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SYNOPSIS 

The methodology for the design of error—actuated digital 

set—point tracking controllers proposed by Porter and 

co—workers has emerged as a result of the pursuit of effective 

and practical solutions to the problem of designing digital 

control systems for unknown, dynamically complex multivariable 

plants with measurable outputs. In this thesis, such digital 

set—point tracking controllers and the resulting digital 

set—point tracking systems are enriched to embrace plants with 

unmeasurable outputs and plants with more outputs than 

manipulated inputs. 

In the study of the latter plants, the novel concepts of limit 

tracking (ie, the tracking exhibited by plants with more 

outputs than inputs) is introduced and an associated 

methodology for the design of self—selecting controllers is 

proposed. Such controllers involve the selection of different 

set—point tracking controllers to control the most critical 

subset of plant outputs based upon the developed rigorous 

theoretical foundations for the limit—tracking systems. In 

such foundations, the classification of linear multivariable 

plants into Class I and Class II plants based upon their 

steady—state transfer function matrices facilitates the 

assessment of the feasibility of limit—tracking systems. 

Furthermore, the associated order—reduction technique 

simplifies the problem of deciding the minimum numbers of 

different subsets of plant outputs to be controlled by 

corresponding set—point tracking controllers. In addition, the 
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dynamical properties of limit—tracking systems are also 

investigated using the phase—plane method and a methodology for 

the design of supervisory self—selecting controllers is 

proposed so as to prevent the occurrence of dynamical 

peculiarities such as limit—cycle oscillations which might 

happen in limit—tracking systems. 

The effectiveness of all the proposed methodologies and 

techniques is illustrated by examples, and the robustness 

properties of set—point tracking systems and limit—tracking 

systems in the face of plant variations and unknown 

disturbances are tested. Finally, self—selecting controllers 

are designed for a nonlinear gas—turbine engine and their 

practical effectiveness is clearly demonstrated. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The design of tracking systems, where the plant output is 

expected to track or follow the command input, has been an 

important issue in control engineering and therefore 

investigated for a long time. For Multi—Input/Multi—Output 

(MIMO) linear multivariable plants with highly interactive 

dynamics, the classical design methodologies developed for 

Single—Input/Single—Output (SISO) plants presented difficulties 

in finding practical solutions to the problem of designing 

tracking systems. Therefore, a few multivariable design 

methodologies for set—point tracking systems have been 

suggested. However, most of these techniques perpetuated the 

obvious shortcomings such as the heavy reliance upon reasonably 

accurate plant models and the non—practical requirement such as 

the accessibility for measurement of all the state variables. 

At the same time, the design algorithms involved are usually 

conceptually and computationally complex and therefore control 

engineers experience difficulty in producing reasonable 

closed—loop performance unless they are experts in the 

particular design methodology. Furthermore, the analogue 

nature of most of such techniques hindered their application in 

Direct Digital Control, which is becoming even more popular 

with the fast development of digital microprocessors and 

digital electronics. Finally, another major difficulty with 
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most of such techniques is that the controllers are unrobust in 

the presence of plant uncertainties such as parameter 

variations or unmodelled dynamics. The main reason for these 

drawbacks is the lack of practical considerations in developing 

these design methodologies. 

Therefore, the emergence of robust controller synthesis 

methodologies which are conceptually and computationally 

simple, free from the reliance upon accurate plant models, 

suitable for Direct Digital Control, and utilise only 

input—output measurements of the plant has been long—waited. 

The error—actuated tunable digital set—point tracking 

controllers appeared as a masterpiece. The synthesis of such 

controllers utilises only data obtained from direct 

input—output measurements in the time domain. The controllers 

perform effectively the control action by measuring on—line 

error signals between plant outputs and command inputs. Such 

controllers can reject unmeasurable disturbance inputs whilst 

simultaneously causing the plant outputs to track command 

inputs. Therefore, such controllers naturally assume that the 

outputs from the plants under control are directly available 

for control purposes and are expected to demonstrate excellent 

set—point tracking performance for plants with measurable 

outputs. The successful application of such controllers has 

extended from distillation columns to nuclear power reactors. 

The robustness of such controllers to plant uncertainties and 

unknown disturbances has also been verified during these 

application stages. 
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However, in case the plant outputs which are required to be 

controlled are unmeasurable (for example, in aero gas-turbine 

engines, the in-flight thrust is normally unavailable for 

control purpose), the above assumption is invalid. In such 

cases, the error-actuated tunable digital set-point tracking 

controllers need to be enriched so as to embrace linear 

multivariable plants with unmeasurable outputs. 

So far, the objective of set-point tracking systems is to cause 

all of the plant outputs to track their corresponding set-point 

commands. Such an objective is attainable by incorporating as 	P 

many integrators as the number of outputs provided that the 

plant meets the fundamental requirement of functional 

controllability. In order to satisfy this necessary condition, 

it is evident that the number of manipulated inputs must not be 

less than the number of controlled outputs. However, in case 

plants have more controlled outputs than manipulated inputs, 

they fail to meet these requirements. Therefore, set-point 

tracking systems incorporating as many integrators as the 

number of outputs do not work properly in such cases. It is 

then obvious that, when control engineers face such 

functionally uncontrollable plants, they can either choose an 

appropriate subset of plant outputs and design a set-point 

tracking controller for only this subset so as to meet as many 

control requirements as possible or give up designing a 

controller. In the former case, it might happen in some plants 

such as gas-turbine engines that some of the uncontrolled 

outputs violate the engine operational limits whilst the 

controlled plant outputs are tracking their corresponding 
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set—point commands. In order to overcome such problems it is 

necessary to create a new design methodology for tracking 

systems which is based upon a new concept of tracking and 

enables all the plant outputs to be under control. In such 

tracking systems, it is desirable that — although not all the 

plant outputs can track their corresponding set—point commands 

— as many outputs as possible track their corresponding 

set—point commands whilst none of them violate the operational 

limits of the plant. 

Self—selecting controllers were born under such circumstances 

for plants with more controlled outputs than manipulated 

inputs. 

tracking 

tracking 

outputs, 

commands 

choosing 

Such a controller incorporates a number of set—point 

controllers and works by selecting different set—point 

controllers to control the most critical subset of 

which usually changes with time as both set—point 

and plant outputs change. The usual criterion for 

which outputs to control at any time is either a 

highest—wins, lowest—wins, or highest—wins/lowest—wins 

strategy. In this context, 'highest—wins' or 'lowest—wins' 

refers to the instantaneous error between the set—point and the 

corresponding plant outputs. Therefore, it is required that 

the steady states of tracking systems incorporating 

self—selecting controllers and m—input/p—output plants (m < p) 

are such that set—point tracking occurs for the most critical m 

out of p outputs and that the remaining p—m outputs stay 

between upper and lower limits with a certain safety margin. 

In the case of lowest—wins strategies, these p—m outputs remain 

under the control of set—point commands corresponding to the 
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upper limits on the outputs, ie nonnegative errors are obtained 

for such channels and considered to be safe. Therefore, the 

tracking exhibited by entire sets of plant outputs can be 

considered to be limit tracking in the sense that none of the 

outputs exceeds its corresponding set—point command, ie its 

limit value. 

Although self—selecting controllers are giving good results in 

practical applications such as the control of gas turbines, 

systems incorporating such controllers have not been properly 

understood yet. Especially, the proper understanding of the 

steady states of limit—tracking systems is very important so 

that it not only offers the possibility of the application of 

such systems to general multivariable plants but also provides 

the foundations for the dynamical analysis. Furthermore, due 

to the selection of different controllers depending upon 

set—point commands and plant outputs, limit—tracking systems 

change their structures discontinuously, ie they are 

variable—structure systems. Therefore, even though each 

control loop produces stable behaviour when considered 

separately, the stability of the complete system is not 

guaranteed. This justifies the necessity of the careful 

investigation of the dynamical properties of limit—tracking 

systems. 

In summary, to cope with the cases in which plants have 

unmeasurable outputs or more outputs than inputs, set—point 

tracking systems need to be enriched both conceptually and 

methodologically. 
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1.2 Review of multivariable feedback control systems 

One of the principal objectives of feedback control is to 

synthesise control systems with desirable properties in the 

case of imperfect knowledge of the dynamical characteristics of 

the controlled plant (Hosoe (1987)). As a result of this 

objective, feedback control is fundamentally robust since the 

controller works so as to cause the control deviation to be 

zero against the variation of signals and plant 

characteristics. In this sense, feedback control is different 

from open—loop control methodologies such as Pontryagin's 

Maximum Principle (Pontryagin et al (1962)). 

It was not until the 1930s that the significance of feedback 

control was understood clearly by using the Laplace transform 

and associated frequency—response techniques. Nyquist (1932), 

who is the creator of the Nyquist frequency—domain stability 

criterion, showed analytically the trade—off between stability 

and large loop gain in feedback control systems; Hazen (1934), 

who investigated the performance characteristics of 

servomechanisms; and Black (1934), who proposed large loop 

gains for the design of feedback amplifiers, are among 

contributors to the progress of automatic control in this early 

period. The ideas of Nyquist and Black formed the basis of 

robust controller design for feedback amplifiers developed by 

Bode (1945). The classical automatic control theory (for 

example, Truxall (1955)) was then joined by the root—locus 

method presented by Evans (1948). 
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For the control of MIMO multivariable plants, state-space (or 

state-variable) methods appeared in the 1960s which have their 

basis in Linear System Theory (for example, Kalman (1963), 

Zadeh and Desoer (1963)). These include as controller design 

methodologies for linear multivariable plants the Linear 

Quadratic Regulator (LQR) (Kalman (1960a), Kalman et al 

(1969)), the Decoupling Controller (Falb and Wolovich (1967), 

Gilbert (1969)), the Modal Controller (Porter and Crossley 

(1972)), the Pole-Assignment Controller (Wonham (1967), Kimura 

(1975)), together with the Observer (Luenberger (1966)) or the 

Kalman Filter (Kalman (1960b), Arimoto and Porter (1973)) as 

the measurement tools for inaccessible state variables. 

However, whilst the theoretical development of these 

state-space methods was undertaken with enthusiasm in the 1960s 

to the 1970s, the response from industry was cool and 

applications had not widely spread. This is explained by 

considering a few of the difficulties associated with the use 

of such methods. 

(i) The design is implemented by a linear state-variable 

feedback law. It is necessary to have access to all the states 

of the plant. This difficulty can be overcome by the 

introduction of an observer or a Kalman filter to estimate 

inaccessible states using input-output data from the plant 

model. But this creates additional problems such as the 

increase of controller complexity, the difference between the 

true states and the estimate states during the transient stage 

(Patel and Munro (1982)), and the degradation of robustness in 

case of the LQR (Doyle and Stein (1979)). 
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(ii) A suitable choice of the performance criterion (eg, in 

case of the LQR, the weighting matrices Q and R) is difficult 

to find for industrial processes (Patel and Munro (1982)). 

(iii) A model which describes the whole plant (including not 

only the essential part but also the non—essential part) is 

necessary. It is difficult to design controllers for plants 

about which little or nothing is known (Foss (1973)). 

(iv) It is difficult to relate the closed—loop responses of the 

control system to the plant's physical characteristics, and 

there is little room for empirical knowledge to play an 

important role (Kimura (1978)). 

(v) The problem of parameter variation was not well—formulated 

in the theory. Although such robustness issues were commonly 

referred to as sensitivity design problems, no robust 

controller design algorithms were available (Kimura (1978)). 

(vi) The steady—state characteristics of control systems were 

neglected. For example, the LQR can treat only impulsive 

disturbances (Kimura (1978)). 

The SISO approach in the frequency—domain had been referred to 

as "classical control theory" during the reign in the 1960s of 

the so—called "modern control theory" of the state—space 

methods, but the MIMO approach in the frequency domain was 

proposed by Rosenbrock (1969), (1970) in the late 1960s. This 

approach was aimed at the approximate decoupling of 

multivariable plants by using the Inverse Nyquist Array. Then, 

it was expected that the classical SISO approach could be 
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applied to each separate input-output pair. MacFarlane (1970), 

Belletrutti and MacFarlane (1971), and MacFarlane and 

Postlethwaite (1977) developed the multivariable theory of 

Generalised Nyquist-Stability Condition and Characteristic 

Loci. These methodologies overcame some of the difficulties of 

state-space methods such as (i), (ii), and (iv). However, the 

design algorithms relied heavily on the interpretation of 

graphs in the frequency domain, which becomes delicate and 

complex in the case of high-order plants. Furthermore, 

robustness was another problem with these approaches since the 

plant variation was not well taken into account. 

The study of tracking control problems (or servomechanism 

problems) for multivariable plants advanced through the 

improvement of steady-state characteristics by means of 

state-space methods. Johnson (1968) considered the condition 

on plant matrices A, B, C, and D to make the LQR effective in 

the presence of constant disturbances. Then, different forms 

of conditions on plant matrices were obtained by Porter and 

Power (1970), and Power and Porter (1970) in regard to the 

controllability of the closed-loop systems incorporating 

integral feedback, by Porter (1971) in regard to the LQR with 

integral feedback, and by Davison and Smith (1971) in regard to 

the pole-placement control. Furthermore, in regard to 

state-plus-integral feedback, it was pointed out in Kwakernaak 

and Sivan (1972) that 

"in case the number of integral variables is equal to 
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that of manipulated inputs, it can be shown, by a 

slight extension of the argument of Power and Porter 

(1970) involving the controllability canonical form of 

the plant, that necessary and sufficient conditions 

for the existence of asymptotically stable control law 

are that 

(C-i) the plant is stabilisable; and 

(C-ii) the open-loop plant transfer function matrix 

has no zeros at the origin." 

Thus, the significance of integral action was illustrated in 

the state space. A few years later, Francis and Wonham (1975), 

and Davison (1976a) solved the tracking control problems for a 

more general class of external signals and compensators so that 

asymptotic tracking or regulation occurs independently of 

disturbances and plant parameter variations. In this sense, 

such control was called robust control. 

A by-product of the study of tracking control problems is the 

deeper understanding of the zeros of multivariable systems (or 

loosely termed, multivariable zeros (Sain and Schrader 

(1990))). Since Rosenbrock (1970) provided the definitions of 

multivariable zeros such as decoupling zeros and transmission 

zeros (zeros of a transfer-function matrix), the issues of 

multivariable zeros prompted numerous investigations. In 

addition, various concepts involving multivariable zeros (for 

example, system zeros, invariant zeros) were introduced 
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(Rosenbrock (1973), (1974), Kouvaritakis and MacFarlane (1976), 

Pugh (1977)). In case a system is controllable and observable, 

the set of system zeros, the set of invariant zeros, and the 

set of transmission zeros all coincide; in other cases, they do 

not. Among such sets of zeros, the transmission zeros - which 

are physically associated with the transmission-blocking 

properties of plants - drew much attention because of their 

close relation with functional controllability (Rosenbrock 

(1970)) and the performance of feedback controllers. It is 

stated in connection with the non-minimum phase characteristics 

of transmission zeros in Porter and Jones (1985c) that 

"The effectiveness of feedback controllers for linear 

multivariable plants is crucially constrained by the 

location in the complex plane of the transmission 

zeros of such plants. In particular, the presence of 

transmission zeros in the right half of the complex 

plane leads to closed-loop instability whilst the 

presence of transmission zeros at the origin of the 

complex plane leads to functional controllability." 

The methods for the computation of transmission zeros were also 

keenly investigated (Wolovich (1973), Davison and Wang (1974), 

Laub and Moore (1978), Porter (1979)). However, these methods 

are not applicable for unknown plants since they require 

detailed knowledge of the open-loop plant dynamics in either 
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state—space or transfer—function matrix form. In such cases, 

the time—domain identification of transmission zero locations 

of asymptotically stable multivariable plants was reported by 

Porter and Jones (1985b). In their approach, the step—response 

matrix of the plant was utilised. Furthermore, Porter and 

Jones (1985c) later extended this procedure to the time—domain 

identification of non—minimum phase characteristics of such 

plants. 

After the pioneering work regarding robust feedback design by 

Bode (1945) in which the differential sensitivity function was 

introduced, robustness issues had been investigated in the 

context of sensitivity analysis. However, many of the problems 

were considered to have already been solved and therefore not 

much attention was aimed at robustness issues in the 1960s. 

For example, it is stated by Kouvaritakis et al (1982) 

regarding the conference (the Symposium on Sensitivity 

Analysis) held in Yugoslavia in 1964 that 

"Such was the enthusiasm and optimism of this era that, 

of the whole range of topics considered, only a few, 

such as large parameter variations and structural 

sensitivity of various functional block decompositions, 

were deemed not to have been resolved." 

Exceptionally, the robust controller design methodology which 

inherited Bode's idea was presented by Horowitz (1963) during 

this era. In the 1970s, the criticism of modern control theory 
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(for example, Foss (1973)) and the unsatisfactory spread of 

multivariable controllers to industry seemed to cause control 

theoreticians to review the practicality of modern control 

methodologies. Thus, robustness issues began to be 

re—considered in the context of control theory. 

In the field of LQG theory (which includes the LQR and the 

Kalman filter), the attempt was made to obtain robustness in 

the presence of model uncertainties by the loop—transfer 

recovery approach (Lehtomaki et al (1981)). However, the 

drawbacks such as the aforementioned (i) to (iv) still remain. 

Next, by considering the transfer function gain/phase 

limitations in the face of unstructured uncertainties, the 

importance of loop shaping in the frequency domain was pointed 

out by Doyle and Stein (1981). Zames (1981) presented the new 

Hm  norm to measure the robustness of closed—loop feedback 

systems and proposed such an H*2.  norm of the transfer function 

from the disturbance to the controlled variables as the 

minimised criterion for the robust controller design. This 

meant the appearance of a new criterion which succeeded the 

quadratic mean error used by the LQR/LQG. Since then, these 

approaches have been favoured and widely investigated by 

theoreticians partly because of their theoretical formality and 

depth (for example, Doyle et al (1989)). However, the 

aforementioned drawbacks (iii) and (iv) still hold. 

Furthermore, it is considered that the controller is high—order 

and complex, that the way to choose free design parameters is 

not given, and that the result is too conservative. 
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There were also some attempts towards the development of robust 

control in the frequency domain. Horowitz's approach evolved 

into the quantitative feedback theory (QFT) for multivariable 

plants (Yaniv and Horowitz (1986)). One of the others is the 

robust Nyquist array methodology, in which closed—loop system 

stability is examined by using the Gershgorin bands in the face 

of plant variations (Arkun et al (1984)). However, no 

systematic compensator design procedure was presented. Another 

simple robust controller design for unknown multivariable 

plants in which the plant dynamics are approximated by a 

first—order lag for SISO systems was proposed by Owens and 

Chotai (1983), (1984). The main drawbacks of this method in 

the continuous—time case are: 

(i) The plant must be minimum phase. 

(ii) The real closed—loop system must be stable for all 

high gains. 

The controller design methodologies reviewed above are strongly 

based upon definite plant models in either the time domain or 

the frequency domain. Therefore, such methodologies can be 

called "model—based control" in the sense that they are firmly 

constrained by the models and that the design cannot proceed 

without models (Kimura (1987)). Since such models have their 

own fixed—structure (for example, state—space form or 

transfer—function matrix), once the type of structure is 

decided, the plant is characterised by a set of model 

parameters whose number relates to the plant's dynamical 
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complexity. Then, the design loses the direct connection with 

the explicit information from the plant such as input/output 

data and the design procedure results in a standardised 

numerical computation. However, here is a trap in which modern 

control theory is often caught - ie even though there never 

exists a perfect model of a real physical plant, modern control 

theory depends too heavily upon the model and it lacks a 

careful concern for the imperfection of the model. Under such 

circumstances, "model-free control" in the sense that 

controller design is free from such constraints as model type 

and model order prompted much attention. In model-free 

control, it is desired that controller design positively 

utilises the direct input/output data from the plant, thus 

keeping the direct connection with such explicit information 

during the controller design stage. Therefore, attempts were 

naturally made to extend conventional tunable PI/PID 

controllers from SISO to MIMO multivariable plants. Such 

controllers not only use directly measured input-output 

physical data from the plant thus preventing themselves from 

falling into a model-related trap but also are robust in the 

face of possible plant variations. 

The multivariable tuning regulators, in which the plant to be 

controlled is assumed to be linear, time-invariant and 

open-loop asymptotically stable but no other assumptions such 

as known plant order or minimum-phase behaviours are needed, 

were proposed by Davison (1976b). After some simple "off-line" 

tests are performed on the plant, the controller is then 

obtained by tuning "on-line" a scalar positive parameter in the 
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same manner as in the SISO tuning method (for example, Ziegler 

and Nichols (1942)). However, such regulators yielded rather 

poor closed—loop performance when applied to a commercial heat 

exchanger (Davison et al (1980)) although it was assumed that 

the plant had already been speeded up by using some type of 

heuristic output control, eg, proportional and derivative 

output control. In order to improve the regulator performance 

in respect of fast responses and low—interaction, a parameter 

optimisation technique was introduced into this approach 

(Davison and Ferguson (1981)). Whilst Davison's approach uses 

only the integral of error (ie I—controller), multivariable 

PI—controllers in which the error between command input and 

plant output is also used were proposed to speed up the 

transient responses of the closed—loop systems (Penttinen and 

Koivo (1980)). However, such controllers exist only for the 

restricted class of plants with first Markov parameters of 

maximal rank. Furthermore, an important common drawback of 

these methods is the fact that they are only concerned with the 

design of analogue controllers. 

In order to overcome such difficulties of I/PI—controllers, new 

approaches to the design of tunable analogue/digital set—point 

tracking controllers for unknown multivariable plants were 

presented by Porter (1981), (1982a). In the former approach 

(Porter (1981)), the proportional controller matrix involved 

the inverse (or right inverse) of the plant steady—state 

transfer—function matrix and positive scalar tuning parameters 

were used. Furthermore, this approach was extended to plants 

with unmeasurable outputs by using measurement matrices which 
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involve steady-state transfer-function matrices for both 

measurable and unmeasurable outputs (Porter and Bradshaw 

(1983)). In the latter approach (Porter (1982a)), the 

decoupling theory of Falb and Wolovich (1967) was used to 

obtain initial non-undershooting responses, the proportional 

controller matrix involved the inverse of the plant decoupling 

matrix, and the tuning parameters became positive diagonal 

matrices. However, this would still need mathematical models 

of plants. Therefore, step-response matrices were introduced 

to the proportional part of the controller (Porter and Jones 

(1984a)) since such matrices are easily determined from 

off-line open-loop tests performed on the plant. Furthermore, 

the controller was rendered Proportional, Integral, and 

Derivative (ie PID-controller) so as to improve transient 

responses and the step-response matrices were used also in the 

derivative part of the controller (Porter and Jones (1985a)). 

The extensions of these types of PI/PID controllers were 

reported by Porter (1982b) for time-delayed plants, by Porter 

and Jones (1984b) for plants with Lur'e-type nonlinearities, by 

Porter and Boddy (1988) for open-loop unstable plants, and by 

Porter and Khaki-Sedigh (1990) for type-one plants. The 

robustness of the controllers in the face of plant variations 

was assessed by Porter and Khaki-Sedigh (1989). The problem of 

the extension of non-undershooting controllers to plants with 

unmeasurable outputs was tackled by Porter and Yamane (1989). 

Another approach to model-free control is Model Predictive 

Control (MPC) (Garcia et al (1989)) in which impulse-response 

coefficients or step-response coefficients are used to predict 
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the effect of future actions of the manipulated inputs on the 

outputs. Since such prediction is carried out over a certain 

moving horizon, the future set—point commands over this horizon 

must be known. Furthermore, since a constrained optimisation 

problem must be solved at each time instant, the computational 

efforts involved are complex. Therefore, although MPC is 

applicable in the process industry where large and powerful 

computational capability is available and the required 

transient—response time is of the order of minutes, this 

approach is not suitable for the plants such as aero 

gas—turbines where the computation has to be carried out by 

microprocessors and the required transient—response time is of 

the order of seconds. 

In case plants have more controlled outputs than manipulated 

inputs, the condition of functional controllability is not 

satisfied. Therefore, systems incorporating as many 

integrators as the number of inputs do not work properly. In 

such cases, asymptotic tracking for all of the plant outputs 

has to be abandoned and, alternatively, only the most critical 

output or subset of outputs can be integrally controlled. 

Then, such subsets change with time as both set—point commands 

and output change. Therefore, different controllers are 

selected to control such most critical subsets and the 

controller switching occurs when the controlled subset changes. 

This working principle of so—called self—selecting controllers 

is so simple that the jet engine hydromechanical/electronical 

fuel controller has incorporated this principle to guarantee 

safe engine operation. Glattfelder et al (1980) dealt with 
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microcomputer-based 	self-selecting 	controllers 	which 

incorporate 'highest-wins' and 'lowest-wins' gates to keep 

control signals within a certain range. The self-selecting 

controllers based upon lowest-wins strategies for SIMO and MIMO 

plants were discussed by Foss (1981b) as the multivariable 

limit controller and applied to a gas-turbine engine. However, 

this approach was not general since the binary lowest-wins 

strategies constrained the way to select critical subsets of 

signals. Jones et al (1988) presented more general 

self-selecting multivariable PI controllers which can be 

considered as extensions of tunable set-point tracking 

controllers (Porter and Jones (1984a)). This approach was also 

applied to gas-turbine engines successfully (Jones et al 

(1988), (1990)). However, the problems such as the existence 

of steady states, the minimum numbers of different controllers, 

etc are unresolved. 

Due to controller switching, systems incorporating 

self-selecting controllers are variable-structure discontinuous 

dynamical systems. The first analysis of the stability of 

self-selecting control systems based upon lowest-wins 

strategies was presented by Foss (1981a), (1981b). In this 

analysis, discontinuous systems were transformed into 

continuous 	systems 	with 	nonlinear 	elements, 	and 

describing-function criteria or passivity criteria were used to 

assess the stability of the complete systems. These criteria 

were also used to assess the stability of control systems with 

nonlinearity such as saturation and antireset-windup circuits 

(Glattfelder and Schaufelberger (1983), Glattfelder et al 
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(1988)). However, this approach is not in general effective 

for the analysis of self—selecting control systems which are 

untransformable. 

Variable—structure systems, which are discontinuous dynamical 

systems and described by differential equations with 

discontinuous right—hand sides, have prompted many 

investigations. Utkin (1977), (1978) and Emelyanov (1987) are 

among the contributors. The existence of sliding modes is 

recognised as one of the typical characteristics of such 

systems. Filippov (1964) gave a definition of the solution of 

the equations of motion of such systems and studied the 

properties of these solutions. If various non—idealities such 

as hysteresis, delay, and dynamical non—idealities (which are 

present in a real sliding mode) are made to tend to zero, this 

limiting process leads to the same equations that result from 

Filippov's method. Filippov's trajectories can therefore be 

considered as the ideal representation of the trajectories 

obtained in real systems, thus indicating one of the reasons 

for the wide use of Filippov's method in studies of 

variable—structure systems (Utkin (1978)). However, it was 

shown by Porter and Yamane (1990) that Filippov's solution 

concept is not enough for self—selecting control systems and 

that dynamical peculiarities such as sliding motion or 

limit—cycle oscillations can occur even in the case of a very 

simple first—order plant. 
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1.3 Objectives 

The central objective of this thesis is to provide a pragmatic 

means to design tracking systems incorporating multivariable 

plants. Such tracking systems incorporate as core elements 

digital set—point tracking PI/PID controllers or self—selecting 

PI/PID controllers. The digital set—point tracking controllers 

are to be designed for plants with measurable outputs or with 

unmeasurable outputs. In such plants, the number of inputs and 

the number of outputs are equal. For plants with more outputs 

than inputs, theoretical foundations for the analysis of 

tracking systems incorporating such plants are to be 

constructed and effective procedures are to be developed that 

assess the feasibility of tracking system design. Using the 

developed procedures, self—selecting controllers are to be 

designed for such plants. In order to obtain enhanced 

stability of the closed—loop control systems, supervisory 

self—selecting controllers are to be proposed whilst it is to 

be shown that dynamical peculiarities such as limit—cycle 

oscillations might occur in self—selecting control systems. 

Finally, the robustness of tracking systems is to be assessed. 

The design of tracking systems is to be characterised by the 

following practical guidelines: 

1) Procedures should be developed that assess the feasibility 

of tracking system design for multivariable plants; 

2) Controllers should be applicable to plants with measurable 

outputs, or with unmeasurable outputs, or with more outputs 



22 

than inputs, as long as the assessment 1) is feasible; 

3) Controllers should be simple, easy to tune, and preferably 

digital; 

4) Only plant input/output data should be used in the design 

(ie design should be free from a heavy reliance upon 

accurate plant models and state should be regarded as a 

mathematical abstraction); 

5) Control laws should use only such input/output data; 

6) Procedures should be provided that identify the data used in 

the controllers; 

7) Controllers should be robust (ie the controllers should 

function in the face of unknown disturbances and plant 

variations). 

1.4 Outline of the thesis 

This thesis consists of six parts and a few appendices. In 

Part I (Chapter 1), an introduction to the problems involved in 

the design of tracking systems incorporating complex 

multivariable plants is given. A review of multivariable 

feedback control systems and an outline of the objectives of 

this thesis are also given. 

In Part II (Chapters 2 and 3), methodologies for the design of 

set—point 	tracking 	systems 	are 	presented. 

Block—diagonalisation transforms are utilised to show the 

asymptotic properties of closed—loop digital control systems 
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incorporating linear multivariable plants with measurable 

outputs and tunable digital set—point tracking controllers 

(Chapter 2). Such controllers are then enriched to embrace 

linear multivariable plants with unmeasurable outputs by the 

inclusion of associated pre—filters (Chapter 3). In order to 

circumvent the need for detailed mathematical models of the 

plants, it is shown that the design of these controllers can be 

achieved using only data obtained from open—loop step—response 

tests performed on the plants. The excellent tracking 

performance of the resulting set—point tracking systems is 

demonstrated by the presentation of simulation results for a 

highly interactive gas—turbine engine. 

In Part III (Chapters 4 to 8), tracking systems incorporating 

linear multivariable plants with more controlled outputs than 

manipulated inputs are discussed. In Chapter 4, after pointing 

out that set—point tracking systems incorporating such plants 

fail to operate properly, a more general tracking concept (ie 

undertracking and overtracking which are expressed by sets of 

inequalities) is introduced to characterise such general 

tracking systems. Then, the classification of linear 

multivariable plants into Class I and Class II plants is 

carried out in the context of convex analysis. Thus, the 

theoretical foundations for the design of controllers for such 

plants with more outputs than inputs are provided. In Chapter 

5, the problems regarding the steady states of tracking systems 

incorporating self—selecting controllers (which themselves 

consist of a number of set—point point tracking controllers) 

are presented in the context of lowest—wins strategies, and the 
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tracking exhibited by entire sets of plant outputs is called 

limit tracking. Next, by investigating the facial structure of 

the resulting limit-tracking systems, a novel order-reduction 

technique is developed that decides the minimum numbers of 

different subsets of plant outputs to be controlled by 

corresponding set-point tracking controllers. Thus, a new 

synthesis approach to limit-tracking systems is given. In 

Chapter 6, this new synthesis approach to limit-tracking 

systems obtained from the steady-state analysis underlies the 

methodologies for the design of digital self-selecting 

controllers. A block-diagonalisation transform is utilised to 

show the asymptotic properties of separate closed-loop systems. 

Implementation issues in regard to the integration of separate 

controllers are considered. The excellent limit-tracking 

performance of closed-loop control systems is demonstrated by 

the presentation of simulation results for a highly interactive 

gas-turbine engine. In Chapter 7, to enhance closed-loop 

stability of self-selecting control systems, theoretical 

foundations for the dynamical analysis of such systems are 

constructed and methodologies for the design of supervisory 

self-selecting controllers are presented. It is shown that 

three operational modes and two assessment blocks form such 

supervisory controllers and that enhanced stability can be 

achieved using this controller for the case in which the 

non-supervisory controller causes limit-cycle oscillations. 

In Part IV (Chapters 8 and 9), the robustness of tracking 

systems is assessed in the face of unknown disturbances and 

plant variations. The effect of controller parameters of 
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supervisory self—selecting controllers on tracking performance 

is also studied. 

In Part V (Chapter 10), as a case study, a digital 

self—selecting controller is designed for a nonlinear model of 

a gas—turbine engine and the results of nonlinear simulation 

are presented. 

In Part VI (Chapter 11), the principal features of the 

developed design methodologies are reviewed and discussed, the 

important results are summarised, and recommendations for 

further work in this field are provided. 

Finally, in Appendix 1, a procedure to perform Open—loop tests 

on plants is described. In Appendix 2, proofs of various 

theorems and propositions stated in this thesis are given. In 

Appendices 3 and 4, models of an aero gas—turbine engine are 

given. In Appendix 5, the analysis of tracking systems 

(presented in Part III) is related to well—known Linear 

Programming problems and the difference between the two 

approaches is explained. In Appendix 6, the problem in regard 

to the dynamical properties of self—selecting control systems 

is illustrated by applying the phase—plane method to a simple 

example and showing the dynamical peculiarities of closed—loop 

control systems. 



PART II 

DESIGN OF SET-POINT TRACKING SYSTEMS 

INCORPORATING LINEAR MULTIVARIABLE PLANTS 



CHAPTER 2 

DESIGN OF TUNABLE DIGITAL SET-POINT TRACKING 

PID CONTROLLERS FOR LINEAR 

MULTIVARIABLE PLANTS WITH MEASURABLE OUTPUTS 

2.1 Introduction 

In this chapter, the design of controllers for unknown 

open—loop asymptotically stable linear multivariable plants is 

considered. In order to circumvent the need for mathematical 

models of linear multivariable plants expressed in either 

state—space or transfer—function matrix form, the proportional, 

integral, and derivative controller matrices embodied in the 

tunable digital PID controllers proposed must be directly 

obtainable from open—loop tests performed on the asymptotically 

stable plants. These controllers must ensure that the 

resulting closed—loop systems are asymptotically stable and 

that satisfactory set—point tracking behaviour occurs. 

Furthermore, in the case of nearly all practical systems, there 

exist uncertainties such as plant variations and unknown 

disturbances. The effects of these uncertainties must also be 

taken into account. Therefore, the controller design problem 

is discussed in this chapter and the robustness properties of 

the controllers in the face of such uncertainties are 

considered in Chapter 8. 
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It is shown that the proportional, integral, and derivative 

controller matrices used in these PID controllers can be 

directly determined from open—loop step—response tests 

performed on plants (Appendix 1). The proportional and 

derivative controller matrices are chosen as the inverse of the 

open—loop step—response matrix, which is itself derived from 

the classical decoupling theory of Falb and Wolovich (1967). 

This choice is made in order to exploit the initial 

interactions within the plant and thus to cause set—point 

tracking to occur without initial interaction or under—shoot 

(Mita and Yoshida (1981)). The integral controller matrix is 

chosen as the inverse of the open—loop steady—state 

transfer—function matrix in order to exploit the final 

interactions within the plant. Thus, provided only that the 

plants satisfy the fundamental condition of Porter and Power 

(1970) and Power and Porter (1970) for the preservation of 

stabilisability in the presence of integral action, such 

error—actuated controllers can be readily designed for unknown 

multivariable plants. 

A block—diagonalisation transformation is used to investigate 

the asymptotic properties of closed—loop systems under the 

action of such PID controllers. The closed—loop plant matrix 

is decomposed into three sub—matrices, using the 

block—diagonalisation transformation of KokotoviC (1975), and 

it is shown that the basic design criterion for asymptotic 

stability and set—point tracking can be satisfied in terms of 

the characteristic roots of the sub—matrices. 
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The effectiveness of such a tunable controller is illustrated 

by designing, for a highly interactive gas-turbine engine, a 

tunable digital set-point tracking PID controller which 

exhibits excellent set-point tracking characteristics and 

corresponding minimal loop-interactions. 

2.2 Analysis 

The linear multivariable plants under consideration are assumed 

to be governed on the continuous-time set T = [0,+=) by state 

and output equations of the respective forms 

i(t) = Ax(t) + Bu(t) 	 (2.1) 

and 

y(t) = Cx(t) , 	 (2.2) 

where the state vector x(t) E R n, the input vector u(t) E R m, 

the output vector y(t) E Rm, the plant matrix A E RnXn  whose 

eigenvalues all lie in the open left-half plane C-, the input 

matrix B E exm, and C E enn  is the output matrix. 

Furthermore, it is assumed that the introduction of integral 

action preserves stabilisability and therefore that (Porter and 

Power (1970), Power and Porter (1970)) 

rank G = m , 	 (2.3) 
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where the plant transfer-function matrix 

G(s) = C(sI-A)-111 	 (2.4) 

and the steady-state transfer-function matrix 

G = G(0) = -CA-1B e le" 	 (2.5) 

are known from open-loop tests performed on the plant 

(Appendix 1). 

Finally, it is assumed that input-output decoupling is 

achievable and therefore that (Falb and Wolovich (1967)) 

rank F = m , 	 (2.6) 

where the decoupling matrix 

Ca TAdla .... 
1 

E Rm" 	 (2.7) 

cTAd mB m 

and the di (i=1,2,...,m) and the cT (i=1,2,...,m) are, 1 

respectively, the decoupling indices of the plant (Falb and 

Wolovich (1967)) and the rows of the output matrix. In the 

case of such plants, it is important to note that 

F = lim A-1(t)H(t) 	 (2.8) 
t-) 

F 

and 
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F-1  = lim H-1(t)A(t) , 	 (2.9) 
t-00 

where 

A(t) = diag(td 1 +1/(d1+1)!,....,td m+1/(dm+1)!) 	(2.10) 

H(t) = CA-1(eAt_in)B 	 (2.11) 

and 

is the plant step-response matrix. 

In order to design error-actuated set-point tracking PID 

controllers for linear multivariable plants governed by state 

and output equations of the respective forms (2.1) and (2.2), 

it is convenient to consider the behaviour of such plants on 

the discrete-time set T T = {0,T,2T,...,kT,...}. This behaviour 

is governed by state and output equations of the respective 

forms (Kwakernaak and Sivan (1972)) 

Xk+1 = fxk  + TUk 
	 (2.12) 

and 

yk  = rxk  , 	 (2.13) 

where xk  = x(kT) E Rn , uk  = u(kT) E R m, yk  = y(kT) E Rm, 
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'2 = exp(AT) , 	 (2.14) 

T 
t = f exp(At)B dt , 	 (2.15) 

0 

r = c , 	 (2.16) 

and T E le is the sampling period. 

