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Predicting numbers of new products to be launched by the firms in a particular time period is considered
as the most mystified and strategically important decision. Importance of this aspect could be realized by
looking at the low success rate of new products in the market. Identifying numbers of new products
potentially accepted by the market may reduce the investment and scant resources consumption by

firms. In this study, statistical multiple linear regression, and artificial neural network techniques mod-
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for the predicament.

eled as simple and cascaded networks combined with nature inspired algorithm have been implemented.
Artificial neural network has shown significant performance results and further cascading helps in
enhancing the prediction accuracy along with better convergence capability of the developed models

© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Product which gives an essence of something new or different
from the existing product could be defined as the new product.
Developing a new product requires a lot of investment in terms
of finance, human resource, infrastructure etc. All new products
launched were not able to end doing well in the market. A study
made by product development and management association
(PDMA) states that approximately half of the new products
launched failed to mark their presence in the market. Predicting
accurately successful numbers of new products to be launched in
a particular time frame is a challenging task for the top level man-
agement of any firm. Launching new product is directly related to
new product development which turns out to be a function of
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many variables. Developing new product could not be possible in
isolation since many internal and external factors to the firm con-
tribute in the development process (Dempster, 1971). Pace of
developing new products may possibly be estimated by identifying
critically important parameters specific to firms. Focus of this
study is on the firms belonging to the manufacturing sector. Inno-
vativeness in this sector could be seen as the rate of development
of new products. The high rate of new product development has
cultivated revolutionary environment in the market. Dynamicity
of this sector makes it difficult to match acceptance rate of new
products in the market with the rate of new product development,
resulting in higher rate of new product failures. Acknowledging
this scenario crucially important parameters have been identified
from intensive literature survey available for new product develop-
ment under this sector. Data have been collected on the identified
parameters (independent/input variables) and corresponding
numbers of successful new products (dependent/output variable)
launched in three years by the firms fallen under industries, elec-
tronics, garment and metal & machinery from manufacturing
sector.

Statistical and artificial neural network (ANN) techniques have
been used in this study. Multiple linear regression is a method to
find the linear relationship between one dependent/output and
many independent/input variables often using least square
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approach. ANN techniques were developed by imitating the work-
ing of human brain. Basic structure of ANN is composed of neurons
and weights associated with them arranged in a definite manner,
learning algorithm and an activation function. Functional linked
artificial neural network (FLANN) is a variant of ANN which
involves less computational load as compared to other ANNs with-
out compromising on the performance efficiency and with the
added benefit of its simple structure. Non linearity can be easily
inserted in FLANN with the usage of non-linear functional expan-
sions in its basic structure. The basic structure of FLANN is shown
in Fig. 2. Some of the most widely used non-linear functional
expansions are power, trigonometric, legendre, chebyshev and
polynomial series. Numbers of learning algorithms have been
developed to work with ANN like least mean square (LMS), recur-
sive least square (RLS), nature inspired techniques e.g. evolutionary
algorithm (EA), swarm optimization (SO) and many more. Particle
swarm optimization (PSO) is the variant of swarm optimization
algorithm that have been implemented in this study other than
LMS and RLS learning algorithm. FLANN with power series func-
tional expansion is considered as the basic structure of ANN to
study this predicament because of its better performance in com-
parison to other expansions.

Cascading of neural network is the approach of keeping the
exact processing unit at the output terminal of first processing
unit. Generally cascading helps in reducing the propagation of
error and provides better result than single processing unit. Three
possible cascaded configurations have been implemented using
different input combinations to cascaded unit. Average MAPE
(mean absolute percentage error), RMSE (root mean square error)
and STDEV (standard deviation) values obtained using K-fold
cross validation for all the FLANN models are summarized in
Tables 5, 6 and 7. Statistics obtained from multiple linear
regression model is shown in Table 8 and 9. At last managerial
implementation and future direction to extend the study have
been discussed.

2. Literature review

New product development (NPD) is a chosen topic of research
by scientists and researchers from a long time. It has gained a lot
of attention from government as well as from business houses |
entrepreneurs in last few years because of the tremendous growth
in technology and liberal business policies (Wengenroth, 2000).
The success rate of new product development should really be of
great concern to the firms as about half of new products were
withdrawn from the market just after introducing them (Griffin,
1997). NPD process does depend on many internal and external
factors specific to firms. Firms belonging to manufacturing sector
have some common crucial and important parameters those may
help in specifying the pace of development of new products. Many
researchers have contributed in this field by identifying such
parameters and preparing models for estimating and improvising
new product development process. Cutting down risk factors asso-
ciated with the production and to strive for knowledge manage-
ment either internal or external to firm is an important factor to
improve the quality of new product Cooper (2003). Market infor-
mation plays a vital role in all the three phases of development
of product i.e., before development phase, development phase,
and commercialization phase and has potential to change the out-
come for the product in market (Veldhuizen et al., 2006). An empir-
ical study suggests that speeding up innovation could lead to
quality products (Kessler and Bierly, 2002). Holistic networking
in knowledge management and development process specific to
product is of immense help in development of new products
(Chen et al., 2008). Physical location and functional team composi-

