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Abstract 

Bridges are important and efficient structures which are comprised of a number of elements and 

substructures, namely the deck, abutment and foundation and possibly additional intermediate 

supports. Recently the horizontally curved box girder bridge has become more desirable in 

modern motorway systems and big cities. Even though numerous amounts of research have been 

in progress to analyse and understand the behaviour of all types of box-girder bridges, the results 

from these different research projects are unevaluated and dispersed. 

Therefore, a clear understanding of an accurate study on straight and curved box-girder bridges 

is needed. In this study, a three dimensional straight and horizontally curved prestressed box 

section has been analysed with shell elements using the finite element analysis program ANSYS 

to examine structural behaviour and load carrying capacity. The box girder under static gravity, 

pre-stressed and gravity + pre-stressed loading has been analysed. The model which has been 

investigated in this report is taken from a published paper and expanded to study the effects of 

curvature under different loads applied (UDLs). The report concludes that the FEA using shell 

elements is able to predict the behaviour of box girders with adequate accuracy through the 

comparisons made between stress results from analytical hand calculations and published work, 

both for the straight and curved box girder bridges. 

Further theoretical and analytical investigations have been carried out to study the effects of 

parameters such as horizontal curvature, prestressing, and traffic patterning. For this purpose, a 

new model was created, modelled with an accurate prestress representation and analysed as a 

three-dimensional model using the ANSYS.  

This thesis presents a complete description of the bridge system, addressing the aforementioned 

parameters and presenting the results through graphs of stress distribution, and displacement. 

Recommendations for the practical use of FE for bridge design are discussed. 
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Chapter One 

Introduction 
 
Prestressed curved box girder bridges are amongst the most common types of highway bridges. 

These bridges allow long spans to be achieved due to the prestress (as an economic solution), 

and are excellent in resisting torsion due to their ‘closed’ sectional nature. The design of these 

bridges has evolved over time, and the design of prestressed bridges which are horizontally 

straight in form is a well understood process. However, the client and/or engineer may well be 

faced with the situation where a horizontally curved deck solution is preferable.  

The conventional design consideration for prestressing is the resistance of vertical load actions, 

hence prestressing cables are usually curved in the vertical plane to produce bending moments 

which oppose those produced by the loading (effectively causing an opposing ‘equivalent’ load). 

A horizontally curved bridge, by its geometric nature, will require the prestressing cable to 

follow the curve in the horizontal plane. This does not necessarily require the prestress to have 

deviation of horizontal distance from the section centroid which would otherwise cause 

prestressing moments in the horizontal plane. However, as curved bridges will suffer from 

torsion as well as vertical loading effects, the presence of the prestress may well prove beneficial 

in resisting any additional torsional effects, coupled with the sectional geometry of the box 

girder.   

 

1.1 Box girder 
Box girder bridges comprise girders with a hollow box shape and are constructed from materials 

such as concrete, steel, or a composite of steel and reinforced concrete.  Figure (1.1) shows a 

photograph of a typical horizontally curved prestressed concrete bridge. 
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Figure (1.1) Curved box girder bridge (Civil Engineering, 2015) 

The first box girder bridges were usually built using cantilever construction. Examples show the 

history of box girder cross sections figure (1.2) where box girders started as a solid section then 

for economic reasons box girders became open sections till the box girder shapes reached this 

stage with closed sections, (Schlaich & Scheef, 1982). 

 

 

 

 

 
Figure (1.2) Development of the box girder cross- section 

I-girder prestressed concrete bridges started to be used when the first one was built at the end of 

1920’S and then the biggest achievement happened later when Magnel constructed in 1948 The 

Sclayn Bridge over the river Maas, figure (1.3). It comprised two spans of 62.70 m of continuous 

prestressed concrete box girder construction. 

Solid section 

Open sections 

Multi closed sections  

Circle cell 
sections 

Multicell box girder 
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Figure (1.3) The Sclayn bridge (International Database for Civil and Structural Engineering, 

2015). 
 

Box girder bridges have become a popular construction in recent highway systems. There are 

many reasons for their desirability, such as rise of traffic volume, economics and aesthetic design 

choices. The use of straight segmental construction has decreased compared with curved girders 

because in urban areas where elevated highways and multi-level structures are necessary, 

modern highway bridges are often subjected to severe geometric restraints; consequently, there 

must be constructed as a curved alignment. Even though the cost of building the superstructure 

as a curved girder is higher, the total cost of the curved girder system has reduced significantly 

since the number of intermediate supports, expansion joints and bearing details has reduced. The 

continuous curved girder also offers a more aesthetically pleasing structure. In spite of the 

advantages stated above, horizontally curved girders are more complex than straight girders. 

Curved girders are subjected to vertical bending plus torsion caused by the girder curvature. In 

the 1960’s, researchers started to focus attention on curved girder complexities and formulated 
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approximate assumptions that deal with the analysis of curved bridges. Previously curved girders 

were assumed as a series of straight segments that were used as chords in forming a curved 

alignment. With the availability of analytical software, the analysis of curved bridges is 

relatively straightforward. 

1.2 Curved box girder  
Box girder cross sections may take the form of single cell (one box), multi-spline (separate 

boxes) or multi-cells with a common bottom flange. Box girders offer better resistance to torsion, 

which is particularly of benefit if the bridge deck is curved in plan. Due to the high torsional 

stiffness of the closed cross section of the box girders, which often ranges from 100 to 1000 

times larger than the torsional stiffness of comparable I-shaped sections, the torsional moment 

induced by the curvature of the girder can be resisted by the box girder. The fabrication of the 

box girder is more expensive compared to the I-shaped girder, but this additional cost is usually 

balanced by the reduction in substructuring for the box girder, the top of the box girder will work 

as the deck. Additionally, for long span bridges, where the segmental method of construction is 

chosen, prestressed concrete box girders have proved to be economical. 

The main reason for box sections becoming more popular is that for eccentrically placing the live 

loads on the deck slabs while the distribution of longitudinal flexural stresses across the section 

remains more or less identical to that produced by symmetrical transverse loading. In other 

words, the high torsional strength of the box section makes it very suitable for long span bridges. 

Torsional moments are produced in vertically loaded horizontally curved bridges, in addition to 

bending and shear, and for this reason box girder sections are now frequently used in highway 

bridges. Twisting moments have the tendency to deform the bridge cross section and produce 

non-uniformly distributed longitudinal flange stresses in addition to the secondary flexural stress 

in the plates. Therefore, when shear is applied as a torsional component, the section will twist 

without distorting the cross section and this will cause small longitudinal warping stresses 

without producing any transverse flexural distortional stresses. When a point load applied on a 

box like in (a, b & c) the results for warping, shear lag, and cross-sectional distortion will be as 

(d to i) figure (1.4). In straight box sections under symmetrical loading, the stresses produced by 

warping, shear lag, and cross-sectional distortion are usually small as these loads create only a 

slight twist, figure (1.4). However, in curved box bridges, twisting/torsional moments are created 
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for even symmetrical loading and a small amount of distortional deformations will occur. 

Warping and distortion in cross-sections have major effects on stress distributions along the 

bridge. One of the effects is the ability to create a complex bending pattern and non-uniform 

flange stresses in the longitudinal direction at the corner of the box where stresses will reach 

their highest values. Higher resistance values can be achieved by adding intermediate 

diaphragms or by providing extra stiffeners in the cross-section (Prayash Gomdenn, 2012).  

 
Figure (1.4) Behaviour of box girder subjected to eccentric loading (Prayash Gomdenn, 2012). 

 

Curved girders are usually employed for long spans to decrease substructure costs and the 

number of expansion joints and bearing details. Deterioration around the joints and bearings can 

result in leakage which is the main servicing problem related to these common details. 

Furthermore, curved girders provide a more convenient way to satisfy the response of highway 

structures for prearranged roadway curves and fitted geometric boundaries provided by the 

accumulation of right-of-way restrictions. The box girder comprises various types of geometries 

and forms, but the cross-section can generally be divided into single-cell, multi-cell or spread 

box beams as shown in figure (1.5).  (Associates, inc & Zocon consulting engineers, inc., 2008). 
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Single cell-box girder 

 
Multi-cell box girder 

 
Spread box beams 

Figure (1.5) Types of cross sections (National Cooperative Highway Research Program, 2008). 

In addition to normal static loading, curved box bridges are subject to dynamic loads while they 

are under construction or during service. These loads can be as a result of winds, waves, 

earthquakes and traffic movements. 

Bridge design codes also consider the dynamic loading occurring from vehicles moving over the 

bridge such as those caused by traffic frictional transfer of braking forces. Recently, various 

parametric studies have been carried out to investigate the behaviour of curved girder bridges 

due to length, loading and radius. Research has focused on this area with consideration of 

dynamic loading from highway traffic (Sarode & Vesmawala, 2014), while seismic effects have 

only received modest research, therefore, seismic behaviour requires more investigation. The 

dynamic response of a structure is reliant on the modal characteristics of the structure and the 

characteristics of the dynamic load to which it is subjected. However, dynamic loads including 

the earthquake loads are commonly defined in the form of a time history or a response spectrum.  

Curved box girders have many advantages in addition to the fact that they have high strength and 

are more resistant to torsional effects. The construction depth of box girders is smaller than plate 

girders and provides a space for the passage of maintenance and services such as gas pipes, 

cables, and water because of their closed shapes. Also, they are good in resisting corrosion. 
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Moreover, the shape of horizontally curved bridges is more aesthetically pleasing than the shape 

of similar chorded structures, traffic design speeds can be maintained with less land space 

needed and undoubtedly, the upper flange of box sections can act as part of the deck structure. 

On the other hand, the disadvantages reported include the difficulty of casting in-situ because of 

the unavailability of the bottom slab and the need to remove the internal shutter. In addition, the 

box sections require higher manufacturing costs compared with I-steel girder. Box girder bridges 

which are more suitable to use for long spans (range from 12 m to 300 m) especially in the case 

of curved girders there is higher torsion and lower depth requirement.  

1.3 Prestressing 
Prestressed concrete is a commonly used construction technique typically employed in the 

construction of long and medium span bridges. The prestress is usually applied through 

prestressing tendons (generally of high tensile steel cable or rods) providing an axial clamping 

load which produces a compressive stress (and usually bending stresses) that balances 

the bending stresses that compression member of concrete would otherwise experience due to a 

transverse load. Traditional reinforced concrete is based on the use of steel reinforcement bars 

(rebar) inside poured concrete. In 1930, Freyssinet developed the idea of using prestress 

reinforcement, and this material was extensively applied for long-span bridge construction to 

replace the use of normal reinforcing steel which could cost more for maintenance under 

changing environmental conditions, (Engineeringcivil.com, 2013).  

1.4 Aim 
Due to the increased need for curved bridges in modern cities and the complexity of curved 

bridge design and analysis, this research has been carried out to investigate the structural 

behaviour of horizontally curved prestressed concrete box girder bridges by changing the 

prestressing values under different load capacities and different traffic patterns. 

1.5 Objective  
 

The aims will be achieved by creating a three-dimensional finite element analysis model (3D 

FEA) of a typical box girder bridge using two-dimensional shell elements and including prestress 
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effects. The 3D FEA model will be verified against traditional hand calculations for stresses, and 

these will be used not only as a marker for validation, but to confirm load carrying capacities. 

The bridge will be modelled as both straight and curved (with varying curvature) with the 

inclusion of prestress. Self-weight will be accounted for in the analysis and the capacity for 

additional live load at varying curvatures will be assessed from allowable stresses. The 

commercial finite element program ANSYS will be used for this study.  

 

This thesis will study: 

1- The structural behaviour of a prestressed curved box girder under static loading.  

2-  From numerical studies, determine the stress distribution in a typical prestressed 

concrete box girder bridge and compare with published results. 

3-  The effect of changing the horizontal curvature on the load carrying capacity of the 

bridge starting from a straight deck, then changing the radius of curvature. 

4- The effects of load and traffic patterning on the stresses induced in the bridge for 

different curvatures, using a parametric study. 

5-  To verify the structural model against hands calculations, allowing the performance of 

the prestressed curved box girder to be evaluated. 
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Chapter Two 

Prestressed Concrete 

2.1 The principles of prestressed concrete 
Bridges are considered to be one of the most important constructions in any society, and due to 

modern lifestyle, artistic and economic progress, they have had a lot of attention from designers 

around the world. A bridge design is usually more complex when compared to other structures, 

therefore to accomplish this goal there should be a full knowledge of the structural behaviour of 

the bridge and the bridge responses for different geometries, loading or environmental 

conditions. 

The main load carrying element of the bridge structure is the deck which can be constructed of 

different materials, one of which may typically be a prestressed concrete box girder. Pre-stressed 

concrete is a common form of construction for bridges, especially when the span length ranges 

between 25m to 450m. Precompressive stresses in a pre-stressed concrete member are created 

first before the member is subject to service loading to decrease tensile stresses (Mosley et al., 

2012); as a result of this, the need to reinforce the tension zone will be reduced in a concrete 

section through converting the direct stresses in the section to compression. Concrete is known to 

be weak in tension so by introducing pre-stressing, the concrete will be able to carry more 

bending moments by reducing (or eliminating) the tensile stresses in the concrete. 

2.2 Prestressed concrete 
In industry, the demand to innovate and achieve new ideas which are quicker to construct, more 

durable and economic is the goal. In the same way, the aim of creating pre-stressed concrete was 

to fulfil the need in order to produce structures with higher load capacity, longer spans less 

deflection, with less material. Pre-stressing is the artificial creation of beneficial permanent 

compressive stresses in a concrete member to improve its load capacity (Lin & Burns, 1981).  

To understand the theory of pre-stressing, the concept will be explained in more detail in the 

following section. 



10 
 

2.3 The concept of prestressing 

When a beam is under load, the stresses result from loading will be distributed as compressive on 

the top face of the beam and tensile stresses on the bottom face (Benaim, 2008). The material 

properties of concrete are well known for being strong in compression, but will only take a small 

amount of tensile stress before cracking. Hence the concept of prestress was conceived to reduce 

(if not remove) any tensile stress in any structural member by preforcing it to experience 

precompression before loading – in the knowledge that the material being prestressed has a high 

compressive capacity (Mosley et al., 2012). The same concept works for beams and bridges 

constructed of concrete.  

The assumed bending moment for a rectangular concrete simply supported beam under the 

effects of gravity alone is shown in figure (2.1). If the same beam is now prestressed with a steel 

cable (which is placed under tension and subsequently transferred to compression in the 

concrete) the bending moment diagram will change due to the prestress as shown in figure (2.2). 

As a result of these two cases, the resulting bending moment will change through the beam as 

figure (2.3) shows. These cases of loading will also affect the stresses acting on the member. 

Looking specifically at the midspan location, the first case (self-weight) creates a linearly 

varying compressive to tensile stress distribution from top to bottom of the section. For the 

second case, the application of prestress through a cable creates a bending moment equal to (P x 

e), where P is the prestress and e is the downward eccentricity from the centroid of the section. If 

the tendon is straight and has deviated by the same amount of eccentricity along the entire length 

of the beam, the prestress bending moment will be hogging and constant along it’s length also. In 

addition to this the presence of the prestress ensures that there is a uniform axial stress 

component across the depth of the section. Hence the stress distribution in the section will also 

be linearly varying across the depth from top to bottom, but as the bending moment is now in the 

opposite sense to that caused by self weight effects, there is a combination of axial and bending 

stress which varies linearly from a minimum at the top of the section (minimum compression, 

possible tension) to a maximum at the bottom of the section. If the prestress is designed such that 

the prestress bending moment balances the bending moment from self-weight at midspan, then a 

uniform compressive stress of (P/A) is created in the section where (P) is the prestressed load 

and (A) is the cross-sectional area (as shown in figure (2.1)). The resultant stresses are a 

summation of both tensile stresses on the bottom of the span member and compression stresses 
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along the top of the member. The stresses can be calculated from (My/I) where (M) is moment 

(y) the distance from the centroid to the extreme fibre and (I) is the second moment of area of the 

section. After this, it is apparently clear that the structural beam will carry loads with the member 

predominantly acting in compression where the dead loads are usually balanced by the prestress 

and live loads are usually dealt with by limiting stresses (i.e. no tension or small value), figure 

(2.4). 