The block diagram of the digital control system is shown in Fig 

2.1. The set—point tracking error—actuated tunable digital PID 

controller is governed on the discrete—time set TT by a 

control—law equation of the form 

uk  = TKlek  + TK2zk  + K3(ek  — ek _ 1 ). 	 (2.17) 

This controller is required to generate a piecewise—constant 

control input vector u(t) = uk, t E (kT,(k+1)T), kT E TT , so as 

to cause the output vector y(t) to track any constant set—point 

vector v E R m  on TT , in the sense that the error vector 

ek  = v — yk  E 10 assumes the steady—state value 

lim ek  = 	lim (v — yk) = 0 
	

(2.18) 
k-)4-co 	 k-++0:1 

for arbitrary initial conditions. In equation (2.17), the 

digital integral—of—error vector 

Zk  = z k _, + Tek _ i  E R m 	$ 
	 (2.19) 
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and the controller matrices K1  E Rm", K2  G Rmmm, and K3  E 

Rmxm 
' 

It 	follows 

that discrete

and such 

equations 

[ Xk+1  

Zk+1 

fk+1 

of 

= 

controllers 

from 	equations 	(2.12), 	(2.13), 

-time tracking systems incorporating 

are governed on 

the respective forms 

0-TTIC1r-TIV , Tt1(2  ,-TIC3  

—Tr Zk 

	

Im 	, 	0 

—r 	o 	, 0 

TT  by 

xk  

fk I 

(2.17), 

state 

+ 

and 	(2.19) 

such plants 

and output 

[ TEKI  + T1C3  

TIm 

Im  

(2.20) 

and 

[ 

yk  = [ r , 0 , 0 1 	xk  

Zk 

fk 

9 (2.21) 

  

where fk  = ek-1 E Rm  is the stored error vector. 

Therefore, provided only that T, K1, K2, and K3  are such that 

all the eigenvalues of the closed-loop plant matrix in equation 

(2.20) lie in the open unit disc D-, 

lim Azk = lim (zk.4.1  - zk} = 0 
	

(2.22) 
k-►  0 	k.4= 

and therefore 
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lim ek  = 0 
	

(2.23) 
1E-0,* 

so that set—point tracking occurs. 

The closed—loop characteristic equation can be readily 

expressed in the form (Porter and Jones (1985a)) 

Oc(z) = 01(z)02(z)03(z) 	 (2.24) 

by invoking the block—diagonalisation procedure of Kokotovic 

(1975), and the response characteristics of the closed—loop 

system can accordingly thus be elucidated. The asymptotic 

properties of tracking systems under the action of such 

controllers can be characterised in terms of the eigenstructure 

of the closed—loop plant matrix, which involves the 

decomposition of this matrix into three sub—systems based on 

the explicitly invertible block diagonalisation transform 

(KokotoviC (1975)). 

This block—diagonalisation procedure transforms the matrix 

triple incorporated in equations of the form 

[

xl(k+1) 

x2(k+1) 
= 
[ All , Al2 ][ x1(k) 

A21 , A22 	x2(k) 

[ B1  

B 2 

] u(k) 	(2.25) 

and 

y(k) = [ Cl  , C2  I [ Xl(k) 

X2(k) 
(2.26) 
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where 	x1  (k) E el, 	x2(k) E Rn2, 	Aij E Rninnj 	(i,j=1,2), 

B1 	1 E Rn 1 nn  B2 E Rne , n  C1  e ennl, and C2  E Rmxn2 into the 

block—diagonal form incorporated in the equations 

  

X1(k+1) I 	[ A11  , 0 1[ Xl(k) 	B1  

X2(k-1) 	0 , A22 	x2(k) 	B 2 

u(k) 	(2.27) 

and 

  

y(k) = [ C1  , C2  1 xl(k) 

X2(k) 
(2.28) 

 

The state vectors in these equations are related by the linear 

state transformation (Kokotovic (1975)) 

xl 	X1 

 

= W 
x2   -I 	62.1 

(2.29) 

 

where 

[ In 	M 
W = 	1 	 e R(nOn2)n(n 1 +11 2)  9 

—L , I —LM n2  
(2.30) 

X1(k) e R n l, X2(k) E Rn 2, Aij  E Rninnj (i,j=1,2), B1  E Rn1", 

B2  E Rn2nn, C1  E enn 1, C2  e enn2, L E R n 2n11 1 ,and m E Rnlnn2. 
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Thus, if L and M satisfy the matrix Riccati equations 

(Kokotovic (1975)) 

A21 + LA11 — A22L - LA12L = 0 
	

(2.31) 

and 

(A11 — Al2L)M — M(A22  + LA12) + Al2  = 0 , 	 (2.32) 

it follows from equations (2.25), (2.27), and (2.29) that 

A11 = A11 — A12L 	 (2.33) 

and 

A22 = A22 + LA12 
	 (2.34) 

The asymptotic properties of the discrete-time closed-loop 

tracking system can now be readily determined by regarding T as 

a perturbation 

by regarding 

A11 = 

A12 = 

A21 = 	[ 

in equation 

-TtK1  

[ —TK3 

0 	i 
-r , 

parameter in equations (2.20) and 

(2.25) 

, r-tK3r TtK2 
s 

-Tr 	, Im 	] 

, 

0 	1 	 9 

(2.21). 	Thus, 

(2.35) 

(2.36) 

(2.37) 



and 

A22 = 0 
	

$ 
	 (2.38) 

36 

the solution of equations (2.31) and (2.32) can be readily 

obtained by using power series expansions in T. This involves 

the definition of matrices L1  and L2  such that 

L = [ L1  , L2  ] 	 (2.39) 

where 

L1  = L10 + L11T +  
	

(2.40) 

L2 = L20 + L21T +  
	

(2.41) 

in which Lli E Rn2"3 $  L21  E Rn2"4, (1=0,1,2, 	)  

Therefore, it is clear from equations (2.31), (2.35), (2.36), 

(2.37), (2.38), and (2.39) that on isolating coefficients 

L = [ C , 0 ] + 0(T) 	 (2.42) 

and therefore from equations (2.33) and (2.34) that 

A11 = 
-TTIC1r , T!K2  

-Tr , 	I, 
(2.43) 

  

and 
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A22 = -TCBK3+O(T2) 
	 . 	 (2.44) 

The matrix A11 in equation (2.43) is now block-diagonalised, 

again by regarding T as a perturbation parameter in equation 

(2.43) and by regarding in equation (2.25) 

1-11 = t - TTICIT 
	

(2.45) 

1.12 = TTIC2 	 11 

	 (2.46) 

A21  = -Ti' 
	

(2.47) 

and 

A22- 	= Im 
	 (2.48) 

In addition, the matrix L is defined in the power-series form 

L - = Lo + TL - + T
217, -I- 1 (2.49) 

In equations (2.45), (2.46), (2.47), (2.48), and (2.49), the 

overbar has been used to distinguish between the two explicit 

stages of the block-diagonalisation procedure. 

Therefore, it is clear from equations (2.31), (2.45), (2.46), 

(2.47), (2.48), and (2.49) that on isolating coefficients 
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L = CA-1  + T(CA-1BK1CA-1  + CA-1BK2CA-2  — C/2) + 0(T2). 

(2.50) 

Hence, it follows from (2.33), (2.34) and (2.50) that 

211 = In  + TA + T2A2/2 — T2BK1C — T2BK2CA-1  + 0(T3) 

(2.51) 

and 

;22  = Im  - T2CA-1BK2 	0(T3) 	 (2.52) 

Thus, it is evident from equations (2.43), (2.44), (2.51), and 

(2.52) that the characteristic polynomials as expressed in 

equation (2.24) are 

01(z) = I zIn  - In  - TA — T2A2/2 + T2BK1C 

+ T2BK2CA-1  + 0(T3) 1 , 	(2.53) 

02(z) = 1 zIm  — Im  — T2CA-1BK2  + 0(T3) I  , 	(2.54) 

and 

03(z) = I zIm  + TCBK3  + 0(T2) I 	 (2.55) 
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2.3 Synthesis 

It is clear that tracking will occur in the sense of equation 

(2.23) provided only that the set of closed-loop characteristic 

roots 

Zc  = Z1  U Z2  U Z3  C D- 	 (2.56) 

where D-  is the open unit disc and the sets of characteristic 

roots 21, Z2, and Z3  are, respectively, the roots of the 

characteristic polynomials as expressed in equation (2.24). 

Therefore, in case 

K1 	 , = H(T)-1A(T)II (2.57) 

where H(T) is given by equation (2.11) and 

II = diagOr1 ,7r 2,...orm} , xi  E le (i=1,2,...,m), 	(2.58) 

K2 = G(0)-1E, 	 (2.59) 

where G(0) is given by equation (2.5) and 

E = diag(a1 ,a2,....,am) , ai  E le (i=1,2,...,m), 	(2.60) 

and 

K3 = H-1(T)A(T)A 
	

(2.61) 
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where H(T) is given by equation (2.11) and 

A = diag(61,62,....05m) , ei  E le (i=1,2,...,m), 	(2.62) 

it follows from equations (2.24), (2.53), (2.54), (2.55), 

(2.57), (2.59), and (2.61) that 

Z1  = {z E C : 1 zIn  — In  —TA + 0(T2) I = 0) , 	(2.63) 

Z2  = {z E C : 1 zIm  — Im  + T2E + 0(T3) I = 0 } , 	(2.64) 

and 

Z
3 
= (z E C : I zIm  + 0(T) I = 0 } 
	

(2.65) 

These expressions indicate that, provided T is sufficiently 

small, all the closed—loop characteristic roots lie within the 

open unit disc. This follows since the open—loop plant is 

asymptotically stable on the continuous—time set T = [0,+=) and 

since T2E is a positive diagonal matrix. The introduction of 

error—actuated digital set—point tracking PID controllers 

governed by equations (2.17), (2.57), (2.59) and (2.61) 

accordingly ensures that set—point tracking occurs when the 

sampling time T E (0,T*], where T*  = T*(H,E,A) can be readily 

obtained by simple "on—line" tuning (Porter and Jones (1985a)). 
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Furthermore, it follows from equations (2.20) and (2.21) that 

the output from the initially quiescent plant after the first 

sampling interval under error-actuated digital PID control is 

y(T) = [TH(T)K1  + H(T)K3]v 	 (2.66) 

It is evident from equations (2.57), (2.61), and (2.66) that 

y(T) = (TA(T)H + A(T)A]v 	 (2.67) 

and therefore that set-point tracking occurs when T E (0,T*] 

with no initial interaction since A(T)H and A(T)A are diagonal 

matrices for all T e R. Moreover, it follows from (2.67) that 

the ith element (i=1,2,....,m) of the output vector y(T) is 

given by 

yi(T) = [TNi(T)zi  + Xi(T)6i]vi 	 (2.68) 

where Ni(T), zi, and di  are the elements of the diagonal 

matrices A(T), U, and A, respectively. It is thus evident from 

equations (2.10) and (2.68) that 

yi(T) = [TdO2W ii(di+1)! + Tdi+16i/(di+1)!]v i (2.69) 

where di  is the decoupling index (Falb and Wolovich (1967)) 

associated with the ith channel (i=1,2,...,m). Equation (2.69) 

indicates that the presence of derivative action in the 

error-actuated digital PID controller "speeds up" the 
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closed—loop response by reducing the effective decoupling index 

associated with the ith channel from di  to di-1 (i=1,2,..,m). 

Indeed, this is directly reflected by equation (2.68) where the 

scalar [T]ti(T)Iri+Xi(T)61.] represents the proportion of the 

set—point which has been achieved after the first sampling 

period. 

The proportional, integral, and derivative controller matrices 

K1, K2, and K3  given by equations (2.57), (2.59), and (2.61), 

respectively, can all be directly determined from the 

step—response matrix H(t). This is the case since it follows 

from equation (2.11) that 

G(0) = lim H(t) = —CA-1B 	 (2.70) 
t-+= 

because the open—loop plant is asymptotically stable and 

therefore has a bounded step—response matrix. Furthermore, 

since the expressions (2.57) and (2.61) for the proportional 

and derivative controller matrices, respectively, involve the 

inverse of the initial step—response matrix of the open—loop 

plant H(T), it is clear that the sampling period must be 

selected so that the minimum singular value of H(T) 

(amin[H(T)]) is not small, so that H(T) is well—conditioned. 

2.4 Illustrative example 

The use of these methods can be conveniently illustrated by 

designing a tunable digital set—point tracking PID controller 

for the linear model of the F100 engine obtained at 
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Intermediate condition (Appendix 3). 

The plant has five measurable outputs and five manipulated 

inputs and is governed by state and output equations of the 

forms (A3.8) and (A3.10). The elements of the open-loop 

step-response matrix of the plant are obtained by "off-line" 

open-loop tests (Appendix 1) and are shown in Figs 2.2 to 2.6. 

It is clear from these figures that the plant is highly 

interactive. Furthermore, the corresponding plot of the 

minimum singular values (amin[H(t)]) of the step-response 

matrix shown in Fig 2.7 indicates that the plant is minimum 

phase (Porter and Jones (1985c)) and that G(0) is 

well-conditioned since amin[H(+=)] is not small. 

Therefore, it is found from Figs 2.2 to 2.6 that 

H(0.05) = 
0.17616E-04 
0.23170E-03 

[ 0.63349E-03 

0.11637E-04 
0.60822E-04 

1.2999 
-0.80181E-01 
0.15636 

-0.18878 
-0.86794E-02 

-0.13554 
-0.99195E-03 
0.30845E-02 
0.42304E-03 

-0.66965E-04 

 

0.28229E-01 -3.0846 
-0.61116 	-1.9583 
0.21946E-01 -1.5823 

-0.96205E-03 -0.19460E-01 
0.75545E-03 0.61871E-01 

(2.71) 

and 

  



—9.2619 —57.405 
—25.646 —46.221 

—0.76283 —6.8275 
—0.33542E-01 —0.44527 
2.2101 12.248 I 

	

(2.72) 

0.37904 —28.508 
0.30777 660.79 —2.8675 

G(0) = 

[1238.8 

0.20602E-01 —39.863 0.25947 
0.15944E-02 —12.168 0.38479E-01 
0.90309E-01 210.94 —1.7403 
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The excellent set—point tracking behaviour of the plant under 

the action of the resulting error—actuated PID controller tuned 

such that T = 0.05 sec, A(0.05)11 = diag(0.05, 0.2, 0.1, 0.1, 

0.1}, E = diag{50, 50, 50, 50, 100}, and A(0.05)A = 0.00115, is 

shown in Figs 2.8 and 2.9. In this case, the set—point vector 

for the measurable outputs is v = (126, 93.4, 14.5, 1.78, 

1.971 T  so that the thrust change is 500 lb. It is evident from 

these figures that the response of the gas—turbine engine 

consists of a fast approach to the desired values with minimum 

interaction between the five channels and that the 

corresponding manipulated variables exhibit no practically 

undesirable characteristics. 

2.5 Conclusion 

In this chapter, a block—diagonalisation transformation has 

been used to exhibit the asymptotic properties of discrete—time 

closed—loop tracking systems incorporating asymptotically 

stable linear multivariable plants under the action of digital 

PID controllers. The controller parameters have been chosen so 
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that set-point tracking is achieved without initial interaction 

or undershoot. It has been shown that the design of 

error-actuated digital controllers, which ensure that set-point 

tracking behaviour of the closed-loop system occurs, can be 

readily effected even though the detailed dynamical properties 

of the processes involved are unknown. 

Finally, the effectiveness of these methodologies has been 

illustrated by designing a digital set-point tracking 

controller for a highly interactive gas-turbine engine. 
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CHAPTER 3 

DESIGN OF TUNABLE DIGITAL SET-POINT TRACKING 

PID/PRE-FILTER CONTROLLERS FOR LINEAR 

MULTIVARIABLE PLANTS WITH UNMEASURABLE OUTPUTS 

3.1 Introduction 

In designing the tunable digital set-point tracking PID 

controllers proposed in Chapter 2, it was assumed that the 

outputs from the plants under control are directly available 

for control purposes. However, in many technologically 

important applications such as gas turbines, the plant outputs 

which are required to be controlled are unmeasurable so that 

this assumption is invalid. Therefore, in this chapter, the 

tunable digital set-point tracking PID controllers of Chapter 2 

are enriched by the inclusion of pre-filters so as to embrace 

linear multivariable plants with unmeasurable outputs. It is 

noted that the robustness properties of the resulting 

controllers are considered in Chapter 8. 

It is shown that the pre-filter matrices, together with the 

proportional, integral, and derivative controller matrices 

embodied in the resulting PID/Pre-filter controllers, can be 

determined from open-loop step-response tests performed on 

plants (Appendix 1). The proportional and derivative 

controller matrices are chosen as the inverse of the open-loop 

step-response matrix for unmeasurable outputs, which is itself 

derived from the classical decoupling theory of Falb and 
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Wolovich (1967). This choice is made in order to exploit the 

initial interactions within the plant and thus to cause 

set-point tracking to occur without initial interaction or 

under-shoot (Mita and Yoshida (1981)). The integral controller 

matrix is chosen as the inverse of the open-loop steady-state 

transfer-function matrix for measurable outputs in order to 

exploit the final interactions within the plant. Finally, the 

pre-filter matrix which converts the set-point commands for 

unmeasurable outputs into set-point commands for measurable 

outputs is designed to achieve set-point tracking for 

unmeasurable outputs. Although the use of the step-response 

matrix for unmeasurable outputs in controller matrices implies 

that off-line measurements of such outputs is necessary in the 

design stage, the design procedure is free from on-line 

measurements of such outputs. Thus, provided only that the 

plants satisfy the fundamental condition of Porter and Power 

(1970) and Power and Porter (1970) for the preservation of 

stabilisability in the presence of integral action, such 

error-actuated controllers can be readily designed for unknown 

multivariable plants with unmeasurable outputs. 

A block-diagonalisation transformation is used to investigate 

the asymptotic properties of closed-loop systems under the 

action of such PID/Pre-filter controllers. The closed-loop 

plant matrix is decomposed into three sub-matrices, using the 

block-diagonalisation transformation of Kokotovic (1975), and 

it is shown that the basic design criterion for stability and 

set-point tracking can be satisfied in terms of the 

characteristic roots of these sub-matrices. 
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The effectiveness of such a tunable controller is illustrated 

by designing a tunable digital set—point tracking 

PID/Pre—filter controller for a highly interactive gas—turbine 

engine with five measurable outputs (which are not to be 

directly regulated but are available for control purposes) and 

five unmeasurable outputs (which are to be directly regulated 

but are not available for control purposes). It is shown that 

the proportional and derivative controller matrices include the 

inverse of the step—response matrix for unmeasurable outputs. 

Therefore, as long as such data are available in the controller 

design stage, the controller ensures the initial 

non—interaction or non—under—shooting and the final set—point 

tracking of unmeasurable outputs. This direct action in 

respect of the unmeasurable outputs forms the distinctive 

feature of such tunable PID/Pre—filter controllers. 

3.2 Analysis 

The linear multivariable plants under consideration are assumed 

to be governed on the continuous—time set T = (13,+) by state, 

output, and measurement equations of the respective forms 

i(t) = Ax(t) + Bu(t) 	 , 	 (3.1) 

w(t) = Ex(t) 	 (3.2) 

and 

Y(t) = Cx(t) 	 , 	 (3.3) 
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where the state vector x(t) E R n, the input vector u(t) E 

the unmeasurable plant output vector w(t) E Rm, the measurable 

output vector y(t) E Rm, the plant matrix A E Rnnn  whose 

eigenvalues all lie in the open left—half plane C-, the input 

matrix B E Rnnm, the unmeasurable output matrix E E Rim", and 

the measurable output matrix C E Rm. Furthermore, it is 

assumed that the introduction of integral action preserves 

stabilisability and therefore that (Porter and Power (1970), 

Power and Porter (1970)) 

rank G = rank G = m . 	 (3.4) 

Here, the steady—state transfer function matrices 

Gw  = G.(0) = —EA-1B E R mnin 	 (3.5) 

and 

G Y  = GY  (0) = —CA-18 E R m x m 	 (3.6) 

where the plant transfer—function matrices 

G.(s) = E(sI—A)-1B 	 (3.7) 

and 
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GY  (s) = C(sI—A)-1B . (3.8) 

Finally, it is assumed that input—output decoupling is 

achievable and therefore that (Falb and Wolovich (1967)) 

rank F = m w 

where the decoupling matrix 

(3.9) 

eTAd18 

eTAd mB m 

and the di  (i=1,2,...,m) and the eri  (i=1,2,...,m) are, 

respectively, the decoupling indices of the plant (Falb and 

Wolovich (1967)) and the rows of the unmeasurable output 

matrix. In the case of such plants, it is important to note 

that 

Fw  = am A;1(t)liw(t) 	 (3.11) 
t-,o 

and 

F-1  = lim H-1(t)A w(t) w 
t-o 

(3.12) 

where 

F,r =-. E Rmx m (3.10) 

  

Aw(t) = diag(td 1+1/(d1+1)!,....,td m +1/(dm+1)!) 	(3.13) 



and 

Hw(t) = HA-1(eAt_in)B 
	

(3.14) 
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is the plant step—response matrix for unmeasurable outputs. 

Similarly, 

Hy(t)  = CA-1(eAt_in)H 
	

(3.15) 

is the plant step—response matrix for measurable outputs. This 

obviously indicates that, although the measurement of 

unmeasurable outputs is not necessary in the on—line operation 

of the controller, such measurement is necessary in the 

off—line design stage of the controller. 

In order to design error—actuated set—point tracking PID 

controllers for linear multivariable plants governed by state, 

output, and measurement equations of the respective forms 

(3.1), (3.2), and (3.3), it is convenient to consider the 

behaviour of such plants on the discrete—time set T T = 

(0,T,2T,...,kT,...}. This behaviour is governed by state, 

output, and measurement equations of the respective forms 

(Kwakernaak and Sivan (1972)) 

Xk+1 = txk + t1.1k ' 
	 (3.16) 

Wk = Exk 9 
	 (3.17) 
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and 

yk  = rxk  , 	 (3.18) 

where xk  = x(kT) E R n , uk  = u(kT) E R m, w k  = w(kT) e Rm, yk  = 

y(kT) e Rm, 

0 = exp(AT) , 	 (3.19) 

T 
t = f exp(At)B dt , 	 (3.20) 

0 

= E , 	 (3.21) 

r = c , 	 (3.22) 

and T e le is the sampling period. Furthermore, in designing 

such controllers, it is necessary to introduce pre—filters 

which generate the set—point vector for measurable outputs 

v E R m  from the set—point vector for unmeasurable outputs 

r E R m  in accordance with equation 

v = Jr , 	 (3.23) 

where the pre—filter matrix J E R mnm  is to be determined. 

Thus, if the measurable output vector is caused to track its 

set—point vector in the sense that 

lim (v — yk) = 0 , 	 (3.24) 
k4+0* 
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it follows from equations (3.23) and (3.24) that 

lim (Jr - yk) = 0 	 (3.25) 
k-4+= 

and therefore that 

lim (Jr - G y  G-lwk  ) = 0 
k-4+= 

(3.26) 

in view of equations (3.5) and (3.6). Therefore, if such 

pre-filters are chosen such that 

J = G Y  G-2  E RJm 
	

(3.27) 

it follows from equations (3.26) and (3.27) that 

lim (r - wk) = 0 	 (3.28) 

so that the unmeasurable output vector is caused to track its 

set-point vector in the steady state. It is thus evident (as 

indicated in the block diagram shown in Fig 3.1) that the 

essential function of digital PID/Pre-filter controllers for 

plants with unmeasurable output vectors is to cause the 

measurable output vectors to track their set-point vectors in 

the sense of equation (3.24), where the set-point vectors for 

the measurable output vectors are generated from the set-point 

vectors for the unmeasurable set-point vectors in accordance 

with equations (3.23) and (3.27). 
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The state and output equations of such plants under the action 

of error-actuated digital PID/Pre-filter controllers governed 

on the dicrete-time set T T = 10,T,2T,...,kT,...1 by 

control-law equations of the forms 

uk = TK1ek 	TK2zk 	K3(ek  - ek _ 1 ) 	 (3.29) 

clearly assume the respective forms 

:

k+1 

 

xk+1 I 	-.TtKir-TK3r , TTIC2  ,-2K3 	xk 	T2K1 	TK3  

-Tr 	Im  , 0 	zk  TIm  

Im  fk+1 	 -r 2 	o , 0 	fk 

(3.30) 

and 

(3.31) Wk  = 	E , 0 , 0 ] 	Xk  

zk 

fk 

In equation (3.29), the error vector ek  = v - yk  E Rm, the 

stored error-vector fk  = ek-1 e Rm, the set-point vector for 

measurable outputs v E Rm, the digital integral-of-error vector 

zk = zk-1 	Tek-1 G Rm 
	

(3.32) 

and the controller matrices K1  Rm'm 	K2 E Rmmm 	and 

K3 E Rmmm  Therefore, provided only that T, K1 , K2, and K3  are 

such that all the eigenvalues of the closed-loop plant matrix 
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in equation (3.30) lie in the open unit disc D-, 

lim Azk = lira (Zki.1  — zk} = 0 
	

(3.33) 
kyr 	 k4= 

and consequently 

lim ek = 0 
	

(3.34) 
Ic-wo 

so that set—point tracking occurs in the sense of equation 

(3.24). 

The characteristic equation of the closed—loop plant matrix in 

equation (3.30) can be readily expressed in the form 

oc(z) = 01(z)02(z)03(z) 	 (3.35) 

by invoking the block—diagonalisation procedure of Kokotovic 

(1975), and the response characteristics of the closed—loop 

system can accordingly be elucidated. The asymptotic 

properties of tracking systems under the action of such 

controllers can be characterised in terms of the eigenstructure 

of the closed—loop plant matrix, which involves the 

decomposition of this matrix into three sub—systems based on 

the explicitly invertible block diagonalisation transform 

(KokotoviC (1975)). 
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This block—diagonalisation procedure transforms the matrix 

triple incorporated in equations of the form 

and 

[ X1(k+1) 1 

X2(k+1) 

	

[ Ali 	, 	Al2 	][ 

	

A2I 	, A22  

Xl(k) 1 

x2(k) 

[ B 1  ] 

B2 

u(k) 	(3.36) 

Y(k) 	= 	[ 	C1 	, 	C2 	] Xl(k) [ 
(3.37) 

X2(k) 

where 	x1  (k) E R n l, 	x2(k) E Rn2, 	Aij E R ninnj 	(i,j=1,2), 

B1  e Rnl"9 	B2  e Rn2zm, 	C1  E R"ni, 	and 	C2  E R"n2 	into 	the 

block—diagonal form incorporated in the equations 

X1(104 ) All 	, 	0  Xl(k) B1  [ 	] [ 1 
u(k) 	(3.38) 

[ 	I 

X2(k+1) 0 	, 	A22  X2(k) B2 

and 

Y(k) = 	[ 	C1 	, 	C2  X1(k) 1 
(3.39) 

X2(k) 

The state vectors in these equations are related by the linear 

state transformation (KokotoviC (1975)) 

[x ]  

	

i 	ril  
= w 

	

X2 	X2  
(3.40) 
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where 

[ I 	, 	M n 
W = 	1 
	

E R(n 1"2)x(n 1"2)  , 	 (3.41) 
-L , In 2-LM  

xl(k) E Rn i, x2(k) E Rn 2, Aii  E Rnixnj (i,J=1,2), B1  e Rn 1 xm, 

B2  E Rn2", C1  E Rmzn i, C2  E Rmxn2, L E R n2xn 1 ,and M E Rn1"2. 

Thus, if L and M satisfy the matrix Riccati equations 

(Kokotovic (1975)) 

A21 4.  LA11 — A22L - LA12L = 0 
	

(3.42) 

and 

(A11 — Al2L)M — M(A22  + LA12) + Al2  = 0. 
	 (3.43) 

it follows from equations (3.36), (3.38), and (3.40) that 

A11 = A11  - Al2L 
	

(3.44) 

and 

A22 = A22 + LA12 
	 (3.45) 

The asymptotic properties of the discrete-time closed-loop 

tracking system can now be readily determined by regarding T as 

a perturbation parameter in equations (3.30) and (3.31). Thus, 

by regarding in equation (3.36) 



A11 = 

A12 = 

A21 = 

and 

A22 = 

the 	solution 

obtained by 

the definition 

-T21‹1  

[ -TIC

3 0 

[ —r 	, 

0 

using power 

of 	equations 

of matrices 

r-21C3r , TTK 2  

—Tr 	, I, 	I 

o 	] 

(3.42) 

series expansions 

L1  and 

s 

s 

s 

and 	(3.43) 

in T. 

L2 such that 

can be 

This 

67 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

readily 

involves 

L = [ L1  , L2  ] 	 (3.50) 

where 

L1  = L10 + L11T + 

L2 = L20 4. L21T + 

 

(3.51) 

(3.52) 

  

  

in which Lli e R°  e°3 , 1.2i E Rn27Cn 4,  (i=0,1,2, 	)  

Therefore, it is clear from equations (3.42), (3.46), (3.47), 

(3.48), (3.49), and (3.50) that on isolating coefficients 
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L = [ C , 0 ] + 0(T) 	 (3.53) 

and therefore from equations (3.44) and (3.45) that 

-TfK1r , T2K2  

-Tr , im  
A11 = 

and 

(3.54) 

A22  = -TCBK3+0(T2) 	 . 	 (3.55) 

The matrix A11 in equation (3.43) is now block-diagonalised, by 

again regarding T as a perturbation parameter in equation 

(3.54) and by regarding in equation (3.36) 

All  = 0 - Twir , 	 (3.56) 

112  = TTK2  , 	 (3.57) 

and 

= -Tr , 121 

A22- = Im . 

(3.58) 

(3.59) 

In addition, the matrix T. is defined in a power-series form 

L - = Lo  + TL1  + T2L2  + ''. (3.60) 
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In equations (3.56), (3.57), (3.58), (3.59), and (3.60), the 

overbar has been used to distinguish between the two explicit 

stages of the block-diagonalisation procedure. 

Therefore, it is clear from equations (3.42), (3.56), (3.57), 

(3.58), (3.59), and (3.60) that on isolating coefficients 

L = CA-1  + T(CA-1B1C1CA-1  + CA-1M2CA-2  - C/2) + 0(T2). 

(3.61) 

Hence, it follows from (3.44), (3.45) and (3.61) that 

All  = In  + TA + T2A2/2 - T2BK1C - T2BK2CA-1  + 0(T3) 

(3.62) 

and 

A22 = Im  - T2CA-181(2  + 0C13) 
	

(3.63) 

Thus, it is evident from equations (3.54), (3.55), (3.62), and 

(3.63) that the characteristic polynomials as expressed in 

equation (3.35) are 

01(z) = 1 zIn  - In  - TA - T2A2/2 + T2BK1C 

+ T2B1C2CA-1  + 0(T3) 1 9 
	(3.64) 

0 2 (z) = 1 zIm  - Im  - T2CA-1BK2  + 0(T3) 1 , 	(3.65) 
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and 

03(z) = 1 zIm  + TCBK3  + 0(T2)  I - 	 (3.66) 

3.3 Synthesis 

It is clear that tracking will occur in the sense of equation 

(3.24) provided only that the set of closed—loop characteristic 

roots 

Z c = Zi  U Z2 U Z3 C D 
	

(3.67) 

where D-  is the open unit disc and the sets of characteristic 

roots Z 1, Z2, and Z3 are, respectively, the roots of the 

characteristic polynomials as expressed in equation (3.35). 

Therefore, in case 

K1  = 11:1(T)A.(T)HJ-1  , 	 (3.68) 

where Hy (T) is given by equation (3.14) and 

II = diag{7C1 ,1C 2,...,w m} , wi  G R4  (i=1,2,...,m), 	(3.69) 

K2 	y = G-1(0)2 , 	 (3.70) 

where G.(0) is given by equation (3.6) and 

E = diag{a1 ,a2,...,am} , ai  E R' (i=1,2,...,m), 	(3.71) 



and 

K3  = 1.1: 1(T)A.(T)AJ-1  , 	 (3.72) 

where Hw  (T) is given by equation (3.14) and 

A = diag01,62,....05) , di  E le (i=1,2,...,m), 	(3.73) 

it follows from equations (3.35), (3.64), (3.65), (3.66), 

(3.68), (3.70), and (3.72) that 

Z1  = {z E C : I zI. — I. —TA + 0(T2) I = 0} , 	(3.74) 

Z2  = {z E C : I zI. — I. + T2E + 0(T3) I = 0} , 	(3.75) 

and 

Z3 = {z E C : I zI m  + 0(T) I = 0) . 
	 (3.76) 

These expressions indicate that, provided T is sufficiently 

small, all the closed—loop characteristic roots lie within the 

open unit disc. This follows since the open—loop plant is 

asymptotically stable on the continuous—time set T = [0,+co) and 

since T2E is a positive diagonal matrix. The introduction of 

error—actuated digital set—point tracking PID controllers 

governed by equations (3.29), (3.68), (3.70) and (3.72) 

accordingly ensures that set—point tracking occurs for the 
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measurable outputs in the sense of equation (3.24) when the 

sampling time T E (0,T*], where T*  = T*(H,E,A) can be readily 

obtained by simple "on-line" tuning (Porter and Jones (1985a)). 

The presence of pre-filters governed by equations (3.23) and 

(3.27) then ensures that set-point tracking occurs for the 

unmeasurable outputs in the sense of equation (3.28). 

Furthermore, it follows from equations (3.30) and (3.31) that 

the unmeasurable output from the initially quiescent plant 

after the first sampling interval under error-actuated digital 

PID/Pre-filter control is 

w(T) = [THw(T)1(1  + Hw(T)1(3]v 	 (3.77) 

since 

T 
St = fEexp(At)Bdt = Hw(T) 
	

(3.78) 
0 

in view of equations (3.20) and (3.21). It is thus evident 

from equations (3.23), (3.68), (3.72), and (3.77) that 

w(T) = [TAW(T)II + A w(T)A]r 	 (3.79) 

and therefore that set-point tracking occurs when T E (0,T*] 

with initial non-interaction since Aw(T)H and Aw(T)A are 

diagonal matrices for all T E R. The pre-filter matrix J E 

Rm" given by equation (3.27), together with the proportional, 

integral, and derivative controller matrices K1  E Rmxm, K2  E 
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Rum, and K3  E RmEm  given by equations (3.68), (3.70), and 

(3.72), respectively, can all be obtained from the 

step—response matrices Hw(t) and Hy(t). This is the case since 

it follows from equations (3.14) and (3.15) that 

Gw(0) = lim Hw(t) = —EA-111 	 (3.80) 
tee 

and 

G (0) = lim H (t) = —CA-113 
	

(3.81) 
t-P:o 

because the open—loop plant is asymptotically stable. 

Therefore, tunable digital set—point tracking PID controllers — 

with associated pre—filters — can be readily designed for 

linear multivariable plants without the need for mathematical 

models provided only that the step—response matrices Hw(t) and 

H (t) are obtained from open—loop tests. Then, it is clear 

that although the controller operation does not require the 

on—line measurement of unmeasurable outputs, the off—line 

measurement of such outputs is necessary in the design stage of 

the controller. It can be considered that the superior 

operational performance such as initial non—interaction for 

unmeasurable outputs is obtained in exchange for the effort of 

measuring such outputs off line. 

Finally, since the expressions (3.68) and (3.72) for K1  and K3  

involve II:1(T), it is clear that the sampling period T must be 

chosen such that the minimum singular value of Hw(T) 

(amin[Hw(T)]) is not small, so that Hw(T) is well—conditioned 
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(Porter and Jones (1985c)). 

3.4 Illustrative example 

These general results can be conveniently illustrated by 

designing a tunable digital set—point tracking PID/Pre—filter 

controller for the linear model of the F100 gas—turbine engine 

obtained at Intermediate condition (Appendix 3). 

The plant has five measurable outputs, five unmeasurable 

outputs, and five manipulated inputs and is governed by state, 

output, and measurement equations of the form (A3.8), (A3.9), 

and (A3.10). The elements of the plant step—response matrices 

Hy(t) and Hw(t) are obtained by "off—line" open—loop tests. It 

is possible to obtain such data in engine running tests which 

are carried out using altitude test facilities. They are shown 

in Figs 2.2 to 2.6 and in Figs 3.2 to 3.6, respectively. It is 

clear from these figures that the plant is highly interactive. 

Furthermore, the corresponding plots of the minimum singular 

values (amiw[Hy(t)] and amiw[Hw(t)]) of the step—response 

matrices shown in Fig 2.7 and Fig 3.7(a),(b) indicate that the 

plant is minimum phase for the measurable outputs and 

nonminimum phase for the unmeasurable outputs (Porter and Jones 

(1985c)). It is evident from Figs 2.2 to 2.6 that G (0) is 

well—conditioned since amin[Hy(+co)]  is not small. However, 

attention must be given in order to choose the sampling 

interval T so as not to use an ill—conditioned Hw(T), since 

min[Hw(+co)] vanishes once. 
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It is found from Figs 2.2 to 2.6 and from Figs 3.2 to 3.6 that 

0.20199E-01 -268.18 
0.63298E-04 0.27604 

Hw(0.05) = 0.17399E-01 -0.94227 
-0.12214E-06 0.67912E-02 
0.19447E-06 -0.21704E-03 

8.4970 
0.16262 

-0.72047E-02 
-0.15042E-02 
-0.91478E-05 

	

0.11445 	-90.294 
0.10948E-02 -0.10496 

	

0.27036 	12.481 
0.11095E-03 0.74531E-03 
-0.56074E-02 0.70200E-02 

(3.82) 

  

0.93215 	-1384.6 	18.823 
0.53537E-02 17.599 0.28572 

Gw(0) = 	0.12133 	282.50 	-2.1459 
0.10422E-04 0.26652 	-0.85391E-02 

-0.20603E-05 -0.85660E-02 0.33076E-04 

 

-11.079 	-197.54 

	

-0.12785 	-0.78934 

	

2.7500 	19.700 
-0.24992E-03 0.24874E-02 
-0.68327E-02 0.68195E-02 

 

(3.83) 

   

0.37904 	1238.8 
0.30777 	660.79 

Gsr (0) = 	0.20602E-01 -39.863 
0.15944E-02 -12.168 
0.90309E-01 210.94  

-28.508 
-2.8675 
0.25947 
0.38479E-01 
-1.7403 

and 

-9.2619 	-57.405 
-25.646 	-46.221 
-0.76283 	-6.8275 
-0.33542E-01 -0.44527 

2.2101 	12.248 I 

(3.84) 

It is accordingly found from equations (3.27), (3.83), and 

(3.84) that 
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[ 0.25123 	22.335 

	

0.18671 	31.039 
J = 	0.28902E-01 0.21873 

0.35558E-02 —0.30482 
0.39481E-02 0.38839 

—0.18958 
—0.38513 
—0.66287E-01 
—0.54230E-04 
0.69140 

4688.4 
1893.0 
57.423 

—6.8342 
51.518 

282.44 
2645.6 
31.907 
5.0751 
—60.740 

(3.85) 

The excellent set—point tracking behaviour of the plant under 

the action of the resulting error—actuated PID/Pre—filter 

controller tuned such that T = 0.05 sec, Aw(0.05)11 = 1.015, E = 

diag{50, 50, 50, 50, 100), Aw(0.05)A = 0.0115, is shown in Figs 

3.8 and 3.9. In this case, the required thrust change is 500 

lb so that the set—point vector for the unmeasurable outputs is 

r = [500, 0, 0, 0, 01 T  whilst the corresponding set—point 

vector for the measurable outputs is v = GY  G-1[500, 0, 0, 0, 

0]T  = [126, 93.4, 14.5, 1.78, 1.97)T. It is evident from Figs 

3.8 and 3.9 that the response of the gas—turbine engine 

consists of a fast approach to the desired unmeasurable and 

measurable outputs with minimum interaction between the five 

channels. In addition, it is clear from Fig 3.10 that the 

corresponding manipulated variables exhibit no practically 

undesirable characteristics. Finally, it is noted that the 

distinction between the PID/Pre—filter controllers and the PID 

controllers (Chapter 2) comes from the initial decoupling of 

unmeasurable outputs. In the case of PID controllers (Chapter 

2), the initial transient behaviour of unmeasurable outputs is 

not considered. Therefore, initial decoupling is not obtained 
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for such outputs as shown in Fig 3.11 which corresponds to the 

example in Chapter 2. On the other hand, in the case of the 

PID/Pre—filter controller, initial decoupling for such outputs 

is obtained as was shown in Fig 3.8. 

