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ABSTRACT  

The aims of this study were to compare isometric mid-thigh pull (IMTP) peak force (PF), 

time-specific force values (100-, 150- and 200 ms), rate of force development (RFD) at pre-

determined time bands (0-100, 0-150 and 0-200 ms) and net forces between two commonly 

adopted hip joint angles (145˚[hip145] and 175˚[hip175]) with a 145˚ standardised knee angle. 

Twenty-eight collegiate athletes (age: 21.7 ± 1.5 years, height: 1.75 ± 0.08 m, mass: 81.5 ± 

8.4 kg) performed two IMTP trials at each hip joint angle in a randomised counterbalanced 

order. A subgroup (n=10) performed the IMTP testing seven days later to establish between-

session reliability. Intraclass correlation coefficients (ICC) and coefficient of variation (CV) 

demonstrated high within-session reliability and acceptable variability for all IMTP kinetics 

at each posture (ICC ≥ 0.86, CV ≤ 13.7%) excluding hip175 RFD 0-100 ms and net force at 

100 ms which demonstrated greater variability (CV = 18.1-18.5%). High-between session 

reliability and acceptable variability were observed for all IMTP kinetics at each posture 

(ICC = 0.72-0.97, CV = 4.5-12.8%), excluding RFD 0-100 ms which demonstrated greater 

variability for both postures. Hip145 produced significantly greater time-specific force values 

(p ≤ 0.025, g = 0.25-0.28), RFD at pre-determined time bands (p ≤ 0.001, g = 0.59-0.78) and 

net forces (p ≤ 0.001, g = 0.57-0.74) compared to hip175. Trivial non-significant differences 

were demonstrated between postures for PF and force at 100 ms (p > 0.05, g ≤ 0.14). 

Significantly greater body weights (weighing period force) were observed with hip175 

compared to hip145 (p < 0.001, g = 0.74). Coaches should consider administering a hip145 for 

IMTP testing as greater IMTP kinetics and lower levels of pre-tension during the weighing 

period are achieved with this posture. 

Key words rate of force development; time-specific force; peak force; net force; assessment 
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INTRODUCTION 

The neuromuscular qualities of the lower limb can be evaluated using force-time curves 

recorded from the isometric mid-thigh pull (IMTP). The IMTP is commonly used to assess 

the peak force (PF) production but a further advantage is the ability to inspect an athlete’s 

ability to produce force (4, 12, 15, 22), rate of force development (RFD) (4, 12, 22) and 

impulse (8, 43) at critical time intervals. The IMTP has been shown to demonstrate high 

within- and between-session reliability measures for PF (8, 11, 14, 15, 22), time-specific 

force values (4, 12, 15, 22), rate of force development (12, 22) and impulse (8, 43) across 

different time intervals. Due to the high reliability and its simplicity to administer, the IMTP 

is commonly used to evaluate the force-time qualities to prescribe future training such as 

inspection of the dynamic strength index when combined with PF during a jump (45); while 

also used to monitor adaptations to training (3). Additionally, the IMTP can be used as a 

potentially safer surrogate to dynamic one repetition maximum (1RM) strength testing (8, 

11), with strong correlations observed between IMTP PF and 1RM back squat (r ≥ 0.96) (33, 

35), snatch and clean and jerk (r ≥ 0.83) (4) and deadlift (r = 0.88) (11). Moreover, inspecting 

neuromuscular preparedness (18) and assessment of bilateral (1) and unilateral force 

production asymmetries (13) are further purposes of IMTP testing. 

The IMTP is modelled on the start of the second pull position of the clean whereby the 

largest forces, velocities and power are generated (17, 23). However, a contentious issue in 

IMTP testing is the selection of appropriate knee and hip joint angles. Currently there is no 

agreed consensus on the appropriate knee and hip joint angles for IMTP testing. The IMTP 

was first introduced by Haff et al. (23) where knee and hip angles of 144 ± 5° and 145 ± 3° 

were reported, respectively. Since then, a diverse spectrum of knee angles (120-145°) have 

been reported including fixed specific angles of 130° (33, 34) and 140° (9, 36, 38), while 

some researchers report a range of knee angles adopted by subjects including 120-130° (10, 
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46), 125 ± 5° (1), 125-135° (4), 127-145° (20, 21, 28), 137.6 ± 12.9° (22), 141 ± 10 (27) and 

140-145° (40). Similarly, a wider range of hip joint angles have been reported within the 

literature ranging from flexed positions of 124 ± 11°, resulting in a clear forward lean of the 

trunk, upright positions of 140-145° (8, 22, 38, 40) and more extended positions of 155-165° 

(39) and 170-175° (1, 4, 29, 42, 47). As such, these different knee and hip angles result in 

different body positions relative to the bar which could impact the force production 

capabilities during IMTP testing (Figure 1) (5, 6).  