 L: length of the beam member,  

H: height of the beam member  

P: prestressed force 

and (e) is the eccentricity.  

      

        
 

 

 

 
	
	

 
Figure (2.1) Simply supported beam 
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Figure (2.2) Prestressed simply supported beam 
	
	
	

 
 
 
 
 

	
	
	
	
	
	
	 	
	
	

Figure (2.3) Bending moment distribution of a prestressed beam 
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If the same member is subject to a uniform load in addition to its own weight, then the stresses at 

midspan will follow the bending moment, which is due to the total uniform load plus the 

precompression. The resulting stress distribution is shown in figure (2.5) (Hurst, 1998). 

The tendon profile shown in the previous example is for a straight tendon only, so it can be seen 

that the only position where the bending moments are balanced is at midspan. Hence if the 

tendon is converted to a parabolic profile downward from the centroid, the bending moment 

from the UDL can be completely balanced along the entire length of the span (see figure (2.6)). 

 

 

 

 

Figure (2.6) Prestressed simply supported balanced beam 
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Figure (2.4) Stress distribution of a prestressed beam when the bending stresses are balanced 

 
 

Figure (2.5) Stresses distribution of a prestressed beam when the stresses are 
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Note that the resulting stress distribution has been shown with a net tensile stress at the beam 

soffit. This tension can be eliminated and a crack-free member produced. This clearly illustrates 

the advantages of using pre-stressed concrete. To explain this advantage, when compared with 

reinforced concrete, a certain degree of cracking of the concrete is expected, but with prestressed 

concrete it can be eliminated entirely.  When reinforced concrete simply supported beams are 

designed, the maximum ultimate load governs the structural design (ultimate limit state) and the 

service load on the beam is then checked. With prestressed concrete members the service load is 

the important loading condition (serviceability limit state). Figure (2.7) shows the stresses that 

occur due to both (the prestress force and the self-weight). A net tension might exist at the top, 

rather than at the soffit as is the case with the maximum load. This is particularly important since 

the minimum load condition usually occurs soon after transfer (the point when the prestress force 

is transferred from the tensioning equipment to the concrete and is at its maximum value), 

(Hurst, 1998).  

 

 
	

 

 

2.4 Pre-stress methods  
Pre-stress methods can be classified into two main types which are pre-tensioned and post-

tensioned (Rajagopalan, 2002). They will be briefly explained here. 

2.4.1 Pre-tensioning  
In this method the prestress cables are stressed by jacking in steel moulds before placing the 

concrete. As the concrete cures and reaches its strength, the jacks are released. The cables try to 

return to the original length, and the bond between the steel and the concrete means that a 

	 	 	

Figure (2.7) Stresses distribution of a beam under prestressed and self-weight when the 

stresses are unbalanced (Hurst, 1998). 
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compressive force is applied to the concrete (Hurst, 1998). 

2.4.2 Post-tensioning  
This method is specified for use on site for structures with continuous spans and irregular 

member shapes. The pre-stress is applied to the cables after the concrete has reached adequate 

strength levels. Pre-stress tendons pass through ducts that were already placed before casting; the 

tendons are stressed and anchored. Ducts are usually subsequently filled with a grout of high 

strength to provide bonding and thereby increase the ultimate strength capacity of the structure. 

This helps to eliminate the effects of corrosion and reduce long term force losses in the cable. 

The post-tension process in this case is known as bonded post-tensioning. When the ducts are not 

filled with grout and are alternatively filled with grease to reduce friction force losses, then this 

procedure is known as unbounded post-tensioning. In this process, the pre-stress force is fully 

transferred by bearing into the anchorages, figure (2.8). 

 

	
	
	
	
	
 
 

2.5 Concrete box girder bridges 
Due to the demand for improving structural behaviour, stability, economic efficiency, 

construction and aesthetics, box girders have become widely used in motorway and bridge 

systems. However, the analysis and design of box girder bridges is complex and needs more 

attention, especially in relation to three-dimensional analysis, because of the effect of torsion, 

distortion and bending in vertical and horizontal directions.  

There are many ways to classify box girders, i.e. by the method of construction, shape and how 

is it used. As a result of the high torsional strength and stiffness, horizontally curved box girders 

are becoming convenient to use thereby allowing changes in direction. This high torsional 

rigidity makes the box girders effective in minimizing torsional deformations that occur in 

curved thin-walled beams. When bridges have a lower degree of curvature, the effect of 

curvature on shear, bending and torsional shear stresses can be ignored. Horizontally curved 

bridges can usually be considered as straight with certain limitations and modifications. 

Figure (2.8) Post-tensioning system (O'Brien et. al, 2012) 
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Recently, these bridges are commonly analysed using the finite element methods (F.E.M) 

especially when the radius of curvatures is investigated (such as closed box girders). 

2.6 Development of curved bridge design approach  
The response of curved bridges was first investigated in the mid-nineteen sixties and it focused 

on analysis work for the behaviour of linear elastic statics of an isolated curved section (Sennah 

& Kennedy, 2002). This mainly depended upon the material strength assumptions, which are that 

the cross section would not deform anticlastically, obeys Hooke’s law, and conforms to small 

deflection theory. Therefore, curved girder research investigations were launched in Japan and 

the United States, which tended to focus on the experimental use of curved beam theory to 

investigate curved bridge design. In 1965, U.S. Steel Highway (1965), a comprehensive 

evaluation of theoretical and experimental investigations on box-girder bridges was started by 

Maisel (1970) in England and it was extended by Swann, (1972), Maisel et al., (1973), and 

Maisel, (1982). By developing the technology appropriate mathematical formulations were 

programmed into software to solve complex mathematical models and produce numerical 

solutions for structures added through the last 20 years, this has pushed both theoretical and 

analytical investigations to focus on identifying and analysing the behaviour of curved girders. 

For example, the finite difference method is used to set the solutions for systems of differential 

equations. Recently, finite element analysis has been introduced and it can provide accurate 

approximations, therefore the whole curved bridge superstructure can be analysed as a system of 

finite elements and enhanced to design a curved bridge (Sennah & Kennedy, 2002).  

2.7 Behaviour of prestressed curved box girder 
A box girder has its main beams comprising of girders in the shape of hollow boxes. The cross 

section may take the form of single cell (one box) or multi-cell box girder (when the depth of a 

box girder bridge exceeds 1/6 or 1/5 of the bridge width then it is recommended to be designed 

as a single cell box girder bridge), (Schlaich & Scheef, 1982). A single cell box girder has the 

mechanism to twist, deform and bend its cross section under loading. Thin walled closed box 

girders are stiffer and stronger in torsion than assumed by the designer where the calculations are 

based on the elemental torsional theory. When the loading component of torsion is applied such 

as a shear on a plate element according to St. Venant torsion shear flows, the beam will twist 
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without any deformations occurring in the cross section. As a result, a small longitudinal warping 

stress will show, and no sign of transverse flexural distortion stresses will arise. For horizontally 

curved bridges, bending will occur with shear stresses as well as torsional stresses, all due to the 

horizontal curvature even if they are only acting under gravity (self-weight). Furthermore, the 

closed cell has a greater torsional stiffness and strength than an open section and it is the main 

reason for choosing a box girder configuration.  

According to the previous explanation, it can be clearly seen that there are two types of torsion 

subjected to cross-sections; the first is Saint-Venant torsion and the second one is warping 

torsion. Saint-Venant torsion causes a shear flow around the cross-section figure (2.9), while the 

warping torsion causes bending distortion of the cross-section. In closed cross-sections, warping 

torsion is neglected (Kolbrunner & Basler, 1969). 

 
Figure (2.9) Shear flow in a box girder bridge 

At the inner piers of a continuous bridge hogging moments will be present; therefore, a wide 

compression flange is required. Box girders consist of a typical wide flange which is referred to 

as the soffit and slab, connected by webs figure (2.10). The dimensions of the box section are 

thin walled dimensions and in most cases the depth of the box section is unchangeable 

throughout the length. 

 
Figure (2.10) Single cell box girder 
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For prestressed bridges, larger deflections occur under static and dynamic loads due to a lesser 

depth to span (D/L) ratio in comparison with other bridge constructions. To make sure sufficient 

stiffness is present to limit deflections, the (D/L) ratio must be greater than 0.04 for prestressed 

concrete and 0.055 for reinforced concrete bridges. 

2.8 Structural action of box girders 
Bending and shear actions occur in the longitudinal direction of the box girder. The top slab 

serves as a road in carrying traffic loads and works as a top flange for longitudinal bending 

stresses. In comparison to T-sections, flanges are more convenient in resisting sagging and 

hogging due to the bigger size flanges. The box section being closed is considered to have high 

torsional stiffness and strength (Chapman et al, 1971). This is more useful in curved and in 

straight structures carrying eccentric loads. 

The structural response of a box girder consists of a combination of longitudinal bending, 

transverse bending, torsion and warping. 

2.8.1 Longitudinal bending 
The self-weight and other superimposed dead loads like the self-weight of the kerb, footpath, 

parapet and wearing course are usually symmetrical about the central vertical axis of the box, 

hence they do not create any torsional effects. These are resisted by simple bending action of the 

rigid cross section of the box girder. This longitudinal bending causes flexural stresses, which are 

considered as membrane forces in the plates. 

2.8.2 Transverse bending 
Transverse bending of the box section is the bending of the top and bottom of the slab around the 

neutral axis at the level of the common centre of gravity, as if they are connected by a rigid shear 

web. Transverse bending of top and bottom slabs causes distortion of the cell. 

2.8.3 Torsion 
The wheel loads from vehicular traffic are mostly placed asymmetrically. They thus cause 

torsion in the section as well as longitudinal and transverse bending. The vertical reactions p1 and 

p2 at the web positions due to live loads can be resolved into a statically equivalent combination 

of a set of symmetrical and asymmetrical loads as shown in figure (2.11). The symmetrical 

component of the load (p1+p2)/2 causes only longitudinal bending and asymmetrical component 

(p1-p2)/2 creates the torsional and 6 distortion effects. The effect of asymmetrical loading is 

represented in figure (2.12). The torsional load component gives a resultant torque and it tends to 
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rotate the section as rigid body about the longitudinal axis of the box. The considerable strength 

of the box allows little twist. 

 
Figure (2.11) Resolution of asymmetrical live load 

(https://theconstructor.org/structures/behaviour-of-box-girder-bridges/2194/) 

Figure (2.12) Resolution of torsional load (https://theconstructor.org/structures/behaviour-of-
box-girder-bridges/2194/) 

2.8.4 Shear leg 
In a box girder, a large shear flow is normally transmitted from vertical webs to horizontal 

flanges, which causes in-plane shear deformation of flange plates. The consequence of which is 

that the longitudinal displacements in the central portion of a flange plate lag behind those near 

the web. Whereas, bending theory predicts equal displacements which produce out-of-plane 

warping of an initially planar cross section, resulting in the shear lag effect.  

Another form of warping can arise in a box girder subject to bending without torsion, i.e.  

symmetrical loading, is known as shear lag in bending.  

Detailed information on shear leg effects in bridge designs like box girders, is given in EN 1993-

1-5 (Eurocode 1: Design of steel structures, Part 1-5: Plated structural elements). 

2.8.5 Effect of horizontal loading 

Different load conditions must be considered, acting either singly or in combination. Box girder 

bridges will have different forms of loading, such as, superimposed dead loads, moving live 
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loads and horizontal loads (e.g. braking forces on bridges or braking force due to the horizontal 

movement of cranes).  

2.9 Bridge superstructure 
Box girders are a part of the whole bridge with various support types, Schlaich & Scheef (1982) 

and can be designed to be continuous depending on the intended bridge length. For curved 

bridges, box girders are preferred and can also be adopted for arch, cable-stayed and suspension 

bridges. In 1911 the Risorgimento Bridge, figure (2.13), was constructed as a box girder with a 

three-hinged arch technique. As development occurred in the theory of reinforced concrete, 

bridges became longer and the arch shape began to disappear. Pre-stressed concrete was being 

developed with the Sclayn Bridge being built with a prestressed and continuous box girder. 

  
Figure (2.13) Risorgimento bridge (International Database for Civil and Structural Engineering., 

2015). 

To understand the load carrying structural mechanism of the box girder, the piers and abutments 

will also need to be addressed. When the piers are quite thin and the superstructure is heavy, 

especially when the cross-section of the bridge is big and the depth of the span changing along 

the span (from the biggest depth at the support to the smallest in the middle of the bridge span) 

then the pier cap must be slightly bigger than the bottom of the flange of the box girder to carry 

the whole superstructure weight and this will reduce the stresses. The highest point of the 

embankment is the location of the abutment  
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Loads from the superstructure are transferred to the soil by (Schlaich & Scheef, 1982): 

1- Abutment 2- Pier 3- Foundation	

These will be examined in more detail in the following sections	

2.9.1 Abutment 
The main job of the abutment is to connect the superstructure parts with the embankment and 

provide the lateral support to the embankment also. The back walls of the abutments provide a 

free space for a future displacement in the superstructure. Normally, the superstructure sits on the 

bearing which is made to carry the loads through the support walls to finally transfer it to the 

foundation and soil with well compacted earth filling. The location for any drainage line and 

bearings should be covered by diaphragm ends and a gap about 100 mm between diaphragm 

ends and the box girder soffit should be left. The top of abutments is the location to place the 

expansion joint and bearing, figure (2.14).	

	
Figure (2.14) Abutment (Childs, 2015) 

2.9.2 Pier  
The pier is the structural wall support between any two spans. For a single span bridge, the 

abutment plays the main role in supporting the bridge weight and also works as a retaining wall, 

for multi span bridges the supports between the ends of the span need to have some intermediate 

supports which are in this case the piers. Bridges with small height mostly consist of two 

columns working as piers (in any case good soil conditions are required to resist any differential 

settlement between two columns which are adjacent to each other). These columns would be 

designed to fulfil the fundamental design criteria so would be safe even for a large box girder, 

figure (2.15).  
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Figure (2.15) A bridge pier (Adel et al., 2007). 

2.9.3 Foundation  
The design of the bridge foundation depends on the soil conditions; spread foundations generally 

work for shallow surfaces. If the soil is not strong enough, then piles will be needed to support 

the bridge. 

2.10 Design loads 
This section lists the loading on a pre-stressed concrete box girder bridge which can be divided 

into: 

1- Dead load (i.e. concrete self-weight, parapets and roads weight) and live loads (i.e. traffic 

loading, wind and earthquake) 

2- Braking and acceleration forces (as the traffic accelerate breaks it causes a horizontal 

friction) 

3-  Temperature   

4- Differential settlement 

5- Impacts (i.e. vehicles crushes) 

2.11 Historical development of the analysis of curved box girder bridges 
 
In this section, some of the research is presented which has focused on the structural 

development of the curved box girder. The research covers the time line from 1968 until the 

present day.   

Dabrowski (1968) introduced an open section supported by lateral bracing at the top theoretically 

as a closed section with a plate on top. This was considered to be the first attempt to analyse the 

box section. 
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Figure (2.16) Bracing system in a composite box girder bridge (Chan & Teng, 2002) 

 

Then, Cheung (1976) used the finite strip method to define the natural frequencies and mode 

shapes for a continuance with changeable thickness deck or box girder bridges.  

Dey et al. (1984) defined the dynamic behaviour of a simply support deck curved bridge subject 

to moving vehicles. The finite strip method had been used to analyse the deck with an 

assumption of elastic material properties. The homogeneous differential equation of an 

orthotropic plate in polar coordinates was used to derive the stiffness and the mass matrix for 

every element. As a result, there was significant variation in response across the transverse 

section of the bridge, and dynamic investigation was carried out with the same finite strip 

method which also gave reasonable and accurate results.  

Harik & Pashanasangi (1985) developed a more accurate method for the analysis of horizontal 

curved and orthotropic bridge decks subjected to patch, uniform, line and concentrated loads. 

The bridge was idealized as a curved strip and the deflection of each plate strip was expressed as 

a levy type Fourier series and the loads are expressed as a corresponding series also. The present 

method could predict good deflection results by considering only three significant terms of the 

Fourier series. Kou et al. (1989) studied the response of the dynamic continuous curved box 

girder, also, Kou (1992) developed a theory that assimilates a solution of warping in the analysis 

of free vibration of curved continuous thin-walled girders. 

