficient wC both increase. However with greater suction parameter (S) and chemical 

reaction parameter ( ), the skin friction coefficient f
C

 
and wall couple stress coefficient wC

both decrease. Also it is apparent that as wall suction ( S ), heat absorption parameter (QH), and 
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chemical reaction ( ) increases, a significant increase is computed in Sherwood number, Sh . 

Conversely  with increasing Soret (thermo-diffusive) number, there is a reduction in Sherwood 

number Sh  i.e. mass transfer rates at the plate surface are decreased. Furthermore with an 

increase in radiation parameter ( F ) and Dufour (diffuso-thermal) number (Du) increases, the 

Nusselt number ( Nu ) decreases i.e. wall heat transfer rates are reduced at the plate surface. 

Finally with an increase in rotational parameter (R) there is initially a substantial increase in skin 

friction f
C  i.e. the flow is strongly accelerated in the vicinity of the plate; however with further 

increase in R there is a subsequent deceleration in the flow. However there is a consistent 

elevation in wall couple stress coefficient wC  with progressive increase in rotational parameter 

(R). 

Figure 2 shows the pattern of the translational velocity for different values of magnetic field 

parameter, 


 v

rU

He
M 0 . It is to be noted that U is a composite velocity field which contains 

both original primary and secondary velocity components by virtue of complex variables. The 

parameter M arises solely in the transformed linear momentum eqn. (24) in the final two terms, 
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2
. M is therefore also coupled with the Hall parameter, m. Both 

terms are drag forces which serve to inhibit the flow. It is observed that, adjacent to the surface 

of the plate, the translational velocity decreases with increase of M . The imposition of transverse 

magnetic field of strength, Ho, generates in the electrically-conducting micropolar fluid a 

resistive type force, called as Lorentz force, which acts against the relative motion of the fluid. 

This retarding force decelerates the fluid flow strongly. Similarly in fig. 3 an increase in 

magnetic parameter is observed to significantly decelerate the angular velocity i.e. reduce the 

magnitude of micro-rotation, although the effect is more localized at the plate surface and 

progressively decays further from the plate. The micro-rotation field is influenced indirectly via 

the deceleration in the linear (translational) velocity via the coupling terms in the composite 

linear momentum eqn. (24) i.e. 







 i . Linear velocity terms do not arise however in the 

angular momentum composite eqn. (25). Increasing magnetic field therefore has a damping 
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effect on the global velocity and angular velocity fields and can therefore be exploited to control 

both. In both figs. 2 and 3 asymptotically smooth solutions are obtained indicating that a 

sufficiently large infinity boundary condition is prescribed in the free stream.  

Figures 4 and 5 illustrate the influence of the Eringen vortex viscosity ratio parameter ( ) on 

translational velocity and microrotation velocity profiles across the boundary layer. It is 

noteworthy that translational velocity distribution (fig. 4) is greater for a weaker micropolar fluid 

(= 0.1) as compared with stronger micropolar fluid (= 0.4) Micropolarity (i.e. increasing 

vortex viscosity of micro-elements) therefore consistently induces deceleration in the flow 

adjacent to the plate. All profiles are parabolic and peak at some distance from the wall, decaying 

smoothly to vanish in the free stream. Fig. 5 shows that the magnitude of micro-rotation velocity 

at the wall is also strongly decreased as   increases. The micro-rotation profiles decay 

consistently from the wall to the free stream i.e. the peak magnitude in micro-rotation (angular 

velocity) is always attained at the wall irrespective of the value of . The presence of increasing 

concentration of micro-elements which enhances vortex viscosity therefore also damps the 

gyratory motions of micro-elements. The maximum influence is at the wall since with greater 

concentration of micro-elements, these micro-elements are physically impaired from rotating 

near the boundary more than anywhere else in the fluid regime. This effect is progressively 

reduced with distance from the plate. 