tion are considered as the main factors in increasing pace while
keeping lower error rate for NPD process (Kim and Kim, 2009). A
conceptual model has been developed for commercializing new
products made by using new technologies (Cho and Lee, 2013). A
contingency model have been designed using transaction cost to
define the impact of seller and buyer interactions on product cus-
tomization and shown that joint (buyer and seller) NPD may
achieve higher satisfaction level in customers by decreasing the
negative effect of product customization (Stump et al., 2002). A rel-
atively easy wait for turn model involving design tasks has been
developed by considering four factors novelty in technology, enor-
mity of task involved in designing, extent of connectivity between
different tasks and making linkage between jobs using Kolmogorov
Smirnov test (Dragut and Bertrand, 2008). Relationship modelling
has been established between personality traits of the leader and
the type of NPD projects (Aronson et al., 2006). Cost involved in
critical design and resource sourcing are important decisions to
make by the firm since they play decisive role in costing of product
for the market. A substantive model have been proposed which
says that cost incurred in sourcing decisions plays a significant role
in overall cost reduction of the product (Wouters et al., 2009). A
model has been suggested using support vector mechanism and
imperialist competitive algorithm to estimate the time duration
for the NPD projects (Meysam Mousavi et al., 2013). New product
should be developed according to firms’ capacity and strength. A
fuzzy linear programming model has been developed using quality
function deployment in four phases taking risk as a constraint for
NPD (Chen and Ko, 2010). ANN techniques have been used to
understand the development of process for product development
using information analysis and demonstrated that it could help
in reducing time, cost and the risk associated with it (Chen et al.,
1998). On the basis of fuzzy analytical hierarchy procedure as well
as on fuzzy data envelope analysis along with Bayesian belief net-
work as a constraint to compensate for risk factors, a model has
been developed to rank the NPD projects (Chiang and Che, 2010).
Choosing one from various top ranked promising projects for
NPD in itself is a big task. To resolve this a system has been sug-
gested whose basis is ANN to select one particular project and it
is observed that for given dataset neural network can able to pre-
dict about 96.7% correctly the project which actually going to be
success (Thieme et al., 2000). Comparison between logistic regres-
sion. discriminant analysis and back propagated neural network
model have been made and results were in favour of neural net-
work with marginal difference (Dasgupta et al., 1994). Econometric
test and neural network modelling have been done to forecast the
consumers’ expenditure and result showed that success of analysis
depends on the choices made for explanatory variables (Church
and Curram, 1996).

3. Data collection and validation

Data have been collected from numbers of firms belonging to
electronics, garment and metal & machinery industries
pertaining to different regions (locations) on critically important
parameters identified from literature survey. These parameters
affect the new product development process either directly or
in an indirect manner. The nine parameters identified are
provided in Table 1 and considered as independent variables
for the analysis. Data from 398 electronics firms have been
collected and after removing outliers and missing values 327
firms’ data were used for the analysis. Similarly, for garment
industry 751 firms provide data but only 445 firms’ data were
used in analysis because of huge number of missing values
and for metal & machinery firms, 663 firms have given data
but only 464 firms’ data were used.
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4. Research methodology

The flowchart depicting the steps involved in the analysis is
shown in Fig. 1. The Validated data needs to be normalized and
randomized before using as input. Normalization ensures that all
input variables are on same scale and randomization helps in
robust building of the developed model. The developed models
are trained and tested using K-fold scheme where K is taken as
10. Multiple linear regression and neural network techniques mod-
els have been developed and tested using MATLAB R2011b analytic
tool package on intel(R) Core(TM) i5-3337 CPU@1.80 GHz run-

ning 64 bit Windows 8 operating system with 4GB RAM
(installed). Equations involved in developing different models
have been provided in model development section. The results
obtained from different models have been tabulated in Tables 5,
6, 7, 8 and 9. Average MAPE and RMSE values obtained from 10-
fold simulations were used as the performance measure indices
for the developed neural network models. In case of multiple linear
regression model R-square and adjusted R-square values were con-
sidered to find out mapping efficiency between dependent and
independent variables. Lower value of MAPE and RMSE suggest
that model is performing well as compared to other developed
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Fig. 1. Different steps involved in analysis.
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Table 1 Table 2
Variables used in the analysis. Parameters used for FLANN-LMS configuration.
Dependent Independent Variables Parameter used Value
Variable Common for both units
New products Numbers of years firm has completed from its Numbers of iterations 1000
Y, 1)) establishment (x;) (Naldi and Davidsson, 2014) Learning factor 0.01
Numbers of years firm is involved in exporting (x2) (Glick, Type of nonlinear expansion Power series
1982) Numbers of expansions 3

Numbers of permanent employees (x3) (Bourgeon, 2007)
Gross National Income (GNI) of country where firm

