
1 
 

Experimental study of cathodic protection for reinforced concrete submerged 

in saline water 

 
H. Oleiwi1,4, *Y.Wang1, M. Curioni2, L. Augusthus-Nelson1, X. Chen3, I. Shabalin1  

 

1. School of Computing, Science & Engineering, University of Salford, Manchester M5 4WT, UK 

2. Corrosion and Protection Centre, University of Manchester, Manchester M13 9PL, UK 

3. Charter Coating Service (2000) Ltd, Calgary AB T2E 6P1, Canada 

4. College of Engineering, University of Thi-Qar, Nasiriyah, Iraq 

*Corresponding Author: y.wang@salford.ac.uk 

 

 
Abstract 

Cathodic protection (CP) has been approved in practice to be an effective technique to protect steel 

reinforcement in concrete from corrosion under severe environmental conditions. Using constant current for 

CP is the most popular approach in practice, particularly for the structures exposed to atmospheric 

conditions. However, for submerged structures, the situation of the reinforcement is quite different, if the 

constant current approach is efficient to provide adequate protection is still not very clear. To have a deep 

understanding for the question, an experimental investigation has been conducted for reinforced concrete 

specimens protected by impressed electrical current of both constant current density and constant 

potentiostatically controlled potential, respectively. Reinforced concrete specimens had varied chloride 

contents and submerged into salty solutions that have the same amount of chloride added in the concrete 

mixture have been examined. The performance of protection has been evaluated and discussed. Corrosion 

potentials and concrete resistivity were also measured and compared with those of chloride 

content/corrosion rate. 
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Introduction 

Steel in concrete is in a passive state, safe from corrosion, due to high alkalinity of concrete 

typically of pH 12.5-13.5. A very thin protective films formed on the steel surface which prevent 

the steel from corrosion [1].  

 

According to Pithouse [2], the highly alkalinity of concrete mainly comes from calcium hydroxide 

which is a result of the hydration of cement compounds (namely C3S and C2S) as explained below: 

 

2(3CaO.SiO2) + 6H2O → 3H2O.2SiO2.3H2O + 3Ca (OH)2                                                         (1) 

2(2CaO.SiO2) + 4H2O → 3H2O.2SiO2.3H2O + Ca (OH)2                                                           (2) 

 

However, despite the high protective ability of concrete, corrosion of steel reinforcement is 

becoming the most common cause of the deterioration of concrete structures due to the chloride 

ability to depassivate the steel in concrete [3]. Coastal and offshore structures, sewers, structures 

in aggressive soils, bridge decks and other structures subjected to chloride contaminated water are 

some examples where severe corrosion attack occurs [4].  

 

It is very crucial to protect reinforcing steel from corrosion in order to extend the durability and 

increase the service life of reinforced concrete structures [5]. Different chemical, mechanical and 

electrochemical methods are adopted to protect or prevent concrete structures from corrosion [5, 

6]. Most of the non-electrochemical repair techniques are not very effective in reducing the 

corrosion rate, since they may arrest the problem with little or no success [7].  

 

Among the various corrosion control methods available, cathodic protection (CP) is an 

electrochemical and a major repair technique that has increasingly been used for the maintenance 

of corrosion damaged reinforced concrete structures around the world [8-10]. 

 

CP can be applied using either sacrificial anodes or impressed current systems. Sacrificial anodes 

are preferred to be adopted where the electrolyte conductivity is relatively high like buried and 

submerged concrete structures. But the voltage difference between the anode and the protected 

steel is limited to a maximum of 1V. In addition, it is less adjustable after installation and protective 

current is controlled by the environment around the structure [11]. Impressed current CP is usually 

the most appropriate technique to stop corrosion in different severe circumstances like structures 

with high concrete resistivity, and high chloride presented in the environment of the structures due 

to the high voltage,  reached to 100V, that can be generated by this system between the anode and 

the cathode [11].   

 

The two major criteria to control the performance of cathodic protection are the potential of the 

steel (Instant-off potential) and potential decay (depolarization) [12, 13]. The development of these 

criteria is still based on empirical evaluation of data obtained from successfully operated CP [14].  

