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This paper investigates sound propagation in multiscale rigid-frame porous materials

that support mass transfer processes, such as sorption and different types of diffusion,

in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic

expansion method of homogenization for periodic media is successively used to derive

the macroscopic equations describing sound propagation through the material. This

allowed us to conclude that the macroscopic mass balance is significantly modified by

sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale

(pore to/from micro- and nanopore scales) pressure diffusion. This modification is

accounted for by the dynamic compressibility of the effective saturating fluid that

presents atypical properties that lead to slower speed of sound and higher sound at-

tenuation, particularly at low frequencies. Contrarily, it is shown that the physical

processes occurring at the micro-nano scale do not affect the macroscopic fluid flow

through the material. The developed theory is exemplified by introducing an analyt-

ical model for multiscale sorptive granular materials that is experimentally validated

by comparing its predictions with acoustic measurements on granular activated car-

bon. Furthermore, we provide empirical evidence supporting an alternative method

for measuring sorption and mass diffusion properties of multiscale sorptive materials

using sound waves.
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I. INTRODUCTION9

Sound propagation in sorptive porous materials with multiple scales of heterogeneities,10

i.e. multiscale sorptive porous materials, is investigated in this paper. Sorption is a general11

term used to refer to adsorption, desorption, and absorption (penetration of the fluid into12

the solid phase). The former is a physical or chemical process in which the fluid molecules13

are adhered on to a surface. Adsorption can also be understood as an increase of fluid14

density in the vicinity of a fluid-solid interface. Desorption is the opposite phenomenon,15

i.e. the fluid molecules are released from a surface. The molecules adherence in physical16

adsorption is caused by weak van der Waals forces, while their release by either an increase17

of temperature or a decrease in pressure which leads to a break of the weak physical bond1.18

Adsorption/desorption is accompanied by mass diffusion that governs the flux of molecules19

from a region of higher concentration to one of lower concentration1.20

The microstructure of multiscale sorptive materials features pores or inclusions of very21

dissimilar characteristic sizes ranging from nanometers to millimeters. An example of this22

type of materials is a packing of porous grains in which the grains themselves feature two23

scales of heterogeneities, i.e. a triple porosity sorptive material. It will be demonstrated24

in this paper that their distinctive characteristic is the simultaneous occurrence of sorption25

processes at the smallest scale, different inter-scale diffusion processes, and visco-thermal26

effects at different scales. Materials of interest that possess hierarchical microstructure and27

support the mentioned physical processes include activated carbons2, zeolites3, and metal-28

organic frameworks4, for example, in granular and pellet form.29

The investigation of mass transport and sorption in multiscale porous materials is of30

interest, for example, in geophysics and gas engineering. For instance, in Ref. 5 the solute31

transport in fractured sorptive porous media was investigated. In Ref. 6, gas filtration in32

porous coal and the effect of gas constrained in nanometric pores was studied with the aim of33

understanding the physical mechanisms leading to coal-gas outbursts in coal mines. In Ref.34

7, a dynamic model for mass transfer in coal seams with application to CO2 sequestration35

was investigated, while Ref. 8 dealt with the behavior of gas flow in multi-porosity shale36

gas reservoirs.37

On the other hand, multiscale sorptive porous materials are widely used in chemical38

engineering applications such as filtration, gas storage, and catalysis, among others1–4,9. For39
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these applications, it is of interest to assess the sorption and diffusion properties of the40

materials. A measurement method, called frequency response10–12, has been used to this41

end. This method aims at measuring the mass diffusion and sorption parameters of porous42

materials and is based on periodically perturbing the equilibrium of a system. For example,43

in a batch system it is normally considered a slow periodic change in volume of a container44

in which the sorptive material is placed. This change in volume leads to a slow periodic45

change in pressure that is recorded and further used to obtain the material parameters46

by fitting a theoretical model to the data. Of these models, the ones described in Refs.47

13–15 for bidispersed structured sorbents are relevant to the present work. Their common48

features are: (i) the mass transport in both pore networks is modeled as a Fickian diffusion49

process, (ii) equilibrium between fluid and sorbed phases in the pores and linear isotherms are50

considered, and (iii) they are usually applied to describe diffusion and sorption in granular51

materials made by agglomerating porous microparticles (or crystals). In particular, the52

justification of (i) is the experimental condition normally used in the frequency response53

method: the measurements are taken at low pressures. At normal conditions, the mass54

transport in the pores formed in between millimeter-size inclusions is not of diffusive but55

advective type. This has been accounted for in Refs. 16 and 17 where sound propagation56

in a slit pore formed between two infinite nanoporous sorptive plates and in an array of57

cylindrical pores embedded in a nanoporous sorptive matrix were theoretically investigated,58

respectively. These works aimed at extending the working frequency range of the frequency59

response method and the structures studied can be considered as single-pore and double60

porosity sorptive materials.61

In acoustics, the influence of sorption on sound propagation in a single tube has been62

investigated in Refs. 18 and 19. The main conclusion in Ref. 19 is that the contribution63

to sound energy dissipation due to viscosity, heat transfer, and mass diffusion are additive.64

Experimental work on the acoustical properties of granular activated carbon (GAC) has65

evidenced that partially filling a loudspeaker enclosure20 or a Helmholtz resonator cavity21
66

with GAC leads to an increase of their effective compliance. In addition, it has been shown67

that rigidly-backed layers of GAC display unusually large low frequency sound absorption68

coefficient21–23. The characteristic feature of activated carbons is that the low-frequency69

effective compressibility of the saturating gas attains values larger than the isothermal one70

predicted by the current theory of acoustics of porous media23. It was suggested in Ref. 2371
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that this behavior may be explained by considering an additional scale to the double porosity72

model introduced therein, as well as by accounting for sorption processes. This idea was73

developed further in Ref. 24 where rarefied gas flow in pores with size comparable to the74

molecular mean free path and sorption effects in nanopores were included into a model for75

sound propagation in granular activated carbon. One of the limitations of this model is that76

the inter-scale (inner-grain micro to/from nano pores) mass diffusion was assumed quasi-77

static. Hence, the model cannot be used to assess the influence of dynamic inter-scale mass78

diffusion on the acoustical properties of triple porosity sorptive materials. Furthermore,79

since this model was introduced in a phenomenological manner, its range of validity is not80

clearly identified. Recently, an upscaled model for sound propagation in double porosity81

sorptive materials has been developed in Ref. 25. This model cannot be used to describe82

the acoustical properties of triple porosity sorptive materials. The limitations of these two83

works are overcome in this paper. The aim is to describe the acoustical properties of a wide84

class of sorptive porous materials.85

The first objective of this paper is to present a rigorous derivation of the macroscopic86

description of sound propagation in multiscale sorptive porous materials by making succes-87

sive use of the two-scale asymptotic method of homogenization for periodic media26,27. The88

application of this method leads to an upscaled model whose range of validity is clearly89

identified. The upscaled model accounts for viscosity and heat transfer effects at the pore90

scale, rarefied gas flow and heat transfer at the micropore scale, inter-scale (pore to/from91

micro-nanopore scales) pressure diffusion, inter-scale (micro- to/from nanopore scales) mass92

diffusion, and sorption at the nanopore scale. The developed theory applies to materials93

saturated with a pure gas. Typical examples may be the system nitrogen/granular acti-94

vated carbon, zeolites or metal-organic frameworks, which could approximate the acoustic95

behavior of this type of materials saturated with air.96

The second objective of this paper is to determine the combined influence of sorption,97

rarefaction, and dynamic inter-scale diffusion processes on sound propagation through triple98

porosity sorptive materials. Crucially, it is demonstrated that sorption effects occurring in99

pores of nanometer size strongly modify the macroscopic mass balance. This modification is100

accounted for by the compressibility of the effective saturating fluid, which displays uncon-101

ventional properties that result in a slower speed of sound and higher attenuation of sound102

in the material. The strength of these macroscopic effects in the audible frequency range103
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largely depends on the dynamic pressure and mass diffusion properties of the material. This104

cannot be properly assessed using the models developed in Refs. 24 and 25 due to their105

limitations discussed above. Contrarily to sorption effects, it is shown that the effects of rar-106

efied gas flow in pores with size comparable to the molecular mean free path only intervene107

in the macroscopic acoustic behavior indirectly via a modification of the apparent pressure108

diffusivity. Furthermore, it is proven that, under the conditions established by homogeniza-109

tion and in coherence with our previous studies23,24, the constitutive fluid flow law and its110

associated effective parameter, i.e. the dynamic viscous permeability, are not modified by111

the physical processes occurring in the micro and nano pores.112

The strong combined influence of sorption and mass diffusion on the acoustical properties113

of the materials is measurable. Hence the third objective of this paper corresponds to114

the use of acoustic measurements on macroscopic samples to deduce physical parameters115

characterizing sorption, that occurs at the nanoscale, and the effective diffusivity determining116

the inter-scale mass diffusion. This may provide a simple alternative procedure to measure117

the sorption and diffusion properties of multiscale sorptive materials. We provide empirical118

evidence supporting this claim and validate the developed theory experimentally.119

The paper is organized as follows. The macroscopic description of sound propagation in120

multiscale sorptive porous materials is presented in Section II. The analysis of the effective121

parameters of the upscaled model follows. An analytical model for sound propagation in122

multiscale sorptive granular material is introduced in Section IV. This is further used in123

Section V to exemplify and experimentally validate the theory. The main findings are124

summarized in the conclusions.125

II. SOUND PROPAGATION IN MULTISCALE SORPTIVE POROUS126

MATERIALS - THEORY127

This section deals with the derivation of the macroscopic equations that describe sound128

propagation in multiscale sorptive porous materials. The upscaling is done using the two-129

scale asymptotic method of homogenization for periodic media26,27. The material geometry130

and the main assumptions regarding its morphology are discussed first. We then focus on131

the case of a multiscale sorptive material with well separated macro, meso, micro and nano132

scales. This allows applying the upscaling method to the set of equations that describes133
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the acoustic behavior in the pore fluid network, where viscosity and heat transfer effects134

take place, and in the micro-nano porous domain. The latter is modeled as an equivalent135

continuum and accounts for viscosity and heat transfer effects at the micropore scale, inter-136

scale mass diffusion characterized by the micropore geometry and two diffusion processes137

(i.e. bulk and surface diffusion) occurring in the nanopores, and sorption on the walls of the138

nanopores. The effective equations governing sound propagation in the micro-nano porous139

domain have been derived in Ref. 25. We present in Appendix A the main steps of the140

derivation as well as its extension to account for rarefied gas flow and heat transfer in pores141

with size comparable to the molecular mean free path.142

A. Geometry143

Consider a periodic multiscale sorptive rigid-frame porous material saturated with a pure144

Newtonian fluid. Figure 1 shows a diagram of the scales of the material and the relevant145

geometrical descriptors. The macroscopic characteristic length L is related to the sound146

wavelength λ through L = |λ| /2π and strongly exceeds all other characteristic lengths of147

the material. The representative elementary volume (REV) of the material is denoted as Ωp.148

This is constituted by the volume of the pores Ωpf and the volume of the micro-nano porous149

domain Ωmn, i.e. Ωp = Ωpf ∪ Ωmn. The solid part of Ωmn is assumed perfectly impervious150

to gas transport. The surface of the pores is denoted as Γp. The micro-nano porous domain151

Ωmn has a REV Ωm that comprises the volume of the micropores Ωmf and that of the nano152

porous domain Ωn, i.e. Ωm = Ωmf ∪ Ωn. The surface of the micropores is denoted as Γm.153

In turn, the nano porous domain is composed of the volume of the nanopores Ωnf and the154

volume of its impervious solid part. The surface of the nanopores is represented by Γn.155156

The characteristic length associated with the pore (or the period of the material), mi-157

cropore, and nanopore scales are denoted as lp, lm, and ln, respectively. These are well158

separated, i.e. ln << lm << lp, and for the materials of interest are usually millimetric,159

micrometric, and nanometric in size (see e.g. Ref. 9).160

Because of the separation between the pore and micropore scales, i.e. lm/lp << 1, the161

micro-nano porous domain Ωmn can be modeled as an equivalent continuum28. Similarly,162

since the characteristic size associated with the nanopore scale is much smaller than that163

associated with the micropore scale, i.e. ln/lm << 1, the nano porous domain can be164
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FIG. 1. Diagram of the scales of a multiscale sorptive porous material.

considered as an equivalent continuum governed by effective equations that are defined in165

the whole domain Ωn and reflect the following local physical processes25: sorption occurring166

on the walls of the nanopores, volumetric diffusion of free gas molecules in the bulk of the167

nanopores, and surface diffusion of the adsorbed molecules. The diffusion processes are168

respectively represented in Figure 1 by the horizontal dashed gray and black lines, while169

the mass exchange between the gas (hollow circles) and adsorbate (black circles) phases is170

depicted with vertical lines with arrows. The adsorbate volume is estimated by Ωs = |Γn|Nd,171

where N is the number of adsorbed layers and d is the diameter of the molecules. These are172

respectively assumed equal to unity (i.e. N = 1, monolayer coverage) and smaller than the173

nanopore characteristic size (i.e. d < ln). The void space available for the transport of free174

molecules is represented by Ωv. Hence one has that Ωnf = Ωv ∪ Ωs.175

The porosity of the material is φpmn = φp+(1−φp)(φm+(1−φm)φn), where φp = Ωpf/Ωp,176