Figures 6 and 7 respectively show the impact of the Hall current parameter ( m ) on the 

translational velocity (U) and micro-rotation () distributions, respectively. A significant 

enhancement in velocity U accompanies an increase in values of m as depicted in fig 6. This is 

characteristic of Hall current and has been observed by other researchers and is documented also 

by Cramer and Pai [49]. This effect is however mainly attributable to the acceleration in the 

secondary flow rather than primary flow, which is expressed via the global velocity, U. Figure. 7, 

illustrates the influence of Hall parameter on micro-rotation profile. A significant depression is 

caused in micro-rotation with greater m values indicating that gyratory motions (angular 

velocities) are significantly damped with greater Hall effect. Micro-rotation values are therefore 

maximized with weak Hall current effect and minimized with strong Hall current effect. 
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Figures 8-11 present the response in velocity, micro-rotation, temperature and concentration to a 

variation in wall suction parameter (S). Fig. 8 shows that increasing suction significantly 

decreases velocity i.e. decelerates the boundary layer flow. Greater suction corresponds 

physically to removal of micropolar fluid via the wall. This destroys momentum, and causes the 

boundary layer to adhere to the wall thereby stabilizing boundary layer growth. due to which the 

velocity of the fluid decreases, i.e., the flow is decelerated. However, the opposite behavior is 

produced by the imposition of injection. The presence of wall suction therefore may be utilized 

to regulate flows and this has important implications in both magnetic materials processing and 

near-wall dynamics in MHD generators. We note that the case S < 0 corresponds to blowing 

(mass injection) at the wall and is not relevant to the current study and has therefore not been 

addressed. Overall the influence of suction is to increase momentum boundary layer thickness. 

Figure 9 indicates that micro-rotation is also significantly reduced with greater suction at the 

plate. The deceleration in the linear flow evidently also both the suction term,







 S in eqn. 

(25) and via coupling with the angular momentum field (micro-rotation) retards gyratory motion 

(spin) of micro-elements which leads to a decrease in  values. Again smooth convergence of 

profiles in the free stream demonstrates that a sufficiently large infinity boundary condition has 

been implemented in the numerical finite element code. Angular momentum boundary layer 

thickness therefore will also be increased with greater suction. Inspection of Figure 10 reveals 

that a marked decrease in the temperature of the fluid is also caused by an increase in wall 

suction. The removal of micropolar fluid from the boundary layer via the porous wall inhibits 

momentum diffusion. The suction term, 







 S  in eqn. (26) also serves to suppress thermal 

diffusion in the regime. This cools the boundary layer and results in a decrease in thermal 

boundary layer thickness. Figure 11 shows that as the suction increases the concentration,, 

decreases. As with all the flow variables, suction directly influences the concentration field also, 

this time via the term, 







 S , in eqn. (27). As suction is applied the particles of the diffusing 

species are drawn closer to the plate. This results in a decrease of the concentration boundary 

layer thickness. 



21 
 

Figures 12-13 visualize the effect of the porous medium permeability parameter (K) on both 

velocity and microrotation fields. This parameter characterizes the hydrauic transmissivity of the 

porous medium. It arises in the Darcian drag force term in the composite linear momentum eqn. 

(24), viz U
K










1
.  With increasing permeability the regime solid fibers progressively decrease. 

The Darcian bulk impedance to flow is therefore also decreased. This results in an acceleration 

in the translational velocity, U, as observed in fig. 12. This behaviour is sustained across the 

boundary layer i.e. for all values of transverse co-ordinate,. The implication for MHD energy 

generators is that the flow can be damped strategically via the introduction of a porous material 

in the flow zone and accelerated with higher permeability media. It is also apparent that micro-

rotation i.e. angular velocity is enhanced with greater permeability parameter although the effect 

is prominent near the plate surface and is weakened with further distance into the boundary layer. 

Since the permeability parameter does not arise in the angular momentum conservation 

(boundary layer) eqn. (25) the accelerating effect on micro-rotation is sustained via the boost in 

linear momentum experienced through the coupling terms which link both linear and angular 

momentum fields. The increase in permeability implies greater void space in the porous medium. 