**Insert Figure 1 about here** 

Notably a large contingent of studies do not report their knee (12, 13, 30, 41, 43, 45) or hip 

joint angles (12, 13, 20, 21, 28, 30, 33, 34, 36, 37, 44, 45) for IMTP testing and simply 

describe the body positioning. For example, researchers have stated self-preferred position 

(12, 13, 43, 45), bar position below crease of hip (36), bar position at height of knee (30) 

(which is clearly not a mid-thigh pull, or the start of the second pull during a clean), upright 

trunk (10), near vertical trunk (40), shoulders placed over the bar (37) and flat trunk with 

shoulders in line with bar (46). Failure to provide hip and joint angles for IMTP testing 

makes determining and replicating IMTP protocols difficult. The inconsistences in postures 

reported within the literature and failure to provide knee and joint angle data could result in 

discrepancies between studies; in particular the reliability and range of correlations with 

dynamic performance. Interestingly, some knee joint angles (127-145˚) for IMTP testing 

were calculated during 2-dimensional analysis of each subject’s actual weightlifting 

performance (20, 21), but hip joint angles were not provided. This method would require 

athletes firstly to be competent at the clean and would require extensive periods of time to 

collect and analyse such data, and would therefore be too time consuming and impractical for 

testing large squads of athletes and cohorts of subjects. 
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Differences in joint angles can impact force production due to changes in the length tension 

relationship in skeletal muscle, while the force produced acts through different moment arms 

(48). Consequently, this can influence the contractile properties influencing force (5, 6, 32) 

and RFD (32) production during isometric testing. Marcora and Miller (32) reported 

differences in PF and maximum RFD during the isometric leg press between knee angles 

120° and 90°, respectively. Similarly, Beckham et al. (5) compared isometric PF in key 

positions of the conventional deadlift (floor, knee, mid-thigh pull, lockout) revealing the mid-

thigh pull position (knee angle 125°, hip angle 145°) generated the highest PF, significantly 

higher than any other position. However, the authors failed to provide the knee and hip joint 

angles of the lockout position, thus it is uncertain whether the hip and joint angles adopted for 

the lockout position were reflective of commonly adopted IMTP hip and knee joint angles 

reported within the literature.    

There is a paucity of research comparing IMTP kinetics between different knee and hip joint 

angles. Comfort et al. (8) compared IMTP kinetics between commonly reported knee (120°, 

130°, 140°, and 150°) and hip angles (125° and 145°) and self-preferred posture reporting no 

meaningful or significant differences (p > 0.05, d ≤ 0.061) in PF, maximal RFD or impulse at 

100-, 200- and 300 ms across postures. Additionally, high between session-reliability was 

observed for all kinetic variables irrespective of posture. The authors advocated the use of a 

self-preferred mid-thigh pull position for IMTP testing due the high reliability and lack of 

differences with the other postures, with also the potential ability to speed up IMTP testing to 

a reduced learning effect. Contrary to the findings of Comfort et al.  (8), Beckham et al. (6) 

has advocated a hip joint angle of approximately 145° for IMTP testing, reporting greater 

IMTP kinetics (PF and time-specific force values) compared to a flexed 125° hip joint angle 

(standardized 125° knee joint angle) with small to large effect sizes in athletes with 

weightlifting experience and small to moderate effect sizes without weightlifting experience. 
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As such, given the conflicting findings from these two studies, there is no consensus on the 

optimal joint angle for IMTP testing. 

There is a requirement therefore, for further investigations into the effects of different joint 

angles on IMTP kinetics; specifically comparing the commonly reported and adopted hip 

angles of 145˚ (8, 22, 23, 38, 40) and 175˚ (1, 4, 29, 42, 47) within the literature; which 

Comfort et al. (8) and Beckham et al. (6) did not investigate. These two hip angles result in 

different body positions relative to the bar which could potentially effect force production 

during IMTP testing (Figure 1). Practitioners use the IMTP to assess the rapid force 

production properties of their athletes, thus it is imperative that athletes adopt the most 

optimal and favourable position (joint angle) to rapidly produce force.  Subsequently, the 

results from this study should provide greater insight into which positions are favourable and 

optimal for isometric rapid force production. Thus, the aims of this study were to compare 

IMTP PF, time-specific force values, RFD at pre-determined time bands and net forces 

between two different hip joint angles (145˚ and 175˚) with a standardised knee angle of 

145˚. It was hypothesised that greater IMTP kinetics would be observed with a 145° hip joint 

angle compared to a 175° angle, due to advantageous length tension relationships of the hip 

extensors. 

METHODS 

Experimental approach to the problem 

A repeated measures, within-subjects design was used to evaluate the effects of hip joint 

angle (145° vs 175°) at a standardised knee joint angle (145°) on IMTP PF, time-specific 

force values, RFD at pre-determined time bands and net forces. A randomised and 

counterbalanced testing protocol was used to control for order effect whereby subjects 

performed two maximum effort IMTPs in each position while standing on a force plate 
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sampling at 1000 Hz. IMTP testing was performed on two separate testing sessions seven 

days apart at the aforementioned postures to determine the within-session and between-

session reliability of each measure and to determine the effect of hip joint angles on the 

dependent variables (PF, time-specific force values, RFD at pre-determined time bands and 

net forces). 