φm = Ωmf/Ωm, and φn = Ωnf/Ωn are the porosities associated with the pores, micropores,177

and nanopores, respectively. In turn, the porosity of the pores and micropores is φpm =178

φp + (1− φp)φm, while that of the micro-nano porous domain is φmn = φm + (1− φm)φn.179

The disparity in length scales between the pore size and the macroscopic characteristic180

size associated with the acoustic phenomenon provides a small parameter ε = lp/L << 1.181
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B. Governing equations at the pore scale182

The equations describing sound propagation in the pore fluid network are29–32: the lin-183

earized equations of conservation of momentum (1), mass (2), and energy (3); and the184

equation of state (4). The physical parameters involved are the dynamic viscosity η, spe-185

cific heat capacity Cp, thermal conductivity κ, and equilibrium pressure P0, density ρ0, and186

temperature τ0. The oscillating velocity, pressure, density, and temperature are denoted as187

up, pp, ρp, and τp, respectively. Note that harmonic dependence of the type ejωt is assumed188

and, because of linearity, this term is omitted throughout the paper.189

η∇2up −∇pp = jωρ0up in Ωpf , (1)
190

jωρp + ρ0∇ · up = 0 in Ωpf , (2)
191

κ∇ · ∇τp = jωCpρ0τp − jωpp in Ωpf , (3)
192

pp
P0

=
ρp
ρ0

+
τp
τ0

in Ωpf . (4)

The equations governing sound propagation in the micro-nano porous domain, which is193

modeled as an equivalent continuum, have been derived in Ref. 25 for the case of negligible194

rarefaction effects in the micropores. We extend this model in Appendix A to account for195

these effects. The derived effective equation of conservation of mass (5) and dynamic Darcy’s196

law (6) are given by:197

∇ ·Um + jωpmCmn(ω) = 0 in Ωmn, (5)
198

Um = −km(ω)

η
· ∇pm in Ωmn, (6)

where pm is pressure in the micropores, Um is the Darcy’s velocity, km(ω) is the dynamic199

viscous permeability associated with the micropores and Cmn(ω) is the compressibility of the200

effective fluid saturating the micro-nano porous domain (hence the subscript mn). Explicit201

expressions for the latter two parameters will be given further below.202

Eqs. (1)-(6) are coupled via the following conditions on the pore boundary Γp expressing203

the continuity of normal mass flux (7) and pressure (8), and of negligible temperature204

variations (9). Note that n is the outward-pointing normal vector (see Figure 1).205

ρ0up · n = ρ0Um · n on Γp, (7)
206

pp = pm on Γp, (8)
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207

τp = 0 on Γp. (9)

Together with the boundary condition (7), it is set that the tangential mass flux is zero,208

i.e. ρ0(up − (up · n)n) = 0. In addition, by considering the continuity of heat flux and its209

estimation33 κτp/lp = κτm/lm, one obtains τm = lmτp/lp. Then, the variation of temperature210

in the pores is much larger than that in the micropores, i.e. τp >> τm, and the condition211

Eq. (9) is thereby justified.212

C. Homogenization procedure213

The scale separation between the pore and macroscopic characteristic sizes, i.e. lp/L =214

ε << 1, allows us to use the two-scale asymptotic expansion method of homogenization for215

periodic media to derive an equivalent macroscopic model. To represent the evolution at216

the two spatial scales, the following dimensionless space variables x/L = x∗ and x/lp = y∗217

are introduced, where x stands for the usual space variable. These dimensionless space218

variables are associated with the variations at the local and macroscopic scales, respectively.219

Equivalently, taking L as reference length, we will use the following two dimensional space220

variables x = Lx∗ and y = Ly∗ = xL/lp = ε−1x. Then, the usual gradient operator ∇ is221

given by ∇(xy) = ∇x+ ε−1∇y (and ∇2
(xy) = ∇2

x+ 2ε−1∇xy + ε−2∇2
y). Note that for simplicity222

in the notation, we have used non-bold letters for the spatial variables.223

The use of two space variables should be combined with a rescaling of the usual equations224

based upon a single space variable. The reason for the rescaling lies in the fact that when225

expressed with the two space variables (x, y), the actual physical gradient of a quantity Q226

that varies at the macroscopic scale, i.e. ∇xQ, becomes ∇(xy)Q. Similarly, if the quantity227

varies at the local scale, the actual physical gradient ∇yQ reads ε∇(xy)Q. Therefore, the228

gradient of variables oscillating at the local scale should be rescaled. In other words, to229

formulate the set of rescaled equations governing sound propagation at the pore scale one230

should analyze at which scale the physical quantities fluctuate as well as the relative order231

of magnitude of the terms in the governing equations. This analysis for the variables and232

terms in Eqs. (1)-(4) is well established. The arguments and procedure can be found, for233

example, in Refs. 27 and 30 and are now recalled.234

In the long-wavelength regime the pore pressure fluctuates at the macroscopic scale, i.e.235
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|∇pp| = O(pp/L) and, while the fluid velocity and its rate of deviatoric deformation vary at236

the pore scale (i.e. |η∇2up| = O(ηup/l
2
p)), the microscopic divergence itself is of the order237

of the macroscopic divergence, i.e. |∇ · up| = O(up/L). Note that, for example, up is an238

estimation of |up|. On the other hand, the temperature varies at the pore scale, which leads239

to the following estimation |κ∇2τp| = O(κτp/l
2
p). Regarding the relative order of magnitude,240

we are interested in the case when the viscous and inertial terms in the oscillatory Stokes241

equation (1) balance the pressure gradient. Hence the estimations of the three terms in Eq.242

(1) are of the same order of magnitude, i.e. O(ηup/l
2
p) = O(ωρ0up) = O(pp/L). Similarly, the243

estimations of the three terms in the equation of conservation of energy (3) are of the same244

order of magnitude, i.e. O(κτp/l
2
p) = O(ωρ0Cpτp) = O(ωpp). Furthermore, the estimation of245

the terms in the equations of conservation of mass and of state satisfy O(up/L) = O(ωρp/ρ0)246

and O(pp/P0) = O(ρp/ρ0) = O(τp/τ0), respectively.247

In the micro-nano porous domain, both the Darcy’s velocity Um and the micropore248

pressure pm fluctuate at the pore scale. In addition, the estimations of the terms in the249

mass balance equation (5), as well as those in the dynamic Darcy’s law Eq. (6)), are of the250

same order of magnitude: O(Um/lp) = O(ωpmCmn) and O(Um) = O(Kmpm/ηlp).251

Regarding the boundary conditions, the continuity of pressure on the pore boundaries252

Γp sets O(pp) = O(pm) while the long-wavelength condition imposes that the advective253

mass flux pulsed from the micro-nano porous domain on Γp is of one order smaller than the254

advective mass flux generated by the incident wave in the pores, i.e.255

U =
|ρ0Um · n|
|ρ0up · n|

= O(ε). (10)

This estimate is justified by the following argument. Consider a cell Ω and denote the256

ingoing mass flux on one face (of surface S) as Sρ0up1 , the outgoing mass flux on the257

opposite face as Sρ0up2 , and the mass flux pulsed from the micro-nano porous domain Ωmn258

as ρ0UmΓp. By hypothesis, a regime of long wavelength L >> l is considered. Thus,259

(Sρ0up2 − Sρ0up1)/Sρ0up1 ≈ lp/L. Since from conservation of mass Sρ0up2 ≈ Sρ0up1 +260

Γpρ0Um, it follows that Γpρ0Um/Sρ0up1 ≈ lp/L = ε.261

In terms of physical parameters, the ratio between the mass fluxes on the pore boundary262

Γp can be written as:263

U =
|ρ0Um · n|
|ρ0up · n|

=
Kmpm
ηlp

ηL

l2ppp
=
Km
l2p

L

lp
=
l2m
l2p
ε−1 = O(ε). (11)
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Note that i) the continuity of pressure on Γp (i.e. Eq. (8)) has been used and ii) the264

estimation (11) holds as long as characteristic sizes associated with the pore and micropore265

scales are well separated, i.e. lm/lp = O(ε). Analogously, this condition can be expressed in266

terms of the viscous permeabilities associated with the pore and micropore fluid networks267

as Km/Kp = O(ε2), i.e. the permeabilities are highly contrasted. Furthermore, the mass268

flux ratio estimation is consistent with the modeling of the micro-nano porous domain as an269

equivalent continuum.270

The rescaled set of equations describing sound propagation at the pore scale is then given271

by Eqs. (12)-(19). Note that we adopt the usual homogenization convention that consists in272

keeping the same notation as for the single-space-variable formulation for both the variables273

and the gradient operator. For example, ∇ and up stand for ∇(xy) and up(x, y), respectively.274

ε2η∇2up −∇pp = jωρ0up in Ωpf , (12)
275

jω

(
pp
P0

− τp
τ0

)
+∇ · up = 0 in Ωpf , (13)

276

ε2κ∇ · ∇τp = jωCpρ0τp − jωpp in Ωpf , (14)
277

ε∇ ·Um + jωpmCmn = 0 in Ωmn, (15)
278

Um = −km
η
· ε∇pm in Ωmn. (16)

279

ρ0up · n = ερ0Um · n on Γp, (17)
280

pm = pp on Γp, (18)
281

τp = 0 on Γp. (19)

The physical variables are then looked for in the form of asymptotic expansions in powers of282

the small parameter ε = lp/L as Q(x, y) =
∑∞

i=0 ε
iQ(i)(x, y) where Q = pp,up, τp, ρp, pm,Um.283

These are then replaced in Eqs. (12)-(19) and the terms of the same order are identified.284

This leads to cell problems whose solutions are used in conjunction with the leading-order285

mass balance equation spatially averaged over the pore volume to obtain the macroscopic286

equations that describe sound propagation in multiscale sorptive porous materials introduced287

in the next section. The mathematical details of the derivation are presented in Appendix288

B.289
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D. Macroscopic description of sound propagation in multiscale sorptive290

materials291

The macroscopic mass balance equation and fluid flow constitutive law determining sound292

propagation in multiscale sorptive porous materials are a key result of this paper and are293

respectively given by Eqs. (20) and (21) (see Appendix B for their derivation).294

∇x · 〈u(0)
p 〉+ jωp(0)

p C(ω) = 0, (20)
295

〈u(0)
p 〉 = −k(ω)

η
· ∇xp

(0)
p . (21)

Here the dynamic viscous permeability tensor is given by k(ω) = kp(ω), with kp(ω) being the296

dynamic viscous permeability tensor associated with the pore fluid network. The effective297

dynamic compressibility C(ω) is given by Eq. (22) and corresponds to the sum of the298

classical effective dynamic compressibility Cp(ω) (Eq. (23)) that accounts for heat transfer299

in the pores and an additional effective dynamic compressibility Cmn(ω) that results from300

the mechanisms of heat transfer in the micropores, inter-scale (micro-nano) mass diffusion,301

and sorption in the nanopores. The contribution of Cmn(ω) is weighted by the function302

Fpmn(ω), which accounts for inter-scale pressure diffusion effects.303

C(ω) = Cp(ω) + (1− φp)Cmn(ω)Fpmn(ω). (22)

The dynamic compressibility Cp of the effective fluid saturating the pore network is given304

by:305

Cp(ω) =
φp
P0

(
1− jω

ωtp

γ − 1

γ

Θp(ω)

Θp0

)
, (23)

where Θp(ω) is the dynamic thermal permeability associated with the pore fluid network and306

the thermal characteristic frequency determining the transition from isothermal to adiabatic307

sound propagation in the pore fluid network is defined as ωtp = κφp/ρ0CpΘp0, where Θp0 =308

Θp(ω = 0) is the static thermal permeability32.309

The function Fpmn is given by:310

Fpmn(ω) = 1− jω

ωb

Bapp0
Bapp

B(ω)

B0

, (24)

where B(ω) is the inter-scale pressure diffusion function, Bapp = Km/ηCmn is the apparent311

pressure diffusivity, and the pressure diffusion characteristic frequency is estimated as ωb =312
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(1−φp)Bapp0/B0. Here B0 = B(ω = 0) is the static value of the inter-scale pressure diffusion313

function, Bapp0 = Km0/ηCmn0 is the static apparent pressure diffusivity, Km0 = Km(ω = 0)314

is the static viscous permeability associated with the micropore fluid network, and Cmn0 =315

Cmn(ω = 0).316

The dynamic compressibility of the effective fluid saturating the micro-nano porous do-317

main Cmn(ω) is given by (see Appendix A for its derivation):318

Cmn(ω) = Cm(ω) + (1− φm)CnFmn(ω), (25)

where the dynamic compressibility of the effective fluid saturating the micropores Cm is319

calculated using Eq. (23) with the subscript p being replaced by m. The effective compress-320

ibility of the nano porous domain Cn and the function Fmn that accounts for inter-scale321