This allows an enhancement in gyratory motions as the micro-elements are afforded greater 

space in which to spin. 

 Figures 14-15 depict the evolution in translational velocity (U) with different thermal Grashof 

(Gr) and species Grashof (Gm) numbers. Both Grashof numbers arise solely in the thermal and 

species buoyancy terms in the normalized momentum conservation eqn. (24) i.e.  GmGr  , . 

Thermal Grashof number Gr  is described here as quantifying the relative magnitude of the 

thermal buoyancy force and the opposing viscous hydrodynamic (frictional) force acting on the 

micropolar fluid. Physically positive, negative and zero )00,0.,.(  GrandGrGrei  values of 

the thermal Grashof number represent the cooling of the boundary surface (plate), heating of the 

boundary surface and absence of free convection currents (i.e. pure forced convection only), 

respectively. The velocity profiles are invariably enhanced with an increase of positive thermal 

Grashof number (the only case studied). For Gr >1 there is a dominance of buoyancy forces over 

the viscous forces, which in turn further accelerates the flow (fig. 14). Increasing thermal 

buoyancy is therefore assistive to momentum development and results in a decrease in 

momentum boundary layer thickness. Fig. 15 shows that an increase in species (solutal) Grashof 
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number Gm  in fact generates an even greater acceleration in the flow and substantially elevates 

translational velocity (U) throughout the boundary layer. The increasing concentration gradient 

associated with higher Gm values accentuates the species buoyancy force which adds driving 

potential to the boundary layer flow and manifests again in acceleration and decreasing 

momentum boundary layer thickness. These trends are consistent with many other studies in the 

area of buoyancy-driven non-Newtonian convection and are further corroborated by Gebhart et 

al. [50] and Gorla [51]. 

Figure 16 illustrates the influence of Prandtl number (Pr) on temperature profiles. It is evident 

that an increase in the Prandtl number induces a significant reduction in the temperature and 

therefore cools the magnetic micropolar fluid regime, thereby decreasing thermal boundary layer 

thickness. Greater Prandtl numbers correspond to lower thermal conductivity of the fluid. 

Therefore as Pr increases, thermal conduction heat transfer is suppressed and this leads to a 

plummet in temperatures. With Pr > 1 the momentum diffusion rate also exceeds the thermal 

diffusion rate in the fluid. Higher Prandtl number fluids may characterize non-Newtonian 

working fluids (low molecular weight polymeric suspensions) and therefore such fluids, which 

are accurately simulated by the Eringen micropolar model can be implemented to achieve better 

cooling in the regime.  

Figures 17-18 illustrates the influence of radiation-conduction parameter ( F ) on the 

translational velocity (U) and temperature (). An increase in F values (fig. 17) tends to 

accelerate the translational velocity throughout the boundary layer region. Increasing F values 

correspond to a greater contribution of thermal radiation heat transfer relative to thermal 

conduction heat transfer (as
kk

T
F

34  ). This energizes the boundary layer, boosts momentum 

diffusion and leads to an acceleration in the flow. The momentum boundary layer thickness is 

therefore reduced. This type of effect characterizes optically-thick flows using the Rosseland 

model, as confirmed experimentally and theoretically by Adunson and Gebhart [52]. Fig. 18 

indicates that with an increase of F the temperature profiles increases and this also increases 

thermal boundary layer thickness. The F parameter arises solely in the dimensionless energy 

conservation eqn. (26), in the augmented thermal diffusion term, 
2
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. This serves 

to energize the flow with F > 1 for which thermal radiation contribution exceeds thermal 
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conduction contribution. The supplementary heat flux assists in thermal transfer between fluid 

molecules. The case F = 0 physically represents vanishing thermal radiation and purely thermal 

conduction heat transfer and is therefore associated with minimal temperatures in the system. 

