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SYNOPSIS

The methodology for the design of error-actuated digital
set—-point tracking controllers proposed by Porter and
co-workers has emerged as a result of the pursuit of effective
and practical solutions to the problem of designing digital
control systems for unknown, dynamically complex multivariable
plants with measurable outputs. In this thesis, such digital
set—point tracking controllers and the resulting digital
set—-point tracking systems are enriched to embrace plants with
unmeasurable outputs and plants with more outputs than

manipulated inputs.

In the study of the latter plants, the novel concepts of limit
tracking (ie, the tracking exhibited by plants with more
outputs than dinputs) is introduced and an associated
methodology for the design of self-selecting controllers is
proposed. Such controllers involve the selection of different
set-point tracking controllers to control the most critical
subset of plant outputs based upon the developed rigorous
theoretical foundations for the limit-tracking systems. In
such foundations, the classification of linear multivariable
plants into Class I and Class II plants based upon their
steady-state transfer function matrices facilitates the
assessment of the feasibility of 1limit—-tracking systems.
Furthermore, the associated order-reduction technique
simplifies the problem of deciding the minimum numbers of
different subsets of plant outputs to be controlled by

corresponding set—-point tracking controllers. In addition, the



dynamical properties of 1limit-tracking systems are also
investigated using the phase—plane method and a methodology for
the design of supervisory self-selecting controllers is
proposed so as to prevent the occurrence of dynamical
peculiarities such as limit-cycle oscillations which might

happen in limit—-tracking systems.

The effectiveness of all the proposed methodologies and
techniques is illustrated by examples, and the robustness
properties of set—-point tracking systems and limit-tracking
systems in the face of plant variations and unknown
disturbances are tested. Finally, self-selecting controllers
are designed for a nonlinear gas—turbine engine and their

practical effectiveness is clearly demonstrated.
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PART I

INTRODUCTION



CHAPTER 1

INTRODUCTION

1.1 Introduction

The design of tracking systems, where the plant output is
expected to track or follow the command input, has been an
important issue in control engineering and therefore
investigated for a 1long time. For Multi-Input/Multi-Output
(MIMO) 1linear multivariable plants with highly interactive
dynamics, the classical design methodologies developed for
Single-Input/Single—Output (SISO) plants presented difficulties
in finding practical solutions to the problem of designing
tracking systems. Therefore, a few multivariable design
methodologies for set—point tracking systems have been
suggested. However, most of these techniques perpetuated the
obvious shortcomings such as the heavy reliance upon reasonably
accurate plant models and the non-practical requirement such as
the accessibility for measurement of all the state variables.
At the same time, the design algorithms involved are usually
conceptually and computationally complex and therefore control
engineers experience difficulty in producing reasonable
closed-loop performance unless they are experts in the
particular design methodology. Furthermore, the analogue
nature of most of such techniques hindered their application in
Direct Digital Control, which is becoming even more popular
with the fast development of digital microprocessors and

digital electronics. PFinally, another major difficulty with



most of such techniques is that the controllers are unrobust in
the presence of plant uncertainties such as parameter
variations or unmodelled dynamics. The main reason for these

drawbacks is the lack of practical considerations in developing

these design methodologies.

Therefore, the emergence of robust controller synthesis
methodologies which are conceptually and computationally
simple, free from the reliance upon accurate plant models,
suitable for Direct Digital Control, and utilise only
input-output measurements of the plant has been long-waited.
The error—-actuated tunable digital set—-point tracking
controllers appeared as a masterpiece. The synthesis of such
controllers utilises only data obtained from direct
input—output measurements in the time domain. The controllers
perform effectively the control action by measuring on-line
error signals between plant outputs and command inputs. Such
controllers can reject unmeasurable disturbance inputs whilst
simultaneously causing the plant outputs to track command
inputs. Therefore, such controllers naturally assume that the
outputs from the plants under control are directly available
for control purposes and are expected to demonstrate excellent
set-point tracking performance for plants with measurable
outputs. The successful application of such controllers has
extended from distillation columns to nuclear power reactors.
The robustness of such controllers to plant uncertainties and
unknown disturbances has also been verified during these

application stages.



However, in case the plant outputs which are required to be
controlled are unmeasurable (for example, in aero gas—turbine
engines, the in-flight thrust is normally unavailable for
control purpose), the above assumption is invalid. In such
cases, the error-actuated tunable digital set-point tracking
controllers need to be enriched so as to embrace 1linear

multivariable plants with unmeasurable outputs.

So far, the objective of set—point tracking systems is to cause
all of the plant outputs to track their corresponding set—point
commands. Such an objective is attainable by incorporating as
many integrators as the number of outputs provided that the
plant meets the fundamental requirement of functional
controllability. 1In order to satisfy this necessary condition,
it is evident that the number of manipulated inputs must not be
less than the number of controlled outputs. However, in case
plants have more controlled outputs than manipulated inputs,
they fail to meet these requirements. Therefore, set-—point
tracking systems incorporating as many integrators as the
number of outputs do not work properly in such cases. It is
then obvious that, when control engineers face such
functionally uncontrollable plants, they can either choose an
appropriate subset of plant outputs and design a set-point
tracking controller for only this subset so as to meet as many
control requirements as possible or give up designing a
controller. In the former case, it might happen in some plants
such as gas—-turbine engines that some of the uncontrolled
outputs violate the engine operational 1limits whilst the

controlled plant outputs are tracking their corresponding



set-point commands. In order to overcome such problems it is
necessary to create a new design methodology for tracking
systems which is based upon a new concept of tracking and
enables all the plant outputs to be under control. In such
tracking systems, it is desirable that — although not all the
plant outputs can track their corresponding set-point commands
- as many outputs as possible track their corresponding
set-point commands whilst none of them violate the operational

limits of the plant.

Self-selecting controllers were born under such circumstances
for plants with more controlled outputs than manipulated
inputs. Such a controller incorporates a number of set-point
tracking controllers and works by selecting different set-point
tracking controllers to control the most critical subset of
outputs, which usually changes with time as both set—point
commands and plant outputs change. The usual criterion for
choosing which outputs to control at any time is either a
highest-wins, lowest—wins, or highest-wins/lowest—wins
strategy. In this context, ’highest-wins® or *lowest-wins’
refers to the instantaneous error between the set-point and the
corresponding plant outputs. Therefore, it is required that

the steady states of tracking systems incorporating

self—-selecting controllers and m—input/p—output plants (m < p)
are such that set—point tracking occurs for the most critical m
out of p outputs and that the remaining p-m outputs stay
between upper and lower limits with a certain safety margin.
In the case of lowest—wins strategies, these p—m outputs remain

under the control of set-point commands corresponding to the



upper limits on the outputs, ie nonnegative errors are obtained
for such channels and considered to be safe. Therefore, the
tracking exhibited by entire sets of plant outputs can be
considered to be 1imit tracking in the sense that none of the
outputs exceeds its corresponding set—point command, ie its

limit walue.

Although self-selecting controllers are giving good results in
practical applications such as the control of gas turbines,
systems incorporating such controllers have not been properly
understood yet. Especially, the proper understanding of the

steady states of limit-tracking systems is very important so

that it not only offers the possibility of the application of
such systems to general multivariable plants but also provides
the foundations for the dynamical analysis. Furthermore, due
to the selection of different controllers depending upon
set-point commands and plant outputs, limit-tracking systems
change their structures discontinuously, ie they are
variable—structure systems. Therefore, even though each
control 1loop produces stable behaviour when considered
separately, the stability of the complete system is not
guaranteed. This justifies the necessity of the careful
investigation of the dynamical properties of limit—tracking

systems.

In summary, to cope with the cases in which plants have
unmeasurable outputs or more outputs than inputs, set-point
tracking systems need to be enriched both conceptually and

methodologically.



1.2 Review of multivariable feedback control systems

One of the principal objectives of feedback control is to
synthesise control systems with desirable properties in the
case of imperfect knowledge of the dynamical characteristics of
the controlled plant (Hosoe (1987)). As a result of this
objective, feedback control is fundamentally robust since the
controller works so as to cause the control deviation to be
zZero against the variation of signals and plant
characteristics. In this sense, feedback control is different
from open-loop control methodologies such as Pontryagin?’s

Maximum Principle (Pontryagin et al (1962)).

It was not until the 1930s that the significance of feedback
control was understood clearly by using the Laplace transform
and associated frequency-response techniques. Nyquist (1932),
who is the creator of the Nyquist frequency-domain stability
criterion, showed analytically the trade—off between stability
and large loop gain in feedback control systems; Hazen (1934),
who investigated the performance characteristics of
servomechanisms; and Black (1934), who proposed large loop
gains for the design of feedback amplifiers, are among
contributors to the progress of automatic control in this early
period. The ideas of Nyquist and Black formed the basis of
robust controller design for feedback amplifiers developed by
Bode (1945). The classical automatic control theory (for
example, Truxall (1955)) was then joined by the root-locus

method presented by Evans (1948).



For the control of MIMO multivariable plants, state—space (or
state—-variable) methods appeared in the 1960s which havé their
basis in Linear System Theory (for example, Kalman (1963),
Zadeh and Desoer (1963)). These include as controller design
methodologies for 1linear multivariable plants the Linear
Quadratic Regulator (LQR) (Kalman (1960a), Kalman et al
(1969)), the Decoupling Controller (Falb and Wolovich (1967),
Gilbert (1969)), the Modal Controller (Porter and Crossley
(1972)), the Pole—Assignment Controller (Wonham (1967), Kimura
(1975)), together with the Observer (Luenberger (1966)) or the
Kalman Filter (Kalman (1960b), Arimoto and Porter (1973)) as
the measurement tools for inaccessible state variables.
However, whilst the theoretical development of these
state—space methods was undertaken with enthusiasm in the 1960s
to the 1970s, the response from industry was cool and
applications had not widely spread. This is explained by
considering a few of the difficulties associated with the use

of such methods.

(i) The design is implemented by a 1linear state—variable
feedback law. It is necessary to have access to all the states
of the plant. This difficulty can be overcome by the
introduction of an observer or a Kalman filter to estimate
inaccessible states wusing input—output data from the plant
model. But this creates additional problems such as the
increase of controller complexity, the difference between the
true states and the estimate states during the transient stage
(Patel and Munro (1982)), and the degradation of robustness in

case of the LQR (Doyle and Stein (1979)).



(ii) A suitable choice of the performance criterion (eg, in
case of the LQR, the weighting matrices Q and R) is difficult

to find for industrial processes (Patel and Munro (1982)).

(iii) A model which describes the whole plant (including not
only the essential part but also the non-essential part) is
necessary. It is difficult to design controllers for plants

about which little or nothing is known (Foss (1973)).

(iv) It is difficult to relate the closed-loop responses of the
control system to the plant’s physical characteristics, and
there is 1little room for empirical knowledge to play an

important role (Kimura (1978)).

(v) The problem of parameter variation was not well-formulated
in the theory. Although such robustness issues were commonly
referred to as sensitivity design problems, no robust

controller design algorithms were available (Kimura (1978)).

(vi) The steady—-state characteristics of control systems were
neglected. For example, the LQR can treat only impulsive

disturbances (Kimura (1978)).

The SISO approach in the frequency-domain had been referred to
as "classical control theory" during the reign in the 1960s of
the so-called "modern control theory" of the state-space
methods, but the MIMO approach in the frequency domain was
proposed by Rosenbrock (1969), (1970) in the late 1960s. This
approach was aimed at the approximate decoupling of
multivariable plants by using the Inverse Nyquist Array. Then,

it was  expected that the classical SISO approach could be



applied to each separate input—output pair. MacFarlane (1970),
Belletrutti and MacFarlane (1971), and MacFarlane and
Postlethwaite (1977) developed the multivariable theory of
Generalised Nyquist—Stability Condition and Characteristic
Loci. These methodologies overcame some of the difficulties of
state-space methods such as (i), (ii), and (iv). However, the
design algorithms relied heavily on the interpretation of
graphs in the frequency domain, which becomes delicate and
complex in the case of high-order plants. Furthermore,
robustness was another problem with these approaches since the

plant variation was not well taken into account.

The study of tracking control problems (or servomechanism
problems) for multivariable plants advanced through the
improvement of steady-state characteristics by means of
state—space methods. Johnson (1968) considered the condition
on plant matrices A, B, C, and D to make the LQR effective in
the presence of constant disturbances. Then, different forms
of conditions on plant matrices were obtained by Porter and
Power (1970), and Power and Porter (1970) in regard to the
controllability of the closed-loop systems incorporating
integral feedback, by Porter (1971) in regard to the LQR with
integral feedback, and by Davison and Smith (1971) in regard to
the pole-placement control, Furthermore, in regard to
state-plus—integral feedback, it was pointed out in Kwakernaak

and Sivan (1972) that

"in case the number of integral variables is equal to
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that of manipulated inputs, it can be shown, by a
slight extension of the'§rgumen;of'Power and Porter
(1970) involving the controllability canonical form of
the plant, that necessary and sufficient conditions
for the existence of asymptotically stable control law

are that

(C-i) the plant is stabilisable; and
(C-ii) the open-loop plant transfer function matrix

has no zeros at the origin.”

Thus, the significance of integral action was illustrated in
the state space. A few years later, Francis and Wonham (1975),
and Davison (1976a) solved the tracking control problems for a
more general class of external signals and compensators so that
asymptotic tracking or regulation occurs independently of
disturbances and plant parameter variations. In this sense,

such control was called robust control.

A by-product of the study of tracking control problems is the
deeper understanding of the zeros of multivariable systems (or
loosely termed, multivariable zeros (Sain and Schrader
(1990))). Since Rosenbrock (1970) provided the definitions of
multivariable zeros such as decoupling zeros and transmission
zeros (zeros of a transfer-function matrix), the issues of
multivariable zeros prompted numerous investigations. In
addition, wvarious concepts involving multivariable zeros (for

example, system zeros, invariant zeros) were introduced
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(Rosenbrock (1973), (1974), Kouvaritakis and MacFarlane (1976),
Pugh (1977)). In case a system is controllable and observable,
the set of system zeros, the set of invariant zeros, and the
set of transmission zeros all coincide; in other cases, they do
not. Among such sets of zeros, the transmission zeros — which
are physically associated with the transmission-blocking
properties of plants - drew much attention because of their
close relation with functional controllability (Rosenbrock
(1970)) and the performance of feedback controllers. It is
stated in connection with the non-minimum phase characteristics

of transmission zeros in Porter and Jones (1985c¢) that

"The effectiveness of feedback controllers for linear
multivariable plants is crucially constrained by the
location in the complex plane of the transmission
zeros of such plants. In particular, the presence of
transmission zeros in the right half of the complex
plane leads to closed-loop instability whilst the
presence of transmission zeros at the origin of the

complex plane leads to functional controllability.”

The methods for the computation of transmission zeros were also
keenly investigated (Wolovich (1973), Davison and Wang (1974),
Laub and Moore (1978), Porter (1979)). However, these methods
are not applicable for wunknown plants since they require

detailed knowledge of the open-loop plant dynamics in either
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state—-space or transfer-function matrix form. 1In such cases,
the time—domain identification of transmission zero locations
of asymptotically stable multivariable plants was reported by
Porter and Jones (1985b). In their approach, the step—-response
matrix of the plant was utilised. Furthermore, Porter and
Jones (1985c) later extended this procedure to the time—domain
identification of non-minimum phase characteristics of such

plants.

After the pioneering work regarding robust feedback design by
Bode (1945) in which the differential sensitivity function was
introduced, robustness issues had been investigated in the
context of sensitivity analysis. However, many of the problems
were considered to have already been solved and therefore not
much attention was aimed at robustness issues in the 1960s.
For example, it is stated by Kouvaritakis et al (1982)
regarding the conference (the Symposium on Sensitivity

Analysis) held in Yugoslavia in 1964 that

"Such was the enthusiasm and optimism of this era that,
of the whole range of topics considered, only a few,
such as large parameter variations and structural
sensitivity of various functional block decompositions,

were deemed not to have been resolved.”

Exceptionally, the robust controller design methodology which
inherited Bode®s idea was presented by Horowitz (1963) during

this era. In the 1970s, the criticism of modern control theory
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(for example, Foss (1973)) and the unsatisfactory spread of
multivariable controllers to industry seemed to cause control
theoreticians to review the practicality of modern control
methodologies. Thus, robustness igsues began to be

re—considered in the context of control theory.

In the field of LQG theory (which includes the LQR and the
Kalman filter), the attempt was made to obtain robustness in
the presence of model uncertainties by the 1loop—transfer
recovery approach (Lehtomaki et al (1981)). However, the

drawbacks such as the aforementioned (i) to (iv) still remain.

Next, by considering the transfer function gain/phase
limitations in the face of unstructured uncertainties, the
importance of loop shaping in the frequency domain was pointed
out by Doyle and Stein (1981). Zames (198l1) presented the new
H” norm to measure the robustness of closed-loop feedback
systems and proposed such an H” norm of the transfer function
from the disturbance to the controlled variables as the
minimised criterion for the robust controller design. This
meant the appearance of a new criterion which succeeded the
quadratic mean error used by the LQR/LQG. Since then, these
approaches have been favoured and widely investigated by
theoreticians partly because of their theoretical formality and
depth (for example, Doyle et al (1989)). However, the
aforementioned drawbacks (iii) and (iv) still hold.
Furthermore, it is considered that the controller is high-order
and complex, that the way to choose free design parameters is

not given, and that the result is too conservative.
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There were also some attempts towards the development of robust
control in the frequency domain. Horowitz’s approach evolved
into the quantitative feedback theory (QFT) for multivariable
plants (Yaniv and Horowitz (1986)). One of the others is the
robust Nyquist array methodology, in which closed-loop system
stability is examined by using the Gershgorin bands in the face
of plant variations (Arkun et al (1984)). However, no
systematic compensator design procedure was presented. Another
simple robust controller design for unknown multivariable
plants in which the plant dynamics are approximated by a
first-order lag for SISO systems was proposed by Owens and
Chotai (1983), (1984). The main drawbacks of this method in

the continuous—time case are:

(i) The plant must be minimum phase.
(ii) The real closed-loop system must be stable for all

high gains.

The controller design methodologies reviewed above are strongly
based upon definite plant models in either the time domain or
the frequency domain, Therefore, such methodologies can be
called "model-based control'" in the sense that they are firmly
constrained by the models and that the design cannot proceed
without models (Kimura (1987)). Since such models have their
own fixed-structure (for example, state—space form or
transfer—function matrix), once the type of structure is
decided, the plant is characterised by a set of model

parameters whose number relates to the plant’s dynamical
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complexity. Then, the design loses the direct connection with
the explicit information from the plant such as input/output
data and the design procedure results in a standardised
numerical computation. However, here is a trap in which modern
control theory is often caught — ie even though there never
exists a perfect model of a real physical plant, modern control
theory depends too heavily upon the model and it lacks a
careful concern for the imperfection of the model. Under such
circumstances, "model-free control” in the sense that
controller design is free from such constraints as model type
and model order prompted much attention. In model—free
control, it dis desired that controller design positively
utilises the direct input/output data from the plant, thus
keeping the direct connection with such explicit information
during the controller design stage. Therefore, attempts were
naturally made to extend <conventional tunable PI/PID
controllers from SISO to MIMO multivariable plants. Such
controllers not only use directly measured input-output
physical data from the plant thus preventing themselves from
falling into a model-related trap but also are robust in the

face of possible plant variations.

The multivariable tuning regulators, in which the plant to be
controlled is assumed to be 1linear, time—invariant and
open-loop asymptotically stable but no other assumptions such
as known plant order or minimum-phase behaviours are needed,
were proposed by Davison (1976b). After some simple "off-line"
tests are performed on the plant, the controller is then

obtained by tuning "on-line" a scalar positive parameter in the
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same manner as in the SISO tuning method (for example, Ziegler
and Nichols (1942)). However, such regulators yielded rather
poor closed-loop performance when applied to a commercial heat
exch;;;ér (Dav;$on et al (1980)) although it was assumed that
the plant had already been speeded up by using some type of
heuristic output control, eg, proportional and derivative
output control. In order to improve the regulator performance
in respect of fast responses and low—interaction, a parameter
optimisation technique was introduced into this approach
(Davison and Ferguson (1981)). Whilst Davison’s approach uses
only the integral of error (ie I-controller), multivariable
PI-controllers in which the error between command input and
plant output is also used were proposed to speed up the
transient responses of the closed—loop systems (Penttinen and
Koivo (1980)). However, such controllers exist only for the
restricted class of plants with first Markov parameters of
maximal rank. Furthermore, an important common drawback of

these methods is the fact that they are only concerned with the

design of analogue controllers.

In order to overcome such difficulties of I/PI-controllers, new
approaches to the design of tunable analogue/digital set-point
tracking controllers for unknown multivariable plants were
presented by Porter (198l), (1982a). 1In the former approach
(Porter (1981)), the proportional controller matrix involved
the inverse (or right inverse) of the plant steady-state
transfer—-function matrix and positive scalar tuning parameters
were used. PFurthermore, this approach was extended to plants

with unmeasurable outputs by using measurement matrices which
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involve steady-state transfer—function matrices for both
measurable and unmeasurable outputs (Porter and Bradshaw
(1983)). In the 1latter approach (Porter (1982a)), the
decoupling theory of Falb and Wolovich (1967) was used to
obtain initial non—undershooting responses, the proportional
controller matrix involved the inverse of the plant decoupling
matrix, and the tuning parameters became positive diagonal
matrices. However, this would still need mathematical models
of plants. Therefore, step-response matrices were introduced
to the proportional part of the controller (Porter and Jones
(1984a)) since such matrices are easily determined £from
off-1line open-loop tests performed on the plant. Furthermore,
the controller was rendered Proportional, Integral, and
Derivative (ie PID-controller) so as to improve transient
responses and the step-response matrices were used also in the
derivative part of the controller (Porter and Jones (1985a)).
The extensions of these types of PI/PID controllers were
reported by Porter (1982b) for time—delayed plants, by Porter
and Jones (1984b) for plants with Lur’e-type nonlinearities, by
Porter and Boddy (1988) for open-loop unstable plants, and by
Porter and Khaki-Sedigh (1990) for type—one plants. The
robustness of the controllers in the face of plant variations
was assessed by Porter and Khaki-Sedigh (1989). The problem of
the extension of non—undershooting controllers to plants with

unmeasurable outputs was tackled by Porter and Yamane (1989).

Another approach to model-free control is Model Predictive
Control (MPC) (Garcia et al (1989)) in which impulse-response

coefficients or step—-response coefficients are used to predict
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the effect of future actions of the manipulated inputs on the
outputs. Since such prediction is carried out over a certain
moving horizon, the future set—-point commands over this horizon
must be known. Furthermore, since a constrained optimisation
problem must be solved at each time instant, the computational
efforts involved are complex. Therefore, although MPC is
applicable in the process industry where large and powerful
computational capability is available and the required
transient-response time is of the order of minutes, this
approach is not suitable for the plants such as aero
gas—turbines where the computation has to be carried out by
microprocessors and the required transient-response time is of

the order of seconds.

In case plants have more controlled outputs than manipulated
inputs, the condition of functional controllability is mnot
satisfied. Therefore, systems incorporating as many
integrators as the number of inputs do not work properly. In
such cases, asymptotie tracking for all of the plant outputs
has to be abandoned and, alternatively, only the most critical
output or subset of outputs can be integrally controlled.
Then, such subsets change with time as both set-point commands
and output change. Therefore, different controllers are
selected to control such most critical subsets and the
controller switching occurs when the controlled subset changes.
This working principle of so-called self-selecting controllers
is so simple that the jet engine hydromechanical/electronical
fuel controller has incorporated this principle to guarantee

safe engine operation. Glattfelder et al (1980) dealt with
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microcomputer-based self-selecting controllers which
incorporate ‘’highest-wins’ and ‘’lowest-wins®? gates to keep
control signals within a certain range. The self-selecting
controllers based upon lowest-wins strategies for SIMO and MIMO
plants were discussed by Foss (198lb) as the multivariable
limit controller and applied to a gas—turbine engine. However,
this approach was not general since the binary lowest-wins
strategies constrained the way to select critical subsets of
signals. Jones et al (1988) presented more general
self-selecting multivariable PI controllers which can be
considered as extensions of tunable set-point tracking
controllers (Porter and Jones (1984a)). This approach was also
applied to gas—turbine engines successfully (Jones et al
(1988), (1990)). However, the problems such as the existence
of steady states, the minimum numbers of different controllers,

etc are unresolved.

Due to controller switching, systems incorporating
self-selecting controllers are variable-structure discontinuous
dynamical systems. The first analysis of the stability of
self-gelecting control systems based upon lowest-wins
strategies was presented by Foss (198la), (1981b). In this
analysis, discontinuous systems were transformed into
continuous systems with nonlinear elements, and
describing-function criteria or passivity criteria were used to
assess the stability of the complete systems. These criteria
were also used to assess the stability of control systems with
nonlinearity such as saturation and antireset-windup circuits

(Glattfelder and Schaufelberger (1983), Glattfelder et al
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(1988)). However, this approach is not in general effective
for the analysis of self-selecting control systems which are

untransformable.

Variable-structure systems, which are discontinuous dynamical
systems and described by differential equations with
discontinuous right—hand sides, have prompted many
investigations. Utkin (1977), (1978) and Emelyanov (1987) are
among the contributors. The existence of sliding modes is
recognised as one of the typical characteristics of such
systems. Filippov (1964) gave a definition of the solution of
the equations of motion of such systems and studied the
properties of these solutions. If various non-idealities such
as hysteresis, delay, and dynamical non-idealities (which are
present in a real sliding mode) are made to tend to zero, this
limiting process leads to the same equations that result from
Filippov’s method. Filippov’s trajectories can therefore be
considered as the ideal representation of the trajectories
obtained in real systems, thus indicating one of the reasons
for the wide wuse of Filippov’s method in studies of
variable~structure systems (Utkin (1978)). However, it was
shown by Porter and Yamane (1990) that Filippov’s solution
concept is not enough for self-selecting control systems and
that dynamical peculiarities such as sliding motion or
limit—cycle oscillations can occur even in the case of a very

simple first—order plant.
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1.3 Objectives

The central objective of this thesis is to provide a pragmatic
means to design tracking systems incorporating multivariable
plants. Such tracking systems incorporate as core elements
digital set-point tracking PI/PID controllers or self-selecting
PI/PID controllers. The digital set—-point tracking controllers
are to be designed for plaﬁts with measurable outputs or with
unmeasurable outputs. In such plants, the number of inputs and
the number of outputs are equal. For plants with more outputs
than inputs, theoretical foundations for the analysis of
tracking systems incorporating such plants are to be
constructed and effective procedures are to be developed that
assess the feasibility of tracking system design. Using the
developed procedures, self-selecting controllers are to be
designed for such plants. In order to obtain enhanced
stability of the closed—loop control systems, supervisory
self—-selecting controllers are to be proposed whilst it is to
be shown that dynamical peculiarities such as limit-cycle
oscillations might occur in self-selecting control systems.

Finally, the robustness of tracking systems is to be assessed.

The design of tracking systems is to be characterised by the

following practical guidelines:

1) Procedures should be developed that assess the feasibility

of tracking system design for multivariable plants;

2) Controllers should be applicable to plants with measurable

outputs, or with unmeasurable outputs, or with more outputs



22

than inputs, as long as the assessment 1) is feasiblej;

3) Controllers should be simple, easy to tune, and preferably

digital;

4) Only plant input/output data should be used in the design
(ie design should be free from a heavy reliance upon
accurate plant models and state should be regarded as a

mathematical abstraction);

5) Control laws should use only such input/output data;

6) Procedures should be provided that identify the data used in

the controllers;

7) Controllers should be robust (ie the controllers should
function in the face of unknown disturbances and plant

variations}).

1.4 Outline of the thesis

This thesis consists of six parts and a few appendices. In
Part I (Chapter 1), an introduction to the problems involved in
the design of tracking systems incorporating complex
multivariable plants is given. A review of multivariable
feedback control systems and an outline of the objectives of

this thesis are also given.

In Part II (Chapters 2 and 3), methodologies for the design of
set-point tracking systems are presented.
Block-diagonalisation transforms are utilised to show the

asymptotic properties of closed-loop digital control systems
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incorporating 1linear multivariable plants with measurable
outputs and tunable digital set—-point tracking controllers
(Chapter 2). Such controllers are then enriched to embrace
linear multivariable plants with unmeasurable outputs by the
inclusion of associated pre—filters (Chapter 3). In order to
circumvent the need for detailed mathematical models of the
plants, it is shown that the design of these controllers can be
achieved using only data obtained from open—-loop step-response
tests performed on the plants. The excellent tracking
performance of the resulting set—point tracking systems is
demonstrated by the presentation of simulation results for a

highly interactive gas—turbine engine.

In Part III (Chapters 4 to 8), tracking systems incorporating
linear multivariable plants with more controlled outputs than
manipulated inputs are discussed. In Chapter 4, after pointing
out that set-point tracking systems incorporating such plants
fail to operate properly, a more general tracking concept (ie
undertracking and overtracking which are expressed by sets of
inequalities) is introduced to characterise such general
tracking systems. Then, the <classification of 1linear
multivariable plants into Class I and Class II plants is
carried out in the context of convex analysis. Thus, the
theoretical foundations for the design of controllers for such
plants with more outputs than inputs are provided. In Chapter
5, the problems regarding the steady states of tracking systems
incorporating self-selecting controllers (which themselves
consist of a number of set—-point point tracking controllers)

are presented in the context of lowest-wins strategies, and the
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tracking exhibited by entire sets of plant outputs is called
limit tracking. Next, by investigating the facial structure of
the resulting limit-tracking systems, a novel order-reduction
technique is developed that decides the minimum numbers of
different subsets of plant outputs to be controlled by
corresponding set—-point tracking controllers. Thus, a new
synthesis approach to 1limit-tracking systems is given. In
Chapter 6, this new synthesis approach to 1limit-tracking
systems obtained from the steady—-state analysis underlies the
methodologies for the design of digital self-selecting
controllers. A block—-diagonalisation transform is utilised to
show the asymptotic properties of separate closed-loop systems.
Implementation issues in regard to the integration of separate
controllers are considered. The excellent limit—tracking
performance of closed-loop control systems is demonstrated by
the presentation of simulation results for a highly interactive
gas—turbine engine. In Chapter 7, to enhance closed-loop
stability of self-selecting control systems, theoretical
foundations for the dynamical analysis of such systems are
constructed and methodologies for the design of supervisory
self-selecting controllers are presented. It is shown that
three operational modes and two assessment blocks form such
supervisory controllers and that enhanced stability can be
achieved using this controller for the case in which the

non—-supervisory controller causes limit—cycle oscillations.

In Part IV (Chapters 8 and 9), the robustness of tracking
systems is assessed in the face of unknown disturbances and

plant variations. The effect of controller parameters of
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supervisory self-selecting controllers on tracking performance

is also studied.

In Part V (Chapter 10), as a case study, a digital
self-selecting controller is designed for a nonlinear model of
a gas—turbine engine and the results of nonlinear simulation

are presented.

In Part VI (Chapter 11), the principal features of the
developed design methodologies are reviewed and discussed, the
important results are summarised, and recommendations for

further work in this field are provided.

Finally, in Appendix 1, a procedure to perform Open—loop tests
on plants is described. In Appendix 2, proofs of various
theorems and propositions stated in this thesis are given. In
Appendices 3 and 4, models of an aero gas—turbine engine are
given. In Appendix 5, the analysis of tracking systems
(presented in Part III) is related to well-known Linear
Programming problems and the difference between the two
approaches is explained. In Appendix 6, the problem in regard
to the dynamical properties of self-selecting control systems
is illustrated by applying the phase-plane method to a simple
example and showing the dynamical peculiarities of closed-loop

control systems.



PART IX

DESIGN OF SET—-POINT TRACKING SYSTEMS

INCORPORATING LINEAR MULTIVARIABLE PLANTS
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CHAPTER 2

DESIGN OF TUNABLE DIGITAL SET-POINT TRACKING
PID CONTROLLERS FOR LINEAR
MULTIVARIABLE PLANTS WITH MEASURABLE OUTPUTS
2.1 Introduction

In this chapter, the design of controllers for unknown
open—-loop asymptotically stable linear multivariable plants is
considered. In order to circumvent the need for mathematical
models of 1linear multivariable plants expressed in either
state—space or transfer—function matrix form, the proportional,
integral, and derivative controller matrices embodied in the
tunable digital PID controllers proposed must be directly
obtainable from open-loop tests performed on the asymptotically
stable plants. These controllers must ensure that the
resulting closed-loop systems are asymptotically stable and
that satisfactory set-point tracking behaviour occurs.
Furthermore, in the case of nearly all practical systems, there
exist uncertainties such as plant variations and unknown
disturbances. The effects of these uncertainties must also be
taken into account. Therefore, the controller design problem
is discussed in this chapter and the robustness properties of
the controllers in the face of such uncertainties are

considered in Chapter 8.
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It is shown that the proportional, integral, and derivative
controller matrices used in these PID controllers can be
directly determined from open-loop step-response tests
performed on plants (Appendix 1). The proportional and
derivative controller matrices are chosen as the inverse of the
open—loop step-response matrix, which is itself derived from
the classical decoupling theory of Falb and Wolovich (1967).
This choice 1is made in order to exploit the initial
interactions within the plant and thus to cause set—point
tracking to occur without initial interaction or under-shoot
(Mita and Yoshida (1981)). The integral controller matrix is
chosen as the inverse of the open-loop steady-state
transfer-function matrix in order to exploit the final
interactions within the plant. Thus, provided only that the
plants satisfy the fundamental condition of Porter and Power
(1970) and Power and Porter (1970) for the preservation of
stabilisability in the presence of integral action, such
error—actuated controllers can be readily designed for unknown

multivariable plants.

A block-diagonalisation transformation is used to investigate
the asymptotic properties of closed-loop systems under the
action of such PID controllers. The closed-loop plant matrix
is decomposed into three sub-matrices, using the
block-diagonalisation transformation of Kokotovic (1975), and
it is shown that the basic design criterion for asymptotic
stability and set-point tracking can be satisfied in terms of

the characteristic roots of the sub-matrices.
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The effectiveness of such a tunable controller is illustrated
by designing, for a highly interactive gas—turbine engine, a
tunable digital set-point tracking PID controller which
exhibits excellent set-point tracking characteristics and

corresponding minimal loop-interactions.

2.2 Analysis

The linear multivariable plants under consideration are assumed
to be governed on the continuous-time set T = [0,+») by state

and output equations of the respective forms

x(t) Ax(t) + Bu(t) (2.1)

and

y(t) = Cx(t) , (2.2)

where the state vector x(t) € R", the input vector u(t) € R",
the output vector y(t) € R™, the plant matrix A € R"*" whose
eigenvalues all lie in the open left-half plane C~, the input
matrix B € R"*®, and C € R"*" 4is the output matrix.
Furthermore, it is assumed that the introduction of integral
action preserves stabilisability and therefore that (Porter and

Power (1970), Power and Porter (1970))

rank G = m , (2.3)
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where the plant transfer—-function matrix

G(s) = C(sI-A) !B (2.4)

and the steady-state transfer—function matrix

G = G(0) = —-CA~!B € R™®*" (2.5)

are known from open—-loop tests performed on the plant

(Appendix 1).