(micro-nano) mass diffusion are given by:322

Cn =
He

P0

, (26)

323

Fmn(ω) = 1− jω

ωd

G(ω)

G0

, (27)

where the mass diffusion characteristic frequency is defined as ωd = (1− φm)Dapp/G0. Here324

G0 is the static value of the dynamic inter-scale mass diffusion G(ω) (see Eq. (A.35)),325

Dapp = De/He is the apparent mass diffusivity, De is the effective diffusion coefficient, and326

He is the effective linearized sorption equilibrium constant25. Note that De can be expressed327

in terms of the diffusion coefficients associated with the volumetric diffusion of free gas328

molecules in the bulk of the nanopores and surface diffusion of the adsorbed molecules on329

the walls of the nanopores (see Eq. (A.5)), while He in terms of the linearized sorption330

equilibrium constant H (see Eq. (A.6)) and can be related to the parameters of the classical331

Langmuir isotherm model34 via Eq. (A.37).332

Further assuming macroscopic isotropy, the dynamic viscous permeability becomes k =333

KI, where I is the unitary second-rank tensor. Then, the characteristic impedance Zc, wave334

number kc, and speed of sound C in the material are given by35 (with K = Kp):335

Zc(ω) =

√
η

jωKC
, kc(ω) = ω

√
ηC

jωK
, C(ω) =

ω

kc(ω)
. (28)

Quantities that will be used to experimentally validate the theory are the surface336

impedance Zw and sound absorption coefficient α of a rigidly-backed layer of material337
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of thickness dl. These are given by:338

Zw(ω) = −jZc cot(kcdl), α(ω) = 1−
∣∣∣∣Zw − Z0

Zw + Z0

∣∣∣∣2 =
4X∗

(1 +X∗)2 + (Y ∗)2
. (29)

where Z0 = ρ0c0 is the characteristic impedance of the saturating fluid, c0 its speed of339

sound, and X∗ = Re(Zw(ω)/Z0)) and Y ∗ = Im(Zw(ω)/Z0)) are the normalized resistance340

and reactance, respectively.341

In summary, the derived macroscopic equations (20) and (21) that describe sound prop-342

agation in multiscale sorptive rigid-frame porous materials allows us to conclude that the343

dynamic Darcy’s law and the dynamic viscous permeability are not modified by the physical344

processes occurring in the micro-nano porous domain. Only the fluid flow in the pore fluid345

network influences the dynamic permeability values. Conversely, the effective dynamic com-346

pressibility becomes significantly modified by i) inter-scale pressure diffusion (pores to/from347

the micro-nano porous domain), ii) inter-scale mass diffusion (micropores to/from the nano348

porous domain), and iii) sorption occurring on the walls of the nanopores. This modification349

comes from the appearance of a source term in the macroscopic mass balance equation, i.e.350

the third term in Eq. (B.8), that accounts for the contribution of these physical processes.351

Since the quantities in Eqs. (28) and (29) depend on C(ω), these are all modified by the352

physical processes that influence the effective dynamic compressibility.353

III. ANALYSIS OF THE EFFECTIVE PARAMETERS354

The limiting values of the effective dynamic compressibility C(ω << ωmin) = Clf and355

C(ω >> ωmax) = Chf , where ωmin = min(ωtp, ωd, ωb, ωtm) and ωmax = max(ωtp, ωd, ωb), are356

an important result of this paper. These are given by (see Appendix C for their derivation):357

ChfP0 =
φp
γ
, (30)

358

ClfP0 = φp + (1− φp)(φm + (1− φm)He)−
jω

ωc
, (31)

where ωc is a global characteristic frequency that accounts for the thermal and diffusive359

processes in the material and is defined by:360

1

ωc
= φp

γ − 1

γ

1

ωtp
+ (1− φp)φm

(
γ − 1

γ

1

ωtm
+

1

ωb

)
+ (1− φp)(1− φm)He

(
1

ωb
+

1

ωd

)
. (32)
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Eq. (30) shows that for frequencies much higher than those characterizing the diffusion361

mechanisms, the influence of the physical processes occurring in the micro-nano porous362

domain on the macroscopic effective dynamic compressibility is negligible.363

On the right-hand side of Eq. (32), the first term is associated with the effects of heat364

transfer between the solid frame and the fluid in the pores. The second term accounts for365

heat transfer between the solid frame and the fluid in the micropores and the influence of366

inter-scale pressure diffusion. The third term is associated with inter-scale pressure and367

mass diffusion. Note that sorption modifies both the mass diffusion- and pressure diffusion-368

related effects via the dependence of the respective characteristic frequencies on the effective369

linearized sorption equilibrium constant He. By construction one has that ωtp < ωtm, ωd <370

ωtm, and ωb < ωtm. Depending on the morphologies of the pore fluid network and micro-371

nano porous domain as well as their associated thermal and apparent mass diffusivities, the372

mass diffusion characteristic frequency could be either smaller, in the order of, or larger373

than the thermal characteristic frequency associated with the pore fluid network, i.e. either374

ωd < ωtp, ωd = O(ωtp), or ωd > ωtp. Similarly, the same type of sorting relationship can be375

observed for ωb and ωtp. On the other hand, one may observe ωd = O(ωb) or ωd > ωb for fast376

diffusing system, while for strongly sorptive gas-solid system presenting slow mass diffusion377

the inequality ωd < ωb is likely to be observed.378

Defining the ratio between the effective adsorbate concentration in the nanopores and the379

effective gas concentration in the pores and micropores as MH = (1− φp)(1− φm)He/φpm,380

it follows from Eq. (31) that the static compressibility is given by:381

C0 = C(ω = 0) =
1

P0

(φp + (1− φp)(φm + (1− φm)He) =
1

P0

φpm(1 +MH). (33)

This equation shows that, as a consequence of sorption, the low-frequency effective dynamic382

compressibility can attain a value substantially larger than that of conventional porous383

materials.384

It is worth highlighting that the direct relation between the effective linearized sorption385

equilibrium parameter He and the real part of the low-frequency effective dynamic compress-386

ibility, given by Eq. (33), allows deducing He from measurements of Re(C(ω → 0)). On the387

other hand, the effective diffusion coefficient De can be measured from measurements of the388

imaginary part of the effective dynamic compressibility and the use of Eq. (31), provided389

that the other macroscopic parameters involved are known.390
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In general, the effective dynamic compressibility reduces to that of conventional single391

porosity non-sorptive materials when φn = φm = 0, i.e. C(ω) = Cp(ω). Hence its limiting392

values are P0C(ω >> ωtp) = φp/γ and P0C(ω << ωtp) = φp − jω/ωc, with 1/ωc being equal393

to the first term on the right-hand side of Eq. (32).394

In absence of nanopores, i.e. φn = 0 (or He = 0), the effective dynamic compress-395

ibility of double porosity non-sorptive materials with highly contrasted permeabilities33,36
396

is retrieved, i.e. C(ω) = Cp + (1 − φp)Cm(ω)Fpm(ω). Here Fpm is calculated using Eq.397

(24) and keeping in mind that the apparent pressure diffusivity becomes Bapp = Bapp0 =398

Km0P0/φmη. Consequently, the pressure diffusion characteristic frequency is given by ωb =399

(1 − φp)Km0P0/φmηB0 and the limiting values of the effective dynamic compressibility are400

P0C(ω << ωtp) = φpm − jω/ωc and P0C(ω >> ωb) = φp/γ. In this case, 1/ωc is given by401

Eq. (32) for He = 0.402

The case of a material without micropores, i.e. φm = 0, given the extremely large403

separation between the characteristic sizes associated with the nanopore and pore scales404

considered in this work, is of less interest since the mass flux pulsed from the nano porous405

domain is extremely small in comparison with the mass flux in the pores. Hence the mass406

flux ratio is estimated by U = O(ε2) and the material effectively behaves as a single porosity407

non-sorptive material in the audible frequency range.408

For a material without mesoscopic pores, i.e. φp = 0, the effective dynamic compressibility409

reduces to that of double porosity sorptive materials introduced in Ref. 25 (see also Appendix410

A), while the dynamic viscous permeability is given by K = Km.411

The case of pressure and mass diffusion occurring without sorption is observed when i) the412

number of adsorbed layers is equal to zero (i.e. N = 0), ii) the concentrations of the adsorbed413

and gaseous phases are identical (i.e. H = 1), or iii) the characteristic size of the nanopores414

is much larger than the size of the molecules, i.e. ln >> d. In all these situations, the415

effective dynamic compressibility reduces to that of a triple-porosity non-sorptive material416

and is calculated using Eq. (22). The parameters involved take the values: De = φnDn,417

He = φn, and Bapp = Km0P0/φmnη. Hence, one has that P0C(ω << ωmin) = φpmn − jω/ωc418

and P0C(ω >> ωmax)) = φp/γ, where 1/ωc is given by Eq. (32) with He = φn.419

As discussed previously, the fluid flow at the leading order remains unaffected by the420

physical processes occurring in the micro-nano porous domain under the conditions estab-421

lished through homogenization (i.e. U = O(ε) and J = O(ε), see Eqs. (10) and (A.11)).422
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Hence the properties of the dynamic viscous permeability are the same as those of this423

parameter for single porosity non-sorptive materials. Considering leading-order terms only,424

the dynamic viscous permeability takes the following limiting values31: K(ω << ωvp) = K0425

and K(ω >> ωvp) = −jφpδ2
v/α∞, where ωvp = φpη/ρ0K0α∞ is the viscous characteristic426

frequency, δv =
√
η/ρ0ω is the viscous boundary layer thickness, and α∞ is the tortuosity.427

Using the asymptotic values of C(ω) and K(ω), the following limiting values for the speed428

of sound and wave number are obtained:429

C(ω → 0) =

√
jωK0

η

P0

φpm(1 +MH)
=

C0φp√
φpm
φp

(1 +MH)
=

C0φpm√
1 +MH

(34)

=
C0φpmn√

φpm
φpmn

(1 +MH)
,

C(ω →∞) = C∞φp = C∞φpm = C∞φpmn =
c0√
α∞

.

430

kc(ω → 0) = ω

√
η

jωK0

φpm
P0

(1 +MH) = kc0φp

√
φpm
φp

(1 +MH) = kc0φpm
√

1 +MH (35)

= kc0φpmn

√
φpm
φpmn

(1 +MH),

kc(ω →∞) =
ω

C∞φp
=

ω

C∞φpm
=

ω

C∞φpmn
.

The subscripts φp, φpm, and φpmn denote the limiting values for single, double, and triple431

porosity non-sorptive materials respectively. These expressions show that, at low fre-432

quencies, the sound waves are both slowed down and more attenuated by a factor of433 √
(φpm/φp)(1 +MH),

√
1 +MH , and

√
(φpm/φpmn)(1 +MH) in comparison with single,434

double, and triple porosity non-sorptive materials, respectively. At high frequencies, the435

influence of sorption and the inter-scale diffusion processes vanishes.436

Although not an effective parameter, it is of interest to investigate the low-frequency437

asymptotic behavior of the surface impedance Zw(ω → 0) = Zw0 of a rigidly-backed layer of438

multiscale sorptive material of thickness dl. Provided that |kc(ω)dl| << 1 and ω << ωmin,439

the real and imaginary parts of the low-frequency surface impedance can be approximated by440

(with σp0 = η/Kp0 being the static flow resistivity and Φ = φp+(1−φp)(φm+(1−φm)He) =441

φpm(1 +MH) the apparent porosity of the material):442

Im(Zw0) ≈ − P0

ωdlΦ
; Re(Zw0) ≈ dl

(
σp0
3

+
P0

Φ2d2
l ωc

)
(36)
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These equations are an important result of this paper and can serve as a basis for developing443

novel measurement methods of sorption and diffusion parameters of multiscale sorptive ma-444

terials using sound waves. They show that the effective linearized sorption equilibrium con-445

stant He can be extracted from measurements of the imaginary part of the surface impedance446

at low frequencies, while its real part can be related to the effective diffusion coefficient De,447

provided that the other macroscopic parameters involved are known. A theoretical study448

assessing the feasibility of such a method has been presented in Ref. 17 for the particular449

case of an array of cylindrical pores embedded in a nanoporous sorptive matrix. In the450

present work, Eqs. (36) are developed for triple porosity sorptive materials with complex451

material morphology and depend on macroscopic independently measurable parameters.452

The following relationships (i.e. Eq. (37)) show that the magnitude of the imaginary part453

of the surface impedance of a rigidly-backed layer of multiscale sorptive material is smaller454

than that of single, double, and triple porosity non-sorptive materials.455

Im(Zw0) =
φp
φpm

Im(Zw0φp)

1 +MH

=
Im(Zw0φpm)

1 +MH

=
φpmn
φpm

Im(Zw0φpmn)

1 +MH

(37)