Figures 19-20 depicts the influence of heat generation parameter, HQ , on translational velocity 

and temperature distribution, respectively in the flow. The heat absorption parameter HQ

appearing in (21) quantifies the amount of heat absorbed per unit volume which is given by

 
 TTQ w , Q being a constant coefficient, which may take as either positive or negative or zero (no 

heat source/sink). The source term represents heat absorption for 0HQ and heat generation when

0HQ . Physically speaking, the presence of heat absorption (thermal sink) effects has the 

tendency to reduce the fluid temperature. This de-energizes the flow and also causes a strong 

deceleration i.e. net reduction in the fluid velocity, as observed in Fig. 19. Greater heat 

absorption ( HQ ) clearly reduces the temperatures in the domain as observed in Fig. 20, and the 

effect is most prominent at the wall (plate surface). 

Figures 21and 22 illustrate the influence of the Eckert number i.e. viscous dissipation parameter 

(Ec) on velocity and dimensionless temperature profiles. Ec expresses the relationship between 

the kinetic energy in the flow and the boundary layer enthalpy difference. It embodies the 

conversion of kinetic energy into internal energy by work done against the viscous fluid stresses. 

It is an important parameter for describing real working fluids in MHD energy generators and 

materials processing where dissipation effects are not trivial. Positive Eckert number corresponds 

to cooling of the wall (plate) and therefore a transfer of heat from the plate to the micropolar 

fluid. Convection is enhanced and we observe in consistency with that the fluid is accelerated i.e. 

linear (translational) velocity is increased in the micropolar fluid. Temperatures are also 

enhanced markedly with greater Eckert number, as shown in Figure 22 since internal energy is 

increased due to kinetic energy dissipation.  

Figures 23-24 depict the evolution in translational velocity and temperature function, 

respectively, with different values of diffuso-thermal parameter i.e. the Dufour number, 





cwq

wm
T

K

uD

2

 . The Dufour effect refers to heat flux produced by a concentration (solutal) 

gradient. The fluid velocity increases with increase in Dufour number as seen in fig. 23. The 

augmented heat flux via the concentration field, therefore results in a thinning in the momentum 
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boundary layer (acceleration). Increasing diffusion-thermo parameter ( Du ) also accentuates the 

temperature profiles as shown in Figure 24. The temperature profiles in the presence of the 

Dufour effect are higher in comparison to in the absence of Dufour effect. The Dufour cross-

diffusion term, 
2

2










u
D  in the energy (heat) conservation eqn. (26) encourages diffusion of 

heat in the boundary layer via the solutal (concentration) gradient. The boundary layer flow is 

therefore energized with increasing Dufour number and thermal boundary layer thickness 

increases considerably in the presence of strong Dufour effects. 

Figure 25 illustrates the response of concentration profiles () to different values of Schmidt 

number ( Sc ). The Schmidt number is a fundamental parameter in species diffusion (mass 

transfer) which describes the ratio of the momentum to the molecular (species) diffusivity. The 

Schmidt number therefore quantifies the relative effectiveness of momentum and mass transport 

by diffusion in the hydrodynamic (velocity) and concentration (species) boundary layers. For Sc 

> 1 momentum diffusion rate exceeds the species diffusion rate. The opposite applies for Sc < 1. 

For Sc =1 both momentum and concentration (species) boundary layers will have the same 

thickness and diffusivity rates will be equal. It is observed that as the Schmidt number increases 

the concentration decreases. The associated decrease in species diffusivity results in less 

vigorous mass transfer which reduces concentration levels and also depletes the concentration 

boundary layer thickness. Selection of specific materials with particular molecular diffusivities 

therefore has a critical impact on the diffusion process in micropolar liquids and again this is an 

important consideration in materials processing operations where the distribution of species in 

fluids can be manipulated to achieve more homogenous patterns.  

 

Figures 26-27 present the effect of thermo-diffusive parameter i.e. Soret number which is 

defined as 
wm

wq
T

KmD
Sr


 , on the translational velocity and concentration distributions, 

respectively. The Soret effect arises where small light molecules and large heavy molecules 

separate under a temperature gradient. Usually this effect is important where more than one 

chemical species is present under a very large temperature gradient such as CVD (chemical 

vapor deposition) in polymer materials processing [53], chemical reactors and energy generators. 