3.5 Conclusion 

In this chapter, a block—diagonalisation transformation has 

been used to exhibit the asymptotic properties of discrete—time 

closed—loop tracking systems incorporating asymptotically 

stable linear multivariable plants with unmeasurable outputs 

under the action of digital PID/Pre—filter controllers. It has 

been shown that the pre—filter matrices, together with the 

proportional, integral, and derivative controller matrices 

embodied in the resulting tunable digital PID/Pre—filter 

controllers, can be determined from open—loop step—response 

tests thus circumventing the need for detailed mathematical 

models of complex plants. In order to obtain the step—response 

data for unmeasurable outputs, it is necessary to measure 

off—line such outputs in the design stage of the controller. 

Some effort might be required to do so. However, such 

measurement is possible for plants such as aero gas—turbines 

during ground and altitude tests and therefore the efforts 

involved are compensated by the superior initial transient 

response for unmeasurable outputs. Finally, the effectiveness 

of these methodologies has been illustrated by designing a 

digital set—point tracking controller for a gas—turbine engine 

with five measurable outputs and five unmeasurable outputs. 
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PART III 

DESIGN OF LIMIT-TRACKING SYSTEMS 

INCORPORATING LINEAR MULTIVARIABLE PLANTS 
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CHAPTER 4 

GENERALISED CHARACTERISATION OF TRACKING SYSTEMS 

AND LINEAR MULTIVARIABLE PLANTS 

4.1 Introduction 

The methodologies for the design of set-point tracking systems 

introduced in Part II deal with linear multivariable plants in 

which the numbers of inputs and outputs are equal. Such 

tracking systems work effectively provided that plants meet the 

fundamental requirement of functional controllability. 

Therefore, the number of manipulated inputs has to be not less 

than that of controlled outputs. However, in case plants have 

more controlled outputs than manipulated inputs, they fail to 

meet these requirements. Therefore, set-point tracking systems 

incorporating as many integrators as the number of outputs do 

not work properly. In such cases, if control engineers choose 

an appropriate subset of plant outputs and design a set-point 

tracking controller for only this subset, it might happen in 

some plants such as gas-turbine engines that some of the 

uncontrolled plant outputs violate the engine operational 

limits whilst the controlled plant outputs are tracking their 

corresponding set-point commands. Therefore, the need for a 

more general tracking concept than set-point tracking is 

evident in order to give a sound basis for the design of 

controllers for linear multivariable plants with more outputs 

than inputs. 
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The creation of such a general tracking concept is carried out 

by the inclusion of inequalities in tracking conditions. Thus, 

firstly, the tracking characteristics of linear multivariable 

plants are expressed by sets of linear inequalities involving 

the steady—state transfer function matrices of such plants. 

Such sets of inequalities, which also occur in problems of 

linear programming, can be investigated very effectively using 

results from convex analysis (Rockafellar (1970)). In this 

investigation, undertracking (ie tracking with nonnegative 

errors) is defined and its characteristics are discussed in 

terms of vector spaces. Next, it is shown that the possibility 

of undertracking is characterised by the separation theorem of 

convex analysis. This leads to the classification of plants 

and to the presentation of geometrical and analytical features 

of this classification. Furthermore, tracking characteristics 

under the action of constant disturbances are also discussed. 

Finally, illustrative examples explain these concepts. The 

proofs of Propositions and Theorems are given in Appendix 2. 

Thus, the foundations for the design of controllers for linear 

multivariable plants with more outputs than inputs are 

constructed. 

4.2 Problem statement 

It is supposed that the asymptotically stable plants under 

investigation have steady—state transfer function matrices G E 

RP" which satisfy the equation 
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Y = G 

gl 

gP 

(4.1) 

 

 

where the steady-state input vector u E U = R m, 	the 

steady-state output vector y E Y = RP, and the positive numbers 

p and m are arbitrary. Equation (4.1) represents the 

steady-state input-output relation of an open-loop 

asymptotically stable plant or a closed-loop system stabilised 

by appropriate feedback. 

In the study of tracking systems, it is important to determine 

the characteristics of G that are required to make such systems 

effective for an arbitrary set-point command vector v E RP. 

Thus, for example, if rank G = p m, it is clear that the 

input vector u = GT[GGII -lv enables the output to follow any 

set-point 	command. 	However, 	if 	rank G m < p 	or 

rank G < p m, the plant is functionally uncontrollable, the 

right-inverse of G does not exist, and set-point tracking in 

the sense that y = v is impossible for arbitrary set-point 

command vectors. In this case when nonnegative or nonpositive 

errors can be allowed in the sense that y v or y k v (where 

vector inequalities are interpreted component by component), it 

may be possible to design tracking systems in this sense which 

is practically very important. However, the conditions 

necessary for the plant to make such tracking systems feasible 

are not clear. Therefore, the investigation is aimed at the 

case rank G < p, although the analysis requires no restrictions 
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on p and m. 

4.3 Characterisation of tracking systems 

The general tracking characteristics of linear multivariable 

plants can be defined by using a vector equality together with 

vector inequalities (ie sets of equalities/inequalities). 

Definition 4.1: Tracking 

1 Set—point tracking 

The tracking is said to be set—point tracking if and only if 

y =Gu= v 	. 	 (4.2) 

2 Undertracking (Tracking with nonnegative errors) 

The tracking is said to be undertracking if and only if 

y =Gli 	v 	. 	 (4.3) 

3 Overtracking (Tracking with nonpositive errors) 

The tracking is said to be overtracking if and only if 

y =Gukv 	. 	 (4.4) 

In this definition, the vector inequalities in equations (4.3) 

and (4.4) are interpreted component by component and include 

the case y = v. Furthermore, it is clear that 1 implies 2 or 3 

in Definition 4.1. 
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Since the difference between undertracking and overtracking is 

only in the directions of inequalities, the subsequent 

investigation is carried out only for undertracking. Firstly, 

the theory of convexity is used to characterise undertracking 

in terms of vector spaces. Then, the property of polyhedral 

convexity is stated and the separation theorem is introduced. 

Definition 4.2 

1 Set UF(v) of feasible inputs 

UF(V) = (11EU:G115. v} 	 (4.5) 

2 Set YR of reachable outputs 

YR = lyEY:y=Gu,uE U) 	 (4.6) 

3 Set YA(v) of admissible outputs 

YA(v) = {y E Y : y 5_ v} 	 (4.7) 

4 Set YF  (v) of feasible outputs 

YF(V) = YR  n YA(v) 	 (4.8) 

Proposition 4.1 

1 Ur(v), YA(v) and Yr(v) = G (Ur(v)) are closed polyhedral 

convex sets. 



95 

2 YR is a subspace of Y, closed and convex. 

Proposition 4.2 

1 (i) UF(v) = 0 if and only if (ii) Yr(v) = 0 

2 (i) Ur(v) 0 0 if and only if (ii) Yr(v) 0  0 

Proposition 4.2 means that set—theoretical results in U—space 

and Y—space are equivalent. 

Proposition 4.3 

VG, U r(v) 0 0 , Yr(v) 0 0 for v / 0 

Theorem 4.1: Separation 

1 (i) Y r(v) 0 0 for v < 0 if and only if 

(ii) there does not exist a hyperplane separating YA(0) and 

YR properly. 

2 (i) Yr(v) = 0 for v < 0 if and only if 

(ii) there exists a hyperplane separating YA(0) and YR  

properly. 

It is clear by Theorem 4.1 that the existence of Yr(v) or UF(v) 

for v < 0 depends upon whether there exists a hyperplane 

separating YAM and YR  properly or not. Furthermore, since 

both YA(0) and YR  are polyhedral convex sets, the following 

proposition can be stated. 
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Proposition 4.4 

If there exists a hyperplane separating YA(0) and YR  properly, 

it contains YR  and does not contain YA(0). 

4.4 Classification of plants 

The results of Theorem 4.1 can be used to classify plants. 

Definition 4.3: Classification 

1 Class I plant 

Class I = {G : U F(v) * 0 and Yr(v) 0 0 for v < 0) 	(4.9) 

2 Class II plant 

Class II = {G : UF(v) = 0 and YF(v) = 0 for v < 0) 	(4.10) 

Theorem 4.2 

1 (i) If G G Class I, then (ii) Vv, Ur(v) 0 0 and Yr(v) 0  0. 

2 (i) If 3v, Ur(v) = 0 and Yr(v) = 0, then (ii) G E Class II. 

3 (i) If G e Class II, then (ii) Vv < 0, UF(v) = 0 and 

Yr(v) = 0. 

4 (i) 	If 	3v < 0, 	UF(v) 0 0 and YF(v) ° 0, 	then 	(ii) 

G E Class I. 

Theorem 4.2.1 means that, provided the plant belongs to 
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Class I, undertracking is possible for any set—point command, 

thus clarifying the importance of Class I plants in tracking 

systems. 	Theorem 4.2.2 means that, if undertracking is 

impossible for any particular set—point command, the plant 

belongs to Class II. Furthermore, Theorem 4.2.4 means that if 

undertracking is possible for some negative set—point command, 

the plant belongs to Class I. 

Proposition 4.5 

1 G E Class II if 3i G [1,p], gi  = 0. 

2 Vi E [1,p], gi  A 0 if G E Class I. 

Proposition 4.5 indicates the sufficient condition for Class II 

plants and the necessary condition for Class I plants. 

Theorem 4.3 

(i) G E Class I if and only if 

(ii) Vi E [1,p], gi  * 0 and UF(0) is an m—dimensional convex 

cone. 

Proposition 4.6 

Ur(v) is unbounded and dim Ur  (v) = m if G E Class I
. 

In this section, the steady—state transfer function matrix G 

has been classified. It follows from Definitions 4.1.2, 4.2, 

and Theorem 4.2.1 that undertracking is always possible for 

G E Class I. So, there always exists an input vector u such 

that 



y =Gu v 

for G E Class I with rank G < p. The next theorem shows the 

importance of Class I plants in disturbance rejection. 

Theorem 4.4 

(i) G E Class I if and only if 

(ii) Vv, Vdy, Ur(v,dy) 0 0 and YF(v,dy) * 0, 

where 

the unmeasurable constant disturbance vector d E RP, 

Ur 9  (v dY  ) = {u : Gu + d 	v) , 
	 (4.11) 

and 

Y F(v,dy) = {y : y = Gu + d , y 	v). 	 (4.12) 

Finally, a sufficient condition for G E Class I is given. 

98 
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Theorem 4.5 

G E Class I if 3i E [1,m], gci  > 0 , 

where 

G = 

1 	I 

gc, 	. ••• I gc 	• gc i 

I 	I 

E RP. 	 (4.13) 

 

 

4.5 Illustrative examples 

The results established in the previous sections can be 

conveniently illustrated by examples such as gas—turbine 

engines. 

Example 4.1 

1 
G = 	 U = 12 1 	Y = R2  

2 

U F (0) = {u 	U 	0} 

Y • = (57 	y= 
[ 

	

U 
2 

	

1 

	
u E 

Y A(0) = {y : y K 0} 

G > 0 and UF(0) is a 1—dimensional half line. Therefore, by 

Theorem 4.3 or 4.5, G E Class I. This is also confirmed in 

Y—space as is shown in Fig 4.1 because there does not exist a 
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hyperplane (ie a line in the case of R2) separating YA(0) and 

YR properly. 	Therefore, using Theorem 4.1, Yr  (v) 0 0 for 

v < 0 so that G E Class I. 

Example 4.2 

G = —1  
2 

[ 	I U = R 1  , 	Y = R2  

U T (0) = ( 	0 	) 

—1 
YR = (37  : Y = 

[ 	: 
u , u E U) 

YA(0) = {y : 	Y 0} 

By Theorem 4.3, G E Class II. This is confirmed in Y—space as 

is shown in Fig 4.2 because YR  itself separates YA(0) and YR  

properly. Therefore, using Theorem 4.1, Yr(v) = 0 for v < 0 

so that G E Class II. 

Example 4.3 

gi I T 	—1 , 2 

G = [ 4 = 	1 , 1 

g3
T  2 , —1 I 

1 U = R2 	Y = R3  

If such a plant is given, the condition of Theorem 4.5 is not 
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satisfied and it is not apparent whether G E Class I or not. 

Actually, by Theorem 4.3, G G Class I since Up(0) is a 

2—dimensional convex cone in U—space as is shown in Fig 4.3. 

It may also be confirmed in Y—space that a plane YR  penetrates 

YA(0). Thus, there does not exist a hyperplane separating 

YA(0) and YR  properly. 

Example 4.4: Nonlinear F100 engine model at Sea Level 

Static/Idle (Appendix 4) 

G 

2.68035 
4.50972 
1.02400e-1 
1.34031e-3 
—1.21223e-1 

102.516 
135.000 
2.76397 
—2.43161e-1 
—9.60357 

U = R2  , 	Y = R5  

U (0) is a 2—dimensional convex cone in U—space as is shown in 

Fig 4.4. Therefore, by Theorem 4.3, G E Class I. Equations 

gT = 0 and g T = 0 represent extreme rays of Ur(0). 
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Example 4.5: Nonlinear F100 engine model at Sea Level 

Static/Intermediate (Appendix 4) 

a yi  
> 0 , 	i E [1,5] 	ie gc  > 0, l   

where 

G 

[ 	I 

. 	
gei  I gc 2  

I 

= 

F 

gl 
T 

• • 
T 

g5 I 

2.52760e-1 , 1451.03 
1.35074e-1 , -7.04544 

= 2.22808e-2 , -4.56090 
2.08151e-3 , -7.70092 
1.46573e-2 , 2.96426 

U = R2 , 	Y = R5  . 

By Theorem 4.5, G E Class I. 	U7(0) is shown in Fig 4.5. 

Equations giT  = u  0 and 

Ur(0). 

T _ 
g4 11  - 

0 represent extreme rays of 

a ui  

I 

	

9 
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4.6 Conclusion 

The characterisation of tracking systems in which tracking 

conditions are expressed by sets of equalities or inequalities, 

and the classification of linear multivariable plants, have 

been carried out by applying the theory of convexity. The 

decisive factor in such a classification is the separating 

hyperplane in Y—space or the m—dimensional convex cone in 

U—space. Although only the case of undertracking has been 

investigated extensively, it is easily confirmed that similar 

characterisations and classifications are also possible and 

effective for the case of overtracking. Illustrative examples 

have shown the effectiveness of the proposed technique. Such a 

technique provides sound foundations for the design of 

controllers for linear multivariable plants with more outputs 

than inputs. It is noted in the classification that the 

existence of nonempty Ur(v) can be transformed into the 

existence of nonempty feasible region of linear equation with 

nonnegativity constraint, which is common in linear programming 

problems (Appendix 5) and therefore that the linear programming 

technique might be applied to the classification. However, the 

results obtained here are geometrically simple and more easily 

applicable to two— or three—input multivariable plants than 

linear programming. 
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Fig 4.1 Y—space 



105 

Fig 4.2 Y-space 
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Fig 4.3 U-space 



GI2 
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Fig 4.4 U-space 
Nonlinear F100 engine model at SLS/Idle 



U21 

9i 
_ 

uF(0) 	
4 
	 U i  

g4T  u=0 
	

g3 
g4 

Fig 4.5 U—space 
Nonlinear F100 engine model at SLS/Intermediate 
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CHAPTER 5 

SYNTHESIS OF LIMIT-TRACKING SYSTEMS 

USING ORDER-REDUCTION TECHNIQUE 

5.1 Introduction 

Set-point tracking systems fail to operate in case plants have 

more controlled outputs than manipulated inputs. In such 

cases, a more general tracking concept than set-point tracking 

is necessary to design controllers. Therefore, undertracking 

and overtracking were introduced in Chapter 4 and the 

properties of tracking systems were discussed rigorously in the 

context of convex analysis. 

It is known that the self-selecting controller is one of the 

effective solutions to cope with plants with more outputs than 

inputs. 	 Self-selecting 	controllers 	for 

single-input/multi-output plants were investigated by 

Foss(1981a), Glattfelder and Schaufelberger (1983), and 

Glattfelder et al (1980). Although Foss (1981b) extended his 

approach to multi-input plants, the approach was not general. 

Jones et al (1988) developed digital self-selecting PI 

controllers for multi-input/multi-output plants by extending 

tunable digital set-point tracking controllers (Porter and 

Jones (1984a)). Successful application of these self-selecting 

controllers to gas-turbine engines was also reported (Jones et 

al (1988), (1990)). However, the successful application does 

not necessarily mean that the entire systems are understood 
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well. 

The self-selecting controllers incorporate a number of 

set-point tracking controllers for corresponding subsets of 

plant outputs and exert the control action on the most critical 

subset of outputs, which usually changes with time as both 

set-point commands and plant outputs change. The usual 

criterion for choosing which outputs to control at any time is 

either a highest-wins, lowest-wins, or highest-wins/lowest-wins 

strategy. In this context, 'highest-wins' or 'lowest-wins' 

refers to the instantaneous error between the set-point and the 

corresponding plant output. Therefore, different controllers 

are used for different subsets of the outputs and such 

controllers necessarily embody integral action for m 

input-output pairs in the case of m-input/p-output plants 

(m < 

It is required that the steady states of tracking systems 

incorporating self-selecting controllers and multivariable 

plants are such that set-point tracking occurs for the most 

critical m out of p outputs and that the remaining p-m outputs 

stay between upper and lower limits with a certain safety 

margin. In the case of lowest-wins strategies, those p-m 

outputs remain under the control of set-point commands 

corresponding to the upper limits on the outputs, ie 

nonnegative errors are obtained for such channels and 

considered to be safe. Therefore, the tracking exhibited by 

entire sets of plant outputs can be considered to be limit 

tracking in the sense that none of the outputs exceeds its 
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corresponding set-point command, ie its limit value. 

Furthermore, systems incorporating self-selecting controllers 

and linear multivariable plants with more outputs than inputs 

can accordingly be called limit-tracking systems. 

Then, the synthesis problem of limit-tracking systems arises 

before starting the further design procedure: 

I: Is such limit tracking always possible for a given 

m-input/p-output plant and given set-point commands? 

2: If the answer to I is "No", 

how can such feasibility be assessed? 

3: For the plants in which limit tracking is feasible, 

is it necessary to design different controllers for each of 

the pC m  subsets of the plant outputs? 

4: If the answer to 3 is "No", 

what is the minimum number of different controllers to 

enable the self-selecting controller to work properly for 

any set-point command? 

5: If the answer to 4 is obtained, 

for what subsets of the plant outputs should such number of 

different controllers be designed? 

In order to answer these questions, the characteristics of the 
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steady states of limit-tracking systems need to be 

investigated. In this investigation, the results obtained in 

Chapter 4 are effectively utilised after pointing out that 

limit-tracking belongs to undertracking. It is noted that, in 

the sequel, only systems incorporating self-selecting 

controllers based upon lowest-wins strategies are considered. 

Firstly, the facial structure of limit-tracking systems is 

investigated and the coincident relation is revealed between 

limit tracking and an extreme point of the nonempty polyhedral 

convex set UF  (v) (Definition 4.2) which contains no lines. 

Next, such properties are fully exploited to synthesise 

limit-tracking systems by giving answers to the above 

questions. Thus, a new order-reduction technique is developed 

to decide the minimum numbers of different subsets of plant 

outputs to be controlled by corresponding set-point tracking 

controllers. The proofs of Propositions and Theorems are given 

in Appendix 2. 

5.2 Facial structure of limit-tracking systems 

Since generally the more outputs that follow the corresponding 

set-point commands the better it is for the tracking system, 

there still remains another question concerning the number of 

equalities such as yi  = vi, i E [1,p] and inequalities such as 

yj  < vj, j G (1,p) that are obtainable in such tracking systems 

if undertracking is possible. 
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In the following, limit tracking is defined as the special case 

of undertracking in which the number of pairs of equal plant 

outputs and set points is not less than rank G. The tracking 

systems which accomplish such limit tracking can be called 

limit-tracking systems. 

Definition 5.1: Limit tracking and limit-tracking input 

The tracking is said to be limit tracking if and only if 

where 

y 	= si 

yt 	— 

rank 

1 < si  

k k rank 

g T 
S i 

T gt  j u 

G 	= rank 

, 	tj  

!! 

gs  -k 

G 

= V 
Si  

< vt  j  

G 

< p 	, 

, 

j 

E 

E 

[1,k] 

(1,p-k] 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

and gT1  i 	[1,k] and gT j E [1,p-
k] are, respectively, the 

8 

sith and tjth row vectors of the steady-state transfer-function 

matrix G E RP" of the asymptotically stable plant. 
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Then, u is called the limit-tracking input. 

Definition 4.1.1 implies Definition 5.1. Definition 5.1 

implies Definition 4.1.2. It is evident in the case rank G = m 

that Definition 5.1 satisfies the requirement for the steady 

states of systems incorporating self-selecting controllers and 

m-input/p-output plants, since k m in equation (5.6). 

Next, the existence of limit tracking is shown for G E Class I 

(Definition 4.3) in both the cases rank G = m and rank G < m. 

Thus, the control action of the self-selecting controller is 

given validity in the sense that the existence of the steady 

states of closed-loop systems is guaranteed. 

Theorem 5.1: Existence theorem 

If G E Class I then 

1 there always exists at least one limit-tracking input, 

and 

2 in case rank G = m, 

(i) u e ext UF(v) if and only if 

(ii) u is a limit-tracking input, 

where UF(v) is defined in Definition 4.2 and ext • means the 

set of extreme points of the convex set •. 
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Proposition 5.1 

(i) G E Class I if and only if (ii) G E Class I, 

where rank G = q < m and G consists of q linearly independent 

columns of G in the form, 

   

5 = E gr" 	gi  E U = Rq , i E [1,13], (5.7) 

   

rank 5 = q. 	 (5.8) 

It is noted that G E Class I is a sufficient condition for the 

existence of a limit—tracking input. For G E Class II, if 

U (v) is not empty and contains no lines, there exists at least 

one extreme point, ie one limit—tracking input. 

These results are illustrated by Examples 5.1, 5.2 and 5.3. 

5.3 Order—reduction technique 

In the previous section, important fundamental properties have 

been established for limit—tracking systems. In this section, 

the utilisation of such properties in synthesising 

limit—tracking systems incorporating self—selecting controllers 

and linear multivariable plants is discussed. 

The idea of the self—selecting controller is to exert control 

action on the most critical subset of the outputs, thus making 

all the outputs stay at or under certain limit values. In such 
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tracking systems, the controller necessarily embodies integral 

action for m input-output pairs in the case of m-input/p-output 

plants. 

In order to preserve the stabilisability of closed-loop systems 

under integral action, the following condition was given as 

functional controllability by Porter and Power (1970) and Power 

and Porter (1970): 

rank G(i)  = m 	(i = 1,...,r) 

where G(i)  E R m" (i = 1,...,r) are the steady-state transfer 

function matrices for the corresponding subsets of plant 

outputs and r is the number of controllers/control loops. 

This condition requires that rank G = m. 	So, the case 

rank G = m < p will be discussed in the following. 

Given G, Proposition 4.5, Theorems 4.3 and 4.5 can be used to 

check whether G E Class I or G E Class II. If G E Class II, 

neither set-point tracking, nor undertracking, nor limit 

tracking is obtainable for arbitrary set-point commands. So, 

suppose that G E Class I. 

By Propositions 4.1 and 4.6, Ur(v) forms an m-dimensional 

unbounded polyhedral convex set. By Theorem 5.1, there always 

exists at least one limit-tracking input and it coincides with 

an extreme point of Ur(v). Then, the synthesis of 

self-selecting controllers and resulting limit-tracking systems 

can be facilitated by fully exploiting the facial structure of 
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such sets. The key concept of the developed new approach is 

the order reduction from m to 1. Thus, the controller 

structure for the case m 2 becomes the same as that for the 

case m = 1. So, the controller structure for the case m = 1 is 

discussed first of all. 

In the case of 1-input/p-output plants, UF(v) forms a 

1-dimensional polyhedral convex set, ie a half-line. A 

limit-tracking input ul  (ie an extreme point of UF(v)) is the 

unique vertex of UF(v) and is expressed in the form 

g 	u = v 8 	 s1  E [1,p], $ 
1 	1 	1 

(5.9) 

where G = [g1  ,..., gpi T. 

Therefore, at least one such index s1  corresponds to a 

limit-tracking 	input. 	The 	minimum 	number 	of 

controllers/control loops is p, and p set-point tracking 

controllers are to be designed. The lowest-wins strategies 

need to compare p competing signals to determine which output 

is the most critical among p outputs and to find the 

corresponding index and controller/control loop. 

In the case of m-input/p-output plants (m 2), the order 

reduction is carried out by applying the following useful 

results about the facial structure of the polyhedral convex set 

UF(v). 
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Proposition 5.2 

1: A line corresponding to an extreme ray of UF(0) is the 

intersection of m-1 hyperplanes and given in the form 

gT 
si • • • 

0 
• 

• • • 

0.0 	I 

U • Si  E 	[1,p], i E 	[1,m-1], (5.10) 

s m _ i  0 

where 	a 	hyperplane 	ga 	u = 0 
i 

passes through 	the origin, 	a 

vector g $i 
 is a normal to such a hyperplane, and the vectors 

g_ ,...,g8  
*1 
	 are linearly independent. 

2: A line corresponding to an exposed half—line face of UF(v) 

is the intersection of m-1 hyperplanes and given in the form 

gT 
1 • • • 

• • • 

• • • 

m-1 

U = 

V s 

• 
• 

Vs m-1 

Si  E 	[1,p], i E 	[1,m-1], (5.11) 

where gT  u = v 	represents a hyperplane, a vector g is a 
Si 
	si 	 si  

normaltosuchattyperplane,andthevectorsg_,. ,gs  are 
*1 	m-1 

linearly independent. 

3: There exists a corresponding extreme ray for every exposed 

half—line face which has thesame direction called the 

extreme direction. Therefore, a line corresponding to an 

exposed half—line face is parallel to a line corresponding 

to such an extreme ray. 



e" 

1 

1 
• • • 

• • • 

• • • 

g s 

VS
1  

. 

. 

Vs 
m 
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4: The unique vertex of every exposed half-line face of UF(v) 

is an extreme point, although the number of such faces or 

points is generally unknown. 

Let a line corresponding to an exposed half-line face of UF(v) 

be given in the equation (5.11). When vectors g s  ,...,gs  
m-1 

are removed from g i ,...,g p, as long as every one of all the 

remaining p-m+1 vectors is linearly independent of 

gs
im-i' this line has an intersection with every 

hyperplane to which one of the remaining p-m+1 vectors is a 

normal. Therefore, p-m+l intersections (ie candidates for 

limit-tracking input) are distributed along this line and at 

least one of them is the unique vertex of the exposed half-line 

face (ie a limit-tracking input). In this sense, the dimension 

of the problem of finding a limit-tracking input has been 

reduced from m to 1. Then, such a limit-tracking input ul  is 

given in the form 

s E (1,p], i E [1,m]. 	(5.12) 

This means that at least one index sm  among the remaining p-m+1 

indices corresponds to a limit-tracking input when si,...,sm _ i  

are removed. Therefore, in the case m 2 as well as the case 

m = 1, the lowest-wins strategies only need to compare p-m+1 

competing signals to determine which output is the most 

critical among p-m+1 outputs and to find the corresponding 
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index and controller/control loop. It is noted that finding 

the indices si,...,sm _ i  of the above exposed half-line face can 

be replaced by finding such indices of an extreme ray because 

the line expressed by the equation (5.10) corresponding to an 

extreme ray is parallel to the line expressed by the equation 

(5.11). Furthermore, since hyperplanes corresponding to p-m+1 

indices must intersect such lines, this is equivalent to 

finding an extreme ray with unique representation. 

Based upon this discussion, the following algorithm follows to 

obtain the minimum number of subsets of plant outputs to be 

controlled in the case of m-input/p-output Class I plants 

(rank G = m): 

Algorithm 5.1: Order reduction 

Step 1: 

In the case m = 1, go to Step 3. In the case m 2, find the 

extreme rays of Ur(0). Since an extreme ray is determined by 

m-1 hyperplanes and corresponding normal vectors, an index set 

of such vectors represents an extreme ray. Let Ii, i E (1,k] 

be the index sets of such vectors. 

Step 2: 

Find I*J , j E [1,
k*] among Ii, i E [1,k] such that every one of 

the p-m+1 vectors corresponding to the index set I\I*.i  is 

linearly independent of all the vectors corresponding to I;, 

where I = (1,...,0. I;, j E [1,k*] correspond to extreme rays 
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which have the unique representation. If such I*  cannot be 

found, see (Remark). 

(Remark) 

Such cases occur very exceptionally when every extreme ray is 

represented as the intersection of more than m-1 hyperplanes. 

This means that there exists at least one redundant hyperplane 

to express every extreme ray. Therefore, if all the redundant 

hyperplanes (which is one or more) for any one of extreme rays 

are omitted, it is possible to find I*.i  for this extreme ray. 

However, this omission means that the tracking of the 

corresponding output must be abandoned. 

Step 3: 

In the case m = 1, I*  = 0. In the case m 2, choose one index 

set I*  = (81 ,...,sm _ 1) among I;, j E (1,k*]. The designer has 

the freedom to choose one index set out of k*  sets. If because 

of the controller specification some particular outputs must 

always track the set-point commands, the indices of such 

outputs must also belong to the chosen index set. Then, m-1 

outputs 5,51,...,y8m_i  are fixed to be always controlled 

integrally. 

Step 4: 

Pick one index ti  out of the remaining p-m+1 indices of I\I*  

and make subsets Yi, i G [1,p-m+1] of plant outputs 
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Y1 	
= 

	

IYS ,e,rog Ys 	
9 Ytl 

1 	 M-1 	
i 

 

• • 	. 	. 	. 

• • 	. 	. 	. 
• • 	. 	• 	• 

Yp-m+1 	(3781 ,•••, Ys m-19 Yt
p — m+1

)  I 

(5.13) 

where 

I\I* = {t1  ,..., tp _ m+11. 

 

(5.14) 

The minimum number of subsets of plant outputs to be controlled 

is p-m+1 and Y1 ,...,Yp _ m+1  are such subsets. This means that 

p-m+1 sets of indices (si, ..., sm _ i, t1 ), ..., (si, ..., sm-11 

tp-m+1) 	represent 	the 	candidate 	controllers 	for 

m-input/p-output plants. Therefore, p-m+1 set-point tracking 

controllers are to be designed for these subsets Y1,...,Yp—m+1. 

(Algorithm 5.1 end) 

The (m-1)-dimensional order reduction has been discussed in the 

sense of finding an extreme ray uniquely represented by m-1 

hyperplanes and limiting the region of limit-tracking inputs on 

a corresponding line. It is noted that the lowest-wins 

strategies only need to compare not vectors but scalar signals 

even in the case m k 2 as well as the case m = 1. This not 

only reduces the computational complexity of the implemented 

controllers but also makes the controller structure simple. 

The minimum number of scalar signals to be compared is p-m+1. 

If m (the number of plant inputs) increases, it may not be easy 

to find the extreme rays of UF(0). However, at least for 
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m = 2 or 3, this technique is easy and very effective. 

These results are illustrated by Examples 5.4, 5.5 and 5.6. 

5.4 Illustrative examples 

The results obtained in the previous sections can be 

conveniently illustrated by examples. 

Example 5.1: Same as Example 4.1 

1  G = [ i 
2 

G E Class I 

For v = [2 21 T, UF(v) = fu : u S. 1} and limit-tracking occurs 

at an extreme point of UF(v), ie u = 1. Then 

1 1 u < 2 

2 u = 2 

and the index 2 corresponds to a limit-tracking input. 

Furthermore, at least one index 1 or 2 corresponds to a 

limit-tracking input for any set-point command vector. Thus, 

at least one equality holds. 

Example 5.2: Same as Example 4.2 

G = 

 

G E Class II 
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For v = [2 2]T, UF(v) = {u : —2 .5. u 	1} and limit—tracking 

occurs at either extreme point of UF(v), ie u = 1 or u = —2. 

Then 

{ 

{ 

—1 u < 2 

2 u = 2 

—1 u = 2 

2 u < 2 

, if u = 1 	1 

, if u = —2 

For v = (-2 —21 T, UF(v) = 0 and limit—tracking does not occur. 

Example 5.3 

G 
 = [

gc  ig 
1 1 c2  

= 
[ gT1  

T 
0
ff
2 

[ 1 , 2 
U = R2  , Y = R2  

2 , 4 

rank G = 1 < m 

Since 

[ 1 

gc = 	> 0 , 
1 	2 

G E Class I by Theorem 4.5. 

For v = [2 2]T, if u is chosen by the method described in the 



U = 
1 , 1 

proof of Theorem 5.1 Part 2, then 
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1 

 [1 2] u = 1 < vi  

[2 4] u= 2 =v2  
U = 

- 2 

1; 
E R . 

 
 

 

Thus, a line is limit-tracking input and at least one equality 

g2  = T  u v2  is obtained. 

Example 5.4: Same as Example 4.3 

G = 

-1 

1 

2 

, 	2 

, 	1 

,-1 

I 
U 

=. 
R2 Y = R3  

Assume that the output y2  must always track the corresponding 

set-point command v2. The control action must be exerted 

either on iv v I or {y2,y3}. Then, does there exist a 

limit-tracking input for any set-point command vector? 

Generally, the answer is "No". Indeed, as one counter example, 

case {yi,y2} is integrally assume 	that v = [1 3 	1]T. In 

controlled, 

y1  = [-1 2] u= 1 =v1  

y2  = [ 	1 1] u = 3 = v2  

y3  = [ 	2 -1] u = 2 i v3  

In case {y2,y3} is integrally controlled, 
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y1  = (-1 2] 

y2  = [ 1 1] 

y3  = [ 2 -1) 

u 
1 , 1 -1  

2 , -1 
9 

u = 2 i vl  

u = 3 = v2  

u = 1 = v3  

In both cases, yl  or y3  exceeds its corresponding set-point, ie 

its limit value. Fig 5.1 shows the hyperplanes (ie lines in 

the case m = 2) ei  u = vi, i E [1,3). UF(v) is clearly the 

region surrounded by el  u = 1 and g3 u = 1, and the unique 

extreme point is the intersection of these two lines. This 

means that y2  must be released from the control action and 

that, instead, the control action must be exerted on (y1,y3). 

Thus, the question arises: How can the controller be 

synthesised systematically? To answer this question, the 

proposed controller synthesis based upon the facial structure 

is illustrated. 

It is clear from Figs 4.3 and 5.2 that a line el  u = vi  or 

4 u = v3  always corresponds to an extreme ray or an exposed 

half-line face of UF(v). The algorithm follows: 

Step 1: II  = (1) and 12  = (3). 

Step 2: I\Il  = (2,3) and g2  or g3  is linearly independent of 

g1. I\12  = (1,2) and g1  or g2  is linearly independent 

of g3. Thus, I; = II  and I; = 12. 

Step 3: The designer can choose I; or I; as the index set of 

the permanently controlled variable. The minimum 

number of subsets Yi, i E [1,2] of plant outputs to be 

controlled is two, and these subsets are 
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Y1  = {y1,y2} and Y2  = (y1 ,y3) if I; is chosen. 

Or 

Yi  = {y3,y1} and Y2  = (y3,y2) if I; is chosen. 

If the controller has three subsets {Yi sYds {Yi sY3}, and 

(y2,y3), either (y1,y2) or {y2,y3} is redun
dant and the 

uniqueness of the limit—tracking input is lost in the case of 

Fig 5.2(a) in the sense that there exist two limit—tracking 

inputs for one set—point command. 

Example 5.5 

G = 

T 

[ 

gl 
T 

g2 
T 

g3 Ill :24  

2 

1 , —1 

I U = R2 s Y= R3  

rank G = 2 = m < p 

Since 

[

1

1  

= 	2 	> 0 , 

 1 

G G Class I by Theorem 4.5. 

One 	extreme 	ray 	of 	Ur  (0) 

g.1 

iS T  gi  u = [1 2]u = 0 	or 

g2 = u 	(2 4]u = O. Another extreme ray is 4 u = [1 —1]u = O. 

Thus, II  = (1}, 12  = {2}, and 13  = {3). 
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However, gl  and g2  are linearly dependent and represent the 

same extreme ray, 

ie 

det 
[ 1 	, 	2 

= 0 . 
2 	, 	4 

Therefore, 	I: = 13 	and y3  must always 	be controlled and the 

lowest-wins 	strategy needs 	to compare only 	two signals 

corresponding to yl  and y2. This means that the self-selecting 

controller can exert the control action either on Y1  = (y1 ,y3) 

or on Y2  = {y2,373}* Then, a limit-tracking input always exists 

for any set-point command. 

Example 5.6: Nonlinear F100 engine model at the same condition 

as Example 4.5 

= Equations giT   u 0 corresponding to y1(Fan speed N1) and 

g4T  u = 0 corresponding to y4(Augmentor pressure P7) represent 

extreme rays of Ur(0). Since either extreme ray has a unique 

representation and p-m+1=4, a minimum of four control loops is 

required. 

If y1  must always be controlled, the subsets of plant outputs 

to be controlled are 

YI={Y0Y2}, Y2={y1 1Y3}, Y3={571 ,Y4}, Y4={371 ,Y5}. 

If y4  must always be controlled, the subsets are 



Y 1 =Or411  Y )9 Y2=(Y4 9Y2)9 Y3=(174 9Y3)9 Y4=0749Y5). 

Thus, lowest-wins strategies need to compare only four scalar 

signals. 

5.5 Conclusion 

In this chapter, the characteristics of the steady states of 

limit-tracking systems have been discussed and a new synthesis 

approach to limit-tracking systems has been developed. It has 

been shown that, in the case of Class I linear multivariable 

plants, limit tracking (ie steady states of systems 

incorporating self-selecting controllers) always exists and 

that such self-selecting controllers can be synthesised by the 

proposed order-reduction technique which utilises the facial 

structure of limit-tracking systems. Furthermore, it has been 

shown that the order-reduction technique is based upon the 

discovery of extreme rays which have a unique representation. 