 

Subjects 

Twenty-eight (23 male and 5 female) collegiate athletes (age: 21.7 ± 1.5 years, height: 1.75 ± 

0.08 m, mass: 81.5 ± 8.4 kg, relative one repetition maximum power clean: 1.06 ± 0.18 

kg/BM) from rowing and soccer participated in this study. A subgroup (n=10) returned on a 

second occasion seven days later at the same time of day to determine between-session 

reliability. Based on the work of Beckham et al. (5)  for differences in isometric PF between 

postures, a minimum sample size of 15 was determined from an a priori power analysis using 

G*Power (Version 3.1, University  of Dusseldorf, Germany) (16) based upon an effect size of 

1.23, a power of 0.99 and type 1 error or alpha level of 0.05. 

 

The investigation was approved by the institutional ethics review board, and all subjects were 

informed of the benefits and risks of the investigation prior to signing an institutionally 

approved consent form to participate in the study. Subjects were familiar with the IMTP 

protocol and had ≥ 6 months resistance training experience of the power clean and its’ 

derivatives; all IMTP trials were assessed by certified strength and conditioning specialists. 

At the time of testing subjects were mid-season in the first week of a power mesocycle 

having performed a four-week maximum strength mesocycle. 
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Procedures 

All testing took place at the same time of day and a subgroup (n=10) returned on a second 

occasion seven days later at the same time of day to minimize the effect of circadian rhythm 

and to determine between-session reliability. Subjects were required to abstain from training 

for 48 h before testing and asked to maintain a consistent fluid and dietary intake on each day 

of testing. 

Pre-isometric assessment warm up 

All subjects performed a standardized warm up comprised of ten body weight squats and 

lunges followed by two isometric efforts at a perceived intensity of 50, and 75% of maximum 

effort, interspersed with a one-minute rest period (5, 29).  

Isometric mid-thigh pull protocol 

The IMTP testing was performed on a portable force plate sampling at 1000 Hz (Kistler, 

Winterthur, Switzerland, Model 9286AA, SN 1209740) using a portable IMTP rack (Fitness 

Technology, Adelaide, Australia. Sampling at 1000 Hz has been shown to produce high 

reliability for isometric force-time variables (12). A cold rolled steel bar was positioned to 

correspond to the athlete’s second-pull power clean position where the bar height could be 

adjusted (3 cm increments) at various heights above the force plate to accommodate different 

sized athletes. Athletes were strapped to the bar in accordance to previous research (20) and 

positioned in two different postures; both postures required a standardised knee joint angle of 

145° however required different hip joint angles of 145° (Hip145) and 175° (Hip175), 

respectively. Subjects were placed in position; knee and hip relative angles (angle between 

two segments) were measured with goniometry to ensure that the position was accurately 

reproduced during each trial, with the bar resting midway up the thigh (approximately 
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halfway between the iliac crest and the midpoint of the patella), just below the inguinal crease 

of the hip, to replicate the start position of the second pull phase of the clean. Hip145 

positioning resulted in a posture with shoulders directly above or slightly behind the bar, 

conversely Hip175 resulted in a posture with shoulders noticeably behind the bar as illustrated 

in Figure 1. 

All subjects received standardized instructions to pull as fast and as hard as possible and push 

their feet directly into the force plate until being told to stop, as these instructions have been 

shown to produce optimal results (7). Once the body was stabilised (verified by watching the 

subject and force trace) the IMTP was initiated with the countdown “3, 2, 1 pull,” with 

subjects ensuring that maximal effort was applied for five seconds. Ground reaction force 

data were collected for a duration of eight seconds from the portable force platform which 

was interfaced with a laptop and recorded using Bioware software (Version 5.11; Kistler 

Instrument Corporation, Winterthur, Switzerland). Minimal pre-tension was allowed to 

ensure there was no slack in the body prior to initiation of pull and subjects were instructed to 

be as still as possible during the weighing period, without initiating a pull on the bar, until 

given the instructions to ‘pull’. Trials without a stable baseline force trace (change in force > 

50 N) were rejected along with trials with a visible countermovements, subsequently another 

trial was performed (14, 31). Subjects performed a total of two maximal effort trials at each 

hip joint angle in a randomised and counterbalanced order, with each trial and interspersed 

with a 2-minute rest period. Strong verbal encouragement was given for all trials and 

subjects. In line with previous recommendations, if the difference between the two trials 

exceeded 250 N then a third trial was performed (4, 29). The mean of two trials were used for 

statistical analyses. 
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Isometric force-time curve assessment 

All force-time data recorded during the IMTP were inspected using a customized analysis 

Microsoft Excel spreadsheet (version 2016, Microsoft Corp., Redmond, WA, USA) to 

determine specific force-time characteristics. The maximum force generated during the five 

second maximum effort IMTP was reported as the absolute PF (22). Additionally, time-

specific force values at 100 ms (Force100), 150 ms (Force150) and 200 ms (Force200) were 

calculated (12, 22). Net PF and net time-specific force values were calculated by subtracting 

BW (calculated during 1 second weighing period) from the time-specific force value.  RFD at 

pre-determined time bands 0-100, 0-150 and 0-200 ms (RFD100, RFD150 and RFD200) were 

also calculated using the equation: RFD = ∆force/∆time interval (4, 12, 22, 29). The onset of 

the contraction was determined when vertical ground-reaction force deviated 5 SD of BW 

(14). The combined residual force and BW were calculated as the average force over a 1 

second stationary weighing period (in mid-thigh pull position posture) prior to the initiation 

of the IMTP (14).  