Finally, it is assumed that input—output decoupling is

achievable and therefore that (Falb and Wolovich (1967))

rank F = m , (2.6)

where the decoupling matrix

F=l.eeo.. € R7*" (2.7)

and the di (i=1,2,...,m) and the cg (i=1,2,...,m) are,
respectively, the decoupling indices of the plant (Falb and
Wolovich (1967)) and the rows of the output matrix. In the
case of such plants, it is important to note that

F = 1lim A™!(t)H(t) (2.8)
£=20

and
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F™! = 1im H™'(£)A(L) , (2.9)
t=0
where
A(t) = diag{t?1*!'/(d +1)!,....,t%*1/(d_+1)1} (2.10)
and
H(t) = CA™'(e®*-1,)B (2.11)

is the plant step-response matrix.

In order to design error-actuated set-point tracking PID
controllers for linear multivariable plants governed by state
and output equations of the respective forms (2.1) and (2.2),
it is convenient to consider the behaviour of such plants on
the discrete—time set r, = {o,T1,2T,...,kT,...}. This behaviour
is governed by state and output equations of the respective

forms (Kwakernaak and Sivan (1972))

Xpsr = ka + Iuk (2.12)

and

Yy = I'x, , (2.13)

Ii

where x, = x(kT) € R", u, = u(kI) € R", ¥, = y(kI) € R®,
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& = exp(AT) , (2.14)
T

¥ = | exp(At)B dt , (2.15)
0

r=c¢, (2.16)

and T € R* is the sampling period.

The block diagram of the digital control system is shown in Fig
2.1. The set—-point tracking error-actuated tunable digital PID
controller is governed on the discrete-time set T, by a
control-law equation of the form

u, = IK,e

+ TK,z, + K3(ek - ek_l). (2.17)

k k k

This controller is required to generate a piecewise-constant
control input vector u(t) = u,, t € [kT,(k+1)T), kT € T,, 80 as
to cause the output vector y(t) to track any constant set—point

vector v € R® on T in the sense that the error vector

T?

e, =vVv-y € R™ assumes the steady-state value

lim e = lim (v - yk) =0 (2.18)

k400 k4

for arbitrary initial conditions. In equation (2.17), the

digital integral—-of-error vector

+ Te, _, € R" , (2.19)
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and the controller matrices K, € R"*®, K, € R"*®, and K; €

Rmxm.

It follows from equations (2.12), (2.13), (2.17), and (2.19)
that discrete-time tracking systems incorporating such plants
and such controllers are governed on T, by state and output

equations of the respective forms

b ST i-—TQKlI‘—ﬂ(aI‘ s T?ZK2 ,-ﬂ(a Xy TQKI + §K3
Z,oq | = ~TT , I ,0 z, | + TI_
fk+1 =T ’ 0 9 0 fk Im
(2.20)
and
y,=[T, 0, 0] Xy ’ (2.21)
2y
£,

where £ = e, _, € R" is the stored error vector.

Therefore, provided only that T, K,, K and K, are such that

29
all the eigenvalues of the closed-loop plant matrix in equation

(2.20) 1ie in the open unit disc D~,

1lim Az, = 1lim {z - zk} = 0 (2.22)

k- koo

k+1

and therefore
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lim e, = 0 (2.23)

so that set—point tracking occurs.

The closed-loop characteristic equation can be readily

expressed in the form (Porter and Jones (1985a))
9.(2) = 0,(2)0,(z)0,(2) (2.24)

by invoking the block-diagonalisation procedure of Kokotovié
(1975), and the response characteristics of the closed-loop
system can accordingly thus be elucidated. The asymptotic
properties of tracking systems under the action of such
controllers can be characterised in terms of the eigenstructure
of the closed-loop plant matrix, which involves the
decomposition of this matrix into three sub-systems based on
the explicitly invertible block diagonalisation transform

(Kokotovic (1975)).

This block-diagonalisation procedure transforms the matrix

triple incorporated in equations of the form
x, (k+1) A, > A, x, (k) B,
= + u(k) (2025)
x, (k+l) A,, , A, x, (k) B,
and

y(k) = 1€, , C, 1 | x, (k)
(2.26)

x, (k)
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where x,(k) € R™1, x,(k) € R%2, Aij € RB1%%y (i,j=1,2),
B, € R*1*®, B, € R"2*®, C, € R®™*"1, and C, € R®"*"2 into the
1 2 ’ 1 2

block—-diagonal form incorporated in the equations
X, (k+l) A 0 x, (k) B
X, (k+1) 0, 4,, X, (k) B,

and

y(k) = [ €, , C, 1| x,(k)
Ve [ ! ] ) (2.28)

X, (k)

The state vectors in these equations are related by the linear

state transformation (Kokotovié (1975))

x X
[ 1] = w[ 1] (2.29)
X2 Xz

where

I, , M
W= 1 € Riny*ny)a(n,+a,) (2.30)

X,(k) € R"1, x,(k) € R"2, Ayy € R"1*"3 (i,j=1,2), B, € R™1*",

B, € R"2*%, ¢, € R"*"1, C, € R"*"2, L € R"2™"1 ,and M € R"17%"2.
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Thus, if L and M satisfy the matrix Riccati equations
(Kokotovic (1975))
A

+ LA - A,,L-LA,L=0 (2.31)

21 11

and

o, (2.32)

(A - AlzL)M - M(A + LAlz) +4A,,

11 22

it follows from equations (2.25), (2.27), and (2.29) that

11 11 12k (2.33)

and

(2.34)

22 22 12 °

The asymptotic properties of the discrete-time closed-loop
tracking system can now be readily determined by regarding T as
a perturbation parameter in equations (2.20) and (2.21). Thus,

by regarding in equation (2.25)

©-T¥K I-¥K,T , TIK,
A, = , (2.35)
-Tr , I
-%¥K,
Ay, = , (2.36)
0
A, =[-T,0] , (2.37)
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and

A = 0 s (2038)

the solution of equations (2.31) and (2.32) can be readily
obtained by using power series expansions in T. This involves

the definition of matrices L1 and L, such that

L=1[L, ,L,] (2.39)
where

Ll = Llo + LilT + .t (2.40)

L, =L,y + L, T+ ..... (2.41)

in which L ,;, € R"2%"3 , L, € R"2%*"4, (i=0,1,2,.....).
Therefore, it is clear from equations (2.31), (2.35), (2.36),

(2.37), (2.38), and (2.39) that on isolating coefficients

L=[C, 0] + 0(T) (2.42)

and therefore from equations (2.33) and (2.34) that

¥-TEK,T , TIK,
A = (2.43)
-tr , I

and
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= — 2
A,, = —ICBK, +0(T?) . (2.44)
The matrix A,, in equation (2.43) is now block—-diagonalised,
again by regarding T as a perturbation parameter in equation

(2.43) and by regarding in equation (2.25)

A, =& - TIKT , (2.45)

A, = T¥K, . (2.46)

A,, = -TT , (2.47)
and

Ay, = I_ . (2.48)

In addition, the matrix L is defined in the power—series form

- _ —
L=1L,+TL, +T%L, + ... (2.49)

In equations (2.45), (2.46), (2.47), (2.48), and (2.49), the
overbar has been used to distinguish between the two explicit

stages of the block-diagonalisation procedure.

Therefore, it is clear from equations (2.31), (2.45), (2.46),

(2.47), (2.48), and (2.49) that on isolating coefficients
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L =cA™ !+ T(CA™'BK,CA™! + CA™'BK,CA™2 - ¢/2) + 0(T?).
(2.50)
Hence, it follows from (2.33), (2.34) and (2.50) that
A, =TI+ TA + T?A%/2 - T%BK,C - T?BK,CA™! + O(T?)
(2.51)
and
A,, = I_ - TZCA™'BK, + 0(13) . (2.52)

Thus, it is evident from equations (2.43), (2.44), (2.51), and
(2.52) that the characteristic polynomials as expressed in

equation (2.24) are

$,(z) = | 21 -1 - TA - T%A%/2 + T?BK C

+ T2BK,CA™! + o(T?) | , (2.53)

0,(z) = | 21, - 1_ - T?cA"!BK, + O(T?) | , (2.54)

and

¢,(z) = | 2I_ + TCBK, + 0(T?) | . (2.55)
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2.3 Synthesis

It is clear that tracking will occur in the sense of equation
(2.23) provided only that the set of closed-loop characteristic

roots

2, =2, v2z,UV2,C D~ (2.56)

where D~ is the open unit disc and the sets of characteristic

roots Z,, 2 and Z, are, respectively, the roots of the

2°?

characteristic polynomials as expressed in equation (2.24).

Therefore, in case

K, = H(T) 'A(T)I . (2.57)

1

where H(T) is given by equation (2.11) and

I = diag{x,,7,,...,%,} , 7, € R* (i=1,2,...,m), (2.58)

K, = G(0) 1= . (2.59)

2
where G(0) is given by equation (2.5) and
Z = diag{o,,0,,....,0,} , 0, € R* (i=1,2,...,m), (2.60)

and

K, = H™1(T)A(T)A . (2.61)
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where H(T) is given by equation (2.11) and

A = diag{é,,6,,....,6.} , 6, € R* (i=1,2,...,m), (2.62)

it follows from equations (2.24), (2.53), (2.54), (2.55),

(2.57), (2.59), and (2.61) that

zZ, ={z€cC: |21, -1 -TA+ 0(1%) | =0}, (2.63)

zZ,={z€C: |21 -1, +T’2+0(T%) | =01}, (2.64)

*»

and

zZ,. = {z €CcC

| z1_+o0o(T) | =0} . (2.65)

These expressions indicate that, provided T is sufficiently
small, all the closed-loop characteristic roots lie within the
open unit disc. This follows since the open-loop plant is
asymptotically stable on the continuous—time set T = [0,+») and
since T2Z is a positive diagonal matrix. The introduction of
error—actuated digital set—-point tracking PID controllers
governed by equations (2.17), (2.57), (2.59) and (2.61)
accordingly ensures that set-point tracking occurs when the
sampling time T € (O,T'], where T* = T*(H,E,A) can be readily

obtained by simple "on-line" tuning (Porter and Jones (1985a)).
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Furthermore, it follows from equations (2.20) and (2.21) that
the output from the initially quiescent plant after the first

sampling interval under error-actuated digital PID control is

y(T) = [TH(T)K1 + H(T)K3]V . (2.66)

It is evident from equations (2.57), (2.61), and (2.66) that

y(T) = [TA(T)I + A(T)A)v (2.67)

and therefore that set-point tracking occurs when T € (0,T"]
with no initial interaction since A(T)I and A(T)A are diagonal
matrices for all T € R*. Moreover, it follows from (2.67) that
the ith element (i=1,2,....,m) of the output vector y(T) is

given by

¥, (T) = [TA(T)m, + A (T)S,1v, (2.68)

where A,(T), =;, and 6, are the elements of the diagonal
matrices A(T), I, and A, respectively. It is thus evident from

equations (2.10) and (2.68) that

v, (T) = [T4*2n /(d,+1)1 + T 16 /(d +1) 1)V, (2.69)

where d1 is the decoupling index (Falb and Wolovich (1967))
associated with the ith channel (i=1,2,...,m). Equation (2.69)
indicates that the presence of derivative action in the

error—actuated digital PID controller ‘"“speeds up" the
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closed-loop response by reducing the effective decoupling index
associated with the ith channel from d; to d;-1 (i=1,2,..,m).
Indeed, this is directly reflected by equation (2.68) where the
scalar [TA,(T)m,+A,(T)6;] represents the proportion of the
set-point which has been achieved after the first sampling

period.

The proportional, integral, and derivative controller matrices

K K and K, given by equations (2.57), (2.59), and (2.61),

1? 2°?

respectively, can all be directly determined from the
step~response matrix H(t). This is the case since it follows
from equation (2.11) that

G(0) = 1lim H(t) = -CA"!B (2.70)

el

because the open-loop plant is asymptotically stable and
therefore has a bounded step-response matrix. Furthermore,
since the expressions (2.57) and (2.61) for the proportional
and derivative controller matrices, respectively, involve the
inverse of the initial step-response matrix of the open-loop
plant H(T), it is clear that the sampling period must be
selected 8o that the minimum singular wvalue of H(T)

(o (H(T)]) is not small, so that H(T) is well-conditioned.

min

2.4 Illustrative example

The use of these methods can be conveniently illustrated by
designing a tunable digital set-point tracking PID controller

for the 1linear model of the F1l00 engine obtained at
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Intermediate condition (Appendix 3).

The plant has five measurable outputs and five manipulated
inputs and is governed by state and output equations of the
forms (A3.8) and (A3.10). The elements of the open-loop
step-response matrix of the plant are obtained by "off-line"
open—loop tests (Appendix 1) and are shown in Figs 2.2 to 2.6.
it is clear from these figures that the plant is highly
interactive. Furthermore, the corresponding plot of the

minimum singular values (o [H(t)]) of the step—response

min
matrix shown in Fig 2.7 indicates that the plant is minimum
phase (Porter and Jones (1985¢c)) and that G(0) is

well-conditioned since °m1an(+”)] is not small.

Therefore, it is found from Figs 2.2 to 2.6 that

0.63349E-03 1.2999 —0.13554

0.17616E-04 —-0,.80181E-01 —-0.99195E-03
H(0.05) = 0.23170E-03 0.15636 0.30845E-02

0.11637E-04 -0.18878 0.42304E-03

0.60822E-04 -0.86794E-02 —0.66965E—04

0.28229E-01 -3.0846
-0.61116 -1.9583

0.21946E-01 -1.5823 (2.71)
-0.96205E~03 -0.19460E-01

0.75545E-03 0.61871E-01

and
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0.37904 1238.8 -28.508
0.30777 660.79 -2.8675
G(0) = 0.20602E-01 -—39.863 0.25947
0.15944E-02 -12.168 0.38479E-01
0.90309E-01 210.94 -1.7403
-9.2619 -57.405
-25.646 -46.221
-0.76283 -6.8275 . (2.72)
-0.33542E-01 -0.44527
2.2101 12.248

The excellent set-point tracking behaviour of the plant under
the action of the resulting error—actuated PID controller tuned
such that T = 0.05 sec, A(0.05)0 = diag{0.05, 0.2, 0.1, 0.1,
0.1}, £ = diag{50, 50, 50, 50, 100}, and A(0.05)a = 0.001I,, is
shown in Figs 2.8 and 2.9. In this case, the set—point vector
for the measurable outputs is v = [126, 93.4, 14.5, 1.78,
1.97]1T so that the thrust change is 500 1b. It is evident from
these figures that the response of the gas—turbine engine
consists of a fast approach to the desired values with minimum
interaction between the five channels and that the
corresponding manipulated variables exhibit no practically

undesirable characteristics.

2.5 Conclusion

In this chapter, a block-diagonalisation transformation has
been used to exhibit the asymptotic properties of discrete-time
closed-loop tracking systems incorporating asymptotically
stable linear multivariable plants under the action of digital

PID controllers. The controller parameters have been chosen so
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that set—point tracking is achieved without initial interaction
or undershoot. It has been shown that the design of
error—actuated digital controllers, which ensure that set—point
tracking behaviour of the closed-loop system occurs, can be
readily effected even though the detailed dynamical properties

of the processes involved are unknown.

Finally, the effectiveness of these methodologies has been
illustrated by < designing a digital set—-point tracking

controller for a highly interactive gas—-turbine engine.
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CHAPTER 3

DESIGN OF TUNABLE DIGITAL SET-POINT TRACKING

PID/PRE-FILTER CONTROLLERS FOR LINEAR

MULTIVARIABLE PLANTS WITH UNMEASURABLE OUTPUIS

3.1 Introduction

In designing the tunable digital set-point tracking PID
controllers proposed in Chapter 2, it was assumed that the
outputs from the plants under control are directly available
for control purposes. However, in many technologically
important applications such as gas turbines, the plant outputs
which are required to be controlled are unmeasurable so that
this assumption is invalid. Therefore, in this chapter, the
tunable digital set—point tracking PID controllers of Chapter 2
are enriched by the inclusion of pre-filters so as to embrace
linear multivariable plants with unmeasurable outputs. It is
noted that the robustness properties of the resulting

controllers are considered in Chapter 8.

It is shown that the pre—filter matrices, together with the
proportional, integral, and derivative controller matrices
embodied in the resulting PID/Pre-filter controllers, can be
determined from open-loop step-response tests performed on
plants (Appendix 1). The proportional and derivative
controller matrices are chosen as the inverse of the open-loop
step—response matrix for unmeasurable outputs, which is itself

derived from the classical decoupling theory of Falb and
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Wolovich (1967). This choice is made in order to exploit the
initial interactions within the plant and thus to cause
set-point tracking to occur without initial interaction or
under—shoot (Mita and Yoshida (1981)). The integral controller
matrix is chosen as the inverse of the open-loop steady—state
transfer-function matrix for measurable outputs in order to
exploit the final interactions within the plant. Finally, the
pre—-filter matrix which converts the set-point commands for
unmeasurable outputs into set—point commands for measurable
outputs is designed to achieve set-point tracking for
unmeasurable outputs. Although the use of the step~response
matrix for unmeasurable outputs in controller matrices implies
that off-line measurements of such outputs is necessary in the
design stage, the design procedure is free from on-line
measurements of such outputs. Thus, provided only that the
plants satisfy the fundamental condition of Porter and Power
(1970) and Power and Porter (1970) for the preservation of
stabilisability in the presence of integral action, such
error—actuated controllers can be readily designed for unknown

multivariable plants with unmeasurable outputs.

A block-diagonalisation transformation is used to investigate
the asymptotic properties of closed-loop systems under the
action of such PID/Pre—filter controllers. The closed-loop
plant matrix is decomposed into three sub-matrices, using the
block-diagonalisation transformation of Kokotovie (1975), and
it is shown that the basic design criterion for stability and
set—point tracking can be satisfied in terms of the

characteristic roots of these sub-matrices.
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The effectiveness of such a tunable controller is illustrated
by designing a tunable digital set—-point tracking
PID/Pre-filter controller for a highly interactive gas—turbine
engine with five measurable outputs (which are not to be
directly regulated but are available for control purposes) and
five unmeasurable outputs (which are to be directly regulated
but are not available for control purposes). It is shown that
the proportional and derivative controller matrices include the
inverse of the step-response matrix for unmeasurable outputs.
Therefore, as long as such data are available in the controller
design stage, the controller ensures the initial
non—-interaction or non-under-shooting and the final set-point
tracking of unmeasurable outputs. This direct action in
respect of the wunmeasurable outputs forms the distinctive
feature of such tunable PID/Pre~filter controllers.

3.2 Analysis

The linear multivariable plants under consideration are assumed
to be governed on the continuous-time set T = [0,+») by state,

output, and measurement equations of the respective forms

x(t) Ax(t) + Bu(t) . (3.1)

w(t) Ex(t) . (3.2)

and

y(t) = Cx(t) ’ (3.3)
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where the state vector x(t) € R", the input vector u(t) € R",
the unmeasurable plant output vector w(t) € R®, the measurable
output vector y(t) € R", the plant matrix A € R"*® whose
eigenvalues all lie in the open left-half plane C~, the input
matrix B € R"*®, the unmeasurable output matrix E € R®*®, and
the measurable output matrix C € R™*", Purthermore, it is
assumed that the introduction of integral action preserves
stabilisability and therefore that (Porter and Power (1970),

Power and Porter (1970))

rank Gu = rank Gy =m . (3.4)

Here, the steady-state transfer function matrices

L2}
]

G (0) = -EA"'B € R"*® (3.5)

and

12
]

G,(0) = -CA™ !B € R®*® (3.6)
where the plant transfer-function matrices
G, (s) = E(sI-A)"'B (3.7)

and
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G, (s) = C(si-A)~1B . (3.8)

Finally, it is assumed that input—-output decoupling is
achievable and therefore that (Falb and Wolovich (1967))

rank F,=m (3.9)

where the decoupling matrix

F = € RO*" (3.10)

and the d; (i=1,2,...,m) and the ei (i=1,2,...,m) are,

respectively, the decoupling indices of the plant (Falb and
Wolovich (1967)) and the rows of the unmeasurable output

matrix. In the case of such plants, it is important to note

that
F, = lim AJ'(t)H (t) (3.11)
t=20
and
-1 . -1
F = = lim H_ (t)A"(t) (3.12)
t=0
where

A, (t) = diag{t®1*1/(d,+1)1,....,t%*1/(d_+1)1) (3.13)
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and
H (t) = EA"'(e**-1 )B (3.14)

is the plant step-response matrix for unmeasurable outputs.

Similarly,
H (t) = CA™'(e?*-1)B (3.15)

is the plant step-response matrix for measurable outputs. This
obviously indicates that, although the measurement of
unmeasurable outputs is not necessary in the on—line operation
of the controller, such measurement is necessary in the

off-line design stage of the controller.

In order to design error—actuated set-point tracking PID
controllers for linear multivariable plants governed by state,
output, and measurement equations of the respective forms
(3.1), (3.2), and (3.3), it is convenient to consider the
behaviour of such plants on the discrete—time set T, =
{0,T,27,...,kT,...}. This behaviour is governed by state,
output, and measurement equations of the respective forms
(Kwakernaak and Sivan (1972))

= &x, + ¥u_ , (3.16)

k

(3.17)
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and
¥ = Tx, (3.18)
where x, = x(kT) € R", u, = u(kT) € R", w, = w(kT) € R®, y, =
y(kT) € R",
& = exp(AT) , (3.19)
T
¥ = [ exp(At)B dt , (3.20)
0
E=E, (3.21)
r=c¢, (3.22)

and T € R* is the sampling period. Furthermore, in designing
such controllers, it is necessary to introduce pre-filters
which generate the set—point vector for measurable outputs
v € R® from the set-point vector for unmeasurable outputs

r € R® in accordance with equation

v =Jr , (3.23)

where the pre-filter matrix J € R™*® is to be determined.
Thus, if the measurable output vector is caused to track its

set-point vector in the sense that

lim (v - yk) =0, (3.24)
k-t
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it follows from equations (3.23) and (3.24) that

lim (Jr - yk) = 0 (3.25)
k-4

and therefore that

: -1 =
lim (Jr - GyG" wk) =0 (3.26)
k4o

in view of equations (3.5) and (3.6). Therefore, if such

pre—filters are chosen such that
= -1 mxm
J = GyG" € R"ET (3.27)
it follows from equations (3.26) and (3.27) that

lim (r - wk) =0 (3.28)

ko4
so that the unmeasurable output vector is caused to track its
set-point vector in the steady state. It is thus evident (as
indicated in the block diagram shown din Fig 3.l1) that the
essential function of digital PID/Pre-filter controllers for
plants with unmeasurable output vectors is to cause the
measurable output vectors to track their set-point vectors in
the sense of equation (3.24), where the set-point vectors for
the measurable output vectors are generated from the set—point
vectors for the unmeasurable set—point vectors in accordance

with equations (3.23) and (3.27).
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The state and output equations of such plants under the action
of error-actuated digital PID/Pre—filter controllers governed
on the dicrete-time set T, = {0,T,2T,...,kT,...} by

control-law equations of the forms

u, = IK,e, + IK,z, + K3(ek - ek_l) (3.29)

K

clearly assume the respective forms

X1 Q—TIKII‘-IKsI‘ s 'IQKz ,—EK3 Xy '.l.'ﬂ(1 + I'K3
2,0 | = -Tr , I, 0 z, | + I,
fk'l'l -r 2 0 'Y 0 fk Im
(3.30)
and
w.=[08,0,0] X, s (3.31)
2y
By
In equation (3.29), the error vector e, = v — y, € R®, the
stored error-vector f, = e, _, € R™, the set-point vector for

measurable outputs v € R®, the digital integral-of-error vector

z, =2z, _, +Te , € R™® , (3.32)

and the controller matrices K, € R"*", K, € R"*", and

K, € R"*", Therefore, provided only that T, K,, K,, and K, are

29

such that all the eigenvalues of the closed-loop plant matrix
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in equation (3.30) lie in the open unit disc D7,

lim Az, = 1lim {2, , — 2,} =0 (3.33)
k=~ koo

and consequently
lime, = 0 (3.34)

so that set-point tracking occurs in the sense of equation

(3.24).

The characteristic equation of the closed-loop plant matrix in

equation (3.30) can be readily expressed in the form

0.(2z) = 0,(2)0,(2)0,(z) (3.35)

by invoking the block—diagonalisation procedure of Kokotovié
(1975), and the response characteristics of the closed-loop
system can accordingly be elucidated. The asymptotic
properties of tracking systems under the action of such
controllers can be characterised in terms of the eigenstructure
of the closed-loop plant matrix, which involves the
decomposition of this matrix into three sub-systems based on
the explicitly dinvertible block diagonalisation transform

(Kokotovic (1975)).
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This block-diagonalisation procedure transforms the matrix

triple incorporated in equations of the form
xl(k+1) A, » A, xl(k) B,
= + u(k) (3.36)
X, (k+l) A,, » A,, x,(k) B,
and

yk) =1¢C, , C, ] !x,(k)]
(3.37)
x, (k)

where x,(k) € R®1, x,(k) € R"z, A,, € R*1*%; (i,j=1,2),

ij
B, € R"1*", B, € R"2*", ¢, € R"*"1, and C, € R"*"2 into the

block-diagonal form incorporated in the equations
X, (k+1) 4,, , 0 X, (k) B
X, (kt1) 0, 4,, X, (k) B,

and

y(k) = (¢C, , C, 1| x,(k)
! 2 [ ! ] i (3.39)

X, (k)

The state vectors in these equations are related by the linear

state transformation (Kokotovic (1975))

x X
[ ‘] = w[ '] (3.40)
X, X2
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where
I, , M
W= 1 € R(P *nz)x(n 4n,) (3.41)

x,(k) € R"1, x,(k) € R"2, Aij € R"1*"j (i,j=1,2), B, € R"1*%,

B, € R"2*", C, € R"™"1, C, € R®*%2 L € R"2*%; ,and M € R"1*"2.

Thus, if L and M satisfy the matrix Riccati equations

(Kokotovic (1975))
- AzzL - LA;zL =0 (3.42)
and

(A, = A,,L)M - M(A,, + LA,,) + 4, = 0. (3.43)

11 22

it follows from equations (3.36), (3.38), and (3.40) that
L (3.44)
and

(3.45)

22 22

The asymptotic properties of the discrete-time closed-loop
tracking system can now be readily determined by regarding T as
a perturbation parameter in equations (3.30) and (3.31). Thus,

by regarding in equation (3.36)
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Q—TQKIP-§K3P . TYKz
A, = s (3.46)
-IT .
—QKa
b1z = , (3.47)
0
A, =[-T,0] , (3.48)
and
A,, =0 , (3.49)

the solution of equations (3.42) and (3.43) can be readily
obtained by using power series expansions in T. This involves

the definition of matrices L, and L, such that

L=1[L, , L, ] (3.50)
where

L1 = L10 + LllT + ceene (3.51)

L, =L,y + L, T+ .c0.t (3.52)
in which L,, € R"2*"3 , L,, € R"2*%4, (i=0,1,2,..... ).

Therefore, it is clear from equations (3.42), (3.46), (3.47),

(3.48), (3.49), and (3.50) that on isolating coefficients
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L=[C, 01+ 0(T) (3.53)

and therefore from equations (3.44) and (3.45) that

&-T¥K,T , T¥K,
4 = (3.54)

11
-Ir  , I,

and

S
[}

- 2
22 TCBK3+0(T ) . (3.55)
The matrix A,, in equation (3.43) is now block—diagonalised, by
again regarding T as a perturbation parameter in equation

(3.54) and by regarding in equation (3.36)

A, =3 - T T, (3.56)

A, = T¥K, , (3.57)

A,, =-IT , (3.58)
and

A,, = I_. (3.59)

In addition, the matrix L is defined in a power—series form

- —_ 2
L==L, +TL, + T°L, + ... (3.60)
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In equations (3.56), (3.57), (3.58), (3.59), and (3.60), the
overbar has been used to distinguish between the two explicit

stages of the block-diagonalisation procedure.

Therefore, it is clear from equations (3.42), (3.56), (3.57),

(3.58), (3.59), and (3.60) that on isolating coefficients

L =ca"! + T(CAT'BK,CA™! + CAT!BK,CA™Z - ¢/2) + 0(T?).
(3.61)
Hence, it follows from (3.44), (3.45) and (3.61) that
A,, = I, + TA + T2A%/2 - T?BK G - T®BK,CA"' + O(T?)
(3.62)
and
4,, = I_ - TlCAT'BK, + 0(T?) . (3.63)

Thus, it is evident from equations (3.54), (3.55), (3.62), and
(3.63) that the characteristic polynomials as expressed in

equation (3.35) are

0,(z) = | z1_ - 1, - TA - T2A%/2 + T%BK,C
+ T2BK,ca”! + o(T?) | , (3.64)
¢,(z) = | zI_ - 1 - T2cA"'BK, + O(T?) | , (3.65)
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and

¢,(z) = | 2I + TCBK, + O(T?) | . (3.66)

3.3 Synthesis

It is clear that tracking will occur in the sense of equation
(3.24) provided only that the set of closed-loop characteristic

roots

Z2.=2,02z,u2z,C D™ (3.67)

c

where D~ is the open unit disc and the sets of characteristic

roots Z,, 2 and Z, are, respectively, the roots of the

z,

characteristic polynomials as expressed in equation (3.35).

Therefore, in case
K, = H_}Y(T)A (T)03™ !, (3.68)
where Hy(T) is given by equation (3.14) and
I = diag{w,,%,,...,%,}) , 7, € R* (i=1,2,...,m), (3.69)
K, = 6;1(0)2 . (3.70)

where G'(O) is given by equation (3.6) and

z = diag{os,,0,,...,0,} , 0, € R* (i=1,2,...,m), (3.71)
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and

K, = H;'(T)A (T)AT™! (3.72)

where H"(T) is given by equation (3.14) and

A = diag{é,,6,,....,6,} , 6; € R* (i=1,2,...,m), (3.73)

it follows from equations (3.35), (3.64), (3.65), (3.66),

(3.68), (3.70), and (3.72) that

zZ,={z€cC: |21 -1 -TA+ o(T%) | =0}, (3.74)

zZ,={z€cC: |21, -1 + T2+ 0(T) | =0}, (3.75)
and

zZ,={z€C: | 21 +0(T) | =0} . (3.76)

These expressions indicate that, provided T is sufficiently
small, all the closed-loop characteristic roots lie within the
open unit disc. This follows since the open—-loop plant is
asymptotically stable on the continuous—time set T = [0,+~) and
since T?3 is a positive diagonal matrix. The introduction of
error—actuated digital set-point tracking PID controllers
governed by equations (3.29), (3.68), (3.70) and (3.72)

accordingly ensures that set—point tracking occurs for the
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measurable outputs in the sense of equation (3.24) when the
sampling time T € (0,T"], where T" = T*(I,£,A) can be readily
obtained by simple "on-line" tuning (Porter and Jones (1985a)).
The presence of pre—-filters governed by equations (3.23) and
(3.27) then ensures that set-point tracking occurs for the

unmeasurable outputs in the sense of equation (3.28).

Furthermore, it follows from equations (3.30) and (3.31) that
the wunmeasurable output from the initially quiescent plant
after the first sampling interval under error-actuated digital

PID/Pre-filter control is
w(T) = [TH (T)K, + H (T)K,]v (3.77)

since

T
E¢ = [Eexp(At)Bdt = H_(T) (3.78)
0
in view of equations (3.20) and (3.21). It is thus evident

from equations (3.23), (3.68), (3.72), and (3.77) that
w(T) = [TA"(T)H + A“(T)A]r (3.79)

and therefore that set—-point tracking occurs when T € (0,T"]
with initial non—interaction since Au(T)H and AH(T)A are
diagonal matrices for all T € R'. The pre-filter matrix J €
R™"*™ given by equation (3.27), together with the proportional,

integral, and derivative controller matrices K, € R"*", K, €
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R®*®, and K, € R"*" given by equations (3.68), (3.70), and
(3.72), respectively, can all be obtained from the
step—response matrices H"(t) and Hy(t). This is the case since

it follows from equations (3.14) and (3.15) that

G (0) = 1im H _(t) = -EA”'B (3.80)
[l
and
6,(0) = lim H_(t) = -CA™!'B (3.81)
£

because the open—loop plant is asymptotically stable.

Therefore, tunable digital set—point tracking PID controllers =—
with associated pre-filters - can be readily designed for
linear multivariable plants without the need for mathematical
models provided only that the step-response matrices H (t) and
Hy(t) are obtained from open-loop tests. Then, it is clear
that although the controller operation does not require the
on-line measurement of unmeasurable outputs, the off-line
measurement of such outputs is necessary in the design stage of
the controller. It can be considered that the superior
operational performance such as initial non-interaction for

unmeasurable outputs is obtained in exchange for the effort of

measuring such outputs off line.

Finally, since the expressions (3.68) and (3.72) for K, and K,
involve H_'(T), it is clear that the sampling period T must be
chosen such that the minimum singular value of H (T)

(o [H“(T)]) is not small, so that H"(I) is well—conditioned

min
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(Porter and Jones (1985c)).

3.4 Illustrative example

These general results can be conveniently illustrated by
designing a tunable digital set—point tracking PID/Pre—filter
controller for the linear model of the F100 gas—turbine engine

obtained at Intermediate condition (Appendix 3).

The plant has five measurable outputs, five wunmeasurable
outputs, and five manipulated inputs and is governed by state,
output, and measurement equations of the form (A3.8), (A3.9),
and (A3.10). The elements of the plant step-response matrices
Hy(t) and H (t) are obtained by "off-line" open—loop tests. It
is possible to obtain such data in engine running tests which
are carried out using altitude test facilities. They are shown
in Figs 2.2 to 2.6 and in Figs 3.2 to 3.6, respectively. It is
clear from these figuresAthat the plant is highly interactive.
Furthermore, the corresponding plots of the minimum singular

values (o [Hw(t)]) of the step—-response

min

ninlHy(t)] and o

matrices shown in Fig 2.7 and Fig 3.7(a),(b) indicate that the
plant is minimum phase for the measurable outputs and
nonminimum phase for the unmeasurable outputs (Porter and Jones
(1985¢c)). It is evident from Figs 2.2 to 2.6 that Gy(O) is

well-conditioned since o [Hy(+w)] is not small, However,

min
attention must be given in order to choose the sampling
interval T so as not to use an ill-conditioned H_(T), since

omin[H"(+w)] vanishes once.
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6 and from Figs 3.2 to 3.6 that

0.20199E-01 -268.18 8.4970
0.63298E-04 0.27604 0.16262
H“(0.0S) = 0.17399E-01 -0.94227 —-0.72047E-02
—-0.12214E-06 0.67912E-02 —-0.15042E-02
0.19447E-06 —0.21704E-03 -0.91478E-05
0.11445 -90.294
0.10948E-02 —0.10496
0.27036 12.481 (3.82)
0.11095E-03 0.74531E-03
-0.56074E-02 0.70200E-02
0.93215 -1384.6 18.823
0.53537E-02 17.599 0.28572
G,(0) = 0.12133 282.50 -2.1459
0.10422E-04 0.26652 -0.85391E-02
-0.20603E-05 —0.85660E-02 0.33076E-04
~-11.079 -197.54
-0.12785 -0.78934
2.7500 19.700 (3.83)
-0.24992E-03 0.24874E-02
—-0.68327E-02 0.68195E-02
and
0.37904 1238.8 -28.508
0.30777 660.79 -2.8675
Gy(O) = 0.20602E-01 -39.863 0.25947
0.15944E-02 -12.168 0.38479E-01
0.90309E-01 210.94 -1.7403
-9.2619 -57.405
—-25.646 -46.221
-0.76283 -6.8275 . (3.84)
-0.33542E-01 -0.44527
2.2101 12,248
It is accordingly found from equations (3.27), (3.83), and

(3.84) that
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0.25123 22.335 -0.18958
0.18671 31.039 -0.38513
J = 0.28902E-01 0.21873 -0.66287E-01
0.35558E-02 -0.30482 -0.54230E-04
0.39481E-02 0.38839 0.69140
4688.4 282.44
1893.0 2645.6
57.423 31.907 . (3.85)
-6.8342 5.0751
51.518 -60.740

The excellent set-point tracking behaviour of the plant under
the action of the resulting error—actuated PID/Pre—-filter
controller tuned such that T = 0.05 sec, A _(0.05)I = 1.0I.,, Z =
diag{s0, 50, 50, 50, 100}, A _(0.05)A = 0.0lI., is shown in Figs
3.8 and 3.9. In this case, the required thrust change is 500
1b so that the set-point vector for the unmeasurable outputs is
r = (500, O, O, O, 01T whilst the corresponding set—point
vector for the measurable outputs is v = GyG;IISOO, 0, 0, O,
01T = (126, 93.4, 14.5, 1.78, 1.97])T. It is evident from Figs
3.8 and 3.9 that the response of the gas—turbine engine
consists of a fast approach to the desired unmeasurable and
measurable outputs with minimum interaction between the five
channels. In addition, it is clear from Fig 3.10 that the
corresponding manipulated variables exhibit no practically
undesirable characteristics. Finally, it is noted that the
distinction between the PID/Pre-filter controllers and the PID
controllers (Chapter 2) comes from the initial decoupling of
unmeasurable outputs. In the case of PID controllers (Chapter
2), the initial transient behaviour of unmeasurable outputs is

not considered. Therefore, initial decoupling is not obtained
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for such outputs as shown in Fig 3.11 which corresponds to the
example in Chapter 2. On the other hand, in the case of the
PID/Pre—filter controller, initial decoupling for such outputs

is obtained as was shown in Fig 3.8.