Figure 26 shows that a substantial elevation in translational velocity is induced with increasing of
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Sr  and therefore thermo-diffusion assists momentum development in the boundary layer, leading 

to a decrease in momentum boundary layer thickness. A marked enhancment in concentration 

profiles increases significantly with an increase of Soret number Sr . The Soret cross-diffusion 

term in the species conservation eqn. (27) i.e. 



















2

2




Sr , encourages diffusion of solute in the 

boundary layer via the thermal gradient. This results in a significant increase in concentration 

boundary layer thickness. 

Finally Figures 28-29 illustrate the evolution in translational velocity (U) and concentration () 

with a change in chemical reaction parameter (  ). The reaction parameter is based on a first-

order irreversible chemical reaction which takes place both in the bulk of the fluid 

(homogeneous) as well as at plate which is assumed to be catalytic to chemical reaction. 

Although chemical reactions generally fall into one of two categories i.e. homogenous or 

heterogenous, the former is of interest in the present study. Homogenous chemical reactions take 

place uniformly throughout a given phase and are similar in nature to an internal source of heat 

generation. We consider the destructive type of homogenous chemical reaction. Increasing   

values are found, in fig. 28, to instigate a considerable reduction in the velocity i.e. flow 

deceleration. The momentum boundary layer thickness is therefore also decreased substantially 

with greater chemical reaction effect. Fig. 29 shows that concentration is also depleted in the 

boundary layer with greater chemical reaction, since more species is destroyed via the chemical 

reaction. This results in a reduction in the thickness of the concentration boundary layer. These 

trends for the magnetic micropolar fluid concur closely with other studies including, for 

example, Das et al. [54].  

 

6. CONCLUDING REMARKS 

 In this work, motivated by applications in non-Newtonian electro-conductive materials 

processing and MHD energy generator systems, a multi-physico-chemical model has been 

developed for unsteady hydromagnetic free convection flow of an incompressible, micropolar 

fluid from a rotating plate in porous media. Viscous heating, homogenous chemical reaction, 

wall mass flux (suction),   Hall current, Soret and Dufour cross-diffusion effects have been 
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incorporated into the model. The transformed conservation equations for momentum, angular 

momentum, energy and species have been normalized with appropriate variables. The resulting 

nonlinear, unsteady partial differential coupled boundary value problem has been solved 

numerically, under initial and boundary conditions, via a variational finite element method with a 

Galerkin weighted residual scheme. Validation for solutions for selected cases has been 

conducted with earlier studies i.e. Kundu et al. [24] and excellent correlation achieved, testifying 

to the accuracy of the present numerical code. The finite element solutions for the thermofluid 

variables have been presented graphically and a parametric study performed to elucidate the 

influence of all key hydrodynamic, magnetic, thermal and non-Newtonian parameters emerging 

in the formulation. The main findings of the present investigation may be summarized as 

follows: 

 

(i) The flow is decelerated and momentum boundary layer thickness increased of the 

magneto-micropolar fluid field with  increasing values of Eringen vortex viscosity 

parameter, magnetic body force parameter, wall suction parameter, heat absorption 

parameter and chemical reaction parameter.   

(ii) The flow is accelerated and momentum boundary layer thickness decreased of the 

magneto-micropolar fluid field with increasing values of Hall current parameter, 

permeability parameter, thermal Grashof number and species Grashof number,  

radiation parameter, Eckert number, Dufour number and Soret number.  

(iii) Angular velocity (micro-rotation) is suppressed and micro-rotation boundary layer 

thickness increased with increasing magnetic body force parameter, Eringen 

micropolar vortex viscosity parameter, Hall parameter and wall suction parameter. 

(iv) Angular velocity (micro-rotation) is enhanced and micro-rotation boundary layer 

thickness decreased with increasing porous medium permeability parameter. 