 

Statistical analyses  

Statistical analyses were performed using SPSS software version 23 (SPSS, Chicago, Ill, 

USA). Normality for all variables was confirmed using a Shapiro Wilks-test. Within-session 

reliability and between-session reliability were assessed via intraclass correlation coefficients 

(ICC), 95% confidence intervals (CI), coefficient of variation (CV) calculated as SD/mean x 

100 and standard error of measurement (SEM). Minimum acceptable reliability was 

determined with an ICC >0.7 and CV <15% (2, 22). 
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Paired sample t tests and effect sizes were used to compare IMTP kinetics between sessions. 

Differences in IMTP kinetics between postures were assessed using paired sample t tests, 

effect sizes, mean differences and percentage differences. Effect sizes were calculated using 

Hedges’ g method (24) and interpreted using Hopkins’ scale (25). The criterion for 

significance was set at p ≤ 0.05. 

 

RESULTS 

High within-session reliability was observed for hip145 IMTP PF (ICC = 0.99, CV = 2.8%), 

time-specific force values (ICC = 0.92-0.98, CV = 3.5-6.2%), RFD at pre-determined time 

bands (ICC = 0.91-0.97, CV = 5.9-12.1%) and net forces (ICC = 0.91-0.98, CV = 4.6-

11.6%); all achieving minimum acceptable reliability criteria (Table 1). With the exception of 

hip175 RFD100 and net force100 which failed to meet minimum acceptable reliability criteria, 

high within-session reliability was observed for hip175 IMTP PF (ICC = 0.99, CV = 2.8%), 

time specific force values (ICC = 0.93-0.98, CV = 2.9-5.8%), RFD at pre-determined time 

bands (ICC = 0.86-0.96, CV = 8.4-13.3%) and net forces (ICC = 0.83-0.97, CV = 5.3-13.7%) 

(Table 1). Body weight was highly reliable, irrespective of posture (ICC = 0.93-0.95, CV = 

3.5-5.0%) (Table 1). 

 

***Insert Table 1 about here*** 

 

Between-session testing demonstrated high reliability for all kinetics across both postures 

(ICC = 0.72-0.97, CV = 4.5-12.8%) with the exception of RFD100 which failed to achieve 

minimum acceptable reliability criteria for both postures (Table 2). Significant differences 
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between sessions were observed only for hip145 PF (p= 0.033) and net PF (p=0.05) with effect 

sizes revealing a small difference (g = 0.21-0.23). No other significant differences (p>0.05, g 

≤ 0.22) were observed between sessions for all IMTP kinetics across both postures (Table 2). 

 

***Insert Table 2 about here*** 

 

IMTP descriptive statistics between postures are presented in Table 3 along with p values, 

effect sizes, mean and percentage differences. Trivial non-significant differences were 

demonstrated between postures for PF and force100 (p > 0.05, g ≤ 0.14). However, hip145 

produced significantly greater time-specific force values (p ≤ 0.025, g = 0.25-0.28), RFD at 

pre-determined time bands (p ≤ 0.001, g = 0.59-0.78) and net forces (p ≤ 0.001, g = 0.57-

0.74) in comparison to hip175, with effect sizes indicating small to moderate differences 

(Table 3). Conversely, significantly higher BW (p < 0.001) was observed with a hip175 angle 

compared to hip145, with a moderate effect size (g = 0.74) (Table 3).  

***Insert Table 3 about here*** 

 

DISCUSSION  

The aims of the present study were to compare IMTP kinetics between commonly reported 

hip joint angles 145° and 175° with a standardized knee joint angle. This study is the first to 

compare a hip175 joint angle to a hip145 joint angle finding significantly greater time-specific 

force values, RFD at pre-determined time bands and net forces with a hip145 posture 

compared to a more extended hip175 posture (Table 3); in agreement with our hypotheses. 
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Equally, both postures resulted in high within-session and between-session reliability 

measures for all IMTP kinetics, with the exception of RFD100 which failed to meet minimum 

acceptable reliability for both postures between-sessions (Table 1 & 2). Consequently, the 

results from this study suggest a 145° hip angle is a more favourable position for rapid force 

production compared to a more extended hip position (175°) during IMTP testing. Therefore, 

practitioners should consider administering IMTP testing with an approximate 145° relative 

hip joint angle compared to a 175° hip joint angle, while also acknowledging that adopting 

different and inconsistent joint angles can significantly influence IMTP kinetics.   