The relationships between the real part of the surface impedance for sorptive and non-456

sorptive materials can be written as:457

Re(Zw0) = Re(Zw0ξ)

1−
1−

(
Φ
Φξ

)2
ωc
ωcξ

1 +
σp0ωcd2lΦ

2

3P0


−1

. (38)

Here the subscript ξ takes values φp, φpm, and φpmn for single, double, and triple porosity458

non-sorptive materials. In turn, Φφp = Φ(φm = φn = 0) = φp, Φφpm = φpm, and Φφpmn =459

φpmn. The characteristic frequency takes the following values ωcφp = ωc(φm = φn = 0),460

ωcφpm = ωc(φn = 0), and ωcφpmn = ωc(He = φn). Depending on the parameters of the461

material, this ratio can be smaller or larger than one. This implies that the real part of462

the surface impedance of a sorptive material can be either smaller or larger than that of463

non-sorptive materials.464

Finally, using Eq. (29), the sound absorption coefficient α can be written in terms of465

the low-frequency normalized resistance X∗0 = (dl/Z0)(σp0/3 + P0/(Φ
2d2
l ωc)) and reactance466

Y ∗0 = −P0/Z0ωdlΦ as:467

α(ω → 0) =
1

(1+X∗
0 )2

4X∗
0

+
(Y ∗

0 )2

4X∗
0

(39)
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The denominator of this expression is minimized when its first term tends to one (i.e. X∗0 →468

1) and its second term is as small as possible. As Φ increases, the magnitude of the low-469

frequency reactance decreases. Taking into account that Φ can take values larger than one470

when He is large, the decrease in magnitude of the low-frequency reactance is much more471

pronounced for sorptive materials in comparison with non-sorptive ones. It then follows that472

sorptive materials tend to provide larger sound absorption coefficient at low frequencies.473

This appears as a direct consequence of the decrease of the magnitude of the low-frequency474

reactance, which is determined by the larger effective low-frequency dynamic compressibility475

caused by sorption.476

IV. ANALYTICAL MODEL FOR MULTISCALE SORPTIVE GRANULAR477

MATERIALS478

An analytical model for multiscale sorptive granular materials is introduced in this section479

to exemplify the theory developed in this work. A model for a packing of porous grains480

whose inner structure comprises two different scales of heterogeneities is considered. The481

hierarchical structure of the material is the same as that in Ref. 24. However, the calculation482

of the effective parameters associated with the nano porous domain differ. Specifically, the483

compressibility of the nano porous domain is calculated using a single parameter He, instead484

of three parameters; and, since the inter-scale mass diffusion is not assumed quasi-static, an485

analytical expression for the frequency-dependent function representing this phenomena is486

introduced.487

The smaller inner-grain scale corresponds to the nano porous domain and is modeled as488

an effective medium with parameters (see Eqs. (A.6) and (A.5)): He = φn(ϕ+(1−ϕ)H) and489

De = φn(ϕDn + (1− ϕ)DsH), where φn is the nano porosity. Taking into account that the490

ratio between the nanopore surface area and volume is inversely proportional to the nanopore491

characteristic size, the transport void fraction is approximated as ϕ = 1 − d/rn, where rn492

is the radius of the cylindrical nanopores. It is additionally considered that the diffusion493

mechanism in the bulk of the nanopores is Knudsen diffusion1, i.e. Dn = Dk = 2rnvT/3494

with vT being the mean thermal speed; while the surface diffusion coefficient is calculated495

as1: Ds = (1/4)ζvT exp (−Ea/Rgτ0). Here Rg is the gas constant, ζ is the distance between496

adjacent sites (which is approximated by the molecule size, i.e. ζ ≈ d), and Ea is the energy497
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of activation needed for a jump, which is in the order of a third of the heat of adsorption1.498

The linearized sorption equilibrium constant H can be modeled using a Langmuir isotherm499

model25 (see Eq. (A.37)). Alternatively, one can directly use values of He and De as inputs to500

the model. It is worth noting that the former can be obtained from isotherm measurements1,501

while the latter using chromatographic methods, among others1,9,14.502

The larger inner-grain scale is the micropore domain Ωm. This is modeled as an array503

of cylindrical micropores with radius rm and micro porosity φm. The dynamic viscous and504

thermal permeabilities associated with the micropore fluid network accounting for rarefaction505

effects, i.e. Km(ω) and Θm(ω), are calculated from the solution of Eqs. (A.18)-(A.19)506

and (A.21) with boundary conditions (A.42) and (A.43), respectively. These permeabilities507

depend on the Knudsen number Kn = `/rm with ` being the molecular mean free path, and508

their expressions, which involve Bessel functions J0,1 of the first kind of order 0 and 1, have509

been obtained in Ref. 37 and are shown in Table I.510

The pore-scale geometry is modeled as an array of spherical grains with grain radius rp and511

inter-granular void porosity φp. The dynamic thermal and viscous permeabilities associated512

with the pore fluid network, i.e. Θp(ω) and Kp(ω), are calculated from the solution of513

Eqs. (A.18)-(A.20) and (A.21)-(A.22) (with the subscript m being replaced by p). A self-514

consistent approach, as detailed in Refs. 38 and 39, has been used. The expressions for515

these permeabilities are shown in Tables I and II, respectively.516

The inter-scale (inner-grain micropores to/from nano porous domain) mass diffusion func-517

tion G(ω) is obtained from the solution of Eqs. (A.23)-(A.24). A self-consistent approach,518

as detailed in Refs. 25 and 40, has been used. The final expression involves modified Bessel519

functions Ii and Ki of the first and second kind of order i and is shown in Table I.520

The inter-scale (inter-granular voids to/from grains) pressure diffusion function B(ω) is521

calculated from the solution of Eqs. (B.4)-(B.5) using a self-consistent approach23 and its522

expression is shown in table I.523
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TABLE I. Analytical model for the dynamic compressibility of the effective fluid saturating a

multiscale sorptive granular material.

Effective dynamic compressibility

C(ω) = Cp(ω) + (1− φp)Cmn(ω)Fpmn(ω),

Fpmn(ω) = 1− jωB(ω)
(1−φp)Bapp(ω) .

Effective dynamic compressibility and thermal permeability of the inter-granular voids

Cp(ω) =
φp
P0

(
1− jωρ0Cp

γ−1
γ

Θp(ω)
φpκ

)
,

Θp(ω) = −j(1− β3)δ2
t

(
1− β

1−β3
3
z2t

(
1− βzt 1+zt tanh (zt(β−1))

zt+tanh (zt(β−1))

))
,

where β = 3
√

1− φp, zt = j1/2 rp
βδt
, and δt =

√
κ

ρ0Cpω
.

Effective dynamic compressibility of the micro-nano porous domain (i.e. the grains)

Cmn(ω) = Cm(ω) + (1− φm)CnFmn(ω),

Fmn(ω) = 1− jωG(ω)
(1−φm)Dapp) .

Effective dynamic compressibility and thermal permeability of the inner-grain micropores

Cm(ω) = φm
P0

(
1− jωρ0Cp

γ−1
γ

Θm(ω)
φmκ

)
,

Θm(ω) = −jφmδ2
t

(
1− 2

Xt

J1(Xt)
J0(Xt)−ktXtJ1(Xt)

)
,

with Xt = j3/2 rm
δt
, kt = 2 γKn

(γ+1)Pr , Kn = `
rm
, and Pr =

Cpη
κ .

Effective compressibility of the inner-grain nano porous domain

Cn = He
P0
.

Inter-scale (inner-grain micropores to/from nano porous domain) mass diffusion function

G(ω) = −j(1− φm)δ2
d

(
1− 2φm

1−φm
R1(ξd)
R0(ξd)

)
,

with Ri(ξd) =
(

1
ξd

)i (
Ki(ξd) + (−1)i K1(ξd/

√
φm)

I1(ξd/
√
φm)

Ii(ξd)
)

, i = 0, 1;

ξd =
√
j rmδd , δd =

√
Dapp
ω , and Dapp = De

He
.

Inter-scale (inter-granular voids to/from grains) pressure diffusion function

B(ω) = −j(1− φp)δ2
b

(
1− 3ξ−2

b (1− ξb cot (ξb))
)
,

where ξb = j3/2 rp
δb
, δb =

√
Bapp
ω , and Bapp(ω) = Km(ω)

ηCnm(ω) .

Viscous permeability of the inner-grain micropores

Km(ω) = −jφmδ2
v

(
1− 2

Xv

J1(Xv)
J0(Xv)−kvXvJ1(Xv)

)
,

with Xv = j3/2 rm
δv
, kv = Kn = `

rm
, and δv =

√
η
ρ0ω

.
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TABLE II. Analytical model for the dynamic viscous permeability of a multiscale sorptive granular

material.

Dynamic viscous permeability

K(ω) = Kp(ω) = −j(1− β3)δ2
v

(
1− β3

1−β3

ς 1−β
3

β3
+1

ς−1

)
,

ς = 3
z2
Apz+Bp tanh (z(β−1))
apz+bp tanh (z(β−1)) ,

Ap = (3 + (βz)2)
(

1 + z2

6

)
− 3β

(
1 + z2

2

)
,

ap = 1
3(3 + (βz)2)− 3β − 2

β

(
1 + z2

6

)
+ 4

cosh (z(β−1)) ,

Bp = (3 + (βz)2)
(

1 + z2

2

)
− 3βz2

(
1 + z2

6

)
,

bp = 3 + β(β − 1)z2 − 2
β

(
1 + z2

2

)
,

β = 3
√

1− φp, and z = j1/2 rp
βδv

.

TABLE III. Static values of the effective dynamic permeabilities and inter-scale diffusion functions

of a multiscale sorptive granular material.

Θp0 =
r2p
15

(
5−9β+5β3−β6

β3

)
Θm0 = φm

r2m
8

(
1 + 8γ

(γ+1)PrKn
)

G0 = r2m
8φm

(−2 ln(φm) + 4φm − φ2
m − 3)

B0 = (1− φp)
r2p
15

Km0 = φm
r2m
8 (1 + 4Kn)

Kp0 =
r2p

3β2

(
2+3β5

β(3+2β5)
− 1
)

Using the static values of the thermal permeabilities and inter-scale diffusion functions524

shown in table III, one can explicitly write the characteristic frequencies determining the525

behavior of the effective dynamic compressibility as:526

ωtp =
φpκ

ρ0CpΘp0

=
κ

ρ0Cp

15

r2
p

β3(1− β3)

(5− 9β + 5β3 − β6)
, (40)
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ωtm =
φmκ

ρ0CpΘm0

=
κ

ρ0Cp

8

r2
m

(
1 +

8γKn

(γ + 1)Pr

)−1

, (41)

527

ωd =
(1− φm)Dapp

G0

=
De

He

8

r2
m

φm(1− φm)

(−2 lnφm + 4φm − φ2
m − 3)

, (42)

528

ωb =
(1− φp)Bapp0

B0

=
P0

η

15

8

r2
m

r2
p

φm
1 + 4Kn

φm + (1− φm)He

. (43)

Eq. (41) shows that rarefaction effects reduce the thermal characteristic frequency ωtm,529

while Eq. (42) indicates that the effective mass diffusion is slowed down by sorption. This530

effect on the pressure diffusion characteristics of the material can, however, be compensated531

by rarefaction effects, as shown by Eq. (43).532

The introduced model depends effectively on six parameters, namely the grain radius533

rp, inter-granular porosity φp, micropore radius rm, micro porosity φm, and the effective534

parameters of the nano porous domain, i.e. De and He. This model can be simplified since,535

for the materials of interest, the micropore size is in the order of the molecular mean free path536

and sound propagation in the micropores can therefore be considered as viscosity-dominated537

and isothermal. Hence, the dynamic viscous and thermal permeabilities associated with the538

micropore fluid network can be approximated, in the audible frequency range, by Km(ω) =539

Km0 and Θm(ω) = Θm0. This leads to Cm = φm/P0, Cmn = φm/P0 + (1 − φm)CnFmn, and540

Bapp = Km0/ηCmn. This shows that, in the audible frequency range, sound propagation in541

multiscale sorptive materials is mainly affected by viscosity and heat transfer effects at the542

pore scale and the inter-scale mass and pressure diffusion processes. The former diffusion543

process is influenced by sorption while the latter by both sorption and rarefaction.544

V. ILLUSTRATING EXAMPLES AND EXPERIMENTAL VALIDATION545

A. Illustrating examples546

The acoustical properties of multiscale sorptive porous materials are illustrated in this547

section. First, we present results for the effective dynamic compressibility due to its sig-548

nificant influence on the acoustical properties of this type of materials. We consider the549

following parameters of a multiscale granular sorptive material: rp = 1 mm, φp = 0.4,550

rm = 1 µm, φm = 0.5, rn = 1 nm, φn = 0.2, H = 75, and Ea = 10 kJ/mole. The value of551

the energy of activation needed for a jump Ea has been set equal to a third of the heat of552
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adsorption, which is in the order of 20 to 40 kJ/mole for activated carbons1. In addition,553

it should be reminded that the developed theory applies to materials saturated with a pure554

fluid. However, for simplicity, the saturating fluid parameters are set equal to those of air555