3.5 Conclusion

In this chapter, a block—-diagonalisation transformation has
been used to exhibit the asymptotic properties of discrete-time
closed-loop tracking systems incorporating asymptotically
stable linear multivariable plants with unmeasurable outputs
under the action of digital PID/Pre-filter controllers. It has
been shown that the pre—filter matrices, together with the
proportional, integral, and derivative controller matrices
embodied in the resulting tunable digital PID/Pre—filter
controllers, can be determined from open-loop Step—response
tests thus circumventing the need for detailed mathematical
models of complex plants. In order to obtain the step-response
data for unmeasurable outputs, it 1is necessary to measure
off-line such outputs in the design stage of the controller.
Some effort might be required to do so. However, such
measurement is possible for plants such as aero gas—turbines
during ground and altitude tests and therefore the efforts
involved are compensated by the superior initial transient
response for unmeasurable outputs. Finally, the effectiveness
of these methodologies has been illustrated by designing a
digital set-point tracking controller for a gas—turbine engine

with five measurable outputs and five unmeasurable outputs.
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DESIGN OF LIMIT-TRACKING SYSTEMS

INCORPORATING LINEAR MULTIVARIABLE PLANTS
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CHAPTER 4

GENERALISED CHARACTERISATION OF TRACKING SYSTEMS

AND LINEAR MULTIVARIABLE PLANTS

4.1 Introduction

The methodologies for the design of set—point tracking systems
introduced in Part II deal with linear multivariable plants in
which the numbers of inputs and outputs are equal. Such
tracking systems work effectively provided that plants meet the
fundamental requirement of functional controllability.
Therefore, the number of manipulated inputs has to be not less
than that of controlled outputs. However, in case plants have
more controlled outputs than manipulated inputs, they fail to
meet these requirements. Therefore, set—point tracking systems
incorporating as many integrators as the number of outputs do
not work properly. In such cases, if control engineers choose
an appropriate subset of plant outputs and design a set-point
tracking controller for only this subset, it might happen in
some plants such as gas—turbine engines that some of the
uncontrolled plant outputs violate the engine operational
limits whilst the controlled plant outputs are tracking their
corresponding set—point commands. Therefore, the need for a
more general tracking concept than set—-point tracking is
evident in order to give a sound basis for the design of
controllers for linear multivariable plants with more outputs

than inputs.
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The creation of such a general tracking concept is carried out
by the inclusion of inequalities in tracking conditions. Thus,
firstly, the tracking characteristics of linear multivariable
plants are expressed by sets of linear inequalities involving
the steady-state transfer function matrices of such plants.
Such sets of inequalities, which also occur in problems of
linear programming, can be investigated very effectively using
results from convex analysis (Rockafellar (1970)). In this
investigation, wundertracking (ie tracking with nonnegative
errors) is defined and its characteristics are discussed in
terms of vector spaces. Next, it is shown that the possibility
of undertracking is characterised by the separation theorem of
convex analysis. This leads to the classification of plants
and to the presentation of geometrical and analytical features
of this classification. Furthermore, tracking characteristics
under the action of constant disturbances are also discussed.
Finally, illustrative examples explain these concepts. The
proofs of Propositions and Theorems are given in Appendix 2.
Thus, the foundations for the design of controllers for linear
multivariable plants with more outputs than inputs are

constructed.

4.2 Problem statement

It is supposed that the asymptotically stable plants wunder
investigation have steady-state transfer function matrices G €

RPE™ yhich satisfy the equation
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y=6u =] ..]u (4.1)

where the steady—state input vector u € U = R", the
steady-state output vector y € Y = RP, and the positive numbers
p and m are arbitrary. Equation (4.1) represents the
steady—state input-output relation of an open-loop
asymptotically stable plant or a closed—loop system stabilised

by appropriate feedback.

In the study of tracking systems, it is important to determine
the characteristics of G that are required to make such systems
effective for an arbitrary set—-point command vector Vv € RP,
Thus, for example, if rank 6 = p < m, it is clear that the
input vector u = GT[G6T] 'v enables the output to follow any
set—point command. However, if rank 6 < m < p or
rank 6 < p £ m, the plant is functionally uncontrollable, the
right-inverse of ¢ does not exist, and set-point tracking in
the sense that y = v is impossible for arbitrary set-point
command vectors. In this case when nonnegative or nonpositive
errors can be allowed in the sense that y £ v or y 2 v (where
vector inequalities are interpreted component by component), it
may be possible to design tracking systems in this sense which
is practically very important. However, the conditions
necessary for the plant to make such tracking systems feasible
are not clear. Therefore, the investigation is aimed at the

case rank G ¢ p, although the analysis requires no restrictions
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on p and m.

4.3 Characterisation of tracking systems

The general tracking characteristics of linear multivariable
plants can be defined by using a vector equality together with

vector inequalities (ie sets of equalities/inequalities).
Definition 4.1: Tracking
1 Set—point tracking

The tracking is said to be set—point tracking if and only if

y=6u=yv . (4.2)

2 Undertracking (Tracking with nonnegative errors)

The tracking is said to be undertracking if and only if

y=6usv . (4.3)
3 Overtracking (Tracking with nonpositive errors)
The tracking is said to be overtracking if and only if
y=6u2v . (4.4)

In this definition, the vector inequalities in equations (4.3)
and (4.4) are interpreted component by component and include
the case y = v. PFurthermore, it is clear that 1 implies 2 or 3

in Definition 4.1.
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Since the difference between undertracking and overtracking is
only in the directions of inequalities, the subsequent
investigation is carried out only for undertracking. Firstly,
the theory of convexity is used to characterise undertracking
in terms of vector spaces. Then, the property of polyhedral

convexity is stated and the separation theorem is introduced.
Definition 4.2

1 Set Ur(v) of feasible inputs

Up(v) = {u €U : 6uc<v) (4.5)

2 Set Y_ of reachable outputs

R

Y, ={yerv:y=6Gu, ucec U} (4.6)

3 Set Y,(v) of admissible outputs

Y (v) ={y€Y :y< v} (4.7)

4 Set Yr(v) of feasible outputs

Yr(v) =Y, N YA(V) (4.8)

Proposition 4.1

1 Ur(v), YA(V) and Yr(v) = G (Ur(v)) are closed polyhedral

convex sets.
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2 Y, is a subspace of ¥, closed and convex.
Proposition 4.2

1 (i) U (v) = ¢ if and only if (ii) Y (v) = @
2 (i) Uy (v) # @ if and only if (ii) Y, (v) = ¢

Proposition 4.2 means that set—theoretical results in U-space

and Y-space are equivalent.
Proposition 4.3
V6, Up(v) = b, Yp(v) = ®$ for v 2 0
Theorem 4.1: Separation
1 (1) Y (v) # ® for v < 0 if and only if

(ii) there does not exist a hyperplane separating ¥,(0) and

Y, properly.
2 (i) Y (v) = ¢ for v < 0 if and only if

(ii) there exists a hyperplane separating Y,(0) and ¥,

properly.

It is clear by Theorem 4.1 that the existence of Yr(v) or UF(V)
for v < 0 depends upon whether there exists a hyperplane
separating YA(O) and Y, properly or not. Furthermore, since
both Y,(0) and Y. are polyhedral convex sets, the following

proposition can be stated.
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Proposition 4.4

If there exists a hyperplane separating Y,(0) and ¥,  properly,
it contains Y, and does not contain Y,(0).

4.4 Classification of plants

The results of Theorem 4.1 can be used to classify plants.
Definition 4.3: Classification

1 Class I plant

Class I = {6 : Uy(v) = @ and Y, (v) = ¢ for v < 0} (4.9)

2 Class II plant

Class II {G U

..

p(v) = @ and Y (v) = ¢ for v < 0} (4.10)

Theorem 4.2
1 (i) If ¢ € Class I, then (ii) Vv, U (v) = ® and Y (v) = "
2 (i) If 3v, U (v) = @ and Yp(v) = ¢, then (ii) G € Class II.

3 (i) If G € Class II, then (ii) Vv < 0, Uy(v) = ® and

4 (i) If 3v <0, Ug(v) = ¢ and Y (v) # ®, then (ii)

G € Class I.

Theorem 4.2.1 means that, provided the plant belongs to
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Class I, undertracking is possible for any set—point command,
thus clarifying the importance of Class I plants in tracking
systems. Theorem 4.2.2 means that, if wundertracking is
impossible for any particular set-point command, the plant
belongs to Class II. Furthermore, Theorem 4.2.4 means that if
undertracking is possible for some negative set—point command,

the plant belongs to Class I.
Proposition 4.5

1 6 € Class II if 3i € [1,p), &; = 0.
2 vi € (1,p), g; # O if G € Class I.

Proposition 4.5 indicates the sufficient condition for Class 1II

plants and the necessary condition for Class I plants.
Theorem 4.3
(i) ¢ € Class I if and only if

(ii) vi € [1,p], g, # O and U,(0) is an m—dimensional convex

cone.
Proposition 4.6
Ur(v) is unbounded and dim Ur(v) =m if 6 € Class I.

In this section, the steady-state transfer function matrix G
has been classified. It follows from Definitions 4.1.2, 4.2,
and Theorem 4.2.1 that undertracking is always possible for
G € Class I. So, there always exists an input vector u such

that
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for 6 € Class I with rank G < p. The next theorem shows the

importance of Class I plants in disturbance rejection.

Theorem 4.4
(i) 6 € Class I if and only if
(ii) vv, de, Ur(v,dy) # ¢ and Yr(v,dy) = @,

where

the unmeasurable constant disturbance vector dy € RP,

it

Ur(v,dy) {u

Gu + dy £ v}, (4.11)

and

Yr(v,dy) {y : vy = 6Gu + dy s ¥ S v}, (4.12)

Finally, a sufficient condition for ¢ € Class I is given.
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Theorem 4.5

G € Class I if 3i € [l,m], g, > O,

1

where

c=1{g, | ... 1a, , g. €RP, (4.13)

4.5 Illustrative examples

The results established in the previous sections can be
conveniently illustrated by examples such as gas—turbine

engines.

Example 4.1

=}
Lo |
_—
o
A
]
—
[
»
[
IA
(=]
[

Y,(0) = {y : y £ 0}

G >0 and U (0) is a 1-dimensional half line. Therefore, by
Theorem 4.3 or 4.5, G € Class I. This is also confirmed in

Y-space as is shown in Fig 4.1 because there does not exist a
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hyperplane (ie a line in the case of R?) separating YA(O) and

Y_ properly. Therefore, using Theorem 4.1, Y_(v) = ¢ for

R

v < 0 so that G € Class I.

Example 4.2

Y,(0) = {y : y £ 0}

By Theorem 4.3, G € Class II. This is confirmed in Y-space as
is shown in Fig 4.2 because Y, itself separates ¥,(0) and Y,
properly. Therefore, using Theorem 4.1, Y_(v) = ¢ for v <O

so that G € Class II.

Example 4.3

g7 -1, 2

c=| g | = 1, 1 , U=Rr® , y=R?
2
g3 2, -1

If such a plant is given, the condition of Theorem 4.5 is not
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satisfied and it is not apparent whether G € Class I or not.

Actually, by Theorem 4.3, G € Class I since U (0) is a

2-dimensional convex cone in U-space as is shown in Fig 4.3.
It may also be confirmed in Y-space that a plane Y; penetrates
¥,(0).

Thus, there does not exist a hyperplane separating

Y,(0) and Y  properly.

Example 4.4: Nonlinear F100 engine model at Sea Level

Static/Idle (Appendix 4)

£]

G = .o
g;
2.68035 R 102.516
4.50972 N 135.000

= 1.02400e~-1 , 2.76397 R
1.34031e=3 , —-2.4316le-1
-1.21223e-1 , -9.60357
U=R® , Y=R?

U.(0) is a 2-dimensional convex cone in U-space as is shown in

Fig 4.4.

A

Therefore,

by Theorem 4.3,

G € Class I.

u = 0 and g? u = 0 represent extreme rays of U_(0).

Equations
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Example 4.5: Nonlinear F100 engine model at Sea Level

Static/Intermediate (Appendix 4)

a Y3

>0 , iel[1,51 de g, >0,

where

2.52760e~-1 , 1451.03
1.35074e-1 , =7.04544

= 2.22808e~-2 , -4.56090 ’
2.08151e-3 , =7.70092
1.46573e-2 , 2.96426

By Theorem 4.5, & € Class I. U.(0) dis shown in Fig 4.5.
Equations gf u=0 and gf u = 0 represent extreme rays of

U, (0).
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4.6 Conclusion

The characterisation of tracking systems in which tracking
conditions are expressed by sets of equalities or inequalities,
and the classification of 1linear multivariable plants, have
been carried out by applying the theory of convexity. The
decigsive factor in such a classification is the separating
hyperplane in Y-space or the m-dimensional convex cone in
U-space. Although only the case of wundertracking has been
investigated extensively, it is easily confirmed that similar
characterisations and classifications are also possible and
effective for the case of overtracking. Illustrative examples
have shown the effectiveness of the proposed technique. Such a
technique provides sound foundations for the design of
controllers for linear multivariable plants with more outputs
than inputs. It is noted in the classification that the
existence of nonempty Ur(v) can be transformed into the
existence of nonempty feasible region of linear equation with
nonnegativity constraint, which is common in linear programming
problems (Appendix 5) and therefore that the linear programming
technique might be applied to the classification. However, the
results obtained here are geometrically simple and more easily
applicable to two— or three—-input multivariable plants than

linear programming.
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Fig 4.4 U-space
Nonlinear F100 engine model at SLS/Idle
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Nonlinear F100 engine model at SLS/Intermediate
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CHAPTER 5

SYNTHESIS OF LIMIT-TRACKING SYSTEMS

USING ORDER—REDUCTION TECHNIQUE

5.1 Introduction

Set-point tracking systems fail to operate in case plants have
more controlled outputs than manipulated inputs. In such
cases, a more general tracking concept than set—point tracking
is necessary to design controllers. Therefore, undertracking
and overtracking were introduced in Chapter 4 and the
properties of tracking systems were discussed rigorously in the

context of convex analysis.

It is known that the self-selecting controller is one of the
effective solutions to cope with plants with more outputs than
inputs. Self-selecting controllers for
gsingle—input/multi-output pPlants were investigated by
Foss(198l1a), Glattfelder and Schaufelberger (1983), and
Glattfelder et al (1980). Although Foss (1981lb) extended his
approach to multi-input plants, the approach was not general.
Jones et al (1988) developed digital self-selecting PI
controllers for multi-input/multi-output plants by extending
tunable digital set-point tracking controllers (Porter and
Jones (1984a)). Successful application of these self-selecting
controllers to gas—-turbine engines was also reported (Jones et
al (1988), (1990)). However, the successful application does

not necessarily mean that the entire systems are understood
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well.

The self-selecting controllers incorporaté a number of
set—point tracking controllers for corresponding subsets of
plant outputs and exert the control action on the most critical
subset of outputs, which usually changes with time as both
set-point commands and plant outputs change. The wusual
criterion for choosing which outputs to control at any time is
either a highest-wins, lowest-wins, or highest-wins/lowest—-wins
strategy. In this context, *highest-wins®’ or ’lowest-wins’
refers to the instantaneous error between the set—point and the
corresponding plant output. Therefore, different controllers
are used for different subsets of the outputs and such
controllers necessarily embody integral action for m
input-output pairs in the case of m—input/p-output plants

(m < p).

It is required that the steady states of tracking systems
incorporating self-selecting controllers and multivariable
plants are such that set—point tracking occurs for the most
critical m out of p outputs and that the remaining p-m outputs
stay between upper and lower 1limits with a certain safety
margin. In the case of lowest-wins strategies, those p-m
outputs remain wunder the control of set—-point commands
corresponding to the upper 1limits on the outputs, ie
nonnegative errors are obtained £for such channels and
considered to be safe. Therefore, the tracking exhibited by
entire sets of plant outputs can be considered to be 1limit

tracking in the sense that none of the outputs exceeds its
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corresponding set—point command, ie its limit value.
Furthermore, systems incorporating self-selecting controllers
and linear multivariable plants with more outputs than inputs

can accordingly be called limit—tracking systems.

Then, the synthesis problem of limit-tracking systems arises

before starting the further design procedure:

1: Is such limit tracking always possible for a given

m-input/p-output plant and given set-point commands?

2: If the answer to 1 is "No",

how can such feasibility be assessed?

3: For the plants in which 1limit tracking is feasible,
is it necessary to design different controllers for each of

the pCm subsets of the plant outputs?

4: If the answer to 3 is '"No",
what is the minimum number of different controllers to
enable the self-selecting controller to work properly for

any set-point command?
5: If the answer to 4 is obtained,
for what subsets of the plant outputs should such number of

different controllers be designed?

In order to answer these questions, the characteristics of the
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steady states of limit—tracking systems need to be
investigated. In this investigation, the results obtained in
Chapter 4 are effectively utilised after pointing out that
limit-tracking belongs to undertracking. It is noted that, in
the sequel, only systems incorporating self-gelecting

controllers based upon lowest-wins strategies are considered.

Firstly, the facial structure of limit-tracking systems is
investigated and the coincident relation is revealed between
1imit tracking and an extreme point of the nonempty polyhedral
convex set U.(v) (Definition 4.2) which contains no 1lines.
Next, such properties are fully exploited to synthesise
limit-tracking systems by giving answers to the above
questions. Thus, a new order-reduction technique is developed
to decide the minimum numbers of different subsets of plant
outputs to be controlled by corresponding set—point tracking
controllers. The proofs of Propositions and Theorems are given

in Appendix 2.

5.2 Pacial structure of limit—tracking systems

Since generally the more outputs that follow the corresponding
set—-point commands the better it is for the tracking system,
there still remains another question concerning the number of
equalities such as y, = v;, i € [1,p] and inequalities such as
Yy < Vs j € (1,p) that are obtainable in such tracking systems

if undertracking is possible.
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In the following, limit tracking is defined as the special case
of undertracking in which the number of pairs of equal plant
outputs and set points is not less than rank 6. The tracking
systems which accomplish such 1limit tracking can be called

limit—-tracking systems.

Definition 5.1: Limit tracking and limit-tracking input

The tracking is said to be limit tracking if and only if

Y, = & u=v, i € [1,k] (5.1)
i i i
T .
y, =8, u<fyv j € [1,p—k] (5.2)
ty £ L ’
rank Gs = rank G (5.3)
where
1<s;, t;<p, (5.4)
T
%y
G, = . s . (5.5)
Th
gsk
k 2 rank G , (5.6)

and g¥ i€ [1,k] and gT j € (1,p-k] are, respectively, the
81 tj

s,;th and tjth row vectors of the steady-state transfer—function

matrix ¢ € RP*® of the asymptotically stable plant.
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Then, u is called the limit-tracking input.

Definition 4.1.1 implies Definition 5.1. Definition 5.1
implies Definition 4.1.2. It is evident in the case rank 6 = m
that Definition 5.1 satisfies the requirement for the steady
states of systems incorporating self-selecting controllers and

m—input/p-output plants, since k 2 m in equation (5.6).

Next, the existence of limit tracking is shown for G € Class I
(Definition 4.3) in both the cases rank 6 = m and rank G < m.
Thus, the control action of the self-selecting controller is
given validity in the sense that the existence of the steady

states of closed-loop systems is guaranteed.
Theorem 5.1: Existence theorem
If G € Class I then
1 there always exists at least one limit-tracking input,
and
2 in case rank G = m,
(i) u € ext Ur(v) if and only if
(ii) u is a limit—-tracking input,

where UP(V) is defined in Definition 4.2 and ext ¢« means the

set of extreme points of the convex set -.
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Proposition 5.1

(i) 6 € Class I if and only if (ii) ¢ € Class I,
where rank 6 = q {( m and G consists of q linearly independent

columns of G in the form,

g,

6=|..|err*1, g ev=grY, ie€ll,pl, (5.7)
23
gP

rank G = q. (5.8)

It is noted that G € Class I is a sufficient condition for the
existence of a limit-tracking input. ©For G € Class II, if
U (v) is not empty and contains no lines, there exists at least

one extreme point, ie one limit-—-tracking input.

These results are illustrated by Examples 5.1, 5.2 and 5.3.

5.3 Order-reduction technique

In the previous section, important fundamental properties have
been established for limit-tracking systems. In this section,
the utilisation of such properties in synthesising
limit—tracking systems incorporating self-selecting controllers

and linear multivariable plants is discussed.

The idea of the self-selecting controller is to exert control
action on the most critical subset of the outputs, thus making

all the outputs stay at or under certain limit values. In such
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tracking systems, the controller necessarily embodies integral
action for m input-output pairs in the case of m—input/p-output

plants.

In order to preserve the stabilisability of closed—loop systems
under integral action, the following condition was given as
functional controllability by Porter and Power (1970) and Power

and Porter (1970):

rank 6{(}) =m (i =1,...,r)

where 6¢¢i) € R®*® (i = 1,...,r) are the steady-state transfer
function matrices for the corresponding subsets of plant

outputs and r is the number of controllers/control loops.

This condition requires that rank G = m. So, the case

rank G = m ¢ p will be discussed in the following.

Given G, Proposition 4.5, Theorems 4.3 and 4.5 can be used to
check whether G € Class I or G € Class II. If G € Class II,
neither set-point tracking, nor wundertracking, mnor limit
tracking is obtainable for arbitrary set-point commands. 8o,

suppose that G € Class I,

By Propositions 4.1 and 4.6, U,(v) forms an m—dimensional
unbounded polyhedral convex set. By Theorem 5.1, there always
exists at least one limit—tracking input and it coincides with
an extreme point of Ur(v). Then, the synthesis of
self-selecting controllers and resulting limit—tracking systems

can be facilitated by fully exploiting the facial structure of
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such sets. The key concept of the developed new approach is
the order reduction from m to 1. Thus, the controller
structure for the case m 2> 2 becomes the same as that for the
case m = 1. So, the controller structure for the case m = 1 is

discussed first of all.

In the case of 1-input/p-output plants, U,(v) forms a
1-dimensional polyhedral convex set, ie a half-line. A

limit-tracking input u, (ie an extreme point of U, (v)) is the

1

unique vertex of U.(v) and is expressed in the form

g, w, =v s s, € [1,p], (5.9)

where G = [g;, ,..., gp]T.

’

Therefore, at least one such index s corresponds to a

1
limit—-tracking input. The minimum number of
controllers/control loops is p, and p set—point tracking
controllers are to be designed. The 1lowest—-wins strategies
need to compare p competing signals to determine which output

is the most critical among p outputs and to find the

corresponding index and controller/control loop.

In the case of m—-input/p-output plants (m 2 2), the order
reduction is carried out by applying the following useful
results about the facial structure of the polyhedral convex set

Ur(v).
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Proposition 5.2

1: A line corresponding to an extreme ray of U (0) is the

intersection of m—1 hyperplanes and given in the form

T

i ;

e o0 u = . 9 Si € [l,P], i € ll,m-.l], (5.10)
oio .

gsm-l

where a hyperplane gi u = 0 passes through the origin, a
i
vector g, is a normal to such a hyperplane, and the vectors
i

g 200498, are linearly independent.
1 a-1

2: A line corresponding to an exposed half-line face of U,(v)

is the intersection of m—1 hyperplanes and given in the form

T
v
T 0
e oo u = . ’ Si € ll,p], i € [l'm-ll, (5.11)
.i. .
gsn_ vsm_

where g: u = v,  represents a hyperplane, a vector g, is a
i i i

normal to such a hyperplane, and the vectors g, ,...,8, are
1 m-1
linearly independent.

3: There exists a corresponding extreme ray for every exposed
half-line face which has the same direction called the
extreme direction. Therefore, a line corresponding to an

exposed half-line face is parallel to a line corresponding

to such an extreme ray.
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4: The unique vertex of every exposed half-line face of U (v)
is an extreme point, although the number of such faces or

points is generally unknown.

Let a line corresponding to an exposed half-line face of U.(v)
be given in the equation (5.11). When vectors g31’°"’g5m-1
are removed from 8yr---18,, 238 long as every one of all the
remaining p—m+l vectors is linearly independent of
g, ,...,gsm_l, this 1line has an intersection with every
hyperplane to which one of the remaining p-mtl vectors is a
normal. Therefore, p-m+tl intersections (ie candidates for
limit-tracking input) are distributed along this line and at
least one of them is the unique vertex of the exposed half-line
face (ie a limit—tracking input). 1In this sense, the dimension
of the problem of finding a limit-tracking input has been

reduced from m to 1. Then, such a limit-tracking input u, is

given in the form

e u, = . » 8; € [1,p], i€ [l,m]. (5.12)

This means that at least one index s_ among the remaining p-mtl
indices corresponds to a limit-tracking input when 8,,...,8,_,
are removed. Therefore, in the case m 2 2 as well as the case
m =1, the lowest—wins strategies only need to compare p-mtl

competing signals to determine which output is the most

critical among p-m+l outputs and to find the corresponding
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index and controller/control loop. It is noted that finding

the indices s,,...,8 of the above exposed half-line face can

n-1
be replaced by finding such indices of an extreme ray because
the line expressed by the equation (5.10) corresponding to an
extreme ray is parallel to the line expressed by the equation
(5.11). PFurthermore, since hyperplanes corresponding to p-m+l

indices must intersect such 1lines, this is equivalent to

finding an extreme ray with unique representation.

Based upon this discussion, the following algorithm follows to
obtain the minimum number of subsets of plant outputs to be
controlled in the case of m-input/p—output Class I plants

(rank G = m):
Algorithm 5.1: Order reduction

Step 1:

In the case m = 1, go to Step 3. In the case m 2 2, find the
extreme rays of U (0). Since an extreme ray is determined by
m-1 hyperplanes and corresponding normal vectors, an index set
of such vectors represents an extreme ray. Let I,, ie(l,k]

be the index sets of such vectors.

Step 2:

Find I;, j € [1,k*] among I,, i € [1,k] such that every ome of
the p-m+l vectors corresponding to the index set I\I; is
linearly independent of all the vectors corresponding to I;,

where I = {1,...,p}. I;, j € [1,k"] correspond to extreme rays
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which have the unique representation. If such I; cannot be

found, see (Remark).
(Remark)

Such cases occur very exceptionally when every extreme ray is

represented as the intersectién ofimore than m—1 hyperplanes.
This means that there exists at least one redundant hyperplane
to express every extreme ray. Therefore, if all the redundant
hyperplanes (which is one or more) for any one of extreme rays
are omitted, it is possible to find I; for this extreme ray.

However, this omission means that the tracking of the

corresponding output must be abandoned.

Step 3:

In the case m = 1, I" = ¢. In the case m > 2, choose one index

set 1" = (s ,...,s,_,} among I;, j € {1,k"]. The designer has
the freedom to choose one index set out of k* sets. If because
of the controller specification some particular outputs must
always track the set—point commands, the indices of such

outputs must also belong to the chosen index set. Then, m-1

outputs y_. ,...,¥, are fixed to be always controlled
1 m~-1

integrally.

Step 4:

Pick one index t; out of the remaining p-m+l indices of I\I”

and make subsets ¥,, i € [l,p-m+l] of plant outputs
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Y, = {Yg aeees Ya__,0 Tt }
SR r (5.13)
Yp-m+1= {ys L ysm_l’ to-ne1
where
INI® = {t, ,eees topay)e (5.14)

The minimum number of subsets of plant outputs to be controlled
is p-m+l and Yl""’Yp~m+1 are such subsets. This means that

p-m+l sets of indices {(s,, ..., 8,_,, tyds ooy {835 -0y 85,

t represent the candidate controllers for

p-n+1}
m—input/p—output plants. Therefore, p-mt+l set—point tracking
controllers are to be designed for these subsets Yl""’Yp—m+1’

(Algorithm 5.1 end)

The (m-1)-dimensional order reduction has been discussed in the
sense of finding an extreme ray uniquely represented by m-1
hyperplanes and limiting the region of limit-tracking inputs on
a corresponding 1line. It is noted that the 1lowest—wins
strategies only need to compare not vectors but scalar signals
even in the case m 2 2 as well as the case m = 1. This not
only reduces the computational complexity of the implemented
controllers but also makes the controller structure simple.
The minimum number of scalar signals to be compared is p-m+l.
If m (the number of plant inputs) increases, it may not be easy

to find the extreme rays of UF(O). However, at least for
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m = 2 or 3, this technique is easy and very effective.

These results are illustrated by Examples 5.4, 5.5 and 5.6.

5.4 Illustrative examples

The results obtained in the previous sections can be

conveniently illustrated by examples.

Example 5.1: Same as Example 4.1

G = ’ G € Class I

For v = [2 2]T, Ue(v) = {u 2 uxg 1} and limit-tracking occurs

at an extreme point of U, (v), ie u = 1. Then
1 u<2
2 u 2

and the index 2 corresponds to a limit—-tracking input.

Furthermore, at 1least one index 1 or 2 corresponds to a
limit-tracking input for any set-point command vector. Thus,

at least one equality holds.

Example 5.2: Same as Example 4.2

-1
G = [ ] s G € Class II
2



124

For v = [2 21T, U (v) = {u:=-2<ugl} and limit-tracking
occurs at either extreme point of Ur(v), ieu=1o0r u= -2,

Then

-1 u <2
, ifu=1 ,

-1 u=2
, if u = -2 .

For v = [-2 =2]7, U (v) = ¢ and 1imit—-tracking does not occur.

Example 5.3

Since

G € Class I by Theorem 4.5.

For v = [2 2]T, if u is chosen by the method described in the
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proof of Theorem 5.1 Part 2, then

(L2lu=1<v, 1-2u .
’ u = - ’ u€ER.
[2 4 u=2=vV u

2

Thus, a line is limit-tracking input and at least one equality

gi u = v, is obtained.

Example 5.4: Same as Example 4.3

Assume that the output y, must always track the corresponding
set—point command v,. The control action must be exerted
either on ({y,,y,} or {yz,y3}. Then, does there exist a
limit-tracking input for any set-point command vector?
Generally, the answer is "No". Indeed, as one counter example,

assume that v = [1 3 L1T. In case {Y19yz} is integrally

controlled,
vy, = -1 2] u=1=yv,
-1 ,2|"'[1
¥, = [1 1Ju=3=v, |, u = [ ] [ ] .
1,1 3
y; = [ 2-1] u=2 { v,

In case {y,,y;} is integrally controlled,
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y, = (-1 2l u=24%4v,
1 ,1]°t[s3
Y, = [1 1Ju=3=v, , u = ] [ ] .
2 ,-1 1
y, = [ 2 -1l) u=1-= v,

In both cases, y, or y, exceeds its corresponding set-point, ie
its limit value. Fig S5.1 shows the hyperplanes (ie lines in
the case m=2) gj u=v,, i€ [1,3]. U.(v) is clearly the
region surrounded by gf u=1 and g§ u =1, and the unique
extreme point is the intersection of these two lines. This
means that y, must be released from the control action and
that, instead, the control action must be exerted on {yl,ya}.
Thus, the question arises: How <can the controller be
synthesised systematically? To answer this question, the
proposed controller synthesis based upon the facial structure

is illustrated.

It is clear from Figs 4.3 and 5.2 that a line g{ u=v, or
g§ u = v, always corresponds to an extreme ray or an exposed

half-line face of UF(V). The algorithm follows:
Step 1: I, = {1} and I, = {3}.

Step 2: I\I, = {2,3) and g, or g, is linearly independent of

1
g,- I\I, = {1,2}) and g, or g, is linearly independent

of g,. Thus, I} = I, and I, =1

1 1 2°

Step 3: The designer can choose I or I; as the index set of
the permanently controlled variable. The minimum
number of subsets Y;,, i € [1,2] of plant outputs to be

controlled is two, and these subsets are
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Y, = {y,,y,} and ¥, = {y,,y;} if I] is chosen.

or

Y, = {y;,v,} and Y, {ya,yz} if I; is chosen.

If the controller has three subsets {Yx’yz}’ {y,:73) and
{y,:¥3}, either {y,,y,} or {y,,¥5,} is redundant and the
uniqueness of the limit-tracking input is lost in the case of
Fig 5.2(a) in the sense that there exist two limit—-tracking

inputs for one set—point command.

Example 5.5

I g] 1, 2
¢=lg. &g = | g = 2 4 U = R? Y = R3
<, P 2 * b4 ?
l g'g 1 ,-1

Since

G € Class I by Theorem 4.5.

One extreme ray of U,(0) is gy u=112lu=0 or
g7 u = [2 4]Ju = 0. Another extreme ray is g5 u=[1-1]u=0.

Thus, I, = {1}, I, = {2}, and I, = {3}.
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However, g, and g, are linearly dependent and represent the
same extreme ray,

le

Therefore, I, = I

1 and y, must always be controlled and the

3
lowest-wins strategy needs to compare only two signals
corresponding to y, and y,. This means that the self-selecting
controller can exert the control action either on Y, = {yl,ys}

or on Y, = {y,,y,}. Then, a limit-tracking input always exists

for any set—point command.

Example 5.6: Nonlinear F100 engine model at the same condition

as Example 4.5

Equations gf u =0 corresponding to y,(Fan speed N,) and
gf u = 0 corresponding to ya(Augmentor pressure P,) represent
extreme rays of UF(O). Since either extreme ray has a unique
representation and p-m+l=4, a minimum of four control loops is

required.