A diverse range of hip and knee joint angles have been reported within the literature for 

IMTP testing (1, 4, 22, 23, 38, 39, 42, 47). To our knowledge, Comfort et al. (8) and 

Beckham et al. (6) are the only studies to examine the effect of joint angle on a range of 

IMTP kinetics reporting conflicting findings. Comfort et al. (8)  demonstrated no significant 

or meaningful differences (p > 0.05, d ≤ 0.061) for PF, maximum RFD and impulse at 100-, 

200- and 300 ms between joint angles and the authors advocated the use of a self-preferred 

mid-thigh pull position to minimise the learning effect. Conversely, Beckham et al. (6) found 

greater peak force and time-specific force values  (small to large effect sizes) were achieved 

with a hip joint angle of 145° compared to a more flexed 125° angle. The present study 

compared a hip145 joint angle to an extended hip175 joint angle reporting no significant 

differences in PF between postures, but small to moderate significant differences in time 

specific-force values, RFD at pre-determined time bands and net forces were observed 

between postures (Table 3). Notably, greater mean and percentage differences were observed 

for net forces and RFD variables (Table 3) between postures indicating a greater influence on 

these kinetic variables. As such, the results from the present study are in agreement with 

Beckham et al. (6) highlighting that hip joint angle and subsequent body position influences 

isometric rapid force production. Supporting the recommendations of Beckham et al. (6) we 
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recommend coaches and researchers should consider administering an approximate 145°  hip 

joint angle for IMTP testing. 

The data from the present study shows that a hip145 position appears to be a favourable 

position to assess the rapid force production capabilities of athletes while also demonstrating 

that hip joint angle directly influences time specific-force, net force and RFD characteristics 

(Table 3). This is supported by previous studies who have shown differences in maximum 

RFD and PF between 90° and 120° knee flexion during the isometric leg press (32). Beckham 

et al. (5) also observed significant differences in PF between various positions in the deadlift 

and the mid-thigh pull position. Interestingly, the authors compared a mid-thigh pull position 

to a deadlift lockout position demonstrating large differences in PF (d = 1.23); however, PF 

was the only kinetic variable examined and the specific joint angles of the lockout position 

were not provided. Nonetheless, based on the results of this study and corroborative research, 

lower limb joint angle influences force production during isometric testing (5, 6, 32). As 

such, coaches and researchers should ensure joint angles are standardised and consistent 

between testing occasions to allow valid comparisons of performance variables when 

longitudinally monitoring neuromuscular performance, so such changes in IMTP kinetics can 

be attributed to training or fatigue, and not to differences in joint angles. 

Coaches use the IMTP to assess the rapid force production properties of their athletes to 

monitor and inform future training, thus it is imperative that athletes adopt the most optimal 

and favourable position (joint angle) to rapidly produce force. The results of the present study 

demonstrate an extended hip joint angle of 175˚ was a suboptimal position for force 

production compared to hip145 joint angle (Table 3), while Beckham et al. (6) observed a 

flexed 125˚ hip joint angle was also suboptimal in force production compared to hip145. 

Collectively, the results of these studies suggest that body position relative to the bar does 

matter for IMTP force production. Failure to place athletes in the optimal joint angles (body 

ACCEPTED

Copyright ª 2017 National Strength and Conditioning Association



P a g e  | 14 

 

position) of hip145 could limit rapid force production, potentially leading to misinterpretations 

of their force production capabilities. 

A stable baseline force during the weighing period with minimal pre-tension before the onset 

of a rapid contraction is recommended when conducting isometric testing (31). Interestingly, 

considerably greater BW (weighing period forces) was observed for the hip175 posture 

compared to the hip145 (Table 3). This indicates higher levels of pre-tension were achieved 

with the hip175 posture which is suboptimal for evaluating RFD during isometric testing (31); 

and should therefore be avoided for IMTP testing.  

Notably, significantly greater RFD at pre-determined time bands were demonstrated with a 

hip145 posture compared to hip175, with mean percentage differences ranging from 16.8-21.1% 

(Table 3). As RFD was calculated as = ∆force/∆time interval the consistently greater RFD 

may be explained by several factors including, the significantly greater net forces and lower 

BW (weighing period forces), which has a direct effect on the change in force component of 

the RFD equation. Additionally, significantly greater force150 and force200 values were 

observed with a hip145 joint angle, directly influencing RFD. Collectively the abovementioned 

factors such as lower BW (weighing period force to determine the onset of contraction – due 

to lower pre-tension), greater net forces and time-specific forces results in a greater change in 

force, thus greater RFD with a hip145 joint angle. Thus, practitioners are recommended to 

administer IMTP testing with a hip145 joint angle for a more favourable position to attain 

RFD, time-specific force values and net force data.   