Therefore, this technique is effective unless every extreme ray 

of Ur(0) is represented as the intersection of not less than m 

hyperplanes in m-dimensional U-space (Algorithm 5.1 Step 2 

(Remark)). In fact, by using this technique, the number of 

controllers can be reduced from pCm  to p-m+1 (ie order 

reduction from m to 1) in the case of m-input/p-output plants 

whilst guaranteeing the existence of steady states of such 

systems. It is noted that there is no need for the dynamical 

model of the plant to carry out this approach. The 

effectiveness of the order-reduction technique has been 

129 



130 

illustrated by examples such as gas-turbine engines. 

Although the controller synthesis in the case rank G < m has 

not been discussed, it is possible to modify the 

order-reduction algorithm so as to incorporate such cases by 

using G which is defined in Proposition 5.1. Furthermore, 

although only self-selecting controllers based upon lowest-wins 

strategies have been considered, it is possible to extend the 

proposed technique to controllers based upon highest-wins 

strategies or lowest-wins/highest-wins strategies. Finally, it 

is noted that the limit-tracking input corresponds to a special 

form of the basic feasible solution of the transformed linear 

programming problem (Appendix 5). 
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Fig 5.1 U-space 



(a)  

(b)  

(c)  

Fig 5:2 U-space 
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CHAPTER 6 

DESIGN OF DIGITAL SELF-SELECTING PID CONTROLLERS 

FOR LINEAR MULTIVARIABLE PLANTS 

WITH MORE OUTPUTS THAN INPUTS 

6.1 Introduction 

In this chapter, a methodology for the design of controllers 

for unknown open—loop asymptotically stable linear 

multivariable plants with more controlled outputs than 

manipulated inputs is obtained by using the synthesis technique 

developed in Chapter 5. Thus, an extension of the tunable 

set—point tracking PID controllers (Chapter 2) is carried out. 

This is also an extension of the self—selecting PI controllers 

(Jones et al (1988)). 

In order to circumvent the need for detailed mathematical 

models of the plants, the design procedure utilises only the 

data which is directly obtainable from open—loop step—response 

tests performed on plants (Appendix 1). For such plants, in 

which the ranks of the steady—state transfer—function matrices 

are less than the number of outputs, set—point tracking in the 

sense that the plant outputs track their corresponding 

set—point commands asymptotically is impossible for arbitrary 

set—point commands. In order to overcome this problem, a new 

tracking concept, ie limit tracking (Definition 5.1), is 

utilised in the design of controllers. It is assumed that the 

plant belongs to Class I (Definition 4.3), that the controller 
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incorporates a number of set—point tracking controllers for 

corresponding subsets of plant outputs, and that one of these 

controllers is selected at any time to control the most 

critical subset of outputs based upon lowest—wins strategies 

(ie the self—selecting controller). This operational principle 

ensures that, as long as the entire closed—loop system is 

asymptotically stable, nonnegative errors are obtained in the 

steady state and none of the plant outputs exceeds its 

corresponding set—point command. This is practically very 

useful for plants such as gas—turbine engines in which none of 

the outputs is allowed to exceed engine operational limits. 

By applying the order—reduction technique (Algorithm 5.1) to 

m—input/p—output plants, the structure of the controllers is 

decided and therefore p—m+1 subsets of plant outputs which are 

to be controlled by corresponding set—point tracking 

controllers are specified. Then, the corresponding parts of 

the plant can be called the sub—plants and the design of 

tunable digital set—point tracking PID controllers for such 

p—m+1 sub—plants is considered. 

It is shown that the proportional, integral, and derivative 

controller matrices used in these PID controllers can be 

directly determined from open—loop step—response tests 

performed on plants (Appendix 1). The proportional and 

derivative controller matrices are chosen as the inverse of the 

sub—plant open—loop step—response matrix, which is itself 

derived from the classical decoupling theory of Falb and 

Wolovich (1967). This choice is made in order to exploit the 
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initial interactions within the plant and thus to cause 

set-point tracking to occur without initial interaction or 

under-shoot (Mita and Yoshida (1981)). The integral controller 

matrix is chosen as the inverse of the sub-plant open-loop 

steady-state transfer-function matrix in order to exploit the 

final interactions within the plant. Thus, provided only that 

all the sub-plants satisfy the fundamental condition of Porter 

and Power (1970) and Power and Porter (1970) for the 

preservation of stabilisability in the presence of integral 

action, such error-actuated controllers can be readily designed 

for unknown multivariable plants. 

A block-diagonalisation transformation is used to investigate 

the asymptotic properties of separate closed-loop systems under 

the action of such PID controllers. The closed-loop sub-plant 

matrix is decomposed into three sub-matrices, using the 

block-diagonalisation transformation of KokotoviC (1975), and 

it is thus shown that the basic design criterion for stability 

and set-point tracking can be satisfied in terms of the 

characteristic roots of the sub-matrices. 

Next, the separate error-actuated digital set-point tracking 

PID controllers are integrated into the digital self-selecting 

PID controller. Therefore, implementation problems in regard 

to this process are discussed. The index set of lowest errors 

and the loop index of the actually selected loop are decided in 

lowest-wins strategies. Furthermore, the controller switching 

logic which gives a good initial transient response of the 

plant outputs is considered. 
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Finally, the effectiveness of such a tunable controller is 

illustrated by designing, for a highly interactive gas-turbine 

engine, a digital self-selecting PID controller which exhibits 

excellent limit-tracking characteristics and corresponding 

minimal loop-interactions. 

6.2 Analysis 

The linear multivariable Class I plants (Definition 4.3) under 

consideration are assumed to be governed on the continuous-time 

set T = [0,+) by state and output equations of the respective 

forms 

21(t) = Ax(t) + Bu(t) 	 (6.1) 

and 

y(t) = Cx(t) , 	 (6.2) 

where the state vector x(t) E R n , the input vector u(t) E Rm, 

the output vector y(t) E RP (p > m), the plant matrix A E Rnxn  

whose eigenvalues all lie in the open left-half plane C-, the 

input matrix B E Rn", and C E RP mm  is the output matrix. 

The transfer-function matrix is 

G(s) = C(sI-A)-1B 	 (6.3) 

and the steady-state transfer-function matrix 



yti} 
= Y IP • • • , 1 Y s  

m-1 

} = Yr I • • • , Yt r} 

. 	• 	. 

. 	. 	. 

. 	. 	. 

Ys  
M-1 

(6.6) 
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G = G(0) = -CA-1B E le" 	 (6.4) 

is known from open-loop tests performed on the plant 

(Appendix 1). It is assumed that 

rank G = m , 	 (6.5) 

and therefore that, by applying the order-reduction technique 

(Algorithm 5.1), p-m+1 subsets and sets of indices of plant 

outputs to be controlled by corresponding set-point tracking 

controllers are obtained in the form 

where r = p-m+1 and the index set of all the control loops is 

Ir  = (1,2,...,11. Then, the parts of the plant which 

correspond to such subsets can be called sub-plants and the 

sub-output vectors of these sub-plants are 

y81(t) 

y(i)(t) = = C(i)x(t) E R m  (i = 1,2,...,r) 
Y8 -1(t) 

(6.7) yti(t) 
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where each of sub-output matrices C(i)  E le" (i = 1,2,...,r) 

consists of sith,...,sm _ ith and tith rows of the output 

matrix C. 

Next, the design of tunable digital set-point tracking PID 

controllers for each sub-plant is considered separately. It is 

assumed that the introduction of integral action for each 

subset Yi, i E Iv  preserves stabilisability and therefore that 

(Porter and Power (1970), Power and Porter (1970)) 

rank G(i)  = m , 	 (6.8) 

where the sub-plant transfer-function matrix 

G(i)(s) = C(1)(sI-A)-111 , 	 (6.9) 

and the steady-state transfer-function matrix for the subset Yi  

G(i)  = G(1)(0) = -c(i)A-IR E Rmxm 	 (6.10) 

is obtained from equation (6.3). 

Furthermore, it is assumed that input-output decoupling is 

achievable between inputs and the Yi, i E Iv  and therefore that 

(Falb and Wolovich (1967)) 

rank F(i)  = m , 	 (6.11) 

where the decoupling matrix 
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- (i)TAd i(i)  B  
el 

F(i) . 	  E Rm" (6.12) 

2c (i)TAdli)H 

and the 	dji) 	(j=1,2, 	,m) 	and the cji)T  (j=1,2,...,m) 	are, 

respectively, the decoupling indices (Falb and Wolovich (1967)) 

and the rows of the sub—output matrix C(i). In the case of 

such plants, it is important to note that 

F(i)  = lim A(1)-1(t)H(i)(t) 
	

(6.13) 
t-,0 

and 

F(i)-1  = lim H(i)-1(t)A(i)(t) , 	 (6.14) 
t 4 0 

where 

M 	 d(i)+1 	(i) A(i)(t) = diag(t-
A
1 	+1/(d11)+1)1,....,t m 	/(dm  +1).1  1 

(6.15) 

H(i)( t ) = c (i)A-1(eAt_in )H 	 (6.16) 

and 

is the sub—plant step—response matrix. 

In order to design error—actuated digital set—point tracking 

PID controllers for sub—plants governed by state and output 
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equations of the respective forms (6.1) and (6.7), it is 

convenient to consider the behaviour of such plants on the 

discrete—time set TT  = {0,T,2T,...,kT,...}. This behaviour is 

governed by state and output equations of the respective forms 

(Kwakernaak and Sivan (1972)) 

xk+1 = Ixk + TUk 
	 (6.17) 

and 

i)  = r(i)v Jk 	-k 2  (6.18) 

where xk  = x(kT) E Rn, uk  = u(kT) E R m , yi(c i)  = y(i)(kT) E R m, 

i E I r2 

4D = exp(AT) , 	 (6.19) 

T 
T = f exp(At)B dt , 	 (6.20) 

0 

r(i) = c(i) , i E 1r  , 	 (6.21) 

and T E le is the sampling period. 

Each individual set—point tracking error—actuated tunable 

digital PID controller is governed on the discrete—time set T T 

by a control—law equation of the form 

uk  = TK1i)eli)  + TW)zk  + qi)(eli)  — el(cil) , 	(6.22) 
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where the sub—error vector 	 k ek' = v(i)  — y(i)  E R m, the 

sub—plant set—point vector v(i)  E R m, the digital integral of 

sub—error vector zk  G R m, the controller matrices Kli)  G R m", 

1W)  E Rm", and Kli)  E Rmmm, and the superscript (I)  means 

that the vectors and the matrices correspond to the subset Yi, 

i e Ir. Furthermore, it is assumed that 

Zk+1 = zk  + TeP)  . 
	 (6.23) 

Hence, it is noted as a whole that the overall set—point vector 

is 

v = [vi,...,vP  I T  E RP , 

the overall plant output vector is 

Yk = y(kT) = (Y1(kT),...,yp(kT)]7  E RP 

and the overall error vector is 

ek = e(kT) 

(6.24) 

(6.25) 

= fel(kT),...,ep(kT)1 T  

= v — yk  E RP. 	 (6.26) 

Furthermore, it is noted in view of equations (6.6) and (6.7) 

that 



142 

v(i) = E(i)v = (6.27) 

 

V t. 

 

 

 

y_41 (kT) 
1.  

• 

ys 	(kT) 
m-1 

yti(kT) _ 

= E(i)yk  

and 

(6.28) 

e (kT) 

• 
• 

e
s m-1

(kT) 

- eti(kT) 	_ 

e(i)  = E(i)ek = (6.29) 

where E(i)  E Rmx P consists of sith,...,sm _ ith and tith rows of 

a unit matrix I . 

It follows from equations (6.17), (6.18), (6.22), and (6.23) 

that such discrete—time tracking systems are governed on TT  by 

state and output equations of the respective forms 

—Ttic(i)r(i)—tic(3i)r(i) , Ttic(23  i) —TK(i) 	xk 1  

	

—Tr(i) 
	 • 	I m 	, 	O 	2k 

	

—r(L) 
	

O 	fk 

Xk+1

Z 

 

k+1 

fk+1 

(6.30) 

+ TKV)  

TIm 	v(i)  

Im  



[ 

v(1)  = [ 01)  , o , 0  ] 	xk  -k 9 

	 (6.31) 

Zk 

fk 

and 
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where fk = e(ki)  E Rm  is the stored sub—error vector. 1 

Therefore, provided only that T, 1(11), W), and W), where i 

E II., are such that all the eigenvalues of the closed—loop 

sub—plant matrix in equation (6.30) lie in the open unit 

disc D-, 

lim Azk = lir IZk+1 — Zk)  = 0 
	

(6.32) 
k-w, 	k4= 

and therefore 

lim W)  = 0 	 (6.33) 
k4= 

so that set—point tracking for the subset Yi  occurs. 

The closed—loop characteristic equation can be readily 

expressed in the form (Porter and Jones (1985a)) 

gqi)(z) = Oli)(z)W)(z)W)(z) 	 (6.34) 

by invoking the block—diagonalisation procedure of Kokotovi8 

(1975), and the response characteristics of the closed—loop 
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system can thus accordingly be elucidated. The asymptotic 

properties of the tracking system under the action of such 

controllers can be characterised in terms of the eigenstructure 

of the closed-loop plant matrix, which involves the 

decomposition of this matrix into three sub-systems based on 

the explicitly invertible block diagonalisation transform 

(KokotoviC (1975)). 

This 

triple 

and 

incorporated 

X1(10.1) 

x2(k+1) 

block-diagonalisation 

in equations 

	

[ All 	, 	Al2  ][ 

	

A21 	, A22 

procedure 

of the 

Xi(k) 

x2(k) 

form 

transforms 

[ B 1 	I 

B2 

the 	matrix 

u(k) 	(6.35) 

Y(k) 	= 	( 	C1 	, 	C2 	) Xi(k) 
(6.36) 

X2(k) 

where 	x1  (k) E R xl, 	x2(k) E Rn2, 	Aij E R n i xn j 	(i,j=1,2), 

B 1  E Rn  l xm, 	B2 	9 E Rn 2 xm 	Cl  e R"n i, 	and 	C2  E R m x n 2 	into 	the 

block-diagonal form incorporated in the equations 

  

[ Ail  , 0 1[ Xl(k) 

0 , A22 	X2(k) 

  

 

X l (k+i) 

x2 (k+1) 

 

B 1 
u(k) 	(6.37) 

B2 

and 

 

Y(k) = ( C1 	C2 ) X1(k) 

X2(k) 
(6.38) 
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The state vectors in these equations are related by the linear 

state transformation (KokotoviC (1975)) 

where 

and 	xl(k) 

R n l xm  

1 [X x 

 2 

W = 

B2 

= w 

n, 

-L 

E 	Rni, 

xl  

E 	Rn2xm, 

13(2.1 

, 

M 	I 

I 	-LM 
n2 

x2(k) 

C l 	E 

(6.39) 

E R(n1"2)x(n1"1 2) 	 (6.40) 

e 	R n 2, 	Aij 	E 	Rnixaj 	(isj=1,2), 	Bl 	E 

Rmxnl,C2 	E 	Rmxn2, 	L 	E 	Rn2xn 1 	,and 

M E /2'0'2. It is noted that, although there exists one linear 

transformation for every sub-plant, the superscript (i)  is 

omitted to simplify the notation. 

Thus, if L and M satisfy the matrix Riccati equations 

(KokotoviC (1975)) 

A21 	LA11 - A22L - LA12L = 0 
	

(6.41) 

and 

(All - A121)M 	M(A22 + LA12) + Al2  = 0, 
	 (6.42) 

it follows from equations (6.35), (6.37), and (6.39) that 
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A11 = A11 - A12L 
	 (6.43) 

and 

A22 = A22 + LA12 
	 (6.44) 

The asymptotic properties of the discrete-time closed-loop 

tracking system can now be readily determined by regarding T as 

a perturbation parameter in equations (6.30) and (6.31). Thus, 

by regarding in equation (6.35) 

A11 = 

[ -tiqi) 

-TTK(1)r(i)-tel)r(i)  1 , TTK(i)  

-Tr(1), 	1m 	] 
• ( 6.45) 

A12  

[ 

	

0 
(6.46) 

A21 = 	( -r(i) 	, 	0 	1 

and 

(6.47) 

A22 = 0 • (6.48) 

the 	solution 	of 	equations 	(6.41) 	and 	(6.42) can be readily 

obtained by using power series expansion in T. 	This involves 

the definition of matrices L1  and L2  such that 

L = [ L1  , L2  ] 	 (6.49) 



where 

L1  = L10 + L11T + 

L2 = L20  + L21T + 

 

(6.50) 

(6.51) 
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in which Lli  E Rn2xn3  , L2i  e R n 2 xn 4, (i=0,1,2, 	)  

Therefore, it is clear from equations (6.41) and (6.45) to 

(6.49) that on isolating coefficients 

L = [ Chi)  , 0 ] + 0(T) 	 (6.52) 

and therefore from equations (6.43) and (6.44) that 

 

A11 = 
[ -...rylW)r(i)  , Ttiqi) 

-Tr(i) 	im  
(6.53) 

and 

  

A22 = -TC(i)BW)+0(T2) 	 . 	 (6.54) 

The matrix A11 in equation (6.53) is now block-diagonalised, 

again by regarding T as a perturbation parameter in equation 

(6.53) and by regarding in equation (6.35) 

All  = 0 - TtKc() 	 , 	 (6.55) 

i12 = T2KV') 	 $ 
	 (6.56) 
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i21 = -Tr") 
	

$ 
	 (6.57) 

and 

A22 = Im 
	 (6.58) 

In addition, the matrix L is defined in the power-series form 

L = Lo + TI 1  + T2T.2  + ••• 
	 (6.59) 

In equations (6.55) to (6.59), the overbar has been used to 

distinguish between the two explicit stages of the 

block-diagonalisation procedure. 

Therefore, it is clear from equations (6.41) and (6.55) to 

(6.59) that on isolating coefficients 

L = C(i)A-1  + T(C(1)A-IBKV)C(1)A-1  

+C(i)A-1B1W)C(1)A-2  - C(1)/2) + 0(T2). 	(6.60) 

Hence, it follows from (6.43), (6.44) and (6.60) that 

A11 = In  + TA + T2A2/2 - T2BKV)C(i)  

- T2B1(11)C(i)A-1  + 0(T3) 	(6.61) 

and 

A22  = Im  - T2C(1)A-1131W)  + 0(T3) . 
	 (6.62) 
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Thus, it is evident from equations (6.53), (6.54), (6.61), and 

(6.62) that the characteristic polynomials as expressed in 

equation (6.34) are 

011)(z) = I zI. — I. — TA — T2A2/2 + T2BK(I)C(I)  1 

+ T2BW)C(I)A-I  + 0(T3) I  , 	(6.63) 

W)(z) = 1 zIm  — Im  — T2C(I)A-1BKV)  + 0(T3) I  , (6.64) 

and 

(W)(z) = I zIm  + TC(I)BKV)  + 0(T2) I  . 	 (6.65) 

6.3 Synthesis 

It is clear that tracking will occur in the sense of equation 

(6.33) provided only that the set of closed—loop characteristic 

roots 

Z(I)  = Z(i)  U Z(i)  U Z(i)  C D e 	1 	2 	3 
(6.66) 

where D-  is the open unit disc and the sets of characteristic 

roots ZII), ZII), and W)  are, respectively, the roots of the 

characteristic polynomials as expressed in equation (6.34). 

Therefore, in case 

KII)  = H(I)(T)-1A(I)(T)11(I)  , 	 (6.67) 
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and 

KU)  = G(i)(0)-1E(i)  , 2 
(6.68) 

K(31)  = H(1)(T)-1A(/)(T)a(i)  , 
	 (6.69) 

where H(1)(T) and G(1)(0) are given by equations (6.16) and 

(6.10) respectively, 

11(1) 	= diagOr 	or 	,...,rs  81 	82 	 'Wt 	/ 	, 

	

m-1 	i 

'Ks 	9W8 	,-971; 	'X ti 
 E le 	, 

	

1 	2 	m-1 

E(1) 	= diag(a 	,a 	,....,as 	,at 	) 	, s i 	62 	m-1 	i 

' .....a a 	,a8 	' 	am-1 9 ati E le 	9 

	

8 1 	2 

A(i) 	= diag(681,(582,..--05sm _ 105ti l 	' 

and 

6
81

,(5
82

,....,6s
m-1

,ot
i 	
e le 	, 

it 	follows 	from equations 	(6.34), 	(6.63) 	to 	(6.65), 

to (6.69) that 

Z11)  = (a E C : 	1 	zip  - Is  -TA + 0(T2) 	1 	= 0} 

and 

, 

(6.70) 

(6.71) 

(6.72) 

(6.73) 

(7.74) 

(6.75) 

(6.67) 

(6.76) 
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W)  = {z E C : 1 zIg, - I m  + T2E(i)  + 0(T3) 1 = 0 } , 

(6.77) 

and 

Z(i)  = {z E C : 1 zIm  + 0(T) 1 = 0 ) . 3 (6.78) 

These expressions indicate that, provided T is sufficiently 

small, all the closed-loop characteristic roots lie within the 

open unit disc in each case. This follows since the open-loop 

plant is asymptotically stable on the continuous-time set 

T = (0,+c') and since T2E(i)  is a positive diagonal matrix. The 

introduction of error-actuated digital set-point tracking PID 

controllers governed by equations (6.22) and (6.67) to (6.69) 

.accordingly ensures that set-point tracking for the subset Yi  

Occurs 	when 
	the 	sampling 	period 
	

T E (0,T:], 	where 

Ti = T:(11(1),E(1)) can be readily obtained by simple "on-line" 

tuning (Porter and Jones (1985a)). Therefore, in case 

T E (0,min(T:)], 	i E II., 	all 	the r 	closed loops 	are 

asymptotically stable and set-point tracking of each loop is 

ensured when considered separately. 

Furthermore, it follows from equations (6.30) and (6.31) that 

the sub-output from the initially quiescent plant after the 

first sampling interval under error-actuated digital PID 

control is 

y(i)(T) = - (TH(i)(T)K1 L)  + H(1)(T)1C11)]v(i)  . 	(6.79) 



It is evident from equations (6.67), (6.69), and (6.79) that 

Y") (T) = (TA (1) (T)n(i)  + A(i)(T)Am)v(i) 
	

(6.80) 

and therefore that set—point tracking occurs for the subset Yi  

when T G (0,min(T:)] with no initial interaction since 

A(i)(T)n(i) and A(i)(T)A(i)  are diagonal matrices for all 

T E R. 

The proportional, integral, and derivative controller matrices 

K(i)i 	9 	 3 K(i)  and K(i)  given by equations (6.67), (6.68), and 

(6.69), respectively, can all be directly determined from the 

sub—plant step—response matrix H(i)(t) since it follows from 

equation (6.16) that 

G(i)(0) = lim H(i)(t) = —C(1)A-18 	 (6.81) 
t4c.,  

because the open—loop plant is asymptotically stable and 

therefore has a bounded step—response matrix. Furthermore, 

since the expressions (6.67) and (6.69) for the proportional 

and derivative controller matrices, respectively, involve the 

inverse of the initial sub—plant step—response matrix of the 

open—loop plant H(i)(T), it is clear that the sampling period 

must be selected so that the minimum singular value of H(i)(T) 

(amin(H(L)(T)]) is not small, so that H(i)(T) is 

well—conditioned. 
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6.4 Implementation of digital self-selecting controllers 

The block diagram of the system incorporating the 

self-selecting controller is shown in Fig 6.1. The individual 

set-point tracking controllers are designed by the procedure 

described in the previous sections and then integrated into the 

self-selecting controller. Then, the selection of the most 

critical subset of plant outputs and the resulting controller 

switching are the remaining functions of the self-selecting 

controller. Therefore, in the following, such functions are 

discussed in accordance with lowest-wins strategies. 

It follows from equation (6.29) that all the sub-error vectors 

e(ki)  E Rm  (i=1,2,...,r) have m-1 common elements. Therefore, 

the lowest-win strategies need to compare only the remaining r 

scalar signals which are not common in eV), w)
,...,  qr) to 

determine the control loop. Furthermore, it follows that the 

index set J(kT) of lowest-errors and the loop index 2k  of the 

actually selected loop are defined on the discrete-time set TT  

= {0,T,2T,...,kT,...} by the respective forms 

J(kT) = (j : et  (kT) = min et  (kT)) 	 (6.82) 
j 	iei 	i r 

and 

2k = £(kT) E J(kT) c Ir  . 
	 (6.83) 

Therefore, it is clear from equation (6.22) that the 

self-selecting controller is governed on TT  by equations of the 
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form 

uk  = TICI2 k)4,2k)  + TWk)zk  + Wk)(4,2k)  — el(cY) 	(6.84) 

and 

Zk+1 = Zk + Te(k2k)  9 
	 (6.85) 

where the superscript 2k means that the control loop 2k  is in 

action at time kT. Since equations (6.82) and (6.83) decide 

which controller should be used at each sampling instant, 

controller switching may occur. 

During the controller switching from one control configuration 

(loop index 2k _ 1 ) to another(2k 	2k-1) at time kT, it is °  

preferable that the input vector changes in a bumpless manner 

from uk-1  to Uk (ie bumpless transfer operation). This can be 

achieved by resetting the integrator states in equation (6.85) 

every time there is controller switching, so that the resulting 

control input vector remains constant ie, 

Uk = Uk -1 
	 (6.86) 

with corresponding effect on the plant. The demerit of this 

bumpless transfer operation is that, in case the set—point 

change and the controller switching occur at the same time, the 

transient response of the plant is not rapid because of the 

effect of equation (6.86). However, a similar demerit holds 

for controller switching governed by an equation of the 



Vi  = [v ,v1  ,...,v1 ]T  for 0 	t 5_ (k-1)T 
1 	2 	p 

V2 = [V2  ,V2  ,...,V2  ] 1 	2 	P 
T for t > kT 

(6.88) 
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incremental form 

uk = Uk-1 + TKIlk)(ellik)  — ei(!t)) + T2K12 k)eVY 

+ 1W)(el(!k)  — 2q2k)  + el!tk)) . 	(6.87) 

Thus, assuming that the controller switching from loop index 21  

to 22 occurs at time kT for the plant operating in s
teady state 

(ie WI)  = WI)  = WO = 0), and that 

V1  0 V2 ' 
	 (6.89) 

V1 	= V2 	(i = 1,2,...,m-1) , 	
(6.90) 

i s 	
$
i  

v 	= V 
it2 	

2tg 
2 	2 

it follows that 

v(22)  = v(22)  = V(22)  -, k - 	ak-1 	0k3 

and 

(6.91) 

(6.92) 

V(22)  = V(22)  . 1 	2 
(6.93) 

Therefore, 



elld - We = (v02)  - yi(c22)) - (v122)  - WO 

= 0 	 (6.94) 

and 

el22)  - 2eef)  + eel)  = v 22)  - 2v 22)  + v122)  

= 0 . 	 (6.95) 

It follows from equations (6.87), (6.94), and (6.95) that 

uk  = uk _ i  + T21(122)el(Qc!f)  . 	 (6.96) 

It is clear from equation (6.96) that uk  is independent of 

e(k1 k). Therefore, if eek)  = 0, it follows that that the 

proportional and derivative terms of the input are suppressed 

and that only the integral term contributes to the input 

change. Therefore, initial decoupling in the sense of equation 

(6.80) does not occur with such switching logic. 

In order to circumvent this problem and obtain initial 

decoupling, equation (6.87) is modified in the form 

uk  = uk _ i  + TIO2k)(ek  - I 	ek-1) 4" 721W k)ek-1 

+ Klk)(ek  - 2ek-1 + ek-2)  9 (6.97) 
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where the sub-error vector at time kT is ek  = eek). Using 
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this modification, the control input at the controller 

switching instant under the above conditions (6.88) to (6.93) 

is given in the form 

uk = Uk-1 	TK(2k)ek 	K3(2k)ek 
	 (6.98) 

since ek-1 = e1 -1> = 	= 0. Thus, the proportional and 

derivative terms are efficiently utilised at the controller 

switching instant. 

Finally, the self—selecting control law together with the 

lowest—wins strategy and the controller switching logic is 

embodied in equations (6.82), (6.83), and (6.97). However, it 

is evident from equation (6.97) that elements of the error 

vectors ek, ek-1' and  ek-2' which are compared in the 

lowest—wins strategy, might have different units. Therefore, 

it is required that such error vectors are properly scaled so 

that the bumpless transfer operation is attained. Furthermore, 

it is noted that such scaling might also be effective in the 

lowest—wins strategy in equation (6.82). 

6.5 Illustrative example 

In order to demonstrate the performance characteristics of the 

digital self—selecting PID controller proposed in the previous 

sections, such a controller is designed for the two—input 

three—output linear F100 engine model at Intermediate power 

condition (Appendix 3). In this case, the manipulated input 

variables are main burner fuel flow (lb/hr) and nozzle jet area 
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(ft2). The output variables are fan speed N 1  (rpm), augmentor 

pressure P7 (psia), and fan turbine inlet temperature FTIT 

( °R). 

The design starts with the classification of the plant. The 

steady—state transfer—function matrix G is obtained from Figs 

2.2 and 2.3 in the form 

G = G(0) 

[ I 

[ 

gl 
T 

T 
g2 

T 
g3 I 

= 

[ 

0.37904 

0.15944e-2 

0.90309e-1 

1238.8 

—12.168 

210.94 I 

(6.99) 

Since ge  > 0, by Theorem 4.5, it follows that G E Class I. l   

The input space is shown in Fig 6.2. Clearly, UF(0) is a 

2—dimensional convex cone. Equations gIu = 0 corresponding to 

N1  and gIu = 0 corresponding to P7  represent extreme rays of 

UF(0). 
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It is evident that either extreme ray has a unique 

representation and that a minimum of two control loops is 

required. If N1  must always be controlled, the subsets of 

plant outputs to be controlled are (Structure 1) 

Y1  = {N1  , P7) , Y2  = {N1  , FTIT} . 

If P7 must always be controlled, the subsets are (Structure 2) 

Y1  = (P7  , N1 } , Y2  = (P7  , FTIT) . 

Therefore, it is possible to design a self—selecting controller 

for the plant based upon either Structure 1 or Structure 2. 

The corresponding minimum singular value plots (amin(H(1)(0]) 

of the sub—plant step—response matrices shown in Figs 

6.3(a),(b), 6.4(a),(b), and 6.5 indicate that the plant is 

nonminimum phase for the output pairs [NI,P7] and [N1 ,FTIT] and 

that the plant is minimum phase for the output pair [P7,FTIT] 

(Porter and Jones (1985c)). Furthermore, G(0) is 

well—conditioned since amin[N(i)(t)] is not small. However, 

attention should be given in order to choose the sampling 

period T so as not to use an ill—conditioned H(i)(T), since 

amin[H(i)(t)] vanishes once for [N0P7] and [N1,FTIT]. 

It is found from Figs 2.2 and 2.3 that 

 

[ 0.63349e-3 	1.2999 

H(0.05) = 	0.11637e-4 —0.18878 

0.60822e-4 —0.86794e-2 

(6.100) 
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Firstly, a self—selecting lowest—wins PID controller is 

designed and tuned based upon Structure 1 such that T = 0.05 

sec, A(1)(0.05)11(1)  = diag{0.04, 0.1), A(2)(0.05)11(2)  = 

diag{0.04, 0.02), E(1)  = E(2)  = 50.012, and A(1)(0.05)A(1)  = 

A(2)(0.05)A(2)  = 0.000512. The excellent limit tracking and 

switching behaviour of the plant under the action of the 

resulting error—actuated controller is shown in Figs 6.6 and 

6.7, where the loops show that P7(y2) and FTIT(y3) are 

controlled in turn whilst N1(y1 ) is permanently controlled. 

Next, a self—selecting controller is designed and tuned based 

upon Structure 2 such that T = 0.05 sec, A(1)(0.05)11(1)  = 

diag{0.1, 0.04), A(2)(0.05)11(2)  = diag{0.1, 0.02), E(1)  = E(2)  

= 50.012, and A(1)(0.05)A(1)  = A(2)(0.05)A(2)  = 0.000512. The 

excellent limit tracking and switching behaviour of the plant 

under the action of the resulting error—actuated controller is 

shown in Figs 6.8 and 6.9, where the loops show that N1(y1) and 

FTIT(y3) are controlled in turn whilst P7(y2) is permanently 

controlled. 

It is noted that, in both cases, the elements of the sub—error 

vectors which are used in the control—law equation (6.97) and 

in the lowest—wins strategy equation (6.82) have been scaled so 

that the steady—state gains of the open—loop plant for the fuel 

flow are equal. Thus, it follows from equation (6.26) that for 

i E I r 

lim 	
J-  

et (kT) = vi  — lim yt  (kT) . 
k40, 	 k-' 	i 

(6.101) 
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Now, let gti be the tith element of g 	in equation (6.99). 
C l 	 Cl  

The output change in steady states for the step change of fuel 

flow Au1  is 

lim Ayti 	1
(kT) = g:iAul  

k-ka 

(i = 1,2) . 	 (6.102) 

Then, it follows from equations (6.101) and (6.102) that 

Bet  (kT) 	Ayt  (kT) 
lim ---1---- — lim ---i---- 
it-Pa 	aU 1 	 k-) 	Au1  

= — or t i 
ac i  

(i = 1,2) 	(6.103) 

and therefore that 

aet (kT) 1 
lim 	— — const 	(i = 1,2). 	(6.104) 
Ic-,0° 	8u1 	g:i 1 

1 

and et are multiplied by 1igti9 their effects in steady states 2 	 Cl  

are equal. Thus, the elements of the sub—error vectors have 

been scaled. 

6.6 Conclusion 

In this chapter, a new methodology for the design of 

This implies that, if the elements of the sub—error vectors et  

self—selecting PID controllers, which uses the order—reduction 
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technique (Algorithm 5.1) and corresponds to the extension of 

tunable set-point tracking controllers (Chapter 2), has been 

developed. 

Firstly, the order-reduction technique (Algorithm 5.1) has been 

applied to m-input/p-output Class I linear multivariable plants 

and p-m+1 subsets of plant outputs have been chosen. For these 

subsets, tunable digital set-point tracking PID controllers 

have been designed. A block-diagonalisation transformation has 

been used to exhibit the asymptotic properties of the separate 

discrete-time closed-loop tracking systems which correspond to 

these subsets. It has been shown that the proportional, 

integral, and derivative matrices embodied in such set-point 

tracking controllers can be readily determined from open-loop 

test performed on asymptotically stable plants, thus 

circumventing the need for detailed mathematical models. Next, 

the implementation of the self-selecting controller using these 

different set-point tracking controllers has been discussed. 

The lowest-wins strategies which cause the selection of the 

most critical subset of outputs, together with the controller 

switching logic, have been formulated. Finally, the 

effectiveness of the proposed design methodology has been 

illustrated by designing self-selecting controllers based upon 

two different structures for a highly interactive gas-turbine 

engine. 

It is noted that, although the asymptotic stability of separate 

closed-loop tracking systems has been guaranteed by this design 

methodology, this does not guarantee the stability of the 
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complete system. Therefore, it is recommended that the 

stability and performance of self-selecting controllers be 

verified in simulation studies before field application. 
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Fig 6.2 U-space 

Plant: Linear F100 engine model at Intermediate 



5
 

4
 

•
 

3
 

2
 

•
 

1 

Minimum  singular  value  

T
 i 

m
e(

 s
ec

 )
 

F
i
g
'
,
6
.
3
(
a
)
 
M
i
n
i
m
u
m
 
s
i
n
g
u
l
a
r
 
v
a
l
u
e
 
p
l
o
t
 
o
f
 
t
h
e
 
p
l
a
n
t
 
s
t
e
p
-
r
e
s
p
o
n
s
e
 
m
a
t
r
i
x
 

P
l
a
n
t
:
 
F
1
0
0
 
e
n
g
i
n
e
 
L
i
n
e
a
r
 
m
o
d
e
l
 
w
i
t
h
 
2
 
i
n
p
u
t
s
 
a
n
d
 

2
 
o
u
t
p
u
t
s
 
E
1
\
1
1
,
P
7
]
 



Minimum  singular  value  

2
0

1
 

1
5
1
 

1
0
1
 

  

T
i
m
e
(
s
e
c
)
 

 

F
i
g
 
6
.
3
(
b
)
 
M
i
n
i
m
u
m
 
s
i
n
g
u
l
a
r
 
v
a
l
u
e
 
p
l
o
t
 
o
f
 
t
h
e
 
p
l
a
n
t
 
s
t
e
p
-
r
e
s
p
o
n
s
e
 
m
a
t
r
i
x
 

P
l
a
n
t
:
 
F
1
0
0
 
e
n
g
i
n
e
 
l
i
n
e
a
r
 
m
o
d
e
l
 
w
i
t
h
 
2
 
i
n
p
u
t
s
 
a
n
d
 

2
 
o
u
t
p
u
t
s
 
[
1
1
1
,
P
7
]
 



T
 i

 m
e

<
 s

e
c

 )
 

F
ig

 6
.4

(a
) 

M
in

im
u

m
 s

in
g

u
la

r 
v
a

lu
e

 p
lo

t,
 o

f 
th

e
 p

la
n

t,
 s

te
p

-r
e

s
p

o
n

s
e

 m
a

tr
ix

 
P

la
n

t:
 F

1
0

0
 e

n
g

in
e

 l
in

e
a

r 
m

o
d

e
l 
w

it
h

 2
 i
n

p
u

ts
 a

n
d

 
2
 o

u
tp

u
ts

 0
\1

1
 1  
F

T
IT

] 



Minimum  singular  value  

)9
0
-6

  

 
 

1
 	

II 

 

	2
0

 

 
 

 

 
 

 
 

 
 

T
i
m
e
(
s
e
c
)
 

x
ie

r3
  

 

F
ig

 6
.4

(b
) 
M
i
n
i
m
u
m
 
s
i
n
g
u
l
a
r
 
v
a
l
u
e
 
p
l
o
t
 
o
f
 
t
h
e
 
p
l
a
n
t
 
s
t
e
p
-
r
e
s
p
o
n
s
e
 
m
a
t
r
i
x
 

P
l
a
n
t
:
 
F
1
0
0
 
e
n
g
i
n
e
 
L
i
n
e
a
r
 
m
o
d
e
l
 
w
i
t
h
 
2
 
i
n
p
u
t
s
 
a
n
d
 

2
 
o
u
t
p
u
t
s
 
E
N
1
I
F
T
I
T
]
 



Minimum  singular  value  

T
im

e
( 

se
c
 )

 

F
i
g
 

6
.5

 
M
i
n
i
m
u
m
 
s
i
n
g
u
l
a
r
 
v
a
l
u
e
 
p
l
o
t
 
o
f
 
t
h
e
 
p
l
a
n
t
 
s
t
e
p
-
r
e
s
p
o
n
s
e
 
m
a
t
r
i
x
 

P
l
a
n
t
:
 
F
1
0
0
 
e
n
g
i
n
e
 
l
i
n
e
a
r
 
m
o
d
e
l
 
w
i
t
h
 
2
 
i
n
p
u
t
s
 
a
n
d
 

2
 
o
u
t
p
u
t
s
 
E
P
7
1
F
T
I
T
]
 



150k 	  

100 

50 

0 

-50 

-100 

-15 16 
	2$..,.....39 

 

= Q. 