Activation function

Hyperbolic Tangent

it-1
operates (x4) (Roessner et al., 2013) U'rut ioh
Yearly expenditure on product development (x5) (Tsai Bias weight Yes
Numbers of weights 27
et al.,, 2011)
Sales amount realized in a year (x6) (McDougall, 1989) Unit-2 (Case-1)
Technology used for production (x7) (Xu et al., 2012) Bias weight Yes
Percentage of supplies from domestic market (x8) (Zhang Numbers of weights 3
and Wu, 2016) Unit-2 (Case-2)
Total number of products produced by the firm (x9) Bias weight No
(Frankenhoff and Granger, 1971) Numbers of weights 30
Unit-2 (Case-3)
Bias weight Yes
models having higher value of MAPE and RMSE for a particular case Numbers of weights 30
under study. However, for multiple linear regression higher the
value and R-square and adjusted R-square suggests the phe-
nomenon under study has been mapped efficiently and there exist Table 3
a linear relationship between dependent and independent Parameters used for FLANN-RLS configuration.
variables. Parameter used Value
Common for both units
5. Basic neural network model development Numbers of iterations 1000
Forgetting factor 0.99
The basic neural network modelling was first done by Klopf, Type of nonlinear expansion Power series
Numbers of expansions 3

Barton, Sutton, Grossberg, and Freeman in 1960s (Greenwood,
1991). Neural network techniques could be used to model different

Activation function

Hyperbolic Tangent

Unit-1

phenomenon (Majhi et al., 2006, 2009; Gosasang et al., 2011) by Bias weight Yes
learning from the past data applied to it (Haykin and Gwynn, Numbers of weights 27
2008). FLANN is a single layered ANN developed by Pao (1989) Unit-2 (Case-1)
using only one neuron. Single layered structure of FLANN made it Numbers of Bias weight Yes
to do fewer computations as compared to other traditional neural Numbers of weights 3
networks and results in faster convergence rate (Patra et al., 1999). Unit-2 (Case-2)
Non-linear phenomenon could be studied well using FLANN Bias weight No
because of inherent non-linearity in its structure which is not pos- Numbers of weights 30
sible in the case of linear multiple regression where only linear Unit-2 (Case-3)
mapping is feasible for different variables under consideration. In Bias weight Yes

. L . Numbers of weights 30
view of inherent non-linear nature of new product development
(Hagan et al., 2014) FLANN models have been developed for anal-
ysis. Three conventional functional expansions; trigonometric,
chebyshev and legendre (Lippmann, 1987; Masters, 2014) along
with power series expansion have been used with FLANN struc- Table 4
ture. Adaptive prediction algorithms are globally convergent and Parameters used for FLANN-PSO configuration.
ensure stability if a capricious feedback has been applied between Parameter used Value
input and output of the model (Goodwin et al., 1981). Least mean -

. . Common for both units
square (LMS) (Widrow et al., 1985), recursive least squares (RLS) Numbers of iterations 200
(Sachdev and Nagpal, 1991) and particle swarm optimization Population size 50
(PSO) algorithms (Kennedy and Eberhart, 1995; Feng et al., 2017; Constant C1 and C2 1042
Amirthalingam and Radhamani, 2016; Kim et al, 2017) are Type of nonlinear expansion Power series
Numbers of expansions 3

employed in the analysis to update the weights assigned to each
expanded input. The results obtained for power series expansion
is better than any other functional expansions embedded with

Activation function
Unit-1

Hyperbolic Tangent

! Bias weight Yes
FLANN models and have been reported in Tables 2, 3 and 4. Numbers of weights 27
Simple block diagram for FLANN model is shown in Fig. 2. Unit-2 (Case-1)
Inputs consist of values for different factors affecting development Bias weight Yes
of new products of the firms considered under study. Output of Numbers of weights 3
model is the predicted numbers of new products developed by Unit-2 (Case-2)
the corresponding firms. Bias weight No
Each element of an input vector is applied to non- linear func- Numbers of weights 30
tional expansion block and a new pattern of input vector with an Unit-2 (Case-3)
increase in its dimensionality is generated. Random weights are Bias weight Yes
Numbers of weights 30

assigned and initialized to every expanded input of the input vec-
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Table 5
Cascaded FLANN-LMS model with three different input combinations to cascaded unit using 10-fold cross validation.
LMS Industry Electronics Garment Metal & Machinery

Type and number of expansions in first unit
Type and number of expansions in cascaded unit

Power series with 3 number of expansions per input
Power series with 3 number of expansions per input

Unit-1 Expanded input with bias MAPE  Training 5.9715 2.9492 3.3546
Testing  6.2392 3.9728 4.0747

RMSE  Training 0.0857 0.0474 0.0559

Testing  0.0911 0.0512 0.0582

STDEV  Training  0.0547 0.0314 0.0385

Testing  0.0585 0.0491 0.0405

Unit-2 (Case-1)  Expanded output with bias to cascaded unit MAPE  Training 5.5352 2.4454 3.0232
Testing 5.8458 3.1269 3.2941

RMSE  Training 0.0757 0.0367 0.0453

Testing  0.0760 0.0393 0.0491

STDEV ~ Training 0.0175 0.0435 0.0144

Testing  0.0242 0.0921 0.0156

Unit-2 (Case -2) Expanded input and expanded output of first unit to cascaded unit MAPE  Training 5.6423 2.9264 3.2187
Testing  5.9616 3.3265 3.8147