Numerous investigations have adopted hip joint angles of approximately 170-175° during 

IMTP testing (1, 4, 29, 42, 47); however, interpretation of these aforementioned studies may 

be limited, because the results of the present study indicate higher levels of pre-tension, lower 

RFD, lower time-specific forces, lower net forces, and lower reliability measures are 
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achieved with the hip175 posture (Tables 1-3). This posture appears to be a suboptimal 

position for producing force and RFD compared to hip145, potentially due to differences in 

length tension relationship of the hip extensors and differences in moment arms (48). We 

suggest that that the hip joint angles reported by the aforementioned studies (1, 4, 29, 42, 47) 

may be misrepresented and we question whether the authors are potentially referring absolute 

hip or trunk angle relative to a vertical straight line in comparison to measuring relative joint 

angle (angle between two segments meeting at a point) as done in the present study (19) 

(Figure 2). Figure 2 illustrates the notable differences in trunk position relative to the bar 

between absolute and relative hip175 joint angles. Therefore, coaches and researchers are 

advised to specify and standardise their knee and hip joint angles adopted for IMTP testing 

and state whether absolute or relative joint angles were measured to avoid confusion and 

allow the replication of IMTP testing methodologies.   

**Insert Figure 2 about here** 

The present study found PF to demonstrate the highest between-session reliability measures 

for both postures (Table 2) similar to the observations of previous between-session (ICC ≥ 

0.89 , CV ≤ 4.6%) (8, 11, 15, 45) and within-session research (ICC ≥ 0.97 , CV ≤ 3.2%) (12, 

22). Equally, both postures demonstrated high levels of within-session reliability for time-

specific force values (Table 1) comparable to the reliability measures reported in previous 

research (4, 12, 22, 29). Limited studies have inspected the between-session reliability of 

time-specific force values (15, 26). High and acceptable between-session reliability measures 

were demonstrated for all time-specific force values (Table 2) in accordance with the 

reliability measures reported in youth male soccer players (15) and higher than the measures 

reported by James et al. (26). The results from this study confirm that both postures produce 

ACCEPTED

Copyright ª 2017 National Strength and Conditioning Association



P a g e  | 16 

 

equally high within-session and between-session reliability measures for PF and time-specific 

force values. 

Haff et al. (22) has shown that the method to quantify RFD can influence the resultant value 

and reliability of such measures, and as such, using pre-determined time bands to calculate 

RFD has been recommended. To our knowledge only one other study (26) has assessed the 

between session reliability of RFD at pre-determined time bands. RFD100 in the present 

exceeded minimum acceptable reliability criteria at both postures (between-sessions) similar 

to the results of previous research (26). Conversely, lower and acceptable levels of variance 

were demonstrated for RFD150 and RFD200 consistent with the results of James et al. (26) who 

also showed improved RFD reliability measures over longer time intervals. High and 

acceptable within-session reliability measures were observed for all RFD variables during 

hip145 testing however RFD100 and net force100 exceeded minimum acceptable reliability at 

hip175 posture (Table 1). Therefore, the results from this study confirm that a hip145 posture 

produces high-within session reliability for all RFD variables however both postures result in 

unacceptable reliability for RFD100 (Table 1 & 2).  

It should be acknowledged the present study only examined the effect of two different hip 

joint angles (145˚ and 175˚) on IMTP kinetics, while Beckham et al. (6) only compared two 

hip joint angles (145˚ and 125˚) as well. Comfort et al. (8) recommends the use of a self-

preferred selection of knee and hip joint angles as reporting no significant differences 

between self-preferred position and a range of knee (120°, 130°, 140°, and 150°) and hip joint 

angles. The present study and Beckham et al. (6) both demonstrated greater force production 

with a hip145 but did not compare this to a self-preferred position. Therefore, further research 

is required comparing hip145 joint angle to self-preferred position to determine which body 

position results in optimal force production. 
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PRACTICAL APPLICATIONS 

Coaches and researchers should conduct IMTP testing with a 145° hip joint angle due to the 

greater IMTP kinetics and lower levels of pre-tension observed in this position compared to a 

175° hip joint angle. As such, coaches and researchers should ensure that joint angles are 

standardised and kept consistent between testing occasions to allow valid comparisons of 

performance variables when longitudinally monitoring neuromuscular performance, so such 

changes in IMTP kinetics can be attributed to training or fatigue, and not to differences in 

joint angles. Furthermore, researchers are recommended when publishing research to report 

the knee and hip joint angles adopted for IMTP testing due to the effect on IMTP kinetics and 

reliability; while specifying if relative or absolute joint angles were measured.  
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Table 1. Within-session reliability measures of IMTP kinetics across postures      

95% CI 95% CI   
  

Variable ICC 
LB UB CV (%) LB UB 

SEM 

PF  0.99 0.97 1.00 2.8 1.8 3.7 68.1 
Force100  0.92 0.82 0.96 6.2 4.5 7.8 92.5 
RFD100  0.91 0.82 0.96 12.1 8.9 15.3 768.6 
Force150  0.97 0.94 0.99 4.6 3.4 5.7 72.0 
RFD150  0.97 0.93 0.98 7.5 4.9 10.1 461.5 
Force200  0.98 0.95 0.99 3.5 2.3 4.6 67.8 
RFD200   0.95 0.90 0.98 5.9 3.5 8.2 394.6 
Net PF  0.98 0.95 0.99 4.6 3.2 6.1 87.1 