; 
a 

z 

P
T

IT
 &

 V
3

  
•R

 

-5:  
-10 

- 15 

-29 

-21 	 

5 

171 

(a) 

P
7

  &
  V

2
 P

S
IA

 

 

  

   

 

  

   

 

  

   

  

   

 

  

   

(b) 

Cc) 

O O 

0 

( d ) 	 TIME (SEC) 

Fig 6.6 Responses of F100 engine under digital 
selF-selecting PID control 

Structure 1: [N11,P7] & EN1,FTIT] 
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Fig 6.8 Responses of F100 engine under digital 
selF-selecting PID control 

Structure 2: EP7,N17 & CP7,FTIT] 
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Fig 6.9 Manipulated variables of F100 engine 
under digital selF-selecting PICT control 
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CHAPTER 7 

DESIGN OF DIGITAL SUPERVISORY SELF—SELECTING CONTROLLERS 

FOR LINEAR MULTIVARIABLE PLANTS 

WITH MORE OUTPUTS THAN INPUTS 

7.1 Introduction 

In Appendix 6, some of the dynamical peculiarities of 

self—selecting control systems are described. Such 

peculiarities indicate the richness of the possible responses 

of higher—order multivariable self—selecting control systems 

and the difficulty of analysing such systems. They thus 

stimulate and justify the investigation of more powerful 

controllers which gurantee limit tracking in steady states and 

produce well—regulated dynamical behaviour of complete 

self—selecting control systems. Therefore, in this chapter, a 

new approach to the stability augmentation of self—selecting 

controllers is considered. Using this approach, it is expected 

that self—selecting controllers are provided with the enhanced 

dynamical stability. 

Firstly, the dynamical tracking characteristics of 

variable—structure self—selecting control systems are 

investigated based upon the approach of Gruji6 and Porter 

(1980). Thus, important foundamental properties such as a 

solution concept, equilibrium states, steady states, 

asymptotically stable tracking, and perfect/nearly perfect 

dynamical limit tracking are established, where the proofs of 



176 

Propositions and Theorems are given in Appendix 2. Then, a 

synthesis approach to supervise the operation of digital 

self—selecting controller by observing error vectors and 

controller switchings is developed, and the controller 

synthesised in this approach is called a digital supervisory 

self—selecting controller. It is shown that the controller has 

three operational modes (ie Normal mode, Loop—excluded mode, 

and Loop—fixed mode) and two assessment blocks (ie Tracking 

assessment and Correct/Incorrect loop assessment). Next, the 

tracking performance and the stability of complete systems 

incorporating digital supervisory self—selecting controllers 

are investigated. Finally, the effectiveness of such 

supervisory controllers is illustrated by designing a 

supervisory self—selecting controller for a plant which is 

simple but which neverthless has shown dynamical peculiarities 

such as limit—cycle oscillations in Appendix 6. It is shown 

that the limit—tracking behaviour of the plant under the action 

of a supervisory self—selecting controller, tuned as before 

such that limit—cycle oscillations occur, exhibits no 

limit—cycle oscillations but rather stable dynamical 

limit—tracking. 

7.2 Analysis 

The linear multivariable Class I plants (Definition 4.3) under 

consideration are assumed to be governed on the continuous—time 

set T = (0,+00) by state and output equations of the respective 

forms 
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x(t) = Ax(t) + Bu(t) 	 (7.1) 

and 

y(t) = Cx(t) , 	 (7.2) 

where the state vector x(t) E R n, the input vector u(t) E R m, 

the output vector y(t) E RP (p > m), the plant matrix A E le" 

whose eigenvalues all lie in the open left-half plane C-, the 

input matrix B E le", and the output matrix C E RP". 

The transfer-function matrix is 

G(s) = C(sI-A)-1B 	 (7.3) 

and the steady-state transfer-function matrix 

G = G(0) = -CA-1B E RP" 	 (7.4) 

is known from open-loop tests performed on the plant 

(Appendix 1). It is assumed that 

rank G = m , 	 (7.5) 

and therefore that, by applying the order-reduction technique 

(Algorithm 5.1), p-m+1 subsets of plant outputs to be 

controlled by corresponding set-point tracking controllers are 

obtained in the form 
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Y 1 

Yr 

. 

= 

Ors 
1 

• • 

• • 

• • 

Orsi 

, • 

• 

• 

• 

9 • 

• • 

• • 

, 

11 

Ys 	11 
M-1 

Y8 	I 
M- 1 

Yt 1  ) 

Yt r ) 	I 

(7.6) 

Here, r = p—m+1, the index set of all the control loops is Ir  = 

{1,2,...,r}, the index set of all the outputs I = (1,2,...,0, 

the index set of permanently controlled outputs I* 
 

= 

(s102,...,s m _ 1), and the index set of intermittently 

controlled outputs ICI*  = (t1 ,t2,...,tr). Then, the parts of 

the plant which correspond to such subsets can be called 

sub—plants. The corresponding sub—output vectors of these 

sub—plants are 

Y51(t) 

y(i)(t) = 
Y8 

8 m-i(t)  

Yti  (t) 	- 

= C(i)x(t) e R m  (i = 1,2,...,r) 

(7.7) 

where each of sub—output matrices C(i)  E Rmzn  (i=1,2,...,r) 

consists of sith,...,sm _ Ith and tith rows of the output 

matrix C. 

Furthermore, it is assumed that the introduction of integral 

action for each subset Yi, i E Ir  preserves stabilisability and 

therefore that (Porter and Power (1970), Power and Porter 

(1970)) 



179 

rank G(i)  = m , 	 (7.8) 

where the sub—plant transfer—function matrix 

G(i)(s) = C(i)(sI—A)-111 , 	 (7.9) 

and the sub—plant steady—state transfer—function matrix 

G(i)  = G(1)(0) = —C(1)A-111 E R mxm 	 (7.10) 

is obtained from equation (7.4). 

In the case of digital self—selecting control systems with 

lowest—wins strategies, it is convenient to consider the 

behaviour of such plants on the discrete—time set TI  = 

(0,T,2T,...,kT,...). This behaviour is governed by state and 

output equations of the respective forms (Kwakernaak and Sivan 

(1972)) 

Xk+1 = 1Zxk + tuk 
	 (7.11) 

and 

k v(1)  = r(i)xk J  
(7.12) 

where xk = x(kT) e R n, uk  = u(kT) E Rm, W)  = y(1)(kT) E R m , 

0 = exp(AT) , 	 (7.13) 



180 

T 
t = f exp(At)B dt , 	 (7.14) 

0 

r(i)  = C(1)  , i E Ir  , 	 (7.15) 

and T E R*  is the sampling period. 

Furthermore, it is assumed that the overall set—point vector is 

v = (v1,...,vp]T  E RP , 	 (7.16) 

the overall plant output vector is 

y(kT) = (yi(kT),...,y p(kT)J T  E RP , 	 (7.17) 

and that the overall error vector is 

e(kT) = [e (kT),...,ep(kT)]T  

= v — y(kT) E RP. 	 (7.18) 

Then, the sub—error vector is 

e(i)(kT) = v(i)  — y(i)(kT) E Rm  , 	 (7.19) 

where the sub—plant set—point vector v(1)  G Rm. 

Here, it is noted in view of equations (7.6) and (7.7) that 
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(7.20) 

5,81(kT) 

y8 	(kT) 

yti(kT) - 

y(i)(kT) = E(1)yk  = 

and 

(7.21) 

e (kT) 

e
s m-1

(kT)

e
ti
(kT) 

e(i)(kT) = E( )ek  — — (7.22) 

where E(i)  E R1°" consists of sith,...,sm _ ith and tith rows of 

a unit matrix I . 

It is evident from equation (7.22) that all the sub—error 

vectors e(1)(kT) (i=1,2,...,r) have m-1 common elements 

e (kT),...,ea 	(kT). Therefore, the lowest—wins strategies 
81 	 -m-I 

need to compare only the remaining r scalar signals which are 

not common in e(1)(kT),...,e(r)(kT) to select the control loop. 

Furthermore, it follows that the index set J(kT) of lowest 

errors and the loop index Q(kT) of the actually selected loop 

are defined by the respective forms 
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J(kT) = (j :: le (kT) = min et  (kT)} 	 (7.23) et 	
iei 	i r 

and 

2(kT) G J(kT) C Ir  . 	 (7.24) 

The self—selecting controller is governed on the discrete—time 

set T T by equations of the form 

= KV(k 	ik T))e((T)) u(kT) 	 (kT) + KP(kT))z(kT) 	(7.25)  

and 

z((k+1)T) = z(kT) + Te(2 (kT)) , 	 (7.26) 

where the controller state vector z(kT) E le, and the 

controller matrices K(P
2(kT))  E le" and K(2(kT))  E Rmxm  are 

chosen from the sets (W),...,W)} and (1(11) ,...,W)1, 
respectively. It is assumed that each separate closed—loop 

system is asymptotically stable, where there clearly exist r 

sepatate closed loops when 2(kT) = const E Ir. This assumption 

is justified by the functional controllability of each separate 

output, as indicated in the conditions (7.8), so that the 

controller design methodology described in Chapter 6 is 

applicable. 

Since equations (7.23) and (7.24) decide which controller 

should be used at each sampling instant, controller switching 

may occur. In controller switching from loop index II  to 22  at 



183 

time kT, the following three types of switching logic are 

considered: 

(i) Without bumpless transfer 

z(kT) = z((k-1)T) 
	 (7.27) 

(ii) With bumpless transfer 

u(kT) = u((k-1)T) 	 (7.28) 

and 

z(kT) = KI22)-1  ( u((k-1)T) — KI,22)e( 2)(kT)) 	(7.29) 

(iii) Instantaneous perturbation 

z(kT) = z((k-1)T) + Az , 	 (7.30) 

where Az is bounded, ie there exists M such that 

HAzil < M < = , 	 (7.31) 

where 11'11  is the euclidean norm of -. 

It is clear from equations (7.27) to (7.31) that the switching 

logic (iii) includes (i) and (ii) as special cases. Therefore, 

the analysis is carried out only for the switching logic (iii). 
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Bi(KT)(T)  

?,(i(kT))2 i•I, 

TIm 

E R m+m  • (7.33c) 
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The equations (7.11), (7.12), (7.16), (7.25), and (7.26) that 

govern the behaviour of the self—selecting control system can 

be written in the forms 

i((k+1)T)= A2(kr)  (T)x(kT) + Bt(kT)(T)v" 
(kT)) 	(7.32) 

where 

x(kT) 
x(kT) = 	 E R n" 
	

(7.33a) 
z(kT) 

 
 

m_K(2(kT))tr(2(kT)) 	v.(2(kT))1 
P 

-TO/ (kT))  1 m  

E R(n+m)x(n+m) 

 

AQ(kT)(T) 

 

 

(7.33b) 

(i(kT)) = v(i(kT)) E R m  . 	 (7.33d) 

It is clear that the complete closed—loop digital 

self—selecting control system is governed by equations (7.32) 

with the lowest—wins control equations (7.23), (7.24), (7.30), 

and (7.31). Therefore, let a solution of the governing 

equations of the self—selecting control system be denoted by 
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[ x(kT;x0v) 1 
X(kT;x0v) = 	 $ X(0;x0v) a xo  

z(kT;x0v) 

where x(kT;x0v) is the motion of the controlled plant and 

z(kT;x0v) is the corresponding motion of the self-selecting 

controller on the discrete-time set TT. The following results 

can then be obtained. 

Definition 7.1 

1 Equilibrium state 

A state xe(T) G Rn" is an equilibrium state of the 

self-selecting control system if and only if, for each separate 

,closed-loop system, 

X(kT;xe(T);v) = Xe(T) 	, 	VkT E T T 	; 

2 Steady state 

A state xs  (T) E le4m  is a steady state of the self-selecting 

control system if and only if 

X(kT;xs(T);v) = x8(T) 	9 
	VkT e TT 	

• 

Definition 7.2: Index sets of correct and incorrect loops 

In a steady state, the index set Ie(v) such that 

Ic(v) = (i. E Ir  : ye  = vt , ti E I\I*) i 	i 
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is the set of correct loops and the set Ir  \I C  (v) the set of 

incorrect loops. 

The existence of nonempty Ic(v) is guaranteed by Theorem 5.1. 

Proposition 7.1 

In a steady state, if i E ir\ic(v) then 

yti < vti  

Proposition 7.2 

The self—selecting control system has #(Ic(v)) steady states 

for every v, including multiplicity, where #(.) means the 

number of elements in the set •. 

It is desirable in such self—selecting control systems that the 

entire set of plant outputs exibits the dynamical counterpart 

of limit—tracking (Definition 5.1). Therefore, a rigorous 

analysis is carried out for dynamical limit tracking in the 

following (GrujiC and Porter (1980)). 

Definition 7.3: Target set 

The set 

$(V) = (X : CT X = V 	,..., CT 	X = V 	$ 

	

$1 	s1 	82-1 	s m-1  
Ct
T  
.X = V, , i E Ic(v), 

	

2. 	
61. 

cT.  x < vt  , j E ir\ic(v), z E R m) C R n" 
j 

t 
i  



or 

3(v) = (x : C(i)x = v(i), i E Ic(v), 

cT  x < v $ t t3 	i 
j E Ir\Ic(v), z E le) C le" 
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is the target set of the self-selecting control system. 

In the sequel, the distance of a point x E R n" from a set 

W C Ra" is denoted by p(x , WI = inf [Dx - x*I1 : x*  E W]. 

Definition 7.4 

The self-selecting control system ehibits 

(i) stable tracking on TT  if and only if for every (xo,v) E 

Rn+ mxRP and for every e > 0, there exist £ C 3(v), Z = £(v) and 

6 = 6(c,x0,v,Z) > 0, such that p[xo  , £(v)] 5. 6 implies that 

P[X(kT;x0v) , Z(v)] 	e 

for all kT E TT; 

(ii) globally asymptotically stable tracking if and only if 

both it exhibits stable tracking and for every (xo,v) E Rn+mx0 

lim p(x(kT;x0v) , Z(v)] = 0 . 
k-)09. 

More precisely, there exists some 7 > 0 such that if 
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..._ 
PIX(kIT;x0v) , Z(v)] 	7, then for every e > 0, there exists a 

positive Ak*  = Ak*(;,7,x0,v) such that 

p[x(kT;x0v) , .C(v)] 	; 

for all kT k (k1  + Ak*)T; 

(iii) state—bounded tracking if and only if the solution 

X(kT;x0v) is bounded for every (xo,v) E Rn"x0; 

(iv) perfect dynamical limit tracking or state—bounded globally 

asymptotically stable tracking if and only if it exhibits both 

state—bounded tracking and globally asymptotically stable 

tracking. 

It is noted that, in Definition 7.4, (ii) implies (i), (iv) 

implies (i), (ii), and (iii), and that all characteristics are 

uniform. In the following, the practical version of perfect 

dynamical limit tracking is defined. 

Definition 7.5: Nearly perfect dynamical limit tracking 

The self—selecting control system exhibits nearly perfect 

dynamical limit tracking if and only if both it exhibits 

state—bounded tracking and for every (xo,v) E /0"x0 and for 

every eth  > 0, there exists k*  = k*(ethOccov) such that for  

kT k k*T, 

e(kT) k —ee 
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and 

He(t(kT)) (kT)11 S eth 

where ee  = [eth,..., eT E RP . th - 

Proposition 7.3 

Definition 7.4(iv) implies Definition 7.5 in the sense that 

perfect dynamical limit tracking implies nearly perfect 

dynamical limit tracking. 

7.3 Synthesis 

The block diagram of the digital supervisory self-selecting 

controller is shown in Fig 7.1. In order to obtain not only 

enhanced stability but also both dynamic and static limit 

tracking, the controller is equipped with two special 

operational modes (ie Loop-excluded self-selecting control mode 

and Loop-fixed control mode) in addition to the normal 

self-selecting control mode (Section 7.2). Then, these three 

control modes are called, respectively, 'Normal mode', 

'Loop-excluded mode', and 'Loop-fixed mode'. The transition 

from one mode to another is decided in two assessment blocks 

(ie 'Tracking assessment block' and 'Correct/Incorrect loop 

assessment block'). Such operation of the controller is 

initialised whenever the set-point command vector changes. In 

the following, the hierarchical structure of the controller is 

defined. 
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Definition 7.6 

1 Level of self—selecting control 

The level of self—selecting control is the number of excluded 

loops and called Ti. 

2 Index set of level n excluded loops and 

Index set of level n candidate loops 

The index set of level n excluded loops is In ,ex'  whilst the I= ,ex, 

index set of level n candidate loops is In = 1 \In r r r,ex' 

3 Index set of level n lowest errors 

The index set of level n lowest errors is 

Jn(kT) = {j : etj(kT) = min et  (kT)} . 
IGO i r 

Proposition 7.4 

(1) 	I0 ,ea 	0 r,ex 

(ii) I: = It  

(iii) #(I7,e.) = 77 

(iv) #(17) = r — q 

(v) J°(kT) = J(kT) 
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Definition 7.7 

1 Normal mode 

The self—selecting control system is said to be under Normal 

mode if and only if the level of such self—selecting control 

is 0. 

2 Loop—excluded mode 

The self—selecting control system is said to be under 

Loop—excluded mode if and only if the level of such 

self—selecting control is n k 1. 

3 Loop—fixed mode 

The self—selecting control system is said to be under 

Loop—fixed mode if and only if 

2(kT) = 2f  = const E Ir  

irrespective of Jn(kT). 
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Definition 7.8: Background computation of Normal mode and 

Loop-excluded mode (Fig 7.2) 

to  = (Initialised time) + T 

ti  = to  + To  

t2  = t1  + To  

(7.34) 

t = to-1 	To  

where Ts, the initial settling time, and To, the observation 

time, are chosen by the designer. 

The following variables are defined on the discrete-time set 

TT  (t2) = (t2,t2,...,ts,...) as long as the same operational 
0 

mode continues. Such discrete-time set is re-initialised 

whenever either Normal or Loop-excluded mode operation begins 

either by the set-point change or the transition from the 

loop-fixed mode. 

max(es)a = max e (kT) 
Si 

kTE[to _ le to) 

iE[1,m -1] 

(7.35a) 

min(es)a = min esi  (kT) 

krEtts _ 1 ,ts) 

ie[1,0-11 

(7.35b) 



mean(es)a = 

Amax(es)a = 

Amin(es)a 

m-I 
[ E {( iaTes  (kT))/Tomm - 1) 
1.1 kT=t i a-i 

max(es)a — mean(es)a 

=— 
mean(es)a 	min(es)a 

(7.35c) 

(7.35d) 

(7.35e) 
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max(et)a = max e 	(kT) -2(kT) 

kTE[ta _ le ta) 

2(kT)EJII(kT) 

(7.36a) 

min(et)a 
= min 

(et2(kT) 
 (kT) , etj(kT)) 

kTE[ta _ 1 ,ta ) 

i(kT)G.0(kT) 

 

  

 

= min et.(kT) 

kTerta _ it ta) 

iEIr 

(7.36b) 

ta  

mean(es)a = ( I Te 2(kT)
(kT))/To 

kT=ta_:  
(7.36c) 

Amax(et)a = max(et)a — mean(et)a 
	 (7.36d) 

(7.36e) Aoio(eda = mean(et)a — mean(et)a 
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Definition 7.9: Tracking assessment 

The tracking of Normal and Loop—excluded modes is assessed on 

the discrete—time set TT  (t3) = (t3,t4,...,t.,...) 	to decide 
0 

whether such modes should continue or should be transfered to 

Loop—fixed mode. 

If 

max(eda 	eth  

mia(es)x 	—eth 

max(eda < eth  

mia(eda —eth 

(7.37a) 

(7.37b) 

(7.37c) 

(7.37d) 

or if 

Amax(es)a 5_  aAmax(es)a-1 
	 (7.38a) 

Amin(es)a 	aAmin(es)a-1 
	 (7.38b) 

I mean(es)aI 	al mean(es)a-11 

Amax(eda ciAmax(edx-1 

A mim(eda < aAmill(et)41-1 

I mean(edal < almean(et)a-1 1  

(7.38c) 

(7.38d) 

(7.38e) 

(7.38f) 
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where the error threshold eth and the admissible convergence 

rate a (0 < a < 1) are to be chosen by the designer, 

then the assessment is 'Convergent' and the controller 

continues to operate in the same mode during the next interval 

kT E (ta,t10.1 ); 

else the assessment is 'Non convergent', the mode change 

occurs, and the controller begins to operate in Loop-fixed 

mode. 

It is clear from equation (7.34) and Definition 7.9 that such 

assessment is carried out for the first time at t3  (=Ta+2T0) 

after the set-point change. 

Definition 7.10: Background computation of Loop-fixed mode 

(Fig 7.3) 

to  = ta  + T8 

tl = to + To } 

(7.39) 

where Loop-fixed mode begins at time ta, T$  is the initial 

settling time, and To  is the observation time. 

When the operational mode changes from Normal/Loop-excluded 

mode to Loop-fixed mode at time ta, the actually selected loop 

is fixed by the form 

to  < kT < t — 	1 ' (7.40) 2(kT) = If  = 2((k-1)T) 



1 	

i e J(kT) 
taint(i , kT) = 

1  0 	i 0 J(kT) 
(7.41) 
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However, during Loop—fixed mode operation, the lowest—wins 

strategy continues to operate. Therefore, for i E Ir  and 

_ 	~ 
for to 	kT < t 1 , 

and 

Pow 

 

 

t I 
Tint")  = 7  _TATint(i , kT) . 

kT=t 0  

(7.42) 

It is clear from equation (7.42) that Tint(i) is the time 
IN 	 ~ 

interval during which the index i belongs to J(kT) (t0DC1t1). 

Definition 7.11: Correct/Incorrect loop assessment at time ti  

If 3i1  E Ir ' il * 2 f 1 

Tint"f) 
 

< OT int (i i ) 	, 	$ > 0 , 	 (7.43) 

then the assessment is 'Incorrect loop'; 

else the assessment is 'Correct loop' and Loop—fixed mode 

continues to operate with the horizon—reinitialisation such 

that 
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_ 
t' = t1o   (7.44a) 

- 	- 
ti = to  + To 	 (7.44b) 

Vi E Ir  , 	Tior(i) = 0 . 	 (7.44c) 

It is clear from equation (7.39) that such assessment is 

carried out for the first time at t1  (=T o+To) after Loop-fixed 

mode begins. 

Definition 7.12: Re-initialisation in case of 'Incorrect loop' 

assessment in Loop-fixed mode (Fig 7.4) 

The number of excluded loops increases by one. Therefore, 

In ,ex = in-r,ex 1  + {!t g)r  
	 (7.45a) 

#(4) = 1I(4-') - 1 
	 (7.45b) 

#(4,or) = #(41,:!.) + 1 	 (7.45c) 

If , < r-2 ie CID = r-n ?. 2 then Loop-excluded mode begins. 

If II = r-1 ie CID = 1 then only one candidate loop remains 

and Loop-fixed mode begins under such loop. 

If , = r ie #(4) = 0 then there remains no candidate loop. In 

such case, Normal mode begins. 
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The case in which the final assessment i = r happens at time Tf  

in the lowest stage shown in Fig 7.4, where 

Tf  = (r - 1){(Ts  + 2T0) + (Ts  + To)) + (T8  + To) 

	

= (r - 1)(2Ts  + 3T0) + (Ts  + To) . 	 (7.46) 

7.4 Performance 

Firstly, the controller performance of Loop-fixed mode is 

discussed. Exponential stability and Correct/Incorrect loop 

assessment are verified. 

Proposition 7.5: Exponential stability - Convergence property 

of Loop-fixed mode 

In the system under Loop-fixed mode with the fixed loop index 

If, for a given e > 0, there exists some k: such that 

X(kT;x0v).(kT)=2f E xlIf(T) + eB 	kT 	k:T z  

ie 

P[X(kT;x0v) , x!f(T)] < e 
	

kT > k*T 9  

where 

Xf(T) = lim x(kT;x0v)A 8 	 80cry-if  
k493 

and B is the Euclidean unit ball in Rn". 
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Proposition 7.6: Correct loop continuity in Loop-fixed mode 

If if  E Ic(v) then there exists k: such that 

Vi E It\in(V), Tint(2f) i #Ticc(i), A > 0, i0 	k:T. 

Proposition 7.7: Incorrect loop detection in Loop fixed mode 

If If  E Ic\Ic(v) then there exists k: such that 

3i 2f1 Tint(if)  < #Tint 	2  (i) 	# > 0, to  k k:T. °  

Although ft > 0 is enough to prove above propositions, too large 

$ (for example, $ >> 1) might degrade the performance of 

assessment blocks in view of the inequalities in Propositions 

7.6 and 7.7. Therefore, $ of the order of 1 is recommended. 

Finally, a practically important theorem can be obtained. 

Theorem 7.1 

Suppose that the plant input is made to be bounded. Then, the 

supervisory self-selecting controller can attain nearly perfect 

dynamical limit tracking or perfect dynamical limit tracking 

for every (xo,v). 



yi(t) = 2x(t) 	 (7.47) 

For this plant, the self—selecting control system ehibited 

1 

X(t) . —x(t) + u(t) 

y2(t) = 4x(t) 
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It is noted that, as indicated in equation (7.46), the 

supervisory self—selecting controller can attain such tracking 

for every (xo,v) within time Tf  as long as the set—point 

command remains constant and plant variation does not occur. 

7.5 Illustrative example 

In order to illustrate the performance characteristics of 

digital supervisory self—selecting controllers, it is 

convenient to design a controller for a simple 

one—input/two—output plant and to analyse the resulting 

closed—loop characteristics by the phase—plane method. In 

fact, the plant is governed by state and output equations of 

the respective forms 

stable responses (with or without sliding motion) or 

limit—cycle oscillations depending upon the controller gains 

and the controller switching logic (Appendix 6). 

In order to demonstrate the enhanced dynamical stability of the 

proposed supervisory self—selecting controller, the controller 

gains and the switching logic are chosen as for the case of 

limit—cycle oscillations. Thus, the controller gains are 
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k(1) = 0 

k(2) = 0 

ql)  = 0.5 

k12)  = 1.0 I (7.48) 

and controller switching without bumpless transfer is used. 

Furthermore, the controller parameters of the supervisory part 

are chosen such that T3  = 2.5 sec, To  = 5.0 sec, a = 0.5, ft = 

0.5, and eth  = 0.1. 

The responses of this supervisory control system are shown in 

Figs 7.5 to 7.7, where the sampling period is 0.01 sec, El and 

E2 are the equilibrium states of the corresponding separate 

closed loops, 

v = 

[ 

47 
	 (7.49) 

and 

Xo  = [ : 1 	(7.50) 

It is evident from these figures that the first tracking 

assessment at 12.5 sec (To+2To) in Normal mode is 

'Non convergent', that Loop—fixed mode (If  = 1) begins, and 

that Correct/Incorrect loop assessment at 20 sec (To+To+12.5) 

is 'Incorrect loop'. Furthermore, it is evident that, next, 

Loop—fixed mode (2f  = 2) begins, that Correct/Incorrect loop 

assessment at 27.5 sec (To+To+20.0) is 'Correct loop', and 
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therefore that perfect dynamical limit tracking has been 

achieved. 

7.6 Conclusion 

Rigorous theoretical foundations for the analysis of the 

dynamical properties of digital self-selecting control systems 

have been established. Based upon these foundations, a new 

technique for supervising the operation of self-selecting 

controllers has been developed. The resulting digital 

supervisory self-selecting controller has three operational 

modes (ie Normal mode, Loop-excluded mode, and Loop-fixed 

mode). According to the judgements of assessment blocks (ie 

Tracking assessment and Correct/Incorrect loop assessment), 

which observe error vectors, controller switchings, and 

lowest-wins strategies, the controller changes the operational 

mode so that perfect or nearly perfect dynamical limit tracking 

can be achieved. 

An illustrative example has shown that the digital supervisory 

self-selecting controller possesses enhanced stability and that 

perfect dynamical limit tracking can be achieved even for the 

case in which limit-cycle oscillations occurred under the 

action of a non-supervisory self-selecting controller. 



S
E
T
 
P
O
I
N
T
 
C
H
A
N
G
E
 

T
I
M
E
 
R
E
S
E
T
 

S
E
L
F
—
S
E
L
E
C
T
I
N
G
 
C
O
N
T
R
O
L
 

(
N
O
R
M
A
L
 
M
O
D
E
/
 

L
O
O
P
—
E
X
C
L
U
D
E
D
 
M
O
D
E
)
 

T
R
A
C
K
I
N
G
 
A
S
S
E
S
S
M
E
N
T
 

C
O
N
V
E
R
G
E
N
T
 
N
O
N
C
O
N
V
E
R
G
E
N
T
 

7
 	 

T
I
M
E
 
R
E
S
E
T
 

L
O
O
P
—
F
I
X
E
D
 
C
O
N
T
R
O
L
 

(
L
O
O
P
—
F
I
X
E
D
 
M
O
D
E
)
 

C
O
R
R
E
C
T
/
I
N
C
O
R
R
E
C
T
 
L
O
O
P
 

A
S
S
E
S
S
M
E
N
T
 

I
N
C
O
R
R
E
C
T
 	

C
O
R
R
E
C
T
 

F
i
g
 
7
.
1
 
T
h
e
 
b
l
o
c
k
 
d
i
a
g
r
a
m
 
o
f
 
s
u
p
e
r
v
i
s
o
r
y
 
s
e
l
f
—
s
e
l
e
c
t
i
n
g
 
c
o
n
t
r
o
l
l
e
r
 



204 

a-1 a 
eaax eaax 

a-t 
eain 

a 
eain 

      

(Initialised time) 	t g 	t1 	t 2 to-2 	to-1 	to 

Time 

Fig 7.2 Discrete—time set of 
Normal and Loop—excluded mode 

1 	I  
to 	t0 	-11 

Time 

Fig 7.3 Discrete—time set 

of Loop—fixed mode 



Set-point change 

Normal mode 
Level 01 	 (In case of plant variation during mode transfer) 

I'Con' 	11'No Con' 

r> Loop-fixed mode 

I'Corr' I'In Cor' 

Loop-excluded mode 
Level 1 

I 'Con' 
	

'No Con' 

Loop-fixed mode 

'Corr' 	 Cor' 

›. Loop-excluded mode 
Level r-2 

Con' 'Con' 

Abbreviation 

Loop-fixed mode 

Cor' 'Corr' 
'Con' 	: 	'Convergent' 

.._.] 

'No Con': 	'Non convergent' Loop-fixed mode 
'Corr' 	: 	'Correct loop' (Loop-excluded mode) 
'In Cor': 	'Incorrect loop' Level r -1 

J'Corr' 'In Cor '  
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-• 

Fig 7.4 Tree diagram of Control mode 
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Fig 7.6 Closed-loop responses of the plant under 
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Input and Loop index under 
digital supervisory selF-selecting control 
Controller switching without bumpless transFer 

Fig 7.7 
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CHAPTER 8 

ROBUSTNESS OF SET—POINT TRACKING SYSTEMS 

8.1 Introduction 

Controllers are robust when they function (ie operate with 

acceptable performance) in the presence of significant plant 

uncertainties such as unknown disturbances and plant 

variations. Since such uncertainties may exist in practical 

applications, it is desirable that controllers are robust. 

Therefore, a robustness investigation is carried out in this 

chapter to specify the uncertainties with which the controllers 

described in Part II can cope. 

In the following sections, the robustness to unknown 

disturbances of tunable digital set—point tracking controllers 

is assessed at first. Then, the robustness to plant variations 

of such controllers is assessed. In this assessment, a very 

important Theorem 1 (Porter and Khaki—Sedigh (1989) 

(Appendix 7)) is utilised to characterise the admissible plant 

perturbations that can be tolerated by digital set—point 

tracking PID controllers. 

8.2 Robustness of tunable digital set—point tracking 

PID controllers 

8.2.1 Robustness in the face of unknown disturbances 

The robustness to unknown constant disturbances of tunable 
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digital set—point tracking PID controllers (Chapter 2) can be 

readily investigated. Thus, the state and output equations 

(2.1) and (2.2) are modified to incorporate constant 

disturbances on the plant. Hence, 

i(t) = Ax(t) + Bu(t) + d 	 (8.1) 

and 

y(t) = Cx(t) , 	 (8.2) 

where the vectors x(t), u(t), and y(t) and the matrices A, B, 

and C are defined as before. It is assumed that the constant 

disturbance vector d e R is unknown. The behaviour of such 

plants on the discrete—time set T T = (0,T,2T,...,kT,...} is 

governed by state and output equations of the form (Kwakernaak 

and Sivan (1972)) 

Xk+1 
= 'DXk  + TUk + Od 
	

(8.3) 

and 

yk  = rxk  , 	 (8.4) 

where the vectors xk, uk, and yk  are defined as before, the 

matrices t, f, and r are defined in equations (2.14) to (2.16), 

and 
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T 
0 = f exp(At) dt . 	 (8.5) 

0 

The state and output equations of such plants under the action 

of error-actuated digital PID controllers governed on the 

discrete-time set TT by control-law equations of the form 

(2.17) assume the forms 

[ Xk+1  

Zk+1 

fk+1  

—Tticir—tic3r , TtK2 ,—TK3 	Xk 

= 	—Tr 	, 

	

Im  , 0 	Zk  

	

—r 	, 	o , 0 	fk I 

+ 

T!K1  + tK3  

TIm 

Im  

+ Ho I 

d 	(8.6) 

and 

[ 

yk  = (r,o,o] 	xk 	. 

Zk 

fk 

(8.7) 

Therefore, provided only that T, K1 , K2, and K3  are such that 

all the eigenvalues of the closed-loop plant matrix in equation 

(8.6) lie in the open unit disc D-, 

lir AZk  = lira {zk+1 — Zk} = 0 
	

(8.8) 
k-Pal 	 k-oce 

and therefore 

lim ek  = 0 
	

(8.9) 
k-= 
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so that set—point tracking occurs simultaneously with 

disturbance rejection. 

Such disturbance rejection properties are illustrated by the 

simulation results shown in Figs 8.1 and 8.2. In this 

simulation, the plant is the five—input/five—output linear F100 

engine model at Intermediate power condition (Appendix 3), the 

digital PID controller is designed and tuned as before (Example 

in Chapter 2), and the set—point vector for the outputs is v = 

[126, 93.4, 14.5, 1.78, 1.971 T  so that the thrust change is 500 

lb. Furthermore, the constant disturbance vector is described 

by 

d(i) = 0 	, 	 i E [1,33] , i 0 2 

d(2) = —100 
(8.10) 

where d(i) is the ith element of d E R33. This choice is made 

to simulate the horsepower extraction. These results indicate 

the excellent disturbance rejection and set—point tracking 

behaviour of the plant under the action of unknown constant 

disturbances. 

8.2.2 Robustness in the face of plant variations 

The robustness to plant variations of tunable digital set—point 

tracking PID controllers can now be assessed. In this study, 

the five—input/five—output linear F100 engine models 

(Appendix 3) are used as the nominal and actual plants. 
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Firstly, the controller is designed for a model obtained at 

Intermediate power condition (Power lever angle = 83 deg) - ie 

the nominal plant. The excellent set-point tracking behaviour 

of the F100 engine under the action of an error-actuated 

digital PID controller tuned such that T = 0.05 see, A(0.05)H = 

diag{0.05, 0.2, 0.1, 0.1, 0.1), E = 50.015' and A(0.05)A = 

0.00115 is shown in Figs 8.3 and 8.4. In this case, the 

set-point vector for the outputs is v = [126, 93.4, 14.5, 1.78, 

1.97)T  so that the thrust change is 500 lb. 

Next, in order to examine the robustness of this controller, 

the controller is now applied to another linear F100 engine 

model obtained at the different power condition (Power lever 

angle = 67 deg) - ie the actual plant. The steady-state 

transfer function matrices of the nominal plant and the actual 

plant are given in the forms 

[ 

Gn(0) = 

0.37904 1238.8 
0.30777 660.79 
0.20602E-01 -39.863 
0.15944E-02 -12.168 
0.90309E-01 210.94 

-28.508 
-2.8675 
0.25947 
0.38479E-01 
-1.7403 

and 

-9.2619 	-57.405 
-25.646 	-46.221 
-0.76283 	-6.8275 
-0.33542E-01 -0.44527 

2.2101 	12.248 I 

(8.11) 
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[ 0.40780 	1220.2 

	

0.32555 	197.87 
Ga(0) = 	0.27484E-01 —6.8768 

0.24994E-02 —7.8017 
0.95167E-01 72.565  

—30.646 
—1.9798 
0.83052E-01 
0.24802E-01 
—1.2269 

—10.843 	—64.279 
—19.076 	—37.008 
—0.61430 	—5.5979 
—0.15957E-01 —0.29314 
1.8282 	10.459 

• (8.12) 

 

 

By Theorem 1 (Porter and Khaki—Sedigh (1989) (Appendix 7)), the 

spectrum of the perturbation matrix M = Ga(0)G;1(0) is 

(A1,A2,..,µ5) = (1.25870, 1.08577, 0.937
07, 0.71708, 0.64485) 

(8.13) 

and therefore satisfies the robustness theorem since Al  E e 

= 1,2,...,5). The set—point tracking behaviour of the F100 

engine (the actual plant) under the action of the 

error—actuated digital PID controller designed for the nominal 

plant and tuned as before is shown in Figs 8.5 and 8.6 for the 

same set—point vector as before. The tunable digital PID 

controller is robust in the face of plant variations, as 

predicted, since this behaviour exhibits only minimal 

performance degradation. 

8.3 Robustness of tunable digital set—point tracking 

PID/Pre—filter controllers 
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8.3.1 Robustness in the face of unknown disturbances 

The robustness to unknown constant disturbances of tunable 

digital set—point tracking PID/Pre—filter controllers 

(Chapter 3) can be readily investigated. Thus, the state, 

output, and measurement equations (3.1) to (3.3) are modified 

to incorporate constant disturbances on the plant. Hence, 

i(t) = Ax(t) + Bu(t) + d , 	 (8.14) 

w(t) = Ex(t) , 	 (8.15) 

and 

y(t) = Cx(t) , 	 (8.16) 

where the vectors x(t), u(t), w(t), and y(t), and the matrices 

A, B, E, and C are defined as before. It is assumed that the 

constant disturbance vector d E Rn  is unknown. 

In the presence of such disturbances, the Laplace transforms of 

unmeasurable and measurable outputs are 

w(s) = E(sI — A)-1(Bu(s) + d/s} 	 (8.17) 

and 

y(s) = C(sI — A)-1(Bu(s) + d/s) . 	 (8.18) 
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Therefore, in case u(t) = u = const 

and 

lim w(t) = -EA-1(Bu + d) 
t-+= 

= G u - EA-ld w 

lim y(t) = -CA-1(Bu + d) 
t-40,  

= G Y u - CA-ld , 

(8.19) 

(8.20) 

where the steady-state transfer function matrices G, and G y  are 

defined in equations (3.5) and (3.6), respectively. 