If y, must always be controlled, the subsets of plant outputs

to be controlled are

Y ={y,.¥,}, ¥,={y,,¥3}s Y3={y,,¥y,}, ¥,={y,,¥5}

If y, must always be controlled, the subsets are
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Y ={y,.7,)s L=y, Y3=(¥,,¥5)s Y, ={y,»¥s}-

Thus, lowest-wins strategies need to compare only four scalar

signals.

5.5 Conclusion

In this chapter, the characteristics of the steady states of
limit-tracking systems have been discussed and a new synthesis
approach to limit-tracking systems has been developed. It has
been shown that, in the case of Class I linear multivariable
plants, limit tracking (ie steady states of systems
incorporating self-selecting controllers) always exists and
that such self-selecting controllers can be synthesised by the
proposed order-reduction technique which utilises the facial
structure of limit—tracking systems. Furthermore, it has been
shown that the order-reduction technique is based upon the
discovery of extreme rays which have a unique representation.
Therefore, this technique is effective unless every extreme ray
of U,(0) is represented as the intersection of not less than m
hyperplanes in m—dimensional U-space (Algorithm 5.1 Step 2
(Remark)). In fact, by using this technique, the number of
controllers can be reduced f£from pCm to p-mtl (ie order
reduction from m to 1) in the case of m—input/p—output plants
whilst guaranteeing the existence of steady states of such
systems. It is noted that there is no need for the dynamical
model of the plant to carry out this approach. The

effectiveness of the order-reduction technique has been
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illustrated by examples such as gas—turbine engines.

Although the controller synthesis in the case rank G < m has
not been discussed, it is possible to modify the
order-reduction algorithm so as to incorporate such cases by
using G which is defined in Proposition 5.1. Furthermore,
although only self—-selecting controllers based upon lowest-wins
strategies have been considered, it is possible to extend the
proposed technique to controllers based upon highest-wins
strategies or lowest—wins/highest-wins strategies. Finally, it
is noted that the limit—tracking input corresponds to a special
form of the basic feasible solution of the transformed linear

programming problem (Appendix 5).
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Fig 5.1 U-space




132

(a)d

(b?>

gsu=v2

glu=vs

(c)

Fig 5.2 U-space
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CHAPTER 6

DESIGN OF DIGITAL SELF-SELECTING PID CONTROLLERS

FOR LINEAR MULTIVARIABLE PLANTS

WITH MORE OUTPUTS THAN INPUIS

6.1 Introduction

In this chapter, a methodology for the design of controllers
for unknown open-l100p asymptotically stable linear
multivariable plants with more controlled outputs than
manipulated inputs is obtained by using the synthesis technique
developed in Chapter 5. Thus, an extension of the tunable
set-point tracking PID controllers (Chapter 2) is carried out.
This is also an extension of the self-selecting PI controllers

{Jones et al (1988)).

In order to circumvent the need for detailed mathematical
models of the plants, the design procedure utilises only the
data which is directly obtainable from open-loop step—response
tests performed on plants (Appendix 1l). For such plants, in
which the ranks of the steady-state transfer-function matrices
are less than the number of outputs, set-point tracking in the
sense that the plant outputs track their corresponding
set—-point commands asymptotically is impossible for arbitrary
set—point commands. In order to overcome this problem, a new
tracking concept, ie 1limit tracking (Definition 5.1), is
utilised in the design of controllers. It is assumed that the

plant belongs to Class I (Definition 4.3), that the controller
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incorporates a number of set-~point tracking controllers for
corresponding subsets of plant outputs, and that one of these
controllers is selected at any time to control the most
critical subset of outputs based upon lowest—wins strategies
(ie the self-selecting controller). This operational principle
ensures that, as long as the entire closed-loop system is
asymptotically stable, nonnegative errors are obtained in the
steady state and none of the plant outputs exceeds its
corresponding set—point command. This is practically very
useful for plants such as gas—turbine engines in which none of

the outputs is allowed to exceed engine operational limits.

By applying the order-reduction technique (Algorithm 5.1) to
m—input/p—output plants, the structure of the controllers is
decided and therefore p—m+l subsets of plant outputs which are
to be controlled by corresponding set—point tracking
controllers are specified. Then, the corresponding parts of
the plant can be called the sub-plants and the design of
tunable digital set—point tracking PID controllers for such

p-m+l1l sub-plants is considered.

It is shown that the proportional, integral, and derivative
controller matrices used. in these PID controllers can be
directly determined from open-loop step—-response tests
performed on plants (Appendix 1). The proportional and
derivative controller matrices are chosen as the inverse of the

sub—plant open—-loop step-response matrix, which is ditself

derived from the classical decoupling theory of Falb and

Wolovich (1967). This choice is made in order to exploit the
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initial interactions within the plant and thus to cause
set—-point tracking to occur without initial interaction or
under—-shoot (Mita and Yoshida (1981)). The integral controller
matrix is chosen as the inverse of the sub—-plant open-loop
steady-state transfer-function matrix in order to exploit the
final interactions within the plant. - Thus, provided only that
all the sub-plants satisfy the fundamental condition of Porter
and Power (1970) and Power and Porter (1970) for the
preservation of stabilisability in the presence of integral
action, such error-actuated controllers can be readily designed

for unknown multivariable plants.

A block-diagonalisation transformation is used to investigate
the asymptotic properties of separate closed-loop systems under
the action of such PID controllers. The closed—loop sub-plant
matrix is decomposed into three sub—-matrices, using the
block—-diagonalisation transformation of Kokotovic (1975), and
it is thus shown that the basic design criterion for stability
and set-point tracking can be satisfied in terms of the

characteristic roots of the sub—matrices.

Next, the separate error—actuated digital set-point tracking
PID controllers are integrated into the digital self-selecting
PID controller. Therefore, implementation problems in regard
to this process are discussed. The index set of lowest errors
and the loop index of the actually selected loop are decided in
lowest—wins strategies. Furthermore, the controller switching
logic which gives a good initial transient response of the

plant outputs is considered.
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Finally, the effectiveness of such a tunable controller is
illustrated by designing, for a highly interactive gas—turbine
engine, a digital self-selecting PID controller which exhibits
excellent 1limit—-tracking characteristics and corresponding

minimal loop—interactions.

6.2 Analysis

The linear multivariable Class I plants (Definition 4.3) under
consideration are assumed to be governed on the continuous—time
set T = [0,+=) by state and output equations of the respective

forms

]

x(t) Ax(t) + Bu(t) (6.1)

and

cx(t) , (6.2)

y(t)

where the state vector x(t) € R®, the input vector u(t) € R",
the output vector y(t) € RP (p > m), the plant matrix A € R**"
whose eigenvalues all lie in the open left-half plane C~, the

input matrix B € R"*®, and C € RP*" is the output matrix,

The transfer—function matrix is

G(s) = C(sI-A)" !B (6.3)

and the steady—-state transfer—function matrix
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G = G(0) = -CA~!B € R®*® (6.4)

is known from open-loop tests performed on the plant

(Appendix 1). It is assumed that

rank G = m , (6.5)

and therefore that, by applying the order-reduction technique

(Algorithm 5.1), p-m+l subsets and sets of indices of plant

outputs to be controlled by corresponding set—-point tracking

controllers are obtained in the form

o e e s+ < (6.6)

l, Ytr} L

where r = p-m+l and the index set of all the control loops is

I, = {1,2,...,r}. Then, the parts of the plant which

correspond to such subsets can be called sub-plants and the

sub-output vectors of these sub-plants are

[ ¥, ()

y(i(r) = : = c{Px(t) e R®™ (i =1,2,...,r)
vy, _(t)

m-1

i yti(t) 1 (6.7)
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where each of sub-output matrices C(1) € R®*® (i = 1,2,...,r)
consists of slth,...,sm_lth and t,;th rows of the output

matrix C.

Next, the design of tunable digital set-point tracking PID
controllers for each sub-plant is considered separately. It is
assumed that the introduction of integral action for each
subset Y,, i € I_ preserves stabilisability and therefore that

(Porter and Power (1970), Power and Porter (1970))

rank (1) =m , (6.8)

where the sub-plant transfer—function matrix

¢{i)(g) = ci)(s1-A)"1B , (6.9)

and the steady-state transfer-function matrix for the subset Y,

¢(1) = g(i)(g) = —-¢c{L)a-1p g RR*=® (6.10)

is obtained from equation (6.3).

Furthermore, it is assumed that input-output decoupling is
achievable between inputs and the ¥ ,, i € I_ and therefore that
(Falb and Wolovich (1967))

rank F(i) = R (6.11)

where the decoupling matrix
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- (i) -
cgi)TAdl B

FULY = | . ........ € R™2= (6.12)

and the d;i) (j=1,2,...,m) and the cgi)r (j=1,2,...,m) are,
respectively, the decoupling indices (Falb and Wolovich (1967))
and the rows of the sub-output matrix c{1), In the case of

such plants, it is important to note that

FU) = 14m A1) -2 ()ya(d) (1) (6.13)
t=0
and
F)-1 = 14m HOD) "1 (e)a) () (6.14)
t—0
where
i (i
A (t) = diag(t®] )*1/(d§1>+1)1,....,t% )“/(dgi)u)!}
(6.15)
and
B (t) = ¢(Ia"1(et®-1 )8 (6.16)

is the sub-plant step-response matrix.

In order to design error—actuated digital set—-point tracking

PID controllers for sub—plants governed by state and output
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equations of the respective forms (6.1) and (6.7), it is
convenient to consider the behaviour of such plants on the
discrete—time set T, = {0,T,2T,...,kT,...}. This behaviour is
governed by state and output equations of the respective forms

(Kwakernaak and Sivan (1972))

b 4 = Px

e + Tu, (6.17)

k

and

where x, = x(kI) € R®, u, = u(kT) € R, y{¥) = y(H)(kT) € R",

k
ie1,,
® = exp(AT) , (6.19)
T
¥ = [ exp(At)B dt , (6.20)
0
r‘{t) =¢t¥)  jer1_, (6.21)

and T € R* is the sampling period.

Each individual set—-point tracking error—-actuated tunable
digital PID controller is governed on the discrete—time set T,

by a control-law equation of the form

u, = TRK{DelD) + k{2 + K§i>(e§i) - efi)) , (6.22)
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where the sub—error vector eﬁi) = y(i) - yéi) € R®, the
sub-plant set—point vector vii) € R®, the digital integral of
sub-error vector z, € R™, the controller matrices Kfi) € RUXR,
Kgi) € R™*™, and Kgi) € R"%*®  and the superscript (%) means
that the vectors and the matrices correspond to the subset Y,

ierI.. Furthermore, it is assumed that

z =z, 4 Teéi) . (6.23)

k+1 k

Hence, it is noted as a whole that the overall set—point vector

is

v = [vl,...,vp]T € RP , (6.24)
the overall plant output vector is

Y, = y(kT) = [yl(kT),...,yp(kT)]T € RP , (6.25)
and the overall error vector is

e, = e(kT)
= [e,(KT),...,e (kT)1T
= v -y, €RP. (6.26)

Furthermore, it is noted in view of equations (6.6) and (6.7)

that



and

iy o i =
e£ ) = gl )ek = . .
e, (kT)
m-1

e, (kT)
i

- t
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(6.27)

(6.28)

(6.29)

where E{1) € R"*P consists of s,th,...,s _,th and t ;th rows of

a unit matrix Ip.

It follows from equations (6.17), (6.18), (6.22),

and (6.23)

that such discrete—time tracking systems are governed on T, by

state and output equations of the respective forms

_ ) (i) _gr(i)p(d 1) _er(i
Xyay g-rek (I (D_ex{Hr(d) | ek ) -k {!)
- —p(d
z,,, | = Tr() , I, , 0
_r(d
fk+1 r(rf?” * 0 ’ 0

i i
wagl) + wxg )
i
+ TIm v( )

Im

(6.30)
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and

y¢D =™ ;0,01 [ x , (6.31)

where f, = eéf{ € R® is the stored sub—error vector.

Therefore, provided only that T, K{i), Kéi), and Kgi), where 1
€ Ir, are such that all the eigenvalues of the closed-loop

sub-plant matrix in equation (6.30) 1lie in the open unit

disc D7,
lim Az, = 1im {z ,, - z2,} =20 (6.32)
k=»c0 koo

and therefore

lim e{!) =0 (6.33)

k=w

so that set—point tracking for the subset Y, occurs.

The closed-loop characteristic equation c¢an be readily

expressed in the form (Porter and Jones (1985a))

0{i)(z) = 9{P(2)0{P) (210§ (2) (6.34)

by invoking the block-diagonalisation procedure of Kokotovic

(1975), and the response characteristics of the closed-loop
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system can thus accordingly be elucidated. The asymptotic
properties of the tracking system under the action of such
controllers can be characterised in terms of the eigenstructure
of the closed-loop plant matrix, which involves the
decomposition of this matrix into three sub-systems based on
the explicitly invertible block diagonalisation transform

(Kokotovie (1975)).

This block-diagonalisation procedure transforms the matrix

triple incorporated in equations of the form
x, (k+1) A, » A, x, (k) B,
= + u(k) (6.35)
x, (ktl) A,, , 4, x, (k) B,
and

y(k) = [ C, , C, ] [xluc)]
{(6.36)

x, (k)

where x, (k) € R™1, x,(k) € R%2, Aij € RM1*%y (i,j=1,2),
B, € R™M1*", B, € R"2*", C, € R"*"1, and C, € R®*%; into the

block-diagonal form incorporated in the equations
= + u(k) (6.37)
and

y(k) = [ C, , C, 1[ X, (k) ]
. (6.38)

X, (k)
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The state vectors in these equations are related by the linear

state transformation (Kokotovié (1975))

X X
[ l] = w[ 1] (6.39)
X X2

where

I, , M
W= 1 € Ri(n *tny)x(n,+n,) (6.40)

and x,(k) € R"1, x,(k) € R%2, Aij € R"i*"3; (4i,j=1,2), B, €

R™1*", B, € R"2*", C, € R"*"1, C, € R®=2; L € R®™2*"1 ,and

2 2

M € R*"1*%2., It is noted that, although there exists one linear

transformation for every sub-plant, the superscript (1) g

omitted to simplify the notation.

Thus, if L and M satisfy the matrix Riccati equations

(Kokotovic (1975))

A, + LA, -4A,L-LA,L=0 (6.41)

and

(A,, — A,,L)M - M(A,, + LA,,) + A, =0, (6.42)

it follows from equations (6.35), (6.37), and (6.39) that
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11 11 12Dl (6.43)

and

(6.44)

22 22 12 *

The asymptotic properties of the discrete-time closed-loop
tracking system can now be readily determined by regarding T as
a perturbation parameter in equations (6.30) and (6.31). Thus,

by regarding in equation (6.35)

g-Ter ()r(D-gg(Vp(d) | pex(d)
- i)
Tr ¢ , I
Ay, = . (6.46)
0
A, = [ -1 | 0 ) , (6.47)
and
A,, =0 , (6.48)

the solution of equations (6.41) and (6.42) can be readily
obtained by using power series expansion in T. This involves

the definition of matrices L, and L, such that

(6.49)
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where

L, =L, +L, T+ ..... (6.50)

L, =L,y + LT+ ..uus (6.51)

20

in which L,, € R"2"%"3 , L, € RP2%%4, (i=0,1,2,.....).
Therefore, it is clear from equations (6.41) and (6.45) to

(6.49) that on isolating coefficients

L=(c¢cd) _ o ]+ o(T) (6.52)

and therefore from equations (6.43) and (6.44) that

g-Tek{Hr(d) | Tex{l)
4 = (6.53)

11 :
-tr (i) , I,

and

S
i}

,p = —TC(IIBKR{1)+0(T?) . (6.54)
The matrix 4,, in equation (6.53) is now block-diagonalised,
again by regarding T as a perturbation parameter in equation

(6.53) and by regarding in equation (6.35)

= & — TR (%) . (6.55)

A, = TEk{D) , (6.56)

12
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—r (1) (6.57)

21 *

fdl
]

and

(6.58)

> |
]
g}

22 n

In addition, .the matrix L is defined in the power—series form

- — 2=
L=1L, +TL, + T°L, + ... (6.59)

In equations (6.55) to (6.59), the overbar has been used to
distinguish between the two explicit stages of the

block-diagonalisation procedure.
Therefore, it is clear from equations (6.41) and (6.55) to

(6.59) that on isolating coefficients

L=c¢c®a ! ¢+ rctPatpr{Pcliip?

tc(Da-1pr{PIcPIa~2 — ¢1)y2) + o(T?). (6.60)

Hence, it follows from (6.43), (6.44) and (6.60) that

A, =I_+ TA + T?A%/2 - 123K§1>c(*)

- o2B{VcPat + o(T?)  (6.61)

and

a4,, = 1_-T2cDa 3k} + o(13) . (6.62)
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Thus, it is evident from equations (6.53), (6.54), (6.61), and
(6.62) that the characteristic polynomials as expressed in

equation (6.34) are

0{1)(z) = | 21, - I, - TA - T2A%/2 + T?BR{})c(D)

n

+ o2r{PeIa™t + o) |, (6.63)

0i(z) = | 21, - 1, - TPcDaTiBR{Y) + o(T3) | , (6.64)

and

¢§1)(Z) I ZIm + TC(i)BKgi) + O(Tz) I . (6.65)

6.3 Synthesis

It is clear that tracking will occur in the sense of equation
(6.33) provided only that the set of closed-loop characteristic

roots
(1) = z(1) i (1 -
z{) =z uz{H uz{P co (6.66)
where D~ is the open unit disc and the sets of characteristic

roots Zgi), Zéi), and Zgi) are, respectively, the roots of the

characteristic polynomials as expressed in equation (6.34).

Therefore, in case

Kii) = g1 ()~ A (Tym(L) | (6.67)
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Kgi) = g()(g)-1g(i) | (6.68)

and

Kgi) = gD )~ talid(Tyald) | (6.69)

where H(1)(T) and G(!)(0) are given by equations (6.16) and

(6.10) respectively,

n{i) = diag{ﬂsl,wsz,.. ,nsn_l,uti} . (6.70)

nsl,nsz, .,nsn_l,uti € R* , (6.71)

21 = diag{o, ,asz,....,asm_l,oti} , (6.72)

a“1’°“z"°'°’o°m-1’o“1 € Rt , (6.73)

At = diag(s, +6, »-v-s0, 26, ), (7.74)
and

B, 40, seeee,b ,6, € R* , (6.75)

it follows from equations (6.34), (6.63) to (6.65), and (6.67)

to (6.69) that

z{) ={zec: |21, -1, -TA+O(T?) | =0}, (6.76)
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zit) =(zecCc: | 21, -1 + r23(i) 4 o(13) | =0} ,

(6.77)
and

z{) =(zec: |21, +0(T) | =0} . (6.78)
These expressions indicate that, provided T is sufficiently
small, all the closed-loop characteristic roots lie within the
open unit disc in each case. This follows since the open—loop
plant is asymptotically stable on the continuous-time set
T = [0,+=) and since 125(1) 5 a positive diagonal matrix. The
introduction of error-actuated digital set-point tracking PID
controllers governed by equations (6.22) and (6.67) to (6.69)
.accordingly ensures that set-point tracking for the subset Y,
occurs when the  sampling period T € (0,T;], where
T; = T;(I¢*),2(1)) can be readily obtained by simple "on-line"
tuning (Porter and Jones (1985a)). Therefore, in case

T € (O,min(T;)], iel all the r closed loops are

r’
asymptotically stable and set-point tracking of each loop is

ensured when considered separately.

Furthermore, it follows from equations (6.30) and (6.31) that
the sub-output from the initially quiescent plant after the
first sampling interval under error—actuated digital PID

control is

y (1) = (zr) (TP + BB (k{1 v(D) | (6.79)
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It is evident from equations (6.67), (6.69), and (6.79) that

y(3 (1) = (mati(mm(d) + A (T)ald)jvD) (6.80)

and therefore that set—point tracking occurs for the subset Y,
when T € (0,min(T;)] with no initial interaction since
A(i)(T)H(i) and A(i)(T)A(i) are diagonal matrices for all

T € R*.

The proportional, integral, and derivative controller matrices
Kgi), Kéi), and Kgi) given by equations (6.67), (6.68), and
(6.69), respectively, can all be directly determined from the
sub-plant step-response matrix H(i)(t) since it follows from

equation (6.16) that

(3 (0) = 1im H(X)(t) = —c(i)a~13 (6.81)

| Saded

because the open-loop plant is asymptotically stable and
therefore has a bounded step-response matrix. Furthermore,
since the expressions (6.67) and (6.69) for the proportional
and derivative controller matrices, respectively, involve the
inverse of the initial sub-plant step-response matrix of the
open-loop plant H¢%)(T), it is clear that the sampling period
must be selected so that the minimum singular value of 71 (1)

(o [H(i)(T)]) is not small, so that H(i)(T) is

nin

well-conditioned.
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6.4 Implementation of digital self-selecting controllers

The block diagram of the system incorporating the
self-selecting controller is shown in Fig 6.1. The individual
set-point tracking controllers are designed by the procedure
described in the previous sections and then integrated into the
self-selecting controller. Then, the selection of the most
critical subset of plant outputs and the resulting controller
switching are the remaining functions of the self-selecting
controller. Therefore, in the following, such functions are

discussed in accordance with lowest-wins strategies.

it follows from equation (6.29) that all the sub-error vectors
e{!) € R® (i=1,2,...,r) have m-1 common elements. Therefore,
the lowest-win strategies need to compare only the remaining r
scalar signals which are not common in e{!), ef{?),..., ef{T) to
determine the control loop. Furthermore, it follows that the
index set J(kT) of lowest—errors and the loop index %, of the
actually selected loop are defined on the discrete-time set T,

= {0,T,2T,...,kT,...} by the respective forms

J(kT) = {j : e, (KT) = min e, (kI)) (6.82)
b i€
and
2, = 2(kT) € J(KT) C I_ . (6.83)

Therefore, it is clear from equation (6.22) that the

self-selecting controller is governed on T, by equations of the
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u, = TKfnx)eégk) + TKgnk)zk + Kglk)(eﬁnk) - eﬁ%;’) (6.84)
and

Zy,, =2, F Te{nk) . (6.85)

where the superscript 2y means that the control loop £, is8 in
action at time kT. Since equations (6.82) and (6.83) decide
which controller should be used at each sampling instant,

controller switching may occur.

During the controller switching from one control configuration
(loop index 2, _,) to another (2, # 2, _,) at time kT, it is
preferable that the input vector changes in a bumpless manner

from u to u, (ie bumpless transfer operation). This can be

k-1
achieved by resetting the integrator states in equation (6.85)
every time there is controller switching, so that the resulting

control input vector remains constant ie,
u, = u._, (6.86)

with corresponding effect on the plant. The demerit of this
bumpless transfer operation is that, in case the set-point
change and the controller switching occur at the same time, the
transient response of the plant is not rapid because of the
effect of equation (6.86). However, a similar demerit holds

for controller switching governed by an equation of the



incremental form

Uy = Uy

+ Kgi)(eﬁgk) - 2e£%§) + eﬁfg))

+ TR{EO (eft) - eflp)) + TiR{E ()
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(6.87)

Thus, assuming that the controller switching from loop index 2,

to 22

(ie eﬁgx) = eéfi) = eﬁgi) = 0), and that

In

2V seeesV, 1T for O

1 11 2 P
v=

v, = [vzl,vzz,...,vz 1T for t 2 kT
p

1 2
v, = v, (i =1,2,...,m—1) ,
Si 81
v = v
z ?
te t9

it follows that

and

viﬂz) = vi{%2) .,

Therefore,

t £ (k-1)T

occurs at time kT for the plant operating in steady state

(6.88)

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)
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elts) - effy) = (v{%2) - y{¥2)) - (v{¥2) - yiiy))
=0 (6.94)

and

eénz) - Zeégg) + eégg) vggz) - 2v§22) + vggz)

]
o

. (6.95)
It follows from equations (6.87), (6.94), and (6.95) that
u, = u,_, + T2k{¥2elly) . (6.96)

It is clear from equation (6.96) that u, is independent of
eﬁlk). Therefore, if eﬁgk) # 0, it follows that that the
proportional and derivative terms of the input are suppressed
and that only the integral term contributes to the input

change. Therefore, initial decoupling in the sense of equation

(6.80) does not occur with such switching logic.

In order to circumvent this problem and obtain initial

decoupling, equation (6.87) is modified in the form

= 2.) - 2 (2
u, =u,_, + Tk (e, — e, ) + T2K{* e,

+ K% (e, - 2e,_, + e,_,) ,  (6.97)

where the sub-error vector at time kT is e, = eﬁnk). Using
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this modification, the control input at the controller
switching instant under the above conditions (6.88) to (6.93)
is given in the form

u, = u,_, + TK{*de, + k{dile, (6.98)
since e, _, = eﬁ%*-l) = e§%5-1> = 0. Thus, the proportional and
derivative terms are efficiently utilised at the controller

switching instant.

Finally, the self-selecting control 1law together with the
lowest-wins strategy and the controller switching logic is
embodied in equations (6.82), (6.83), and (6.97). However, it
is evident from equation (6.97) that elements of the error
vectors e,, e, ,, and e, ,, which are compared in the
lowest-wins strategy, might have different units. Therefore,
it is required that such error vectors are properly scaled so
that the bumpless transfer operation is attained. Furthermore,
it is noted that such scaling might also be effective in the

lowest—-wins strategy in equation (6.82).

6.5 Illustrative example

In order to demonstrate the performance characteristics of the
digital self-selecting PID controller proposed in the previous
sections, such a econtroller is designed for the two—input
three—output 1linear F100 engine model at Intermediate power
condition (Appendix 3). In this case, the manipulated input

variables are main burner fuel flow (1b/hr) and nozzle jet area
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(ft2). The output variables are fan speed N, (rpm), augmentor
pressure P, (psia), and fan turbine inlet temperature FTIT

(°R).

The design starts with the classification of the plant. The
steady-state transfer—function matrix G is obtained from Figs

2.2 and 2.3 in the form

G = G(0)

n

(]
[}

1.1
o

0.37904 1238.8
= 0.15944e-2 -12.168 . (6.99)

0.90309e~-1 210.94

Since gcl > 0, by Theorem 4.5, it follows that G € Class I.
The input space is shown in Fig 6.2. Clearly, U.(0) is a
2—-dimensional convex cone. Equations gfu = 0 corresponding to
N, and ggu = 0 corresponding to P, represent extreme rays of

UF(O) .
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It is evident that either extreme ray has a unique
representation and that a minimum of two control loops is

required. If N, must always be controlled, the subsets of

1

plant outputs to be controlled are (Structure 1)

Y, = (N, , P,} , Y, = {N, , FTIT} .

If P7 must always be controlled, the subsets are (Structure 2)

Y, = (P, , N}, Y, ={(P,, FTIT) .

Therefore, it is possible to design a self-selecting controller
for the plant based upon either Structure 1 or Structure 2.

The corresponding minimum singular value plots (o HD) (v)])

min
of the sub-plant step-response matrices shown in Figs
6.3(a),(b), 6.4(a),(b), and 6.5 indicate that the plant is
nonminimum phase for the output pairs [N,,P,] and [N,,FTIT] and
that the plant is minimum phase for the output pair [P ,FTIT]
(Porter and Jones (1985¢c)). Furthermore, G(0) is
well-conditioned since omin[H(i)(t)] is not small. However,
attention should be given in order to choose the sampling
period T so0 as not to use an ill-conditioned H(%)(T), since

c [H(1)(t)] vanishes once for [N,,P,] and [N,,FIIT].

nin

It is found from Figs 2.2 and 2.3 that

0.63349e-3 1.2999
H(0.05) = 0.11637e—4 -0.18878 . (6.100)

0.60822e-4 -0.86794e-2
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Firstly, a self-selecting 1lowest—wins PID controller is
designed and tuned based upon Structure 1 such that T = 0.05

sec, A(1)(0.05)m¢!) = diag{0.04, 0.1}, A{(2)(o.05)n(?) =

[}

diag{0.04, 0.02}, =(1) = £(2) = 50.01,, and A¢*’(0.05)a¢!)
A€2)(0.05)a¢?) = 0.0005I,. The excellent limit tracking and
switching behaviour of the plant under the action of the
resulting error-actuated controller is shown in Figs 6.6 and
6.7, where the loops show that P,(y,) and FTIT(y,) are

controlled in turn whilst N, ,(y,) is permanently controlled.

Next, a self-selecting controller is designed and tuned based
upon Structure 2 such that T = 0.05 sec, A(l)(0.0S)H(l) =
diag{0.1, 0.04}, A¢2)(0.05)n¢%) = diag{0.1, 0.02}, £(}) = (%)
= 50.0I,, and A¢1)(0.05)a(!) = A(2)(0.05)A(?) = 0.0005I,. The
excellent 1limit tracking and switching behaviour of the plant
under the action of the resulting error—actuated controller is
shown in Figs 6.8 and 6.9, where the loops show that N,(y,) and
FTIT(ya) are controlled in turn whilst P7(yz) is permanently

controlled.

It is noted that, in both cases, the elements of the sub-—error
vectors which are used in the control-law equation (6.97) and
in the lowest-wins strategy equation (6.82) have been scaled so
that the steady-state gains of the open-loop plant for the fuel
flow are equal. Thus, it follows from equation (6.26) that for
ie1l

r

lim eti(kT) =v, - lim yti(kT) . (6.101)

P ) )
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Now, 1let ggi be the tith element of g, in equation (6.99).
1 1
The output change in steady states for the step change of fuel

flow Au1 is

lim Ayti(kT) = gziAul (i = 1,2) . (6.102)

kow

Then, it follows from equations (6.101) and (6.102) that

aet (kT) Ayt (kT)
1im = - 1im ———
k-0 au1 k-yeo Aul

= - git (i = 1,2) (6.103)
1
and therefore that

aet (kT) 1 )
lim 4 = const (i = 1,2). (6.104%)
kew  u,  gii

1

This implies that, if the elements of the sub—error vectors e,
1

and e, are multiplied by l/gzi, their effects in steady states
2 1
are equal. Thus, the elements of the sub—error vectors have

been scaled.

6.6 Conclusion

In this chapter, a new methodology for the design of

self-selecting PID controllers, which uses the order-reduction
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technique (Algorithm 5.1) and corresponds to the extension of
tunable set-point tracking controllers (Chapter 2), has been

developed.

Firstly, the order-reduction technique (Algorithm 5.1) has been
applied to m-input/p—output Class I linear multivariable plants
and p-m+l subsets of plant outputs have been chosen. For these
subsets, tunable digital set—point tracking PID controllers
have been designed. A block—diagonalisation transformation has
been used to exhibit the asymptotic properties of the separate
discrete—time closed-loop tracking systems which correspond to
these subsets. It has been shown that the proportional,
integral, and derivative matrices embodied in such set—-point
tracking controllers can be readily determined from open—loop
test performed on asymptotically stable plants, thus
circumventing the need for detailed mathematical models. Next,
the implementation of the self-selecting controller using these
different set-point tracking controllers has been discussed.
The lowest—wins strategies which cause the selection of the
most critical subset of outputs, together with the controller
switching logic, have been formulated. Finally, the
effectiveness of the proposed design methodology has been
illustrated by designing self-selecting controllers based upon
two different structures for a highly interactive gas—turbine

engine.

It is noted that, although the asymptotic stability of separate
closed-loop tracking systems has been guaranteed by this design

methodology, this does not guarantee the stability of the
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complete system. Therefore, it is recommended that the
stability and performance of self-selecting controllers be

verified in simulation s8tudies before field applicationm.
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Fig 6.2 U-space

Plant: Linear F180 engine model at Intermediate



166

[Ld¢IN] s3ndino z
puv sandutl g ya1im 19pow Joaul) Suibua gg|4 :quUDId
XTJ410W asuodssd-daqs quoid ayy Jo 407d SnIvA upnNbButs wNWIUuTy (B)e*9 BTy

(23S )awT )

M |
-—

L e T

CEE VN T WS S S TS SO N T UK T T T N R N SN TN T N TN NN SR ST U T N SO SN T R W N T 3

SN1DA JDINBUTIS WNWTUTYY



167

[Zd®IN]1 sandiano gz
pup sqanNdul Z Yaim 9pow JpaUutT) SUuibue g4 :quUDPId

XT1J4qow ssuodsau-dsqs qupid ayy Jo q07d anyva Jonbuis wnwiutyy (Q)e9 b1y

(23S )W)

£-01X
mT . £ rA 1 A

[ T . 35 ¢ Py Ty Pyt rrrrv vy rrmT vrrr—1 ' ) Ly ¥ L ) -—S

: 1S

[ ] =
o

g -
[

X ] 3

C b <

[ ot 3

r 1 2
o

: ] >

- i 6

X ) <
=

i 1 g

» .

[ S o

[ ] 8
=

X ] c

X ’ m

N Jjec

&2 0 4 % & o 2 ¢+ & o ¢ o 3 o ¢ s 4 o 0 o 9 v . -y g o 3 1 v s o 3 v 3 3 ¢ o N o ¢« 3 1 3 3 3 [] FUNE SHE N TR HE TS T




168

[LIL4*IN] sandyno g
puL sANdUT Z Y3jim 19pow Joau1] Sutbus g4 :12ULId
XTJ4qow asuodsau-daqs quoid ayy 4o 101d anjva up nbuts wnuiuty ()% 9 H14

(D95 )auT |

o
R
E
-

TN

— T
M N
[Tp)

jo1

1St

SNYJ0A JDNBUTS WNWTUTY



N

LRI SN B S L B LN S L N B A ML O B LB MO0 B S B B B o) LA N N A B N NN N NN B SN N SN NN BN NR SN 28 2B NN BN 2 ax

Xje

ANYIDA JDNBUTS WNWTUTY

N

- < .
5 J
NN RN N N NSNS A N S S N S P SRS E NN RN RIS W R IS ]
w n <+ o™ N — &

X19™3

Time(sec)

169

F188 engine linear model with 2 inputs and

2 outputs [N1,FTIT]

Fig 6.4(p) Minimum singular value plot of the plant step-response matrix
Plant
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CHAPTER 7

DESIGN OF DIGITAL SUPERVISORY SELF—SELECTING CONTROLLERS

FOR LINEAR MULTIVARIABLE PLANTS

WITH MORE OUTPUTS THAN INPUIS

7.1 Introduction

In Appendix 6, some of the dynamical peculiarities of
self-selecting control systems are described. Such
peculiarities indicate the richness of the possible responses
of higher-order multivariable self-selecting control systems
and the diffieculty of analysing such systems. They thus
stimulate and justify the investigation of more powerful
controllers which gurantee limit tracking in steady states and
produce well-regulated dynamical behaviour of complete
self-selecting control systems. Therefore, in this chapter, a
new approach to the stability augmentation of self-selecting
controllers is considered. Using this approach, it is expected
that self-selecting controllers are provided with the enhanced

dynamical stability.

Firstly, the dynamical tracking characteristics of
variable-structure self-selecting control systems are
investigated based upon the approach of Grujic and Porter
(1980). Thus, important foundamental properties such as a
solution concept, equilibrium states, steady states,
asymptotically stable tracking, and perfect/nearly perfect

dynamical limit tracking are established, where the proofs of
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Propositions and Theorems are given in Appendix 2. Then, a
synthesis approach to supervise the operation of digital
self-selecting controller by observing error vectors and
controller switchings is developed, and the controller
synthesised in this approach is called a digital supervisory
self-selecting controller. It is shown that the controller has
three operational modes (ie Normal mode, Loop-excluded mode,
énd Loop—fixed mode) and two assessment blocks (ie Tracking
assessment and Correct/Incorrect loop assessment). Next, the
tracking performance and the stability of complete systems
incorporating digital supervisory self-selecting controllers
are investigated. Finally, the effectiveness of such
supervisory controllers is illustrated by designing a
supervisory self-selecting controller for a plant which is
simple but which neverthless has shown dynamical peculiarities
such as limit-cycle oscillations in Appendix 6. It is shown
that the limit-tracking behaviour of the plant under the action
of a supervisory self-selecting controller, tuned as before
such that 1l1limit-cycle oscillations occur, exhibits no
limit—-cycle oscillations but rather stable dynamical

limit-tracking.