RMSE  Training 0.0814 0.0454 0.0532

Testing ~ 0.0951 0.0472 0.0405

STDEV ~ Training 0.0351 0.0414 0.0332

Testing  0.0484 0.0435 0.0234

Unit-2 (Case-3)  Expanded input and expanded output of first unit with bias to cascaded unit MAPE  Training 5.5694 2.7432 3.3163
Testing ~ 5.9317 3.6355 3.9338

RMSE  Training 0.0781 0.0451 0.0469

Testing  0.0803 0.0504 0.0480

STDEV  Training 0.0376 0.0352 0.0338

Testing  0.0391 0.0214 0.0450

Best simulation results obtained corresponding to the developed model have been shown as bold values.

tor. The weighted new input vector is summed up and passed
through the activation function to get the estimated numbers of
new products. Estimating error is calculated by subtracting pre-
dicted values from actual values for numbers of new products.
Learning algorithm uses this error value to update the weights.
The weights are continuously updated using K-fold method until
the root mean square error (RMSE) for the model attains steady
state. The resulting weights are referred as optimum weights and
the period until the optimum weights are achieved is referred as
training period. After obtaining optimum weights the model is
set to provide its best performance. During testing phase mean
absolute percentage error (MAPE) is calculated using the testing
samples and used as the performance measurement index. Also,
standard deviation (STDEV) has been calculated for each model
implemented in this study. An average value of MSE, MAPE and
STDEV has been obtained by k-fold (k = 10) simulations and results
are reported in Tables 5, 6 and 7.

5.1. Cascaded neural nerwork model development

The block diagram for general cascaded network has been
shown in Fig. 3. In this study analysis of the cascaded FLANN model
with power series expansion is discussed using LMS, RLS, and PSO
weight updating algorithms.

Cascaded neural networks have been reported in many fore-
casting (Zhang et al., 2003; AlFuhaid et al.,, 1997; Majhi et al,,
2007) and classification (Lin et al., 2000; Huang et al., 2003) prob-
lems. Cascaded neural networks have shown better performance as
compared to other counterpart techniques. In this study, three
cases of cascaded neural networks have been configured on the
basis of input to the second unit and have been shown in Fig. 4.
In first case, output from the first unit becomes input for the sec-
ond unit and a bias signal is provided separately. For second case,
same input pattern which was provided to the first unit is applied
to the second unit along with the output of first unit. In third and
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Table 6

Cascaded FLANN-RLS model with three different input combinations to cascaded unit using 10-fold cross validation.

RLS

Type and number of expansions in first unit
Type and number of expansions in cascaded unit

Industry Electronics Garment Metal & Machinery

Power series with 3 number of expansions per input
Power series with 3 number of expansions per input

Unit-1 Expanded input with bias MAPE  Training 5.9851 3.9975 3.8842
Testing  6.7482 5.1682 3.8945
RMSE  Training 0.0781 0.0486 0.0473
Testing  0.1138 0.1860 0.0836
STDEV ~ Training 0.0244 0.0283 0.0157
Testing  0.0247 0.0302 0.0228
Unit-2 (Case-1)  Expanded output with bias to cascaded unit MAPE  Training 5.2314 3.7581 3.3510
Testing  5.5517 4.8624 3.4862
RMSE  Training 0.0683 0.0483 0.0453
Testing  0.0828 0.1765 0.0748
STDEV  Training 0.0251 0.0281 0.0146
Testing  0.0258 0.0298 0.0224
Unit-2 (Case-2) Expanded input and expanded output of first unit to cascaded unit MAPE  Training 5.4524 4.0532 3.7643
Testing  6.0413 4.9799 3.7830
RMSE  Training 0.0721 0.0494 0.0469
Testing  0.0727 0.0535 0.0784
STDEV  Training 0.0252 0.0349 0.0253
Testing  0.0315 0.0455 0.0261
Unit-2 (Case-3) Expanded input and expanded output of first unit with bias to cascaded unit MAPE  Training 5.3638 3.8547 3.4461
Testing  5.9255 5.0693 3.6357
RMSE  Training 0.0730 0.0499 0.0429
Testing ~ 0.0723 0.0523 0.0695
STDEV  Training 0.0251 0.0346 0.0192
Testing  0.0277 0.0388 0.0228
Best simulation results obtained corresponding to the developed model have been shown as bold values.
Table 7
Cascaded FLANN-PSO model with three different input combinations to cascaded unit using 10-fold cross validation.
PSO Industry Electronics Garment Metal & Machinery

Type and number of expansions in first unit
Type and number of expansions in cascaded unit

Power series with 3 number of expansions per input
Power series with 3 number of expansions per input

Unit-1 Expanded input with bias MAPE  Training 5.4094 2.7504 2.8206
Testing  5.4250 3.1888 3.2943

RMSE  Training 0.0665 0.0367 0.0415

Testing  0.0668 0.0819 0.0808

STDEV ~ Training 0.0353 0.0212 0.0125

Testing ~ 0.0496 0.0338 0.0197

Unit-2 (Case-1) Expanded output with bias to cascaded unit MAPE  Training 5.2839 2.3426 2.5571
Testing  5.3210 2.7740 29129