(v) The temperature of the magneto-micropolar fluid and thermal boundary layer 

thickness are both decreased with increasing suction parameter, Prandtl number and 

heat absorption parameter. 

(vi) The temperature of the magneto-micropolar fluid and thermal boundary layer 

thickness are both increased with increasing radiation-conduction parameter, Eckert 

number and Dufour number.  
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(vii) The concentration magnitudes of solute in the magneto-micropolar fluid and the 

concentration boundary layer thickness are decreased with increasing wall suction, 

Schmidt number and chemical reaction parameter.  

(viii)  The concentration magnitudes of solute in the magneto-micropolar fluid and the 

concentration boundary layer thickness are increased with increasing Soret number.  

(ix) Sherwood number (wall mass transfer rate) is reduced with increasing Soret (thermo-

diffusive) number. 

(x) Nusselt number (wall heat transfer rate) is decreased with an increase in radiation 

parameter and Dufour (diffuso-thermal) number. 

(xi) With an increase in rotational parameter there is initially a significant elevation in 

wall skin friction (flow acceleration); however with further increase in rotation (i.e. 

Coriolis body force) there is a subsequent deceleration in the flow. 

(xii) With greater rotational parameter an enhancement in wall couple stress coefficient 

(micro-rotation gradient at the plate surface) is sustained. 

 

The current simulations have shown the strong potential of finite element methods in simulating 

realistic transport phenomena in magnetic rheo-materials processing. Further studies will 

investigate alternate non-Newtonian models e.g. dusty two-phase models and will be 

communicated imminently.  
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FIGURES 

 

 
Fig. 2:  Effect of magnetic body force parameter (M) on velocity. 
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Figure 3: Effect of magnetic body force parameter (M) on angular velocity (micro-rotation). 

 

 
Figure 4: Effect of Eringen vortex viscosity parameter ( ) on velocity. 
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Figure 5: Effect of Eringen vortex viscosity parameter (on micro-rotation. 

 

 
Figure 6: Effect of Hall parameter (m) on velocity 
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Figure 7: Effect of Hall parameter (m) on angular velocity (micro-rotation). 

 

 
Figure 8: Effect of wall suction parameter (S) on velocity 
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Figure 9: Effect of wall suction parameter (S) on angular velocity (micro-rotation) 

 

 
Figure 10: Effect of wall suction parameter (S) on temperature. 
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Figure 11: Effect of wall suction parameter (S) on species concentration. 

 

 
Figure 12: Effect of permeability parameter (K) on velocity. 
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Figure 13: Effect of permeability parameter (K) on micro-rotation. 

 

 
Figure 14: Effect of thermal Grashof number (Gr) on velocity. 
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Figure 15: Effect of species (solutal) Grashof number (Gm) on velocity. 

 

 
Figure 16: Effect of Prandtl number (Pr) on temperature 
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Figure 17: Effect of radiation parameter (F) on velocity. 

 

 
Figure 18: Effect of radiation parameter (F) on temperature. 
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Figure 19: Effect of heat absorption parameter (QH) on velocity. 

 

 
Figure 20: Effect of heat absorption parameter (QH) on temperature. 
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Figure 21: Effect of Eckert number (Ec) on velocity. 

 

 
Figure 22: Effect of Eckert number (Ec) on temperature. 
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Figure 23: Effect of Dufour number (Du) on velocity. 

 

 
Figure 24: Effect of Dufour number (Du) on temperature. 
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Figure 25: Effect of Schmidt number (Sc) on concentration. 

 

 
Figure 26: Effect of Soret number (Sr) on velocity. 



44 
 

 
Figure 27: Effect of Soret number (Sr) on concentration. 

 

 
Figure 28: Effect of chemical reaction number () on velocity. 
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Figure 29: Effect of chemical reaction number () on concentration. 

 

Figure Captions 

Figure .1:  Flow configuration and coordinate system 

Fig. 2:  Effect of magnetic body force parameter (M) on velocity. 