Shanmugam et al. (1995) studied the ultimate load behaviour of I-beams curved in plan. 

Experimental results were presented and agreement reached in relation to deformations and 

ultimate strength results, with a consideration to the effects of residual stresses and radius of 

curvature to span-length ratio (R/L) on ultimate strength. A concentrated load was applied on 

each beam at the midpoint where the beam was laterally fixed. The load-carrying capacity 

decreases as the R/L ratio decreases. 
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Galambos et al. (2000) explained a system of curved steel I-girder bridge behaviour during the 

construction phase. The longitudinal stresses in the bridge are represented well by linear elastic 

analysis represented by F.E analysis software and the longitudinal stress was determined. A 

comparison was made between stresses and deflections with the results for full construction. 

Also, Linzell et al. (2004) studied nine simply supported bridges consisting of three curved steel 

I-girders with lengths of 27.4 m.  The analysis attempted to predict the dynamic response of the 

bridges during erection. The resulting stresses and deflections were compared and showed that 

analysis tools can be useful in predicting loads and deformations during the construction stage. 

DeSantiago et al. (2005) analysed a simple model of beam and plate elements using the finite 

element method. The model consists of five horizontal curved bridges with span lengths of about 

30.5 m and with an angle of curvature between10̊ to 30̊. From the analysis of the curved bridges, 

the deflection in the vertical direction was about 80% higher than the vertical deflection 

calculated on the straight bridge when the angle of curvature was 30̊, the girder bending moment 

of the curved bridge was about 32.5% higher compared with straight girder moments which had 

the same span length and design configuration. Also, the magnitude of the torsional moment 

reached to about 10.3% of the peak bending moment in the straight girders of a straight bridge 

with a similar span length and design. 

Khaloo & Kafimosavi (2007) tested the allowable bend for curved pre-stressed (post-tensioned) 

box bridges using the finite element method. The 3D finite element sample was modelled and 

studied for bridge length, section geometry, and material properties and these were the same as 

used in all models, while the angle of curvature was changing from 0̊ to 90̊. As a result of this, 

the distribution of stresses for the curved bridges changed significantly compared with the 

straight bridges (this is expanded in Chapter Three). 

Abeer et al. (2013) presented a method to calculate the torsional capacity and behaviour of R.C 

multi-cell box girders strengthened with carbon fibre reinforced polymer (CFRP) sheets 

depending on the ‘Modified Softened Truss Model’ for Torsion (MSTM). The theory was first 

mentioned by Hsu (1988) which emphasizes the importance of incorporating of the softened 

constitutive laws of concrete in the analysis of RC structures. Later this method has been 

developed by Fu and Yang (2001) to resolve torsional problem based on STM, especially for RC 

box girder bridge superstructures with multiple-cell sections.  
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 As a result, the suggested algorithm for solving the related equations for torsional analysis of the 

strengthened girders is particularly suitable for practical applications. 

Bourne (2013) studied prestressed concrete bridge behaviour and construction in the UK. In this 

paper, there was a comparison between using reinforced concrete and prestressed and why 

prestressed is preferable. The study was based on EC2 and BS5400. The author concluded that 

using prestressed sections is more economical. The best prestressed sections are those with fully 

prestressed or partially prestressed scheme. Bourne explained that he best section is closer to the 

fully compressed prestressed or partially prestressed scheme with high levels of prestress (i.e. 

80% or 100%) and without cracking. 

Shen et al. (2015) presented a multi span curved box girder with external prestressed tendons and 

compared it with regular internal tendons design. As a conclusion, the external prestressed layout 

design reduces the peak torsion, introduced a uniform torsion distribution and there was no 

impact on shear or moment see figure (2.17).  

 

 

 

 

 
c. Plan layout of curved girder. 

Horizontal layout of tendons. 

 



26 
 

 

 
 

Figure (2.17) Box girder bridge, (Shen et al.2015) all units are in (cm). 

Gupta et al. (2010) presented a parametric study of a cross section (rectangular, trapezoidal and 

circular) of a box girder bridge using the finite element method for analysis. SAP-2000 was 

utilized throughout this study with three-dimensional shell element models being used. Linear 

analyses were carried out with dead and live loads based on Indian codes to investigate 

deflection, stresses and shear lag for those different cross sections. A validation was carried out 

from previous literature to compare the results with their finite element predictions. The results 

showed that a rectangular section has the best results when compared with the performance of 

other sections due to the section simplify, modelling and accurate results also rectangular section 

was stiffer than the trapezoidal section, so deflection was lower in the rectangular section. 

Angomas (2009) investigated the behaviour of prestressed concrete bridge girders. In this 

Master’s thesis, Angomas investigated prestress losses in six HPC (High Performance Concrete) 

bridge girders. Those losses were compared to the predictions of camber losses from the 

AASHTO code of practice. Prestress loss predictive methods considered for this research were: 

1- AASHTO LRFD 2004, 2- AASHTO LRFD 2004 Refined, 3- AASHTO LRFD 2007, and 4- 

AASHTO LRFD Lump Sum method. Nevertheless, the camber prediction methods were: 1-

Time dependent method described in NCHRP Report 496, 2- PCI multiplier method, and 3- 

Improved PCI Multiplier method. In conclusion, the AASHTO LRFD 2004 Refined Method was 

most accurate in predicting the prestress loss. All the assumed methods performed well in 

estimating the loss for the larger girders. 

d. Box girder cross-section. 

e. Vertical layout of external tendons. 
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Chourasia & Akhtar (2015) conducted a parametric study of two different cross-sections of a 

box-girder with the same loading conditions to determine the best economical cross-section. The 

study was based on the design standard of India, IRC used in designing box-girder 

superstructures according to the IRC class AA loading. To determine the best cross-sections, a 

comparison was made for the different design parameters. As a result, bending moment and 

stresses for self-weight and superimposed dead load were different for various cross-sections. 

The result showed that multi cell box girders were expensive (time and constructions) compared 

to the single cell box girder, under the same loading and support conditions. The MIDAS (finite 

element method) software was utilized for this study. 

Shah et al. (2016) presented a parametric study of curved box girders designed in accordance 

with IRC: 112 code of practice for concrete road bridges and considering curved geometry for 

analysis. The details of the curved bridge models were as follows:  

• 35 m long, single cell, with a width of 7.5 m with two lanes 

• 35 m long with two cells with a width of11.25 m with three lanes.  

Analysis and design for eight complete models with differing radius of curvature were 100 m, 75 

m, 50 m and a straight span with similar depth equal to 2.4 m of the box girder cross section. The 

grade of concrete was assumed to be 50 N/mm2 (compressive strength) and the grade of steel 

was taken as 500 N/mm2 (tensile strength). Analysis and design was conducted using the 

software CSI Bridge 2015. Graphical relations between various parameters were optimized with 

the intention of providing designers with a clear understanding of structural and economic 

aspects of curved box girder bridges. The results showed increasing curvature will increase 

bending moment and in required quantity of prestressing steel. 

Ahirwar et al. (2016) summarized papers that dealt with box girder bridge behaviour. In this 

study, the author focused on papers which presented different analytical methods to understand 

the behaviour of box girder bridges. It was concluded that further study was needed, a study that 

focused on the analysis and behaviour of three dimensional models of box girder bridges with 

the use of FE analysis. 

Patil, & Shinde, (2013) studied the two standards AASHTO and IRC under the effect of traffic 

loading conditions during the construction of superstructures. In order to determine the best cross 

section, different checks were utilized. The results showed that bending moment and stress 

predictions for self-weight and superimposed weight are the same for both codes, however those 
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for the moving load consideration exhibited some variance, and this was because of the fact that 

the IRC codes provided design for heavier traffic loads in contrast to the AASHTO codes. 

Furthermore, although the AASHTO code has higher factors of safety, it is more economical due 

to the characteristic loading being less than required by the IRC code. Hence for the same 

dimensions of section, the numbers of prestressing strands required in the web will be less for the 

AASHTO code. The MIDAS CIVIL software was used for the finite element analysis. 

Sali et al. (2016) analysed a 32m span prestressed trapezoidal box girder from a flyover in 

Trivandrum, Kerala. The analysis was carried out for five cases with differing radius of curvature 

under the effect of dead load, superimposed dead load and live load according to the IRC 

Standard. In this paper, the box girder had the same span length, cross sectional shape and 

material properties for all the models. The straight and curved trapezoidal box girders were 

modelled using CSI Bridge software. The parametric study investigated how changing the radius 

of curvature would affect the behaviour of the box girders and how the deflection, longitudinal 

bending stresses and torsion would develop. Bending moment increased with decreasing radius 

of curvature under all loading conditions. Deflection along the span for the box girder showed the 

same response as the bending moment under all loading conditions. The torsion along the span of 

the box girder increased as the radius of curvature decreased, and torsion is negligible for straight 

box girders under all loading conditions. The longitudinal stress at the top and bottom of the 

centre part of the cross section increases with decrease in radius of curvature of the box girder. 

Sasidharan & Johny (2015) investigated box girders curved on plan with rectangular cross-

sections, figure (2.18). The finite element software ABAQUS was utilized for the analysis. The 

box girder was analysed for different loading conditions, namely the dead load, superimposed 

load and live load based the IRC Class A loading. A parametric study of curved box girders was 

carried out by changing the span and radius of curvature and keeping the span to depth ratio 

constant. The results for different reactions, bending stress, shear stress and mid-span deflections 

were presented and showed that when the radius of curvature decreased the bending stresses 

increased and shear stresses increased (torsion started to occur). 
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Figure (2.18) Box girder cross-section with span lengths equal to 20m, 30m and 40m, L/D ratio 

of 16 and 7 different radii, Sasidharan & Johny (2015).  

Thakai et al. (2016) studied box-girder bridges with rectangular and trapezoidal cross-sections. 

In this paper, SAP 2000 was adopted for the finite element analysis. The box girder was analysed 

under dead load (self-weight) and live load in accordance with IRC 70R loading for zero 

eccentricity (centrally placed) for both simply supported and continuous spans. The results for 

rectangular and trapezoidal cross-section were graphed and presented for bending moment and 

longitudinal bending stress in the top and bottom flange along the span. It can be concluded that: 

	i. When the depth of box-girder decreased the longitudinal bending stress in top and bottom 

flange along the span increased. 

ii. The bending moment was highest in trapezoidal girder under the load combination of dead 

load and live load and least in the rectangular girder.  

iii. The rectangular section was stiffer than the trapezoidal section, so deflection was lower in the 

rectangular section. 

Jain & Singh (2016) analysed curved box girders and compared the results for the bending 

moments, torsion and shear in relation to the change of curvature. They also compared the 

maximum and minimum reactions and checked the stability against overturning. The parameters 

span length, depth, deck width, radius of curvature and loading were modelled by using a 

LUSAS Finite Element Analysis software. 	 The results showed that there was no change in 

bending moments and shear forces for a span with different radii, however, torsional moments 

increased significantly as the span radius decreased.  

Darji et al. (2016) summarized some of literature dealing with elastic analysis experimental 

studies of prestressed concrete (PSC) box girders looking at type, span, live load, curved box 

girders, shear lag and torsion due to curvature. A comparison of the literature was made for both 
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analysis and design of PSC T-girders with PSC box girder using STAAD – PRO, for normal and 

skew box girders.   

Corven (2016) introduced a manual (Federal Highway Administration’s National Technology 

Deployment Program), the Post-Tensioned Box Girder Design Manual related to the analysis 

and design of cast-in-place concrete box girder bridges prestressed with post-tensioned tendons. 

The Manual displayed the types of the construction of cast-in-place concrete box girder bridges, 

material features that impact design, principles of prestressed concrete, and losses in prestressing 

force related to post-tensioned construction. The manual also considered the longitudinal and 

transverse analysis of the box girder superstructure. Both single-cell and multi-cell box girders 

were discussed and some design examples were inserted in the Appendices. The manual can be 

considered as a training manual. 

Khairmode & Kulkarni (2016) analysed a horizontally curved prestressed concrete box girder 

bridge deck, figure (2.19). The SAP program was utilized to model the bridge as a three-

dimensional finite element model. The angle of curvature was varied 0̊ to 90̊ and the radius of 

curvature was changed from 25m to 50m. The material properties remained unchanged. Analysis 

was based on using the IRC Class AA loading. The results of stresses have been represented by 

graphs in the paper. The deflection was caused due to the different loadings and the mid-span 

deflection for all the models were computed. These longitudinal stresses were obtained for 

prestress loading case. The values of stresses were negative which meant that stresses were in 

compression. When the radius of curvature and angle of curvature increased the stresses at the 

top of the prestressed curved bridges increased but stresses at the bottom of the bridges 

decreased and midspan vertical deflection decreased also. 

 
Figure (2.19) Cross-section of multi-cell box girder, Khairmode and Kulkarni (2016). 

Fangping & Jianting (2012) investigated changing the radius of curvature for prestressed box 

girder bridges as shown in figure (2.20). A spiral bridge in Chongqing was analyzed using the 

finite element program ANSYS. Five different curved bridge models subject to self-weight and 
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prestressing were modelled and analysed. The deformations in all directions of the curved box 

girder bridges were presented but the vertical deformation was still dominant. The vertical 

displacement of the mid-span of continuous curved box girder bridges increased as the radius of 

curvature increased. For example, when the radius was 10-150 m the vertical displacement has 

changed most quickly, while when the radius was over 200 m, the displacement-curvature graphs 

tends to an asymptote, the force characteristics were the same as for a straight bridge. 

 
(A) The whole spiral bridge model 

 
(B) The finite element model 

Figure (2.20) Spiral bridge model, Fangping & Jianting (2012) 
 

Sennah & Kennedy (2002) extensively studied previous research that dealt with straight and 

curved box girder bridges in the form of single-cell, and multi-cell cross sections. This literature 

dealt with elastic analysis and experimental works on the elastic response of box girder bridges.	
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As a result, they suggested that the finite-element method was the best method for analysis and 

more finite element investigations are needed in future. 

Ch et al. (2016) conducted the analysis and design of straight prestressed concrete bridges (deck 

slab, T-girder and box girder) in accordance with the Indian code IRC:112-2011. A sample of 

these box girder bridges was investigated using SAP 2000 software. The results for different 

span to depth ratios were compared with code specifications. The deflection and stresses results 

represented in the paper were within the permissible limits according to the authors. 

Alawneh (2013) studied a new system for curved precast prestressed concrete girder bridges at 

University of Nebraska. The author used relatively short girder segments in a straight line, then 

those segments were joined and post-tensioned to form a curved girder. This system showed 

economic advantages. The forms can be used in straight-line prestressing beds and in lower cost 

production. 

Okeil & El-Tawil (2004) analysed a detailed study of warping-related stresses in 18 composite 

steel-concrete box girder bridges. The bridge was in the state of Florida and the parametric study 

included many parameters such as the horizontal curvature, cross-sectional properties, and 

number of spans. Forces were estimated from the mathematical model, including the effects of 

warping. Loading was based on the 1998 AASHTO-LRFD. Warping stress was considered, 

however it was ignored in some cases. As a result, analysis showed that warping has little effect 

on both shear and normal stresses in all bridges. 

Sali & Mohan (2017) compared straight and curved box girder bridges with trapezoidal cross 

sections. Dead load, superimposed dead load, live load of IRC Class A tracked vehicle and 

prestressed loads were investigated. The span, cross sectional shape and material properties were 

unchanged. The aim of the study was to investigate the behaviour of box girders by changing the 

radius of curvature. Five models were investigated one straight and four curved and the 

comparison were made in deflection, torsion and longitudinal stresses. The results showed that 

increased the radius of curvature will decreased deflection, torsion and longitudinal stresses. 

John & Prasad (2017) summarized literature that dealt with the behaviour of straight and curved 

box girder bridges. The objective of this documentary study was to provide a better 

understanding for the behaviour of box girders with different variations in parameters such as 

curvature and shape. This study will help the bridge engineer to better understand the behaviour 

of straight and curved box girder bridge 
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Chapter Three 

Numerical Analysis 

3.1 Analysis methods 
This chapter presents the numerical analyses which have been utilized to investigate the 

prestressed concrete box girder bridge behaviour and the methodology of how the box girder for 

this study will be analysed. Complex bridge design needs to identify the internal forces within 

the bridge which are generated by the applied loading and how the bridge material will behave 

structurally. Analysing the stresses acting in the bridge elements is the aim of the analysis of 

such structures and to verify that the bridge material properties have the required stiffness and 

strength (these are related to the constitutive modelling of the basic materials in the numerical 

analyses). The accuracy of the structural analysis is dependent upon the choice of a particular 

method and its assumptions. Many methods have been used to analyse box girders, starting from 

the curved beam theory by Saint-Venant (1843), the thin-walled beam theory by Vlasov (1965) 

through to the big advancements made by using the finite element method. 