RMSE  Training 0.0472 0.0344 0.0413

Testing  0.0581 0.0529 0.0767

STDEV  Training 0.0303 0.0111 0.0127

Testing  0.0425 0.0215 0.0168

Unit-2 (Case-2) Expanded input and expanded output of first unit to cascaded unit MAPE  Training 5.3043 2.3733 2.6739
Testing  5.3882 2.8857 3.1414

RMSE  Training 0.0551 0.0352 0.0473

Testing  0.0699 0.0623 0.0998

STDEV ~ Training 0.0316 0.0212 0.0206

Testing  0.0364 0.0223 0.0244

Unit-2 (Case-3) Expanded input and expanded output of first unit with bias to cascaded unit MAPE  Training 5.3995 2.3455 2.5927
Testing 5.4103 2.7944 3.1244

RMSE  Training 0.0543 0.0358 0.0457

Testing  0.0686 0.0579 0.0599

STDEV ~ Training 0.0344 0.0210 0.0168

Testing ~ 0.0480 0.0227 0.0192

Best simulation results obtained corresponding to the developed model have been shown as bold values.

the last case under consideration, output from the first unit, input
pattern of the first unit and a bias signal are inputs for the second
unit.

5.1.1. Analysis of single unit of models
The detailed structure of first unit of the model is shown in

Fig. 5.f(p,y) is the p™ element of the z element input pattern vector

where y denotes an input pattern vector of L such input pattern
vectors. 0(y, t)is the estimated number of new products of y input
pattern vector during the t™ iteration. d(y)is the desired number of
new products of y™ input pattern vector. e(y,t) is the prediction
error of the y input pattern vector during the t iteration. k is
the length of the functional expansion for each element of the
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input pattern vector. So(t), S1(t),S2(t),...,Smks1(t) are the elements
of the weight vector during the ¢ iteration.
Let be they™input pattern vector i.e.

FO) =UFAnfCyfGy) ... ... ..o oo o f(ZY)] (1)

And let F!(y) be the expanded input vector including bias input
for the y™ input pattern vector i.e.

Fy) =aynfanfay .. .fay... ......
fleyfenf@y) ... fen

Bias Input

F)=1fi0fHL0f 020 f0) . oo
a1 ()] 2)

where fi =f'(1y) f, = (Ly); f5 =LAy oo P fue=
F@9); fan =1

For z element input pattern vector, total number of elements
formed is given by

Z=2zk+1 3)

And S(t) be the weight vector during the t? iteration i.e.
S(t) = [s(O)s1(O)sa(t) . ... Szk(£)Szes1 (1)) 4)

The estimated new products of the y input pattern vector dur-
ing the t'" iteration is given by
oW, t) =F'(y) = S'(t) (5)

O(t.y) = (€79 — e70) /(€19 -4 ©

And the prediction error for the y* input pattern vector during
the t'" iteration is

e(tvy) = 6(t7.V) - d(y) (7)

3 5
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Fig. 4. Different Pattern developed on the basis of input combination to the cascaded unit.
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Fig. 5. FLANN model with power series expansion.

5.1.1.1. Training of the model by Least Mean Squares (LMS) Method
(model-I). Let Q be the total number of input patterns applied to
the model during training. For each iteration, these input patterns
are applied in a sequential manner and the updating of weights is
done at the end of the iteration by computing the average change
in the weights over Q input patterns. These iterations are per-
formed until MSE of the model attains steady state value. Let the
total number of iterations be T.

Updating the j" weight is done by computing the average
change in the jth weight over Q input patterns (As;).

si(t+ 1) =s;(b) + Asi(t); j=1,2,3,... ... ,zk, zk +1

8)
Where
y=Q
- j e(t, . .
Asj(t) = Lyt H {Jl(y) +elty) ; W is the learning factor 9)
Eq. (9) can be derived using steepest descent algorithm.
Mean Square Error during the training period is given by
y=Q
> et.y)
mse(t):y:]T;t:LZ,Z%,...,T (10)

The convergence rate and convergence value of the RMSE can be
adjusted using the learning factor p.

5.1.1.2. Training of the model by Recursive Least Squares (RLS) method
(model-II). The cost function used in RLS method is sum of error
squares up to that point i.e.,

y
Vi1 2
ey = 2 7e(j)]
j=1

(or)

2
Eyr1 =& + |e(y)|

(11)

(12)

where % is the forgetting factor which is nearly equal to unity and

Optimal weight vector (S)at pointy + 1 minimising the cost
function is given by

SW+1) =A% * G (13)
where Auto correlation vector (A) and Cross correlation vector (C)
are given by

Ay =A+Fy+1) « FIy+1) (14)

Cpo1=C+d(y+1) » FUD 15
Yy y

Updating the optimal weight vector at point y is done according
to

S+ 1) = Sy) + ST

150 (18

Where
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ry) =A" « FV (17)
g8y) =F'(y).r(y) (18)

And updating the auto correlation matrix (A) at point y is done
according

* T
R e (19)

The inverse autocorrelation matrix is initialised as A;' = 2 1,

where ¢2 is of magnitude of 10° — 10°; I is an identity matrix
ofN x Ndimensions where N is given by Eq. (3).