7.2 Analysis

The linear multivariable Class I -plants (Definition 4.3) under
consideration are assumed to be governed on the continuous—time
set T = [0,+») by state and output equations of the respective

forms
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Ax(t) + Bu(t) (7.1)

x(t)

and

y(t) Cx(t) , (7.2)

where the state vector x(t) € R®, the input vector u(t) € R%,

the output vector y(t) € RP (p > m), the plant matrix A € R"*"

whose eigenvalues all lie in the open left-half plane C~, the

input matrix B € R®*®, and the output matrix C € RP*",

The transfer—function matrix is

G(s) = C(sI-A)" 1B (7.3)

and the steady-state transfer-function matrix

G = G(0) = -CA™ !B € RP*® (7.4)

is known from open-loop tests performed on the plant

(Appendix 1). It is assumed that

rank G = m , (7.5)

and therefore that, by applying the order—-reduction technique
(Algorithm 5.1), p-m+l subsets of plant outputs to be
controlled by corresponding set—point tracking controllers are

obtained in the form
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e e e e e > . (7.6)

Y, = ¥ seees Vg 0 Ve ) J
Here, r = p-m+l, the index set of all the control loops is I_ =
{1,2,...,r}, the index set of all the outputs I = {1,2,...,P},
the index set of permanently controlled outputs 1t =
{51’82""'sn-1}' and the index set of intermittently
controlled outputs I\I* = {t,,t,,...,t }. Then, the parts of
the plant which correspond to such subsets can be called
sub-plants. The corresponding sub—output vectors of these

sub-plants are

Ysl(t)
y (e = : = c{ix(t) € R® (i = 1,2,...,T)
y, _(t)
m~-1
| ¥y, (t) ] (7.7)
1

where each of sub—output matrices C¢¢i) € R®*" (i=1,2,...,r)
consists of slth,...,sn_lth and t,th rows of the output

matrix C.

Furthermore, it is assumed that the introduction of integral
action for each subset ¥,, i € I_ preserves stabilisability and
therefore that (Porter and Power (1970), Power and Porter

(1970))
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rank (1) =m , (7.8)

where the sub-plant transfer—function matrix

¢¢i)(s) = ¢c(i)(s1-a)"'B , (7.9)

and the sub-plant steady-state transfer—function matrix

¢{i) = gli)(g) = —c(i)p~1p e RO*° (7.10)

is obtained from equation (7.4).

In the case of digital self-selecting control systems with
lowest-wins strategies, it is convenient to consider the
behaviour of such plants on the discrete-time set T, =
{o,T,2T,...,kT,...}. This behaviour is governed by state and

output equations of the respective forms (Kwakernaak and Sivan

(1972))

Xppp = Ox, + Tu, (7.11)
and

yéi) = I-(i)xk . (7.12)

where x, = x(kT) € R®, u, = u(kT) € R®, y({*) = y(})(kT) € R",
r?

& = exp(AT) , (7.13)
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T

¥ = [ exp(At)B dt , (7.14)
0

r{t) = ¢t jer1_, (7.15)

and T € R* is the sampling period.
Furthermore, it is assumed that the overall set—point vector is
v = (v,,...,v 1T € RP, (7.16)
the overall plant output vector is
y(kT) = [yl(kT),...,yP(kT)]T € RP , (7.17)
and that the overall error vector is

e(kT) = [e,(kT),...,e (kT)1T

= v — y(kT) € RP, (7.18)
Then, the sub—-error vector is
e(i)(kT) = v(1) - y()(kT) € R" , (7.19)
where the sub-plant set—point vector v(1) e Rr®.

Here, it is noted in view of equations (7.6) and (7.7) that
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vil) = gy = . , (7.20)

y) (kr) = EMDy, = . . (7.21)

and

esl(kT)

e{i)(kT) = E{D)e, = . , (7.22)
e, (KT)

sm-l

kT
Leci( )

where E¢!) € R®*P consists of s,th,...,s _,th and t,;th rows of

a unit matrix Ip.

It is evident from equation (7.22) that all the sub—error
vectors e{%)(kT) (i=1,2,...,r) have m—1 common elements

e, (kI),...,e
1

s (kT). Therefore, the lowest-wins strategies
1

o-
need to compare only the remaining r scalar signals which are
not common in e{!(kT),...,e{")(kT) to select the control loop.
Furthermore, it follows that the index set J(kT) of 1lowest
errors and the loop index 2(kT) of the actually selected loop

are defined by the respective forms
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J(kT) = {j

(13

e, (kT) = min e, (kT)} (7.23)
| i€1

and

2(kT) € J(KT) C I_ . (7.24)

The self-selecting controller is governed on the discrete-time

set T, by equations of the form

u(kr) = REECTN A RT) (x7) + k(KT z(kT) (7.25)
and

z((k+1)T) = z(kT) + Te(2(¥T)) | (7.26)

where the controller state vector z(kT) € R™, and the
controller matrices Kgn(kr)) € R™*® and Kgn(kr)) € R"*™ are
chosen from the sets {Kgl),...,Kgr)} and {K§l),...,K§‘)},
respectively. It is assumed that each separate closed-loop
system is asymptotically stable, where there clearly exist r
sepatate closed loops when £(kT) = const € I_. This assumption
is justified by the functional controllability of each separate
output, as indicated in the conditions (7.8), so that the

controller design methodology described in Chapter 6 is

applicable.

Since equations (7.23) and (7.24) decide which controller
should be used at each sampling instant, controller switching

may occur. In controller switching from loop index 2, to ¢, at



time KT,

considered:

(i) Without bumpless transfer

z(kT) = z((k-1)T)

(ii) With bumpless transfer

and

(iii)

where

where

u(kT)

u((k-1)T)

2(kT) = K{%2)"! ( u((k-1)T) - k§¥2)e®2) (k1))
Instantaneous perturbation

z{(kT) = 2z((k-1)T) + Az ,

Az is bounded, ie there exists M such that

laz] < M < =,

H-" is the euclidean norm of -.
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the following three types of switching logic are

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

It is clear from equations (7.27) to (7.31) that the switching

logic

(iii) includes (i) and (ii) as special cases.

Therefore,

the analysis is carried out only for the switching logic (iii).
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The equations (7.11), (7.12), (7.16), (7.25), and (7.26) that
govern the behaviour of the self-selecting control system can

be written in the forms

X((K+1)T) = Ay o) (TIX(KT) + By (pp ) (T)v BT (7.32)
where
x(kT)
x(kT) = € R™*™ | (7.33a)
z(kT)
Q_Kl(,n(kr))gr(ﬁ(kl')) , Kg’-(k'r))g
A (T) =
(k1) _rr (2 (kT)) I
I m
€ R(n+m)x(n+m) , (7.33b)
ng(kr))y
By (xry(T) = € R*" (7.33¢)
TI
m
and
v(2(ET)) = (2(KT)) g gO | (7.334)

it is clear that the complete closed—loop digital
self-selecting control system is governed by equations (7.32)
with the lowest-wins control equations (7.23), (7.24), (7.30),
and (7.31). Therefore, let a solution of the governing

equations of the self-selecting control system be denoted by



185

x(kT;xo;v)

X(kT3x,3v) = [ ] » X(03x,3v) = x

z(kT;xo;v)

where x(kT;x ;v) is the motion of the controlled plant and
z(kT;xo;v) is the corresponding motion of the self-selecting
controller on the discrete-—time set T,. The following results
can then be obtained.

Definition 7.1

1 Equilibrium state

A state x(T) € R®*® 45 an equilibrium state of the
self-selecting control system if and only if, for each separate

. closed-loop system,
x(kT;xe(T);v) = xe(T) . VKT € T, H

2 Steady state

A state x,(T) € R**™ is a steady state of the self-selecting

control system if and only if

x(kT;xs(T);v) = xs(T) s YkT € T, .
Definition 7.2: Index sets of correct and incorrect loops
In a steady state, the index set I _(v) such that

I(v) ={i€I,: Ve, = Ve, o t, € I\I")
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is the set of correct loops and the set Ir\Ic(v) the set of

incorrect loops.
The existence of nonempty I _(v) is guaranteed by Theorem 5.1.
Proposition 7.1

In a steady state, if i € I \I_(v) then

Proposition 7.2

The self-selecting control system has #(Ic(v)) steady states
for every v, including multiplicity, where #(°+) means the

number of elements in the set -,

It is desirable in such self-selecting control systems that the
entire set of plant outputs exibits the dynamical counterpart
of limit—tracking (Definition 5.1). Therefore, a rigorous
analysis is carried out for dynamical limit tracking in the

following (Grujié and Porter (1980)).
Definition 7.3: Target set

The set

S(v) = {x : cTx=vw cesy CT X =v
8y sl ’ ? 5a-1 sn-l’
T — .
ctix = vti, i€ Ic(v),
ci x<v, ,3€I\I_(v), z2€R"}C Rotm

h J
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or

S(v) = {x : ¢cWx = v i €1 (v),

j eI NI (v), z€R"}C Ro*m

is the target set of the self-selecting control system.

In the sequel, the distance of a point x € R®'™ from a set
W C R®® is denoted by plx , W) = inf [[x - x*| : x" € WI.
Definition 7.4

The self-selecting control system ehibits

(i) stable tracking on T, if and only if for every (x,,v) €

R"*PxRP and for every € > 0, there exist £ C 3(v), £ = Z(v) and

6 = 6(e,x4,v,L) > 0, such that p(x, , Z(v)] < 6 implies that
pIx(kT;x,3v) , Z(v)] < €

for all kT € T_;

(ii) globally asymptotically stable tracking if and only if

both it exhibits stable tracking and for every (x. ,v) € RO P xRP

1lim p[x(kT;xo;v) s £L{v)] = 0 .

k-

More precisely, there exists some 7 > 0 such that if
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pix(k Tsx,3v) , E(v)] £ 7, then for every € > 0, there exists a

positive Ak* = Ak*(z,7,xo,v) such that
PIX(ET;xq5v) , £(V)] € €
for all kT > (k, + Ak")T;

(iii) state-bounded tracking if and only if the solution

X(kT3x,3v) is bounded for every (%4,V) € ROYBxRP;

(iv) perfect dynamical limit tracking or state—bounded globally
asymptotically stable tracking if and only if it exhibits both
state-bounded tracking and globally asymptotically stable

tracking.

It is noted that, in Definition 7.4, (ii) dimplies (i), (div)
implies (i), (ii), and (iii), and that all characteristics are
uniform. In the following, the practical version of perfect

dynamical limit tracking is defined.
Definition 7.5: Nearly perfect dynamical limit tracking

The self-selecting control system exhibits nearly perfect
dynamical 1imit tracking if and only if both it exhibits
state-bounded tracking and for every (x,,v) € R®*BxRP and for
every e., > 0, there exists k" = k*(eth,xo,v) such that for

kT 2 k'T,

e(kT) 2 —e,
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and
le 2T (k)] < ey »

T P
where e e psev-se )" € RY .

e:

Proposition 7.3

Definition 7.4(iv) implies Definition 7.5 in the sense that
perfect dynamical 1limit tracking implies nearly perfect

dynamical limit tracking.

7.3 Synthesis

The block diagram of the digital supervisory self-selecting
controller is shown in Fig 7.1. In order to obtain not only
enhanced stability but also both dynamic and static 1limit
tracking, the controller is equipped with two special
operational modes (ie Loop—excluded self-selecting control mode
and Loop-fixed control mode) in addition to the normal
self-selecting control mode (Section 7.2). Then, these three
control modes are called, respectively, °>Normal mode’,
*Loop—excluded mode’, and ’Loop—fixed mode®’. The transition
from one mode to another is decided in two assessment blocks
(ie °’Tracking assessment block®’ and ’Correct/Incorrect 1loop
assessment block?). Such operation of the controller is
initialised whenever the set—point command vector changes. 1In

the following, the hierarchical structure of the controller is

defined.
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Definition 7.6
1 Level of self-selecting control

The level of self-selecting control is the number of excluded

loops and called 7.

2 Index set of level n excluded loops and

Index set of level 7 candidate loops

The index set of level 7 excluded loops is IT7 __, whilst the

index set of level n candidate loops is IQ = Ir\IQ ex®

3 Index set of level n lowest errors

The index set of level 7 lowest errors is

JNKT) = {j : e, (KT) = min_e, (kT))}
i iex® "4

Proposition 7.4
(1) 12 __=¢
(ii) 19 =1
(iii) #(I7 ) =1
(iv) #(1I1) =r -

(v) J%kT) = J(kT)
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Definition 7.7

1 Normal mode

The self-selecting control system is said to be under Normal
mode if and only if the level of such self-selecting control

is 0.

2 Loop—excluded mode

The self-selecting control system is said to be wunder
Loop—excluded mode if and only if the 1level of such

self-selecting control is n 2 1.
3 Loop-fixed mode
The self-selecting control system is said to be wunder

Loop—fixed mode if and only if

2(kT) = 2f = const € I:

irrespective of J7(kT).
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Definition 7.8: Background computation of Normal mode and

Loop-excluded mode (Fig 7.2)

-

rt
i

(Initialised time) + T,

1 0 o
tz = t1 + T°

. 4 (7.34)
ta = ta_1 + To

where T_, the initial settling time, and T, the observation

time, are chosen by the designer.

The following variables are defined on the discrete-time set
Tro(tz) = {tz’ts""’ta""} as long as the same operational
mode continues. Such discrete-time set is re—initialised
whenever either Normal or Loop—excluded mode operation begins

either by the set—-point change or the transition from the

loop—fixed mode.

max(es)a = max esi(kT) (7.35a)
kIG[ta_l,ta)
i€[1,m~-17]

min(es)a = min esi(kT) (7.35b)

krE[ta_l.ta)

i€r1,m-1]



m-1

t
(e,), = [ L {( L'Te, (KT))/T }1/(m - 1)

s’a . i
i=1 szta_l

mean

Anax(es)a = max(es)a - mean(es)a
Amin(es)a = mean(es)a - min(es)a
max(et)a = max ets(kT)(kT)
kIE[ta~l,ta)
e(kT)EIT(kT)
ain(ee)y = min (e . (KT) , etj(k'r))
kTE[ta_l,ta)
2(xTyEIT (RT)
i€l o,
= min et.(kT)
i
kTe(ta—l'ta)
i€I1
T
Ea
(e.), = ( Te (kT))/T
mean t’a KTot _t!(kT) ]
Amax(et)a = max(et)a - mean(et)a
Amin(et)a = mean(et)a - mean(et)a

(7

(7.

(7.

(7.

(7

(7

(7.
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.35¢)

.35d)
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36a)

36b)
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.36d)
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Definition 7.9: Tracking assessment

The tracking of Normal and Loop—excluded modes is assessed on

the discrete-time set T, (t,) = {ta’ta""'ta'°'°} to decide
o _ .

whether such modes should continue or should be transfered to

Loop—-fixed mode.

If
nax{®g)a S ¢y (7.37a)
nia(€s)a 2 "¢ (7.37b)
nax(®)a S €¢n (7.37¢)
nin(@¢)a 2 “C¢y (7.37d)
or if
naz(@s)a S By (), (7.38a)
Bogale), Sab, (e), (7.38b)
lean(esdal € @lpeantes)al (7.38¢)
max(@y)y S a8, (e), (7.384d)
minl€¢)y S @By (er), , (7.38e)
|pean(®)al S alyeanley)oo,l (7.38fF)
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where the error threshold e n and the admissible convergence

rate a (0 < < 1) are to be chosen by the designer,

then the assessment is ’Convergent’ and the controller
continues to operate in the same mode during the next interval

kT € [ta,ta+1);

else the assessment is °’Non convergent’, the mode change
occurs, and the controller begins to operate in Loop—fixed

mode.

It is clear from equation (7.34) and Definition 7.9 that such
assessment is carried out for the first time at t, (=Ts+2T°)

after the set-point change.

Definition 7.10: Background computation of Loop-fixed mode

(Fig 7.3)

(7.39)

where Loop-fixed mode begins at time t,, T, is the initial

settling time, and T  is the observation time.

When the operational mode changes from Normal/Loop—excluded
mode to Loop—fixed mode at time Cas the actually selected loop

is fixed by the form

(ki
2l

2(kT) = ¢, = 2((k-1)T) £ kT £ (7.40)

0
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However, during Loop-fixed mode operation, the lowest—wins

strategy continues to operate. Therefore, for i € I, and

for ty SkT <t ,

1 i € J(kT)
AT, (i , kT) = (7.41)
0 i € J(kT)
and
&
T, (i) = L TAT, (i , kT) . (7.42)

kT=t0

It is clear from equation (7.42) that T, (i) is the time

interval during which the index i belongs to J(KT) (t,<kTSt,).
Definition 7.11: Correct/Incorrect loop assessment at time ;1
If3i, €1, i, =2

Tint(nf) < 5T1nt(i1) ’ g8 >0, (7.43)

then the assessment is ’Incorrect loop’;

else the assessment is ’Correct loop’ and Loop-fixed mode
continues to operate with the horizon-reinitialisation such

that
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t: = t, (7.44a)
T =ty + T, (7.44b)
vieI_, T{ .(i)=0. (7.44¢)

r int

It is clear from equation (7.39) that such assessment is
carried out for the first time at E: (=T8+T°) after Loop—fixed

mode begins.

Definition 7.12: Re-initialisation in case of ’Incorrect loop’

assessment in Loop-fixed mode (Fig 7.4)

The number of excluded loops increases by one. Therefore,

z,ex = Iz:lx + {nf} (7'453)
#HI1) = #1771 -1 (7.45b)
#(1] ) = HIT L)+ 1 (7.45¢)

If n £ r-2 ie #(I1) = r-n 2 2 then Loop—excluded mode begins.

If n = r-1 ie #(IQ) = 1 then only one candidate loop remains

and Loop—-fixed mode begins under such loop.

If p =1 ie #(Iz) = 0 then there remains no candidate loop. In

such case, Normal mode begins.
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The case in which the final assessment n = r happens at time T,

in the lowest stage shown in Fig 7.4, where

L
]

(r = ){(T, + 2T)) + (T, + T )} + (T, + T,)

(r = 1)(2T_ + 3T,) + (T, + T,) . (7.46)

7.4 Performance

Firstly, the controller performance of Loop—fixed mode is
discussed. Exponential stability and Correct/Incorrect loop

assessment are verified.

Proposition 7.5: Exponential stability - Convergence property

of Loop-fixed mode

In the system under Loop-fixed mode with the fixed loop index

2., for a given ¢ > 0, there exists some k] such that
x(kT;xo;v)“”)gnf € ng(T) + €B kT 2 k:T
ie
PIx(KT3x3v) , xPe(T)] < e kT 2 k)T ,
where

xg8(T) = lim X(KT3%03V) g (yr)ap,

k=¥

and B is the Euclidean unit ball in R®*P.
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Proposition 7.6: Correct loop continuity in Loop-fixed mode

If 2, € I (V) then there exists k: such that

£

*

vi € T \I (v), T, ,(2,) £ BT, (i), B> 0, ty 2 kT.

int

Proposition 7.7: Incorrect loop detection in Loop fixed mode

If ¢_ € Ir\Ic(v) then there exists k: such that

f

*

T, . (2,) < BT, (i), B> 0, tg 2 k]T.

i = ¢ i

f’
Although 8 > 0 is enough to prove above propositions, too large
B (for example, B8 >> 1) might degrade the performance of
assessment blocks in view of the inequalities in Propositions
7.6 and 7.7. Therefore, 8 of the order of 1 is recommended.

Finally, a practically important theorem can be obtained.

Theorem 7.1

Suppose that the plant input is made to be bounded. Then, the
supervisory self-selecting controller can attain nearly perfect
dynamical 1limit tracking or perfect dynamical 1limit tracking

for every (x,,v).
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It is noted that, as indicated in equation (7.46), the
supervisory self-selecting controller can attain such tracking
for every (x,,v) within time T, as long as the set-point

command remains constant and plant variation does not occur.

7.5 Illustrative example

In order to illustrate the performance characteristics of
digital supervisory self-selecting controllers, it is
convenient to design a controller for a simple
one—input/two-output plant and to analyse the resulting
closed-loop characteristics by the phase-plane method. In
fact, the plant is governed by state and output equations of

the respective forms

x(t) = —-x(t) + u(t) ]
y,(t) = 2x(t) - (7.47)
y,(t) = 4x(t) .

For this plant, the self-selecting control system ehibited
stable responses (with or without sliding motion) or
limit—-cycle oscillations depending upon the controller gains

and the controller switching logic (Appendix 6).

In order to demonstrate the enhanced dynamical stability of the
proposed supervisory self-selecting controller, the controller
gains and the switching logic are chosen as for the case of

limit—-cycle oscillations. Thus, the controller gains are
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k{!) =0 k{') = 0.5
. (7.48)

k{?) =0 k{?) = 1.0

and controller switching without bumpless transfer is used.
Furthermore, the controller parameters of the supervisory part
are chosen such that T, = 2.5 sec, T = 5.0 sec, a = 0.5, 8 =

0.5, and e, = 0.1.

The responses of this supervisory control system are shown in
Figs 7.5 to 7.7, where the sampling period is 0.0l sec, El and
E2 are the equilibrium states of the corresponding separate

closed loops,

4
v = s (7.49)
7

and

X, = . (7.50)

It is evident from these figures that the first tracking
assessment at 12.5 sec (T +2T ) in Normal mode is
*Non convergent’, that Loop—fixed mode (%2, = 1) begins, and
that Correct/Incorrect loop assessment at 20 sec (T3+T°+12.5)
is ?’Incorrect loop*?. PFurthermore, it is evident that, next,
Loop—fixed mode (£, = 2) begins, that Correct/Incorrect loop

assessment at 27.5 sec (T8+T°+20.0) is *Correct 1loop®’, and
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therefore that perfect dynamical 1limit tracking has been

achieved.

7.6 Conclusion

Rigorous theoretical foundations for the analysis of the
dynamical properties of digital self-selecting control systems
have been established. Based upon these foundations, a new
technique for supervising the operation of self-selecting
controllers has been developed. The resulting digital
supervisory self-selecting controller has three operational
modes (ie Normal mode, Loop—excluded mode, and Loop-fixed
mode). According to the judgements of assessment blocks (ie
Tracking assessment and Correct/Incorrect loop assessment),
which observe error vectors, controller switchings, and
lowest-wins strategies, the controller changes the operational
mode so that perfect or nearly perfect dynamical limit tracking

can be achieved.

An illustrative example has shown that the digital supervisory
self-selecting controller possesses enhanced stability and that
perfect dynamical 1limit tracking can be achieved even for the
case in which 1limit-cycle oscillations occurred under the

action of a non—-supervisory self-selecting controller.
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ROBUSTNESS OF TRACKING SYSTEMS
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CHAPTER 8
ROBUSTNESS OF SET-POINT TRACKING SYSTEMS

8.1 Introduction

Controllers are robust when they function (ie operate with
acceptable performance) in the presence of significant plant
uncertainties such as unknown disturbances and plant
variations. Since such uncertainties may exist in practical
applications, it dis desirable that controllers are robust.
Therefore, a robustness investigation is carried out in this
chapter to specify the uncertainties with which the controllers

described in Part II can cope.

In the following sections, the robustness to unknown
disturbances of tunable digital set—point tracking controllers
is assessed at first. Then, the robustness to plant variations
of such controllers is aséessed. In this assessment, a very
important Theorem 1 (Porter and Khaki-Sedigh (1989)
(Appendix 7)) is utilised to characterise the admissible plant
perturbations that can be tolerated by digital set-point

tracking PID controllers.

8.2 Robustness of tunable digital set-point tracking
PID controllers

8.2.1 Robustness in the face of unknown disturbances

The robustness to unknown constant disturbances of tunable
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digital set-point tracking PID controllers (Chapter 2) can be
readily investigated. Thus, the state and output equations
(2.1) and (2.2) are modified to incorporate constant

disturbances on the plant. Hence,

x(t) Ax(t) 4+ Bu(t) + d (8.1)

and

i

y(t) = Cx(t) , (8.2)
where the vectors x(t), u(t), and y(t) and the matrices A, B,
and C are defined as before. It is assumed that the constant
disturbance vector d € R®™ is unkrnown. The behaviour of such
plants on the discrete-time set T, = {0,T7,2T,...,kT,...} is
governed by state and output equations of the form (Kwakernaak

and Sivan (1972))

Xy, = x, + Fu, + ed (8.3)

and

y, = I'x, , (8.4)

where the vectors x,, u,, and y, are defined as before, the
matrices &, ¥, and I' are defined in equations (2.14) to (2.16),

and
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0= exp(At) dt . (8.5)

(= Y ]

The state and output equations of such plants under the action
of error-actuated digital PID controllers governed on the
discrete—time set T, by control-law equations of the form

(2.17) assume the forms

S ST Q—T!K‘P—YKar N TIK2 ,—YKS X, T?K1 + YKa
Zeor | = -Tr , I, 0 z, | + TI,
£e4y -T s, 0 ,0 £, I,
(3]
+ 0| d (8.6)
0
and
y,=(r, o0, 0] Xy . (8.7)
2y
f

Therefore, provided only that T, K,, K,, and K; are such that
all the eigenvalues of the closed-loop plant matrix in equation

(8.6) lie in the open unit disc D7,

lim Az, = lim {z,,, —2,} =0 (8.8)
k=00 k~»oo

and therefore

lim e, = 0 (8.9)

koo
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so that set—point tracking occurs simultaneously with

disturbance rejection.

Such disturbance rejection properties are illustrated by the
simulation results shown in Figs 8.1 and 8.2. In this
simulation, the plant is the five—input/five-output linear F100
engine model at Intermediate power condition (Appendix 3), the
digital PID controller is designed and tuned as before (Example
in Chapter 2), and the set—point vector for the outputs is v =
[126, 93.4, 14.5, 1.78, 1.971T so that the thrust change is 500

1b. Furthermore, the constant disturbance vector is described

by

d(i)

il
(=]

ie[1,33), i=2
s (8.10)

d(2) -100

where d(i) is the ith element of d € R33. This choice is made
to simulate the horsepower extraction. These results indicate
the excellent disturbance rejection and set-point tracking
behaviour of the plant under the action of unknown constant

disturbances.

8.2.2 Robustness in the face of plant variations

The robustness to plant variations of tunable digital set-point
tracking PID controllers can now be assessed. In this study,
the five-input/five-output linear F100 engine models

(Appendix 3) are used as the nominal and actual plants.
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Firstly, the controller is designed for a model obtained at
Intermediate power condition (Power lever angle = 83 deg) - ie
the nominal plant. The excellent set—point tracking behaviour

of the F100 engine under the action of an error—actuated

digital PID controller tuned such that T = 0.05 sec, A(0.05)

diag{0.05, 0.2, 0.1, 0.1, 0.1}, Z = 50.0I,, and A(0.05)A
0.001I, is shown in PFigs 8.3 and 8.4. In this case, the
set—point vector for the outputs is v = [126, 93.4, 14.5, 1.78,

1.971T so that the thrust change is 500 1b.

Next, in order to examine the robustness of this controller,
the controller is now applied to another 1linear F100 engine
model obtained at the different power condition (Power lever
angle = 67 deg) -— ie the actual plant. The steady-state
transfer function matrices of the nominal plant and the actual

plant are given in the forms

0.37904 1238.8 -28.508
0.30777 660.79 -2.8675
G, (0) = 0.20602E-01 -39.863 0.25947
0.15944E-02 -12.168 0.38479E-01
0.90309E-01 210.94 -1.7403
-9.2619 -57.405
-25.646 -46.221
-0.76283 -6.8275 (8.11)
—0.33542E-01 —-0.44527
2.2101 12.248

and



214

0.40780 1220.2 -30.646
0.32555 197.87 -1.9798
G, (0) = 0.27484E-01 -6.8768 0.83052E-01
0.24994E-02 -~7.8017 0.24802E-01
0.95167E-01 72.565 -1.2269
-10.843 -64.279
-19.076 -37.008
-0.61430 -5.5979 . (8.12)
-0.15957E-01 —-0.29314
1.8282 10.459

By Theorem 1 (Porter and Khaki-Sedigh (1989) (Appendix 7)), the

spectrum of the perturbation matrix M = Ga(O)G;I(O) is

{ul,uz,..,us} = {1.25870, 1.08577, 0.93707, 0.71708, 0.64485})

(8.13)

and therefore satisfies the robustness theorem since Ky ect
(j =1,2,...,5). The set—point tracking behaviour of the F100
engine (the actual plant) under the action of the
error—-actuated digital PID controller designed for the nominal
plant and tuned as before is shown in Figs 8.5 and 8.6 for the
same set—point vector as before. The tunable digital PID
controller is robust in the face of plant variations, as
predicted, since this behaviour exhibits only minimal

performance degradation.

8.3 Robustness of tunable digital set—point tracking

PID/Pre—filter controllers
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8.3.1 Robustness in the face of unknown disturbances

The robustness to unknown constant disturbances of tunable
digital set-point tracking PID/Pre—-filter controllers
(Chapter 3) can be readily investigated. Thus, the state,
output, and measurement equations (3.1) to (3.3) are modified

to incorporate constant disturbances on the plant. Hence,

x(t) = Ax(t) + Bu(t) + d , (8.14)

w(t) = Ex(t) , (8.15)
and

y(t) = Cx(t) , (8.16)

where the vectors x(t), u(t), w(t), and y(t), and the matrices
A, B, E, and C are defined as before. It is assumed that the

constant disturbance vector d € R® is unknown.

In the presence of such disturbances, the Laplace transforms of

unmeasurable and measurable outputs are

w(s) = E(sI - A) " !{Bu(s) + d/s} (8.17)

and

]

y(s) = C(sI — A) !{Bu(s) + d/s} . (8.18)
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Therefore, in case u(t) = u = const

1im w(t) = -EA~!(Bu + d)
=
=G u - EA" 4 (8.19)
and
lim y(t) = —-CA”!(Bu + d)

£->o0

Gou - caA~la , (8.20)

where the steady-state transfer function matrices G, and Gy are

defined in equations (3.5) and (3.6), respectively.

The behaviour of such plants on the discrete—time set T, =
{0,T,2T,...,kT,...} is governed by state, output, and

measurement equations of the form (Kwakernaak and Sivan (1972))

Xp,, = ¥x + ¥u,  + ed , (8.21)

w, = Ex,_ , (8.22)
and

v, = Tx, , (8.23)

where the vectors x,, u,, W,, and y, are defined as before, the
matrices &, ¥, =, and I' are defined in equations (3.19) to

(3.22), and
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T
© = | exp(At) dt . (8.24)

0
The state and output equations of such plants under the action
of error-actuated digital PID/Pre—filter controllers governed

on the dicrete—time set T, by control-law equations of the form

(3.29) assume the forms

Xy o1 @-T¥K I-¥K,I , T¥K, ,~¥K, X, ] T¥K, + ¥K,
Zyo, | = ~Ir , I, .0 z, | + TI,
£o01 -r . 0o , 0 £, | I,
o
+ | o }]d (8.25)
[ 0 |
and
w, =18,0,01 |x . (8.26)
Zx
fk

Therefore, provided only that T, K,, K,, and K, are such that
all the eigenvalues of the closed-loop plant matrix in equation

(8.25) lie in the open unit disec D7,

lim Az, = lim (z,,, — z,) =0 (8.27)

t =0 t-»00
and therefore

lim e, = 0 (8.28)

St
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so that set—point tracking occurs for the measurable outputs in

the sense that
lim (v - y,) =0 . (8.29)
k-

Here, the set-point vector for measurable outputs

v = Jr € R® , (8.30)

where the set-point vector for unmeasurable outputs r € R™ and

the pre—-filter matrix

= -1
J =66, € rR™, (8.31)

However, in general

lim (Jr - Jw,) = 0 (8.32)

k=00

in view of equations (8.19) and (8.20). Therefore,

lim (r - w,) # 0 . (8.33)

Koo

This indicates that, although set—point tracking of the
measurable outputs can be achieved, the unmeasurable output
vector cannot be caused to track its set—point vector in the

steady state. It therefore follows that, in general, tunable
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digital set—point tracking PID/Pre—-filter controllers cannot

reject unknown disturbances in this sense.

Such properties are illustrated by the simulation results shown
in Fig 8.7 to 8.9. In this simulation, the plant has five
manipulated variables, five unmeasurable outputs, and five
measurable outputs (Appendix 3). The digital PID/Pre—filter
controller is designed and tuned as before (Example in

Chapter 3) and the set-point vector for the unmeasurable

outputs is r = [500, 0, O, O, 0]F whilst the corresponding
set—point vector for the measurable outputs is v = Jr = [126,
93.4, 14.5, 1.78, 1.971%. Furthermore, the constant

disturbance vector is described by

a(i) =0 ’ ie[1,33) , 1i#2
s (8.34)

|

a(2) -100

where d(i) is the ith element of d € R33. This choice is made
to simulate the horsepower extraction. These results indicate
that although set—point tracking together with disturbance
rejection for measurable outputs can be achieved, neither
set—point tracking nor disturbance rejection for unmeasurable
outputs can be achieved and that such performance degradation

might occur in the face of unknown disturbances.

8.3.2 Robustness in the face of plant variations

The robustness to plant variations of tunable digital set—point

tracking PID/Pre-filter controllers can now be investigated.
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The design equations (3.68), (3.70), and (3.72) for the

proportional, integral, and derivative controller matrices K,,

K,, and K, are accordingly re-expressed in the forms
K, = H M)A, (T)mI !, (8.35)
K, = 6,7,(0)z , (8.36)
and
Ky = H OHT)A, (T)AT™! . (8.37)

Here, H  _(T) and A .(T) are, respectively, the step-response
and decoupling-index matrices of the nominal plant for

unmeasurable outputs and Gy .(0) is the steady-state

transfer-function matrix of the nominal plant for measurable

outputs.

It is then evident from equations (3.64), (3.65), and (3.66)

”~ ~

u 2 u 2

2 ;3 is now the set of closed-loop

that Zc = Z1

characteristic roots, where

Z,={zecC: |21 -1, -Ta+0(T%) | =0}, (8.38)

Z,={z€C: | zI, - I_+ 1%, ,(0)6,72(0)Z + o(T?) |
=0} , (8.39)

Z.={z€Cz: | 2z1. + (1) | =0} , (8.40)
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and Gy'a(O) is the steady-state transfer function matrix of the
actual plant for measurable outputs. It is clear that the
closed-loop tracking system will remain asymptotically stable,
and that set—point tracking will consequently still occur in

the sense that

lim (v -y, ) =0, (8.41)
k=2 +>
provided that Z C D~. However, in view of equations (3.23),

(3.26), and (3.27),

lim (r - wk) =0 , (8.42)
k=2 4+
unless
-1 - -1
Gy'nGw'n = Gy’a(?",n . (8.43)

Therefore, it is noted that the unmeasurable output vector may
not track its set—point vector in the steady state and that
performance degradation of the controller may occur in this

sense.