The behaviour of such plants on the discrete-time set T T = 

{0,T,2T,...,kT,...} is governed by state, output, and 

measurement equations of the form (Kwakernaak and Sivan (1972)) 

Xk+1 = ftk  -I-  TUk + Od , 
	 (8.21) 

Wk = Exk t 
	 (8.22) 

and 

yk  = rxk  , 	 (8.23) 

where the vectors xk, uk, wk, and yk  are defined as before, the 

matrices 0, t, E, and r are defined in equations (3.19) to 

(3.22), and 



X k+ 1 

Z k+ 1 

fk+ 1 

0-T2K1  r—tx3r , 

—Tr, 

—r , 

T2Kz ,-*K3  

	

1m 	, 	0 

	

o 	, 	0 

xk 

zk 
fk 1 

+ 

T2K, + 2K 3 

TIm  

Im 
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T 
0 = f exp(At) dt . 	 (8.24) 

0 

The state and output equations of such plants under the action 

of error-actuated digital PID/Pre-filter controllers governed 

on the dicrete-time set TT  by control-law equations of the form 

(3.29) assume the forms 

+ [ : Id 	

(8.25) 

0 

and 

W k = [ , 0 , 0 ] 

[ 

Xk 

z k 

fk I 

(8.26) 

Therefore, provided only that T, K1, K2, and K 3  are such that 

all the eigenvalues of the closed-loop plant matrix in equation 

(8.25) lie in the open unit disc D-, 

lim Azk  = lim (zk.1.1  - zk) = 0 	 (8.27) 

t-+= 	t.-0+0 

and therefore 

lim ek  = 0 
	 (8.28) 

t4= 
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so that set-point tracking occurs for the measurable outputs in 

the sense that 

lim (v - yk) = 0 . 	 (8.29) 
Ic—,04  

Here, the set-point vector for measurable outputs 

v = Jr E Rm  , 	 (8.30) 

where the set-point vector for unmeasurable outputs r G R m  and 

the pre-filter matrix 

J = G Y  G-1  E R
m2m  

w 	
7 

However, in general 

lim (Jr - Jwk) $ 0 
k —ow 

(8.31) 

(8.32) 

in view of equations (8.19) and (8.20). Therefore, 

lim (r - wk) * 0 . 	 (8.33) 
It—,c0 

This indicates that, although set-point tracking of the 

measurable outputs can be achieved, the unmeasurable output 

vector cannot be caused to track its set-point vector in the 

steady state. It therefore follows that, in general, tunable 
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digital set—point tracking PID/Pre—filter controllers cannot 

reject unknown disturbances in this sense. 

Such properties are illustrated by the simulation results shown 

in Fig 8.7 to 8.9. In this simulation, the plant has five 

manipulated variables, five unmeasurable outputs, and five 

measurable outputs (Appendix 3). The digital PID/Pre—filter 

controller is designed and tuned as before (Example in 

Chapter 3) and the set—point vector for the unmeasurable 

outputs is r = [500, 0, 0, 0, 0]T  whilst the corresponding 

set—point vector for the measurable outputs is v = Jr = [126, 

93.4, 14.5, 1.78, 1.97]T. Furthermore, the constant 

disturbance vector is described by 

d(i) = 0 	i E [1,33] , i 0 2 

d(2) = —100 
(8.34) 

where d(i) is the ith element of d E R33. This choice is made 

to simulate the horsepower extraction. These results indicate 

that although set—point tracking together with disturbance 

rejection for measurable outputs can be achieved, neither 

set—point tracking nor disturbance rejection for unmeasurable 

outputs can be achieved and that such performance degradation 

might occur in the face of unknown disturbances. 

8.3.2 Robustness in the face of plant variations 

The robustness to plant variations of tunable digital set—point 

tracking PID/Pre—filter controllers can now be investigated. 
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The design equations (3.68), (3.70), and (3.72) for the 

proportional, integral, and derivative controller matrices K1, 

K2' and K3 are accordingly re-expressed in the forms 

K1  = Hw-,!(T)A.,m(T)HJ-1  , 	 (8.35) 

and 

K2  = Gy,  -1(0)E , n (8.36) 

K3 = H w  - n1(T)Aw,n(T)AJ-1  . , (8.37) 

Here, Hw,n(T) and Aw,n(T) are, respectively, the step-response 

and decoupling-index matrices of the nominal plant for 

unmeasurable outputs and G3rtn  (0) 	
is the steady-state 

transfer-function matrix of the nominal plant for measurable 

outputs. 

It is then evident from equations (3.64), (3.65), and (3.66) 
A 	A 

that Z = Z U Z2 U Z3 is now the set of closed-loop 

characteristic roots, where 

Z = (z E C : I zIn — In  — TA + 0(T2) I = 0) , 	(8.38) 

Z2 = {z E C : 1 zIm  - Im  + T2Gy,a(0)Gy01(0)E + 0(T3) I 

= 0) , 	(8.39) 

Z3 = {z E C : 1 zI + 0(T) I = 0) , 
	 (8.40) 
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and Gy,a(0)  is the steady—state transfer function matrix of the 

actual plant for measurable outputs. It is clear that the 

closed—loop tracking system will remain asymptotically stable, 

and that set—point tracking will consequently still occur in 

the sense that 

lim (v — yk) = 0 , 	 (8.41) 
Ic-0 4-00  

provided that Zc  C D. However, in view of equations (3.23), 

(3.26), and (3.27), 

lim (r — wk) * 0 , 	 (8.42) 
ic-0 4-m 

unless 

G y, .G.:! = Gy,aGw01, . 	 (8.43) 

Therefore, it is noted that the unmeasurable output vector may 

not track its set—point vector in the steady state and that 

performance degradation of the controller may occur in this 

sense. 

In case the controller is designed for a linear F100 engine 

model obtained at Intermediate power condition (Power lever 

angle = 83 deg) — ie the nominal plant, the excellent set—point 

tracking behaviour of the F100 engine under the action of a 

digital PID/Pre—filter controller tuned such that T = 0.05 sec, 

AY  (
0.05)H = 1.015' E = 50.0152  and A Y(0

.05)A = 0.0115 is shown 
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in Figs 8.10 to 8.12. In this case, the required thrust change 

is 500 lb so that the set-point vector for the unmeasurable 

outputs is r = [500, 0, 0, 0, 01T  whilst the corresponding 

set-point vector for the measurable outputs is v = Jr = [126, 

93.4, 14.5, 1.78, 1.971 T. 

In order to examine the robustness of this controller, the 

controller is now applied to another linear F100 engine model 

obtained at the different power condition (Power lever angle = 

67 deg) - ie the actual plant. The steady-state 

transfer-function matrices of the nominal plant and the actual 

plant are given in the forms 

	

[ 0.37904 	1238.8 

	

0.30777 	660.79 
Ga(0) = Gy,n(0) = 	0.20602E-01 -39.863 

0.15944E-02 -12.168 
0.90309E-01 210.94 

-28.508 
-2.8675 
0.25947 
0.38479E-01 
-1.7403 

-9.2619 	-57.405 
-25.646 	-46.221 
-0.76283 	-6.8275 
-0.33542E-01 -0.44527 

2.2101 	12.248 1 

(8.44) 

and 

	

[ 0.40780 	1220.2 

	

0.32555 	197.87 
Ga(0) = Gy,a(0) = 	0.27484E-01 -6.8768 

0.24994E-02 -7.8017 

	

0.95167E-01 	72.565 

-30.646 
-1.9798 
0.83052E-01 
0.24802E-01 
-1.2269 

. (8.45) 

-10.843 	-64.279 

	

-19.076 	-37.008 
-0.61430 	-5.5979 
-0.15957E-01 -0.29314 

	

1.8282 	10.459 
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By Theorem 1 (Porter and Khaki—Sedigh (1989) (Appendix 7)), the 

spectrum of the perturbation matrix M = Ga(0)G;1(0) is 

{A1,A2,..,µ5} = {1.25870, 1.08577, 0.93707, 0.71708, 0.64485) 

(8.46) 

and therefore satisfies the robustness theorem since mi  e C+  

(j = 1,2,..,5). The set—point tracking behaviour of the F100 

engine (the actual plant) under the action of a digital 

PID/Pre—filter controller designed for the nominal plant and 

tuned as before is shown in Figs 8.13 to 8.15 for the same 

set—point vector for the unmeasurable outputs as before. The 

tunable digital PID/Pre—filter controller is robust in the face 

of plant variations in the sense that the closed—loop system 

remains asymptotically stable. However, performance 

degradation has occured in the sense that the unmeasurable 

output vector no longer tracks its set—point vector in the 

steady state. 

8.4 Conclusion 

In this chapter, the robustness properties of set—point 

tracking systems incorporating tunable digital PID or 

PID/Pre—filter controllers has been assessed. By considering 

the stability of discrete—time closed—loop tracking systems, 

the effect of unknown constant disturbances has been 

investigated for both types of controller. The robustness 

assessment for plant variations has been carried out using the 

robustness theorem — Theorem 1 (Porter and Khaki—Sedigh (1989) 
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(Appendix 7)). 	This assessment has been effected by 

characterising, in terms of the steady—state transfer function 

matrices of nominal and actual plants, the admissible plant 

perturbations that can be tolerated by such tunable set—point 

tracking controllers. In order to verify the results and 

predictions of this analysis, time—domain simulation results 

for a gas—turbine engine have been presented. 

It has been shown in the analysis and the simulation results 

that the tunable digital set—point tracking PID controllers can 

achieve set—point tracking with disturbance rejection and that 

such controllers are robust since only minimal performance 

degradation has occurred in the face of plant variation. 

In the case of the tunable digital set—point tracking 

PID/Pre—filter controllers, it has been shown that such 

controllers are robust in the sense that the closed—loop 

digital control systems remain asymptotically stable in the 

face of unknown constant disturbances or admissible plant 

variations. However, it has been shown in this case that 

although set—point tracking together with disturbance rejection 

for measurable outputs can be achieved, neither set—point 

tracking nor disturbance rejection can be achieved for 

unmeasurable outputs and that performance degradation might 

therefore occur in this sense in the face of unknown 

disturbances or plant variations. These results have been 

verified by the presentation of time—domain simulation results. 
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CHAPTER 9 

ROBUSTNESS OF LIMIT—TRACKING SYSTEMS 

9.1 Introduction 

Since it has been shown in Chapter 4 that undertracking 

(Definition 4.4) is always possible in the face of unknown 

constant disturbances, it is expected that self—selecting 

controllers (Chapter 6) have good disturbance—rejection 

properties. Furthermore, since such controllers are extensions 

of tunable digital set—point tracking controllers whose 

robustness to plant variations has been shown in Chapter 8, 

self—selecting controllers are also expected to be robust in 

the face of plant variations. 

Therefore, in this chapter, an investigation is carried out to 

assess the robustness of self—selecting controllers in the face 

of unknown constant disturbances and plant variations. 

Furthermore, for supervisory self—selecting controllers, the 

robustness of the supervisory part is investigated based on its 

control—mode structure. 

9.2 Robustness of digital self—selecting PID controllers 

9.2.1 Robustness in the face of unknown disturbances 

The robustness to unknown constant disturbances of digital 

self—selecting PID controllers (Chapter 6) can be readily 

investigated. Thus, the state and output equations (6.1) and 
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(6.2) of linear multivariable Class I plants are modified to 

incorporate constant disturbances on the plants. Hence, 

i(t) = Ax(t) + Bu(t) +d 	 (9.1) 

and 

Y(t) = Cx(t) , 	 (9.2) 

where the vectors x(t), u(t), and y(t), and the matrices A, B, 

and C are defined as before. It is assumed that the constant 

disturbance vector d E R n  is unknown. Since the plants are 

asymptotically stable, it follows from equations (9.1) and 

(9.2) that the output vector of the initially quiescent plant 

for a constant input vector u(t) = u =const is 

Y(t) = CA-1(e
At 	In)(Bu + d) 
	 (9.3) 

and therefore that, in the steady state, 

lim y(t) = —CA-1(Bu + d) 
v4= 

= Gu — CA-ld , 	 (9.4) 

where G G RP" is the steady—state transfer—function matrix 

defined in equation (6.4). Then, by Theorem 4.4, there always 

exists an input u such that 

G u < v + CA-ld , 	 (9.5) 



where v e RP is the set-point vector. This means that 

lim y(t) < v 	 (9.6) 
t-2  

in view of equation (9.4) and that, by considering v + CA-1d as 

a new set-point vector in Theorem 5.1, there always exists at 

least one limit-tracking input which satisfies equation (9.6). 

Therefore, the steady-state condition of limit-tracking is 

satisfied in the face of unknown constant disturbances. 

Next, by applying the order-reduction technique (Appendix 5.1) 

to the plants, the sub-output vectors corresponding to subsets 

Yi  (i = 1,2,...,r r = p-m+1) are 

y(i)(t) = C(i)x(t) 	(i = 1,2,...,r) , 	 (9.7) 

where the vectors y(i)(t) (i = 1,2,...,r) and the matrices C(i)  

(i = 1,2,...,r) are defined as before. The behaviour of such 

sub-plants on the discrete-time set T T = (0,T,2T,...,kT,...) 

is governed by state and output equations of the form 

(Kwakernaak and Sivan (1972)) 

Xk+1 = CXk + ttlk + ed 
	

(9.8) 

and 
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Yk = (i) r(i)Xk , i E Ir I (9.9) 



[ Xk+1 

Zk+1 = 

fk+1 

t-TtKli)01)-2K1i)T(i)  , TUW)  ,-EW) 	I Xk 

	

1 	0 	Zk 

	

, 	0 	fk I I 

—Tr(i) 

—01) 
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where the vectors xk, uk, and yi(ci)  are defined as before, the 

matrices 	t, and 01) are defined in equations (6.19) to 

(6.21), the index set Ir  is defined as before, and 

T 
0 = f exp(At) dt . 	 (9.10) 

0 

The state and output equations of such sub—plants under the 

action of individual error—actuated digital PID controllers 

governed on the discrete—time set TT  by control—law equations 

of the form (6.22) assume the forms 

[ 

T2K(i)  + 2K(i)  1 	 3 

TIm  

I. 

v(i) + [ e0 	d 	(9.11) 0   

and 

= [ r(i) , o , o 1 

[ 

k .

k :  k 

• (9.12) 

Therefore, provided only that T, KV), KV), and KV), where 

i E Ir, are such that all the eigenvalues of the closed—loop 
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sub-plant matrix in equation (9.11) lie in the open unit 

disc D- , 

lim Azk  = lim (zk4. 1  - 	= 0 	 (9.13) 
k-020 	k-400  

and therefore 

lim eV.)  = 0 	 (9.14) 

so that set-point tracking for the subset Yi  occurs 

simultaneously with disturbance rejection. 

Such disturbance-rejection properties are illustrated by the 

simulation results shown in Figs 9.1 and 9.2 for Structure 1 

(Example in Chapter 6) and in Figs 9.3 and 9.4 for Structure 2 

(Example in Chapter 6). In these simulations, the plant is the 

two-input/three-output linear F100 engine model obtained at 

Intermediate power condition and the digital self-selecting 

controllers are designed for both structures and tuned as 

before. The disturbance vector is described by 

d(j) = 0 
	

j E [1,25] , j 0 2, 	 (9.15) 

where d(j) is the jth element of d E R25  and d(2) is shown in 

Figs 9.1 and 9.3. This choice is made to simulate the 

horsepower extraction. These results indicate the excellent 

disturbance-rejection and limit-tracking behaviour of the plant 

under the action of unknown disturbances. 
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9.2.2 Robustness in the face of plant variations 

The robustness to plant variations of digital self—selecting 

PID controllers can now be assessed. Such self—selecting 

controllers are synthesised using Algorithm 5.1. It is 

recalled that a key concept of this algorithm is to discover in 

the set of feasible inputs UF(0) an extreme ray uniquely 

represented by m-1 (m is the number of inputs) hyperplanes and 

to limit the region of limit—tracking inputs on a corresponding 

line (Chapter 5). Then, even though plant variations occur, 

there exists a limit—tracking input on this line for any 

set—point command as long as the intersection of these m-1 

hyperplanes continues to be an extreme ray. Therefore, for 

each separate controller, the design equations (6.67), (6.68), 

and (6.69) for the proportional, integral, and derivative 

controller matrices K(I), 2 K(I)1 	3 and K(i)  are accordingly 1  

re—expressed in the forms 

K11) = KI)(T)-1Al1)(T)n(i) , 	 (9.16) 

and 

W )  = G") (0)-12 (1)  , n (9.17) 

K (1)  = H(1) (T)-1A (1) (T)A()  . n  (9.18) 

Here, Ki)(T), 02(ii)(0), and Ai(ii)(T) are, respectively, the 

step—response, steady—state transfer—function, and decoupling 

matrices of the nominal sub—plant. It is then evident from 



246 

A 	 A 	. 
equations (6.67), (6.68), and (6.69) that Z!" = Z1  U 22 U 23 

is now the set of closed—loop characteristic roots, where 

2")  = {z E C : I zIn — In —TA + 0(T2) I = 0) v 1 (9.19) 

4i) = (z E C : 1 zim  - I. + T2Gli)(0)G!')(0)-1E(i)  

+ 0(T3) 1 = 0 } , 	(9.20) 

2V)  = (z E C : 1 Elm  + 0(T) 1 = 0 } , 	 (9.21) 

and G(ai)(0) is the steady—state transfer—function matrix of the 

actual sub—plant. It is clear that the separate closed—loop 

tracking system will remain asymptotically stable, and that 

set—point tracking for the subset Yi  will consequently occur in 

the sense of equation (6.33), provided that Z!" C D-. 

Therefore, this indicates that the robustness theorem 

(Theorem 1: Porter and Khaki—Sedigh (1989) (Appendix 7)) can 

be utilised to assess the robustness of each separate 

closed—loop system. 

Based on these results, the following theorem is obtained for 

the robustness properties of the separate set—point tracking 

PID controllers which are incorporated in a self—selecting 

controller. In this robustness theorem, it is necessary to 

distinguish between the plant for which a controller is 

designed — ie the nominal plant (denoted by subscript n) — and 

the plant to which a controller is applied — ie the actual 

plant (denoted by subscript a). 
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Theorem 9.1 

Consider any digital self-selecting PI/PID controller with 

cmtrolledsubsetsY.1,i E Ir  of plant outputs in the form 

Y 1 

Yr  

= 

= 

{y.1 

• • 

• • 

. 	. 

{Ys  
1 

11 • 	• • , 

• 

• 

. 

9...9 

YS 	9 
111••1 

Ys 	, 
m-1 

Yti } 

Ytrl 	I 

(9.22 ) 

where r = p-m+1, the index set of all the control loops is Ir  = 

(1,2,...,r), the index set I = (1,2,...,p}, I* 
 
= {s

1

, • • • 40342. 1), 

and I\I*  = (ti,...,tr). 

Assume that the steady-state transfer-function matrix, Ga, of 

the actual plant is such that 

(i) the m-1 row vectors of G a (= Ga(0)) corresponding to the 

index set I*  represent an extreme ray in the set UF(0) of 

feasible inputs of the actual plant, 

and 

(ii) every one of the r row vectors of G a corresponding to the 

index set I\I*  is linearly independent of all the row 

vectors corresponding to I*. 

Then for every separate set-point tracking PI/PID controller 

(which controls Y1, i E Ir  and is incorporated in the 

self-selecting controller) with integral post-multiplier of the 

form 
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E(i) = cy(j) I
. 
	(0(1)  E R*) 	 (9.23) 

and any plant perturbation such that 

Aji)  E C+ 	(j = 1,2,...,m) 	 (9.24) 

where (µ1i),W),...,421)) is the spectrum of the perturbation 

matrix 

N(i)  = G!')(0)GII)(0)-1  e Rm" , 	 (9.25) 

there exists a sampling period Ti  E R* such that set—point 

tracking for the subset Yi  occurs for all T E (0,Ti]. 

Next, Theorem 9.1 is used in an illustrative example. In case 

the nominal and actual plant are the linear F100 engine model 

obtained at Intermediate power condition (Power lever angle = 

83 deg), the set of feasible inputs UF(0) is shown in Fig 6.2. 

For the obtained Structure 1 (Example in Chapter 6), the 

excellent limit—tracking and switching behaviour of the F100 

engine under the action of an error—actuated controller tuned 

such that T = 0.05 sec, 401)(0.05)n(1)  = diag{0.04, 0.1), 

A(2)(0.05)11(2)  = diag(0.04, 0.02), E(1)  = E(2)  = 50.012, and 

A(1)  = A(2)  = 0.000512  is shown in Figs 6.6 and 6.7, where the 

loops show that P7(y2) and FTIT(y3) are controlled in turn, 

whilst N1(y1) is permanently controlled. For the Structure 2 

(Example in Chapter 6), the excellent limit—tracking and 
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switching behaviour of an error—actuated controller tuned such 

that T = 0.05 sec, A(1)(0.05)11(1)  = diag{0.1, 0.04), 

A(2)(0.05)11(2)  = diag(0.1, 0.02), E(1)  = E(2)  = 50.012, and 

A(1)  = A(2)  = 0.000512  is shown in Figs 6.8 and 6.9, where the 

loops show that kyyl) and FTIT(y3) are controlled in turn, 

whilst P7(y2) is permanently controlled. 

In order to examine the robustness of these controllers, they 

are now applied to another linear F100 engine model obtained at 

the different power condition (Power lever angle = 67 deg). 

The steady—state transfer—function matrices of the nominal 

plant and the actual plant are given in the forms 

G. = G.(0) = 

[ 

0.37904 

0.15944e-2 

0.90309e-1 

1238.8 

—12.168 

210.94 1 

(9.26) 

and 

G a --,-. G.(0) 	= 

[ 

0.40780 

0.24994e-2 

0.95167e-1 

1220.2 

—7.8017 

72.565 I 

(9.27) 

The input space for the actual plant is shown in Fig 9.5. It 

is clear from Fig 6.2 for the nominal plant and Fig 9.5 that 

the conditions (i) and (ii) of Theorem 9.1 are satisfied and 

therefore that the robustness assessment using perturbation 

matrices for the separate set—point tracking controllers of 

either Structure 1 or Structure 2 is effective. 	For 

Structure 1, the spectra of the perturbation matrices are 
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(9.28) 

(9.29) 

and therefore the condition (9.24) of Theorem 9.1 is satisfied. 

For Structure 2, the spectra of the perturbation matrices are 

(Al l), 41)1 = (2.5082, 1.08081 	 (9.30) 

(µ12), 42)1 = (1.2167, 0.52911 	 (9.31) 

and therefore the condition (9.24) of Theorem 9.1 is satisfied. 

Thus, by Theorem 9.1, the separate set—point tracking PID 

controllers incorporated in the digital self—selecting 

controller based upon either Structure 1 or Structure 2 can 

cope with such plant variations. 

Now, the robustness of complete closed—loop systems can be 

demonstrated in time—domain simulation. The limit—tracking and 

switching behaviour of the F100 engine (the actual plant) under 

the action of such digital self—selecting controllers designed 

for the nominal plant and tuned as before is shown in Figs 9.6 

and 9.7 for Structure 1 and in Figs 9.8 and 9.9 for 

Structure 2. The digital self—selecting PID controller is 

robust in the face of plant variations in the sense that the 

separate set—point tracking controllers and the integrated 

self—selecting controller remain asymptotically stable and that 

only minimal performance degradation has occurred. 

(All), 	141)} = {1.1317, 0.8359} 

(Al2), 	42)1 = {1.0808, 2.5082} 
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9.3 Robustness of digital supervisory self—selecing controllers 

The robustness of digital supervisory self—selecting 

controllers (Chapter 7) can now be investigated. The 

controller operations of Normal and Loop—excluded modes are in 

principle the same since the lowest—wins strategies have 

authority to decide the controlled subsets at each time instant. 

Therefore, in case the controller matrices of separate 

set—point tracking controllers are designed by the methodology 

described in Chapter 6, the robustness assessment of both 

control modes can be effected by Theorem 9.1. Furthermore, 

since the controller operation of Loop—fixed mode is the same 

as that of the tunable digital set—point tracking controller, 

the robustness theorem (Theorem 1: Porter and Khaki—Sedigh 

(1989) (Appendix 7)) is applicable. 

Next, the choice of controller parameters of the supervisory 

part is discussed in the context of robustness. It is 

considered that the initial settling time T$  (Definition 7.8) 

does not affect crucially the stability of the complete 

closed—loop system although it affects the timing at which 

Tracking or Correct/Incorrect loop assessment begins. 

Furthermore, it is considered that a too short observation time 

T0  (Definition 7.8) might give an incorrect assessment i
n the 

assessment blocks. Therefore the robustness to the choice of 

T0  needs to be studied. In addition, the effects of the choice 

of a (0 < a < 1) and $ ($ > 0) need to be studied. In the 

following simulation studies, the controller gains, the 

controller switching logic, and the initial settling time Ts 
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are chosen the same as in the example in Chapter 7. The effect 

of To  is shown in Figs 9.10 and 9.11, where To  = 0.5 sec, a = 

0.5, and $ = 0.5. The first tracking assessment at 3.5 sec 

(Ts+2T0) in Normal mode is 'Non convergent', Loop—fixed mode 

(2f=2) begins, and Correct/Incorrect loop assessment at 6.5 sec 

(Ts+To+3.5) is 'Correct loop'. After that, the same assessment 

continues at 7.0 sec, 7.5 sec, 6.0. Therefore, perfect 

dynamical limit tracking has been achieved. 

The effect of a is shown in Figs 9.12 and 9.13, where To  = 5.0 

sec, a = 0.9, and $ = 0.5. In Normal mode, the first Tracking 

assessment at 12.5 sec (Ts+To) is generously 'Convergent' 

because of a large a. However, the second Tracking assessment 

at 17.5 sec (T0+12.5) is 'Non convergent', and Loop—fixed mode 

(2f=1) begins. Since Correct/Incorrect loop assessment at 25 

sec (Ts+To+17.5) is 'Incorrect loop', Loop—fixed mode (2f=2) 

begins. And finally, Correct/Incorrect loop assessment at 30 

sec (T0+25) is 'Correct loop', so that perfect dynamical limit 

tracking has been achieved. 

The effect of $ is shown in Figs 9.14 and 9.15 for $ = 0.1, and 

Figs 9.16 and 9.17 for $ = 0.9. It is evident from these 

figures that these responses are the same as the responses of 

the example in Chapter 7 and therefore that perfect dynamical 

limit tracking has been achieved independently of the value 

of $. 
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9.4 Conclusion 

In this chapter, the robustness properties of limit-tracking 

systems incorporating digital self-selecting controllers or 

digital supervisory self-selecting controllers have been 

assessed. It has been shown that there always exists at least 

one limit-tracking input (in the steady state) in the presence 

of unknown disturbances, that set-point tracking for separate 

subsets of plant outputs occurs with disturbance rejection, and 

therefore that limit tracking for the complete plant occurs 

with disturbance rejection. Time-domain simulation results 

have demonstrated such properties. 

Next, by considering the conditions under which limit-tracking 

is possible in the face of plant variations, a robustness 

theorem (Theorem 9.1) has been constructed so as to assess the 

robustness properties of the separate set-point tracking 

controllers which are incorporated in the self-selecting 

controllers. Illustrative examples together with time-domain 

simulation results have demonstrated the effectiveness of the 

theorem and the robustness of self-selecting controllers. 

Then, the robustness properties of supervisory self-selecting 

controllers have been studied. It has been shown that Theorem 

9.1 is applicable to Normal and Loop-excluded modes, and that 

Theorem 1 (Porter and Khaki-Sedigh (1989) (Appendix 7)) is 

applicable to Loop-fixed mode. In order to investigate the 

effects of the controller parameters of the supervisory part, 

time-domain simulation results have been presented. It has 

been shown that the supervisory self-selecting controllers are 



254 

robust in the sense that dynamical limit tracking can be 

achieved in the presence of variations of controller 

parameters. 

It is noted that, although the stability of complete 

self—selecting control systems cannot be assessed by Theorem 

9.1 in the case of non—supervisory self—selecting controllers, 

the present analysis and simulation results together with 

application examples (Jones et al (1988), (1990)) show the 

implicit robustness of such control systems. In case such 

implicit robustness is not enough to guarantee the stability of 

complete self—selecting control systems, supervisory 

self—selecting controllers can be applied. 
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CHAPTER 10 

DESIGN OF DIGITAL SELF-SELECTING CONTROLLERS 

FOR F100 GAS-TURBINE ENGINE 

10.1 Introduction 

The controller design methodologies discussed in Parts II to IV 

are concerned with linear multivariable plants. However, most 

physical plants have more or less nonlinear characteristics. 

It is accordingly necessary to verify that these controllers 

can function for complex nonlinear plants. Therefore, in this 

chapter, a digital self-selecting controller (Chapter 6) is 

designed for a nonlinear F100 engine model (Appendix 4) and the 

adaptability of the controller to nonlinear complex 

multivariable plants is demonstrated. 

10.2 Controller design 

In order to compare the obtained results with those of the 

example in Chapter 6, it is convenient to choose a design point 

at Sea Level Static (SLS)/Intermediate power condition. The 

two manipulated inputs chosen are u1: main burner fuel flow 

(lb/hr) and u2: nozzle jet area (ft2). The five controlled 

outputs chosen are y1(N1): fan speed (rpm), y2(N2): 

compressor speed (rpm), y3(P3): compressor discharge pressure 

(psia), y4(P7): augmentor pressure (psia), and ys(FTIT): 

fan-turbine inlet temperature (aR). The obtained open-loop 

step responses of the F100 engine at SLS/Intermediate are shown 
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in Figs 10.1 and 10.2. The steady-state transfer-function 

matrix is 

2.52760e-1 , [1451.03 
1.35074e-1 , -7.04544 

G = G(0) = 	2.22808e-2 , -4.56090 
2.08151e-3 , -7.70092 
1.46573e-2 11 2.96426 

I 

E  R5x2,  (10.1) 

so that it is clear from Theorem 4.5 that G E Class I. 

Therefore, in order to apply Algorithm 5.1, the set of feasible 

inputs Up(0) (Definition 4.2) is shown in Fig 4.5, where 

gT o...,g5  are the row vectors of G. Then, it is evident from 

Fig 4.5 that both N1  and P7  represent extreme rays of UT(0), 

that both extreme rays have unique representations, and 

therefore that self-selecting controllers can be synthesised 

based on either N1  or PI  as the permanently controlled output. 

However, since the structure based on P7  provided the better 

overshooting characteristics in the examples in Chapter 6, this 

structure is chosen. Therefore, the controlled subsets of 

plant outputs are 

Yi  = (P7 	, N1} 

Y2 = (P7 	, N2) 

I 

Y3  

14  

= 

= 

(P7 	, 

(P7 	, 

P3} 

FTIT} 

(10.2) 

It is assumed that the sub-plant step-response matrices H(i)(t) 

E R2s2 	(i = 1,2,3,4) 	and 	the 	sub-plant 	steady-state 

transfer-function matrices G(i)(0) E R2s2 (i = 1,2,3,4) 
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correspond 	to 	these 	subsets 	Yi 	(i = 1,2,3,4). 	The 

corresponding minimum singular values of the sub-plant 

step-response 	matrices 	(amin[H(1)(t)) 	(i = 1,2,3,4)) 	are 

obtained from Figs 10.1 and 10.2 and their plots are shown in 

Figs 10.3 to 10.6. It is considered from these figures that 

none of the amin[H()(0) (i = 1,2,3,4) vanishes and therefore 

that all sub-plants corresponding to Yi (i = 1,2,3,4) have 

minimum-phase characteristics (Porter and Jones (1985c)). 

Furthermore, these figures indicate that the G(1)(0) 

(i = 1,2,3,4) 	are 	well-conditioned 	since 	amin tH(i)(4-...)) 

(i = 1,2,3,4) are not small. 

The sampling period is chosen as 0.05 seconds which reflects 

both the required speed of response and the fact that the 

amin[H(i)(0.05)] (i = 1,2,3,4) are not small so that the 

H(i)(0.05) are well-conditioned, where the H(i)(0.05) are 

sub-matrices of H(0.05) obtained from Figs 10.1 to 10.5 and 

[

H(0.05) = 

0.428846e-3 , 	2.86270 
0.406083e-3 , 0.524400e-1 
0.151410e-3 , -0.148817e-2 
0.400079e-5 , -0.598165 
0.169012e-4 , -0.163060e-2 

(10.3) 

The self-selecting controller is governed on the discrete-time 

set TT = (0,T,2T,...,kT,...} by the equations 

J(kT)=(jr,e.c  (kT) = min et  (kT)) , 	 (10.4) 
LEI 	L r 

2k = 2(kT) E J(kT) C Ir  , 
	 (10.5) 



275 

and 

uk  = uk _ i  + TK(2k)(ek  - ek-1)  + T2Wk)e k-1 

+ K32k)(ek  - 2ek-1 + ek-2) 	. 	(10.6) 

Here, the index set of all the control loops is 1r  = (1,2,3,4}, 

the index set of lowest-errors is J(kT), the loop index of the 

actually selected loop is tk, the sub-error vector is ek  = 

W k), and the input vector is uk  = u(kT) e R. It is noted 

that the elements of the sub-error vectors which are used in 

the lowest-wins strategy equation (10.4) and in the control-law 

equation (10.6) have been scaled so that the steady-state gains 

of the open-loop plant for the fuel flow are equal (Chapter 6). 

10.3 Nonlinear simulation 

The excellent limit-tracking behaviour of the F100 engine at 

SLS/Intermediate power condition under the action of the 

resulting digital self-selecting controller tuned such that 

A(1)(0.05)H( 1)  = diag(0.2, 0.01), A(2)(0.05)11(2)  = diag(0.2, 

0.05}, A(3)(0.05)H(3)  = diag{0.2, 0.1}, A(4)(0.05)11(4)  = 

diag{0.2, 0.05}, E(1)  =...= E(4)  = 50.012, and 4(1)(0.05)A(1)  

=...= A(4)(0.05)4(4)  = 0.012 	is shown in Figs 10.7 and 10.8, 

where the loops show that N1, N2, P3, and FTIT are controlled 

in turn whilst P7  is permanently controlled. 

Next, in order to verify the effectiveness of this controller 

in the face of a large thrust change, a fast acceleration from 

80% N2 to Intermediate is carried out. The resulting 
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closed-loop responses are shown in Figs 10.9 and 10.10, where 

the engine initially accelerates on the open-loop accelerating 

schedule and the self-selecting control begins operation at 1.3 

seconds. It is clear from these figures that, although the 

nozzle area hits the minimum position at 1.3 seconds, the 

limit-tracking performance at Intermediate is satisfactory. 

Finally, in order to examine the robustness of the controller 

(which is designed for Intermediate power condition - ie the 

nominal plant), the controller is applied to the different 

power condition (80% N2, which corresponds to Power lever angle 

0,  40 deg) - ie the actual plant. The steady-state 

transfer-function matrix of the actual plant is given in the 

form 

1.43313 s 	811.014 
6.81174e-1 	142.496  

Ga  = Ga(0) = 	3.74045e-2 , 	4.90223 	e R5'2. (10.7) 
2.28222e-3 s  -2.29121 
4.45136e-2 s  -10.3136 

The input space for the actual plant is shown in Fig 10.11. It 

is clear from Fig 4.5 for the nominal plant and Fig 10.11 that 

the conditions (i) and (ii) of Theorem 9.1 are satisfied and 

therefore that the robustness assessment using perturbation 

matrices for the separate set-point tracking controllers is 

effective. The spectra of the perturbation matrices are 

(41), 41)) = (0.3445, 3.0007} 	 (10.8) 

(42), 42)) = {0.3440, 5.3464) 	 (10.9) 
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= (0.3418, 1.7490) (10.10) 

= (0.2351, 2.80301 (10.11) 

(µ13), 43)) 

(A14), µ24)}  

and therefore the condition (9.23) of Theorem 9.1 is satisfied. 

Thus, by Theorem 9.1, the separate set-point tracking PID 

controllers incorporated in the digital self-selecting 

controller can cope with such plant variations. The robustness 

of the complete closed-loop system can be verified in 

time-domain simulation. Therefore, a fast deceleration from 

Intermediate to 80% N2  is carried out, where the controller is 

tuned as before. The resulting closed-loop responses are shown 

in Figs 10.12 and 10.13, where the open-loop decelerating 

schedule decides the fuel flow until 1.2 seconds. It is clear 

from these figures that, although the nozzle area hits the 

minimum position until 1.5 seconds, the digital self-selecting 

controller is robust in the face of plant variations in the 

sense that the separate set-point tracking controllers and the 

integrated self-selecting controller remain asymptotically 

stable and that only minimal performance degradation has 

occurred. 

10.4 Conclusions 

In this design example, a self-selecting controller has been 

designed for a nonlinear model of the F100 gas-turbine engine 

and simulation studies have been performed. The demonstrated 

excellent closed-loop performance and robustness property of 
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the designed limit-tracking system indicates that the 

self-selecting controllers can readily be designed for complex 

multivariable plants and that the adaptability of set-point 

tracking controllers - which underlie the self-selecting 

controllers - is very high. 

In the case of highly nonlinear plants, a few controllers are 

designed for corresponding separate operating points. Then, it 

is important to check the convex structure of Up(0) (Definition 

4.2) at such operating points before designing self-selecting 

controllers. If a particular set of plant outputs represents 

an extreme ray at all the operating points, then the synthesis 

of self-selecting controllers can be based upon such a set and 

therefore the effort in controller design and implementation 

can be reduced. 
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CHAPTER 11 

CONCLUSIONS AND RECOMMENDATIONS 

11.1 Conclusions 

Industrial plants are becoming more complicated than before so 

as to satisfy many consistent or inconsistent requirements such 

as 	performance, 	versatility, 	safety, 	environmental 

friendliness, etc. Most of such plants are inevitably MIMO 

multivariable, high order, possessing some uncertainties, and 

therefore their detailed mathematical models in either 

state-space or transfer-function matrix form are difficult to 

obtain. Furthermore, plants might have unmeasurable controlled 

outputs or have more controlled outputs than manipulated 

inputs. Therefore, the need for a broad range of methodologies 

- that are free from a heavy reliance upon accurate plant 

models - is clearly felt for the design of tracking systems 

incorporating various classes of multivariable plants. 

Set-point tracking systems - which incorporate error-actuated 

so-called 'low-gain' controllers and multivariable plants with 

measurable controlled outputs whose numbers do not exceed the 

numbers of manipulated inputs - were developed by Porter and 

co-workers (Porter and Jones (1984a), (1985a)). Such tracking 

systems inherit the structure of SISO classical robust 

proportional-integral-derivative control systems, achieve with 

initial non-interaction the practical decoupling of MIMO plants 

and excellent transient performance in the available range of 
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tuning, and exhibit robustness in the face of uncertainties 

such as plant variations, disturbances, etc (Khaki—Sedigh 

(1988), Porter and Khaki—Sedigh (1989)). Therefore, the 

evolving methodologies for the design of tracking systems have 

been further developed in this thesis so as to incorporate 

various classes of plants with measurable/unmeasurable outputs 

or with more outputs than inputs whilst keeping these desirable 

properties. 