Net Force100  0.91 0.81 0.96 11.6 8.6 14.7 80.4 
Net Force150  0.97 0.93 0.99 7.5 5.2 9.8 67.9 
Net Force200  0.96 0.91 0.98 5.9 3.8 8.0 74.8 

Hip145 

BW  0.95 0.90 0.98 3.5 2.1 5.0 35.4 
PF  0.99 0.98 1.00 2.8 2.1 3.5 66.2 

Force100  0.93 0.82 0.97 5.8 4.1 7.4 78.7 
RFD100  0.86 0.69 0.93 18.1 10.7 25.5 778.4 
Force150  0.95 0.88 0.98 5.3 3.9 6.8 83.5 
RFD150  0.90 0.78 0.95 13.3 8.4 18.1 2004.3 
Force200  0.98 0.95 0.99 2.9 1.8 4.0 58.2 
RFD200   0.96 0.91 0.98 8.4 5.9 10.8 345.7 
Net PF  0.97 0.93 0.98 5.3 3.6 7.0 98.3 

Net Force100  0.83 0.64 0.92 18.5 11.7 25.4 86.0 
Net Force150  0.88 0.75 0.95 13.7 8.8 18.5 104.3 
Net Force200  0.95 0.89 0.98 7.5 4.8 10.2 75.1 

Hip175 

BW  0.93 0.85 0.97 5.0 3.1 7.0 53.2 
Key:   Hip145: Hip joint angle 145°;  Hip175: Hip joint angle 175°;  PF: Peak Force; RFD: Rate of force development; BW: Bodyweight; ICC: 
Intraclass Correlation Coefficient; CV: Coefficient of Variation; Force100: Force at 100 ms; Force150: Force at 150 ms; Force200: Force at 200 ms; 
RFD100: RFD 0-100 ms; RFD150: RFD 0-150 ms; RFD200: RFD 0-200 ms; CI: Confidence interval; LB: Lower Bound; UB: Upper bound; Standard 
error of measurement ACCEPTED
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  Table 2. Between-session reliability measures of IMTP kinetics across postures (n=10) 
 Session 1 Session 2 95% CI 95% CI 

 Variable 
Mean SD MEAN SD 

ICC 
LB UB 

CV (%) 
LB UB 

SEM p g 

PF (N) 2656.1 628.2 2518.9 643.6 0.97 0.81 0.99 4.5 1.6 7.3 110.2 0.033 0.21 

Force100 (N) 1370.3 280.0 1381.3 267.2 0.84 0.33 0.96 8.0 3.6 12.5 109.5 0.872 -0.04 

RFD100 (N/s) 5548.4 2552.3 5729.5 1802.2 0.85 0.36 0.96 15.2 9.4 21.1 867.0 0.740 -0.08 

Force150 (N) 1731.0 381.0 1690.8 394.3 0.90 0.61 0.98 7.6 3.5 11.7 121.4 0.608 0.10 

RFD150 (N/s) 6103.3 2314.0 5882.6 2176.8 0.91 0.64 0.98 11.9 5.8 17.9 670.2 0.612 0.09 

Force200 (N) 1960.3 425.0 1883.7 437.3 0.94 0.77 0.99 6.6 4.0 9.1 106.5 0.264 0.17 

RFD200  (N/s) 5724.1 1868.7 5376.4 1837.4 0.94 0.77 0.99 9.4 5.6 13.1 457.7 0.235 0.18 

Net PF (N) 1883.5 577.5 1746.9 585.1 0.96 0.79 0.99 6.6 2.2 11.1 114.8 0.050 0.23 

Net Force100 (N) 597.7 253.0 609.3 180.9 0.85 0.36 0.96 12.8 7.2 18.4 86.0 0.830 -0.05 

Net Force150 (N) 958.3 344.1 918.8 325.3 0.91 0.65 0.98 9.9 4.5 15.2 100.5 0.542 0.11 

Net Force200 (N) 1187.7 371.0 1111.7 366.1 0.94 0.76 0.99 9.7 6.3 13.1 91.8 0.191 0.20 

Hip145 

BW (N) 772.6 121.6 772.0 143.9 0.97 0.86 0.99 4.0 2.5 5.4 24.5 0.970 0.00 

PF (N) 2556.4 611.2 2531.8 574.6 0.97 0.89 0.99 5.3 3.0 7.6 101.0 0.716 0.04 

Force100 (N) 1388.0 186.6 1339.7 262.4 0.88 0.55 0.97 5.2 0.1 10.3 78.5 0.33 0.20 