5.1.1.3. Training of the model by Particle Swarm Optimization (PSO)
method(model-1ll). Let b be the number of particles with randomly
defined local best positions (9,) and velocity (0,) used in the algo-
rithm and for every bird the fitness function (7) has been evaluated
for getting the particle best position by giving L input pattern of
training dataset on the basis of minimum error (e) between pre-
dicted and actual values using Eq. (7).

T, = min (e) (20)

The input pattern for which 7, is defined is taken as the particle
best position parameters.

A comparison has been made for finding the global best position
for particle between its present best position and local best posi-
tion and the best fitted value is taken as the global best position.
The particle velocity and position updating equation with respect
to present position (J,) of particle is as follows

i}b:i')b-i—cl*ax*(6b—5b)+c2*aX*(rb—6b) (21)

Op = Op + Up (22)

where, c1 and ¢2 are user defined constant values lying between 0
and 2; X is a randomly generated number whose value lies in
between 0 and 1.

5.1.2. Analysis of model with different combinations of input to
cascaded unit

On the basis of connecting second (cascaded) unit to first unit;
three different combinations have been implemented for the anal-
ysis. Flexibility in choosing first and cascaded unit as same or dif-
ferent is provided for the developed model. Option of independent
numbers of expansions along with choice of functional expansion
in first and cascaded unit has been provided as well. The developed
model works efficiently and provides the best results if both the
unit i.e. first and cascaded uses the same algorithm along with
the same numbers of expansions and type of functional expansion.
Results obtained from the analysis have been shown for the
homogenous units and for same number of expansions in Tables
5,6 and 7.

5.1.2.1. Case -I: Output from first unit and bias signal as input to
cascaded unit. The output from first unit (it could be modeled with
any of the LMS, RLS or PSO algorithm) 6(t,y) (Eq. (6)) also defined
as intermediate output (Fig. 3) is given to the cascaded unit as an
input along with the bias signal (+1). Let k is the length of power
function expansion then the input actually given to the cascaded
unit is
0(t,y) = [01(E.Y)03(EY) cov v ot e e e ORI
(23)
where 1 is the bias input signal

Rest of the steps are same as discussed above depending on the
choice of unit selected as the cascaded unit.

5.1.2.2. Case -II: Input as well as output from the first unit are taken as
input for cascaded unit. The input of the first unit is given as the
input for second unit as well and on the place of bias signal output
of the first unit is used as the final input vector given to the cas-
caded unit (using Egs. (2) and (6))

0(t.y) = [y (> E s E Vs EVFSEF) o oo oo ore
Falt.y)o(t,y)] (24)

This input is provided to the cascaded unit for analysis

5.1.2.3. Case -III: Input and output of the first unit as well as bias
signal is taken as input for cascaded unit. Input in this case is differ-
ent from the input derived under case - II only by the bias signal.
On adding bias signal to the Eq. (24) the input pattern generated
will be given as the input to the cascaded unit taken care under this
case

o(t,y) = i EVLEVEYFaE Vs (EY) o
faty)ot,y)] (25)

All these cases are shown in Fig. 3 and the input corresponding
to different cases I, Il and III are given by Eqgs. (23), (24) and (25)
respectively.

5.1.3. Model testing

Once the optimum weights were obtained, the model is set to
provide its best performance and the model is tested with testing
samples which have not been used for training. During testing, a
known input pattern is applied to the model to estimate the known
output. Mean value for the percentage ratio of absolute difference
between estimated and known outputs to actual output is calcu-
lated and used as performance index of the model to gauge excel-
lence of the model and is defined as

MAPE = 1dG) —0G)I-, 100 (26)

18
hey  d()

Also, root mean square error and standard deviation values
have been calculated using Egs. (27) and (28) respectively.

i=h
RMSE — |13 (d() — o(})” (27)
=

STDEV = (28)

where h is total number of input patterns utilized during testing
phase of developed models; d(j) and d(j) are desired and estimated

values respectively. d(j) is the mean value of the actual output val-
ues considered for computation.

5.1.4. Parameters used in model development

Parameters used in different configuration of FLANN with LMS,
RLS and PSO feedback algorithms have been provided in the Tables
2, 3 and 4 respectively.

6. Multiple linear regression

Regression was first coined by Galton (1885) while discussing
the height of humans. Concept of multiple linear regression
(MLR) was given by pearson in 1908 (Inc, 2016). Multiple linear
regression is a statistical technique which is used to find the linear
relationship between number of factors affecting the particular
phenomenon. Different variant of this technique could be used to
works with both continuous and categorical variables. MLR tech-
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nique has found numerous applications belonging to different
fields and many empirical studies have been made using this con-
cept. Zare Abyaneh (2014) has made a comparative study in pre-
dicting the water quality parameters using multiple linear
regression (MLR) and artificial neural network (ANN). Predicting
river flow using ANN and MLR models by Noori et al. (2010). Com-
parison of neural networks and regression technique for ozone
forecasting by Comrie (1997). Traffic forecasting for shorter period
by Sun et al. (2002). Electricity consumption forecasting using lin-
ear regression by Bianco et al. (2013). Ordinary least square esti-
mation technique has been used as a method for finding the
coefficient and intercept/constant values under multiple linear
regression and accordingly equations have been formulated.