For plants with measurable outputs, the methodology is 

applicable provided that the asymptotically stable plants 

satisfy the fundamental condition of functional controllability 

for the preservation of stabilisability in the presence of 

integral action (Porter and Power (1970), Power and Porter 

(1970)), and that input—output decoupling is achievable (Falb 

and Wolovich (1967)). The designed tracking systems 

incorporate error—actuated digital PID controllers in which the 

controller matrices can be directly obtained from open—loop 

tests performed on the plants (Appendix 1). It has been shown 

that the resulting tracking systems exhibit both set—point 

tracking and minimal interaction. 

For plants with unmeasurable outputs, the developed methodology 

is also applicable provided that the asymptotically stable 

plants satisfy the fundamental condition of functional 

controllability for the preservation of stabilisability in the 

presence of integral action (Porter and Power (1970), Power and 

Porter (1970)), and that input—output decoupling is achievable 

(Falb and Wolovich (1967)). The designed tracking systems 
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incorporate error-actuated digital PID controllers and 

associated pre-filters in which both the controller and 

pre-filter matrices can be directly obtained from open-loop 

tests performed on the plants (Appendix 1). However, since the 

proportional and derivative controller matrices involve the 

inverse of the step-response matrix for unmeasurable outputs, 

such unmeasurable outputs have to be measurable in the 

"off-line" controller design stages - this assumption is by no 

means impractical (Chapter 3). Under these assumptions, it has 

been shown that the resulting tracking systems exhibit both 

set-point tracking and initial non-interaction for unmeasurable 

outputs together with minimal transient interaction among 

unmeasurable/measurable outputs. 

For plants with more outputs than inputs, rigorous theoretical 

foundations have been constructed for the design of tracking 

systems incorporating such plants, self-selecting controllers 

(which themselves consist of a number of set-point tracking 

controllers), and lowest-wins and/or highest-wins strategies. 

Such foundations include a characterisation of general tracking 

systems (ie undertracking and overtracking which are expressed 

by sets of inequalities), a classification of linear 

multivariable plants into Class I and Class II plants, the 

concept of limit tracking, a feasibility-assessment procedure 

for the design of limit-tracking systems, and an 

order-reduction technique which decides the minimum numbers of 

different subsets of plant outputs to be controlled by 

corresponding set-point tracking controllers. It has been 

shown in the case of m-input/p-output plants and lowest-wins 
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strategies that, provided the plant belongs to Class I, not 

only undertracking but also limit tracking is possible for any 

set—point command, that p—m+1 subsets are the minimum, and that 

only steady—state transfer—function matrices of the plants are 

required in the feasibility assessment and the order reduction. 

Next, the methodology for the design of tracking systems has 

been presented based upon this order—reduction technique and 

lowest—wins strategies. This methodology is applicable to the 

asymptotically stable Class I plants provided that the set 

Ur  (0) of feasible inputs has at least one extreme ray uniquely 

represented by m-1 hyperplanes, that all the determined 

sub—plants satisfy the fundamental condition of functional 

controllability for the preservation of stabilisability in the 

presence of integral action (Porter and Power (1970), Power and 

Porter (1970)), and that input—output decoupling is achievable 

for all the sub—plants (Falb and Wolovich (1967)). The 

designed tracking systems incorporate error—actuated digital 

self—selecting PID controllers whose controller matrices can be 

directly obtained from open—loop tests performed on the plants 

(Appendix 1). It has been shown that the resulting tracking 

systems exhibit excellent limit—tracking and controller 

switching behaviour. However, it has been shown that the 

stability of separate closed—loop systems is not enough to 

guarantee the stability of complete closed—loop systems 

incorporating self—selecting controllers and that peculiarities 

such as limit—cycle oscillations might occur (Appendix 6). 

Therefore, theoretical foundations for the dynamical analysis 

of self—selecting control systems have been built and the 
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methodology for the design of supervisory self-selecting 

controllers has been developed in order to enhance closed-loop 

stability. It has been shown that enhanced stability can be 

achieved using such supervisory controllers for the case in 

which the non-supervisory controller causes limit-cycle 

oscillations. 

In practice, the controllers are often exposed to uncertainties 

such as unknown disturbances, plant variations, etc. 

Therefore, the robustness of tracking systems has been 

assessed. It has been shown under the action of unknown 

constant disturbances that the tunable digital set-point 

tracking PID or PID/Pre-filter controllers can reject such 

disturbances and achieve set-point tracking for measurable 

outputs, that the tunable digital set-point tracking 

PID/Pre-filter controllers can neither reject such disturbances 

nor achieve set-point tracking for unmeasurable outputs, and 

that the digital self-selecting PID controllers can reject such 

disturbances and achieve limit tracking. The admissible plant 

perturbations that can be tolerated by digital controllers have 

been characterised in terms of the steady-state 

transfer-function matrices of the nominal and actual plants 

using the robustness theorems - Theorem 1: Porter and 

Khaki-Sedigh (1989) (Appendix 7) and Theorem 9.1. It has been 

shown in the face of plant admissible variations that 

closed-loop digital tracking systems can remain stable and 

achieve set-point or limit tracking for measurable outputs but 

that set-point tracking for unmeasurable outputs is no longer 

possible in the case of set-point tracking PID/Pre-filter 
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controllers. Furthermore, the effect of the controller 

parameters of supervisory self-selecting controllers on 

tracking performance has also been studied. It has been shown 

that the supervisory self-selecting controllers can achieve 

dynamical limit tracking for a wide range of choice of 

controller parameters. 

The adaptability and effectiveness of tracking systems for 

complex nonlinear plants have been shown by designing a digital 

self-selecting controller for a nonlinear model of a 

gas-turbine engine. 

It can accordingly be concluded that the requirements for the 

design of tracking systems outlined in Section 1.3 have been 

achieved and that the design of tracking systems incorporating 

multivariable plants with measurable/unmeasurable outputs or 

with more outputs than inputs has been successfully completed. 

Illustrative examples have demonstrated how to apply these 

design methodologies and verified the effectiveness of the 

methodologies. 

11.2 Recommendations 

The controller matrices of digital set-point tracking 

controllers are determined by directly measurable input-output 

data of plants - ie step-response matrices and steady-state 

transfer-function matrices. Therefore, tunable digital 

set-point tracking controllers have been rendered adaptive 

using on-line recursive least square identifiers (for example, 

Jones and Porter (1987)). It has been reported that the 
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controller matrices of the resulting adaptive digital set—point 

tracking controllers are not dependent on the individual 

elements of the identified ARMA models of the plants but are 

obtained from a unique relationship involving the elements of 

the ARMA models and therefore that such adaptive controllers 

are very robust in the face of gross underparameterisation 

(Porter and Khaki—Sedigh (1988)). Since self—selecting 

controllers consist of numbers of set—point tracking 

controllers, it is possible and important to render the 

self—selecting 	controllers 	adaptive 	using 	recursive 

identifiers. 

In the implementation of both set—point tracking and 

self—selecting controllers for multivariable plants, it is 

assumed that the positive diagonal "tuning" matrices in the 

control—law design equations of such controllers are chosen by 

the designer. In fact, experienced control engineers have 

seldom met with difficulties in tuning these controllers. 

However, some intelligent technique such as real—time expert 

systems could be introduced in order to enhance tuning 

capabilities (Porter (1988)). 

In the analysis of tracking systems and the design of 

self—selecting controllers, only the lowest—wins strategies 

have been extensively investigated. However, it is also 

important to consider self—selecting controllers based upon 

highest—wins strategies or the combination of lowest— and 

highest—wins strategies. Furthermore, it is noted that the 

controller switching itself is a subject of research and 



299 

therefore that other approaches can be used in the controller 

switching of self—selecting controllers (for example, Hanus et 

al (1987)). 

Finally, in the case of actuator failures in set—point tracking 

systems, the numbers of live inputs become less than the 

numbers of controlled outputs. Therefore, the methodology for 

the design of limit—tracking systems might be applied to the 

failure accommodation of set—point tracking systems in the face 

of such actuator failures. 
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APPENDIX 1 

MULTIVARIABLE REACTION CURVE 

The Multivariable Reaction Curve technique is an "off-line" 

open-loop test procedure in which a known step change is made 

in each of the manipulated input variables of an asymptotically 

stable plant, separately, in turn. 

The use of the Multivariable Reaction Curve technique is 

outlined by the following procedure: 

Step 1: The plant must be in a steady-state condition, when a 

known step change, ui, (i E (1,2,...,m}) is made in one of the 

manipulated input variables and allowed to act for a chosen 

period of time. The plant must then again be brought back to a 

steady-state condition. During test, traces of the output are 

taken in consonance with the time-domain solution of vector 

differential equation of the form (2.1) and (2.2) (Chapter 2) 

such that 

Yi(t) = f CeA(t—Obiuitit  
0 

= CA-i(eat  - In)biui  , 	 (A1.1) 

where 

B = [bi,b2,...,b m] ; bi  E exl (i = 1,2,...,m) . 
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Step 2: The procedure of step 1 is repeated with a known 

step-change now made in another input variable. 

Step 3: 4 Step m: Step 2 is repeated until response curves for 

all m input variables have been determined. 

Then, after tests 1,2,...,m have been carried out, the 

step-response matrix H(t) can be determined according to the 

formula 

H(t) = [y1(t),Y2(t),...,Y.Wi[diag (ul ,u2,...,um}]-1. 	(A1.2) 

In the case of the set-point tracking PID controllers of Part 

II and the self-selecting controllers of Part III, this formula 

is used in determining H(T) and H(co) where H(=) is obtained 

using the steady-state conditions. 
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APPENDIX 2 

PROOFS OF THEOREMS AND PROPOSITIONS 

Throughout the proofs, (1] means Rockafellar (1970). 

(Proof of Proposition 4.1) 

Ur(v) 

Since gIu 

= 

vi  

{u 	: 

(i=1,...,p) 

gl 

.. 	I 
• 

gT 

u K 

•
• 

represents 

1 

V 

a closed halfspace in U, 

UF(v) is the intersection of p halfspaces. This means that 

UF(v) is a polyhedral set and closed (1]. 

Let ul  E UF(v), u2  E UF(v). 	Then Gu1  K v and Gut  K v. 

Therefore, for A E [0,/], 

G(Au1  + (1—A)u2} = GAu1  + G(1—A)u2  

= AGu1  + (1—A)Gu2  

Xv + (1—X)v 

= V 

This means that 

Au1  + (1—X)u2  E U(V). 

So, 01,00 is convex. 



Since yi  S. vi  (1=1,...,p) or eTy S vi  (i=1,...,p), where 
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ei  = 

0 

0 
1 
0 

(i 

0 

represents a closed halfspace in Y, YA(v) is the intersection 

of p halfspaces. This means that YA(v) is a polyhedral set and 

closed. 

Let yl  E YA(v), y2  E YA(v). 

Then, for X E [0,1], 

Xyl  + (1-X)y2  S Xv + (1-X)v = v. 

This means that 

Xyl  + (1-A)y2  E YA(v). 

So, YA(v) is convex. 

For u1  E U, u2  E U, let y1  = Gut, y2  = Gut. 

Then, for X E R, 

(1-20y1  + Xy2  = (1-X)Gu1  + A.Gu2  

= G{(1-N)ul  + Aug) . 
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Since (1—X)u, + Xu2  E U, it follows that (1-70y, 1-  Y2 6 YR* 

This means that YR  is an affine set. So, YR  is closed and 

convex. Furthermore, since 0 = GO E YR, ie YR contains the 

origin, YR  is a subspace (Theorem 1.1[1]). 

Now 

G (UF(v)) = {yEY:y=Gu, uEUF(v)} 

= YR n YA(V) 

= YF(v). 

Since G is a linear transformation from Rm  to RP and UF(v) is a 

closed polyhedral convex set in U = R m, so also is G (UF(v)) 

(Theorem 19.3[1]). 	 QED 

(Proof of Proposition 4.2) 

1(i) implies 1(ii): 

Suppose that UF(v) = 0. If YF(v) 0 0, there exists y E YF(v) 

and u E UF(v) such that y = Gu v. This means that UF(v) 0  0 

and contradicts the assumption. So, YF(v) = 0. 

1(ii) implies 1(i): 

Suppose that Yr(v) = 0. If UF(v) 0 0, there exists y E YF(v) 

and u E UF(v) such that y = Gu 5_ v. This means that Yr(v) * 0 

and contradicts the assumption. So, UF(v) = 0. 
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2: 

2 is clear from 1. 	 QED 

(Proof of Proposition 4.3) 

Since GO = 0 v for v k 0, 0 E Ur(v) and 0 E Yr(v). This 

proves the statement. 	 QED 

(Proof of Theorem 4.1) 

1(i) implies 1(ii): 

Suppose that 1(ii) does not hold, ie there exists a hyperplane 

separating YA(0) and YR  properly. By Theorem 11.3[1], such a 

hyperplane exists if and only if ri YA(0) and ri YR  have no 

point in common, ie 

ri YA(0) n ri YR  = 0, 

where ri • is the relative interior of the set .. Since YR  is 

an affine set, ri YR  = YR. And YA(v) C ri YA(0) for v < O. 

So, Yr(v) = YA(v) n YR  = 0 for v < O. 

1(ii) implies 1(i): 

There exists y E ri YA(0) n ri YR  such that y = Gu. Clearly, 

y 0 rb YA(0) and y < 0, where rb • is the relative boundary of 

the set •. 

For v < 0, there exists X > 0 such that Xy < v. 	Then, 

Xy E YA(v) n YR  = Yr(V). So, Yr(v) 0 0 for v < O. 
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2(i) implies 2(ii): 

As a negative statement of 1, the statement that 3v < 0, 

Y,(v) = 0 is equivalent to the one that there exists a 

hyperplane separating YA(0) and YR properly. So, 2(i) is 

sufficient for 2(ii). 

2(ii) implies 2(i): 

ri YA(0) n ri YR  = ri YA(0) 9 YR  = 0 

Since 

YA(v) C ri YA(0) for v < 0, 

Y p(v) = YA(y) n YR  = 0 for v < 0. 

QED 

(Proof of Proposition 4.4) 

If there exists a hyperplane separating YA(0) and YR  properly, 

ri YA(0) n ri YR  = ri YA(0) n YR  = 0. 

Since 0 E YA(0) n YR, Y A(0) n YR  = YA(0) n ri YR  0  0. 

Both YA(0) and YR  are polyhedral convex sets. By Theorem 

20.2[1], such a hyperplane contains YR and does not contain 

QED YA(0). 
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(Proof of Theorem 4.2) 

1(i) implies 1(ii): 

By Definition 4.3.1, Ur(v) 0 0, Yr(v) 0 0 for v < 0 and by 

Proposition 4.3,Ur(v) 0 0, Yr(v) 0 0 for v 	0. For v j 0 and 

v / 0, there exist v' < 0 and v" > 0 such that v = v' + v". 

Then for u E Ur(VI ) 0 0, Gu < v' < v' + v" = v. 

This means that Ur(v) 0 0. 

2(i) implies 2(ii): 

Contraposition of 1. 

3(i) implies 3(ii): 

This is clear from Definition 4.3.2. 

4(i) implies 4(ii): 

Contraposition of 3. 

QED 

(Proof of Proposition 4.5) 

1: 

Let y = (Y1 9...,YO T, v = [v ...,v ]T. 1 2  
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P 
UF(v) = n (u : gill S vi) 

i=1 

If gi  = 0, gIu = 0 and (u : gIu S vi  , vi  < 0} = 0. 

This means that 3v, vi  < 0, UT(v) = 0. 

So, G E Class II. 

2: 

Contraposition of 1. 

QED 

(Proof of Theorem 4.3) 

Clearly by Corollary 2.5.1[1], Ur(0) is a convex cone. 

(i) implies (ii): 

Suppose that G E Class I.By Proposition 4.5,gi  0 0, Vi E [1,p]. 

And 

UF(v) = (U : Gu S v) 0 0 for v < 0. 

This means that {u : Gu < 0) 0 0. By Theorem 22.2[1], there do 

not exist non—negative real numbers X 1,•••,Xps such that at 

least one of them is not zero, and 

hii g = 0 
3.1 



ie for the system 

Xigi = 0 	Xi 	0 , i E [1,p], 
1=1 

the only solution is Xi  = 0 , i e [1,p]. Let Up  stand for 

Ur(0) = (u : Gu K 0). The polar U; of OF  is given in the 

following [1] 

k 
OF = {u : u = 1 Xigi 9  

i=1 

By Corollary 14.6.1[1], 

dim Ur = dim U - dim Li e 

= M - dim Li U; 

where the linearity space Li U; of U; is defined by using the 

recession cone 044 of U; in the form 

eu°  = n E4 
e>co 

Li U; = (-0+4) n 04. 

If 3u 0 0, u E Li 14, then 

u e 	n 04. 

309 



This implies that 

u = 	(—e)Kigi  = 	eTtigi  , Ki,K, 	0 , e > 0 , 
1=1 	 1=1 

so that 

e(Ki ♦ Ki)gi  = 0. 
3=1 

This happens only if Ai  = Ai  = 0, so that 

Li U°£  = { 0 } 

dim Li U°  = 0 

dim U = m — dim Li U = m. 

(ii) implies (i): 

Suppose that G E Class II and that gi  0 0, Vi e (1,0. 

U (v) = (u : Gu K v) = 0 for v < 0 

ie 

{u : Gu < 0} = 0 

310 
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By Theorem 22.2[1], there exist non—negative real numbers 

X1''pl such that at least one of them is not zero and 

p 
E Xigi  = 0. 
1=1 

Let A. be one of the non—zero Xi. Then 

Xi gi = — Xigi 	Ai  k 0 , Xi  > 0 , 
0 0 

W 	
o 

I) 

thus. 

gi = 
Ai  

10 0 

gi 	, Xi  1. 0 , 

Since gi  * 0, there still exists non—zero Al  , it  E [1,p], 
0 	 1 

it  0 io. And by the definition of ell; and (—ell;), 

	

o'u° = n (u : u = 	EK igi 
	01 

c>0 	1=1 

1 
= n (u 	u = L EAigi  — 	eXi 	gi, Ki  2.. 0, Xi  k 	

1 
O. X. > 0) 

c>0 	fko 	1;1 	Xi0  
' 	0 

= n (u : 
e>0 

_ Xi  
u = 	e(Ki  — Xi 	)gi, Ki  k 0, Al  k 0, Xi  > 0). 

o 
io 

Since Ai, i G [1,p] are arbitrary, for an index it  of non—zero 



h it follows that 
1 

g = {u : u = 241.1  , X E RI E 0+14. 

Similarly, g E (-0+14). 

This means that 

g E Li U; 

dim Li U; 	1 

dim OF = m - dim Li U°  F 

< m - 1 . 

(Proof of Proposition 4.6) 

Suppose that G E Class I. Clearly, the recession cone 0+UF(v) 

of UF(v) is UF(0). By Theorem 4.3, UF(0) is an m-dimensional 

convex cone and does not consist of the zero vector alone. 

Thus, by Theorem 8.4[1], UF(v) is unbounded. 

Furthermore, 

dim UF(0) = dim aff UF(0) = m 

where aff • is the affine hull of the set •. 

Since 0 E UF(0), to express y E UF(0) as the linear combination 

of the vectors in the form 
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QED 
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y = Alui  +...+ Amum, 

the vectors ul,...,um  must be linearly independent. Then 

aff UF(0) = (0, u1 ,..., um), Ui  E UF(0), i E [1,m]. 

Let dim Ur(v) = k. Then 

aff UF(v)= (a0, al,..., ak), ai  E UF(v), i E (0,k) 

= (X0a0  +...+ Akak  : ai  E UF(v), i E (0,k), ho  +...+ Xk  = 1) 

= {Xl(al —a0) +...+ Ak(ak—a0) + a()  : ai  E UF(v), i E (0,10) 

where ao,a1 ,...,ak  are affinely independent, ie vectors 

al—a0,...,ak—ao  are linearly independent. 

For x E UF(v) C aff UF(v) 

x = Al(al —a0) +...+ A k(ak—a0) + ao. 

Since G (x+y) = Gx + Gy .. Gx < v , for y E UF(0), 

x + y E UF(v) 

x + y = K1(al—a0) +...+ Rk(ak—a0) + aco  

y =x+y— x 
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= (K1–h1)(al–a0) +-1- (Nk–hk)(ak –ad* 

This means that y must be expressed as the linear combination 

of al ao9-9ak–ao – 	 and that k > m. 

But dim U = m means that k = m. 	 QED 

(Proof of Theorem 4.4) 

If G E Class I, (u : Gu 	v – d} * 0 	for Vv, Vd. 

If G E Class II, {u : Gu v – dl = 0 for v – d < 0. 

QED 

(Proof of Theorem 4.5) 

Theorem 22.1[1] states that one and only one of the following 

alternatives holds: 

(a) There exists u such that 

Gu < v . 

(b) There exists w such that 

w > 0 , 

GTw = 0 , 
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T V W < 0 . 

Statement (a) exactly concerns Class I. The two systems in (a) 

and (b) are dual to each other. 

If 3i E [1,m], gci  > 0, then there exists no solution w 

for Vv in 

w > 0 , 

gT w = 0 , Cl.  

< VT W0 . 

This means that statement (a) holds for Vv, ie G E Class I. 

QED 

(Proof of Theorem 5.1) 

Part 1: rank G = m 

1 Vv, ext UF(v) 0 0: 

Suppose that UF(v) contains an entire line. 

Then, there exists d 0 such that 

lu + Ad : A E R, u E UF(v)) C UF(v) . 

This means that 

G (u + Ad) = Gu + AGd S v for u E UF(v), A E R. 
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Therefore, it is required that Gd = 0. However, 

rank G = m = dim U implies d = 0. 	This contradicts the 

assumption. So, UF(v) contains no lines. Furthermore, since 

G E Class I, Vv, UF(v) 0  0. It follows by Corollary 18.5.3[1] 

that Vv, exit UF(v) 0 0. 

2(i) implies 2(ii): 

It is shown that if u E UF(v) fails to satisfy the definition 

of limit—tracking input, u e exit UF(v). 

(1) k = 0: Suppose that u E UF(v) satisfies 

< giu 	vi  , i E [1,p]. 

Then 

P 
U 	E n ri Hi  

1=1 

where 

Hi  = (u : griu S vi) . 

P 
Since n ri Hi 0 0, by Theorem 6.5[1], 

1=1 

P P 
n ri H1  = ri n Hi  = ri UF(v) . 

i=1 	 1=1 



So, u 0 rb UF(v). This implies that u 0 ext UF(v). 

(2) k k 1: Suppose that u E UF(v) satisfies 

gsiu = vsi  i e [1,1E] 

g7  u < vtj 	G [1,p—k] tj  

rank G8  < M 9 

where 

1i , t < p 

G s  

gT 
si  

GOO 

gs 
-k 

 

  

This means that 

p-k 
u e ( n rb Hsi ) n ( n ri Htj ) . 

1=1 	 j=1 

p-k 
Since fl ri Htj 	0, by Theorem 6.5[1], 

j=1 
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k 	 p-k 

u E ( fl rb H$ i  ) n ( ri n Ht  ) 
i=1 	 j=1 3 

* 

There exists at least one non—zero vector x E U such that 

G s  x = 0. 

By Proposition 4.6, G E Class I implies dim Ur(v) = m. 

Then by Corollary 6.4.1[1], 

p-k 	 p-k 

for u E ri n Ht4 = int n Ht. and for x E U , 
J j=1 	j=1 3 

where int • is the interior of the set •, 

there exists some e l  > 0 such that 

p-k 

U + e1xEnHt, . 
j=i .) 

Similarly, there also exists some e 2  ) 0 such that 

p-k 
U + e2(—x) E fl Ht. . 

j=1 3 

Let e = min (el, e2) > 0, then for e > 0 

gT (U I- ex) = gT  u -I- EgT  x , i E [1,k] 
S i 	 S i 	S i 

= vs 7 
_ 

. 1 
i E [1,k] . 



k 
So, u + ex E n rb H$ , 	i E [1,k] . 

1=1 	
i 

 

k 
Similarly, u — ex E n rb H$ , i E [1,k] . 

	

1=1 	
i 

 

It follows that 

k 	 p-k 
U + ex e ( n rb H$ i ) n ( n Ht  ) c Ur(v) 

1=1 	 j=1 i 

k 	 p-k 
U - ex E ( n rb H$ i  ) n ( n Ht  ) C Ur(v) 

1=1 	 3=1 i 

u 	+ ex 0 u — ex 

1 u = 2 — (u + ex) + 1  (u — ex) . 2 

This implies that u G ext Ur(v). 

It follows by contraposition that if u E ext Ur(v), then 

	

rank Gs  = m , 1 	si 	p , i E [1,k] 

and 

k > m . 
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Therefore, u is limit—tracking input. 

2(ii) implies 2(i): 

Suppose that u E ext UF(v). 

There exist Ul,u2  E 01.(V), U1  0 u2, 0 < X < 1 such that 

u = (1-70u1  + Xu2  

g 	— 

	

T 	Vs. , i E [1,k] s _ i 1 

gTtl < vt  , j E [1,p—k] 

	

where 1 	si  , 	j t. <— p . 

Let 
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G s  

For every si, i E [1,k], since 

gT U < V  si  1 — si  

gT U 	V 	, si  2 	si  

there exist el 
i 
 , e2.  k 0 such that 



321 

g T U 	e 1 = v s , 
s i  1 

gTs i U2 	
6 2 = Vs i 

 , 

i E [1,k] . 

Since gs  u = vs  , 

esi m — x)111  + Xu2 ) = vsi  

(1 — X)(v si  — e, 	v. ) + X( 	— e2
1
) = xrOi  , 

h(—E. ) = 0 , i E [1,k] . 

This means that e l  = c2  = 0 , i E [1,k] and 

gTs u1 = v S
i 

gT u = v , si 2 	si  

i E [1,k] , 

u1  0 u2 . 

So, 

G s (ul  — u2) = 0 

ul  — u2  0 0 . 

This implies that rank G s  < m and that u is not a limit—tracking 

input. 	 Part 1 QED 



Part 2: rank G < m 

Firstly, the proof of Proposition 5.1 is given. Then, 

the proof of the Theorem follows for the case rank G < m. 

(Proof of Proposition 5.1) 

(i) implies (ii): 

Suppose that G E Class II and Vi E fl,p), ii  0 0. Then 

UF(V) = (U G u v) = 0 for v < 0 , 

ie 	: G u < 01 = 0 , where u E U = Rq. 

By Theorem 22.2(1), there exist non—negative real numbers 

hi,...,hp, such that at least one of them is not zero, and 

i=1 

By applying a similar argument to that used in the latter 

part of the proof of Theorem 4.3, 

dim Li U°r  > 1 

dim U = dim /I — dim Li U; , 

q — 1 . 
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Let G E R1"(m-q)  be the remaining columns of G when 6 E RP" 

is removed. Then, 

G u = d u+ a il 

. [ a , a ] [ ; 

; 

where u E U = Rm-q. Then, 

- 	 Ow 

dim Ur = dimU+ dimifq- 1 +m-q=m- 1 . 

This means that G E Class II. 

(ii) implies (1): 

Vv, UF(v) = fu:Gu5.v)0 0• 

Let G be defined in the same way as in the former part. 

- - 	- 	 - - 
Since G u= 0 for u= 0, where u E U= Rm-q, 

G u = G ii + B ; 

= G ; 	for Vu E U and u = 0. 

If the columns of G and the elements of u and v are 

re-arranged, it is possible to obtain 
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for u = 0 
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so that u E Ur(v). This means that G E Class I. 

Proposition 5.1 QED 

(Proof of Theorem 5.1 for the case rank G < m) 

Suppose that G E Class I and that rank G = q < m. 

By applying Proposition 5.1, G E Class I ie 

Vv, Ur(v) = {u:GuSv}00• 

By similar arguments to those used in the first part of the 

proof of Theorem 5.1, Ur(v) contains no lines. It follows by 

Corollary 18.5.3[1] that ext Ur(v) * 0. 	Furthermore, by 

applying Theorem 5.1 to G, there exists u E ext Ur(v) such that 

iT 
1 1 

• • • 

G u = U = • • 

FV 

• k 	q 
• • • 

s k 
V 

— — gt
T 
 ,u < v t

i 
 9 j E [1,p —k] 9 

where 

1 S si, tj 	p, 
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rank G 8  = q . 

Let G E RI"(m-q )  be the remaining columns of G which was 

removed from 6, then 

rank G = rank G , 

a,* 

rank ( G , G ] = rank G . 

There exists w E ex(m-q)  such that 

G w = G . 

If the columns of G and the elements of u and v are 

re-arranged, it is possible to obtain that 

= G ; - G u- + 

=Gu-Gwu+au 

u-w 

• G [u- -wui 

u 
for u E U , 

where G = [ 



So, for u = 
U 

, u e ext UF  (v) , u E U, 
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G u = 5 ; 

so that 

gT u g 

SO 

u = V s  

S O 1 	 3. 	 i 

gT U — gt u < vt  
J 	j 	J 

where 

1 	... 

Gs 

si  

= 

, 	tj  

[ gT 

i ... 

... 

• • • 

g
sk 

1 

< p 

i E [1,k] 

j E  [1,p -k] 

rank Gs  = rank Gs  = q = rank G 

and 

k k rank G . 

This means that u is a limit-tracking input in the sense of 

Defintion 5.1. 	 Part 2 QED 



(Proof of Proposition 5.2) 

1 and 2: 

Let 

gsl 	 r i 
, 	V = 

g.  s m  

S = (u : Gu = 	, 

h(u) = g_ u , 	 i E [1,m-1] , 

Li  = (u : hi(u) = vs i) n Ur(v) , 	i E [1,m-1] , 

m-1 
L = Ii L. . 

1 
i=1 

By Theorem 5.1, there exists at least one set of points in 

U (v) which satisfies equations (5.10) or (5.11). Therefore, 

and 

i E [1,m-1] , 

L 0. 
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= 

Clearly, S is the intersection of m-1 hyperplanes gT  u = vs  , 
si 
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i E [1,m-1]. Since Li  is the set of points where a linear 

function h achieves its maximum over UF(v), 1  L. is a face of 

U F (v). 

Sincehi(v)=v_=constant on a line segment of Li, Li  is an 

exposed face. Furthermore, 

dim L = dim aff (L) 

= dim S 

= m — rank 6 

= 1 , 

a half line (u + hd : X k 0, Gu = v, Gd = 01 C UF(v), and by 

the proof of Theorem 5.1, UF(v) contains no lines. This means 

that L is a half line. Therefore, L is an exposed half—line 

face. 

In the case v$ 
i 
= 0, i E [1,m-1], L is an extreme ray. 

3: 

Let 

gT  
1 • • • 	 • • • 

• • • V - = 
• • • 	 • • • 

g 
a
m-1 	 m-1 



gt
T 1  

... 

1. ... 

. 
T 

gtp-m+1 
I 

11 V = 

i I 
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An extreme ray corresponding to equation (5.10) is expressed in 

the form 

- 	- 
Lo = fu : Gu = 0 , Gu •c 0} 

= {u : Gu =0) n uF(0) 

= {Ado  : A 	0) , do  0 0 

An exposed half-line face corresponding to equation (5.11) is 

expressed in the form 

L = (u : Gu=v , au <- v} 

= {u : Gu = 1;) n Ur(v) . 

Then, for Ado  E Lo  and u E L, 

G (u + Ado) = Gu 

= V 

and 

G (u + Ado ) = Gu + Nado  

< ; . 

This means that 

u + Ado E L . 
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Therefore, Lo  and L have the same direction called the extreme 

direction. it is now evident that a line corresponding to an 

exposed half—line face L is parallel to a line corresponding to 

such an extreme ray Lo. 

4: 

Suppose that an exposed half—line face of Up(v) emanates from a 

point uo and is expressed in the form 

L = (u : Gu=v , Guv) 

= (uo  + Ad : A k 0) , d 0 0 , Gd = 0 , 

where G, G, v, and v are defined in the former part of the proof. 

Clearly, a point uo  is the unique vertex of L. And for A < 0, 

uo + Ad e L. Therefore, for A < 0, 

G (uo  + Ad) 0 v  

or 

G (u0  + Ad) 	V . 

However, 

G (uo  + Ad) = Guo  + AGd 

= Guo  

= V . 

This implies that 
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G (uo  + Xd) 	v . 

Therefore, there exits at least one index sm  among 

ti,t2,...,tp _.4, 1  such that for X < 0, 

g T (uo 	Xd) 	v s  

ie 

g T (u + Xd) > v 	. 
s
m 
 0 

For such index sms 	T  if g 	< v 	then uo  E Int Hs ' where H s uo 	 m  

= {u : g: u 5 vs  }. It follows by Corollary 6.4.1[1] that for 

—d, there exists some e > 0 such that uo  + e(—d) E. 
•as 

Therefore, 

g T (uo 	ed) 5 v 
	

for e > 0 

and this is a contradiction. So, 

gTs  U0  i Vs 
m 

 
15 

ie 

g$  gT U0 Vs  u4 

However, since uo  E L C Up(v), g! uo  = v. . 
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blext,iigisclependentofgg 	, g 	is the linear 

	

sm 	 .1 „.., s m-1 S m 

combination of gs  ,...,gs 	and such that 
m-I 

g 	= Xlgs 	 M +...+ h_ g g s 	 Am-1 gs M-1 

Then, 

g
T d 	crT 

	

v "1"8 
= 	 x 

M-1°S  
arT 

1  Sm 	 1 	 M-1 

= X "T  d +...+ " m-16s d T  m-I 

= 0 . 

Therefore, for X < 0, 

gT  (uo + Ad) = gT  uo  + hgT  d s  

= V
am 

• 

Since gT  . is one of rows of G, this is a contradiction. So, .m  

gs ,...,g 	are independent and uo satisfie
s 

1 	Sm 

gs  Uo  = Vs 	 i E [1,m] 

gt  uo < vt 	I 
	j E [1,p -m] . 

This means that uo is 0-dimensional face ie an extreme point.
 

QED 
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(Proof of Proposition 7.1) 

Suppose that 

X(0;xs(T);v) = xs(T) 

and that there exists i E Ir\I(v) such that yti(0) 1 vt . i 

Since i 0 Ic(v), this means that yti(0) > vti. Then, 

Vj E J(0), et  (0)K et (0) = vt — yt (0) < 0 . 
i 	i 	i  

Since 2(0) E J(0),  et2(0) < 0. However, since xs(T) is a 

steady state, 

112(0)(T)xs(T) + B2(0)(T)v(2(°))  = 0 . 

Therefore, 

e(2(o)) = 0  . 

This is a contradiction and implies that yti(0) < vti  for 

i E Ir\Ic(v). 

QED 

(Proof of Proposition 7.2) 

The asymptotic stability of each closed—loop system 
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corresponding to loop index i ensures that all the eigenvalues 

of Ai lie in the open unit disc D. This means that all the 

solutions of equation 

det (XIII+111  — Ai) = 0 

satisfy 'NI < 1, that for A = 1 (clearly, lxi = 1), 

det (AIn+m  — Ai) 0 0 , 

and therefore that 

rank (Ini.m  — Ai) = n + m . 

Since rank (In4m  — Ai  , Bi] k rank [Ini. m  — Ai], 

rank [In+m  — Ai  , Bi] = n + m. Hence, 

rank [In4,0  — Ai  , Bi] = rank [Ini. m  — Ai] 

and a steady state is determined as the unique solution xi  of 

the equation 

(1.4, - Ai )xi  = Biv(i ) 	i G I.(v) . 

For i E Ir\I.(v), if xi  satisfies 

(In+m  — Ai)xi  = Biv") 
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then y(I)  = v(i), so that y
ti 

= vti. This means that i G I.(v) 

and contradicts the fact that i G Ir\Ic(v). 	So, only xi, 

i G I.(v) are steady states of the system. 	 QED 

(Proof of Proposition 7.3) 

Let po  = p[xo  , C(v)]. Though po  is unknown, there exists 7 = 

7(x0,Z(v)) such that if po 	7, then for every e > 0, there 

exists a positive k: = k;(i,7) such that 

P(X(kT;x0v) , Z(v)] for kT > k*T . 

This means that for kT k;T, 

int [ : C(1)x*  = v(i), i G I.(v), 

 

eTt.x* < vt  ,j E Ir\ic(v), 
3 

z* E Rm, 

* 

z * 
E C(v) 	< E . 

By Schwarz's inequality, for Vi E I.(v) and for Vx*  e 3(v) 

Hem° = lcmx — vmh 

= o[c(l) , o]cx — x*)II 

pc(i) , NOOx — x*o . 



Since £(v) c 3(v), for Vi G It(v) 

Ile(i)II < II[C(i)  , 0]inf[11x - x* I1 : x* E £(v)] 

< II[C(i)  , O]IIi 

	

K max II(C(i)  , 0)F 
	

for kT 	k:T . 
iEIc(v) 

For Vj E Ir\It(v) and for Vx*  E 3(v), let e*  = vt i 
	t 
- cT  x*. tj  i 

Then, 

let
3 
- e . 	tJ  

* 1 = l[cf
3 
 , 0](x - x*)I 

11(eI
J 
 , 0] II0x - x* o  

Since Jgv) C 3(v), for Vj E Ir\It(v) 

le t.  - et j1 
3  

	

1 	11[CT
i 
	O ] llinfdlx - x*I1 : x*  e £(v)] t 

K 11[cTt 	flri i , O 
 

for kT k k:T . max DEcT , 01F 
jEIr\I(v)i  

Let c = eth/max (1[C(1)  , 0111  , II[CT  

jEI r\Ic(v)b 
lEIc(v) 
	 tj  

then for kT k k:T 

	

Vi e Ic(v), 	Ile(i)  (kT)il K eth  

and since e*  > 0, -eth < et . et  J 
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Furthermore, for i G Ic(v) let 

H.1  = Ix : e 	= ... = es m-1 	,.. = 0, e, < 	, j G Ir\Ic(v)1 s 1 	 i 	et i 

and in case Ir  \Ic  (v) = 0, 

H = {x : e 	= ... = es 	= 0} . Hi 	s 1 	 m-1  

If x E £(v), then Vi E Ic(v), e(i)  = 0, 

ie e 	= ... = es 
m-1 

= 0, et  = 0 and Vj e Ir\Ic(v), et  > 0. 
s 1 	 i 	 i 

So, x E n Hi. 
iEI c(v) 

Therefore, there exists c = e(v) > 0 such that 

0%, 

.(v) + eB C n Hi  , 
iEr c(v) 

where B is the Euclidean unit ball in Ra". 

Similarly to the former part of the proof, for this c 

* — 
there exists a positive k; = k2(c,7) such that 
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PIX(kT;x0v) , £(v)] -C ; for all kT 	k;T. 

Then 
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J(kT) C Ic(v) 	 kT .>. k*2T 

and 

ile"
(kT)) (kT)O < max 1[C(I)  , 0)1k 

iEIc(v) 

So, if k*  is chosen such that 

k*  = max (k: , k*2) 

kT 	k*2T . 

then for kT > k*T 

t(kT) E J(kT) c Ic(v) 

(kT)O 	eth  Ile('
(kT)) 

Vi E Ic(v), Ile(i)(kT)il 	eth  

Vj E ir\ic(v), et  (kT) > —eth 
i 

This implies that there exists k*  = k*(eth,xo,v) such that 

for kT > k*T 

e(kT) —ee  

and 



Ile(2(kT)) (kT)I1 	eth' 

where ee = (ethl ... ' eth ]
7 E RP. 