(with molecular size d ≈ 0.38 nm), which are close to those of nitrogen at the considered556

normal pressure (P0 = 101325 Pa) and temperature (τ0 = 293.15 K) conditions.557

Figure 2 shows the real part of the effective dynamic compressibility, calculated using the558

model shown in table I, of a triple-porosity sorptive material normalized to the isothermal559

value of this quantity for a triple-porosity non-sorptive material, i.e. Re(P0C(ω)/φpmn).560

This is compared with that of single, double, and triple porosity non-sorptive materials.561

Respectively, these correspond to a packing of solid grains (i.e. φn = φm = 0), and of562

porous grains without nanopores (i.e. φn = 0) and with He = φn and effective diffusion563

coefficient De = φnDk. Sorption induces a significant increase of the real part of the dynamic564

compressibility at low frequencies. For the four cases, the low-frequency limiting values are565

well described by Eq. (33), while at high frequencies the real part of the effective dynamic566

compressibilities tend to the same limiting value, as predicted by Eq. (30).567
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FIG. 2. Real part of the normalized effective dynamic compressibility Re(P0C(ω)/φpmn) as a

function of frequency. Continuous black line: multiscale sorptive granular material. Dashed black

line : triple porosity non-sorptive granular material (i.e. He = φn and De = φnDk). Continuous

gray line: double porosity non-sorptive granular material (i.e. φn = 0). Dashed gray line: single

porosity non-sorptive granular material (i.e. φn = φm = 0). The markers show the asymptotic

values predicted by Eqs. (33) and (30).
568

569

The negative of the imaginary part of the normalized effective dynamic compressibility,570

which is associated with the acoustic losses in the material, and the characteristic frequencies571
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determining its behavior are shown in Figure 3. These have been calculated using the572

model shown in table I and Eqs. (32) and (40)-(43), respectively. Multiscale sorptive573

materials provide much larger sound attenuation than non-sorptive ones in the low frequency574

range. This is a direct consequence of the combined effect of heat transfer in the pores and575

inter-scale mass and pressure diffusion with the latter two being influenced by sorption.576

Such attenuation is maximized around the characteristic frequencies associated with these577

phenomena, i.e. around ωtp, ωd, and ωb.578
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FIG. 3. Negative of the imaginary part of the normalized effective dynamic compressibility

−Im(P0C(ω)/φpmn) as a function of frequency. Continuous black line: multiscale sorptive gran-

ular material. Dashed black line : triple porosity non-sorptive granular material (i.e. He = φn

and De = φnDk). Continuous gray line: double porosity non-sorptive granular material (i.e.

φn = 0). Dashed dark gray line: single porosity non-sorptive granular material (i.e. φn = φm = 0,

non-porous grains). Dashed light gray line: single porosity non-sorptive monolithic material with

micropores only (i.e. φn = φp = 0). Thin dashed black line : low-frequency asymptotic value

−Im(P0Clf (ω)/φpmn) (see Eq. (31)). The vertical lines with markers represent characteristic fre-

quencies. Circle : fc = ωc/2π. Square: ftp. Left-pointing triangle : fb. Right-pointing triangle :

fb (no sorption). Upward-pointing triangle : fd. Downward-pointing triangle : fd (no sorption).

Diamond : ftm. The material parameters are as in Figure 2.

In comparison with a triple porosity non-sorptive material, the characteristic frequencies579

ωd and ωb decrease as a direct consequence of the local slowing down of mass diffusion by580

sorption (see Eq. (42)), and the increase in effective dynamic compressibility also caused581

by this phenomena (see Eqs. (C.3) and (43)). This can be seen by comparing the vertical582

lines with left-pointing and upward-pointing triangles with those with right-pointing and583
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downward-pointing triangles. Moreover, in the absence of sorption, the expected peak as-584

sociated with inter-scale mass diffusion becomes negligible. This is because the influence585

of the inner-grain physics on the macroscopic behavior becomes smaller when ω >> ωb.586

This indicates that in order to be able to observe (and/or take advantage of) the effects587

associated with the inner-grain physics, one should ideally have that O(ωb) = O(ωd), i.e.588

O((1 − φp)Bapp0B−1
0 ) = O((1 − φm)DappG−1

0 ). This condition, which guarantees the rich589

interplay between the different physical phenomena and geometric features of multiscale590

sorptive materials, for the geometry considered here is given by Eq. (44) with A being a591

constant that is ideally A ≥ 1 but not extremely larger than unity.592

64

15

η

P0

Dapp
r2
m

r2
p

r2
m

φm + (1− φm)He

1 + 4Kn

1− φm
−2 ln(φm) + 4φm − φ2

m − 3
= A. (44)

For the material parameters considered in the example shown in Figure 3, the double593

porosity non-sorptive material behaves similarly as the triple-porosity non-sorptive one. The594

two single porosity non-sorptive materials (i.e. a packing of non-porous grain φn = φm = 0595

and a monolithic material with micropores only φn = φp = 0) also displayed in Figure596

3, clearly show the positions of the peaks associated with heat transfer in the pores and597

micropores, as well as their influence on the behavior of the multiscale material. It should598

be noted that, in this example, rarefaction effects are negligible since Kn = 0.06. Hence these599

effects do not substantially compensate the decrease in ωb caused by sorption. For materials600

with smaller micropores, rarefaction effects can become significant, as will be shown later601

in the paper. On the other hand, the asymptotic value of the compressibility, given by602

Eq. (31) and shown with thin dashed lines in Figure 3, correctly predicts the behavior for603

frequencies ω << ωmin, while the global characteristic frequency ωc appears as a parameter604

that allows identifying, in a simple manner, the frequency range where the sound attenuation605

is maximized. Furthermore, it should be emphasized that the results presented in Figures606

2 and 3 are valid in the absence of scattering. This is estimated to occur at a frequency in607

the order of fsca = c0/2πlp ≈ c0/4πrp.608

The effects previously discussed, i.e. inter-scale mass and pressure diffusion and sorption,609

lead to a decrease in sound speed and an increase of the overall sound attenuation, as610

predicted by Eqs. (34)-(35). This is shown in Figures 4 and 5 where the normalized speed611

of sound and attenuation coefficient are respectively presented. Note that i) these have been612

calculated using the model shown in tables I and II and Eq. (28), and ii) the normalization of613
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the former has been made to c0/
√
α∞ with38 α∞ = (3−φp)/2; while that of the attenuation614

coefficient to ω/c0. In addition, the ratio of these quantities for sorptive and non-sorptive615

materials is well predicted by Eqs. (34) and (35), as can be seen in the inset plots.616
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FIG. 4. Real part of the normalized sound speed
√
α∞Re(C(ω))/c0 as a function of frequency

for multiscale sorptive (a) and non-sorptive triple (b), double (c), and single (d) porosity granular

materials. The inset plot shows the real part of the sound speed ratios: (e) Re(C(ω))/Re(Cφpmn(ω)),

(f) Re(C(ω))/Re(Cφpm(ω)), and (g): Re(C(ω))/Re(Cφp(ω)). The markers correspond to the low-

frequency asymptotic values of these ratios (see Eq. (34)).
617

618619

As discussed in Section III, the behavior in frequency of C(ω) is determined by the620

characteristic frequencies ωtp, ωd, ωb, and ωtm, which depend on physical and geometrical621

parameters of the material. In particular, it has been shown in Figure 3 that the global622

characteristic frequency ωc provides a good indication of the frequency range where the623

acoustic losses are maximized. The global characteristic frequency, calculated using Eq.624

(32), is shown in Figure 6 as a function of the effective diffusion coefficient De for different625

values of the effective linearized sorption equilibrium constant (He = 2, 4, 8) and micropore626

radii (rm = 0.2 µm and rm = 2 µm). The inset plot shows the characteristic frequencies627

fd, fb, and fc as a function of De for rm = 0.2 µm and He = 4. For a given micropore628

radius value, the global characteristic frequency fc increases as De does until it reaches a629

plateau for frequencies fd >> fb. The transition is characterized by fd = fb, as shown with630

a vertical dotted line in the inset plot. The plateau region is reached at larger values of De631

when the micropore radius becomes larger. On the other hand, fc decreases as He increases632

and is dominated by either fb or fd, whichever is much lower.633

The influence of the grain radius rp on fc is shown in Figure 7. As previously observed,634
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FIG. 5. Normalized attenuation coefficient −c0Im(kc(ω))/ω as a function of frequency for multi-

scale sorptive (a) and non-sorptive triple (b), double (c), and single (d) porosity granular mate-

rials. The inset plot shows the attenuation coefficient ratios : (e) Im(kc(ω))/Im(kcφpmn(ω)), (f)

Im(kc(ω))/Im(kcφpm(ω)), and (g): Im(kc(ω))/Im(kcφp(ω)). The markers correspond to the low-

frequency asymptotic values of these ratios (see Eq. (35)).

the global characteristic frequency, calculated using Eq. (32), is dominated by fd when635

fd << fb, while by fb when fd >> fb. In addition, fc decreases when He becomes larger.636

For small values of De, the influence of the grain radius on the global characteristic frequency637

is negligible. This is because fc is determined by fd, which does not depend on rp. As De638

increases, fc becomes larger when the grain radius is decreased. This indicates that in order639

to observe and/or take advantage of the sound attenuating properties of multiscale sorptive640

materials in the audible frequency one may prefer materials with small instead of large641

grains.642

The influence of rarefaction effects in the modeling is now analyzed. Figure 8 shows the643

global characteristic frequency fc, calculated using Eq. (32), as a function of the Knudsen644

number Kn for several values of micro porosity φm. Note that the results are plotted up645

to Kn = 1. Although the modified continuum description is not theoretically valid for646

Kn > 0.1, satisfactory agreement between measured data and theoretical predictions of647

rarefied gas flow through straight cylindrical tubes has been demonstrated in Ref. 37. As648

previously, the global characteristic frequency is determined by either fd or fb, whichever649

is much lower; as shown in the inset plot. When fc is determined by fb, the prediction of650

the global characteristic frequency is underestimated if one does not account for rarefaction651

effects in the modeling. As an example, fc could be predicted to be 5 times smaller when652
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FIG. 6. Global characteristic frequency fc as a function of the effective diffusion coefficient De for

different values of effective linearized sorption equilibrium constant He and micropore radius rm.

The other parameters are as in Figure 2. Main plot : (a) He = 2 and rm = 0.2 µm. (b) He = 4

and rm = 0.2 µm. (c) He = 8 and rm = 0.2 µm. (d) He = 2 and rm = 2 µm. (e) He = 4 and

rm = 2 µm. (f) He = 8 and rm = 2 µm. The inset plot shows the characteristic frequencies (A)

fc, (B) fd, and (C) fb as a function of De for He = 4 and rm = 0.2 µm. The vertical dotted line

(D) shows De for fd = fb.

rm = `. Evidently, for small values of Knudsen number the influence of rarefaction effects is653

negligible. On the other hand, the global characteristic frequency presents higher values as654

the micro porosity φm increases and is maximized when the micropore radius approximately655

takes a value for which O(fd) = O(fb).656

Figure 9 shows the normal incidence sound absorption coefficient of a rigidly-backed 3-cm657

thick layer of multiscale sorptive granular material in comparison with that of non-sorptive658

granular ones, i.e. packing of solid grains (single porosity, φn = φm = 0), of porous grains659

without nanopores (double porosity, φn = 0), and of porous grains with two inner-grain660

scales (triple porosity material, He = φn). These have been calculated using Eqs. (29) and661

(28) and the model shown in tables I and II. The plot clearly shows that multiscale sorptive662

granular materials provide larger sound absorption coefficient than non-sorptive materials.663

This increase is enhanced further for larger values of He. The inset plot shows that α is well664

approximated at low frequencies by its asymptotic value Eq. (39). Hence, this provides a665

simple expression to evaluate the low-frequency sound absorption coefficient of multiscale666

sorptive materials.667668669
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FIG. 7. Global characteristic frequency fc as a function of the effective diffusion coefficient De for

different values of linearized effective sorption equilibrium constant He and grain radius rp. The

other parameters are as in Figure 2. Main plot : (a) He = 2 and rp = 0.1 mm. (b) He = 4 and

rp = 0.1 mm. (c) He = 8 and rp = 0.1 mm. (d) He = 2 and rp = 2 mm. (e) He = 4 and rp = 2

mm. (f) He = 8 and rp = 2 mm. The inset plot shows the characteristic frequencies (A) fc, (B)

fd, and (C) fb as a function of De for He = 4 and rp = 2 mm. The vertical dotted line (D) shows

De for fd = fb.
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FIG. 8. Global characteristic frequency fc as a function of the Knudsen number Kn for micro

porosity values φm = 0.1 (black lines), φm = 0.3 (dark gray lines), and φm = 0.6 (light gray

lines). Continuous lines : model accounting for rarefaction effects. Dashed lines : model without

accounting for rarefaction effects. The other parameters are rp = 0.75 mm, φp = 0.3, De = 10−10

m2/s, and He = 2. The inset plot shows fc (continuous dark gray line), fb (dashed black line), and

fd (dashed light gray line) as a function of Kn for φm = 0.3.
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FIG. 9. Sound absorption coefficient α of a 3-cm rigidly-backed layer of material. Multiscale

sorptive granular materials: black continuous (He = 8), dashed (He = 4), and dashed-dotted

(He = 2) lines. Packing of non-sorptive porous grains with two inner-grain scales of heterogeneities

(triple porosity, continuous dark gray line), without nano pores (double porosity, continuous light

gray line), and of solid grains (single porosity, dashed-dotted gray line). Inset plot: low-frequency α

for a multiscale sorptive granular material (He = 4, continuous black line), and double (continuous

dark gray line) and single (continuous light gray line) porosity non-sorptive granular materials; and

its asymptotic values (Eq. (39), dashed lines). The other parameters are rp = 0.75 mm, φp = 0.3,

rm = 0.5 µm, φm = 0.5, De = 10−9 m2/s, and φn = 0.1.