 

BS EN ISO 12696:2012 [15] specified that the Instant-off potential should be more negative than 

-720 mV Ag/AgCl/0.5KCl for any structure under CP. While more negative potentials of -850 mV 

with respect to copper sulphate electrode (CSE) (≈ -800 mV vs Ag/AgCl/0.5KCl ) has been 

suggested by NASE SP0408 standard as criteria for the protected reinforcing steel in submerged 

concrete structures [14]. The BS [15] stated that to avoid hydrogen evolution at the steel surface, 
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the potential (instant-off) should be kept at a low limit value of -1100 mV Ag/AgCl/0.5KCl for 

normal reinforcing steel and -900 mV with respect to Ag/AgCl/0.5KCl for high strength steel 

reinforcement which is used for pre-stressed structures. 

 

The other most widely adopted performance criteria based on potential decay is the 100-mV 

depolarization criterion. In order to ensure that the protection is achieved and overprotection is 

avoided, and more generally to determine the performance of the CP system, potential of 

reinforcement should decay (become less negative) by at least 100 mV from the instant-off 

potential over a period between 4 and 24 hours after the CP system is switched off [14-16].  

 

The amount of required current to achieve cathodic protection must be enough to lower the 

potential of the reinforcing steel towards the immunity zone, and electrochemical attack cannot 

occur, so that all the reinforcement become cathodic and corrosion will be stopped [17]. 

 

The amount of current or potential difference between anode or cathode is the vital factor that needs 

to be designed to provide protection for the corroded reinforcement and to ensure that the anode 

has the ability to supply a current across the affected structure at a reasonable DC output voltage 

[18]. The current density required to maintain a metal surface cathodically protected must be not 

only high enough but also low enough to reduce the adverse effects on the anode to increase its 

life. The current density varies from 1-2 mA/m2 of total surface area of the protected steel, applied 

to new structures, to 5-20 mA/m2, applied to structures that already suffered from corrosion [3]. 

 

The present research work was designed to provide new information and to achieve a better 

understanding on the influence of the surrounding environment on the behaviour of the 

reinforcement embedded in submerged concrete specimens, and to evaluate the CP which has been 

applied using constant values of both current and potential. Corrosion potentials and resistivity 

results were compared with those of chloride content/corrosion rate. The design criteria has also 

been evaluated.  

 

Material and Specimens 

Reinforced concrete specimens of 150x90x93 mm illustrated in Figure 1 were prepared in the lab 

to perform electrochemical measurements for submerged concrete specimens. Three reinforcing 

bars of 10 mm in diameter were embedded in each concrete specimen with an exposed total area 

of 6880 mm2. A layer of carbon fibre (CF) sheet was embedded in each specimen to represent the 

anode with an area of 13392 mm2.  

 

Concrete cubes of size of 100mm x 100mm x 70mm were also made and cured following the same 

procedure as that used for the cathodic protection test. Each of the concrete cubes had two 

embedded electrodes of carbon fibre fabric for resistivity measurement. More details about 

preparing the specimens for CP and resistivity tests are available elsewhere [19]. 

 

The concrete specimens were made with 390 kg/m3 of cement and water to cement ratio of 0.4. 

Table 1 presents the quantities and properties of the ingredient of concrete used to give compressive 

strength of 35 MPa at 28 days under wet exposure conditions. 
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 (A) The casted 

reinforced specimen 

 
(B) Top view 

 

 
(C) Front view 

Figure 1: Details of CP specimen, all dimensions are in mm 

Different concentrations of chloride as pure NaCl of 1, 2, 3.5 and 5% of the cement mass, 

respectively, were added into the mix water at the time of concrete casting. Two specimens were 

made for the cathodic protection test and three specimens for the electrical concrete resistivity for 

each single chloride content. 

 

All the specimens were cured for 28 days in solutions that have the same percentage of NaCl that 

specimens have (i.e., samples that mixed with 2%NaCl were immersed in a solution of 2% NaCl 

by weight of curing water).  

 

Table 1: Quantities of used materials 

Properties of materials Quantity Kg/m2 

Portland cement with limestone CEM II/A-LL 

Limestone coarse aggregates 10 mm 

maximum size, relative density of 2.49 

 Fine aggregates, 4.75mm maximum size, 

relative density of 2.47 

 Water 

390 

580 

 

1125 

 

156 

 

 

Electrochemical Measurements  

Corrosion Potential, Corrosion Rate and Electrical Concrete Resistivity 

ASTM C876-2015 was followed to measure the corrosion potential of the rebars as shown in 