In case the controller is designed for a linear F100 engine
model obtained at Intermediate power condition (Power lever
angle = 83 deg) - ie the nominal plant, the excellent set—point
tracking behaviour of the F100 engine under the action of a
digital PID/Pre-filter controller tuned such that T = 0.05 sec,

Ay(0.0S)H = 1.0I;, 2 = 50.0L,, and Ay(0.0S)A = 0.01I, is shown
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in Figs 8.10 to 8.12. In this case, the required thrust change
is 500 1b so that the set-point vector for the unmeasurable
outputs is r = ([500, 0, O, O, 0] whilst the corresponding
set—point vector for the measurable outputs is v = Jr = {126,

93.4, 14.5, 1.78, 1.9717%.

In order to examine the robustness of this controller, the
controller is now applied to another linear F100 engine model
obtained at the different power condition (Power lever angle =
67 deg) - ie the actual plant. The steady-state
transfer—-function matrices of the nominal plant and the actual

plant are given in the forms

0.37904 1238.8 -28.508
0.30777 660.79 -2.8675
6,(0) = G, ,(0) = | 0.20602E-01 -39.863 0.25947
! 0.15944E-02 -12.168 0.38479E-01
0.90309E-01  210.94 -1.7403
-9.2619 -57.405
-25.646 -46.,221
-0.76283 -6.8275 (8.44)
—0.33542E-01 —0.44527
2.2101 12.248
and
0.40780 1220.2 -30.646
0.32555 197.87 -1.9798
G,(0) = G, ,(0) = 0.27484E-01 —-6.8768 0.83052E-01
' 0.24994E-02 -7.8017 0.24802E~-01
0.95167E~01 72.565 -1.2269
-10.843 -64.279
-19.076 -37.008
-0.61430 -5.5979 . (8.45)

-0.15957E-01 —-0.29314
1.8282 10.459
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By Theorem 1 (Porter and Khaki-Sedigh (1989) (Appendix 7)), the

spectrum of the perturbation matrix M = Ga(O)G;l(O) is

(i sy s+estg} = {1.25870, 1.08577, 0.93707, 0.71708, 0.64485}

(8.46)

and therefore satisfies the robustness theorem since My ect
(j =1,2,..,5). The set—point tracking behaviour of the F100
engine (the actual plant) under the action of a digital
PID/Pre~filter controller designed for the nominal plant and
tuned as before is shown in Figs 8.13 to 8.15 for the same
set—point vector for the unmeasurable outputs as before. The
tunable digital PID/Pre—filter controller is robust in the face
of plant variations in the sense that the closed-loop system
remains asymptotically stable. However, performance
degradation has occured in the sense that the unmeasurable
output vector no longer tracks its set—point vector in the

steady state.

8.4 Conclusion

In this chapter, the robustness properties of set-point
tracking systems incorporating tunable digital PID or
PID/Pre—-filter controllers has been assessed. By considering
the stability of discrete—-time closed-loop tracking systems,
the effect of unknown constant disturbances has Dbeen
investigated for both types of controller. The robustness
assessment for plant variations has been carried out using the

robustness theorem — Theorem 1 (Porter and Khaki-Sedigh (1989)
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(Appendix 7)). This assessment has been effected by
characterising, in terms of the steady—-state transfer function
matrices of nominal and actual plants, the admissible plant
perturbations that can be tolerated by such tunable set-point
tracking controllers. In order to verify the results and
predictions of this analysis, time—domain simulation results

for a gas—turbine engine have been presented.

It has been shown in the analysis and the simulation results
that the tunable digital set—point tracking PID controllers can
achieve set—point tracking with disturbance rejection and that
such controllers are robust since only minimal performance

degradation has occurred in the face of plant variation.

In the case of the tunable digital set—-point tracking
PID/Pre—-filter controllers, it has been shown that such
controllers are robust in the sense that the closed—-loop
digital control systems remain asymptotically stable in the
face of wunknown constant disturbances or admissible plant
variations. However, it has been shown in this case that
although set—point tracking together with disturbance rejection
for measurable outputs can be achieved, neither set-point
tracking nor disturbance rejection can be achieved for
unmeasurable outputs and that performance degradation might
therefore occur in this sense in the face of wunknown
disturbances or plant variations. These results have been

verified by the presentation of time—domain simulation results.
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--- under digital PID control
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CHAPTER 9

ROBUSTNESS OF LIMIT-TRACKING SYSTEMS

9.1 Introduction

Since it has been shown in Chapter 4 that undertracking
(Definition 4.4) is always possible in the face of unknown
constant disturbances, it is expected that self-selecting
controllers (Chapter 6) have good disturbance-rejection
properties. Furthermore, since such controllers are extensions
of +tunable digital set—point tracking controllers whose
robustness to plant variations has been shown in Chapter 8,
self-selecting controllers are also expected to be robust in

the face of plant variations.

Therefore, in this chapter, an investigation is carried out to
assess the robustness of self-selecting controllers in the face
of unknown constant disturbances and plant variations.
Furthermore, for supervisory self-selecting controllers, the
robustn;ss of the supervisory part is investigated based on its

control-mode structure.
9.2 Robustness of digital self—selecting PID controllers

9.2.1 Robustness in the face of unknown disturbances

The robustness to unknown constant disturbances of digital
self-selecting PID controllers (Chapter 6) can be readily

investigated. Thus, the state and output equations (6.1) and
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(6.2) of linear multivariable Class I plants are modified to

incorporate constant disturbances on the plants. Hence,

x(t) = Ax(t) + Bu(t) +d (9.1)

and

y(t) = Cx(t) , (9.2)
where the vectors x(t), u(t), and y(t), and the matrices A, B,
and C are defined as before. It is assumed that the constant
disturbance vector d € R" is unknown. Since the plants are
asymptotically stable, it follows from equations (9.1) and
(9.2) that the output vector of the initially quiescent plant

for a constant input vector u(t) = u =const is

y(t) = cA™!(e?® — I )(Bu + 4d) (9.3)

and t@g;eforethat, in the steady state,

lim y(t) = —-CA™!(Bu + 4)

goeo

=Gu - CA"!d , (9.4)
where ¢ € RP*® is the steady-state transfer—function matrix
defined in equation (6.4). Then, by Theorem 4.4, there always

exists an input u such that

Gu<g<v+coaltd, (9.5)
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where v € RP is the set—point vector. This means that

lim y(t) £ v (9.6)

oo

in view of equation (9.4) and that, by considering v + CcA™'d as
a new set-—point vector in Theorem 5.1, there always exists at
least one limit—tracking input which satisfies equation (9.6).
Therefore, the steady-state condition of 1limit-tracking is

satisfied in the face of unknown constant disturbances.

Next, by applying the order-reduction technique (Appendix 5.1)
to the plants, the sub—output vectors corresponding to subsets

Y, (i =1,2,...,vr r = p—mtl) are

vy (t) = ¢cPIx(t) ({ = 1,2,...,1) , (9.7)

where the vectors y(i)(t) (i =1,2,...,r) and the matrices c(i)
(i = 1,2,...,r) are defined as before. The behaviour of such
sub-plants on the discrete-time set T, = {0,T,2T,...,kT,...}
is governed by state and output equations of the form

{Kwakernaak and Sivan (1972))

k+1 ex,

»”
I

+ %u, + ed (9.8)

and

yitr =), ier_, (9.9)



243

where the vectors x,, u,, and yﬁi) are defined as before, the
matrices &, ¥, and I¢!) are defined in equations (6.19) to
(6.21), the index set I_ is defined as before, and

0= exp(At) dt . (9.10)

Q3

The state and output equations of such sub-plants under the
action of individual error-actuated digital PID controllers
governed on the discrete-time set T, by control-law equations

of the form (6.22) assume the forms

g (1) p (1) _gr(D)p(i 1) _gg(d
Xy, g-Tek (Dr (g {Hr(d) | rex{!) ,-gxi{?) X,
z,,, | = -Tr{d) , I, , 0O z,
i
£..1 -r{d , O , 0 £,
Tk (1) + sx{P) ®
+ TI_ vitl + 1 ola (9.11)
I 0
and

yl(:i) = [ r(i) , 0, 01 X, . (9.12)

Therefore, provided only that T, Kfi), Kéi), and Kgi), where

i € I, are such that all the eigenvalues of the closed-loop
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sub-plant matrix in equation (9.11) 1lie in the open unit

disec D7,
lim Az, = lim {z ,, - z,} =0 (9.13)
k=0 k=ro0

and therefore

1im e{*) =0 (9.14)

k=

so that set-point tracking for the subset Y, occurs

simultaneously with disturbance rejection.

Such disturbance-rejection properties are illustrated by the
simulation results shown in Figs 9.1 and 9.2 for Structure 1l
(Example in Chapter 6) and in Figs 9.3 and 9.4 for Structure 2
(Example in Chapter 6). In these simulations, the plant is the
two—input/three—output linear F100 engine model obtained at
Intermediate power condition and the digital self-selecting
controllers are designed for both structures and tuned as

before. The disturbance vector is described by

d(j) =0 , jeitnL,25], j=2, (9.15)

where d(j) is the jth element of d € R®® and d(2) is shown in
Figs 9.1 and 9.3. This choice is made to simulate the
horsepower extraction. These results indicate the excellent
disturbance-rejection and limit—-tracking behaviour of the plant

under the action of unknown disturbances.
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9.2.2 Robustness in the face of plant variations

The robustness to plant variations of digital self-selecting
PID controllers can now be assessed. Such self—-selecting
controllers are synthesised wusing Algorithm 5.1. It is
recalled that a key concept of this algorithm is to discover in
the set of feasible inputs U (0) an extreme ray uniquely
represented by m-1 (m is the number of inputs) hyperplanes and
to limit the region of limit-tracking inputs on a corresponding
line (Chapter 5). Then, even though plant wvariations occur,
there exists a 1limit-tracking input on this 1line for any
set-point command as long as the intersection of these m-1
hyperplanes continues to be an extreme ray. Therefore, for
each separate controller, the design equations (6.67), (6.68),
and (6.69) for the proportional, integral, and derivative

controller matrices Kgi), Kéi), and Kéi) are accordingly

re—expressed in the forms

k{1 = g (m)~ D (mnd) (9.16)

kK{P) = g{P) (o)1), (9.17)
and

k(M = gD (T) Al (math | (9.18)

Here, Hgi)(T), Géi)(O), and Agi)(T) are, respectively, the
step—response, steady—-state transfer—function, and decoupling

matrices of the nominal sub—-plant. It is then evident from
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equations (6.67), (6.68), and (6.69) that z{}) =2z, v 2, U Z,

is now the set of closed—loop characteristic roots, where

z{}) =(zec: |21 -1 _-TA+ O(T?) | =0}, (9.19)

e

N
~~
[
s
[}

{z €C

| 21 -1+ Tzsgi>(0)sgi>(0)‘lz(i)

+0(13) | =0}, (9.20)

N
~
| ol
~r
0

{zec: | zi_ +0(T) | =0}, (9.21)

and Ggi)(O) is the steady-state transfer—function matrix of the
actual sub—plant. It is clear that the separate closed-loop
tracking system will remain asymptotically stable, and that
set-point tracking for the subset ¥, will consequently occur in
the sense of equation (6.33), provided that zéi) c D,
Therefore, this indicates that the robustness theorem
(Theorem 1l: Porter and Khaki-Sedigh (1989) (Appendix 7)) can
be wutilised to assess the robustness of each separate

closed-loop system.

Based on these results, the following theorem is obtained for
the robustness properties of the separate set—point tracking
PID controllers which are incorporated in a self-selecting
controller. In this robustness theorem, it is necessary to
distinguish between the plant for which a controller is
designed — ie the nominal plant (denoted by subscript ) - and
the plant to which a controller is applied - ie the actual

plant (denoted by subseript ).
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Theorem 9.1

Consider any digital self-selecting PI/PID controller with

controlled subsets ¥,, i € I of plant outputs in the form

Y, = {yg; s--0» Vs __,* Ve )
s s e e e 4 (9.22)
Yr = {ys 9> ysm-l, ytr} 4

where r = p-m+l, the index set of all the control loops is I, =
{1,2,...,r}, the index set I = {1,2,...,p}, 1* = {8,5--98,_,}

and I\I* = {t ,...,t_}.

Assume that the steady-state transfer—function matrix, € of

the actual plant is such that

(i) the m-1 row vectors of Ga (= Ga(O)) corresponding to the
index set I" represent an extreme ray in the set U.(0) of

feasible inputs of the actual plant,

(ii) every one of the r row vectors of G, corresponding to the
index set I\I" is 1linearly independent of all the row

vectors corresponding to I”.

Then for every separate set-point tracking PI/PID controller
(which controls ¥,, i € I_ and is incorporated in the

self-selecting controller) with integral post-multiplier of the

form
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2 = o) 1 (o¢1) e r*) (9.23)
and any plant perturbation such that
ugi) € ct (j = 1,2,...,m) (9.24)

where {ufi),ugi),...,uéi)} is the spectrum of the perturbation

matrix

M =gt (o)ef{t)(0) ! e rx" (9.25)

there exists a sampling period T € R* such that set—point

tracking for the subset ¥, occurs for all T € (0,T71.

Next, Theorem 9.1 is used in an illustrative example. In case
the nominal and actual plant are the linear F100 engine model
obtained at Intermediate power condition (Power lever angle =
83 deg), the set of feasible inputs U (0) is shown in Fig 6.2.
For the obtained Structure 1 (Example in Chapter 6), the
excellent limit—tracking and switching behaviour of the F100
engine under the action of an error—actuated controller tuned
such that T = 0.05 sec, A{!)(o.05)n¢!) = diag{0.04, 0.1},
at2)(o.05)n(?) = diag{0.04, 0.02}, z(}) = =(2) = s0.01,, and
atl) = 4(2) = 0.00051, is shown in Figs 6.6 and 6.7, where the
loops show that P7(yz) and FTIT(ya) are controlled in turn,
whilst N (y,) is permanently controlled. For the Structure 2

(Example in Chapter 6), the excellent limit—-tracking and
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switching behaviour of an error—-actuated controller tuned such
that T = 0.05 sec, A(1)(0.05)n(!) = diag{0.1, 0.04},
A(2)(0.05)n¢?) = diag{0.l, 0.02}, =f) = =(2) = 50.01,, and
a{!) = A{2) = 0.0005I, is shown in Figs 6.8 and 6.9, where the
loops show that N,(y,) and FTIT(y,) are controlled in turn,

whilst P7(y2) is permanently controlled.

In order to examine the robustness of these controllers, they
are now applied to another linear F100 engine model obtained at
the different power condition (Power lever angle = 67 deg).
The steady-state transfer—function matrices of the nominal

plant and the actual plant are given in the forms

0.37904 1238.8
G, =G (0) = 0.15944e-2 <-12.168 (9.26)
0.90309%e-1 210.94
and
0.40780 1220.2
G, = G,(0) = | 0.24994e-2 -7.8017 | . (9.27)

0.95167e~1 72.565

The input space for the actual plant is shown in Fig 9.5. It
is clear from Fig 6.2 for the nominal plant and Fig 9.5 that
the conditions (i) and (ii) of Theorem 9.1 are satisfied and
therefore that the robustness assessment using perturbation
matrices for the separate set—point tracking controllers of
either Structure 1 or Structure 2 is effective. For

Structure 1, the spectra of the perturbation matrices are
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(it p{Vy = (1.1317, 0.8359) (9.28)

(u{?, p{?’} = {1.0808, 2.5082} (9.29)

and therefore the condition (9.24) of Theorem 9.1 is satisfied.

For Structure 2, the spectra of the perturbation matrices are

(uf, pft?} = (2.5082, 1.0808} (9.30)
(u{?), {2} = {1.2167, 0.5291} (9.31)

and therefore the condition (9.24) of Theorem 9.1 is satisfied.
Thus, by Theorem 9.1, the separate set—point tracking PID
controllers incorporated in the digital self-selecting
controller based upon either Structure 1 or Structure 2 can

cope with such plant variations.

Now, the robustness of complete closed-loop systems can be
demonstrated in time—domain simulation. The limit—tracking and
switching behaviour of the F100 engine (the actual plant) under
the action of such digital self-selecting controllers designed
for the nominal plant and tuned as before is shown in Figs 9.6
and 9.7 for Structure l and din PFigs 9.8 and 9.9 for
Structure 2. The digital self-selecting PID controller is
robust in the face of plant variations in the sense that the
separate set—-point tracking controllers and the integrated
self-selecting controller remain asymptotically stable and that

only minimal performance degradation has occurred.
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9.3 Robustness of digital supervisory self-selecing controllers

The robustness of digital supervisory self-selecting
controllers (Chapter 7) can now be investigated. The
controller operations of Normal and Loop—excluded modes are in
principle the same since the lowest—wins strategies have
authority to decide the controlled subsets at each time instant.
Therefore, in case the controller matrices of separate
set-point tracking controllers are designed by the methodology
described in Chapter 6, the robustness assessment of both
control modes can be effected by Theorem 9.1. Furthermore,
since the controller operation of Loop-fixed mode is the same
as that of the tunable digital set—point tracking controller,
the robustness theorem (Theorem 1: Porter and Khaki-Sedigh

(1989) (Appendix 7)) is applicable.

Next, the choice of controller parameters of the supervisory
part is discussed in the context of robustness. It is
considered that the initial settling time T (Definition 7.8)
does not affect crucially the stability of the complete
closed-loop system although it affects the timing at which
Tracking or Correct/Incorrect loop assessment begins.
Furthermore, it is considered that a too short observation time
T, (Definition 7.8) might give an incorrect assessment in the
assessment blocks. Therefore the robustness to the choice of
T, needs to be studied. 1In addition, the effects of the choice
of a (0 ¢ &« ¢ 1) and 8 (B > 0) need to be studied. In the

following simulation studies, the controller gains, the

controller switching logic, and the initial settling time T
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are chosen the same as in the example in Chapter 7. The effect
of T is shown in PFigs 9.10 and 9.11, where T, = 0.5 sec, a =
0.5, and 8 = 0.5. The first tracking assessment at 3.5 sec
(T,+2T_ ) in Normal mode is °’Non convergent’, Loop—fixed mode
(2£=2) begins, and Correct/Incorrect loop assessment at 6.5 sec
(T8+T°+3.5) is *Correct loop?. After that, the same assessment
continues at 7.0 8ec, 7.5 seC, ... Therefore, perfect

dynamical limit tracking has been achieved.

The effect of a is shown in Figs 9.12 and 9.13, where T = 5.0
sec, « = 0.9, and 8 = 0.5. In Normal mode, the first Tracking
assessment at 12.5 sec (TS+T°) is generously ’Convergent’
because of a large a. However, the second Tracking assessment
at 17.5 sec (T _+12.5) is ’Non convergent?, and Loop-fixed mode
(2,=1) begins. Since Correct/Incorrect loop assessment at 25
sec (T8+T°+17.5) is ‘’Incorrect loop’, Loop-fixed mode (2,=2)
begins. And finally, Correct/Incorrect loop assessment at 30
sec (T +25) is ’Correct loop?, so that perfect dynamical limit

tracking has been achieved.

The effect of B is shown in Figs 9.14 and 9.15 for 8 = 0.1, and
Figs 9.16 and 9.17 for B8 = 0.9. It is evident from these
figures that these responses are the same as the responses of
the example in Chapter 7 and therefore that perfect dynamical
limit tracking has been achieved independently of the value

of 8.
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9.4 Conclusion

In this chapter, the robustness properties of limit-tracking
systems incorporating digital self-selecting controllers or
digital supervisory self-selecting controllers have been
assessed. It has been shown that there always exists at least
one limit—-tracking input (in the steady state) in the presence
of unknown disturbances, that set—point tracking for separate
subsets of plant outputs occurs with disturbance rejection, and
therefore that 1limit tracking for the complete plant occurs
with disturbance rejection. Time—-domain simulation results

have demonstrated such properties.

Next, by considering the conditions under which limit-tracking
is possible in the face of plant variations, a robustness
theorem (Theorem 9.1) has been constructed so as to assess the
robustness properties of the separate set-point tracking
controllers which are incorporated in the self-selecting
controllers. Illustrative examples together with time-domain
simulation results have demonstrated the effectiveness of the

theorem and the robustness of self-selecting controllers.

Then, the robustness properties of supervisory self-selecting
controllers have been studied. It has been shown that Theorem
9.1 is applicable to Normal and Loop-excluded modes, and that
Theorem 1 (Porter and Khaki-Sedigh (1989) (Appendix 7)) is
applicable to Loop—fixed mode. In order to investigate the
effects of the controller parameters of the supervisory part,
time—domain simulation results have been presented. It has

been shown that the supervisory self-selecting controllers are
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robust in the sense that dynamical 1limit tracking can be
achieved in the presence of variations of controller

parameters.

It is noted that, although the stability of complete
self-selecting control systems cannot be assessed by Theorem
9.1 in the case of non-supervisory self-selecting controllers,
the present analysis and simulation results together with
application examples (Jones et al (1988), (1990)) show the
implicit robustness of such control systems. In case such
implicit robustness is not enough to guarantee the stability of
complete self—-selecting control systems, supervisory

self-selecting controllers can be applied.
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CHAPTER 10

DESIGN OF DIGITAL SELF—SELECTING CONTROLLERS
FOR F100 GAS—TURBINE ENGINE
10.1 Introduction

The controller design methodologies discussed in Parts II to IV
are concerned with linear multivariable plants. However, most
physical plants have more or less nonlinear characteristics.
It is accordingly necessary to verify that these controllers
can function for complex nonlinear plants. Therefore, in this
chapter, a digital self-selecting controller (Chapter 6) is
designed for a nonlinear F100 engine model (Appendix 4) and the
adaptability of the controller to nonlinear complex

multivariable plants is demonstrated.

10.2 Controller design

In order to compare the obtained results with those of the
example in Chapter 6, it is convenient to choose a design point
at Sea Level Static (SLS)/Intermediate power condition. The

two manipulated inputs chosen are u main burner fuel flow

13

(lb/hr) and u nozzle jet area (ft?). The five controlled

2:
outputs chosen are y, (N, ): fan speed (rpm), y,(N,):
compressor speed (rpm), y,(P;): compressor discharge pressure
(psia), y,(P,): augmentor pressure (psia), and y.(FTIT):

fan-turbine inlet temperature (°R). The obtained open—loop

step responses of the F100 engine at SLS/Intermediate are shown
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in Figs 10.1 and 10.2. The steady—state transfer—function

matrix is

2.52760e-1 ,  1451.03
1.35074e-1 , =7.04544

G = G(0) = | 2.22808e~2 , =4.56090 € R5%2,  (10.1)
2.0815le-3 , =—7.70092
1.46573e~2 , 2.96426

so that it is clear from Theorem 4.5 that G € Class I.
Therefore, in order to apply Algorithm 5.1, the set of feasible
inputs U, (0) (Definition 4,2) is shown in Fig 4.5, where
g}1»---18; are the row vectors of G. Then, it is evident from
Fig 4.5 that both N, and P, represent extreme rays of U_(0),
that both extreme rays have unique representations, and
therefore that self-selecting controllers can be synthesised
based on either N, or P, as the permanently controlled output.
However, since the structure based on P, provided the better
overshooting characteristics in the examples in Chapter 6, this
structure is chosen. Therefore, the controlled subsets of

plant outputs are

Y, =(p, , N} ]

¥, = (B, , N,} .
} . (10.2)
Y, = {P, , P,}

Y, = (P, , FTIT} |

7 ’
It is assumed that the sub-plant step-response matrices H(1)(t)
€ R?=2 (i =1,2,3,4) and the sub-plant steady-state

transfer—function matrices G{%)(0) € R?%**%2 (i = 1,2,3,4)
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correspond to these subsets Y, (i = 1,2,3,4). The
corresponding minimum singular values of the sub-plant
step-response matrices (onin[H(i)(t)] (i = 1,2,3,4)) are
obtained from Figs 10.1 and 10.2 and their plots are shown in
Figs 10.3 to 10.6. It is considered from these figures that
none of the anin[H(i)(t)] (i = 1,2,3,4) vanishes and therefore
that all sub-plants corresponding to Y, (i = 1,2,3,4) have

minimum-phase characteristics (Porter and Jones (1985c)).

Furthermore, these figures indicate that the G(1)(o0)

(i 1,2,3,4) are well—-conditioned since onin[H(i)(+w)]

(i 1,2,3,4) are not small.

The sampling period is chosen as 0.05 seconds which reflects
both the required speed of response and the fact that the
o, (H1)(0.05)) (i = 1,2,3,4) are not small so that the
H(i)(0.0S) are well-conditioned, where the H(i)(0.0S) are

sub-matrices of H(0.05) obtained from Figs 10.1 to 10.5 and

0.428846e-3 , 2.86270
0.406083e-3 , 0.524400e-1
H(0.05) = 0.151410e~-3 , -0.148817e-2 |, (10.3)
0.400079e~5 , —-0.598165
0.169012e-4 , —0.163060e-2

The self-selecting controller is governed on the discrete-—time

set T, = {0,T,2T,...,kT,...} by the equations

J(kT) = {j : e, (kT) = min e, (kT)} , (10.4)
3 1€1_ i
2, = 2(kT) € J(kT) C I_, (10.5)
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and

= (2,) - 2(2.)
u, u, _, + TK1 x (ek ek_l) + T K2 ke, _,

2
+ K{*) (e, - 2e,_, + e, ;) . (10.6)

Here, the index set of all the control loops is I_ = {1,2,3,4},
the index set of lowest—errors is J(kT), the loop index of the
actually selected loop is £,, the sub—error vector is e, =
eﬁgk), and the input vector is u, = u(kT) € R®. It is noted
that the elements of the sub-error vectors which are used in
the lowest—-wins strategy equation (10.4) and in the control-law

equation (10.6) have been scaled so that the steady—-state gains

of the open—-loop plant for the fuel flow are equal (Chapter 6).

10.3 Nonlinear simulation

The excellent limit—tracking behaviour of the F100 engine at
SLS/Intermediate power condition under the action of the
resulting digital self-selecting controller tuned such that
A(Y(0.05)n¢!? = diag{0.2, 0.01}, A¢?)(0.05)n¢%) = diag{o0.2,
0.05}, A(3)(0.05)n¢3) = diag{0.2, 0.1}, A(*)(0.05)H¢%®) =
diag{0.2, 0.05}, ={1) =,..= 2(%) = s50.01,, and A(!)(0.05)a(})
=...= A($)(0.05)a(%) = 0.0I, dis shown in Figs 10.7 and 10.8,
and FTIT are controlled

where the loops show that N,, N P

2°? 39

in turn whilst P, is permanently controlled.

Next, in order to verify the effectiveness of this controller
in the face of a large thrust change, a fast acceleration from

80% N, to Intermediate is carried out. The resulting
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closed—loop responses are shown in Figs 10.9 and 10.10, where
the engine initially accelerates on the open-loop accelerating
schedule and the self-selecting control begins operation at 1.3
seconds. It is clear from these figures that, although the
nozzle area hits the minimum position at 1.3 seconds, the

limit-tracking performance at Intermediate is satisfactory.

Finally, in order to examine the robustness of the controller
(which is designed for Intermediate power condition - ie the
nominal plant), the controller is applied to the different
power condition (80% N,, which corresponds to Power lever angle
= 40 deg) - ie the actual plant. The steady—state
transfer-function matrix of the actual plant is given in the

form

1.43313 811.014

6.81174e-1 ,  142.496

6, = G,(0) = | 3.74045e-2 ,  4.90223 € R3*%, (10.7)
2.28222e-3 , -2.29121
4.45136e-2 , —10.3136

The input space for the actual plant is shown in Fig 10.11. It
is clear from Fig 4.5 for the nominal plant and Fig 10.11 that
the conditions (i) and (ii) of Theorem 9.1 are satisfied and
therefore that the robustness assessment using perturbation
matrices for the separate set—point tracking controllers is

effective. The spectra of the perturbation matrices are

(u{t, uf¥)} = (0.3445, 3.0007}) (10.8)

{u{?), p{2)} = {0.3440, 5.3464) (10.9)
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(n3), ui3)} = {0.3418, 1.7490) (10.10)

(uf®), u{®} = {0.2351, 2.8030} (10.11)
and therefore the condition (9.23) of Theorem 9.1 is satisfied.
Thus, by Theorem 9.1, the separate set-point tracking PID
controllers incorporated in the digital self-selecting
controller can cope with such plant variations. The robustness
of the complete closed-loop system can be verified in
time~domain simulation. Therefore, a fast deceleration from
Intermediate to 80% N, is carried out, where the controller is
tuned as before. The resulting closed—loop responses are shown
in Figs 10.12 and 10.13, where the open-loop decelerating
schedule decides the fuel flow until 1.2 seconds. It is clear
from these figures that, although the nozzle area hits the
minimum position until 1.5 seconds, the digital self-selecting
controller is robust in the face of plant variations in the
sense that the separate set—point tracking controllers and the
integrated self-selecting controller remain asymptotically
stable and that only minimal performance degradation has

occurred.

10.4 Conclusions

In this design example, a self—-selecting controller has been
designed for a nonlinear model of the F100 gas-turbine engine
and simulation studies have been performed. The demonstrated

excellent closed-loop performance and robustness property of
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the designed 1limit-tracking system indicates that the
self-selecting controllers can readily be designed for complex
multivariable plants and that the adaptability of set-point
tracking controllers - which wunderlie the self-selecting

controllers — is very high.

In the case of highly nonlinear plants, a few controllers are
designed for corresponding separate operating points. Then, it
is important to check the convex structure of U, (0) (Definition
4.2) at such operating points before designing self-selecting
controllers. If a particular set of plant outputs represents
an extreme ray at all the operating points, then the synthesis
of self-selecting controllers can be based upon such a set and
therefore the effort in controller design and implementation

can be reduced.
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CHAPTER 11

CONCLUSIONS AND RECOMMENDATIONS

11.1 Conclusions

Industrial plants are becoming more complicated than before so
as to satisfy many consistent or inconsistent requirements such
as performance, versatility, safety, environmental
friendliness, etc. Most of such plants are inevitably MIMO
multivariable, high order, possessing some uncertainties, and
therefore their detailed mathematical models in either
state-space or transfer—-function matrix form are difficult to
obtain. Furthermore, plants might have unmeasurable controlled
outputs or have more controlled outputs than manipulated
inputs. Therefore, the need for a broad range of methodologies
- that are free from a heavy reliance upon accurate plant
models — is clearly felt for the design of tracking systems

incorporating various classes of multivariable plants.

Set-point tracking systems — which incorporate error-actuated
so-called ’low-gain’ controllers and multivariable plants with
measurable controlled outputs whose numbers do not exceed the
numbers of manipulated inputs - were developed by Porter and
co~workers (Porter and Jones (1984a), (1985a)). Such tracking
systems inherit the structure of SISO classical robust
proportional-integral-derivative control systems, achieve with
initial non-interaction the practical decoupling of MIMO plants

and excellent transient performance in the available range of
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tuning, and exhibit robustness in the face of uncertainties
such as plant variations, disturbances, etc (Khaki-Sedigh
(1988), Porter and Khaki-Sedigh (1989)). Therefore, the
evolving methodologies for the design of tracking systems have
been further developed in this thesis so as to incorporate
various classes of plants with measurable/unmeasurable outputs
or with more outputs than inputs whilst keeping these desirable

properties.

For plants with measurable outputs, the methodology is
applicable provided that the asymptotically stable plants
satisfy the fundamental condition of functional controllability
for the preservation of stabilisability in the presence of
integral action (Porter and Power (1970), Power and Porter
(1970)), and that input-output decoupling is achievable (Falb
and Wolovich (1967)). The designed tracking systems
incorporate error-actuated digital PID controllers in which the
controller matrices can be directly obtained from open-loop
tests performed on the plants (Appendix 1). It has been shown
that the resulting tracking systems exhibit both set-point

tracking and minimal interaction.

For plants with unmeasurable outputs, the developed methodology
is also applicable provided that the asymptotically stable
plants satisfy the fundamental condition of functional
controllability for the preservation of stabilisability in the
presence of integral action (Porter and Power (1970), Power and
Porter (1970)), and that input—output decoupling is achievable

(Falb and Wolovich (1967)). The designed tracking systems
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incorporate error—-actuated digital PID controllers and
associated pre-filters in which both the controller and
pre—filter matrices can be directly obtained from open-loop
tests performed on the plants (Appendix 1). However, since the
proportional and derivative controller matrices involve the
inverse of the step-response matrix for unmeasurable outputs,
such unmeasurable outputs have to be measurable in the
noff-line" controller design stages - this assumption is by no
means impractical (Chapter 3). Under these assumptions, it has
been shown that the resulting tracking systems exhibit both
set—-point tracking and initial non-interaction for unmeasurable
outputs together with minimal transient interaction among

unmeasurable/measurable outputs.

For plants with more outputs than inputs, rigorous theoretical
foundations have been constructed for the design of tracking
systems incorporating such plants, self-selecting controllers
(which themselves consist of a number of set—-point tracking
controllers), and lowest—wins and/or highest—-wins strategies.
Such foundations include a characterisation of general tracking
systems (ie undertracking and overtracking which are expressed
by sets of inequalities), a <classification of 1linear
mpultivariable plants into Class I and Class II plants, the
concept of limit tracking, a feasibility—-assessment procedure
for the design of limit—-tracking systems, and an
order-reduction technique which decides the minimum numbers of
different subsets of plant outputs to be controlled by
corresponding set-point tracking controllers. It has been

shown in the case of m-input/p-output plants and lowest—wins
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strategies that, provided the plant belongs to Class I, not
only undertracking but also limit tracking is possible for any
set—-point command, that p-m+l subsets are the minimum, and that
only steady-state transfer—function matrices of the plants are
required in the feasibility assessment and the order reduction.
Next, the methodology for the design of tracking systems has
been presented based upon this order-reduction technique and
lowest-wins strategies. This methodology is applicable to the
asymptotically stable Class I plants provided that the set
U.(0) of feasible inputs has at least one extreme ray uniquely
represented by m—1 hyperplanes, that all the determined
sub-plants satisfy the fundamental condition of functional
controllability for the preservation of stabilisability in the
presence of integral action (Porter and Power (1970), Power and
Porter (1970)), and that input-output decoupling is achievable
for all the sub—plants (Falb and Wolovich (1967)). The
designed tracking systems incorporate error—actuated digital
self-selecting PID controllers whose controller matrices can be
directly obtained from open—loop tests performed on the plants
(Appendix 1). It has been shown that the resulting tracking
systems exhibit excellent limit—tracking and controller
switching behaviour. However, it has been shown that the
stability of separate closed-loop systems is not enough to
guarantee the stability of complete closed-loop systems
incorporating self-selecting controllers and that peculiarities
such as limit—cycle oscillations might occur (Appendix 6).
Therefore, theoretical foundations for the dynamical analysis

of self-selecting control systems have been built and the
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methodology for the design of supervisory self-selecting
controllers has been developed in order to enhance closed—loop
stability. It has been shown that enhanced stability can be
achieved using such supervisory controllers for the case in
which the non-supervisory controller causes limit—cycle

oscillations.