RFD100 (N/s) 4484.1 1665.4 4247.9 1327.8 0.68 -0.36 0.92 14.8 3.0 26.5 849.3 0.632 0.15 

Force150 (N) 1663.4 278.3 1593.2 339.0 0.93 0.73 0.98 5.1 0.7 9.5 82.1 0.175 0.22 

RFD150 (N/s) 4825.7 1549.6 4521.9 1380.3 0.83 0.73 0.98 13.1 4.5 21.8 603.2 0.878 0.20 

Force200 (N) 1913.4 375.7 1839.3 390.2 0.95 0.80 0.99 5.3 1.7 9.0 86.5 0.181 0.19 

RFD200  (N/s) 4869.4 1516.1 4621.9 1363.8 0.89 0.59 0.97 12.8 5.7 19.9 471.7 0.141 0.16 

Net PF (N) 1660.46 551.72 1655.81 476.37 0.95 0.80 0.99 9.5 4.3 14.7 112.9 0.951 0.01 

Net Force100 (N) 492.04 169.37 463.72 142.11 0.72 -0.15 0.93 11.6 0.9 22.4 82.4 0.561 0.17 

Net Force150 (N) 767.48 236.99 717.21 212.07 0.85 0.43 0.96 11.0 3.0 19.0 87.4 0.355 0.21 

Net Force200 (N) 1017.52 307.14 963.32 275.49 0.89 0.608 0.974 11.9 5.7 18.0 93.6 0.364 0.18 

Hip175 

BW (N) 895.9 167.5 876.0 158.6 0.97 0.88 0.99 3.2 1.2 5.3 29.6 0.3 0.12 
Key:   Hip145: Hip joint angle 145°;  Hip175: Hip joint angle 175°; PF: Peak Force; RFD: Rate of force development; BW: Bodyweight; ICC: Intraclass Correlation 
Coefficient; CV: Coefficient of Variation; Force100: Force at 100 ms; Force150: Force at 150 ms; Force200: Force at 200 ms; RFD100: RFD 0-100 ms; RFD150: RFD 0-150 ms; 
RFD200: RFD 0-200 ms; CI: Confidence interval; LB: Lower Bound; UB: Upper bound; SEM: Standard error of measurement 
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Table 3. Comparisons of IMTP kinetics between postures 

 Hip145 Hip175  
Variable MEAN SD MEAN SD 

 
p g Descriptor 

Mean Difference (SD) % Difference (SD) 

PF (N) 2839.5 677.7 2747.2 627.3 0.066 0.14 Trivial 92.3 (255.4) 2.6 (8.9) 

Force100 (N) 1483.6 306.5 1488.2 284.9 0.893 -0.02 Trivial -4.6 (179.0) -1.3 (12.9) 

RFD100 (N/s) 6095.4 2516.5 4766.4 1908.0 0.001 0.59 Small 1329.0 (1821.0) 16.8 (30.2) 

Force150 (N) 1900.8 416.4 1792.3 357.9 0.025 0.28 Small 108.5 (241.4) 4.5 (13.1) 

RFD150 (N/s) 6844.5 2426.4 5204.7 1639.9 <0.001 0.78 Moderate 1639.9 (1710.1) 21.1 (24.5) 

Force200 (N) 2125.5 442.2 2017.5 398.0 0.022 0.25 Small 108.0 (234.2) 4.4 (10.9) 

RFD200  (N/s) 6257.0 1802.3 5029.4 1611.9 <0.001 0.71 Moderate 1227.5 (1318.2) 18.5 (20.7) 

Net PF (N) 2018.7 581.8 1791.5 524.4 <0.001 0.40 Small 227.2 (298.4) 10.4 (14.8) 

Net Force100 (N) 662.9 255.2 532.6 192.9 0.001 0.57 Small 130.3 (189.3) 14.4 (30.6) 

Net Force150 (N) 1080.0 367.5 836.6 286.8 <0.001 0.73 Moderate 243.4 (263.5) 19.5 (24.0) 

Net Force200 (N) 1304.7 367.3 1061.8 320.8 <0.001 0.69 Moderate 242.9 (265.7) 17.3 (19.4) 

BW (N) 820.8 157.7 955.7 201.3 <0.001 -0.74 Moderate -134.9 (71.5) -16.2 (8.0) 

Key:   Hip145: Hip joint angle 145°; Hip175: Hip joint angle 175°; PF: Peak Force; RFD: Rate of force development; BW: Bodyweight; Force100: Force at 100 ms; 
Force150: Force at 150 ms; Force200: Force at 200 ms; RFD100: RFD 0-100 ms; RFD150: RFD 0-150 ms; RFD200: RFD 0-200 ms;  
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Figure 1. Schematic representation of IMTP positions with a standardised relative knee joint angle - Hip145 (solid 
black line) and Hip175 (dashed grey line). 
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Figure 2. Schematic representation of relative and absolute 175° hip joint angles IMTP positions with a 
standardised relative knee joint angle – Absolute (trunk) hip175 (solid black line) and Relative hip175 (dashed 
grey line). 
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