B. Experimental validation670

1. Material characterization671

This section describes the characterization of a granular activated carbon (GAC) sample.672

The characterization procedure for the parameters describing the inter-granular physical673

process and those in the micropores is similar to that in Ref. 24. The characterization674

of the parameters describing sorption and mass diffusion differs. Measurements of surface675

impedance are used to deduce these parameters, as detailed below.676

The highly activated GAC sample is made out of coal, its N2 surface area is 1274 m2/g,677

and its model parameters are shown in Table IV. It is detailed throughout this section how678

these six parameters have been measured or deduced.679

An equivalent grain radius rp of the GAC sample has been measured using optical gran-680

ulometry following the procedure detailed in Refs. 22 and 23. The equivalent grain radius681
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TABLE IV. Parameters of the granular activated carbon sample.

φp rp [mm] φm rm [µm] He De ×109[m2/s]

0.2997 0.7363 0.7064 0.3695 7.1189 2.9156

distribution follows a log-normal distribution f(t|µ, θ) = (1/tθ
√

2π) exp−(ln t− µ)2/2θ2
682

with parameters µ = −7.2513 and θ = 0.2741. The equivalent grain radius rp is set to the683

mean value of the equivalent grain radius distribution, i.e. rp = 0.7363 (0.2056) mm, where684

the value in round brackets corresponds to the standard deviation.685

The GAC sample exhibits well separated scales. This implies that the overall permeability686

can be approximated by that of the pore-scale fluid network. Measurements of flow resistivity687

σp0 = η/Kp0, taken by following the procedure described in Ref. 41, are used to estimate688

the inter-granular void porosity φp. This is made by using the measured value of rp and689

inverting the expression for Kp0 shown in table III, as detailed in Ref. 23. The average flow690

resistivity value is σp0 = 24.5923 (1.5104) kPa.s/m2, which yields φp = 0.2997 (0.005).691

The overall porosity φpmn = 1 − ρb/ρC is calculated from the measurement of the bulk692

density ρb and the density of the material solid frame, which is assumed to be that of carbon693

black ρC = 2.2 g/cm3. The measured bulk density of the GAC sample is ρb = 0.335 g/cm3.694

Hence, the overall porosity is φpmn = 0.8477.695

The micro porosity was calculated as φm = (φpmn − φp − (1 − φp)φn)/(1 − φp)(1 − φn).696

The nano porosity has been supplied by the manufacturer and is φn = 0.2593. Hence, the697

micro porosity is φm = 0.7064.698

The effective linearized sorption equilibrium constant He is deduced from measurements699

of the imaginary part of the surface impedance Zw(ω) of rigidly-backed layers of the GAC700

sample. These measurements were taken by following the procedure described in the ISO701

standard42. A vertically-installed Brüel & Kjær 4206 impedance tube was used. GAC702

samples with layer thickness values ranging from 2 cm to 8 cm in steps of 1 cm were703

measured22,24. The previously derived asymptotic value of the imaginary part of the surface704

impedance, i.e. Eq. (36), is used to determine the apparent porosity Φ. We remind that this705

asymptotic is valid for |kcdl| << 1 and ω << ωmin ≈ ωc. A function z1(ω) = P0

−Im(Zw)dl
= Φω706

that is linear in frequency can be defined form Eq. (36). The apparent porosity Φ is the707

proportionality constant and can be obtained by linear fitting of z1(ω). An example of this708

32



is shown in the right-hand-side inset plot of Figure 10 for a 4-cm thick GAC sample. Then,709

the effective linearized sorption equilibrium constant is calculated as He = ((Φ − φp)/(1 −710

φp)− φm)/(1− φm). Its value is He = 7.1189± 0.1508.711

Measurements of the real part of the surface impedance and the use of its asymptotic712

value allow obtaining the global characteristic frequency fc. Using Eq. (36), a function713

linear in frequency z2(ω) = Φ2d2
l (Re(Zw)/dl − σp0/3)/P0 = ω/ωc can be defined. In this714

case, its slope is the inverse of the global characteristic frequency. Linear fitting of z2(ω)715

leads to fc = 88.5362 ± 5.4570 Hz. An example of this is shown in the left-hand-side inset716

plot of Figure 10 for a 4-cm thick GAC sample.717

The remaining parameters to be determined are rm and De. The micropore radius rm is718

calculated via a best-fitting routine in which the square of the absolute difference between719

the predicted and measured surface impedance is minimized. As part of this routine, the720

measured global characteristic frequency and the other parameters are used to calculate721

the effective diffusion coefficient De by inverting Eq. (32), as shown by Eq. (45). The722

values of the micropore radius and effective diffusion coefficient are rm = 0.3695 µm and723

De = 2.9156 · 10−9 m2/s. The values of rm and rp are consistent with the hypothesis of724

large separation of scales, i.e. ε ≈ rm/rp = 5.0183 × 10−4, and the estimation Eq. (A.12)725

holds, i.e. ηDe/r
2
mP0 = 3.8715 × 10−6 = O(ε2). The measured and predicted surface726

impedance, calculated using Eqs. (29) and (28) and the model shown in tables I and II, of727

a rigidly-backed 4-cm thick GAC layer is shown in the main plot of Figure 10. Note that728

the magnitude of the imaginary part of the surface impedance of GAC is much smaller than729

that of a triple porosity non-sorptive material.730

De =
HeG0

(1− φm)

 1
ωc
− γ−1

γ

φp
ωtp
− (1− φp)

(
γ−1
γ

φm
ωtm

+ φm
ωb

)
(1− φp)(1− φm)He

− 1

ωb

−1

. (45)

The values of rm, De, and He compare well with those commonly found in activated731

carbons. For example, the size of the larger inner-grain pores, i.e. 2rm, is typically1,2 in the732

order of 0.8 µm. Using Eq. (A.37) and considering that the nanopore size is comparable to733

that of the fluid molecules, the linearized sorption equilibrium constant expressed in units734

of adsorbed moles per mass of adsorbent is H = 187.9 µmol/g at normal conditions (i.e.735

P0 = 101325 Pa and τ0 = 293.15 K). This is comparable to the data found in literature736

for materials saturated with nitrogen at normal pressure condition. For example, from the737
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FIG. 10. Comparison between measured22,24 (circles) and predicted real (gray lines) and imaginary

(black lines) parts of the normalized surface impedance of a rigidly-backed 4-cm thick layer of

granular activated carbon. Continuous lines – Triple porosity sorptive material. Dashed lines –

Triple porosity non-sorptive material. The left-hand side inset plot shows z2(ω) as a function

of frequency. Circles – Measurements. Continuous line – Fitted linear function with slope 1/fc.

The right-hand side inset plot shows z1(ω) as a function of frequency. Circles – Measurements.

Continuous line – Fitted linear function with slope Φ. Dashed line – Fitted linear function with

Φ = φpmn, i.e. triple porosity non-sorptive material. In both inset plots, the dotted lines correspond

to fc

measured data in Ref. 43 for a granular activated carbon sample having a surface area738

of 1220 m2/g (i.e. comparable to the GAC sample used in this paper), it is deduced that739

H = 185.7 µmol/g at 293.15 K. A value of H = 319.9 µmol/g is calculated from the740

measured data in Ref. 44 for a carbon molecular sieve 5A (i.e. a type of activated carbon)741

at 303.15 K. For a PCB-type activated carbon, the data in Ref. 45 leads to H = 288.3742

µmol/g (at 293.15 K), while for a carbon molecular sieve in pellet form a value of H = 175.8743

µmol/g (at 300.15 K) is calculated from the data in Ref. 46.744

The values of De and He lead to an apparent mass diffusivity of Dapp = 4.1 · 10−10 m2/s.745

For the case of nanopore pore size comparable to that of the fluid molecules, Dapp can be746

interpreted as an activated diffusivity. Chromatographic measurements of this parameter747

have been reported in Ref. 47 for carbon molecular sieve 5A saturated with nitrogen.748

Its value at 293.15 K is Dapp = 1.85 · 10−11 m2/s. For the same type of material and749

saturating fluid, measurements reported in Ref. 44 using a gravimetric technique provides750

Dapp = 1.19 · 10−10 m2/s at 303 K. In Ref. 48 measurements on an activated carbon751
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monolith saturated with nitrogen provided a value of Dapp = 1.35 · 10−10 m2/s at 293.15752

K. Furthermore, values of Dapp = 1.93 · 10−9 m2/s and Dapp = 7.4 · 10−10 m2/s at 296 K753

have been reported in Ref. 49 for two different activated carbon monoliths saturated with754

nitrogen.755

2. Measurements and predictions of sound absorption coefficient756

Figure 11 compares measured22,24 and predicted normal incidence sound absorption coef-757

ficient of a rigidly-backed 3-cm thick layer of granular activated carbon. The model, given by758

Eqs. (29), (28), and those in tables I and II, accurately predicts the measured data. Its pre-759

dictions for non-sorptive materials are also plotted to highlight the absorptive properties of760

granular activated carbon. It is clearly observed that a sorptive material shows remarkably761

higher sound absorption coefficient values at low frequencies in comparison with non-sorptive762

ones, regardless of whether these feature multiple scales of heterogeneities. The absorption763

of sound is primarily caused by the combined influence of viscosity and heat transfer effects764

at the pore scale and the inter-scale mass and pressure diffusion processes, being the former765

one influenced by sorption while the latter by both sorption and rarefaction.766
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FIG. 11. Normal incidence sound absorption coefficient of a rigidly-backed 3-cm thick layer of

granular activated carbon. Measurements22,24 (circles) versus predictions for triple porosity sorp-

tive material (black line) and triple (dark gray line), double (light gray line), and single (dashed

gray line) porosity non-soprtive materials.
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VI. CONCLUSIONS767

This paper investigated sound propagation in multiscale rigid-frame porous materials768

accounting for the effects of viscosity and heat transfer at the pore scale, viscosity and769

heat transfer including rarefaction effects at the micropore scale, inter-scale (pore to/from770

micro-nanopore scales) pressure diffusion, inter-scale (micropore to/from nanopore scales)771

mass diffusion, and sorption in the nanopores. The two-scale asymptotic method of homog-772

enization for periodic media has been successively used to derive the macroscopic equations773

describing sound propagation through the material. These show that, at the leading order,774

the physical processes in the micro-nano porous domain do not modify the macroscopic fluid775

flow, provided that the advective mass flux pulsed from the micropores on the pore bound-776

aries is of one order smaller than the advective mass flux generated by the incident wave in777

the pores. As a consequence, the dynamic Darcy’s law and the dynamic viscous permeability778

correspond to those of single porosity non-sorptive materials. Contrarily, the dynamic com-779

pressibility of the effective saturating fluid is significantly altered by the physical processes780

occurring at the micro- and nano scales.781

We have demonstrated that sorption effects occurring in pores of nanometer size still782

significantly modify the macroscopic mass balance. This modification is accounted for by the783

dynamic compressibility of the effective saturating fluid which presents atypical properties784

that lead to a slower speed of sound and higher sound attenuation in the material. The785

strength of these macroscopic effects in the audible frequency range largely depends on786

the geometry and pressure and mass diffusion properties of the material. For example,787

relatively fast diffusing gas-solid systems whose pressure diffusion behavior is determined788

by a characteristic frequency that is in the order of that characterizing mass diffusion may789

be preferred over either slow mass diffusing systems or materials featuring slow pressure790

diffusion.791

Contrarily to sorption effects, we have shown that rarefied gas flow in pores with size792

comparable to the molecular mean free path only intervene in the macroscopic acoustic793

behavior indirectly via a modification of the apparent pressure diffusivity.794

The derived low-frequency asymptotics of the surface impedance, which is a quantity795

commonly measured in the field of acoustics of porous media, were used in conjunction with796

a characterization procedure to deduce the effective linearized sorption equilibrium constant797
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and effective diffusion coefficient of granular activated carbon. This provides empirical evi-798

dence supporting an alternative acoustic method for measuring sorption and mass diffusion799

properties of multiscale sorptive materials.800

The developed theory was then validated experimentally by comparing its predictions801

with sound absorption measurements on a granular activated carbon sample showing good802

agreement.803

In addition to the direct applications of the results presented in this paper to acoustics,804

one can consider applications to chemical engineering metrology and geophysics. Extensions805

of this work may include the study of sound propagation in multiscale sorptive porous806

materials saturated with fluid mixtures as well as the inclusion of the elasticity of the solid807

frame into the modeling.808
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of Université de Lyon operated by ANR (ANR 10 Labex 0060- ANR 11 IDEX - 0007). We813

also acknowledge support from the European Union Cost Action C15125 “Designs for Noise814