Figure 3: Effect of magnetic body force parameter (M) on angular velocity (micro-rotation). 

Figure 4: Effect of Eringen vortex viscosity parameter ( ) on velocity. 

Figure 5: Effect of Eringen vortex viscosity parameter (on micro-rotation. 

Figure 6: Effect of Hall parameter (m) on velocity. 

Figure 7: Effect of Hall parameter (m) on angular velocity (micro-rotation). 

Figure 8: Effect of wall suction parameter (S) on velocity. 

Figure 9: Effect of wall suction parameter (S) on angular velocity (micro-rotation). 

Figure 10: Effect of wall suction parameter (S) on temperature. 

Figure 11: Effect of wall suction parameter (S) on species concentration. 

Figure 12: Effect of permeability parameter (K) on velocity. 

Figure 12: Effect of permeability parameter (K) on velocity. 

Figure 13: Effect of permeability parameter (K) on micro-rotation. 

Figure 14: Effect of thermal Grashof number (Gr) on velocity. 

Figure 15: Effect of species (solutal) Grashof number (Gm) on velocity. 

Figure 16: Effect of Prandtl number (Pr) on temperature. 

Figure 17: Effect of radiation parameter (F) on velocity. 

Figure 18: Effect of radiation parameter (F) on temperature. 

Figure 19: Effect of heat absorption parameter (QH) on velocity. 

Figure 20: Effect of heat absorption parameter (QH) on temperature. 
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Figure 21: Effect of Eckert number (Ec) on velocity. 

Figure 22: Effect of Eckert number (Ec) on temperature. 

Figure 23: Effect of Dufour number (Du) on velocity. 

Figure 24: Effect of Dufour number (Du) on temperature. 

Figure 25: Effect of Schmidt number (Sc) on concentration. 

Figure 26: Effect of Soret number (Sr) on velocity. 

Figure 27: Effect of Soret number (Sr) on concentration. 

Figure 28: Effect of chemical reaction number () on velocity. 

Figure 29: Effect of chemical reaction number () on concentration. 

 

TABLES  

Table 1: Comparison of ,
f

C ,wC
x

Nu Re/  and
x

Sh Re/  

 Kundu et al. [24] Present results 

S
 

f
C  wC  x

Nu Re/  
x

Sh Re/  f
C  wC  x

Nu Re/  x
Sh Re/  

4.0 15.8370 2.73432 1.7040 0.4267 15.837004 2.734323 1.704011 0.426702 

5.0 8.65130 1.52070 2.1300 0.5333 8.651306 1.520705 2.130014 0.533307 

6.0 3.76030 0.92140 2.55697 0.6400 3.760304 0.921407 2.556974 0.640011 

 

 

Table 2: Effects of ,  ,S  ,R  ,Q  ,Du ,F  ,Sr and  on ,
f

C  ,wC  
x

Nu Re/
 
and

x
Sh Re/  

  S  R  QH F  Du  Sr    
fC  wC  Nu  Sh  

0.2 

0.4 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

2.5 

2.5 

4.0 

5.0 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

0.2 

0.2 

0.2 

0.2 

0.5 

1.0 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

3.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.0 

2.0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.0 

1.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.0 

2.0 

0.5 

0.5 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.5 

2.0 

26.7934 

27.3257 

9.3782 

5.6423 

23.4386 

18.7935 

20.9746 

14.6358 

32.0589 

45.6842 

36.9738 

44.8376 

37.1589 

45.6893 

28.9378 

27.1387 

   

2.1386 

1.3289 

12.3295 

19.5762 

9.3789 

8.5643 

11.3257 

18.4738 

5.9864 

7.4598 

6.3947 

8.5732 

2.5738 

1.7389 

1.5873 

2.3579 

0.3579 

0.4936 

  

1.3257 

2.5784 

0.6732 

0.4578 

1.2397 

0.9356 

 0.1936 

0.1725 

0.1838 

0.2936 

 