 

The main methods of analysis can be summarized as:  

 

1- Orthotropic plate theory 

2- Grillage analogy 

3- Folded plate  

4- Finite strip  

5- Thin walled curved beam theory 

6- Finite elements 

 

1- Orthotropic plate theory  

 

The orthotropic plate theory method addresses the interaction between the concrete deck and the 

curved girder of a box girder bridge. In this method the stiffnesses of the diaphragms are divided 

over the girder length and the stiffness of the flanges and girders are lumped into an orthotropic 
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plate of equivalent stiffness. However, the estimation of the flexural and torsional stiffness is 

considered to be one of the major problems with this method. Also, adopting this method has 

another disadvantage in which the stresses in the slab and girder are hard to estimate. This 

method has been recommended for multiple-girder straight bridges and curved bridges with high 

torsional rigidity, but the Canadian Highway Bridge Design Code CHBDC (2000) has claimed 

this method should only be used for the analysis of straight box-girder bridges of multispine 

cross section and not multicell cross section. 

 

2- Grillage analogy method 

 

In the case of multiple cell boxes with vertical and inclined webs and voided slabs, the grillage 

method has usually been adopted for analysis. In this method, the bridge deck is assumed as a 

grid assembly, where each slab of the box section is converted to a series of orthogonal 

slab/beam strips. The grid assembly members are assumed to have axial, bending and torsional 

stiffness, which approximate the two-way plate response by considering the plates are fully 

connected with the joints of the three-dimensional rigid frame. 

 

There are some drawbacks with this method, the first is in calculating the effective width of the 

slab to include the shear lag effects. Another is in finding the torsional stiffness of closed cells. 

Evans & Shanmugam (1984) estimated approximate results for torsional stiffness for a single 

cell closed section by modelling as an equivalent I-beam. As a result, the Canadian Highway 

Bridge Design Code CHBDC (2000) has restricted using this method for analyses of box-girder 

bridges where the number of cells or boxes are greater than two. 

 

3- Folded plate method 

 

Linear elastic analysis of a box girder bridge can be solved using this method, considering the 

assumptions of elastic theory. According to this method a box girder bridge will be modelled as a 

folded system which is an assemblage of longitudinal plate elements connected at their corner 

joints (two adjacent plates share one joint) and both ends are simply-supported by diaphragms. 

These diaphragms are infinitely rigid in plane and perfectly flexible perpendicular to the 
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orthogonal planes. This method provides a solution for simply supported straight or curved box-

girder bridges for any subjective longitudinal load function. Scordelis (1960) produced an 

analytical method to determine the longitudinal stresses, transverse moments and vertical 

deflections in folded plate structures by adopting matrix algebra. The method can be easily 

programmed for digital computers. The procedure has been utilized to model cellular structures 

by Meyer & Scordelis, (1971), Al-Rifaie & Evans, (1979), and Evans, (1984). Marsh & Taylor 

(1990) introduced a method that incorporates a classical folded plate analysis consisting of an 

assembly of orthotropic or isotropic plates to form box girders. This method has a major 

disadvantage in that it is complicated and also tedious. The Canadian Highway Bridge Design 

Code CHBDC (2000) suggested that the applicability of this method should be limited to bridges 

with support conditions which are close enough to line supports at both ends and line 

intermediate supports in the case of multi-span bridges. 

 

4- Finite strip method 

 

In the finite strip method of analysis, which is a particular type of finite element analysis in its 

special form of the formulation of displacement, the box girder is assumed to be organized into 

annular finite strips that span from one end support to another. These ‘strips’ are linked 

transversely through their edges by longitudinal nodal lines. The stiffness matrix for the box 

girder using this method is calculated for every strip and depends on a displacement function 

assuming an analytical distribution such as a Fourier series. 

The finite strip method is considered as a midway between the folded plate method and the finite 

element method. The finite element method is different from the strip method in terms of the 

assumed displacement interpolation functions. Contrasting the finite element method, the 

displacement functions according to the finite strip method are produced as a combination of 

harmonic variation longitudinally and polynomial variation in the transverse direction. 

Strip stiffness was developed to solve equations of equilibrium to estimate displacements, 

stresses and strains. Curved geometry and orthotropic material properties can be incorporated in 

such formulations. The finite strip method has advantages over the finite element method in that 

it reduces the number of degrees of freedom and therefore the computer solution time is shorter 

and therefore storage requirements are less. However, the main disadvantage of using this 
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method is that it cannot be utilized for bridges with skew ends and with non-simply supported 

bridges. Differences in geometrical or material properties of the bridge cannot be considered in 

this method (CHBDC, 2000). 

 

5- Thin walled curved beam theory 

 

In the case of the solid curved bar, Saint-Venant (1843) has proved that the theory of curved 

beams can be utilized, especially when the load is applied in a direction normal to the curved 

plane. The advantage of using the curved beam theory is that it can provide us with the correct 

distribution of the bending moment, shear and torque resultant in any part of the curved beam 

when the accurate bending, axial and torsional rigidities have already been identified. However, 

this method cannot be applied to curved box girders and for the reason that it does not consider 

the effect of distortion, warping and bending deformation of each element in the wall of the box. 

 

6- Finite element method 

 

The finite element method can be described as a method of dividing the structure into many 

small elements, these elements are connected with each other through nodes. The strain 

displacement matrix, the element stiffness matrix and nodal load vectors have to be calculated 

for each individual element. The global stiffness matrix consists of numbers of local element 

matrices which are assembled according to orientation and connectivity. In the finite element 

method the equations of equilibrium are solved to find the nodal displacement for each node 

these are then back subtitled to calculate the element stresses, Zienkeiwicz (1977).  

To analyse problems with different geometry, thickness and material properties through the 

length of the bridge, the finite element method is considered the best choice for analysis. The 

advantage of using FEA is that it can be used for any type of loading and any boundary 

condition. An accurate approximation of the structural behaviour can be provided by this method 

which makes it the most versatile of all the available methods. 

The analysis of concrete structures can be readily solved using the finite element method. 

However, if the FE method is utilized to analyse reinforced concrete structures, there will be a 

lack of consistency of results between different structural forms (different element and 
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nonlinearity). This usually happens due to the use of approximate assumptions adopted to 

describe the material, and also, the computational difficulty that arises as a consequence of 

numerical instabilities associated with nonlinear effects such as, cracking of concrete and 

yielding of reinforcement.  Until now, the most powerful method to be used in the analysis of the 

box girder bridge is the finite element method. The finite element method has provided the 

designer with an accurate result for static and dynamic analyses. For example the Canadian 

Highway Bridge Design Code CHBDC (2000) has recommended the finite element method for 

all types of bridges. 

 

A large number of element types have been investigated using the finite element analysis for two 

dimensional elements such as beams, plates or shell elements, and three-dimensional elements 

such as solid elements. Since the structure consists of many finite elements connected at nodal 

points, each element has a stiffness matrix, which approaches the behaviour in the continuum. It 

is assumed to be an assemblage depending on presumed displacement or stress patterns, then the 

nodal displacements and the internal stresses on the finite element are achieved by using the 

overall equation of equilibrium. Also, the FE method is available in many commercially written 

programs such as ANSYS and ABAQUS. The finite element analysis has been adopted for this 

study. 

3.2 Numerical study of prestressed box girder bridges 
 
Complex geometries, such as those of multi-cell straight and curved prestressed box girder 

bridges can readily be modelled using the FEA technique. The method is also capable of solving 

structures with different material properties, boundary conditions and various load conditions. 

The structural response of such bridges can be predicted with good accuracy using this method. 

In this chapter of the thesis, a single- span box girder bridge section is investigated, the details of 

which are shown in figure 3.1. The box girder in question is produced from the published work 

of Khaloo & Kafimosavi (2007) for verification purposes and extended into further study. The 

length of the span is 54m, the depth is 3.3m and the deck width is 12m. The material properties 

and structural arrangements are as follows:  
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• Modulus of Elasticity E= 17×109 N/m2  

• Density ρ= 2400 kg/m3  

• Nine prestressed tendons located at the girder soffit.  

• The modulus of elasticity for the tendons is 200×109 N/m2.  

 

FE analyses were carried out on this sample subject to gravity, prestressing and different 

arrangements of additional loading to determine the load capacity for various ranges of curvature 

using the finite element analysis programme ANSYS12. 

 

In this study the box girder investigation begins with a straight box girder bridge, and then 

proceeds to curved box girder bridges. Both models are subjected to self-weight (gravity loading) 

and prestressing. This section presents the verification work on a static model of straight and 

curved box girder bridges to ensure that the modelling and prestress is applied in the correct 

manner.  Additional load is then applied to the bridge over a range of horizontal curvatures, and 

the load capacity is then based on stresses criteria at serviceability limit state.  

 

 
 

 
 
Figure (3.1) Geometry of curved bridge: (A) cross section and tendon position (B) plan view 
(all dimensions are in metres). 
 

CL CL 

54 m 

(A) 

(B) 
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3.3 Box girder bridge calculations 
 
In order to create the model, firstly some analytical calculations should be carried out. These 

calculations will serve as verification of the section properties for the FE, stresses ranges, and 

correct representation of the prestress (applied by means of an initial strain). These calculations 

are presented in, figure 3.2: 

3.3.1- Calculation for Area and I for the section (FE model)  
 

d3

b1

ybar

b2 b3

d2

d1

 
 

 

Deck   b1=12 m d1=0.3 m 

Ribs   b2= 0.3 m d2= 2.7 m 

Soffit   b3= 8.7 m d3 = 0.3 m 

 

Calculate Area  A = b1×d1+3×(b2×d2)+b3×d3  A = 8.64 m2 

Calculate YBar   
YBar

 

 
YBar= 1.822 m 
 
Calculate second moment of area I 
 

Figure (3.2) Cross-section of deck 
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I =

 
I = 15.24 m4 

3.3.2- Calculation of required prestressing parameters 
 
Calculation of required prestressing strain for the FE model: 

 

Ultmate tensile strength (assumed from typical values) σult = 1800 N.mm-2 

 

Service stress in tendons σten = 0.6            σten = 1080 N.mm-2 

 
Desired tension force in each tendon                           p= 5000 kN 
 
Number of tendons       Nt =9 
 
Total prestressing force P = Nt×p                        P = 45000 kN 
     

Area of each tendon                                                   A = 4.63×103 mm2 
 
 
Steel modulus of elasticity E = 200×109 N.m-2 

 

Strain in each tendon                           ɛ = 5.4×10-3 

 
 
3.3.3- Stresses in FE model 
 
From the calculations in 3.3.1, the stresses for comparison with the FE model can be calculated 
for the various load cases as follows: 
Second moment of area                       I = 15.24 m4 
Cross sectional area                            A = 8.64 m2 
Distance from soffit to centroid         Ybar =1.822 m 
Concrete unit weight                             ρ = 2400 kg. m-3  
Depth of section                                    D = 3.3 m 
Width of deck                                       B = 12 m 
Length of deck                                      L = 54 m 
Acceleration                                           g= 9.81 m.sec-2 
Self-weight (W)                                     W = A×ρ×g            W =211.9 kN/ m 
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Moment at mid-span from gravity                  Mg =7.73×104 kN.m 
Prestressing force from all tendons                           P= 45000 kN 
Eccentricity        ecc= 1.822 m 
Moment at mid-span from prestress     Mp= P×ecc         Mp= 8.2×104 kN.m 
Gravity load stresses:	

              -7.7 N.mm-2  (top) 

               = 9.3 N.mm-2  (bottom) 
Stress from prestressing: 
   	

  = 3.2 N.mm-2  (top) 
 

                 (bottom) 
Total stresses:     

              (top) 
                      (bottom) 

These stresses indicate that the prestress and gravity loads are nearly balanced with an 
approximately even compressive stress (shown as negative stresses) across the section elevation. 
 
Note: The published paper stresses (Khaloo & Kafimosavi (2007)) for the load cases has been 
calculated here 

Ø Calculation for stresses  
Second moment of area                            I = 15.24 m4 
Cross sectional area                                 A = 8.64 m2 
Distance from soffit to centroid              Ybar =1.822 m 
concrete unit weight                                  ρ = 2400 kg. m-3  
Depth of section                                        D = 3.3 m 
Width of deck                                            B = 12 m 
Length of deck                                           L = 54 m 
Acceleration                                      g= 9.81 m.sec-2 
Applied load (including self-weight)       UDL = 25 kN.m-2 

Load per unit length W = UDL×B            W =300 kN. m-1 

Moment at mid-span from loading                        Mg =1.093×105 kN.m 
Prestressing force from all tendons            P= 45000 kN 
Eccentricity                                                 ecc= 1.822 m 
Moment at mid-span from prestress            Mp= P×ecc           Mp= 8.199×104 kN.m 
Applied load stresses 

                          - 10.605 N.mm-2  
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                                        = 13.073 N.mm-2 
Prestress stresses 

                                 = 2.743 N.mm-2 

                                      
Total stresses:     

           (Top) 
               (Bottom) 

From the published work by Khaloo & Kafimosavi (2007) it can be seen that the model has 

considered both gravity and additional applied load effects. This results in a section which 

exhibits tensile stresses at the soffit of the slab as expected, and as such would not fall under a 

class 1 (no tension) design at serviceability limit state.  

3.4 The finite element method: ANSYS 
The finite element modelling and analysis carried out in this study uses the finite element 

program, ANSYS. ANSYS is a commercial finite element program created in 1970 by John A. 

Swanson of Swanson Analysis Systems. ANSYS 12th edition has been used in this study. 

ANSYS has a comprehensive library of spar, beam, shell and solid elements. ANSYS had also 

been qualified for use in the nuclear industry and also verified for commercial use. It is also 

NAFEMS approved. Brief descriptions of the elements used in the current model are presented 

below: 

 

1. Shell 63 (elastic shell): A four noded element that has both bending and membrane 

capabilities. The element has six degrees of freedom at each node, translations in the nodal X, Y, 

and Z directions and rotations about the nodal X, Y, and Z axes. Large deflection capabilities are 

included in the element. It is stated in the ANSYS manual that an assemblage of this flat shell 

elements can produce good results for a curved shell surface provided that each flat element does 

not extend and also the shell element is mesh sensitive. Material properties and all the cross-

section dimensions and calculations have mentioned before where the concrete is represented by 

the Shell 63 element. Figure 3.3 shows shell 63 element from ANSYS.  
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 2. Beam 188 (3-D Linear Finite Strain Beam): is a linear 2-node or quadratic beam element in 3-

D. Beam 188 has six or seven degrees of freedom at each node. These include translations in the 

X, Y, and Z directions and rotations about the X, Y and Z directions. A seventh degree of 

freedom (warping magnitude) can also be considered. This element is well-suited for linear, 

large rotation, and/or large strain nonlinear applications. The beam elements are one-dimensional 

line elements in space. The cross-section details are breadth = 3m and height = 3m where 

Beam188 utilized for the rigid beam offsets used at the boundaries as shown in figure 3.4. 

 
 

 

3. Link 8 (3-D Spar): is a two-node, three-dimensional truss element. It is a uniaxial tension-

compression element with three degrees of freedom at each node; translations in the nodal X, Y 

and Z directions. The element is a pin jointed structure with no bending capabilities. Material 

properties and the cross-section calculations have been mentioned before where Link8 represents 

the prestressing tendons, figure (3.5). 