Reducing Materials and Structures (DENORMS)” which facilitated discussion on this topic.815

Appendix A816

This appendix provides the derivation of the upscaled model for sound propagation in817

the micro-nano porous domain. First we recall the model for double porosity sorptive ma-818

terials developed in Ref. 25. This is then extended to account for rarefaction effects at the819

micropore scale.820

1. Governing equations821

The governing equations for diffusion and sorption of a pure fluid in the nano porous822

domain are formulated first. In doing so, it is assumed that1,25: i) sorption occurs on the823

walls of the nanopores, ii) the adsorbed molecules (adsorbate) and the gas phase molecules824
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saturating the nanopores are in ”dynamic instantaneous” equilibrium, and iii) the fluid825

molecules are diffused through the nano porous domain via two diffusion mechanisms, i.e.826

diffusion in the bulk of the nanopores and surface diffusion on the nanopore walls.827

Since the characteristic sizes associated with the micro and nano scales are well separated,828

i.e. ln/lm << 1 , the nano porous domain is modeled as an equivalent continuum governed829

by effective equations defined in Ωn and reflect the local physical processes. For simplicity,830

it is assumed that the nano porous domain is isotropic. The constitutive flux equation831

accounting for the two mentioned diffusion mechanisms is given by1,25:832

J = −φn(ϕDn∇cn + (1− ϕ)Ds∇cs), (A.1)

where J is the molar mass flux, cn and cs are, respectively, the concentration of the gas (in833

mole/volume of fluid) and adsorbed (in mole/volume of adsorbed phase) phases, Dn is the834

nanopore diffusion coefficient, and Ds is the surface diffusion coefficient. The transport void835

fraction ϕ = Ωv/Ωnf represents the fraction of the nano porous void space available for the836

transport of free molecules. Similarly, (1 − ϕ) = Ωs/Ωnf represents the fraction of space837

available for the transport of adsorbed molecules (see Figure 1).838

Performing a mass balance in a volume element of the nano porous domain leads to the839

following equation1,25 :840

jωφn(ϕcn + (1− ϕ)cs) = φn∇ · (ϕDn∇cn + (1− ϕ)Ds∇cs) in Ωn. (A.2)

As mentioned above, the adsorbed phase is assumed to be in ”dynamic instantaneous”841

equilibrium with the gas phase. This is valid when the local adsorption kinetics is much842

faster than the diffusion processes. Such a situation is commonly found in nano porous media843

and is justified by the fact that the average residence time of adsorption ranges from 10−13
844

to 10−9 s for physical adsorption1. The equilibrium relationship between the two phases is845

then given by:846

cs = Hcn in Ωn, (A.3)

where H is the linearized sorption equilibrium constant and is associated with the slope of847

the local isotherm at a given equilibrium point, as shown for a Langmuir isotherm model848

further below.849

Replacing Eq. (A.3) into Eq. (A.2) and writing the concentration in terms of density,850
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i.e. ρn = cnM , where M is the molar mass of the gas, lead to the Fickian equation1,5,25:851

jωρnHe = De∇ · ∇ρn in Ωn, (A.4)

where the effective diffusion coefficient De and the effective linearized sorption equilibrium852

constant He are given by:853

De = φn(ϕDn + (1− ϕ)DsH), (A.5)
854

He = φn(ϕ+ (1− ϕ)H). (A.6)

The equations of fluid motion in the micropores comprise the linearized equations of855

conservation of momentum, mass, and energy, and equation of state. These are respectively856

given by Eqs. (1), (2), (3), and (4) with the subscript p being replaced by m and are coupled857

with Eq. (A.4) via the following boundary conditions expressing the continuity of normal858

mass flux and pressure, and of negligible temperature variations and tangential mass flux859

on the micropore boundary Γm.860

ρ0um · nm = −De∇ρn · nm on Γm, (A.7)
861

ρ0(um − (um · nm)nm) = 0 on Γm, (A.8)
862

pn = pm i.e. ρn =
ρ0

P0

pm on Γm, (A.9)

863

τm = 0 on Γm. (A.10)

Here the density and pressure in the effective nano porous domain are represented by ρn864

and pn. The oscillatory fluid velocity, pressure, and temperature in the micropores are865

respectively denoted as um, pm, and τm. The outward-pointing normal vector is nm (see866

Figure 1).867

2. Homogenization procedure868

The homogenization procedure described in Section II C is then applied. Now we consider869

the small parameter ε = lm/lp << 1 and that the fast spatial variable y is associated with870

fluctuations at the micropore (local) scale while the slow spatial variable x with variations871

at the pore (larger) scale. The rescaled set of governing equations is formulated by assessing872

whether the variables fluctuate at the local or larger scale, as well as by considering the873

relative order of magnitude of the different terms in the governing equations. The oscillatory874
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fluid velocity um, temperature τm, and density ρn vary at the local scale, while the pressure875

pm at the larger scale25. The relative order of magnitude of the different terms in the876

equations of conservation of momentum, mass, and energy, and of state associated with877

the micropore fluid network are the same as those discussed in Section II C. On the other878

hand, the most general regime of mass diffusion/sorption occurs when both terms in Eq.879

(A.4) are of the same order of magnitude, i.e. O(Deρn/l
2
m) = O(ωρnHe). In addition, the880

long-wavelength condition imposes that, on the micropore boundary Γm, the diffusive mass881

flux is of one order smaller than the advective mass flux in the micropores25, i.e.882

J =
|De∇ρn|
|ρ0um|

= O(ε). (A.11)

This can be written in terms of physical parameters as25:883

J = O

(
ρn
um

De

lmρ0

)
= O

(
ηDe

P0

lp
l3m

)
= O(ε), i.e.

ηDe

l2mP0

= O(ε2), (A.12)

and indicates that the effective description of sound propagation in the micro-nano porous884

domain to be derived is valid when the combination of physical parameters P0, η, De, and885

lm satisfies the estimation Eq. (A.12).886

The rescaled set of equations is then given by Eqs. (12), (13), and (14) with the subscript887

p being replaced by m, Eq. (A.13), and boundary conditions (A.14)-(A.17).888

ε2De∇ · ∇ρn = jωρnHe in Ωn. (A.13)
889

ρ0um · nm = −ε2De∇ρn · nm on Γm, (A.14)
890

ρ0(um − (um · nm)nm) = 0 on Γm, (A.15)
891

ρn =
ρ0

P0

pm on Γm, (A.16)

892

τm = 0 on Γm. (A.17)

Note that the ε2-rescaling in the boundary condition (A.14) results from (i) the physical893

estimate (A.11) stating that the diffusive flux is of one order smaller than the advective one,894

and (ii) the fact that ρn varies at the local scale.895

The physical variables are then looked for in the form of asymptotic expansions in powers896

of the small parameter ε = lm/lp as Q(x, y) =
∑∞

i=0 ε
iQ(i)(x, y) where Q = pm,um, τm, ρn.897

These are then substituted into the rescaled set of equations and the terms of the same898

order are identified. At ε−1 it follows from the equation of conservation of momentum that899
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∇yp
(0)
m = 0, which means that the pressure varies at the larger scale, i.e. p

(0)
m = p

(0)
m (x).900

Further identification provides the following leading-order cell problems.901

Fluid flow:902

η∇2
yu

(0)
m −∇yp

(1)
m = jωρ0u

(0)
m +∇xp

(0)
m in Ωmf , (A.18)

903

∇y · u(0)
m = 0 in Ωmf , (A.19)

904

u(0)
m = 0 on Γm. (A.20)

Heat conduction:905

κ∇y · ∇yτ
(0)
m = jωCpρ0τ

(0)
m − jωp(0)

m in Ωmf , (A.21)
906

τ (0)
m = 0 on Γm. (A.22)

Mass diffusion:907

De∇y · ∇yρ
(0)
n = jωρ(0)

n He in Ωn, (A.23)
908

ρ(0)
n =

ρ0

P0

p(0)
m on Γm. (A.24)

The solutions of the fluid flow (i.e. Eqs. (A.18)-(A.20)) and heat conduction (i.e. Eqs.909

(A.21)-(A.22)) problems are given by29,30,32:910

u(0)
m = − k̄m(y, ω)

η
· ∇xp

(0)
m , (A.25)

911

p(1)
m = −π̄m(y, ω) · ∇xp

(0)
m + p̄(1)

m (x), (A.26)
912

τ (0)
m =

θ̄m(y, ω)

κ
jωp(0)

m , (A.27)

where k̄m(y, ω) and θ̄m(y, ω) represent the Ωm − periodic local fields of velocity and tem-913

perature respectively. The pressure field has been expressed in terms of its zero mean part914

π̄m(y, ω) and an integration constant p̄
(1)
m (x).915

The solution of the mass diffusion problem (i.e. Eqs.(A.23) and (A.24)) is given by6,25:916

ρ
(0)
n

ρ0

=
p

(0)
m

P0

(
1− jωḡ(y, ω)

Dapp

)
, (A.28)

where ḡ(y, ω) represents the Ωm − periodic local diffusive density field and the apparent917

diffusivity Dapp is defined as:918

Dapp =
De

He

=
ϕDn + (1− ϕ)DsH

ϕ+ (1− ϕ)H
. (A.29)
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3. Effective model for sound propagation in the micro-nano porous domain919

The leading-order mass balance equation, i.e. Eq. (13) with the subscript p being replaced920

by m, integrated over the micropore space Ωmf and divided by the volume Ωm is given by:921

jω

〈
p

(0)
m

P0

− τ
(0)
m

τ0

〉
m

+ 〈∇x · u(0)
m 〉m + 〈∇y · u(1)

m 〉m = 0, (A.30)

where the averaging operator is defined as:922

〈·〉m =
1

Ωm

∫
Ωmf

· dΩ. (A.31)

The term 〈∇y · u(1)
m 〉m in Eq. (A.30) is calculated by making successive use of the di-923

vergence theorem, noting that the surface integrals on opposite boundaries of the cell can-924

cel out due to periodicity, and using the boundary condition (A.14) identified at ε1 (i.e.925

ρ0u
(1)
m · nm = −De∇yρ

(0)
n · nm on Γm) and Eqs. (A.23) and (A.28). Its expression is:926

〈∇y · u(1)
m 〉m = jωp(0)

m

He

P0

1

Ωm

∫
Ωn

(
1− jωḡ(y, ω)

Dapp

)
dΩ. (A.32)

The effective model for sound propagation in the micro-nano porous domain is then927

obtained by i) replacing Eq. (A.32) into Eq. (A.30), ii) substituting τ
(0)
m (i.e. Eq. (A.27))928

and ρ
(0)
n (i.e. Eq. A.28) in Eq. (A.30), iii) using the thermodynamic identity P0/τ0 =929

ρ0Cp(γ − 1)/γ (where γ is the specific heat ratio), and iv) considering that the averaged930

velocity is determined from Eq. (A.25). The mass balance equation and constitutive fluid931

flow law are given by:932

∇ ·Um + jωpmCmn = 0, (A.33)
933

Um = −km(ω)

η
· ∇pm. (A.34)

Here the Darcy’s velocity is given by Um = 〈u(0)
m 〉m and since the derivatives are taken934

with respect to the larger-scale spatial variable and the pressure and Darcy’s velocity are935

leading order terms, we have dropped the superscript (0) and the index x here and in the936

main text. The dynamic viscous permeability associated with the micropore fluid network937

is calculated as km(ω) = 〈k̄m(y, ω)〉m. The effective dynamic compressibility Cmn(ω) is938

given by Eq. (25), i.e. Cmn = Cm + (1 − φm)CnFmn, and corresponds to the sum of the939

classical effective dynamic compressibility accounting for heat transfer in the micropores940

Cm(ω), and an additional effective dynamic compressibility Cn that accounts for sorption in941
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the nanopores and is modified by the inter-scale mass diffusion. The latter is also affected942

by sorption and is accounted for by Fmn(ω). The compressibility Cm is calculated using943

Eq. (23) with the subscript p being replaced by m and the associated dynamic thermal944

permeability is calculated as Θm(ω) = 〈θ̄m(y, ω)〉m. The compressibility Cn is given by Eq.945

(26) and Fmn is related to the inter-scale (micro-nano) mass diffusion function G(ω) via Eq.946