Multivariate Linear regression is a statistical method of map-
ping the phenomenon using different factors those believed to be
the cause for that. The critical factors considered for the study
are taken as input and modelled in the form of linear regression
as follows

0) =Pif(1,y) +Pof (2,9) + oo oo et e e
+ Pif (k,y)+ (29)

where b, to by are constant coefficient values, € is the random error
or intercept and x is the input data vector for y™ row sequence from
the input matrix containing values of different critical factors.

In matrix form Eq. (29) is written as

O=Fpie (30)

where O, F, b and e are of (n x 1), (n x k), (k x 1) and (n x 1) dimen-
sions matrix respectively.

Coefficient values are estimated by ordinary least square algo-
rithm using the Moore-Penrose pseudo inverse technique as
follows

-1 ~
p— (x’x) X"y (31)
RR=1- (%) (32)
SS;
Adjusted R* =1 — <%> (33)
DF;

where, SS denotes sum of square; DF denotes degree of freedom; r
signifies residual terms; t signifies total number of terms.

The performance of this model has been estimated using the R?
and adjusted R? value. Also significant p-values show the impor-
tance of factors in mapping the observed phenomenon.

7. Results

Output obtained from the analysis for different developed mod-
els are tabulated in Tables 5, 6, 7, 8 and 9. Tables 5, 6, and 7 show
the performance of simple and cascaded neural networks under
different configurations for three different industries in term of
RMSE and MAPE. Tables 8 and 9 show the output obtained of mul-
tiple linear regression model in term of significance level of the
variables used in the analysis and R-squared values respectively.

The best results were obtained with PSO weight updating algo-
rithm. PSO is a nature inspired technique developed by observing
natural phenomenon happening on daily basis. It is evolved by
studying the flying pattern of birds in a group without any colli-
sion. Since PSO itself evolved from natural phenomenon it is
expected that it may converge for other real time problems as well
more efficiently than its counterpart algorithms.

Table 8
Multiple linear regression statistics obtained for three industries.

Independent Variables Coefficient  t-value Sig.
value

(a). Electronics Industry

Intercept / Constant value —0.850 -17.772  0.000

Number of permanent employees 0.020 1.163 0.246
Gross National Income of country where -0.017 -0.534 0.594
firm operates

Years completed after establishment 8.582E-5  0.005 0.996

Experience of exporting in years —0.002 -0.169  0.866
Percentage of supplies from domestic —0.003 -0.386  0.699
market
Total number of products produced 0.072 2177 0.030
Technology used for production —-0.017 -1.821 0.070
R&D expenditure in one year -0.014 -0.453 0.651
Sales amount realized in one year 0.037 2.028 0.043
(b) Garment Industry
Intercept / Constant value -0.879 -50.646 0.000
Number of Permanent Employees 0.002 0.191 0.849
Gross National Income of country where 0.009 2.520 0.012
firm operates
Years completed after establishment —0.004 —0.543 0.587
Experience of exporting in years 0.001 0.258 0.796
Percentage of supplies from domestic 0.001 0.282 0.778
market
Total number of products produced 0.114 7.817 0.000
Technology used for production 0.002 1.082 0.280
R&D expenditure in one year 0.001 0.080 0.936
Sales amount realized in one year —0.001 -0.136 0.892
(c) Metal & Machinery Industry
Intercept / Constant value -0.910 —36.280 0.000
Number of permanent employees -0.016 -0.922 0.357
Gross National Income of country where —0.003 —0.348 0.728
firm operates
Years completed after establishment —-0.015 -1.867  0.063
Experience of exporting in years —0.009 -1.410 0.159
Percentage of supplies from domestic —0.003 -0.786 0.432
market
Total number of products produced 0.069 3.944 0.000
Technology used for production —0.002 -0.419 0.676
R&D expenditure in one year -0.013 —0.847 0.397
Sales amount realized in one year 0.037 2.963 0.003

"Dependent Variable: Number of new products
Independent variables affecting the output of regression model significantly are
shown as bold values.

Table 9
R square and adjusted R square values value for multivariate linear regression.

Industry R square value Adjusted R square value
Electronics 0.081 0.055
Garment 0.144 0.126
Metal & Machinery 0.068 0.050

8. Interpretation of results

Best result has obtained for the cascaded model which has been
configured as case-1 of unit-2 for all the cases under consideration.
In case-1 of unit-2 output of unit-1 has been expanded using
power series functional expansion with same numbers of expan-
sion terms as used in unit-1 and given to the cascaded unit plus
the bias signal. It provides the minimum value for MAPE and RMSE
as compared to other configurations used for the analysis. RMSE
suggests convergence capability of the model; lower RMSE value
means better convergence. Lower MAPE value signifies lesser dif-
ference between actual and predicted values obtained using devel-
oped model which result in better prediction accuracy of the
model.