Figure (3.3) Shell63 

Figure (3.4) Beam188 
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Creating any element using ANSYS can be carried out using one of two methods: the direct 

generation method by defining the nodes and elements for the section or use of the solid 

modelling method whereby the FE mesh is generated on the geometry of the model. The choice 

is governed by the fact that an easy and flexible parametric model was needed. In this study, 

after creating the models, applying loads and specifying the boundary condition using the 

ANSYS programme, stresses can be easily obtained after the model has been solved. In addition, 

it will be also used to compare the direct stresses between various models. Therefore, creating 

the same general box girder construction of straight and curved bridge models with the same 

boundary conditions is required. The direct generation method has been adopted for this research 

with a scripted approach using the ANSYS APDL (ANSYS Parametric Design Language), 

which allows the user to input the geometric parameters of the model whilst the file is read into 

the program therefore allowing automatic and rapid creation of the bridge deck. using the script 

file (APDL) allows the user to change the parameters such as span length, curvature, deck depth 

and width also changing the mesh. 

3.5 Loading and boundary condition 
The shell box bridge models were subjected to the gravity and uniform distributed load (25 

kN/m2) of the box first then prestressing forces are subsequently applied. Simple pinned support 

conditions were applied to a simple span with fixed torsional behaviour about the longitudinal 

axis. Horizontal movements were free at both ends along the curved axis, while the vertical 

displacements were completely constrained. The two ends of the bridges are closed by rigid 

Figure (3.5) Link8 
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beam elements were joined at a node placed at the centroid of the section. This was done in order 

to reduce local effects, provide uniform distribution of the large support reactions and to make 

sure all nodes at the support ends are fully bonded with each other. A node at the centroid of the 

cross-section was created and connected to each node from the end support via the rigid beam 

elements. Figure (3.6) shows the box girder bridge. The complete model of the box girder 

comprises 5364 elements. The total number of nodes included in the model is 4927. The green 

bands with the boundary conditions figure represents the coupling coincident nodes which ensure 

that the various parts of the model are joined together in all degrees of freedom. 

 

 
(A) Cross-section 

        
(B) Isometric view of model without prestress 

Shell63 
Beam 188 

Interior edge Exterior edge 
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(C) Isometric view of model with prestress 

Figure (3.6) Box girder bridge end restraint system. 

3.6 Description of the bridge models  
 
The box bridge models that are used in this chapter to study the behaviour of the straight and 

curved box girder are single-span multicell box girder bridges of total span length 54m. There 

are two types of bridges that are modelled in ANSYS for the current study. 

 

1. Straight box shell model  

2. Curved box shell model  

 

For the straight box shell model, there is only one case used for verification purposes while for 

the curved box shell model there are 11 cases of curvature, each case has been investigated 

through three different types of loading and compared with the published work. 

 

3.6.1 Straight box shell model  
The straight box bridge model comprises shell 63 elements for the webs, top flange, and the 

bottom flange. The plate thicknesses and the material properties are required input for Shell 63. 

Boundary conditions have been represented by Beam 188 elements. Beam 188 connect each 

node at the edge end with a fixed node at the centroid of the cross-sectional face. The green 

bands in each boundary conditions diagrams represent coupling coincident nodes which ensure 
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that the various parts of the model are joined together in all degrees of freedom. Three different 

types of loading have been investigated for the straight box. These are: 

 

1- Straight box model under gravity loading 

 

The box girder in this case is straight and only subject to self-weight. A uniformly distributed 

load equal to 25 kN/m2 represents the gravity load which acts vertically and downward on the 

top of the slab surface. The model was created using the APDL script which can be found in 

Appendix 2. The finite element model for this case is shown in figure (3.7). Figure (3.8) shows 

the straight box model under gravity and the boundary conditions (BC’s). Deformed shape 

contours are shown in figure (3.9) and the stress contours and mid span stresses are shown in 

figure (3.10) & (3.11). The compression stresses and tension stresses at mid-span values are 

presented in tables (3.1) and (3.2). 

1- Straight box model under gravity loading 

 
 
 Figure (3.7) The finite element model for straight under gravity loading 
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Figure (3.8) Boundary conditions including coupling for straight under gravity loading 

Figure (3.9) Deformed shape for straight under gravity loading 
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Figure (3.10) Longitudinal stresses for straight under gravity loading 

Figure (3.11) Longitudinal stresses at mid-span for straight under gravity loading 
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2- Prestressed straight box  

 The box girder in this case is straight and acting under the effects of prestress alone. The 

tendons are at the same elevation along the length of the member and are located at the soffit of 

the box girder. The full model is in Appendix 2 and the prestress is taken from section 3.3.2. The 

finite element model for this case is shown in figure (3.12). Figure (3.13) shows the prestressed 

straight box model and the boundary conditions. The deformed shape contour is shown in figure 

(3.14) and the stress contour and mid span stresses are shown in figures (3.15) & (3.16). The 

compression stresses and tension stresses for the mid-span values are given in table (3.1) and 

(3.2). The prestress is applied via initial strain in the link elements. 

2- Prestressed straight box  

 
 
 
Figure (3.12) The finite element model for straight under prestress loading 
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Figure (3.13) Boundary conditions for straight under prestress loading 

Figure (3.14) Deformed shape for straight under prestress loading 
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Figure (3.15) Longitudinal stresses for straight under prestress loading 

Figure (3.16) Longitudinal stresses at mid-span for straight under prestress loading 
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3- Gravity and prestress straight box model 

The box girder in this case is straight and acting under both gravity (UDL =25 kN/m2) and 

prestress, the details of the model are in Appendix 2 and the prestress has been calculated in 

section 3.3.2. The finite element model for this case is shown in figure (3.17). Figure (3.18) 

shows the prestressed straight box model under gravity and the BC’s. The deformed shape is 

shown in figure (3.19) and the mid span stresses are shown in figures (3.20) & (3.21). Stresses 

and tension stresses for the mid-span values are presented in tables (3.1) and (3.2). 

3- Gravity and prestressed straight box model  

 
 
 Figure (3.17) The finite element model for straight under gravity & prestress loadings 
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Figure (3.18) Boundary conditions for straight under gravity & prestress loadings 

Figure (3.19) Deformed shape for straight under gravity & prestress loadings 
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 Figure (3.20) Longitudinal stresses for straight under gravity & prestress loadings 
 

Figure (3.21) Longitudinal stresses at mid-span for straight under gravity & prestress loadings 
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3.6.2 Curved box shell model  
The horizontally curved box bridge having a changeable radius of curvature is modelled using 

Shell 63 similar to that of the straight box shell model. Just like the straight shell models, for this 

single span multicell bridge, the support conditions are the same. The models are the same for 

model M1 in material properties and cross-section with the exception that they are curved in 

plan. The calculation of the various curvatures is shown below.  Since the models are used for 

comparison purposes, both the models are of the same general construction as mentioned in the 

script file (Appendices 2 and 3). Eleven cases of curvature have been analysed with changing 

horizontal curvature, related to a step change in the width (δ) of the sector, which is presented 

here from 1 to 11m. Each single case has been examined under the effects individually of gravity 

and prestress and then both gravity and prestressing combined. This part of the analysis of the 

curved box shell model will illustrate the behaviour for 3 cases, delta (δ) will be equal to 1, 5 and 

11m respectively to show the behaviour of the finite element models, deformed shapes and stress 

contours. The first case is when the span started to curve and second case when delta= 5m which 

is around the middle to show how changing curvature will affect box girder behaviour. The last 

case is when delta equal to 11 m and the box girder section has reached tension stresses. 

1-Case 1 (δ=1m)  
 
 
 
 
 

Radius of curvature                  R= 365 m      
 

Subtended angle theta            θ = 8.848̊         
 
1-Curved box model under gravity effects 

The curved box girder in this case is only subject to UDL (the gravity), the model is created by 

the APDL and it can be found in Appendices 1 & 2. The finite element model for this case is 

shown in figure (3.22). Figure (3.23) shows the curved box model under gravity and the applied 

BCs. The deformed shape is shown in figure (3.24) and the longitudinal stress contours and mid 

Span                     L =54 m 
Delta                     
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span stresses are shown in figures (3.25) & (3.26). The longitudinal stresses at the mid-span 

section are presented in table (3.2). 

1-Curved box model under gravity (δ=1m) 

 
 
 

 

Figure (3.22) The finite element model under gravity (δ=1m) 

Figure (3.23) Applied boundary conditions including coupling under gravity (δ=1m) 
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Figure (3.24) Deformed shape under gravity (δ=1m) 

Figure (3.25) Longitudinal stresses under gravity (δ=1m) 
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2-Prestressed curved box model 

 

The curved box girder in this case is subject to the effects of prestress alone, the full model is 

provided in Appendices 2 & 3 and the prestress is taken from section 3.3.2. The finite element 

model for this case is shown in figure (3.27). Figure (3.28) shows the prestressed curved box 

model with the boundary conditions applied. The deformed shape is shown in figure (3.29) and 

the longitudinal stress contours and mid span stresses are shown in figures (3.30) & (3.31). 

Longitudinal stresses for the mid-span values are presented in table (3.2). 

 

2-Prestressed curved box girder model (δ =1m) 

Figure (3.26) Longitudinal stresses at mid-span under gravity (δ=1m) 
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Figure (3.27) The finite element model under prestressed (δ=1m) 

Figure (3.28) Boundary conditions under prestressed (δ=1m) 
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Figure (3.29) Deformed shape under prestressed (δ=1m) 

Figure (3.30) Longitudinal stresses under prestressed (δ=1m) 
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3- Gravity and prestressed curved box model 

The curved box girder in this case is subject to both self-weight and prestress, the model is 

shown in Appendices 2 &3 and the prestress has been calculated in section 3.3.2. The finite 

element model for this case is shown in figure (3.32). Figure (3.33) shows the prestressed curved 

box model subject to gravity and the applied BCs. The deformed shape is shown in figure (3.34) 

and the longitudinal stress is shown in figures (3.35) & (3.36). Stresses and tension stresses for 

the mid-span values are presented in table (3.2). 

 

3-Gravity and prestressed curved box girder model (δ=1m) 

Figure (3.31) Longitudinal stresses at mid-span under prestressed (δ=1m) 
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Figure (3.32) The finite element model under gravity & prestressed (δ=1m) 

Figure (3.33) Boundary conditions under gravity & prestressed (δ=1m) 
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Figure (3.34) Deformed shape under gravity & prestressed (δ=1m) 

Figure (3.35) Longitudinal stresses under gravity & prestressed (δ=1m) 
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2- Case 2 (δ=5m) 
 
Span                    L =54 m 
Delta                     
 

Radius of curvature               R=75.4 m      
 

Subtended angle Theta      θ = 41.966̊         
    
 
1-Curved box model under gravity 

 

The curved box girder in this case is subjected only to self-weight. The model was created using 

the APDL which can be found in Appendices 2 & 3. The finite element model for this case is 

shown in figure (3.37). The deformed shape is shown in figure (3.38) and the longitudinal stress 

Figure (3.36) Longitudinal stresses at mid-span under gravity & prestressed (δ=1m) 
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contour and mid span stresses are shown in figures (3.39) & (3.40). Longitudinal stresses at the 

mid-span are presented in table (3.2). 

1-Curved box model under gravity (δ =5m) 

 
 
 

 
 

Figure (3.37) The finite element model under gravity (δ=5m) 

Figure (3.38) Deformed shape under gravity (δ=5m) 
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Figure (3.39) Longitudinal stresses under gravity (δ=5m) 

Figure (3.40) Longitudinal stresses at mid-span under gravity (δ=5m) 
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2-Prestressed curved box model 

The curved box girder in this case is subject the effects of prestress alone, the full model is 

provided Appendices 2 & 3 and prestress is taken from section 3.3.2. The finite element for this 

case is shown in figure (3.41). The deformed shape is shown in figure (3.42) and the longitudinal 

stress contour and mid span stresses are shown in figures (3.43) & (3.44). Longitudinal stresses 

for the midspan values are presented in table (3.2). 

 

2-Prestressed curved box model (δ=5m) 

 
 
 

Figure (3.41) The finite element model under prestressed (δ=5m) 
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Figure (3.42) Deformed shape under prestressed (δ=5m) 

Figure (3.43) Longitudinal stresses under prestressed (δ=5m) 



70 
 

 
 

 

3-Gravity and prestressed curved box model 

 

The curved box girder in this case is subjected to both self-weight and prestressing, the model is 

provided Appendices 2 & 3 and the prestress has been calculated in section 3.3.2. The finite 

element model for this case is shown in figure (3.45). The deformed shape is shown in figure 

(3.46) and the longitudinal stress and mid span stresses are shown in figures (3.47) & (3.48). 

Longitudinal stresses for the mid-span values are presented in table (3.2). 

 

3-Gravity and prestressed curved box model (δ= 5m) 

Figure (3.44) Longitudinal stresses at mid-span under prestressed (δ=5m) 
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Figure (3.45) The finite element model under gravity & prestressed (δ=5m) 

Figure (3.46) Deformed shape under gravity & prestressed (δ=5m) 
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Figure (3.47) Longitudinal stresses under gravity & prestressed (δ=5m) 

Figure (3.48) Longitudinal stresses at mid-span under gravity & prestressed (δ=5m) 
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3- Case 3 (δ=11) 
 
Span                     L =54 m 
 
Delta                      
 

 Radius of curvature                                            R= 38.63 m      
 

Subtended angle Theta                                  θ = 88.66̊         
 
1-Curved box model under gravity 

The curved box girder in this case is only subject self-weight, the model is created by the APDL 

and it can be found in Appendices 2 & 3. The finite element model for this case is shown in 

figure (3.49). The deformed shape is shown in figure (3.50) and the longitudinal stress contour 

and mid span stresses are shown in figures (3.51) & (3.52). Longitudinal stresses for the midspan 

section are presented in table (3.2). 

1-Curved box model under gravity (δ =11m) 

 
 Figure (3.49) The finite element model under gravity (δ =11m) 
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Figure (3.50) Deformed shape under gravity (δ =11m) 

Figure (3.51) Longitudinal stresses under gravity (δ =11m) 
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2-Prestressed curved box model 

The curved box girder in this case is subject to prestress alone, the full model is provided in 

Appendix 2 & 3 and the prestress is taken from section 3.3.2. The finite element model for this 

case is shown in figure (3.53). The deformed shape is shown in figure (3.45) and the longitudinal 

stress contour and mid span stresses are shown in figures (3.55) & (3.56) respectively. 

Longitudinal stresses for the midspan section are presented in table (3.2). 

 
 
2-Prestressed curved box model (δ =11m) 

Figure (3.52) Longitudinal stresses at mid-span under gravity (δ =11m) 
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Figure (3.53) The finite element model under prestressed (δ =11m) 

Figure (3.54) Deformed shape under prestressed (δ =11m) 



77 
 

 
 
 

 
 

 

Figure (3.55) Longitudinal stresses under prestressed (δ =11m) 

Figure (3.56) Longitudinal stresses at mid-span under prestressed (δ =11m) 
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3-Gravity and prestressed curved box model 

The curved box girder in this case is subjected to both self-weight and prestressing, the model is 

provided in Appendices 2 & 3 and the prestress has been calculated in section 3.3.2. The finite 

element model for this case is shown in figure (3.57). The deformed shape is shown in figure 

(3.58) and the longitudinal stresses and mid span stresses are shown in figures (3.59) & (3.60) 

respectively. Longitudinal stresses for the mid-span section are presented in table (3.2). 

3-Gravity and prestressed curved box model (δ =11m) 

 
 
 

Figure (3.57) The finite element model under gravity and prestressed (δ =11m) 
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Figure (3.59) Longitudinal stresses under gravity and prestressed (δ =11m) 

Figure (3.58) Deformed shape under gravity and prestressed (δ =11m) 
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3.7 Comparison of straight box girder and curved box girder behaviour 
 
The objective of the study was to validate the FE model and study the behaviour of curved box 

girder bridges, the details of the bridge models of the curved and straight box have been 

presented previously. To compare the box bridges models, the same modelling techniques were 

employed for both the straight and curved bridge models except for changing the radius of 

curvature for each case of the curved box girder. Direct stresses at cross sections the cases of 

straight and curved were obtained. The midspan stresses as recorded in table (3.1) represent the 

highest value of stresses where the comparison is made based on the stresses to understand their 

behaviour under self-weight, prestressed effects and both. It can be noted that in the straight box 

girder the stress distribution is symmetric from one end to the other (in left and right top slab and 

soffit) whereas in the curved box girder the stress profile is not symmetric due to the effects of 

torsion and warping. Table (3.2) represents reactions, torsion moments and prestress losses. 