(27). The latter is calculated as25:947

G(ω) =
1

Ωm

∫
Ωn

ḡ(y, ω)dΩ. (A.35)

In summary, the effective model for sound propagation in the micro-nano porous domain,948

given by Eqs. (A.33) and (A.34), allows concluding that the constitutive fluid flow law of949

the micropore fluid network and the dynamic viscous permeability are not modified by the950

inter-scale mass diffusion and sorption in the nanopores. Conversely, the effective dynamic951

compressibility becomes significantly modified by inter-scale mass diffusion and sorption.952

This modification comes from the appearance of a source term in the mass balance equation953

(i.e. the third term in Eq. (A.30)) that accounts for the contribution of both processes.954

As shown in Section III, the low-frequency behavior of the effective dynamic compress-955

ibility is determined by He, which depends on H. A linearized dynamic sorption model956

derived in Ref. 25 allows linking H with the parameters of the classical Langmuir kinetics957

model34. Its use leads to replace Eq. (A.3) by cs = H(ω)cn, where the linearized sorption958

“dynamic equilibrium” constant is given by:959

H(ω) =
ρN
ρ0

bP0

(1 + bP0)2

1

(1 + jω
ωa

)
. (A.36)

Here ωa = kaP0 + kd is the sorption characteristic frequency, ka is the adsorption constant960

(in 1/Pa/s), kd is the desorption constant (in 1/s), and b = ka/kd is the Langmuir constant961

(in 1/Pa), and ρN is the maximum density increment due to sorption. Since the average962

residence time of adsorption, i.e. τa = 1/ωa, ranges from 10−13 to 10−9 s for physical963

adsorption1, the sorption characteristic frequency takes very high values and H(ω) can be964

approximated by25:965

H = H(ω << ωa) =
ρN
ρ0

bP0

(1 + bP0)2
. (A.37)

43



4. Rarefaction effects on sound propagation in the micro-nano porous domain966

For micropores with sizes comparable to the molecular mean free path ` = η
P0

√
πRgτ0/2M967

with Rg being the gas constant, effects related to the molecular nature of the gas start968

becoming considerable37,40,50–53. The ratio between ` and the micropore characteristic size,969

known as the Knudsen number Kn = `/lm, measures the degree of rarefaction. Its value is970

used for assessing the validity of the continuum hypothesis50. For Kn < 0.01, this hypothesis971

remains valid and the set of equations discussed in Section A 1 holds. For 0.01 < Kn < 0.01972

(commonly referred to as the slip-flow regime), the continuum description is valid everywhere973

in the micropore fluid network except in a thin Knudsen layer close to the micropore walls.974

In order to account for this effect, the continuum description is modified by allowing a degree975

of tangential-velocity slip51. Hence the boundary conditions (A.7) and (A.8) are replaced976

by Eq. (A.38). Similarly, molecular effects influence the thermal behavior of materials with977

lm = O(`). For 0.01 < Kn < 0.1 , the continuum description is modified to account for the978

temperature-jump on the micropore boundaries. This is achieved by replacing Eq.(A.10)979

by the so-called temperature-jump boundary condition Eq. (A.39), which states that the980

temperature is proportional to the normal component of the temperature gradient37,40,52. In981

these equations, tm is the tangential vector collinear with the velocity slip and the velocity982

slip and temperature jump coefficients are respectively denoted by cv and ct and are assumed983

equal to one, i.e. the molecules are reflected diffusively50.984

um =

(
−De

ρ0

∇ρn · nm
)

nm − cv`(tm · ∇um · nm)tm on Γm, (A.38)

985

τm = ct
2γ

γ + 1
Pr`∇τm · nm on Γm. (A.39)

Reminding that the velocity um, temperature τm, and density ρn vary at the local scale, and986

using Eq. (A.11); these boundary conditions rewritten in rescaled form are given by:987

um =

(
−ε2De

ρ0

∇ρn · nm
)

nm − ε`(tm · ∇um · nm)tm on Γm, (A.40)

988

τm = ε
2γ

γ + 1
Pr`∇τm · nm on Γm. (A.41)

The application of the homogenization procedure leads to the fluid flow and heat conduction989

leading-order cell problems Eqs. (A.18)-(A.19) and (A.21) with the boundary conditions990

(A.20) and (A.22) being respectively replaced by :991

u0
m = −`(t(0)

m · ∇yu
(0)
m · nm)t(0)

m on Γm, (A.42)
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τ (0)
m =

2γ

γ + 1
Pr`∇yτ

(0)
m · nm on Γm. (A.43)

These resulting leading-order cell problems have been solved in Refs. 22, 24, and 53. Their992

solutions, which are given by Eqs. (A.44) and (A.45), replace Eqs. (A.25) and (A.27).993

u(0)
m = − k̄m(y, ω,Kn)

η
· ∇xp

(0)
m , (A.44)

994

τ (0)
m =

θ̄m(y, ω,Kn)

κ
jωp(0)

m . (A.45)

Further algebra leads to the effective model for sound propagation in the micro-nano porous995

domain given by Eqs. (20)-(21). However, its effective parameters are modified by rarefac-996

tion effects. Specifically, the dynamic viscous and thermal permeabilities associated with the997

micropore fluid network are calculated as km(ω,Kn) = 〈k̄m(y, ω,Kn)〉m and Θm(ω,Kn) =998

〈θ̄m(y, ω,Kn)〉m. Consequently, the effective dynamic compressibilities Cm and Cmn are also999

affected by rarefaction effects.1000

It then follows that sound propagation in multiscale sorptive materials is affected by1001

rarefaction effects via the dependence of the effective dynamic compressibility C on both1002

Cmn and Fpmn. In particular, the modification by rarefaction effects of the latter comes1003

from their influence on the pressure field p
(0)
m in Eq. (B.6), which is determined by the1004

apparent pressure diffusivity (i.e. Eq. (B.7)) that becomes Knudsen number-dependent, i.e.1005

Bapp(ω,Kn) = Km(ω,Kn)/ηCmn(ω,Kn).1006

Appendix B1007

This appendix provides the mathematical details of the derivation of the macroscopic1008

equations (20) and (21) that describe sound propagation in multiscale sorptive materials.1009

Replacing the variables written as asymptotic expansions in powers of the small parameter1010

ε, i.e. Q(x, y) =
∑∞

i=0 ε
iQ(i)(x, y) where Q = pp,up, τp, ρp, pm,Um, into Eqs. (12)-(19) and1011

identifying the terms of the same order lead to the following results. At ε−1, it follows1012

from the equation of conservation of momentum that ∇yp
(0)
p = 0, which implies that the1013

pore pressure is a macroscopic variable, i.e. p
(0)
p = p

(0)
p (x). Further identification leads to1014

the oscillatory Stokes and heat conduction problems in the pore fluid network. These are1015

respectively given by Eqs. (A.18)-(A.20) and (A.21)-(A.22) with the subscript m being1016
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replaced by p. Their solutions are given by29,30,32:1017

u(0)
p = − k̄p(y, ω)

η
· ∇xp

(0)
p , (B.1)

1018

p(1)
p = −π̄p(y, ω) · ∇xp

(0)
p + p̄(1)

p (x), (B.2)
1019

τ (0)
p =

θ̄p(y, ω)

κ
jωp(0)

p . (B.3)

where k̄p(y, ω) and θ̄p(y, ω) represent the Ωp−periodic local fields of velocity and temperature1020

respectively. The pressure field has been expressed in terms of its zero mean part π̄p(y, ω)1021

and an integration constant p̄
(1)
p (x).1022

In the micro-nano porous domain, which is assumed isotropic for simplicity, the local1023

pressure field is imposed by the pore pressure on Γp and is governed by the following set of1024

equations:1025

∇y ·
(
−Km

η
∇yp

(0)
m

)
+ jωp(0)

m Cmn = 0 in Ωmn, (B.4)

1026

p(0)
m = p(0)

p on Γp. (B.5)

This problem is formally identical to that of pressure diffusion in double porosity materials1027

with highly-contrasted permeabilities33,36. Therefore, its solution is given by:1028

p(0)
m = p(0)

p

(
1− jωb̄(y, ω)

Bapp

)
, (B.6)

where b̄(y, ω) represents the Ωp − periodic local diffusive pressure field and the apparent1029

pressure diffusivity Bapp is defined by:1030

Bapp =
Km
ηCmn

. (B.7)

The integration of the leading-order mass balance equation over the pore volume leads1031

to:1032

jω

〈
p

(0)
p

P0

− τ
(0)
p

τ0

〉
+∇x · 〈u(0)

p 〉+ 〈∇y · u(1)
p 〉 = 0, (B.8)

where the averaging operator is defined as:1033

〈·〉 =
1

Ωp

∫
Ωpf

· dΩ. (B.9)

The last term on the left-hand side of Eq. (B.8) is calculated by i) using the divergence1034

theorem, ii) taking into account that the surface integrals on opposite boundaries of the cell1035
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cancel out due to periodicity and using Eq. (17) identified at order ε, iii) transforming the1036

resulting surface integral into a volume integral using the divergence theorem, iv) integrating1037

over the micro-nano porous domain the Eq. (15) identified at the dominant order, and v)1038

replacing Eq. (B.6). The final result is:1039

〈∇y · u(1)
p 〉 = jωp(0)

p (1− φp)Cmn(ω)

(
1− jωB(ω)

(1− φp)Bapp

)
, (B.10)

where the inter-scale pressure diffusion function B(ω) is calculated as:1040

B(ω) =
1

Ωp

∫
Ωmn

b̄(y, ω)dΩ. (B.11)

The macroscopic description of sound propagation in multiscale sorptive materials, i.e.1041

Eqs. (20) and (21), is then obtained by substituting Eqs. (B.10) and (B.3) into Eq. (B.8),1042

using the thermodynamic identity P0/τ0 = ρ0Cp(γ−1)/γ, and considering that the averaged1043

fluid velocity is determined from Eq. (B.1), with the dynamic viscous permeability tensor1044

being calculated as kp(ω) = 〈k̄p(y, ω)〉. The dynamic thermal permeability associated to1045

the pore scale is calculated as Θp(ω) = 〈θ̄p(y, ω)〉 (see Eq. (B.3)).1046

Appendix C1047

This appendix presents the derivation of the asymptotic values of effective dynamic com-1048

pressibility C(ω) given by Eqs. (30) and (31).1049

The behavior of Ci(ω) (with i = p,m) is characterized by that of Θi(ω), which is in1050

turn determined by ωti. The thermal permeability varies32 from Θi(ω << ωti) = Θi0 to1051

Θi(ω >> ωti) = −jφiδ2
t , where δt =

√
κ/ρ0Cpω is the thermal boundary layer thickness.1052

Therefore, the effective dynamic compressibility Ci(ω) varies as32:1053

Ci =


φi
P0

(
1− γ−1

γ
jω
ωti

)
for ω << ωti

φi
γP0

for ω >> ωti.
(C.1)

The behavior of Fmn(ω) is determined by that of G(ω). The latter is characterized by1054

the mass diffusion characteristic frequency ωd and varies25 from G(ω << ωd) = G0 to1055

G(ω >> ωd) = −j(1 − φm)δ2
d, where δd =

√
Dapp/ω is the mass diffusion boundary layer1056

thickness. It then follows that Fmn(ω << ωd) = 1 − jω/ωd and Fmn(ω >> ωd) = 0.1057

Therefore, the effective dynamic compressibility Cmn takes the following asymptotic values:1058

Cmn =


1
P0

(
φm + (1− φm)He − jω

(
γ−1
γ

φm
ωtm

+He
(1−φm)
ωd

))
for ω << ωd

φm
γP0

for ω >> ωtm.
(C.2)
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From Eq. (C.2), it is deduced that the static compressibility of the effective fluid satu-1059

rating the micro-nano porous domain is given by25 :1060

Cmn0 = Cmn(ω = 0) =
φm + (1− φm)He

P0

. (C.3)

The behavior of the function Fpmn(ω) is determined by B(ω) and Bapp(ω). Focusing on1061

isothermal sound propagation in the micropores (i.e. ω << ωtm) and quasi-static inter-scale1062

mass diffusion (i.e. ω << ωd), the apparent pressure diffusivity is estimated by Bapp ≈1063

Bapp0 = Km0/ηCmn0. Then, the pressure diffusion function varies from B(ω << ωb) = B01064

to B(ω >> ωb) = −j(1 − φp)δ
2
b0, where δb0 =

√
Bapp0/ω is an estimation of the pressure1065

diffusion boundary layer thickness. It then follows that Fpmn(ω << ωb) = 1 − jω/ωb and1066

Fpmn(ω >> ωb) = 0. Combining this result with Eqs. (22), (C.1), and (C.2), and only1067

retaining linear terms in frequency, one obtains Eqs. (30) and (31).1068
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101–130 (1898), (On conduction of heat by rarefied gases).1180

53J. Chastanet, P. Royer, and J. L. Auriault, “Acoustics with wall-slip flow of gas saturated1181

porous media.” Mech. Res. Commun. 31, 277–286 (2004).1182

51