Figures 2 using a silver/silver chloride (Ag/AgCl/0.5M KCl) reference electrode and high 

impedance digital voltmeter. All the concrete specimens were immersed in salty water for two 

weeks before implement of the electrochemical measurements of this work. The concentration of 

the NaCl in curing water used was exactly the same amount that has already added to the mixing 

water during making the concrete, so that the chlorides do not depart the body of the concrete. 
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Figure 2: Schematic drawing for testing 

corrosion potential 

Figure 3: Experimental scheme of polarization 

resistance test 

 

Linear polarization method described by [20] was performed before performing CP test. A potential 

shift to the open circuit potential of rebars of the maximum 20 mV for cathodic and 20 mV for 

anodic [21, 22] were applied at a scan rate of 0.125 mV/s, using a computer controlled Gamry 

potentiostat. A three-electrode technique was used to set the potential of the reinforcing bars as 

shown in Figure 3. The ohmic drop between the working and the reference electrode is auto 

compensated. 

 

Polarization resistance, Rp, then was determined as the slop of the plot, at zero current, between 

the applied voltage and the measured current. The RP at zero current on the potential versus current 

graph obtained from the experiment was considered for all specimens for comparison [23]. The 

corrosion rate is then determined using the Stern-Geary equation as below. 

 

𝐼𝑐𝑜𝑟𝑟 =
𝐵

𝑅𝑝
                                                                                                                                     (3) 

Where, 

B: a constant in mV which equals to (βa*βc / 2.3 (βa+βc)) 

βa and βc are the anodic and cathodic Tafel constants 

Rp: the polarization resistance in Ω (ΔE / ΔI) 

Icorr: is the corrosion rate in mA 

 

A value of 26 mV has been used for the constant B for steel that is actively corroded in concrete 

[9, 24] . Icorr is related to the area of the rebar under test. From the measured Icorr value, the corrosion 

current density, icorr, expressed in mA/m2, was determined from the relationship below [25], where 

A was the surface area of the rebar. 

 

𝑖𝑐𝑜𝑟𝑟 =
𝐼𝑐𝑜𝑟𝑟

𝐴
                                                                                                                                    (4) 

 

Two-electrode technique has been used for the resistivity measurement and more details are 

available in reference [19]. 
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Cathodic Protection Test 

Galvanostatic polarization technique were used to apply three different levels of constant current 

densities using Gamry potentistat 1000E to produce a cathodic polarization at the rebars of the 

specimens. These levels were chosen depends on the obtained results of corroion rates of each 

chloride group, and they should be equal or less than the measured corrosion rate. The set up of the 

expriment used is illustrated in Figure 4.  The rebars were connected to the working electrode of 

the potentostat whereas the anode was connected to the counter electrode. The reference electrode 

was partialy submerged in the solution and connected to the reference electrode terminal of the 

potentiostat. Each level of CP current was applied for 5 days and the potential of rebars was 

recorded during the operation using data logger.  After the day 5 of operation, the sysetem was 

switched-off and the depolarazation was monitored using data logger for 24 hours to evalute the 

performace of CP. Instant off potential was measured at 1 minutes after the CP was switched off. 

 

The potential difference between the instant-off potential and the potential measured at 4 and 24 

hours after switching off the CP current were also measured to be used to evaluate the efficiency 

of PC protection [26, 27]. 

 

A CP technique using constant potential controlled potentiostatically was also applied for 

comparison with the application of constant current technique in order to highlight the most 

convenient technique than can be used in practice. The potential of the reinforcement was polarized 

to -800 mV with respect to Ag/AgCl/0.5KCl reference electrode. This level represents the 

recommended potential for the normal protection in practice. The test was operated for 5 days and 

then switched-off for 24 hrs. The variation of the passing current was recorded during the operation, 

and the potential variation after switching off the system was also monitored using data logger to 

evaluate the technique for protection.   

 

 
 

Figure 4: Scheme of CP experimental arrangement  
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Results and Discussion 

Corrosion Potential, Corrosion Rate and Electrical Resistivity 

Figure 5 shows a plot of corrosion potential of reinforcement against chloride content added to 

concrete specimens as NaCl. It can be seen there was no clear correlation, and changing the amount 

of NaCl did not show a noticeable difference in potential readings, but an increase in corrosion 

potential was observed for all specimens. All the specimens show values of potential more negative 

than -300 mV vs Ag/AgCl 0.5KCl (-350 vs CSE), indicative of a high risk of corrosion and there 

is probability of 90% to corrode according to the ASTM standard C876. Severe corrosion can be 

noticed is due to the existence of chloride (NaCl) in concrete specimens that breakdown the passive 

layer of rebars.  