 
Notes: All stresses in the tables are N/mm2 and curvature angle in degrees. 

Interior edge: near axes as shown in figure (3.6) (A). 

Figure (3.60) Longitudinal stresses at mid-span under gravity and prestressed (δ =11m) 
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Exterior edge: far from axes as shown in figure (3.6) (A). 

 
Table (3.1) Stress distribution (A &B) for different load conditions under uniform prestressing 
and different angles of curvature (comparison between published results (Khaloo & Kafimosavi 
(2007)) and analysis results). 
 
a) Published results, Khaloo & Kafimosavi (2007) 

Load type 

Lo
ca

tio
n 

an
d 

cu
rv

at
ur

e 
an

gl
e 

Published results 

Gravity Prestressing Gravity & prestressing 

Slab Soffit Slab Soffit Slab Soffit 
Interior 
edge 

Exterio
r edge 

Interior 
edge 

Exterio
r edge 

Interior 
edge 

Exterio
r edge 

Interior 
edge 

Exterio
r edge 

Interio
r edge 

Exterio
r edge 

Interior 
edge 

Exterio
r edge 

0 -8.36 -8.36 9.85 9.85 1.17 1.17 -11.76 -11.76 -7.2 -7.2 -1.91 -1.91 

30 ̊ -10.24 -8.46 11.77 10.14 1.54 0.81 -12.2 -11.32 -7.65 -8.69 -0.44 -1.18 

60 ̊ -12.5 -8.56 14.78 10.99 1.94 0.48 -12.7 -10.96 -8.01 -10.5 1.24 -.059 

90 ̊ -16.5 -9.28 18.02 11.4 2.36 0.17 -13.25 -10.54 -9.1 -14.14 4.77 0.86 
 
b) Analysis results 

Load type 

Lo
ca

tio
n 

an
d 

cu
rv

at
ur

e 
an

gl
e 

Analysis results 

Gravity Prestressing Gravity & prestressing 

Slab Soffit Slab Soffit Slab Soffit 

Interior 
edge 

Exterior 
edge 

Interior 
edge 

Exterior 
edge 

Interio
r edge 

Exterior 
edge 

Interior 
edge 

Exterior 
edge 

Interior 
edge 

Exterio
r edge 

Interior 
edge 

Exterior 
edge 

0 -8.30 -8.30 10.75 10.75 1.22 1.22 -11.40 -11.40 -6.95 -6.95 -1.95 -1.95 

30 ̊ -10.34 -8.62 11.55 9.95 2.12 0.95 -12.80 -11.89 -8.45 -8.12 -0.60 -1.02 

60 ̊ -12.90 -9.01 15.33 11.21 2.21 1.33 -12.46 -10.75 -9.89 -10.12 1.03 0.88 

90 -17.46 -12.68 18.80 13.60 1.98 0.53 -12.25 -10.04 -12.2 -14.72 5.04 1.15 
 
 
The stresses distribution from the FE analysis for the straight box girder bridges show good 
agreement with the stresses from the published results. Table (3.2) shows the results for each 
curvature (from delta =0 to delta =11 m). 
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Table (3.2) Reactions, torsion moments, prestress, mass and stresses form the FE analysis         
(g: gravity, p: prestressed, g+p: gravity and prestress). 
 
Delta (m) Reaction 

(kN) 
My 

(kN.m) 
Prestress 

(kN) 
Mass 

(Tonnes) 
Mid-span stresses (N/mm2) 

Slab Soffit 
Interior Exterior Interior Exterior 

delta=0         
g -16200 0  1180 -8.3 -8.3 10.8 10.8 
p 0 0 4380 1180 1.22 1.22 -11.4 -11.4 
g+p  -16200 0 4740 1180 -6.95 -6.95 -1.95 -1.95 
delta =1         
g -16400 1170 0 1200 -8.82 -7.2 9.95 8.3 
p 0 0.00651 4380 1200 1.31 1.94 -11.5 -11.3 
g+p -16400 1170 4760 1200 -7.3 -6.2 -1.52 -1.95 
delta= 2         
g -16800 24400 0 1220 -9.61 -8.13 10.2 8.85 
p 0 0.0137 4390 1220 1.39 1.05 -11.6 -11.2 
g+p -16800 24400 4780 1220 -8.86 -7.82 -1.2 -1.8 
delta= 3         
g -17100 38400 0 1250 -10.1 -8.45 10.5 8.55 
p 0 0.0218 4400 1250 1.47 0.98 -11.8 -11.1 
g+p -17100 38400 4810 1250 -8.2 -8.02 -0.91 -1.43 
delta =4         
g -17500 54000 0 1270 -10.3 -8.62 11.6 9.95 
P 0 0.0311 4400 1270 2.12 0.95 -12.8 -11.9 
g+p -17500 54000 4840 1270 -8.45 -8.12 -0.6 -1.02 
delta =5         
G -18000 71500 0 1300 -9.48 -8.78 13.3 10 
P 0 0.0422 4410 1300 1.62 1.83 -12 -10.9 
g+p -18000 71500 4870 1300 -8.71 -8.25 0.15 -0.91 
delta =6         
G -18300 91500 0 1330 -11.9 -8.89 14.6 10.9 
P 0 0.0554 4410 1330 2.36 0.77 -12.2 -9.59 
g+p -18300 91500 4920 1330 -9.35 -9.03 0.78 0.21 
delta =7         
G -18700 114000 0 1370 -12.9 -9.01 15.3 11.2 
P 0 0.0714 4420 1370 2.21 1.33 -12.5 -10.8 
g+p -18700 114000 4970 1370 -9.89 -10.1 1.03 0.88 
delta =8         
g -19200 140000 0 1400 -13.8 -10.2 15.7 11.6 
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p 9.36E-
09 

0.091 4420 1400 2.37 0.84 -12.3 -10.2 

g+p -19200 140000 4920 1400 -10.1 -11.2 2.54 0.92 
delta =9     0 0 0 0 
g -19700 172000 0 1430 -14.3 -11.8 16 12.1 
p 0 0.115 4420 1430 2.45 0.92 -12.5 -9.56 
g+p -19700 172000 4900 1430 -11.3 -12.3 3.09 1.03 
delta=10         
g -14400 147000 0 1470 -15.2 -12 17.3 12.4 
P 0 0.146 4430 1470 2.71 1.57 -12.6 10.8 
g+p -14400 147000 4980 1470 -12 -12.8 4.5 1.13 
delta = 11         
g -20700 250000 0 1510 -17.5 -12.7 18.8 13.6 
P 0 0.185 4430 1510 1.98 0.53 -12.3 -10 
g+p -20700 250000 5000 1510 -12.2 -14.7 5.04 1.15 

 
 
The following observations can be made from the tables as follows: 

- Gravity: the stresses induced by the gravity load case showed differences between the 

published results and the analysis results. For the published results (Khaloo & 

Kafimosavi, 2007) the load was an applied UDL on the top deck which included self-

weight and the same UDL has applied with this study. Self-weight case has checked 

which represented as density and gravity and it showed balanced compressive stresses 

class1 with zero tension represented. 

- Prestress: prestress stresses showed similar results between the published results and the 

analysis results, losses are similar to prestensioning scenario i.e. (elastic shortening) Long 

term losses are not present. This shows that the representation of prestress using link 

elements with initial strain is valid.  

- Gravity and Prestresses: the longitudinal stresses compared show a difference due to the 

application of a UDL which incorporates an applied load in addition to gravity case. 

3.8 Design criteria as a class 1 prestressed concrete section 
As is mentioned in the previous section, the design criteria adopted in this study is that the 

section will be designed as a class 1 prestressed concrete section, i.e. there will be no tensile 

stresses at serviceability limit state (SLS). This now provides the basis for further study to 

examine how much additional uniformly distributed load the section can carry before the SLS 
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class 1 criteria is violated at the midspan section. This will then provide a view on how the 

curvature may affect the load carrying capacity of the bridge deck. It should be noted that the 

tendons in this study will remain straight, and only the stresses at the midspan section will be 

taken as the governing criteria to be compared against the code requirement of no tension 

allowed. It should also be stated that prestressed concrete can be designed to take a minimum 

amount of tension as in class 2 or 3 partially prestressed sections, but their design is usually 

dependent on ultimate limit state criteria, so the FE modelling and comparisons will remain 

governed by class 1 design at SLS.  

Different UDL’s are applied to the deck of the box girder. This investigation is performed 

utilizing the previous three-dimensional FEM model of the box girder. The details for the box 

girder are the same as detailed in Appendices 2 & 3. 

In this current study, four cases will be shown in the figures, these cases are 

1- Straight box girder bridge with load intensity (9.3 kN/m2) distributed on each node of the 

deck 

The box girder in this case under both self-weight and prestressed, the model is in Appendix (2 

and 3) prestressed has been calculated in section 3.3.2. Figure (3.61) shows the prestressed 

straight box model under gravity and the boundary conditions. Deformed shape contour shows in 

figure (3.62) and the stress and mid span stresses are shown in figures (3.63) & (3.64). Stresses 

and tension stresses for the mid-span values are mentioned in table (3.3). 

2- Curved box girder bridge (δ =1 m) with a load intensity (7.5 kN/m2) distributed on each 

node of the slab. 

The curved box girder in this case under both self-weight and prestressed, the model is in 

Appendices (2 & 3) and prestressed has been calculated in section 3.3.2. Figure (3.65) shows the 

prestressed curved box model under gravity and the boundary conditions. Deformed shape 

contour shows in figure (3.66) and the stress is shown in figures (3.67) & (3.68). Stresses and 

tension stresses for the mid-span values are mentioned in table (3.3). 

3- Curved box girder bridge (δ =3 m) with a load intensity (3.6 kN/m2) distributed on each 

node of the slab. 

The curved box girder in this case under both self-weight and prestressed, the model is in 

Appendices (2 & 3) and presstered has been calculated in section 3.3.2. Figure (3.69) shows the 

prestressed curved box model under gravity and the boundary conditions. Deformed shape 
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contour shows in figure (3.70) and the stress and mid span stresses are shown in figures (3.71) & 

(3.72). 

Stresses and tension stresses for the mid-span values are mentioned in table (3.3). 

 

4- Curved box girder bridge (δ =5 m) with a load intensity (0.5 kN/m2) distributed on each 

node of the slab. 

The curved box girder in this case under both its self-weight and prestressed, the model is in 

Appendices (2 & 3) and presstered has been calculated in section 3.3.2. Figure (3.73) shows the 

prestressed curved box model under gravity and the boundary conditions. Deformed shape 

contour shows in figure (3.74) and the stress and mid span stresses are shown in figures (3.75) 

and (3.76). 

Stresses and Tension stresses for the midspan values are mentioned in table (3.3). 

Table (3.3) & figure (3.77) show the results for all case studies. 

As a result, the non-compliance is governed by the bridge going into tension (class 1 section). 

These stresses are essentially the superposition of normal bending plus warping torsion. 

 

1- Straight box girder bridge 

 
Figure (3.61) Boundary conditions for straight box girder bridge under loadings. 
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Figure (3.62) Deformed shape for straight box girder bridge under loadings. 

Figure (3.63) Longitudinal stresses (N/m2) for straight box girder bridge under 
loadings 
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2-Curved box girder bridge (δ =1 m) 

 
 
 
 

Figure (3.65) Boundary conditions for curved box girder bridge (δ =1 m) under loadings 

Figure (3.64) Longitudinal stresses (N/m2) at mid-span for straight box girder bridge under 
loadings 
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Figure (3.66) Deformed shape for curved box girder bridge (δ =1 m) under loadings 

Figure (3.67) Longitudinal stresses for curved box girder bridge (δ =1 m) under loadings 
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3-Curved box girder bridge (δ =3 m) 

 
 Figure (3.69) Boundary conditions for curved box girder bridge (δ =3 m) under loadings 

Figure (3.68) Longitudinal stresses at mid-span for curved box girder bridge (δ =1 m) under loadings 
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 Figure (3.71) Longitudinal stresses for curved box girder bridge (δ =3 m) under loadings 

Figure (3.70) Deformed shape for curved box girder bridge (δ =3 m) under loadings 
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4-Curved box girder bridge (δ =5 m) 

 
 
 

Figure (3.72) Longitudinal stresses at mid-span for curved box girder bridge (δ =3 m) under loadings 

Figure (3.73) Boundary conditions for curved box girder bridge (δ =5 m) under loadings 
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Figure (3.75) Longitudinal stresses for curved box girder bridge (δ =5 m) under loadings 

Figure (3.74) Deformed shape for curved box girder bridge (δ =5 m) under loadings 
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Table (3.3) Loads on straight and curved models. 
Delta (m) and 
load (kN/m2) 

Mass 
(Tonnes) 

Reaction 
(kN) 

My 
(kN.m) 

Prestress 
(kN) 

Mid-span stresses (N/mm2) 
Slab Soffit 

delta=0     Interior Exterior Interior Exterior 
Load=9.3 1180 -19100 0 4980 -9 -8.26 0.0482 0.0396 
delta=1         
load =7.5 1200 -17900 12700 4960 -8.79 -8.12 0.0324 0.15 
delta=2         
load 5.6 1220 -16700 24200 4940 -8.67 -6.5 0.0187 0.559 
delta=3         
Load= 6.3 1250 -15400 34300 4920 -8.88 -7.99 0.00426 0.146 
delta= 4         
load=1.85 1270 -14100 43300 4910 -8.22 -6.57 0.025 0.0197 
delta=5         
Load=0.5 1300 -12900 51300 4880 -8.75 -7.63 0.0321 0.82 

 
 

Figure (3.76) Longitudinal stresses at mid-span for curved box girder bridge (δ =5 m) under loadings 
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Figure (3.77) Relationship between load intensity and curvature 
 

Straight box girder bridges carried the highest loads intensity from all the cases (straight and 

curved), and as the box girder curvature increased, the load capacity reduced in a near linear 

relationship until delta reached 5m when the curved box girder carried the lowest load capacity, 

equal to 0.5kN/m2. The results for prestress losses resulting from the addition of applied loads, 

gravity and prestressing were all lower than 20%. The allowable curvature as measured by the 

sector dimension delta for the cases with applied loads (δ = 5m) when tension stresses started to 

show, being around half of the delta obtainable with gravity and prestressing (δ = 11m). The last 

value of tensile stress occurred at a value of delta (δ = 5m) with a load equal to 0.5kN/m2 (class 1 

design SLS); whilst with gravity and prestressing alone, the tensile stresses developed when delta 

was equal to 11m. 

Figure (3.77) shows as the loads increased curvatures decreases to maintain a class 1 section 

design, as expected. 
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Chapter Four 
Parametric Analysis 

4.1 Introduction 
The previous chapter presented the validation of the finite element box girder model by 

comparing with the results of Khaloo & Kafimosavi (2007). This has resulted in a modelling 

philosophy which will be taken forward to a parametric study of different bridge curvatures, 

levels of prestressing and the effects of traffic loading and patterning. These parameters are set 

out in the following sections.  

4.2 Parametric models 
1. Varying the level of prestress (4 values) 

2. Varying the level of horizontal curvature  

3. Varying the applied loads (self-weight, prestress, both and uniformly distributed load) 

The various combinations of parameters which will be studied are shown in table 4.1. 

The table shows each case with different applied loads, gravity – which consists as density and 

acceleration, prestress by applying the prestress profile alone and the combination of both gravity 

and prestress. All were applied due to changing curvature. 

Table (4.1) The parametric study  

Delta 
(m) 

Curv. 
1/R (m-1) 

Case 1 Case 2 Case 3 Case 4 
g p g+p g p g+p g p g+p g p g+p 

0 0 ü ü ü ü ü ü ü ü ü ü ü ü 
1 0.0027 ü ü ü ü ü ü ü ü ü ü ü ü 
2 0.0055 ü ü ü ü ü ü ü ü ü ü ü ü 
3 0.0081 ü ü ü ü ü ü ü ü ü ü ü ü 
4 0.0107 ü ü ü ü ü ü ü ü ü ü ü ü 
5 0.0133 ü ü ü ü ü ü ü ü ü ü ü ü 
6 0.157    ü ü ü ü ü ü ü ü ü 
7 0.0180       ü ü ü ü ü ü 
8 0.0202          ü ü ü 

 

There are some variations and developments in the modelling as explained in the following 
sections:  
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4.3 Tendon profile 
 

In the previous chapter the finite element model incorporated a straight tendon profile which was 

displaced downward from the section centroid with a constant eccentricity. The dead loads at 

mid-span were balanced by the prestressing, however elsewhere along the beam profile, the 

prestressing would create hogging moments which are especially critical at the ends of the beam. 