Results obtained shows that FLANN with PSO is the best per-
forming cascaded neural networks whereas FLANN with LMS and
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Table 10
Comparison of previous studies with present investigation.

SI. No.  Type of data set Size of data set  Algorithm used Performance Index

1. Ekbatan waste-water treatment plant, Tehran, Iran (Zare Abyaneh, 2014) 84 Regression and MLANN 37.8 (RMSE-Regression)
25.1 (RMSE-MLANN)

2. Exchange rate (Majhi et al., 2006) 365 FLANN-LMS 3.1 (APE)

3. Exchange rate (Majhi et al., 2009) 418 Cascaded FLANN 1.9 (APE)’

4. Electrical load and weather (AlFuhaid et al., 1997) 365 Cascaded ANN 2.707 (MAPE)

5. Electricity consumption (Bianco et al., 2013) 37 Linear Regression 0.981 (Adj. R?)

6. Ozone and weather U.S. database (Comrie, 1997) 690 Regression and MLANN 0.59 (R?) and 7.01 (MAE)”

7. England market energy clearing price (Zhang et al., 2003) 31 Cascaded ANN 6.27 (MAPE)

8. Monthly rainfall, discharge, sun radiation and temperature 216 Regression and MLANN  0.79 (Adj. R?) and 1.06 (MAE)”

9. Electronics industry (Present investigation) 327 Cascaded PSO 5.3210 (MAPE)

10. Garment industry (Present investigation) 445 Cascaded PSO 2.7740 (MAPE)

11. Metal and machinery industry (Present investigation) 464 Cascaded PSO 2.9129 (MAPE)

Note: "APE stands for Average Percentage Error, "MAE stands for Mean Absolute Error

RLS shows minor improvement over each other for specific
industry.

On the other hand, multiple linear regression is not able to track
down the trend of launching new products follows by the indus-
tries considered under this study. It is clearly visible from the sig-
nificance values mentioned in Table 8 that most of the critically
important variables were coming as insignificant variables for
analysis. The criterion for variable to be considered as significant
is that its p-value or significance value should lies in between 0
and 0.05 which means it should meet the criteria of 95% confidence
interval. For electronics industry intercept / constant value, total
number of products produced and sales amount realized in a year
have came as significant variables. In case of garment industry
along with intercept |/ constant, total numbers of products pro-
duced and gross national income of the country where firm oper-
ates were came as significant and for metal & machinery
industry intercept / constant, total numbers of products produced
and total sales amount realized in a year considered to be signifi-
cant variables. As in multiple linear regression analysis we found
that most of the critically important variables were came out as
insignificant in prediction which suggests that production of new
products is a phenomenon which is non linearly associated with
many direct and indirect (latent) variables. As linear regression
can track only linearly related phenomenon; it does not able to
track the trend of new products production which is evident by
small value of R-square and adjusted R-square. R-square is the per-
centage of variance explained considering all the independent vari-
able as significantly contributing and adjusted R square value is
calculated by considering only those variables which are actually
affecting the phenomenon.

FLANN has inherent non-linearity in its structure and thus han-
dled the phenomenon better which is evident from the result
statistics. PSO as weight updating algorithm provides the results
with the highest accuracy as compared to other algorithms
implemented.

9. Conclusion

Developing new products is a non-linear phenomenon with
respect to many parameters and could not be tracked using multi-
ple linear regression. Techniques having inherent non-linearity or
may induce non-linearity would be useful in estimating successful
numbers of new products to be launched. Artificial neural net-
works inherent non-linearity in their structure and hence able to
tracked down the changes. It is observed that cascading of network
makes the network more efficient than its parent unit but at the
cost of more computational load and complex structure. The PSO
algorithm which is actually a nature inspired technique and com-
paratively newer than LMS and RLS algorithms performs better

and the cascade arrangement makes PSO even more efficient.
Table 10 shows the type as well as size of the data set used in mea-
suring the performance of different models implemented in previ-
ous studies.

10. Managerial implications

This paper tried to predict the numbers of new products that a
firm should launch to remain competitive and profitable in the
market. This will help the managers to manage inventories and
other resources. It may also help in making strategically important
decisions for the firm. Moreover, wastages could be reduced which
means cost effectiveness without compromising on the quality of
the product. Different factors influencing production could be
identified by managers those are firm specific (smaller firms may
have different requirement as compared to large firms in the same
way technologically advanced firms may have different strengths
rather than labor intensive firms).

Revenue generation for sales is one of the most important fac-
tors for determination of production of new products and by know-
ing the previous trends upcoming sales revenue may be forecasted
helping manager to study the market scenario. Database main-
tained for different parameters related to new products could be
used to map different cause effect relationships as well.

11. Directions for future work

Prediction of new products is a complex phenomenon which
depends on many factors those are industry specific and difficult
to measure directly. It may be possible to increase the efficiency
of developed models by identifying and adding some other criti-
cally important parameter in the analysis. By exploring maximum
of latent variables better results could be expected. Increasing
sample size may be helpful in generalizing the trend for efficient
prediction by the developed models.
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