 

 
 

Figure 5: Corrosion potential of steel in saturated concrete with chloride concentration 

 

Very negative potentials in saturated concrete may not be applicable to ASTM standard C876 

because more negative potential values with no signs of corrosion could be attributed to the limited 

amount of the oxygen presence in water saturated structures, and the increase in corrosion potential 

may not necessarily be associated with an increase in corrosion, but could reflect a limited 

availability of oxygen at the steel/concrete interface [12]. However, highly water saturated 

structures can corrode rapidly without signs of the corrosion process occurring [28] and significant 

corrosion can be developed  

 

It could be lead to conclude that corrosion potential can be used to indicate a probability of 

corrosion and provide a general sense but not to be used as a stand-alone technique. Other 

measurements such as corrosion rate, concrete resistivity and chloride analysis could be required 

for more information in such ambiguous conditions. 

  

Figure 6 shows the corrosion rates worked out on the obtained Rp at different chloride 

concentration. It is evident that corrosion rate increases when chloride content increases in 

specimens. The corrosion current density was 41, 75.5, 110.1 and 142.2 mA/m2 for the specimens 

of 1%, 2%, 3.5% and 5 % NaCl, respectively. Increased chloride content from 1% to 5% NaCl 
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caused increase in corrosion rate by two times and a half. Unlike corrosion potential, corrosion rate 

presents a very good correlation with the chloride content.  

 

 
Figure 6: Influence of chloride concentration on steel corrosion rate in concrete 

 

Broomfield [28] proposed that the corrosion rate is considered to be high when corrosion current 

density is greater than 10 mA/m2. In terms of this classification, all the specimens fell within the 

high corrosion severity zone. In fact, the values of the corrosion rate obtained are much higher than 

that expected, because corrosion rate under saturated states is assumed to be low due to oxygen 

availability limited by slow transportation in water [29, 30]. The obtained results confirm what 

stated by Broomfield [28] which said that significant corrosion can be developed in concrete 

structures with high moisture content.  

 

Similar as corrosion potential and corrosion rate, electrical resistivity of concrete is also a very 

important parameter determining the risk of corrosion of rebars, which should be considered in the 

design of cathodic protection system. Figure 7 presents the resistivity of concrete at varied chloride 

contents under saturated state. It shows that concrete resistivity decreases with chloride content. A 

correlation between corrosion rate and resistivity values of concrete is presented in Figure 8, which 

shows severity of corrosion increased as concrete resistivity decreased.  

 

An earlier study [31] concluded that very high corrosion occurs when resistivity is less than 10000 

Ω.cm. Another study by [32] showed a very high probability of reinforcement corrosion in concrete 

of the resistivity lower than 5000 Ω.cm. The finding of this work was almost similar to previous 

research as high corrosion rates, in the range of (40 to140) mA/m2, has been measured for the 

specimens with various chloride content, and all the resistivity values were less than 4000 Ω.cm. 

It can be concluded that all specimens with different chlorides were active to corrode. 

 

Based on above, measurements of chloride content, concrete resistivity and reinforcement 

corrosion rate are highly recommended in order to evaluate the activity of corrosion in concrete 

structures submerged in salty water. 
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Figure 7: Dependence of resistivity of concrete 

on chloride content 

 

 

Figure 8: The relationship between the 

resistivity of concrete and the corrosion rate 

 

Constant Current Technique 

Figure 9 shows the shifted rebar potential during the application of different levels of CP currents 

for 5 days, and the depolarization for 24 hours. It can clearly be noted that the measured potential 

decreases with the activation period. Also, it clearly shows that the longer the operating time the 

higher the potential in the negative direction. For example, in the case of 1% NaCl specimens, the 

polarization of rebars was 82mV and 164mV after 1 day and 5 days of operation respectively when 

current density of 5 mA/m2 was applied. In addition, the rate of potential shift in time (the slope 

of these curves) is proportional to the density of the applied current. For instance, the polarization 

in the case of 1% NaCl specimens increased from 164mV to 276mV when 5 and 20 mA/m2 were 

applied for 5days respectively, and this means that the potential shift is proportional with the 

passing current.  

 

This trend has been noticed for all other chloride contents and applied levels of currents, as shown 

in Figures, and does not tend to stabilize during the 5 days of operation period. This is likely lead 

to overprotection and causing hydrogen evolution at the reinforcement surface. BS criteria 

specified that instant-off potential more negative than -720 mV vs Ag/AgCl/0.5 M KCl is sufficient 

to provide adequate CP for submerged structures and no instant-off potential should exceed a limit 

of -1100 mV with respect to Ag/AgCl/0.5 M KCl for reinforced concrete. 