Ideally a parabolic tendon profile would provide a full balanced uniformly distributed load along 

the length of the beam, hence it would be desirable to reproduce this effect. By the nature of the 

FE model, any curvature in the tendon profile is usually achieved in a piecewise linear fashion. 

To follow a curve faithfully at mutual nodes in the beam web would require shallow web 

elements and aspect ratios outside of the acceptable range. Hence it was decided to incline the 

tendon at a third of the way along the beam to provide a profile which can approximately balance 

the applied load bending moment. The equivalent load will be in the form of upward point 

loading at the third points of the beam.     

Figure (4.1) shows the details of the single cell box girder bridge model used for the parametric 

study. For the purpose of accuracy and to reduce the error, only two tendons will be adopted in 

the study each will be inclined along with web on both sides. The boundary conditions at the 

ends of the beam are such that they represent pinned ends with torsional restraint about the 

longitudinal/tangential axis. 

 

 

 
 

A - Tendon Profile 

Ybar=1.715 m 
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B - End span cross-section 
 

 

 
 

   C - Midspan cross-section 
 

Figure (4.1) Box girder bridge tendon profile and cross-sections. 
 

Model details: 

Length of span = 54m 

Depth of deck = 3m 

Deck width = 9.6m.  

Two prestressed tendons located at the soffit. 

The material properties are as follows:  

Modulus of elasticity of the concrete Ec = 17×109 N/m2  

Density of the concrete ρ = 2400kg/m3  

Ybar =1.715 m 

Ybar =1.715 m 
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Modulus of elasticity of the tendons Es = 200×109 N/m2.  

The rectangular single cell box girder has been modelled with Shell 63 elements, with rigid beam 

elements at the ends and simply supported boundary conditions at the centroid of the section as 

described in the previous chapter. A series of static analyses were then conducted with the 

model. The load cases were as follows: 

 

1. Gravity only 

2. Prestress only 

3. Prestressing + gravity 

4. Prestress + gravity + UDL 

5. Prestress + gravity + UDL + traffic loading (chapter five) 

The reason for adopting different prestressing forces (different prestress values case1, case2, 

case3 and case4) is to examine the basic design principle for class 1 prestressed sections (i.e. that 

there should be no tension in the concrete at serviceability limit state). The bridge at different 

curvatures will have a loading capacity (UDL) at which the class 1 design becomes invalid as the 

direct stresses will go into tension.  

Hence the parametric study will examine different levels of prestressing and different UDL’s to 

determine the load capacity for various ranges of curvature using the finite element programme 

ANSYS12. 

The objectives of this parametric work are: 

• To compare the behaviour of a prestressed horizontally curved box girder bridge to a straight 

bridge and study the effects of using different levels of prestressing. 

 • To investigate the impact of changing the radius of curvature on the behaviour of the box 

girder bridge. 

• To determine the most appropriate radius of curvature for different spans based on their stress 

patterns. 

• To examine the effects of load patterning from typical vehicle loading. 

 
Throughout the parametric study, the cross-sectional properties of the box girder bridge remain 
constant. 
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4.4 Box girder bridge section properties 
The first part of the calculation determines the section properties (area and second moment of 

area) based on the geometry shown in figure (4.1) 

 
Deck   b1=9.6 m d1=0.3 m 

Ribs   b2= 0.3 m d2= 2.4 m 

Soffit               b3= 6.3 m        d3 = 0.3 m 

Calculate Area    A = b1×d1+2×(b2×d2) +b3×d3               A = 6.21 m2 

Calculate YBar, 
 
YBar

 
YBar= 1.715 m 
 
Caclulate I, 
 

I =  

 

I = 9.133 m4 

4.5 Loading and boundary conditions 
The model is similar to the previous model with regards the loading conditions. The shell box 

girder bridge models are subjected to the self-weight of the box first, then prestressing forces are 

subsequently applied. A combination of self-weight and prestress loading have then been 

analysed. Subsequently different loading conditions (UDL’s) are applied for each curvature, and 

finally, different traffic patterns are applied to the top surface of the deck. The complete FE 

model of the box girder bridge is shown in figure (4.2). 
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A) Isometric view 

 
(B) Cross-section showing boundary conditions 
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(C)Boundary conditions for single cell box girder bridge 

Figure (4.2) Views of the FE model for the parametric study 

 4.6 Parametric study 

4.6.1 Prestressing force 

4.6.1.1 Applied prestress = 31000 kN 

4.6.1.1.1 Prestress calculation  

For each scenario of prestressing force, the tendon prestrain requires calculation for input to the 
ANSYS model. 
Ultmate tensile strength (assumed from typical values) 

σult = 1800 N.mm-2 

Service stress in tendons taken as 60% of the ultimate stress 

σten = 0.6                           σten = 1080 N.mm-2 

Desired tension force in tendons (2 tendons): 
 
P = 31000 kN                     

Tension force in each tendon        p    
p =15500 kN 
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Area of each tendon: 

                                      A = 1.435×104 mm2 

 
Steel modulus of elasticity: 

Es = 200×109 N.m-2 

Strain in tendons: 

                                          ɛ = 5.4×10-3 

 
4.6.1.1.2 Calculation of direct stresses due to gravity, prestress, and combination of gravity 

and prestress 

Second moment of area                            I = 9.133 m4 
Cross sectional area                                 A = 6.21 m2 
Distance from soffit to centroid               Ybar =1.715 m 
Concrete unit weight                                ρ = 2400 kg. m-3  
Depth of section                                        D = 3 m 
Width of deck                                         B = 9.6 m 
Length of deck                                        L = 54 m 
Acceleration                                            g= 9.81 m.sec-2 
Moment at mid-span from gravity: 
Self-weight                                             W = A×ρ×g              W = 146.158 kN/m 
Total mass        M = A×ρ×L             M = 8.048×105 kg 

Bending moment at mid-span from gravity               Mg =5.327×104 kN.m 
Prestressing force from all tendons        P= 31000 kN 
Eccentricity for straight tendon              ecc= 1.715 m 
Moment at midspan from prestress         Mp= P×ecc                        Mp= 5.316×104kN.m 
Gravity load stresses 
 

                                  -7.496N.mm-2 

                                        = 10.004N.mm-2 

Prestress stresses 

                             = 2.488N.mm-2 

                                   
Total stresses:     
Total stresses at top                                             
Total stresses at bottom                            
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It can be seen that these stresses are compressive across the section so this level of prestress is 

approximately balanced and the stresses are compressive. 

 
4.6.1.1.3 Description of the bridge models  
 
The box bridge models that are used in this chapter to study the behaviour of the straight and 

curved box girder are single-span single cell box girder bridges of total span length 54m. There 

are two types of bridges that are modelled in ANSYS for the current study: 

 

1. Straight box shell model               

2. Curved box shell model  

For the straight box shell model, there  is only one case while for the curved box shell model 

there are five cases of curvature. 

Straight box shell model 

The straight box girder has been modelled similarly to the straight box shell model presented in 

chapter three. The box girder cross-section in this chapter has been modified as a single cell 

cross section with different cross sectional dimensions. Three different types of loading have 

been investigated for the straight box. These are: 

 

1- Straight box model under gravity 

The box girder in this case is straight and only subject to self-weight, the model is created using 

the APDL which can be found in Appendix 4. The finite element model for this case is shown in 

figure (4.3). Figure (4.4) shows the straight box model under gravity and the boundary 

conditions. The deformed shape is shown in figure (4.5), and the stress contours are shown in 

figure (4.6) with the elements at mid-span extracted so that the stresses at mid-span are clearer, 

as shown in figure (4.7). The stresses are summarised in table (4.2). 

 



104 
 

 
 
 

 
 
 

Figure (4.3) The finite element model for straight box girder bridge under gravity case1 

Figure (4.4) Boundary conditions for straight box girder bridge under gravity case1 
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 Figure (4.6) Longitudinal stress distribution for straight box girder bridge case1 (N/m2) 

Figure (4.5) Deformed shape for straight box girder bridge under gravity case1 
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2-Prestressed straight box model 

The box girder in this case is straight in plan, and subject to the effect of prestress alone. The 

APDL for the full model is provided in Appendix 4 and prestress is applied using the initial 

strain calculated in previous section. The finite element model for this case is shown in figure 

(4.8), clearly showing the modified tendon profile. The deformed shape is shown in figure (4.9) 

and the stress contour is shown in figure (4.10). The stresses at midspan are shown in figure 

(4.11).  Stresses for the midspan section are summarized in table (4.2).  
 

Figure (4.7) Longitudinal stresses at mid-span for straight box girder bridge case1 
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Figure (4.8) The finite element model for straight box girder bridge for prestress, case1 

Figure (4.9) Deformed shape for straight box girder bridge for prestress, case1 
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Figure (4.10) Longitudinal stresses distribution for straight box girder bridge for prestress, case1 

Figure (4.11) Longitudinal stresses at mid-span for straight box girder bridge for prestress, case1 
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3- Gravity and prestressed straight box model 

 

Under the combined action of prestressing and gravity loading, the deformed shape is shown in 

figure (4.12) and the longitudinal stress contours are shown in figure (4.13). The elements at the 

midspan section have been extracted so that the stress contours at midspan are clearer, as shown 

in figure (4.14). Longitudinal stresses for the midspan section are summarized in table (4.2). 

 

 
 
 

Figure (4.12) Deformed shape for straight box girder bridge (prestress plus gravity), case1 
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Figure (4.13) Longitudinal stresses distribution for straight box girder bridge (prestress plus gravity), 
case1 

Figure (4.14) Longitudinal stresses at mid-span for straight box girder bridge (prestress plus gravity), 
case1 



111 
 

It can be seen that the global structural behaviour and longitudinal stress distributions for the 

various load cases are as expected when compared to the predictions from the hand calculations. 

Compression stress on top and bottom which was as expected from hand calculations a class 1 

design SLS with no tension stress. 

Curved box shell model 

The horizontally curved box bridge is represented as a model with a changeable radius of 

curvature. The same modelling philosophy from the previous chapter has been utilized. Six cases 

of curvature have been analysed changing the horizontal sector dimension delta (δ) in 1m 

increments from 1m to 5m. For each case, the effects of gravity, prestressing and combined 

gravity and prestressing have been investigated. Only the modelling of the last case (δ = 5 m) has 

been shown in detail here which is considered as the worst case where the section is close to 

developing tensile stresses. The finite element model details, deformed shapes and stress 

contours will be shown. 

 

Delta (δ = 5m)  
 
Span           L = 54 m 
Delta           
 

Radius                                R= 75.4 m   
 

Theta                       θ = 41.966°  
    
Curved box model under load cases of gravity, prestress and combination.  

As for the previous case, the box girder model is subject to gravity only, prestress only then a 

combination of these loads. The following figures show these load cases as follows: 

 

Gravity only: Figures 4.15 to 4.19   

Prestress only: Figures: 4.20 to 4.23 

Gravity and prestress combined: Figures 4.24 to 4.26, Table 4.2 summarises the results. 
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Figure (4.15) The finite element model for curved box girder bridge under gravity, 
δ=5 m, case1 

Figure (4.16) Boundary conditions for curved box girder bridge under gravity, δ=5m, case1 
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Figure (4.18) Longitudinal stresses (Gravity) for curved box girder bridge, δ=5m, case1 

Figure (4.17) Deformed shape (Gravity) for curved box girder bridge, δ=5m, case1 
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Figure (4.20) The finite element model (prestress only) for curved box girder bridge, 
δ=5m, case1 

Figure (4.19) Longitudinal stresses at mid-span (Gravity) for curved box girder bridge, 
δ=5m, case1 
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 Figure (4.22) Longitudinal stresses (prestress only) for curved box girder bridge, 
δ=5m, case1 

Figure (4.21) Deformed shape (prestress only) for curved box girder bridge, δ=5m, case1 
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Figure (4.24) Deformed shape (gravity plus prestress), delta = 5m, case1 

Figure (4.23) Longitudinal stresses at mid-span (prestress only) for curved box girder bridge, 
δ=5m, case1 
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Figure (4.26) Longitudinal stresses at mid-span (gravity plus prestress, delta = 5m), case1 

Figure (4.25) Longitudinal stresses (gravity plus prestress, delta = 5m), case1 



118 
 

Table (4.2) Reactions, torsion moments, prestress, mass and stresses form the FE analysis, case1. 

Delta  
(m) 

Reaction 
(kN) 

My 
(kN.m) 

Prestress 
(kN) 

Mass 
(Tonnes) 

Stresses (N/mm2) 
Slab Soffit 

Interior Exterior Interior Exterior 
Delta =0         
g -8240 0  840 -6.06 -6.06 8.57 8.57 
p 0 0 13600 840 0.97 0.97 -11.4 -11.4 
g+p  -8230 0 14800 840 -5.00 -5.00 -3.91 -3.91 
Delta =1         
g -8350 5800  851 -7.68 -6.82 9.95 8.55 
p 0 0.00358 13600 851 1.14 1.00 -11.40 -10.70 
g+p -8350 5800 14900 851 -6.52 -5.96 -2.89 -2.64 
Delta= 2         
g -8490 12000  865 -7.67 -6.54 10.60 8.60 
p 0 0.00746 13600 865 1.63 1.08 -12.40 -10.7 
g+p -8490 12000 15000 865 -6.25 -5.78 -2.75 -2.19 
Delta 3         
g -8630 21600  880 -8.65 -7.71 11.9 9.75 
p 0 0.0117 13600 880 1.55 1.09 -12.00 -11.00 
g+p -8630 21600 15000 880 -7.11 -6.95 -1.86 -1.40 
Delta = 4         
g -8790 26300  860 -9.35 -7.87 11.30 10.90 
p 0 0.0165 13600 896 1.14 0.54 -12.50 -11.00 
g+p -8790 26300 15100 896 -7.83 -6.97 -1.20 -0.09 
Delta =5         
g -8960 34700  914 -10.40 -8.66 13.00 12.10 
p 0 0.0221 13600 914 1.78 0.25 -11.50 -11.40 
g+p -8960 34700 15300 914 -9.19 -7.85 1.52 0.65 
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4.6.1.2 Prestressing force = 35000 kN 
4.6.1.2.1 Prestress calculation  
Service stress in tendons 

σten = 1080 N.mm-2 

Desired tension force in tendons 
P = 35000 kN 
Tension force in each tendon    

p                                     p =17500 kN 
Area of tendon 

                            A = 1.62×104 mm2 

Steel modulus of elasticity 

Es = 200×109 N.m-2 

Strain in each tendon 

                             ɛ = 5.4×10-3 

 

4.6.1.2.2 Calculation of direct stresses due to (gravity, prestress and combination of 
stresses) 
 
Second moment of area                        I = 9.133 m4 
Cross sectional area                             A = 6.21 m2 
Distance from soffit to centroid           Ybar =1.715 m 
Concrete unit weight                             ρ = 2400 kg. m-3  
Depth of section                                    D = 3 m 
Width of deck                                        B = 9.6 m 
Length of deck                                       L = 54 m 
Acceleration                                           g= 9.81 m.sec-2 
Moment at mid-span from gravity: 
Self-weight                                                 W = A×ρ×g              W = 146.158 kN/m 
Total mass            M = A×ρ×L              M = 8.048×105 kg 

BM at mid-span from gravity                             Mg =5.327×104 kN.m 
Prestressing force from all tendons            P= 35000 kN 
Eccentricity for straight tendon                   ecc= 1.715 m 
Moment at midspan from prestress             Mp= P×ecc                    Mp= 6.003×104kN.m 
Gravity load stresses 

                                     -7.496N.mm-2 

                                             = 10.004N.mm-2 
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Prestress stresses 

                                 = 2.809N.mm-2 

                                      
Total stresses:     
Total stresses at top                                                
Total stresses at bottom                               
 
4.6.1.2.3 Description of the bridge models  
 
The prestressing will now be taken as 35000 kN and the results will be illustrated as for the 

previous section i.e. 