In practice, the controllers are often exposed to uncertainties
such as unknown disturbances, plant variations, etc.
Therefore, the robustness of tracking systems has been
assessed. It has been shown under the action of unknown
constant disturbances that the tunable digital set-point
tracking PID or PID/Pre—-filter controllers can reject such
disturbances and achieve set—point tracking for measurable
outputs, that the tunable digital set—point tracking
PID/Pre—filter controllers can neither reject such disturbances
nor achieve set-point tracking for unmeasurable outputs, and
that the digital self-selecting PID controllers can reject such
disturbances and achieve limit tracking. The admissible plant
perturbations that can be tolerated by digital controllers have
been characterised in terms of the steady—state
transfer—function matrices of the nominal and actual plants
using the robustness theorems - Theorem 1: Porter and
Khaki-Sedigh (1989) (Appendix 7) and Theorem 9.1. It has been
shown in the face of plant admissible variations that
closed-loop digital tracking systems can remain stable and
achieve set—point or limit tracking for measurable outputs but
that set—point tracking'for unmeasurable outputs is no longer

possible in the case of set-point tracking PID/Pre-filter
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controllers. Furthermore, the effect of the controller
parameters of supervisory self-selecting controllers on
tracking performance has also been studied. It has been shown
that the supervisory self-selecting controllers can achieve
dynamical 1limit tracking for a wide range of choice of

controller parameters.

The adaptability and effectiveness of tracking systems for
complex nonlinear plants have been shown by designing a digital
self-selecting controller for a nonlinear model of a

gas—turbine engine.

It can accordingly be concluded that the requirements for the
design of tracking systems outlined in Section 1.3 have been
achieved and that the design of tracking systems incorporating
multivariable plants with measurable/unmeasurable outputs or
with more outputs than inputs has been successfully completed.
Illustrative examples have demonstrated how to apply these
design methodologies and verified the effectiveness of the

methodologies.

11.2 Recommendations

The controller matrices of digital set—point tracking
controllers are determined by directly measurable input-output
data of plants - ie step—response matrices and steady-state
transfer—function matrices. Therefore, tunable digital
set—point tracking controllers have been rendered adaptive
using on-line recursive least square identifiers (for example,

Jones and Porter (1987)). It has been reported that the
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controller matrices of the resulting adaptive digital set-point
tracking controllers are not dependent on the individual
elements of the identified ARMA models of the plants but are
obtained from a unique relationship involving the elements of
the ARMA models and therefore that such adaptive controllers
are very robust in the face of gross underparameterisation
(Porter and Khaki-Sedigh (1988)). Since self-selecting
controllers consist of  numbers of set—point tracking
controllers, it is possible and important to render the
self-selecting controllers adaptive using recursive

identifiers.

In the implementation of both set-point tracking and
self-selecting controllers for multivariable plants, it is
assumed that the positive diagonal "tuning" matrices in the
control-law design equations of such controllers are chosen by
the designer. In fact, experienced control engineers have
seldom met with difficulties in tuning these controllers.
However, some intelligent technique such as real-time expert
systems could be introduced in order to enhance tuning

capabilities (Porter (1988)).

In the analysis of tracking systems and the design of
self-selecting controllers, only the lowest-wins strategies
have been extensively investigated. However, it is also
important to consider self-selecting controllers based upon
highest-wins strategies or the combination of 1lowest— and

highest-wins strategies. Furthermore, it is noted that the

controller switching itself is a subject of research and
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therefore that other approaches can be used in the controller
switching of self-selecting controllers (for example, Hanus et

al (1987)).

Finally, in the case of actuator failures in set—point tracking
systems, the numbers of 1live inputs become less than the
numbers of controlled outputs. Therefore, the methodology for
the design of limit-tracking systems might be applied to the
failure accommodation of set-point tracking systems in the face

of such actuator failures.



(9
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APPENDIX 1
MULTIVARIABLE REACTION CURVE

The Multivariable Reaction Curve technique is an "off-line"
open—loop test procedure in which a known step change is made
in each of the manipulated input variables of an asymptotically

stable plant, separately, in turn.

The wuse of the Multivariable Reaction Curve technique is

outlined by the following procedure:

Step 1: The plant must be in a steady-state condition, when a
known step change, u,, (i € {1,2,...,m}) is made in one of the
manipulated input variables and allowed to act for a chosen
period of time. The plant must then again be brought back to a
steady-state condition. During test, traces of the output are
taken in consonance with the time—domain solution of vector
differential equation of the form (2.1) and (2.2) (Chapter 2)

such that

t
y;(t) = (I) Ced(t-T)p u,dr
= CA™ l(edt - I)bgu, , (Al.1)
where

B=(b,,by,...,b ] 5 b, €R**! (i=1,2,...,m) .
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Step 2: The procedure of step 1 is repeated with a known

step—change now made in another input variable.

Step 3: » Step m: Step 2 is repeated until response curves for

all m input variables have been determined.

Then, after tests 1,2,...,m have been carried out, the
step—response matrix H(t) can be determined according to the

formula

H(t) = [y,(t),y,(t),...,y,(t)1[diag {u,,u,,...,u_}1"1. (A1.2)

In the case of the set—point tracking PID controllers of Part
II and the self-selecting controllers of Part III, this formula
is used in determining H(T) and H(w) where H(w) is obtained

using the steady—-state conditions.
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APPENDPIX 2
PROOFS OF THEOREMS AND PROPOSITIONS

Throughout the proofs, (1] means Rockafellar (1970).

(Proof of Proposition 4.1)

Up(v) = {u : :: u < :: }
gl v

Since g}u £ vy (i=1,...,p) represents a closed halfspace in U,

U.(v) is the intersection of p halfspaces. This means that

U.(v) is a polyhedral set and closed [1].

Let u, € U (v), u, € Ug(v). Then Gu, < v and Gu, < V.

2

Therefore, for A € [0,1],

G{Au, + (1-A)u,} = GAu, + G(1-A)u,

AGu, + (1-A)Gu,

€ Av + (1-A)v
= v
This means that
Aul + (l-?\)uz € Ur(v).

S0, Ug(v) is convex.



303

Since y; < v, (i=l,...,p) or efy vy (i=t,...,p), where

o

(i

(1]
[™
1
OO

(= BN

represents a closed halfspace in ¥, Y,(v) is the intersection
of p halfspaces. This means that Y,(v) is a polyhedral set and

closed.

Let y, € Y,(v), y, € Y, (v).

Then, for A € [0,1],

Ay, + (1-M)y, < Av + (1-A)v = v.

1

This means that

Ay, + (1-M)y, € Y, (v).

1

So, Ya(v) is convex.

For u, €U, u, €U, let y, = Gul, Y, = Gu,.

2

Then, for A € R,

(1-M)y, + Ay, (1-A)Gu, + AGu,

G{(1-A)u, + Au,)}
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Since (l1-A)u, + Auz € U, it follows that (l-h)y1 +y, € Y.

1

This means that Y,  is an affine set. So, Y, is closed and
convex. Furthermore, since 0 = GO € Y, ie Y, contains the

origin, Y, is a subspace (Theorem 1.1[1]).

Now

G (Ug(v)) {yeyY:y Gu, u€dUy(v)}

¥, n YA(v)

Yr(v).

Since 6 is a linear transformation from R® to RP and U, (v) is a
closed polyhedral convex set in U = R®, so also is G (Ur(v))

{Theorem 19.3[1]). QED

(Proof of Proposition 4.2)

1(i) implies 1(dii):

Suppose that U_(v) = ¢. If Y (v) = @, there exists y € Y (v)
and u € U (v) such that y = Gu £ v. This means that U.(v) =# )]

and contradicts the assumption. So, Yr(v) = ¢,
1(ii) implies 1(i):

Suppose that Y_(v) = ¢. If U (v) = ®, there exists y € Y (v)
and u € U (v) such that y = Gu < v. This means that Y .(v) # 1)

and contradicts the assumption. So, Ur(v) = @.
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2:

2 is clear from 1. QED

(Proof of Proposition 4.3)

Since GO =0 £ v for v 20, 0 € Ur(v) and 0 € Yr(v). This

proves the statement. QED

(Proof of Theorem 4.1)
1(i) implies 1(ii):

Suppose that 1(ii) does not hold, ie there exists a hyperplane
separating Y,(0) and Y, properly. By Theorem 11.3[1], such a
hyperplane exists if and only if ri YA(O) and ri Y, have no

point in common, ie
ri Y,(0) nri ¥, = @,

where ri + is the relative interior of the set +. Since ¥, is
an affine set, ri Y, =Y. And YA(v) Cri YA(O) for v ¢ 0.

So, Y (v) = Ya(v) ny, = @ for v < 0.
1(ii) implies 1(i):

There exists y € ri YA(O) nri¥y, such that y = Gu. Clearly,
y € rb Y,(0) and y < 0, where rb « is the relative boundary of

the set -.

For v ¢ 0, there wexists A > 0 such that Ay < v. Then,

Ay € Y,(v) n ¥, = Y (v). So, Y (v) # @ for v < 0.
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2(i) implies 2(ii):

As a negative statement of 1, the statement that 3v < 0,
Y. (v) = ¢ is equivalent to the one that there exists a
hyperplane separating Y,(0) and Y, properly. So, 2(i) is

sufficient for 2(ii).

2(ii) implies 2(i):

ri Y,(0)nri ¥, =ri Y,(0)NY, =¢
Since

YA(v) Cri YA(O) for v < 0,

Y (v) =Y, (V) nNY, = @ for v < 0.
QED
(Proof of Proposition 4.4)

If there exists a hyperplane separating Y,(0) and Y, properly,
ri ¥, (0) nri Y, =ri Y,(0) nY, =¢.

Since 0 € Y,(0) N Y , Y, (0) N ¥, = Y,(0) nri ¥, = o.
Both Y,(0) and Y, are polyhedral convex sets. By Theorem

20.2(1], such a hyperplane contains Y, and does not contain

Y,(0). QED
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(Proof of Theorem 4.2)

1(i) implies 1(ii):

By Definitiom 4.3.1, Ug(v) = o, Y (v) = ¢ for v ¢ 0 and by
Proposition 4.3,U_ (v) # o, Y. (v) # ¢ for v 2 0. For v { 0 and
v 2 0, there exist v’ < 0 and v" 2 0 such that v = v/ + v",
Then for u € U (v’) # O, Gu L v SV + V" =v,

This means that U (v) = o.

2(i) implies 2(ii):

Contraposition of 1.

3(i) implies 3(ii):

This is clear from Definition 4.3.2.

4(i) implies 4(dii):

Contraposition of 3.

QED

(Proof of Proposition 4.5)

Let ¥ = [¥,,..0,¥,17, v = [vl,...,vp]T.



308
P T
UF(v) =n {u : giu < Vi}
i=1

1f g; = 0, giu = 0 and {u : giu Svy , vy <0} =6.
This means that 3v, v, < 0, Uy (v) = @.

So, G € Class II.

Contraposition of 1.

QED

(Proof of Theorem 4.3)
Clearly by Corollary 2.5.1[1], U (0) is a convex cone.
(i) implies (ii):

Suppose that G € Class I. By Proposition 4.5, g; # 0, Vi € [1,p].

And
U (v) = {u : Gu < v} # ¢ for v ¢ 0.

This means that {u : Gu < 0} # ¢. By Theorem 22.2[1], there do

not exist non—negative real numbers A, ,...,A such that at

p’

least one of them is not zero, and
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ie for the system
§A181=0 s Ay 20 , i€ [1,p],

i=1
the only solution is A; =0, i € [1,p]. Let U; stand for
U,.(0) = {u : Gu < 0). The polar U, of U, is given in the
following (1]
U; = {u : u =1§ Ag; s Ay 20}
=1

By Corollary 14.6.1(1],

dim U, = dim U - dim Li U;

=m - dim Li U;

where the linearity space Li U; of U; is defined by using the

recession cone O*U; of U; in the form

+ o= o
0 UF n eUr
€>0

° _ (_n*t® .
Li U, = (-0'U;) n 0'U.
If 3u = 0, u € Li U,, then

_n+n® +57°
u € (-0 Ur) no'u,.
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This implies that

>

u = { (—e)xigi = i exigi s Xi’
i=1 i=1

so that

i e(h, + XA,)g, = 0.

i=1

This happens only if A, = Xi = 0, so that

Li Up = { 0}
dim Li Uy = 0
dim U, = m - dim Li U, = m.
(ii) implies (i):
Suppose that G € Class II and that g, # 0, Vi € [1,p].
U (v) ={u:Gusv}=¢ for v<O
ie

{u: Gu <0} =¢
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By Theorem 22.2[1]), there exist non—negative real numbers

Al,...,Ap, such that at least one of them is not zero and

P
L Ag, =o0.

i=1

Let Ai be one of the non-zero Ai. Then
0

v
o
-
>~
v
(=]
-

7\10310 == f A&y s Ay 0
iz,

thus.

v

g = - f M g A 0 A >0
io -1 A i ? i ’ io *
=1 i

0 0

i

1

Since g, = 0, there still exists non-zero Ai ,» i, € [1,p],
0 1
i, =4 And by the definition of 0*U; and (—O*U;),

1 o°

$= = 0 0
i3 31, ° M

A

_ — 1 _

=n{u:u=fe(7\1—7\1 )85 Ay 2 0, A, 2 0, A, > 0}.
€50 iz} o Ay 0

Since Xi, i € [1,p] are arbitrary, for an index i, of non-zero
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Ai it follows that
1

Similarly, g € (-0'U}).

This means that

g E€ELi U

dim Li U

v
—

dim UF =m - dim Li Ur

[Fa

m_l.

QED

{Proof of Proposition 4.6)

Suppose that G € Class I. Clearly, the recession cone 0+Ur(v)
of Uy(v) is U (0). By Theorem 4.3, U (0) is an m—dimensional
convex cone and does not consist of the zero vector alone.
Thus, by Theorem 8.4[1], U (v) is unbounded.

Furthermore,
dim U_(0) = dim aff U (0) =m
where aff ¢ is the affine hull of the set -.

Since 0 € U,(0), to express y € U (0) as the linear combination

of the vectors in the form
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y=Au, +...+ Au,

171

the vectors u,,...,u must be linearly independent. Then

aff U, (0) = {0, U, yeeey uil, u, €U(0), i€ [1,m].

Let dim Ur(v) = k. Then

aff U, (v)= {ags, a,5..., 3,}, a; €U (v), i€ [0,k]

= {Ajay, +...+ A a, : a; € U(v), i € [0,k], Ay teet AL = 1}

]

{hl(al—ao) +...t Ak(ak—ao) +a, : a; € UF(V), i € [0,k]}
where 234s3,4...,a, are affinely independent, ie vectors

a,—a,4...,a,~a, are linearly independent.

For x € Uy(v) C aff U (v)
x =A,(a,—a;) +...+ Ak(ak—ao) + a,.
Since G (x+y) = 6x + Gy £ 6x < v, for y € U_(0),
x ty € Ug(v)

x +y=2A(a;-a,) +...+ A (a,-a,) + a,
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= (A=A, )(a,~a,) +...+ (A,-A,)(a,~a,).
This means that y must be expressed as the linear combination
of a,-ag,...,2,~a, and that k 2 m.
But dim U = m means that k = m. QED
(Proof of Theorem 4.4)

If 6 € Class I, {u: Gu<v-4d} #¢ for Vv, vd.

If G € Class II, {u : Gu £ v — 4} = ¢ for v -4 < 0.

QED

(Proof of Theorem 4.5)

Theorem 22.1[1] states that one and only one of the following

alternatives holds:

(a) There exists u such that

Gu £ v .

(b) There exists w such that

¢Tw = 0 ,
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viw ¢ 0 .

Statement (a) exactly concerns Class I. The two systems in (a)
and (b) are dual to each other.
If 3i € [1,m], g, > O, then there exists no solution w

i

for Vv in

This means that statement (a) holds for Vv, ie G € Class I.

QED

(Proof of Theorem 5.1)
Part 1l: rank G = m
1 Vv, ext U,(v) = @:

Suppose that U,(v) contains an entire line.

Then, there exists 4 = 0 such that
{fu+Ad : A ER, u€ Ur(v)} C Ur(v) .
This means that

G (u+Ad) = Gu + AGd £ v for u € Uy(v), A ER.
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Therefore, it is required that Gd = 0. However,
rank 6 = m = dim U implies d = 0. This contradicts the
assumption. So, Ur(v) contains no lines. Furthermore, since
G € Class I, Vv, Ur(v) # ¢. It follows by Corollary 18.5.3[1]

that Vv, exit U (v) # o.
2(i) implies 2(ii):

It is shown that if u € Ur(v) fails to satisfy the definition
of limit-tracking input, u ¢ exit Up(v).

(1) k = 0: Suppose that u € U, (v) satisfies

giu < v, , ie€[1,p].

Then
P
ueEnNnNri Hi
i=1
where
H, = {u: ggu S v} .
p
Since N ri H; # ¢, by Theorem 6.5[1],
i=1
P 4
NnriH, =rin H1 = ri Ur(v) .
i=1 i=1



S0, u € rb U (v). This implies that u €& ext U (v).

(2) k 2 1: Suppose that u € U, (v) satisfies

gru<v

h]

tj i € [1,p-k]

rank G, < m ,

where

This means that

k p-k
ue (nrb Hs. yn (nNnri H, ) .
i=1 1 j=1 j

p-k
Since Nnri H +# @, by Theorem 6.5[11],
j=1 j

317
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There exists at least one non—-zero vector x € U such that
Gs x = 0.
By Proposition 4.6, G € Class I implies dim U (v) = m.

Then by Corollary 6.4.1[11,

p-k p-k
forueri NH, = int N H_ and for x € U ,
j=1 j j=1

where int + is the interior of the set -,

there exists some €, > 0 such that

Similarly, there also exists some €, > 0 such that

p-k
j:], J

Let ¢ = min (¢,, €,) > O, then for € > 0

g (u+ ex) =g;u+ egzix , i€ [1,k]
i i

=V, ie[l,k] .
1
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k
So, u+exenrbH, , i€ (1,k] .
i

i=1
k
Similarly, u —ex € nrb H, , i € [l,k] .
i=1 i
It follows that
k p-k

u+exe€ (nNnrdb H, yn (n H ) C Ur(v)
i=1 i j=l j

k p-k
u—€x € (Nnrb Hs yn (n Ht ) C Ur(v)
i=1 i j=1

u+ €x # u — €xX

e
I

1 1
> {(u + ex) + 2 (u €x) .

This implies that u € ext U.(v).

It follows by contraposition that if u € ext U (v), then
rank 6, =m , 1<s8, <p, i€ [1l,k]

and
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Therefore, u is limit-tracking input.

2(ii) implies 2(di):

Suppose that u & ext Ur(v).

There exist u,,u, € U (v), u; # u,, 0 ¢ A < 1 such that

u = (1-A)u, + Au,
gf, =v, , i€ [L,k]
i i

where 1 £ S; » tj £p
Let
T
%y
G, = - .
g

T

gsiu1 < vsi ,
T

g. u v
siz sl’

there exist ¢, , ¢, 20 such that
i i
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]
|

g. u, + € v
8 1 1i 55 ’
iell,k] .
g: uz + Gz = Vs .
i i i

1

g:i{(l - Mu, + A} =v, ,
(1 - ?\)(vsi -€, )+ A(vsi - ezi) = vsi s
(L= M) (=€, ) + Mg, ) =0, i€ (LKl .

1

This means that ¢, = ¢ =0, ie€ {1,k] and
i

i€ [1l,k],

+
]

So,

This implies that rank Gs < m and that u is not a limit-tracking

input. Part 1 QED
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Part 2: rank ¢ { m

Firstly, the proof of Proposition 5.1 is given. Then,

the proof of the Theorem follows for the case rank G < m,
{Proof of Proposition 5.1)

(i) implies (dii):

Suppose that G € Class II and vi € [1,p], Ei # 0. Then
U (v) ={u:6usv)=¢ forv<o,

ie {u s 6u<0} =¢, whereu €U = R,

By Theorem 22.2[1], there exist non-negative real numbers

AlseeesA such that at least one of them is not zero, and

p’

f A8, =0 .
i=1

By applying a similar argument to that used in the latter

part of the proof of Theorem 4.3,

dim Li U

H 0
v
—
-

dim ﬁr

dim U - dim Li ﬁ; ,

IA

q - 1 .
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Let ¢ € RP*(®-9) pha the remaining columns of G when G € RP*1

is removed. Then,

=[16,61([u
u
where u € U = R® 9. Then,

This means that ¢ € Class II.
(ii) implies (i):
Vv, EF(V) = { u:Gusv } 2@ .
Let G be defined in the same way as in the former part.

~

Since ¢ u =0 for u =0 , where u € U = R"9,

for Yu € U and G = 0,

I
2]
el

If the columns of G and the elements of u and v are

re—arranged, it is possible to obtain



324

so that u € U (v). This means that G € Class I.

Proposition 5.1 QED

(Proof of Theorem 5.1 for the case rank G < m)

Suppose that G € Class I and that rank ¢ = q < m.

By applying Proposition 5.1, G € Class I ie

Vv, ﬁr(v) = { u:Gu<sv } =@ .

By similar arguments to those used in the first part of the
proof of Theorem 5.1, ﬁr(v) contains no lines. It follows by
Corollary 18.5.3[1] that ext U,(v) = ¢. Furthermore, by

applying Theorem 5.1 to G, there exists u € ext U,(v) such that

g v
.ol g
68u= * & 0 G= . e kzq ’
;i. . &0
v
gsk Sy
gru<dv, , j € (1,p-k] ,

where



325

rank Es =q .

Let G € RP*(®"-9) pe the remaining columns of G which was

removed from G, then

rank G

I
]
]
=]
Ll
D]

rank { 6 , ¢ ] = rank G .

There exists w € R1%2(®9) gych that

2]
£

n
o

If the columns of ¢ and the elements of u and v are

re—arranged, it is possible to obtain that

@l
el
1]
12]]
el
|
@
e
o+
o
=3

i

@l
-

22
—
el

1

€
st
[E—

<t

=G u-wu -
for u €

=3

where G = [ G . E 1 .



u-wau _ _ - .
So, for u = , u € ext UF(v) s, uerunr,

so that

0
o+ H
=3
1
0q |
ot H
e
~
<

where

and

k 2 rank G .

i€ [1,k]

j € [1,p~k]

326

This means that u is a limit—tracking input in the sense of

Defintion 5.1.

Part 2 QED
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(Proof of Proposition 5.2)

1 and 2:
Let
T
%y ey
6'_" LY Y ‘_,-_-‘ LY Y
'i. . -
g v
Sp-1 S5p-1

ie€e[l,m1]

ie [1,m1]

By Theorem 5.1, there exists at least one set of points in

Ur(v) which satisfies equations (5.10) or (5.11). Therefore,

L, # ¢, i€ [1,m-1]

1

and

L =¢.

Clearly, S is the intersection of m—1 hyperplanes g§ u=v_,

i i
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i€ [l,m1]. Since L, is the set of points where a linear
function hi achieves its maximum over Ur(v), L, is a face of

Ur(v).

Since hi(v) = v, = constant on a line segment of Ly Ly is an
i

exposed face. Furthermore,

dim L = dim aff (L)

[}

dim §
=m - rank G

'_-.'1’

a half line {u+ Ad : A 20, Gu=v, 6d = 0} C U.(v), and by
the proof of Theorem 5.1, U,(v) contains no lines. This means

that L is a half line. Therefore, L is an exposed half-line

face.

In the case v, = 0, i € [1,m-1], L is an extreme ray.
i

3:

Let

2]
]
<l

il
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g v
B .1
G = L N 2 9 v= LN 2N .
.i. . e e
gt Vt
p-m+1l p-m+1l

An extreme ray corresponding to equation (5.10) is expressed in

the form

L,={u:Gu=0 , Guc< 0}
= {u : Gu =0} N U,(0)

={A, : A20}, d, =0.
An exposed half-line face corresponding to equation (5.11) is
expressed in the form
L= {u: Gu = v , Gu £ v}
= {u: 6u=v} NULv) .

Then, for Ad, € L, and u € L,

Dl

(u + hdo) = Gu

and

G (u + Ad,) = Gu + AGd,

~

v .

IN

This means that

u + Ado €L .
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Therefore, L, and L have the same direction called the extreme

0
direction. It is now evident that a line corresponding to an
exposed half-line face L is parallel to a line corresponding to

such an extreme ray L,.

42

Suppose that an exposed half-line face of U,(v) emanates from a

point u, and is expressed in the form

+Ad:A20) , d=#0 , Gd=0,
where G, E, v, and v are defined in the former part of the proof.

Clearly, a point u, is the unique vertex of L., And for A < O,

0

u, + Ad ¢ L. Therefore, for A < 0,

2]
<1

(uo + Ad) ==
or
G (uy +Ad) £ v .
However,
G (u, + Ad) = Gu, + AGd
= Gu,
=v .

This implies that
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€ (u, +Ad) £ v .

Therefore, there exits at least one index s, among

tl,tz,...,tp_m+1 such that for A < 0,

g1 (u, + Ad) £ v,

ie

T
gsm(u0 + Ad) > v,

For such index s _, if gimuo < vsm then u, € Int Hsm, where Hsm

= {u : g§ u v, }. It follows by Corollary 6.4.1[1] that for

m m

—d, there exists some ¢ > 0 such that u, + e(-d) € Hs

° o

Therefore,

g; (uy — €d) S v, for € > 0
m o

and this is a contradiction. So,
T
gt u, { v
s, 0 s
ie

T
g u, 2V .
sm [V} sm

However, since u, € L C Ur(v), g§ u, = v, .
m m
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Next, if g, 1is dependent of g_ ,...,8; s &g 1is the linear
n 1

m-1 ]

combination of Bg 202285 and such that
1 m-1

n 1 m-1
Then,
gl d= (gl +...+A,_g7 )d
] 1 m-1
= T T
Algsld +...t Am_lgsm_ld
=0 .

Therefore, for A < 0,

gt (uy, + Ad) = g% u, + gy d
m m m

Since gz is one of rows of G, this is a contradiection.
|}

g, s+++38, are independent and u, satisfies
1 n

T —_ .
gsiuo = vsi L) 1 E [l’m]
gijuo < Ve, ., j€ll,p-m] .

So,

This means that u, is 0-dimensional face ie an extreme point.

QED
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(Proof of Proposition 7.1)
Suppose that
x(03x (T)3v) = x (T)

and that there exists i € I _\I_(v) such that y,  (0) £ v, .
i i

Since i & I _(v), this means that y_ (0) > vti. Then,
i

¥j € J(0), etj(O) < eti(O) = vti - yti(O) < 0.

Since 2(0) € J(0), etn < 0. However, since xs(T) is a
(o)

steady state,
£¢0)) =
Ag 0y (TIX(T) + By o (T)v (20N =0,
Therefore,

e(2(0)) o ¢ .

This is a contradiction and implies that yti(O) < vt1 for

ie I \I_(v).
QED

(Proof of Proposition 7.2)

The asymptotic stability of each closed-loop © system
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corresponding to loop index i ensures that all the eigenvalues

of A; lie in the open unit disc D~. This means that all the

solutions of equation

det (AI_, - 4;) =0

satisfy |A| < 1, that for A = 1 (clearly, Al = 1),

det (AI_, - A;) 0,

and therefore that

rank (In+m - Ai) =n+m.
Since rank (I, - 4; , B;] 2 rank (I _, - 4;],
rank [I_, - 4, , B;] =n t+ m. Hence,

rank [I_, - A4, , By} = rank [I__ — 4]

and a steady state is determined as the unique solution x; of
the equation

(I,,. - A)x, =B v der1(v).

n+m

For i € I \I_(v), if x, satisfies

- = i
(1 A)x, = B,v(V)

n+m
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then y(i) = v(i), so that y, =v_ . This means that i € I _(v)
i

t
i
and contradicts the fact that i € I_\I_(v). So, only x,,

i € I _(v) are steady states of the system. QED

(Proof of Proposition 7.3)

Let p, = plx, , L(v)). Though p, is unknown, there exists 7 =
T(xy,L(V)) such that if p, < 7, then for every € > 0, there
exists a positive kj = kj(e,7) such that

p[x(kT;xo;v) , £L(v)] £ € for kT 2 k. T .

=]

*
1

X x"
inf - . : ¢cd)x* = v(i), i€ Ic(v),
z z

cijx* <V i eI\ (v),

This means that for kT 2 k T,

By Schwarz®’s inequality, for Vi € I_(v) and for vx® € 3(v)

et = [lctDx - viD
= et , o1(x - x|

leet®) , o1llfix - =™ .

I~



Since E(v) € 3(v), for vi € Ic(v)
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let) < Jtc®) , olinfr]x - x*| : x* € £(v)]
< et | o1le
< max rc¢®) , ojfe

1EIc(v)

For Vj € Ir\Ic(v) and for vx" € 3(v), let e:j

Then,

ey, —et I = ltef, » 01tx - x*) |
||tc£j , o1ll= - =*|

I

Since Z£(v) € 3(v), for Vvj € It\Ic(v)

for kT 2 k'T .

1

|et - e:_l < H[cij ’ O]Hinf["x - x*H : x* € Z(v)]
i 3
< ||[c’§j s, 0lfle
< max e , olfe for kT 2 k)T .

t 1
J€I NI (V)

Let ¢ = e,,/max (¢ , o1] , el , o01])
1€T_(v) i
jEIr\Ic(v)b

then for kT 2 k:T

vi € I (v), [le® (kD) < e,

- *
and since e, >0, e.p

1
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Furthermore, for i € Ic(v) let

H, = {x:e, = ... =¢ =0,e <e ,3J€INI(V)}

H, = {x : e = ... = e = 0} .

If x € £(v), then Vi € Ic(v), e(i) = 0,

ie e = .., = @ =0, e = Q0 and Vi € Ir\Ic(v), e, > 0.
i k|

Therefore, there exists ¢ = e(v) > 0 such that

L{v) + ZB cnH, ,
T €I (v)

where B is the Euclidean unit ball in R®*".

Similarly to the former part of the proof, for this s
there exists a positive k; = k;(z,7) such that
pIX(kI3x,3v) , £(v)] < ¢ for all kT 2 k,T.

Then



J(kT) C Ic(v)
and

“e(ﬂ(kT))(kT)" < max [rc¢d) 0]"2
iEIc(v)

So, if k™ is chosen such that
k* = max (k: , k;)
then for kT 2 k'T
2(kT) € J(kT) C Ic(v)
le* T )| < e,

. :
vi e 1.(v), e D] < e,

Vi € Ir\Ic(v), etj(kT) > —e .y -

This implies that there exists k" = k'(ech,xo,v) such that

for kT 2 kT

e(kTI) 2 —e

and

*

kT 2 k*,T .

338



339

(2(kT))
le (kT)| < e,

= I p
where e, e ps -+« » e,,]1" € RP,
QED
(Proof of Proposition 7.4)
This is clear from Definition 7.6.
QED

(Proof of Proposition 7.5)

The system under Loop—fixed mode is linear time-—invariant and
ng(T) is an asymptotically and exponentially stable steady
state of such system of equation (7.32) with 2(kT) = 2..
Therefore, there exist m , a > 0 such that the solution
X = x(kT;xo;v) satisfies the condition

ok Tprx, , xte(m .

pIX » XLE(T)] < me

For a given ¢ > 0, let k] = kj(m,a,¢,plx, , x%f(T)]) be such that
*

me'ak1Tp[xo . ng(T)] < € .

It follows that

* €
e'“k1T <

mplx, , X5£(T)]
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€

-ak.T £ 1n 2
mp[xo ’ xsf(T)]

2
KT > 1 in mP[XO ’ Xsf(T)]
(0 3 €

Therefore, it is evident that

pix xﬁf(T)] < ¢ k 2 k:T .

QED
(Proof of Proposition 7.6)
Since each separate closed—loop is asymptotically stable,

ette) = 1im e ) (k1) = 0

k=

In the sequel, _- means lim » .
k=

Since £, € Ic(v),

and
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Vi € Ir\Ic(v), Be';j > 0 (Proposition 7.1)

For i € Ic(v) let

H, = {x : e = ,.,. =@ =0, e (e ,3JE€ Ir\Ic(v)}

H, = {x : e = ,.. = @ = 0} .
1 { s1 sn—l }
Let
. xte(m)
xsf(T) = 0 = 1lim x(kT;xogv)n(kT)=2f .
zsf(T) ke

Clearly, ng(T) €NnH, .
iEIc(v)

Since H; is open, int H, = H, and there exists some ¢ > 0 such

that

x2e(T) + eB CNH, .
1EIc(v)

Therefore, using Proposition 7.5,

X(kT;xo;V)n(kT)=2f € N Hy k 2 k:(e,xo,v) .
iEIc(v)
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This means that

LTy, (i) =T, ,
iEIc(v)

> kT

0 ,I, and that

where To = E -t
Vi EIr\Ic(v), Tint(j) = 0, to 2 le .
So,

*

Vi eI NI (v), T, () { BT, . (§), B>0, t, 2KkT.

QED
(Proof of Proposition 7.7)
In the sequel, _+ means lim -. By the assumption, setn = 0.
k-deo f

Furthermore, if

vi € I _(v), e 20

and

vj € Ir\Ic(v), i= 2., e 20

then



343

e = min (_e e, ), i €I (v), jE€ I NI (V)

This implies that ¢, € Ic(v) and contradicts the assumption.

So, there exists at least one index i # ¢£,, i € I such that

3et2£ > Seti
ie
3i e I, x*e(T) € {x : ey, > e
f
and there exists some € > 0 such that
3i € I, ng(T) + €B C {x : etc > eti} .
£

This means that for some ¢ and for x € xif(T) + €B

2, & JO(kT)

and that, by Proposition 7.5, there exists some k; such that

X(kT3x,3v) € ng(T) + €B kT 2 kT .

So,

2, € JO°(kT) kT 2 k)T
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Ti,.(2g) =0 ty 2 kT .
However, this means that
. ~ *
LT, (i) =T, t, 2 kT .
i€r
FET)

f

Therefore, there exists k; such that

i =9, T, (2,) < BT, (i), B>0, ty 2KT.

QED

(Proof of Theorem 7.1)
Since the plant is asymptotically stable and the plant input
is bounded, the closed-loop system exhibits state—bounded

tracking. Next, the following cases are considered:

1: In Normal or Loop-excluded mode, the tracking assessment is

continuously ’Convergent?.

2: In Normal or Loop—excluded mode (Level 1 to r-1), the

tracking assessment is 'Non convergent?®’.
Case 1:

In the case of ’Convergent’ assessment in Normal or

Loop—excluded mode,



(i)

or

(ii)

A
(1]

max(es)a

th
nin(€s)a 2 "4y
max(et)a < €th
min(et)a 2 “C¢n
Amax(es)a - aAmax(es)a-l
min{@g)y S 0By, (),
Imean(es)al - 0‘lruean(es)a--ll
max(et)a = O‘Amax(et:)a--l
Bpinley), S aby,; (),

|mean(et)a| £ almean(et)a~1|
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(A2.1a)

(A2.1b)

(A2.1c)

(A2.1d)

(A2.2a)

(A2.2D)

(A2.2c)

(A2.2d)

(A2.2¢e)

(A2.2f)

are obtained for t 2 t,. Therefore, in case of (i), from
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equations (A2.la) and (A2.1lb),
vi € (1,m-1] =-e., < esi(kT) £ ey kKT 2 t__, . (A2.3)

From equation (A2.lc),

(kT) < e,, KT 2 t,_, - (A2.4)

etn(kr)

From equation (A2.1d),

(A2.5)

min eti(kT) 2 “e.u

KTE[t,_,,t,)

iEIr

so that

. (A2.6)

It follows from equations (A2.3) and (A2.6) that for KT 2 t. 1

vi € [1,m-1], esi(kT) 2 -e,, (A2.7a)

vVj € I_, etj(kT) 2 —e.p (A2.7b)
and therefore that for kT 2 ¢t _,,

e(kT) 2 —e (A2.8)

€ ’
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= T P
where e [e cee o eth] € RY ,

€ th?