 

A depolarization test was also conducted after CP has been interrupted and the potential was 

allowed to decay for 24 hours as shown in Figure 9. The characterisation of potential decay is 

considering as one of the major consideration for the evaluation of protection efficiency. It can be 

seen that the potential moves at very slow rate towards the original potential before applying CP. 

Also, the 4 hours and 24 hours decay was in all cases less than 100 mV.  

 

In terms of 100 mV depolarisation criterion, 4 or 24 hours does work for concrete structures 

exposed to high moisture where the oxygen availability is low. Longer periods for the 

depolarization may be required for CP evaluation. 
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1% NaCl 2% NaCl 

  
3.5% NaCl 5% NaCl 

 

Figure 9: Potential variation with time for specimens submerged in solutions with different NaCl 

concentration at various applied CP current densities, and the corresponding potential decay 

curves. 

   

Constant Potential Technique 

In order to be away from overprotection that constant current technique may cause, a constant 

potential mode could be a good choice in such submerged concrete elements. In this technique, the 

potential of rebars was forced to be at a consistent protection level of -800 mV vs Ag/AgCl/0.5KCl 

(≈ -850 vs CSE) during an activation period of 2 to 5 days using potentiostatically controlled 

potential technique. Due to the limited time, only the specimens of 2, 3.5 and 5% NaCl were 

examined for this test. The variation of passing current has been monitored and presented in Figure 

10. The passing current for the potential demand of protection is another way of expressing the 

current required to produce the specified potential. It is evident that the current decreases with time. 

The rate of decreasing was noticeably high at early stage of operation. After that, it was gradually 

decreased until tend to stabilized after about 2 days of operation to a value of tens of milliampere 

per square metre. All the specimens with different chloride contents show the same behaviour. 

However, the results showed that passing current which reflect the current demand to provide the 

required potential increases with chloride content. For instance, the flowing currents were 116, 201 

and 296 µA (17, 29 and 43 mA/m2) after 2 days of operation for the specimens of 2, 3.5 and 5% 

NaCl respectively.  
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 2% NaCl 

  
3.5% NaCl  5% NaCl 

 

Figure 10: Variation of flowing current with time for the potential demand of CP for specimens 

immersed in solutions with various concentration of NaCl 

 

Similar observations in which the initial current density is higher by several times of magnitude 

than the stabilised current density has been reported [12]. This was attributed to the re-alkalisation 

and chloride removal at the steel/concrete interface, and possibly resulting in an increase in the 

steel surface polarisation resistance. 

 

A depolarization test, as shown in Figure 11, was also performed after CP has been stopped and 

the potential decay was recorded for 24 hours using data logger to evaluate the effectiveness of the 

protection based on 100 mV depolarization criteria recommended by standards [15]. Same result 

has been recorded for those obtained using constant current technique, all the potentials at 4 and 

24 hours were in the range of (5-10) mV and (10-20) mV respectively, and it is obvious less that 

the value stated in standards for efficiency of protection.It is worth noting that the instant off 

potential is approximately the same of the on potential. 
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2% NaCl  

  
3.5% NaCl 5% NaCl 

 

Figure 11: Potential decay with time for specimens submerged in solutions with various 

concentration of NaCl  

 

Conclusion 

Based on the obtained results for the submerged concrete specimens in salty solutions, the 

following conclusion can be drawn: 

 

1. In terms of 100 mV depolarisation criterion, 4 or 24 hours does work for concrete structures 

exposed to high moisture where the oxygen availability is low. Longer periods for the 

depolarization may be required for CP evaluation. 

2. Adopting constant current mode for CP is likely lead to overprotection and causing hydrogen 

evolution at the reinforcement surface. 

3. Applying CP using a constant potential mode is more convenient than applying constant current 

mode. 

4. Levels of measured corrosion rate were greater by several orders of magnitude than typically 

observed in practice.  

5. No clear relationship was observed between the corrosion potential with chloride content/ 

corrosion rate. However, a very clear relation has been obtained between the resistivity and the 

chloride content/corrosion rate. 

6. Chloride analysis, concrete resistivity and corrosion rate are therefore required measurements 

for clear vision of the corrosion activity in structures exposed to high moisture. 
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