(Proof of Proposition 7.4) 

This is clear from Definition 7.6. 

(Proof of Proposition 7.5) 

The system under Loop—fixed mode is linear time—invariant and 

xf(T) is an asymptotically and exponentially stable steady 
s 

state of such system of equation (7.32) with t(kT) = 2f. 

Therefore, there exist m , a > 0 such that the solution 

X = x(kT;x0v) satisfies the condition 

por,x2fti)1 ‹ me-ak 	2 Tp[xo  , xo f(T)] . s   

For a given e > 0, let k; = k;(m,a,c,p(xo  , x!f(T)]) be such that 

me-ak1piT_,  xo  , x!f(T)] ... e . 

It follows that 

-a *T ek1 < 
mp(xo  , x!f(T)] 
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QED 

QED 

E 



—ak:T in 
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mp[xo  , x!f(T)] 

 

1 	mp[xo  , xsf(T)] 
k:T — in 	  

a 

Therefore, it is evident that 

P[X s x2f(T)] < e 
	

k 	k:T . 

QED 

(Proof of Proposition 7.6) 

Since each separate closed—loop is asymptotically stable, 

e(g f)  = lim e(g f)(kT) = 0 . 

In the sequel, s• means lim • . 
k-ow 

Since If  E Ic(v), 

e8 = 	= e 	= 0 
8 

1 	
Ai 8M-1 

Vi E I (v), seti = 0 

and 



Vj e ir\ic(v), Bet  > 0 (Proposition 7.1) . 
J 
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For i E Ic(v) let 

Hi  =Or:e=...=es ra_1  =0,e._<ec  , j G Ir\Ic(v)1 
si 	 'i 	j 

and in case Ic\Ic(v) = 0, 

H = (x : e 	= ... = es 	= 0) . i 	si 	 m-1  

Let 

x f(T) = s 	 = lim x(kT;x0v)2 (kT)=k f  ' 
z2f(T) 	lt-P20  s 

Clearly, xgsf(T) E n Hi  . 
iEIc(v) 

Since Hi  is open, int Hi  = Hi  and there exists some c > 0 such 

that 

xii(T) + a C n Hi  . s 
iEIc(v) 

Therefore, using Proposition 7.5, 

n i  (kT)=1 X(kT;x0v)2 
f e iEic

H 

(v) 
k k lei(e,x0,v) . 
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This means that 

E Tint")  = To 9  
iGi c(v) 

where T0  = t1  — t09  to  _> kiT, and that 

V j EIr\Ic(v), Tint(j) = 0, to  k k:T . 

So, 

V j EIr\Ic(v), Tint(2f) i nint(j), /3 > 0, to  2 k:T . 

QED 

(Proof of Proposition 7.7) 

In the sequel, s • means lim •. By the assumption, seti 
= 0. 

k-w) 	 f 

Furthermore, if 

Vi E Ic(v), sec,.  k 0 

and 

Vj E Ic\Ic(v), j 0 If, Set  > 0 
.3  

then 
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set 	= min (set. ,  set )2 i E 1c  (v), j E 1r  \Ic  (v) g
f   

= min seti , 	i E Ir  . 

This implies that if  E Ic(V) and contradicts the assumption. 

So, there exists at least one index i 0 k f, i E Ir  such that 

sett > ser i f 
tg 	i f 

ie 

3i E Ir$ 	
1 
s xf(T) E {x : eto > e

ti 
 ) 

"f 

and there exists some e > 0 such that 

3i E Ir$ 	i s 	+ xf(T)eB C {x : eti > et.  
f 

. 
f 	i 

This means that for some e and for x E x2f(T) + eB s 

if 0 J°(kT) 

and that, by Proposition 7.5, there exists some k: such that 

X(kT;x0v) E xlsf(T) + eB 	kT k:T . 

So, 

k f e J°(kT) 
	

kT /. k:T 
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lintold = 0 
	

to - 1 > k*T . 

However, this means that 

E Tint(i) = To 	 to  >— k1T . 
LEI r 
iO2 f 

Therefore, there exists k: such that 

31  ° if, Tint(gf)  < PTint(i" 11 > 0, to  / k:T . 

QED 

(Proof of Theorem 7.1) 

Since the plant is asymptotically stable and the plant input 

is bounded, the closed-loop system exhibits state-bounded 

tracking. Next, the following cases are considered: 

1: In Normal or Loop-excluded mode, the tracking assessment is 

continuously 'Convergent'. 

2: In Normal or Loop-excluded mode (Level 1 to r-1), the 

tracking assessment is 'Non convergent'. 

Case 1: 

In the case of 'Convergent' assessment in Normal or 

Loop-excluded mode, 



(1) 

or 

ma.(es)a < eth  

min(es)a 2 -eth 

max(eda < eth  

min(et)a 2 -eth 

(A2.1a) 

(A2.1b) 

(A2.1c) 

(A2.1d) 
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(A2.2a) A max(es)a 	aAmax(es)  a-1 

A mia(es)a 5' "Amia(es)a-1 

Imean(es )al 	almean(es)a-1 1  

A max(et)a 	elAmax(et)a-1 

Amin(et)a  K CiAmin(et  

(A2.2b) 

(A2.2c) 

(A2.2d) 

(A2.2e) 

e 'mean()I t a - < almean(et)a-1 I 
(A2.2f) 

are obtained for t k ta. Therefore, in case of (i), from 
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equations (A2.1a) and (A2.1b), 

Vi E [1,m—I] —eth  5 esi(kT) 	eth 	kT 	ta_ i  . (A2.3) 

From equation (A2.1c), 

et 	(kT) 5 eth 	kT ?_ ta _ i  . 	 (A2.4) 
t(kT) 

From equation (A2.1d), 

min et (kT) k —eth  , 	 (A2.5) 
i 

kTE[t _ 1 ,t a) 

'GIr 

so that 

Vi e I r, eti
(kT) k —eth 	kT k to-1 • 
	 (A2.6) 

It follows from equations (A2.3) and (A2.6) that for kT k ta _ l , 

Vi E [1,m-1], e
si
(kT) k —eth 
	 (A2.7a) 

Vj E Ir, etJ (kT) ?,. —eth 
	 (A2.7b) 

and therefore that for kT k ta _ i , 

e(kT) k —e6  , 	 (A2.8) 
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where ee = [eth, ... , eth ]T E RP . 

It follows from equations (A2.3), (A2.4), and (A2.5) that 

for kT k ta _ i , 

He
(2(kT))(kT)11 < eth • 

In case of (ii), it follows from equation (A2.2a) that 

A 	fe, 1  < aa-lA 	fe  
max`s'a — 	max` si

1 
 l 

(A2.9) 

(A2.10) 

Therefore, there exists a*II  such that 

for a k a*1a 	a* A max(es)a 	eth/2 	 1 	(t k t
11
) , 	(A2.11) 

 

where 

* 
all = a*Ii(a,eth,Amax(es)i) 

= INT[loga(eth/(2Amax(es)1) + 2)] 
	

(A2.12) 

and INT[•] is the integer function. 

Similarly, it frollows from equation (A2.2b) that there exists 

ail such that 

Amin(es)a < eth/2 for a Z a*12  (ta k t * ) , (A2.13) a12 

where 
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* 	* a12 = a12(a9 etho Amin(es)1) 

= INT[loga(eth/(2Amia(ed i) + 2)] . 	 (A2.14) 

Furthermore, it follows from equation (A2.2c) that there exists 

* a13 such that 

I mean(eda l 5 eth/2 	for a /. a:3  (ta  > ta*3) , (A2.15) 

where 

* 	* 1  
e13 = el3019etholmess(es)1 1)  

= INT[loga(eth/2Imsan(es)11) + 2)] (A2.15) 

* 	* 	* 	* 
Let al = mex(ellialvel3)* Then, by Definition 7.8, 

max(ea)a — mean(es)a eth/2  (A2.16a) 

mean(es)a — min(es)a eth/2  (A2.16b) 

—eth/2  mean(es)a eth/2 	' (A2.16c) 

Therefore, for a 2 a: (ta 	ta:) 

Vi 6 (1,m-1], —eth 	esi (kT) 5 eth  (A2.17) 

    

Now, it follows from equations (A2.2d) to (A2.2f) that there 

exists a*  such that for a > a*  2 	 2' 
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max (8da — mean (8t ) a 	eth/2  

et ) a 	mia(et ) a  K eth/2 mean (  

—8th/2 	mean (8t ) a 	eth/ 2  • 

Therefore, for a k 4, 

(A2.18a) 

(A2.18b) 

(A2.18c) 

and 

e t 	(kT) S. e th 2(kT) 
(A2.19) 

min et  (kT) = min(eda > —etk ' i 
kre(t a _ it t a ) 

iei r  

(A2.20) 

Thus, 

—e 	<_-1' eti(kT)
(kT) 	eth . 
	 (A2.21) 

It follows from equations (A2.17) and (A2.20) that for a k a; 

(kT ta i), 

e(kT) k —ee  , 	 (A2.22) 

where ee = [eth"" ieth ] T E RP. 
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It follows from equations (A2.17) and (A2.21) that for a k a; 

(kT 	ta*), 

Ile"(kr)) (kT)II < eth 
	 (A2.23) 

Therefore, it follows from equations (A2.8), (A2.9), (A2.22), 

and (A2.23) that if the tracking assessment is continuously 

'Convergent', nearly perfect dynamical limit tracking is 

attained for kT 	tc_ i  or for kT 	t8*. 
2 

Case 2: 

In the case of 'Non convergent' assessment in Normal or .  

Loop-excluded mode, Loop-fixed mode begins by Definition 7.9. 

Then, if If  E Ic(v) then by Definitions 7.11 and 7.12, and 

Proposition 7.6, such mode continues to operate. Therefore, 

Z(v) = lim x(kT;x0v)2(hT)=1 = xlsf(T) 6 3(v)  
it-ow 

and 

lim p[x(kT;x0v)2(hr).2 	.C(v)] = 	• 

Furthermore, since x!f(T) corresponds to a steady state of the 

original self-selecting control system, 

Vi E ic(v), lim e(i)(kT) = 0 
It->o 

and by Proposition 7.1, 



Vj E Ir\ic(v), lim et  (kT) > 0 . 
k.400 	i 

Hence, there exists k*  = k*(eth,x0,v) such that for kT k k*T, 

e(kT) 	—ee  

and 

Ile(i(kT))(len° = Ile(If)(kT)11 	eth  , 

where ee  = Ceth ..... ethIT E RP . 

Therefore, nearly perfect dynamical limit tracking is 

achieved for kT k k*T. 

If If  0 Io(v), ie 2f  E Ir\It(v), then by Definition 7.11 and 

Proposition 7.7, 'Incorrect loop' assessment is obtained and 

such loop If  is excluded. Furthermore, if CID k 2, by 

Definition 7.12, Loop—excluded mode begins and the analysis of 

Case 1 can be applied. If CID = 1, by Definition 7.12, the 

control loop is fixed to the remaining loop. From the previous 

discussion, such a remaining loop must be a correct loop unless 

a plant variation has occured or a design parameter such as To, 

a, $ is inappropriate (as indicated in the lowest stage, 

Fig 7.4). 	 QED 
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APPEENDIX 3 

LINEAR F100 ENGINE MODEL 

The linearised state—space model of the F100 turbofan engine 

(Figs A3.1 to A3.3) is governed on the continuous—time set 

T = [0,40) by state, unmeasurable output, and measurable output 

equations of the respective forms (Miller and Hackney (1976)) 

and 

xp  =Ax +Bu 
P P 	P P 

w = CuX 	D u 
P P 	P P 

(A3.1) 

(A3.2) 

y = Cmx 
P 	P P 

(A3.3) 

Here, the plant state vector xp  E R16, the plant input vector 

up  G Rm, the unmeasurable plant output vector w G R5, the 

measurable plant output vector yp  E RP, the plant state matrix 

A G R16x16 the plant input matrix Bp  E R16" the plant 
P 	1 	 , 

output matrix for unmeasurable outputs 	E R5x16,  CuP 	
the plant 

direct coupled matrix for unmeasurable outputs Dp  E R5215, and 

the plant output matrix for measurable outputs C; E RP". The 

control actuators are governed on T by state and output 

equations of the respective forms 

ica = Aaxa 	B au 
	

(A3.4) 



and 

up  = Caxa 
	 (A3.5) 
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Here, the actuator state vector xa  E R na, the actuator input 

vector u E R m , the actuator output vector is the plant input 

vector up  E Rm, the actuator state matrix Aa E 
Rnaxna, the 

actuator input matrix Ba E Rn a xm, and the actuator output 

matrix Ca  E exna. Furthermore, the measurement sensors are 

governed on T by state and output equations of the respective 

forms 

. 
x =Ax +By s 	s s 	s p 

y = C8XS 

(A3.6) 

(A3.7) 

Here, the sensor state vector xs  E Rn s, the sensor input vector 

is the measurable plant output vector yp  G RP, the sensor 

output vector y E RP, the sensor state matrix As  E esx's, the 

sensor input matrix Bs  E Rn sEP, and the sensor outut matrix 

Cs E Ri cn s. 

It follows from equations (A3.1) to (A3.7) that the behaviour 

of systems consisting of such a plant, actuators, and sensors 

is governed on T by state, unmeasurable output, and measurable 

output equations of the respective forms 

. 
x = Ax + Bu 	 (A3.8) 
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w = Ex 	 (A3.9) 

and 

y = Cx 	 (A3.10) 

where 

 

 

 

X 

E R164'aal'ns (A3.11) 

 
 

 

Ap  Bp  Ca  0 

A 0 Aa 0 (A3.12) 

B aC; 0 As  

B = 

0 

:a 

(A3.13) 

 
 

E = [Cu, D P  Ca  , 0] 
	 (A3.14) 

and 

C = [0, 	 (A3.15) 

The steady—state transfer—function matrices are given in the 



forms for unmeasurable outputs 
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G = —EA-1B 

= (—CuPA
-P 1BP 	D )(—Ca  A-1Ba 

 ) e R5xm  a  

and for measurable outputs 

G = —CA-1B 

= (—CsA-s lBs)(—C;A;lB p)(—CaAl-i lBa) E RP xm  

In the case of m = 5, p = 5, na  = 11, and ns  = 6, the 

five manipulated variables are 

u1  : main burner fuel flow (lb/hr) 

u2: nozzle jet area (ft2) 

u3: inlet guide vane position (deg) 

us: variable stator position (deg) 

us: compressor bleed flow (%) 

the five unmeasurable output variables are 

w1  (Fn) 	: engine net thrust (lb) 

w2 (WFAN): total engine airflow (lb/s) 

w3 (TT4) 	: turbine inlet temperature (°R) 

W (SMAF): fan stall margin 

w5 (SMHC): compressor stall margin 

(A3.16) 

(A3.17) 



and the five measurable output variables are 
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yl  (N1) : 

y2  (N2) : 

y3 (P3) : 

Y4 (P7) : 

y5  (FTIT): 

fan speed (rpm) 

compressor speed (rpm) 

compressor discharge pressure (psia) 

augmentor pressure (psia) 

fan—turbine inlet temperature CR). 

In this case, the matrices AP9 
 B p, P C u 9  DP, 
	

P 
and Cm  are given in 

Tables A3.2(a),(b),(c) and A3.3(a),(b),(c) for two operating 

conditions [ie Sea Level Static (SLS)/Intermediate (Power Lever 

Angle (PLA) 83 deg) and Sea Level Static (SLS)/Power Lever 

Angle (PLA) 67 deg], where the data format is shown in Table 

A3.I. The matrices A,, B., and Ca are given in Table A3.4. 

The matrices As, Bs, and Cs  are given in Table A3.5. 

In the case of different numbers of inputs or outputs, the 

corresponding parts of the input/output matrices of the plant 

and the corresponding parts of the state/input/output matrices 

of the actuators and the sensors are used. 



N1 N2 	P3 	FTIT 

n  

Compressor Bleed Flow Main Burner Fuel Flow 
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D 

   

                 

                 

                 

                

                

 

Inlet Guide Vane 	Variable Stator 

Position 	 Position 

     

Nozzle Jet Area 

      

Fig A3.1 Manipulated variables of F100 engine 

iSMAF  

SMHC 	[TT4 

Fg 

WFAN Fn=Fg-Drag 

Fig A3.2 Unmeasurable output variables of F100 engine 

Fig A3.3 Measurable output variables of F100 engine 
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APPENDIX 4 

NONLINEAR F100 ENGINE MODEL 

The F100 engine (Fig A4.1) is an axial, mixed—flow, augmented, 

twin—spool, low—bypass—ratio turbofan. The digital computer 

simulation of the P100 engine was implemented on a mini 

computer. The nonlinear mathematical model of the simulation 

is based on the hybrid computer simulation developed by Szuch 

and Seidner (1975), where the model utilises wide—range, 

overall performance maps of the engine's components so as to 

provide wide—range, steady—state accuracy. Factors such as 

rotor inertias, fluid compressibility, fluid momentum, and 

energy storage are also included in the model so as to provide 

transient capability. Although it was reported by Yamane and 

Kagiyama (1988) and Yamane and Takahara (1988) that factors 

such as heat capacity of combustor and ignition time lag of 

fuel also affect the dynamical characteristics of the engine, 

such factors are neglected in this simulation. 

The computational flow diagram and the simplified dynamical 

representation of the F100 engine simulation are shown in Figs 

A4.2 and A4.3, respectively. The rotor moments of inertia are 

the most significant factors in determining the transient 

behaviour of a turbofan engine. Rotor speeds are computed from 

the dynamical form of the angular momentum equation. 
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Intercomponent volumes are assumed at engine locations where 

either (1) gas dynamics are considered to be important or (2) 

gas dynamics are required to avoid the need for iterative 

solution of equations. In these volumes, the storage of mass 

and energy occurs. The dynamical forms of the continuity, 

energy, and state equations are solved for the stored mass, 

temperature, and pressure in each volume. When mixing of gases 

is not involved, a simple first—order lag form of the energy 

equation is used. 

The effects of fluid momentum on the transient behaviour of the 

F100 engine are considered only in the fan duct and augmentor 

tailpipe. The contribution of flow dynamics in the compressor, 

main combustor, and turbines is assumed to be primarily high 

frequency (> 10 Hz) in nature and is consequently ignored. 

It is assumed that the control actuators and the measurement 

sensors are the same as those of the linear F100 engine model 

(Appendix 3) and therefore that the actuators and the sensors 

are governed on T by equations (A3.4) to (A3.7). 

Finally, the five manipulated variables are 

u1: main burner fuel flow (lb/hr) 

U2: nozzle jet area (ft2) 

u3: inlet guide vane position (deg) 

u4: variable stator position (deg) 

us: compressor bleed flow (%) 

the five unmeasurable output variables are 



w1: engine net thrust (lb) 

w2: total engine airflow (ibis) 

w3: turbine inlet temperature CR) 

w4: fan stall margin 

w5: compressor stall margin 

and the five measurable output variables are 

y1  (N1) : fan speed (rpm) 

y2  (N2) : compressor speed (rpm) 

y3  (P3) : compressor discharge pressure (psia) 

y4  (P7) : augmentor pressure (psia) 

y5 (FTIT): fan—turbine inlet temperature ('R). 

In case the inputs are ul  and u2  only, a steady—state 

transfer—function matrix at Sea Level Static/Idle condition is 

369 

G= 

	

2.68035 	9 

	

4.50972 	$ 
1.02400e-1 9 

1.34031e-3 $ 
—1.21223e-1 $ 

102.516 
135.000 
2.76397 
—2.43161e-1 
—9.60357 

(A4.1) 

    

and a steady—state transfer—function matrix at Sea Level 

Static/Intermediate condition is 

2.52760e-1 , 1451.03 
1.35074e-1 , —7.04544 

G = 	2.22808e-2 , —4.56090 
2.08151e-3 , —7.70092 
1.46573e-2 , 2.96426 I 

(A4.2) 
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Furthermore, the open-loop step-responses of measurable outputs 

at SLS/Intermediate condition are shown in Figs A4.4 to A4.6 

for u3, u4, and u5, where such responses for u1  and u2 are 

shown in Figs 10.1 and Fig 10.2 (Chapter 10). 
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Fig A4.1 Schematic representation of F100 turbofan engine 
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Fig A4.3 Simplified dynamical representation 
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Fig A4.4 Open-loop step-responses of measurable outputs 

F100 engine nonlinear model u=[0 0 1 0 0] 
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APPENDIX 5 

CONNECTION BETWEEN CONVEX ANALYSIS OF TRACKING SYSTEMS 

AND LINEAR PROGRAMMING PROBLEMS 

There is a close connection between the convex analysis of 

limit—tracking systems and linear programming problems, 

although no objective function is specified. Indeed, the set 

UF(v) of feasible inputs has been defined in Chapter 4 in the 

form 

UF(v) = {u E U : G 	v) 	 (A5.1) 

where G E RP", the input vector u E U = R m, and the set—point 

command vector v E Y = R. Therefore, if the vector u is 

replaced by u' — u", where u', u" > 0, and u', u" E R m , and if 

the vector of slack variables us  0, us  E RP is introduced 

(Bazaraa and Jarvis (1977)), Up(v) can be transformed into the 

feasible region X(v) of linear equation with nonnegativity 

constraint of the form 

X(v) = (x :Ax=v, 	xk 0) (A5.2) 

where 

A = 	( 	G , —G , 	Ip  ] 	E Rpx(2m+p) (A5.3) 

= 
[us

x u" E R2m+P (A5.4) 
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It is clear from equations (A5.1) and (A5.2) that the existence 

of nonempty Ur(v) is equivalent to the existence of such X(v). 

Therefore, the following results are obtained. 

Definition A5.1: Classification (Alternative of Definition 4.3) 

1 Class I plant 

Class I = (G : X(v) 0 0 for v < 0) 	 (A5.5) 

2 Class II plant 

Class II = 	: X(v) = 0 for v < 0) 	 (A5.6) 

Theorem A5.1 

1 (i) If G E Class I, then (ii) Vv, X(v) 0  0. 

2 (i) If 3v, X(v) = 0, then (ii) G E Class II. 

3 (i) If G E Class II, then (ii) Vv < 0, X(v) = 0. 

4 (i) If 3v < 0, X(v) 0 0, then (ii) G E Class I. 

(Proof) 

UF(v) is not empty if and only if X(v) is not empty. 

Therefore, the result is evident. 	 QED 

Thus, the classifidation of linear multivariable plants has 

been related to linear programming problems. It should be 
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noted that, although linear programming is applicable to the 

classification of plants, the results obtained by convex 

analysis in Chapter 4 are geometrically simple and more easily 

applicable to the classification of two— or three—input 

multivariable plants. 

Next, limit tracking and the limit—tracking input are 

discussed. In linear programming, the set of basic feasible 

solutions corresponds to the set of extreme points of X(v) and 

both are nonempty, provided that the feasible region is not 

empty (Theorem 1 (Bazaraa and Jarvis (1977)). Therefore, in 

case G G Class I, Vv, X(v) is not empty and at least one basic 

feasible solution exists. However, in the case of 

limit—tracking systems, the objective function is unspecified, 

the set—point vector v might be unknown, and furthermore, an 

unknown disturbance vector d e RP might exist. Hence, neither 

linear programming nor the simplex method provide the detailed 

features of such solutions (ie limit—tracking input). It is 

noted in this sense that Definition 5.1 and Theorem 5.1 have 

provided such detailed features of limit tracking and have 

guaranteed the existence of such a special form of the basic 

feasible solution without solving any linear programming 

problem. Indeed, the following result is obtained. 

Proposition A5.1 

The limit—tracking input of Definition 5.4 (in case rank G = m) 

is equivalent to a special basic feasible solution of the form 

x = B-lv 	 (A5.7) 
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where the basic matrix B E RPXP consists of m column basis 

vectors of ( G , —G ] and of p—m columns I ,...,It 	of IP' .1 	P-m 
and m slack variables us  ,...,us 	are zero. 

s 	s 1 	m 

Thus, the limit—tracking input corresponds to a basic feasible 

solution with special form. It is noted that such forms change 

depending upon the set—point v and the unknown disturbance d, 

and therefore that it is difficult to use the linear 

programming technique to specify the form of solution without 

knowledge of v and d. 

Furthermore, it is noted that the order—reduction technique 

proposed in Chapter 5 uniquely exploits the facial structure of 

UF(v), ie the internal structure of the matrix A in 
equation 

(A5.3). 

Therefore, to summarise the discussion, the results that have 

been obtained with novelty in Chapters 4 and 5 are: 

1: The characterisation of tracking for systems incorporating 

self—selecting controllers and multivariable plants, 

2: The classification of linear multivariable plants in terms 

of simple geometrical features ie the m—dimensional convex 

cone in U—space and the separating hyperplane in Y—space, 

(Remark) 

The classification of plants in terms of the feasible region 

of a linear equation with nonnegativity constraint, which is 

common in linear programming problems, is possible and has 
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been shown. Such a linear programming technique might be 

used to classify a given plant by using Proposition A5.1, 

although the geometrical interpretation of this 

classification is not so simple as those obtained in U—space 

and Y—space. 

3: The creation of rigorous theoretical foundations for the 

design of limit—tracking systems such as Definition 5.1 and 

Theorem 5.1 (Existence of limit—tracking for Class I 

plants), 

(Remark) 

The interpretation of the limit—tracking input in terms of 

the basic feasible solution of the linear equation with 

nonnegativity constraint has been given (Proposition A5.1) 

in which a limit—tracking input corresponds to a special 

basic feasible solution of such linear equation. Theorems 

of linear programming (such as Theorem 1 (Bazaraa and Jarvis 

(1977)) guarantee the existence of basic feasible solutions 

for Class I plants. However, they neither specify the form 

of solution nor guarantee the existence of such a special 

solution as a limit—tracking input. 

4: The formulation of a synthesis technique for limit—tracking 

systems that exploits the facial structure of the polyhedral 

convex set UF(V). 
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APPENDIX 6 

DYNAMICAL PECULIARITIES OF SELF-SELECTING CONTROL SYSTEMS 

A6.1 Introduction 

In designing the digital self-selecting controllers proposed in 

Chapter 6, it was assumed that the complete closed-loop system 

can be made asymptotically stable. However, due to the 

selection of different controllers, systems incorporating 

self-selecting controllers (ie self-selecting control systems 

or limit-tracking systems) change their structures 

discontinuously, ie, they are variable-structure systems. 

Therefore, even though each control loop produces 

asymptotically stable behaviour when considered separately, the 

stability of the complete closed-loop system is not guaranteed 

and limit-cycle oscillations may occur. 

In previous studies, Foss (1981a) analysed the stability of 

single-input self-selecting control systems. In this analysis, 

discontinuous systems were transformed into continuous systems 

with nonlinear elements, and describing-function criteria or 

passivity criteria were used to assess the stability of the 

complete systems. These criteria were also used by Glattfelder 

and co-workers to analyse the stability of control systems with 

nonlinearity such as saturation and antireset-windup circuits 

(Glattfelder and Schaufelberger (1983), Glattfelder et al 

(1988)). However, this approach is not in general effective 

for the analysis of self-selecting control systems which are 
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untransformable. 

Much effort has been devoted to studies of variable-structure 

systems, which are discontinuous dynamical systems described by 

differential equations with discontinuous right-hand sides. 

The existence of sliding modes is recognised as one the typical 

characteristics of such systems. Filippov (1964) gave a 

definition of the solution of the equations of motion of such 

systems and studied the properties of these solutions. If 

various non-idealities such as hysteresis, delay, and dynamic 

non-idealities (which are present in a real sliding mode) are 

made to tend to zero, this limiting process leads to the same 

equations that result from Filippov's method. Filippov's 

trajectories can therefore be considered as the ideal 

representation of the trajectories obtained in real systems, 

thus indicating one of the reasons for the wide use of 

Filippov's method in studies of variable-structure systems 

(Utkin (1978)). 

However, it is shown in this appendix that a more general 

solution concept than Filippov's is necessary to describe the 

behaviour of self-selecting control systems and that even 

simple self-selecting control systems exhibit dynamical 

peculiarities such as sliding motion and limit-cycle 

oscillation. Such peculiarities have never previously been 

investigated systematically. It is noted that the whole 

analysis is carried out on the continuous-time set in order to 

simplify the discussion. 
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A6.2 System description 

The linear multivariable Class I plants under consideration are 

assumed to be governed on the continuous—time set T = [0,1-0) by 

state and output equations of the respective forms 

X(t) = Ax(t) + bu(t) 	 (A6.1) 

and 

yi(t) = clT  x(t) 

(A6.2) 

yp(t) = crPx(t
) 

where the state vector x(t) E R n , the input u(t) E R, and the 

outputs yi(t) E R (i=1,2,...,p) are to be controlled by the 

self—selecting controller. The plant matrix A e Rnxn, whose 

eigenvalues all lie in the open left—half plane C-, the input 

vector b E Rn , and the output vectors are Ci  E Rn  

(i=1,2,...,p). It is assumed that the introduction of integral 

action preserves stabilisability, ie, gi(s) (i=1,2,...,p) 

represents a functionally controllable plant and therefore that 

(Porter and Power (1970), Power and Porter (1970)) 

gi  0 0 	(i=1,2,...,p) (A6.3) 

where the plant transfer function matrix 
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G(s) = 

F 

CT 1 
• • 
• • 
• • 
CT P I

(sin —A) -lb (A6.4) 

and 

G= [ 

8.1 
O 9 

O 0 

O 0 

g, I 

= 

CT  1 

.. A-lb . 

CT  P 

(A6.5) 

In the case of self—selecting control systems with lowest—wins 

strategies, the index set of all the control loops is I = 

{1,2,...,p} and the error ei(t) E R, i E I, is 

ei(t) = vi  — yi(t) 
	

(A6.6) 

where the set—point vector v = (v1 ,...,vp)T  E RP. Furthermore, 

the index set J(t) of lowest errors and the loop index 2(t) of 

the actually selected loop are defined by the respective forms 

J(t) = (j : ej(t) = min ei(t)} 	 (A6.7) 
iEI 

and 

2(t) E J(t) C I . 	 (A6.8) 

The self—selecting controller is governed on the 



continuous—time set T = (0,-1-.0) by equations of the form 

i(t) 	= el(t)(t) 

and 

u(t) 	= 142(t))et(t)(t) 	I- 1q 2(t))z(t) 
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(A6.9) 

(A6.10) 

where the controller state z(t) E R, and the controller gains 

k(2(t))  E R and k(2(t))  E R are chosen from the sets 

(41),...,W)) and (k11),...,W)), respectively. It is 

assumed that each separate closed—loop system is asymptotically 

stable, where there clearly exist p separate closed—loops when 

2(t) = const E I. This assumption is justified by the 

functional controllability of each separate output, as 

indicated in the conditions (A6.3). 

Since equations (A6.7) and (A6.8) decide which controller 

should be used at each instant, controller switching may occur. 

In controller switching from loop index 21  to 22  at time t, the 

following two types of switching logic are considered: 

(i) Without bumpless transfer 

z(t) = lim z(t—At) 	 (A6.11) 
At-r+0 



[ A —k(P "2))1MT  2(t) , k(t(t))b 
A9(t) 

= 

,T 
--2(t) 0 I E R(n+1)x(n+1) 

(A6.15b) 
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(ii) With bumpless transfer 

u(t) = lim u(t—At) 	 (A6.12) 
At4+c, 

and 

z(t) — 
1 
	 ( lim u(t—At) — 1422)e9  (t)). 
k(11 2)  At-).1.o 	 2 

(A6.13) 

A6.3 Analysis 

The equations (A6.1), (A6.2), (A6.6), (A6.9), and (A6.10) that 

govern the behaviour of the self—selecting control system can 

be written in the form 

X(t) = Al(t) x(t) + bk(t)v2(t) 
	 (A6.14) 

where 

x(t) = E Rn+ 1 (A6.15a) 

b2(t) 
= 

[ k(t(t))b P 

1 

E Rn+1 
s (A6.15c) 

and 
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Vg (t)  = (A6.15d) Arg(t)  E R . 

It is clear that the system equations (A6.14) with the 

lowest—wins control equations (A6.7), (A6.8), and (A6.11) (or 

(A6.A6), (A6.8), (A6.12), and (A6.13)) have discontinuous 

right—hand sides. Therefore, let a solution of the governing 

equations of the self—selecting control system be denoted by 

x(t;x0v) 
X(t;x0v) = 	 X(0;x0v) =xo  

z(t;x0v) 

where x(t;x0v) is the motion of the controlled plant and 

z(t;x0v) is the corresponding motion of the self—selecting 

controller. Since the absolute continuity of x(t;x0v) is lost 

at the controller switching instants in the case of the 

controller switching equations (A6.12) and (A6.13), Filippov's 

definition of solutions of differential equations with 

discontinuous right—hand sides is not enough. So, piecewise 

continuous x(t;x0v) are admitted as solutions. 

Many fundamental properties of closed—loop systems embodying 

multivariable plants and digital self—selecting controllers are 

established in Chapter 7. The following definitions and 

propositions are the anologue version of such properties and 

summarise those concepts needed to understand the results 

presented in the next section: 
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Definition A6.1 

(i) Equilibrium state 

A state xe E Rn" is an equilibrium state of the 

self—selecting control system if and only if, for each 

separate closed—loop system, 

X(t;xe;v) = xe 	Vt E le 	; 

(ii) Steady state 

A state x8  E Rn+1  is a steady state of the self—s
electing 

control system if and only if 

X(tPCOV) = Xs 	, 	Vt E le 
	

• 

Definition A6.2: Index sets of correct and incorrect loops 

In a steady state, the index set Ie(v) such that 

Ie(v) = (i E I : yi  = vi) 

is the set of correct loops and the set 1\1e(v) the set of 

incorrect loops. 

The existence of nonempty Ie(v) is guaranteed by Theorem 5.1. 
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Proposition A6.1 

In a steady state, if i E I\Ic(v) then 

yi  < vi 	. 

(Proof of Proposition A6.1) 

Suppose that 

X(0;xs;v) = xs  

and that there exists i E I\Ic(v) such that yi(0) i vi. Since 

i 0 Ic(v), this means that yi(0) > vi. Then, 

Vj E J(0), ej(0) 5_ ei(0) = vi  — yi(0) < 0 . 

Since 2(0) E J(0), e2(0)  < 0. However, since xs  is a steady 

state, 

A2(o)xs + b2(o)v2(a)  = 0 . 

Therefore, 

i(0) = e2(0)  = 0 . 

This is a contradiction and implies that yi(0) < vi  for 

i e I\Ic(v). 

QED 



Proposition A6.2 

The self—selecting control system has #(Ic(v)) steady states 

for every v, including multiplicity, where #(•) means the 

number of elements in the set •. 

(Proof of Proposition A6.2) 

The asymptotic stability of each closed—loop system 

corresponding to loop index i ensures that all the eigenvalues 

of A.3.  lie in the open left—half plane C-  and that 

rank Ai  = n+1. 

Since rank [Ai  , bi] k rank Ai, rank [Ai  , bi] = n+1. Hence, 

rank [Ai  , bi] = rank Ai  and a steady state is determined as 

the unique solution xi  of the equation 

0 = A.1x.1  + bivi 
	i E Ic(v) . 

For i E I\Ic(v), if xi  satisfies 

0 = Aixi  + bivi 

then yi  = vi. This means that i E Ic(v) and contradicts the 

fact that i E I\Ic(v). 	So, only xi, i E Ic(v) are steady 

states of the system. 
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QED 
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A6.4 Illustrative example 

In order to illustrate these concepts, it is convenient to 

design 	self-selecting 	controllers 	for 	a 	simple 

one-input/two-output plant and to analyse the resulting 

closed-loop characteristics by the phase-plane method. In 

fact, the plant is governed by state and output equations of 

the respective forms 

X(t) = -x(t) + u(t) 

yi(t) = 2x(t) 	 . 	 (A6.16) 

y2(t) = 4x(t) 

The responses of this self-selecting control system in the case 

of controller switching without bumpless transfer are shown in 

Figs A6.1 to A6.3 when the controller parameters are 

k(2)  = 0.2 	k(2)  = 0.25 } ' P 	 kit)  = 

Indeed, these figures show the phase trajectories, the 

set-point commands and outputs, and the plant input and loop 

index, respectively. In this case, stable responses with 

sliding modes are observed. However, when the same controller 

parameters are used in the case of controller switching with 

bumpless transfer, the responses of the system are shown in 

Figs A6.4 to A6.6. In this case, stable responses without 

k(PI)  = 0.1 	k(I)  = 0.5 I 
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sliding motion are observed but it is important to note that 

the discontinuity when x = 1.5 in Fig A6.4 arises from bumpless 

transfer. Finally, the responses of this system in the case of 

controller switching without bumpless transfer are shown in 

Figs A6.7 to A6.9 when the controller parameters are 

k(1)  = 0 	k(1)  = 0.5 P 	 I 

k(P2)  = 0 	
kI2) 

 = 1.0 1 

(A6.18) 

In this case, despite the fact that each control loop is 

separately asymptotically stable, limit-cycle oscillations are 

observed. In each of these cases, the sampling period of 

digital simulation is 0.01 sec, El, E2 are the equilibrium 

states of the corresponding separate closed loops, 

V = (A6.19) 

and 

xo 
= 

[ 40 ] 

	

(A6.20) 

A6.5 Conclusion 

It has been shown that self-selecting control systems with 

lowest-wins strategies are discontinuous dynamical systems. 

Equilibrium states, steady states, index sets of correct and 
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incorrect loops have been defined and characterised for every 

set—point vector. Furthermore, it has been shown that 

dynamical peculiarities can occur even in a very simple 

first—order plant with one input and two outputs under 

self—selecting control. In this case, it has been demonstrated 

that the complete system exhibits stable responses (with or 

without sliding motion) or limit—cycle oscillations depending 

upon the controller gains and the controller switching logic. 

These peculiarities indicate both the richness of the possible 

responses of higher—order multivariable self—selecting control 

systems and the difficulty of analysing such systems. They 

thus stimulate further research into powerful design methods 

for self—selecting control systems which guarantee the 

well—regulated behaviour of complex engineering systems. 
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APPENDIX 7 

ROBUSTNESS THEOREM 

In the following robustness theorem, it is necessary to 

distinguish between the plant for which a controller is 

designed - ie the nominal plant (denoted by subscript n) - and 

the plant to which a controller is applied - ie the actual 

plant (denoted by subscript n). 

Theorem 1 (Porter and Khaki-Sedigh (1989)) 

In the case of any tunable digital PID controller with integral 

post-multiplier of the form 

E = a I 
En 
	 (a E le) 

and any plant perturbation such that 

u.J  E e 	
(j = 1,2,...,m) 

where {A1 ,µ2 ,...,A m} is the spectrum of the perturbation matrix 

M = Ga(0)0;1(0) E Rm" , 	 (A7.1) 

there exists a sampling period T
. 
 E le such that set-point 
. 

tracking occurs for all T E (0,T]. 
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