It follows from equations (A2.3), (A2.4), and (A2.5) that
for kT 2 t__,,

le TN (kD) < o, - (A2.9)

In case of (ii), it follows from equation (A2.2a) that

Baaxle,), S @®7ia (o), . (42.10)
Therefore, there exists aIl such that
Braxle,), S e, /2 for a 2 a], (t, 2 tg* ), (A2.11)
where
ay, = ap;(ese .8, ,0e,),)
= INT[loga(eth/(ZAmax(es)1) + 2)] (A2.12)

and INT[-] is the integer function.

Similarly, it frollows from equation (A2.2b) that there exists

*
a,, such that

Apgqale), £ ethlz for a 2 a:

where



*
axz - alz(a’eth’amin(es)l)

INT[loga(ethl(ZAmin(es)1) + 2)] .
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(A2.14)

Furthermore, it follows from equation (A2.2c¢c) that there exists

aI3 such that

Imean(es)al < ethlz for a 2 a:3 (ta
where

a:3 = a;3(a’eth’lnean(es)1l)

INT[log,(e,, /2] ... (e.),]) + 2)]

* * ® x
Let a, = max(all,alz,als).

(e}, - (e ) £ ethlz

mazx mean 8°a

mean(es)a - nin(es)a < ethlz

—ethlz S mean(es)a S ethlz ¢

Therefore, for a 2 a] (t, 2 t *)
1

vi € [1,m-1], -e,, < e,

< e, (KT) £ e, -
1

t,* ) ., (A2.15)

13

Then, by Definition 7.8,

(A2.15)

(A2.16a)

(A2.16Db)

(A2.16c)

(A2.17)

Now, it follows from equations (A2.2d) to (A2.2f) that there

exists a; such that for a 2 a;,



- (e

et)a mean

max( t)a

mean(et)a - nin(et)a

-etblz s mean(et)a =

Therefore, for a 2 a;,

e kT) £ e
t“m< th

and
min e, (kT) = min
i
KTE(L, _,,t,)
i€I

r

Thus,

-e £ e kT) <
th tn(km)(

It follows from equations (A2.17) and

kKT 2 t_»),
( a2

e(kT) 2 —e. ,

where e, = [e

€ th?***

(et)a 2 -

IN

e,.,/2

I~

ethlz

< eth/Z .

eth .

..e,, 17 € RP,

eth .

(A2.20) that for a 2 a,
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(A2.18a)

(A2.18Db)

(A2.18¢c)

(a2.19)

(A2.20)

(A2.21)

2

(A2.22)
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It follows from equations (A2.17) and (A2.21) that for a 2 a;
(kT 2 t *),
2

e (2 CXT) (kT)] < e (A2.23)

th °
Therefore, it follows from equations (A2.8), (A2.9), (A2.22),
and (A2.23) that if the tracking assessment is continuously
'Convergent?’, nearly perfect dynamical 1limit tracking is

or for kT 2 t

attained for kT 2 t a

1 Yo
a- 2

Case 2:

In the case of °’Non convergent®’® assessment in Normal or.
Loop—excluded mode, Loop—fixed mode begins by Definition 7.9.

Then, if 2. € Ic(v) then by Definitions 7.11 and 7.12, and

£

Proposition 7.6, such mode continues to operate. Therefore,

L(v) = 1lim X(kT3xo;V)2(kr)=2£ = ng(T) € I(v)

ko
and

1lim P[X(kT3xo;V)n(kr)=2f , £(v)] =0 .,

koo

Furthermore, since ng(T) corresponds to a steady state of the

original self-selecting control system,

vi € I (v), 1lim e(*)(kT) =0

k—®

and by Proposition 7.1,
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vj € Ir\Ic(v), lim e, (kT) > O .

k=00
Hence, there exists k* = k'(eth,xo,v) such that for kT > k™T,

e(kT) 2 -e
and

le N my | = e em) ] < ey, ,

= T
where e, (e, seeese 1 € RP .
Therefore, nearly perfect dynamical limit tracking is

achieved for kT 2 k'T.

If 2, € I_(v), ie 2; € Ir\Ic(v), then by Definition 7.11 and
Proposition 7.7, ’Incorrect loop’ assessment is obtained and
such loop £, is excluded. Furthermore, if #(Ig) 2 2, by
Definition 7.12, Loop—excluded mode begins and ﬁhe ;ﬁalysis of
Case 1 can be applied. 1If #(12) = 1, by Definition 7.12, the
control loop is fixed to the remaining loop. From the previous
discussion, such a remaining loop must be a correct loop unless
a plant variation has occured or a design parameter such as T,
a, B 1is inappropriate (as indicated in the 1lowest stage,

Fig 7.4). QED
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APPEENDIX 3

LINEAR F100 ENGINE MODEL

The linearised state—-space model of the F100 turbofan engine

(Figs A3.1 to A3.3) is governed on the continuous—time set

T = [0,») by state, unmeasurable output, and measurable output

equations of the respective forms (Miller and Hackney (1976))

X, = Apxp + Bpup (A3.1)
= Y
W Cpxp + Dpup (A3.2)
and
= N
¥, = Co%, . (A3.3)

Here, the plant state vector x5 € R16, the plant input vector
u, € R™, the unmeasurable plant output vector w € R®>, the
measurable plant output vector Yo € RP, the plant state matrix
A € R!6%16  the plant dinput matrix B, € R162®  the plant
output matrix for wunmeasurable outputs C; € R5‘16, the plant
direct coupled matrix for unmeasurable outputs Dp € RS‘S, and
the plant output matrix for measurable outputs C: € RP*®, The
control actuators are governed on T by state and output
equations of the respective forms

x, =Ax +3B.u (A3.4)
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and
u_ = Cax . (A3.5)

Here, the actuator state vector x, € R™a, the actuator input
vector u € R™, the actuator output vector is the plant input
vector u, € R™, the actuator state matrix A € R™a*"a, the
actuator input matrix B_ € R"a*", and the actuator output
matrix C, € R"*"a. Furthermore, the measurement sensors are

governed on T by state and output equations of the respective

forms
X, = Ax_ + Bsyp (A3.6)

(A3.7)

~
il
Q
b

Here, the sensor state vector x, € R%s, the sensor input vector
is the measurable plant output vector Y, € RP, the sensor
output vector y € RP, the sensor state matrix A, € R"s™"s, the
sensor input matrix B_ € R"s*P, and the sensor outut matrix

Cs € RP*0;g,

It follows from equations (A3.1) to (A3.7) that the behaviour
of systems consisting of such a plant, actuators, and sensors
is governed on T by state, unmeasurable output, and measurable

output equations of the respective forms

X = AX + Bu (A3.8)
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w = Ex (A3.9)
and
y = Cx (A3.10)
where
X
P
x=|x, | € R¥**Pa"% (A3.11)
Ap cha 0
A= 0 Aa 0 {(A3.12)
m
B,CS 0 A,
0
B=| B, (A3.13)
0
= u a 1A
E = [Cp, DpCa, 0] (A3.14)
and
c =10, 0, C,] (A3.15)

The steady-state transfer—function matrices are given in the



forms for unmeasurable outputs

I

-EA™ !B

= (—CpA-'B + D )(-C,A;'B ) € R°*"

and for measurable outputs

~CA™ !B

]

- -1 - -1 - -1 pzm
(-C A 'B ) (—CQA_'B )(-C_A_'B, ) € RP*".

In the case of m =5, p =5, n, =11, and n_ = 6, the

five manipulated variables are

the five

main burner fuel flow (1b/hr)

: nozzle jet area (ftz)

inlet guide vane position (deg)
variable stator position (deg)

compressor bleed flow (%)

unmeasurable output variables are

(Fn) : engine net thrust (1b)

(WFAN): total engine airflow (1lb/s)
(IT4) : turbine inlet temperature (°R)
(SMAF): fan stall margin

{SMHC): compressor stall margin

355

(A3.16)

(A3.17)
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and the five measurable output variables are

y, (N,) = fan speed (rpm)

y, (N,;) : compressor speed (rpm)

Y3 (P3) : compressor discharge pressure (psia)
y, (P,) : augmentor pressure (psia)

ys (FTIT): fan—turbine inlet temperature (°R).

In this case, the matrices Ap, B C;, Dp, and Cg are given in

p?
Tables A3.2(a),(b),(c) and A3.3(a),(b),(c) for two operating
conditions [ie Sea Level Static (SLS)/Intermediate (Power Lever
Angle (PLA) 83 deg) and Sea Level Static (SLS)/Power Lever
Angle (PLA) 67 deg], where the data format is shown in Table

A3.1. The matrices A_, B and C, are given in Table A3.4,

The matrices A_, B and C_ are given in Table A3.5.

s?

In the case of different numbers of inputs or outputs, the
corresponding parts of the input/output matrices of the plant
and the corresponding parts of the state/input/output matrices

of the actuators and the sensors are used.
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/[Main Burner Fuel Flow

®

<

N\
1<
]

N\

A
1r

Position

[Inlet Guide Vane \\\\~Variable Stator
Position

Nozzle Jet Area-//////

Fig A3.1 Manipulated variables of F100 engine

m

[ /"
/

F\.
l | <[]
C ) Feg
L i< |
/
WEAN Fn=Fg-Drag
Fig A3.2 Unmeasurable output variables of F100 engine
N1 /NZ /P3 [FTIT /P7
| /] | b
Ih (< T
C -

Fig A3.3 Measurable output variables of F100 engine
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APPENDIX 4

NONLINEAR F100 ENGINE MODEL

The F100 engine (Fig A4.1) is an axial, mixed-flow, augmented,
twin-spool, low-bypass—ratio turbofan. The digital computer
simulation of the F100 engine was implemented on a mini
computer. The nonlinear mathematical model of the simulation
is based on the hybrid computer simulation developed by Szuch
and Seldner (1975), where the model wutilises wide-range,
overall performance maps of the engine’s components so as to
provide wide-range, steady-state accuracy. Factors such as
rotor inertias, fluid compressibility, f£fluid momentum, and
energy storage are also included in the model so as to provide
transient capability. Although it was reported by Yamane and
Kagiyama (1988) and Yamane and Takahara (1988) that factors
such as heat capacity of combustor and ignition time lag of
fuel also affect the dynamical characteristics of the engine,

such factors are neglected in this simulation.

The computational flow diagram and the simplified dynamical
representation of the F100 engine simulation are shown in Figs
A4.2 and A4.3, respectively. The rotor moments of inertia are
the most significant factors in determining the transient
behaviour of a turbofan engine. Rotor speeds are computed from

the dynamical form of the angular momentum equation.
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Intercomponent volumes are assumed at engine locations where
either (1) gas dynamics are considered to be important or (2)
gas dyﬂamics are required to avoid the need for iterative
solution of equations. In these volumes, the storage of mass
and energy occurs. The dynamical forms of the continuity,
energy, and state equations are solved for the stored mass,
temperature, and pressure in each volume. When mixing of gases
is not involved, a simple first-order lag form of the energy

equation is used.

The effects of fluid momentum on the transient behaviour of the
F100 engine are considered only in the fan duct and augmentor
tailpipe. The contribution of flow dynamics in the compressor,
main combustor, and turbines is assumed to be primarily high

frequency (> 10 Hz) in nature and is consequently ignored.

It is assumed that the control actuators and the measurement
sensors are the same as those of the linear F100 engine model
(Appendix 3) and therefore that the actuators and the sensors

are governed on T by equations (A3.4) to (A3.7).

Finally, the five manipulated variables are

u,: main burner fuel flow (1b/hr)

nozzle jet area (ft?)

u,:
u,: inlet guide vane position (deg)
u,: variable stator position (deg)
u_.: compressor bleed flow (%)

the five unmeasurable output variables are
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w,: engine net thrust (1lb)

Ww,: total engine airflow (1lb/s)

: turbine inlet temperature (°R)
fan stall margin

w.: compressor stall margin

and the five measurable output variables are

y, (N;) fan speed (rpm)

v, (Nz) compressor speed (rpm)

y; (P3) : compressor discharge pressure (psia)
y, (P,) : augmentor pressure (psia)

Vs (FTIT): fan—turbine inlet temperature (°R).

In case the inputs are u, and u, only, a steady—-state

transfer-function matrix at Sea Level Static/Idle condition is

2.68035 , 102.516
4.50972 , 135.000
G = | 1.02400e-1 , 2.76397 (A4.1)
1.34031e-3 , =-2.4316le-1
-1.21223e-1 , =9.60357

and a steady-state transfer—-function matrix at Sea Level

Static/Intermediate condition is

2.52760e-1 , 1451.03
1.35074e-1 , =7.04544
G = 2.22808e-2 , -4.56090 . (A4.2)
2.08151le-3 , -=7.70092
1.46573e-2 , 2.96426
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Furthermore, the open-loop step—-responses of measurable outputs
at SLS/Intermediate condition are shown in Figs A4.4 to A4.6

for u,, u,, and u where such responses for u, and u, are

s5*

shown in Figs 10.1 and Fig 10.2 (Chapter 10).
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Fig M.1 Schematic representation of F100 turbofan engine



::;’.T n‘fT 372

As
!
8
IPA'r

£
=4
1‘?1:7

Wis

10n

¥
lat

o
5

@

*

£

:

]
/I‘NL

ine simu

T él

Ps

Nu

" 2 | o0
> SUIXIH pazds-BIy

- 4
i
<] <] = é

au1qJny
aJnssald-Y3IH <

Nu

39nq _

\

g

= =

Pa_

—
Weeer + Wreee

SN [OA
SUIXTH .
P 1
Ch’ =~ =

1078Nquod

uyey

Pia
¢‘WF4

WeLut

N

30304
pasds—#o]

Fig A4.2 Computational flow diagram of F100 eng

A e =

Wis
Tis
TPBL

amioA e
SUTXIH

k]

A &Sl =

Qran.op 5
Qran. 10

W2 — W22

e

Jossaiduzo)
Y Y

N
&

P2.2

Pi1s

SENTOA
SUIXIR

g
[
1\NL

‘Lann




373

(a) Rotor Dynamics (Inertia)

AQ +>O > > fdt >
Torque — J Speed

AQ=f (N, P, T,...)

(b) Pressure Dyanamics (Gas Volume)

+ rR T P P
AW >0 > ——>{ fdt >
Gas Flow - Vv Pressure
AW=f(N,P. T,...) |=
(c) Temperature Dynamics (Thermal Capacitance)
1
Tin —> > Tout
Ts+1

Where ¥ = f (m, 7, h, A, .. .)

Fig Ad.3 Simplified dynamical representation
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Fig A4.4 Open-loop step-responses of measurable outputs
F100 engine nonlinear model u=[{0 0 1 0 0]
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Fig A4.5 Open-loop step-responses of measurable outputs
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APPENDIX 5

CONNECTION BETWEEN CONVEX ANALYSIS OF TRACKING SYSTEMS
AND LINEAR PROGRAMMING PROBLEMS

There is a close connection between the convex analysis of
limit-tracking systems and 1linear programming problems,
although no objective function is specified. Indeed, the set
UF(v) of feasible inputs has been defined in Chapter 4 in the

form

Ug(v) = {u€U:6Gu £ v} (A5.1)

where G € RP*™, the input vector u € U = R®, and the set—point
command vector v € Y = RP, Therefore, if the vector u is
replaced by u’ - u", where u’, u" 2 0, and u’, u" € R", and if
the vector of slack variables u, 2 0, u, € RP is introduced
(Bazaraa and Jarvis (1977)), Ur(v) can be transformed into the
feasible region X(v) of 1linear equation with nonnegativity
constraint of the form

X(v) = {x Ax=v, x 20} (A5.2)

where
A=16,-6,I 1€ RPx(2m+p) (A5.3)

uf
x = | u" | € rR¥"*p (A5.4)

Uy,
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It is clear from equations (A5.1) and (A5.2) that the existence
of nonempty U_(v) is equivalent to the existence of such X(v).
Therefore, the following results are obtained.
Definition A5.1: Classification (Alternative of Definition 4.3)
1 Class I plant

Class I = {G : X(v) # ¢ for v < 0} (AS5.5)

2 Class II plant

Class II

I

{6 : X(v) = ¢ for v < 0} (A5.6)

Theorem AS5.1

1 (i) If 6 € Class I, then (ii) Vv, X(v) = @.

2 (i) If 3v, X(v) = ¢, then (ii) G € Class II.

3 (i) If 6 € Class II, then (ii) Vv < 0, X(v) = @.
4 (i) If 3Iv < 0, X(v) =# @, then (ii) G € Class I.
(Proof)

Ur(v) is not empty if and only if X(v) is not empty.

Therefore, the result is evident. QED

Thus, the classification of linear multivariable plants has

been related to linear programming problems. It should be
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noted that, although linear programming is applicable to the
clagsification of plants, the results obtained by convex
analysis in Chapter 4 are geometrically simple and more easily
applicable to the «classification of two— or three-input

multivariable plants.

Next, 1limit tracking and the 1limit-tracking input are
discussed. In linear programming, the set of basic feasible
solutions corresponds to the set of extreme points of X(v) and
both are nonempty, provided that the feasible region is not
empty (Theorem 1 (Bazaraa and Jarvis (1977)). Therefore, in
case G € Class I, Vv, X(v) is not empty and at least one basic
feasible solution exists. However, in the <case of
limit-tracking systems, the objective function is unspecified,
the set-point vector v might be unknown, and furthermore, an
unknown disturbance vector d € RP might exist. Hence, neither
linear programming nor the simplex method provide the detailed
features of such solutions (ie limit—-tracking input). It is
noted in this sense that Definition 5.1 and Theorem 5.1 have
provided such detailed features of 1limit tracking and have
guaranteed the existence of such a special form of the basic
feasible solution without solving any linear programming

problem. Indeed, the following result is obtained.
Proposition AS5.1
The limit—tracking input of Definition 5.4 (in case rank G = m)

is equivalent to a special basic feasible solution of the form

x = B~ ly (A5.7)
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where the basic matrix B € RPZP consists of m column basis
vectors of { 6 , =6 ] and of p-m columns I  ,...,I, of I
1 p-m

and m slack variables u, ,...,u; are zero.

sl sm

Thus, the limit—tracking input corresponds to a basic feasible
solution with special form. It is noted that such forms change
depending upon the set—point v and the unknown disturbance d,
and therefore that it is difficult to wuse the linear
programming technique to specify the form of solution without

knowledge of v and d.

Furthermore, it is noted that the order-reduction technique
proposed in Chapter 5 uniquely exploits the facial structure of
Ur(v), ie the internal structure of the matrix A in equation

(A5.3).

Therefore, to summarise the discussion, the results that have

been obtained with novelty in Chapters 4 and 5 are:

1: The characterisation of tracking for systems incorporating

self-selecting controllers and multivariable plants,

2: The clagsification of linear multivariable plants in terms
of simple geometrical features ie the m—dimensional convex

cone in U-space and the separating hyperplane in Y-space,
{Remark)

The classification of plants in terms of the feasible region
of a linear equation with nonnegativity constraint, which is

common in linear programming problems, is possible and has
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been shown. Such a linear programming technique might be
used to classify a given plant by using Propositiomn AS5.1,
although the geometrical interpretation of this
classification is not so simple as those obtained in U-space

and Y-space.

The creation of rigorous theoretical foundations for the
design of limit-tracking systems such as Definition 5.1 and
Theorem 5.1 (Existence of 1limit-tracking for Class I

plants),

(Remark)

The interpretation of the limit—tracking input in terms of
the basic feasible solution of the linear equation with
nonnegativity constraint has been given (Proposition AS.1)
in which a limit-tracking input corresponds to a special
basic feasible solution of such linear equation. Theorems
of linear programming (such as Theorem 1 (Bazaraa and Jarvis
(1977)) guarantee the existence of basic feasible solutions
for Class I plants. However, they neither specify the form
of solution nor guarantee the existence of such a special

solution as a limit—-tracking input.

The formulation of a synthesis technique for limit-tracking
systems that exploits the facial structure of the polyhedral

convex set Ur(v).
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APPENDIX 6

DYNAMICAL PECULIARITIES OF SELF—SELECTING CONTROL SYSTEMS

A6.1 Introduction

In designing the digital self-selecting controllers proposed in
Chapter 6, it was assumed that the complete closed—loop system
can be made asymptotically stable. However, due to the
selection of different controllers, systems incorporating
self-selecting controllers (ie self-selecting control systems
or limit—-tracking systems) change their structures
discontinuously, ie, they are variable—structure systems.
Therefore, even though each control loop produces
asymptotically stable behaviour when considered separately, the
stability of the complete closed-loop system is not guaranteed

and limit—-cycle oscillations may occur.

In previous studies, Foss (198la) analysed the stability of
single-input self-selecting control systems. In this analysis,
discontinuous systems were transformed into continuous systems
with nonlinear elements, and describing-function criteria or
passivity criteria were used to assess the stability of the
complete systems. These criteria were also used by Glattfelder
and co-workers to analyse the stability of control systems with
nonlinearity such as saturation and antireset-windup circuits
(Glattfelder and Schaufelberger (1983), Glattfelder et al
(1988)). However, this approach is not in general effective

for the analysis of self-selecting control systems which are
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untransformable.

Much effort has been devoted to studies of variable—-structure
systems, which are discontinuous dynamical systems described by
differential equations with discontinuous right-hand gides.
The existence of sliding modes is recognised as one the typ%gal
characteristics of such systems. Filippov (1964) gave a
definition of the solution of the equations of motion of such
systems and studied the properties of these solutions. If
various non-idealities such as hysteresis, delay, and dynamic
non—-idealities (which are present in a real sliding mode) are
made to tend to zero, this limiting process leads to the same
equations that result from Filippov’s method. Filippov’s
trajectories can therefore be considered as the ideal
representation of the trajectories obtained in real systems,
thus indicating one of the reasons for the wide use of
Filippov’s method in studies of variable-structure systems

(Utkin (1978)).

However, it is shown in this appendix that a more general
solution concept than Filippov’s is necessary to describe the
behaviour of self-selecting control systems and that even
simple self-selecting control systems exhibit dynamical
peculiarities such as sliding motion and limit-cycle
oscillation. Such peculiarities have never previously been
investigated systematically. It is noted that the whole
analysis is carried out on the continuous—time set in order to

simplify the discussion.
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A6.2 System description

The linear multivariable Class I plants under consideration are
assumed to be governed on the continuous—time set T = [0,+») by

state and output equations of the respective forms

x(t) = Ax(t) + bu(t) (A6.1)

and

y,(t) = eTx(t)

e s 0o s 00 s 0000000 g (A6.2)

® e s 0008 s 00 s

yp(t) = ch(t) )

where the state vector x(t) € R®, the input u(t) € R, and the
outputs y,(t) € R (i=1,2,...,p) are to be controlled by the
self-selecting controller. The plant matrix A € R"*", whose
eigenvalues all lie in the open left-half plane C~, the input
vector b € R", and the output vectors are c¢; € R®
(i=1,2,...,p). It is assumed that the introduction of integral
action preserves stabilisability, ie, g;(s) (i=1,2,...,pP)
represents a functionally controllable plant and therefore that

(Porter and Power (1970), Power and Porter (1970))
g, = 0 (i=1,2,...,P) (A6.3)

where the plant transfer function matrix
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e} g,(s)
G(s) = | .. |(sI -A) b = (A6.4)
.i . e @
Cp g,(8)
and
g, e
6=|..|=-..|a""p. (A6.5)
. e Oi
gP cP

In the case of self-selecting control systems with lowest-wins
strategies, the index set of all the control loops is I =

{1,2,...,p} and the error e;(t) € R, i € I, is

ei(t) =v; - yi(t) (A6.6)
where the set—-point vector v = [vl,...,vp]T € RP. Furthermore,

the index set J(t) of lowest errors and the loop index 2(t) of

the actually selected loop are defined by the respective forms

J(t) = {j : ej(t) = min ei(t)} (A6.7)
iel

and
g(t) e J(v) Cc I . (A6.8)

The self-selecting controller is governed on the
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continuous—time set T = [0,+~) by equations of the form

(A6.9)

It

é(t) eg(t)(t)

and

u(t) = k{ECENey () + k{EED)z(e) (A6.10)
where the controller state z(t) € R, and the controller gains
kgn(t)) € R and kgn(“)) € R are chosen from the sets
(k{V,. ., k§P)} and  {k{',...,k{P)}, respectively. It is
assumed that each separate closed-loop system is asymptotically
stable, where there clearly exist p separate closed-loops when
g(t) = const € TI. This assumption is justified by the
functional controllability of each separate output, as

indicated in the conditions (A6.3).

Since equations (A6.7) and (A6.8) decide which controller
should be used at each instant, controller switching may occur.
In controller switching from loop index £, to 2, at time t, the

following two types of switching logic are considered:
(i) Without bumpless transfer

z(t) = lim z(t-At) (A6.11)
At-+0
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(ii) With bumpless transfer

u{t) = 1lim u(t—-At) (A6.12)
Ac-+0
and
1
z(t) = { 1im u(t—At) - k§22>enz(t)}. (A6.13)

k§22) At=+0

A6.3 Analysis

The equations (A6.l1), (A6.2), (A6.6), (A6.9), and (A6.10) that
govern the behaviour of the self-selecting control system can

be written in the form

where
x(t)
x(t) = € R°*! (A6.15a)
z(t)
1 (2(t))yaT (2(t))
_ Ak, beg ey » K1 b (n+1)x(n+1)
Al(t) = T € R
“Co(t) ’ 0
(A6.15b)
kgn(t))b
= +1
b!(t) = ) € R® . (A6.15¢c)

and
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'Vn(t) = Vﬂ(t) € R . (A6.15d)

It is clear that the system equations (A6.14) with the
lowest-wins control equations (A6.7), (A6.8), and (A6.11l) (or
(A6.A6), (A6.8), (A6.12), and (A6.13)) have discontinuous
right-hand sides. Therefore, let a solution of the governing

equations of the self-selecting control system be denoted by

x(tsx,3V)
x(tsx,3v) = s X(03x,5v) = x,
z(tsx,3V)

where x(t;xo;v) is the motion of the controlled plant and
z(t;x,3v) is the corresponding motion of the self-selecting
controller. Since the absolute continuify of x(t;xo;v) is lost
at the controller switching instants in the case of the
controller switching equations (A6.12) and (A6.13), Filippov’s
definition of solutions of differential equations with
discontinuous right—hand sides is not enough. So, piecewise

continuous x(t;x,;v) are admitted as solutions.

Many fundamental properties of closed-loop systems embodying
multivariable plants and digital self-selecting controllers are
established in Chapter 7. The following definitions and
propositions are the anologue version of such properties and
summarise those concepts needed to understand the results

presented in the next section:
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Definition A6.1
(i) Equilibrium state

A state x, € R"! is an equilibrium state of the
self-selecting control system if and only if, for each

separate closed—-loop system,

x(t3x, 3v) =x, , VteR'

-e

(ii) Steady state

A state x € R**! js a steady state of the self-selecting

control system if and only if

x(t3x 3v) = x, , VvVt €R' .

Definition A6.2: Index sets of correct and incorrect loops

In a steady state, the index set I _(v) such that

I(v) ={i€1:y; = A

is the set of correct loops and the set I\Ic(v) the set of

incorrect loops.

The existence of nonempty I _(v) is guaranteed by Theorem 5.1.
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Proposition Aé6.1

In a steady state, if i € I\I_(v) then

¥y < vy .

(Proof of Proposition A6.1)

Suppose that

x(03x 3v) = x

and that there exists i € I\Ic(v) such that y,(0) { v,. Since

i¢ Ic(v), this means that y,(0) > v,. Then,

vji € J(0), ej(O) € e (0) =v, —y;(0) <O.

Since 2(0) € J(0), €9 (0) < 0. However, since x  is a steady

state,
Ag0y*s ¥ Pgo)Va(oy =0 -
Therefore,
z(0) = €0y = 0 -
This is a contradiction and implies that y,(0) < v, for

i € I\I _(v).

QED
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Proposition A6.2

The self-selecting control system has #(Ic(v)) steady states
for every v, including multiplicity, where #(+) means the

number of elements in the set -«.
(Proof of Proposition A6.2)

The asymptotic stability of each closed-loop system
corresponding to loop index i ensures that all the eigenvalues
of A, 1lie in the open 1left-half plane C~ and that

1

rank Ai = n+l.

Since rank [4; , b;] 2 rank A;, rank [4; , b;] = n+l. Hence,

rank [4; , b;] = rank 4, and a steady state is determined as

®
1

the unique solution x; of the equation

0= A;x; + bv, ie Ic(v) .

For i € I\Ic(v), if x; satisfies

0= Aix1 + bivi

then ¥; = V;. This means that i € I (v) and contradicts the
fact that i € I\Ic(v). So, only x,, i € I _(v) are steady
states of the system.

QED
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A6.4 Illustrative example

In order to illustrate these concepts, it is convenient to
design self-selecting controllers for a simple
one-input/two—output plant and to analyse the resulting
closed-loop characteristics by the phase-plane method. In
fact, the plant is governed by state and output equations of

the respective forms

x(t) = -x(t) + u(t) )
y,(t) = 2x(t) > . (A6.16)

The responses of this self-selecting control system in the case
of controller switching without bumpless transfer are shown in

Figs A6.1 to A6.3 when the controller parameters are

. (A6.17)

Indeed, these figures show the phase trajectories, the
set—point commands and outputs, and the plant input and loop
index, respectively. In this case, stable responses with
sliding modes are observed. However, when the same controller
parameters are used in the case of controller switching with
bumpless transfer, the responses of the system are shown in

Figs A6.4 to A6.6. In this case, stable responses without
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sliding motion are observed but it is important to note that
the discontinuity when x = 1.5 in Fig A6.4 arises from bumpless
transfer. Finally, the responses of this system in the case of
controller switching without bumpless transfer are shown in

Figs A6.7 to A6.9 when the controller parameters are

L3
-~
-
~
[}
(=]
=
”~~
=
~
n
(=]
L]
w

. (A6.18)

= 100

=
”~~
™
A
f
(=]
=
~~
XY
St
\

In this case, despite the fact that each control loop is
separately asymptotically stable, limit—cycle oscillations are
observed. In each of these cases, the sampling period of
digital simulation is 0.01 sec, El, E2 are the equilibrium

states of the corresponding separate closed loops,

v = ’ (A6.19)

and

X, = . (A6.20)

A6.5 Conclusion

It has been shown that self-selecting control systems with
lowest—wing strategies are discontinuous dynamical systems.

Equilibrium states, steady states, index sets of correct and
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incorrect loops have been defined and characterised for every
set—-point vector. Furthermore, it has been shown that
dynamical peculiarities can occur even in a very simple
first—order plant with one input and two outputs under
self-selecting control. In this case, it has been demonstrated
that the complete system exhibits stable responses (with or
without sliding motion) or 1limit-cycle oscillations depending
upon the controller gains and the controller switching logic.
These peculiarities indicate both the richness of the possible
responses of higher-order multivariable self-selecting control
systems and the difficulty of analysing such systems. They
thus stimulate further research into powerful design methods
for self-selecting control systems which guarantee the

well-regulated behaviour of complex engineering systems.



395

J945unuy ssaldung qhoyijta BUIYDLTIMAS US7 104U

uoTqow BUTPIIS Y3Tm fuoydalpuy aspyd 1°9vI6T

(81—

Fo-

4 g ¢ S+

<3 13

al



396

L — E— S —— S — S—
yl,vi ]
2L ]
I
% ||||||||| 2 ;;;;;;;;; 4 ccccccccc é lllllllll 8I 000000000 a
C(a? Time(sec?
y2,v2 ]
ﬁ
st ]
......... | S SR RS NPT THN GHN VS JR S S ST S S ST S SN S SN SN SUN SN S TR NENY SHNT SHN SN JUNE SN S TS VU T SN N S 3
Z ¥ 158 5 7]
(b> Time{sec)

Fig A6.2 Stable responses with sliding motion
Controller switching without bumpless transfFer




397

L A — N N — R —
INPUT P
- / - o N
Sl il i g o o) 2
Ca Time(sec)
B B T sy OGS o e e
LOOP
2l e B
1l L S
e e e seis e bl e e 0
(b Time(sec?

Fig A6.3 Input and loop index
Controller switching without bumpless transFer



398

JdOJSUDUY ssadung yiim Butysqims dsqjodiquo)
uotqow Buipils qhoyirtm huoqdalouy asouyyg v 9viBty

(81—

Fo—

8} S 0 S

X

Z3 13

G




19

-------

-------

-------

.......

ylsvi

.........

FER NS 3E WP )

--------

........

........

--------

20

.........

10

(b)

.........

Time(sec)

Fig A6.5 Stable responses without sliding motion
- Controller switching with bumpless transfer

399



400

(S E— IS — S —— ——
INPUT [ )
"'4- --------- & r s g s s 3 o o 0 ¢ 4 o o o o o o o | s 3 o 2 4 ¢ 2 | IS A S S SN N SENY S i
¥ y. % & B )
(ad Time(sec)
q --------- T T T 7T | LI N U N BN S T S 2 | N N B N SN SN T ¢ JSC L NN N e S
LooP [
At
1L ]
ﬂ ||||||||| 1t 2 ¢ 9 < 9 + 2 & 2 ; 3 2 ¢ : 9 41 1 & ° ¢ 3+ 3 3 3+ : 3 1 4 2 2 3 3 =+ 3 2 3
v4 % v g ")
(b Time(sec?

Fig A6.6 Input and Lloop index
Controller switching with bumpless transfer



401

J9JSubuy} ssaidung qnoyi T BUTYDFTMS U8 10U43UC)

210AD-q1Tw1) Y314 Auoqgodalovaq asoyd m.oimﬂu

}

Lo

e

8} g ¢ St

'S

al



402

10

ytsvi 8 i

20
(a) Time(sec)
28
Y2, v2 ]
]

ﬁ' ......... L I WY TR SENUN UENR I VAN SN W 1 | U W YUY TR SO SR WA S TR | I VU WA YN SHN N SHN S T 1
5 1) 15 9
(b)) Time(sec)

FigA6.8 Limit—-cycle oscillations
Controller switching without bumpless transfer



INPUT

LOOP

403

6 — I—— B .
4L
2
ol
-2t N
-4£ lllllllll $ s+ 42 e 3 4 3 2 3 | T DR UHY SH SHN UMY SHN SN S 1 | T N S SUNN W SN S S 3
] 19 15 20
(ad Time(sec?
3
......... oYt
2l ]
1
1L |
[ ]
- I T S .
) 1% 15 ")
(b> Time{sec?

Fig A6.9 Input and Loop index

Controller switching without bumpless transfer



404

APPENDIX 7
ROBUSTNESS THEOREM

In the following robustness theorem, it is necessary to
distinguish between the plant for which a controller is
designed — ie the nominal plant (denoted by subscript ) - and
the plant to which a controller is applied - ie the actual

plant (denoted by subscript a).

Theorem 1 (Porter and Khaki-Sedigh (1989))

In the case of any tunable digital PID controller with integral

post—-multiplier of the form
2=01 (0 € RY)

and any plant perturbation such that
By € c* (i =1,2,...,m)

where {p, ,p,,...,p1 } is8 the spectrum of the perturbation matrix

M= G,(0)G '(0) € R"*" , (A7.1)

there exists a sampling period T® € R' such that set-point

tracking occurs for all T € (0,%'].
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