1- Straight box shell model            

2- Curved box shell model 

Straight box model 
For the straight box shell model, there  is only one case while for the curved box shell model 

there are six cases of curvature. The investigation carried out until d= 6 m where tension stress 

started to occur. As the gravity case is the same as for the previous model refer to figures 4.15 to 

4.19 for this load case. 

The following figures show the load cases as follows: Prestress only Figures 4.27 to 4.29 

Gravity plus prestress Figures 4.30 to 4.32 

The results are summarised in table 4.3 
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 Figure (4.28) Longitudinal stresses (straight, prestress case2) 

 

Figure (4.27) Deformed shape (straight, prestress case2) 
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Figure (4.30) Deformed shape (straight, gravity plus prestress case2) 

Figure (4.29) Longitudinal stresses at mid-span (straight, prestress case2) 
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 Figure (4.32) Longitudinal stresses at mid-span (straight, gravity plus prestress, case2) 

Figure (4.31) Longitudinal stresses (straight, gravity plus prestress, case 2) 
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Curved box shell model 
 
As before, the results for the curved box model under the various load conditions will only be 

shown for the single case of curvature for the sector dimension delta = 6 m. 

 
The following figures show these load cases as follows: 
 
Gravity only Figures 4.33 to 4.36 

Prestress only Figures 4.37 to 4.40 

Gravity plus prestress Figures 4.41 to 4.43 

The results are summarised in table 4.3 

 

 
 
 

Figure (4.33) The finite element model (curved, gravity only, delta = 6m, case2) 
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 Figure (4.35) Longitudinal stresses (curved, gravity only, delta = 6m, case2) 

Figure (4.34) Deformed shape (curved, gravity only, delta = 6m, case2) 
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 Figure (4.37) The finite element model (prestress only, curved, delta = 6 m, case2) 

Figure (4.36) Longitudinal stresses at mid-span (curved, gravity only, delta = 6 m, case2) 
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Figure (4.39) Longitudinal stresses (prestress only, curved, delta = 6 m, case2) 

Figure (4.38) Deformed shape (prestress only, curved, delta = 6m, case2) 
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Figure (4.41) Deformed shape (prestress plus gravity, curved, delta =6 m, case2) 

Figure (4.40) Longitudinal stresses at mid-span (prestress only, curved, delta = 6 m, case2) 
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Figure (4.43) Longitudinal stresses at mid-span (prestress plus gravity, curved, delta = 6 m, case2) 

Figure (4.42) Longitudinal stresses (prestress plus gravity, curved, delta =6 m, case2) 
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Table (4.3) Reactions, torsion moments, prestress, mass and stresses form the FE analysis, case2. 
 

Delta 
(m) 

Reaction 
(kN) 

My 
(kN.m) 

Prestress 
(kN) 

Mass 
(Tonnes) 

Stresses (N/mm2) 
Slab Soffit 

Interior Exterior Interior Exterior 
delta =0         
g -8240 0  840 -6.06 -6.06 8.57 8.57 
p 0 0 15100 840 0.97 0.97 -11.4 -11.4 
g+p  -8230 0 16500 840 -5.00 -5.00 -3.91 -3.91 
delta =1         
g -8350 5800  851 -7.68 -6.82 9.95 8.55 
p 0 0.00398 15100 851 1.01 0.85 -13.44 -12.50 
g+p -8350 5800 16500 851 -6.03 -5.76 -4.87 -4.15 
delta= 2         
g -8490 12000  865 -7.67 -6.54 10.56 8.60 
p 0 0.0083 15100 865 1.42 0.75 -13.67 -10.72 
g+p -8490 12000 16600 865 -6.31 -5.84 -3.85 -3.61 
delta 3         
g -8630 21600  880 -8.65 -7.71 11.88 9.75 
p 0 0.013 15100 880 1.73 0.98 -13.76 -13.10 
g+p -8630 21600 16700 880 -7.03 -6.78 -3.01 -2.59 
delta = 4         
g -8790 26300  860 -9.35 -7.87 11.25 10.88 
p 0 0.0184 15100 896 1.60 1.04 -13.56 -12.90 
g+p -8790 26300 16800 896 -7.88 -6.73 -2.22 -1.98 
delta =5         
g -8960 34700  914 -10.35 -8.66 13.0 12.07 
p 0 0.0245 15100 914 1.62 0.53 -13.63 -12.32 
g+p -8960 34700 16900 914 -8.81 -8.20 -0.65 -0.202 
delta =6         
g -9150 44300  932 -11.78 -9.46 15.18 13.20 
p 0 0.0317 15100 932 1.85 0.52 -13.80 -12.61 
g+p -9150 44300 17100 932 -9.95 -8.98 1.31 0.53 
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4.6.1.3 Prestressing force = 39000 kN 

4.6.1.3.1 Prestress calculation  

Service stress in tendons 

σten = 1080 N.mm-2 

Desired tension force in each tendon 
P = 39000 kN 
Tension force in each tendon        

 p                                  p =19500 kN 
 
Area of tendon 

                          A = 1.806×104 mm2 

Steel modulus of elasticity 

Es = 200×109 N.m-2 

Strain in each tendon 

                            ɛ = 5.4×10-3 

 
4.6.1.3.2 Calculation of direct stress due to (gravity, prestress and combination of stresses) 
Second moment of area                        I = 9.133 m4 
Cross sectional area                             A = 6.21 m2 
Distance from soffit to centroid          Ybar =1.715 m 
Concrete unit weight                           ρ = 2400 kg. m-3  
Depth of section                                  D = 3 m 
Width of deck                                      B = 9.6 m 
Length of deck                                     L = 54 m 
Acceleration                                         g= 9.81 m.sec-2 
Moment at mid-span from gravity: 
Self-weight                                                 W = A×ρ×g             W = 146.158 kN/m 
Total mass            M = A×ρ×L             M = 8.048×105 kg 

BM at mid-span from gravity                            Mg =5.327×104 kN.m 
Prestressing force from all tendons           P= 39000 kN 
Eccentricity for straight tendon                 ecc= 1.715 m 
Moment at mid-span from prestress           Mp= P×ecc                     Mp= 6.689×104kN.m 
Gravity load stresses 

                                    -7.496N.mm-2 

                                           = 10.004N.mm-2 
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Prestress stresses 

                                = 3.13N.mm-2 

                                      
Total stresses:     
Total stresses at top                                                
Total stresses at bottom                               

4.6.1.3.3 Description of the bridge models  

 
The prestressed will be taken as 39000 kN and the results will show at the same way as in 

previous section which can be illustrated as: 

1- Straight box shell model     

2-  Curved box shell model 

Straight box model 
For the straight box shell model, there  is only one case while for the curved box shell model 

there are seven cases of curvature. As the gravity case is the same as for the previous model refer 

to figures 4.15 to 4.19 for this load case.  

The following figures show the load cases as follows: Prestress only Figures 4.44 to 4.46. 

Gravity plus prestress Figures 4.47 to 4.49. The results are summarised in table 4.4. 
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Figure (4.44) Deformed shape (straight, prestress, case3) 

Figure (4.45) Longitudinal stresses (straight, prestress, case3) 
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Figure (4.46) Longitudinal stresses at mid-span (straight, prestress case3) 

Figure (4.47) Deformed shape (straight, gravity plus prestress, case3) 
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Figure (4.48) Longitudinal stresses (straight, gravity plus prestress, case3) 

Figure (4.49) Longitudinal stresses at mid-span (straight, gravity plus prestress, case3) 
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Curved box shell model 
 
As before, the results for the curved box model under the various load conditions will only be 

shown for the single case of curvature where the sector dimension delta = 7 m. 

 
 
The following figures show these load cases as follows: 
 
Gravity only Figures 4.50 to 4.53 

Prestress only Figures 4.54 to 4.57 

Gravity plus prestress Figures 4.58 to 4.60 

The results are summarised in table 4.4. 

 
 
 

Figure (4.50) The finite element model (curved, gravity only, delta = 7m, case3) 
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Figure (4.51) Deformed shape (curved, gravity only, delta = 7m, case3) 

Figure (4.52) Longitudinal stresses (curved, gravity only, delta = 7m, 
case3) 
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Figure (4.53) Longitudinal stresses at mid-span (curved, gravity only, delta = 7m, case3) 

Figure (4.54) The finite element model (prestress only, curved, delta = 7 m, case3) 
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Figure (4.55) Deformed shape (prestress only, curved, delta = 7 m, case3) 

Figure (4.56) Longitudinal stresses (prestress only, curved, delta = 7 m, case3) 
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Figure (4.57) Longitudinal stresses at mid-span (prestress only, curved, delta = 7 m, case3) 

Figure (4.58) Deformed shape (prestress plus gravity, curved, delta =7 m, case3) 
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 Figure (4.60) Longitudinal stresses at mid-span (prestress plus gravity, curved, delta = 7 m, 
case3) 

Figure (4.59) Longitudinal stresses (prestress plus gravity, curved, delta =7 m, case3) 
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Table (4.4) Reactions, torsion moments, prestress, mass and stresses form the FE analysis, case3. 
 

Delta  
(m) 

Reaction 
(kN) 

My 
(kN.m) 

Prestress 
(kN) 

Mass 
(Tonnes) 

Stresses (N/mm2) 
Slab Soffit 

Interior Exterior Interior Exterior 
delta =0         
g -8240 0  840 -6.06 -6.06 8.57 8.57 
p 0 0 16500 840 0.97 0.97 -11.4 -11.4 
g+p  -8240 0 18000 840 -5.00 -5.00 -3.91 -3.91 
delta =1         
g -8350 5800  851 -7.68 -6.82 9.95 8.55 
p 0 0.00436 16500 851 2.05 1.71 -16.55 -14.90 
g+p -8350 5800 18100 851 -5.52 -4.80 -6.71 -6.63 
delta= 2         
g -8490 12000  865 -7.67 -6.54 10.56 8.60 
p 0 0.00908 16500 865 2.10 1.88 -16.83 -13.95 
g+p -8490 12000 18200 865 -5.48 -4.71 -6.40 -5.31 
delta 3         
g -8630 21600  880 -8.65 -7.71 11.88 9.75 
p 0 0.0143 16500 880 2.13 1.79 -15.93 -13.83 
g+p -8630 21600 18300 880 -6.43 -6.12 -4.11 -4.02 
delta = 4         
g -8790 26300  860 -9.35 -7.87 11.25 10.88 
p 0 0.0202 16600 896 1.40 0.92 -14.51 -13.19 
g+p -8790 26300 18400 896 -8.07 -6.98 -3.22 -2.37 
delta =5         
g -8960 34700  914 -10.35 -8.66 13.00 12.07 
p 0 0.0269 16600 914 2.24 1.35 -15.18 -13.75 
g+p -8960 34700 18500 914 -8.20 -7.28 -2.16 -1.74 
delta =6         
g -9150 44400  932 -11.78 -9.46 15.18 13.20 
p 0 0.0347 16600 932 2.21 0.96 -16.30 -13.76 
g+p -9150 44400 18700 932 -9.75 -8.59 -1.17 -0.45 
delta =7         
g -9380 55300  953 -12.85 -10.60 15.42 13.53 
p -36.8 218 16600 953 2.45 1.82 -14.35 -13.08 
g+p -9380 55300 18900 953 -10.31 -8.75 1.02 0.39 
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4.6.1.4 Prestressing force = 45000 kN 
4.6.1.4.1 Prestress calculation  
Service stress in tendons 

σten = 1080 N.mm-2 

 
Desired tension force in tendons 

P = 45000 kN 

Tension force in each tendon     

p                     p =22500 kN 
 
Area of tendon 

                                           A = 2.083×104 mm2 

 

Steel modulus of elasticity 

Es = 200×109 N.m-2 

Strain in each tendon 

                                              ɛ = 5.4×10-3 

 

4.6.1.4.2 Calculation of direct stress due to (gravity, prestress and combination of stresses) 
Second moment of area                         I = 9.133 m4 
Cross sectional area                              A = 6.21 m2 
Distance from soffit to centroid           Ybar =1.715 m 
Concrete unit weight                            ρ = 2400 kg. m-3  
Depth of section                                   D = 3 m 
Width of deck                                       B = 9.6 m 
Length of deck                                      L = 54 m 
Acceleration                                          g= 9.81 m.sec-2 
Moment at mid-span from gravity: 
Self-weight                                            W = A×ρ×g              W = 146.158 kN/m 
Total mass        M = A×ρ×L              M = 8.048×105 kg 

BM at mid-span from gravity                            Mg =5.327×104 kN.m 
Prestressing force from all tendons        P= 45000 kN 
Eccentricity for straight tendon              ecc= 1.715 m 
Moment at mid-span from prestress         Mp= P×ecc                       Mp= 7.718×104kN.m 
Gravity load stresses 

                                  -7.496N.mm-2 
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                                         = 10.004N.mm-2 

Prestress stresses 

                             = 3.612N.mm-2 

                                   
Total stresses:     
Total stresses at top                                            
Total stresses at bottom                           

 

4.6.1.4.3 Description of the bridge models  

The last prestress was taken as 45000 kN and the results are shown in the same way as in 

previous section i.e.: 

1- Straight box shell model           

2- Curved box shell model 

Straight box model 
For the straight box shell model, there  is only one case while for the curved box shell model 

there are eight cases of curvature where tension stresses started to show. As the gravity case is 

the same as for the previous model refer to figures 4.15 to 4.19 for this load case. 

The following figures show the load cases as follows: Prestress only Figures 4.61 to 4.63. 

Gravity plus prestress Figures 4.64 to 4.66. 

The results are summarised in table 4.5. 
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Figure (4.61) Deformed shape (straight, prestress, case4) 

Figure (4.62) Longitudinal stresses (straight, prestress, case4) 
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Figure (4.63) Longitudinal stresses at midspan (straight, prestress, case4) 

Figure (4.64) Deformed shape (straight, gravity plus prestress, case4) 
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Figure (4.65) Longitudinal stresses (straight, gravity plus prestress, case4) 

Figure (4.66) Longitudinal stresses at mid-span (straight, gravity plus prestress, case4) 
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Curved box shell model 

As before, the results for the curved box model under the various load conditions will only be 

shown for the single case of curvature where the sector dimension delta = 8 m. 

 
The following figures show these load cases as follows: 
 
Gravity only Figures 4.67 to 4.70 

Prestress only Figures 4.71 to 4.74 

Gravity plus prestress Figures 4.75 to 4.77 

The results are summarised in table 4.5 

 

 
 Figure (4.67) The finite element model (curved, gravity only, delta = 8m, case4) 
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Figure (4.68) Deformed shape (curved, gravity only, delta = 8m, case4) 

Figure (4.69) Longitudinal stresses (curved, gravity only, delta = 8m, case4) 
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Figure (4.71) The finite element model (prestress only, curved, delta = 8m, case4) 

Figure (4.70) Longitudinal stresses at mid-span (curved, gravity plus prestress, case4) 
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Figure (4.72) Deformed shape (prestress only, curved, delta = 8m, case4) 

Figure (4.73) Longitudinal stresses (prestress only, curved, delta = 8m, case4) 
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Figure (4.74) Longitudinal stresses at mid-span (prestress only, curved, delta = 8m, case4) 

Figure (4.75) Deformed shape (prestress plus gravity, curved, delta =8m, case4) 
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Figure (4.77) Longitudinal stresses at mid-span (prestress plus gravity, curved, delta = 8m, case4) 

Figure (4.76) Longitudinal stresses (prestress plus gravity, curved, delta =8m, case4) 
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Table (4.5) Reactions, torsion moments, prestress, mass and stresses form the FE analysis, case4. 
 

Delta 
(m) 

Reaction 
(kN) 

My 
(kN.m) 

Prestress 
(kN) 

Mass 
(Tonnes) 

Stresses (N/mm2) 
Slab Soffit 

Interior Exterior Interior Exterior 
delta =0         
g -8240 0  840 -6.06 -6.06 8.57 8.57 
p 0 0 18800 840 0.97 0.97 -11.40 -11.4 
g+p  -8240 0 20500 840 -5.00 -5.00 -3.91 -3.91 
delta =1         
g -8350 5800  851 -7.68 -6.82 9.95 8.55 
p 0 0.00497 18800 851 2.25 1.92 -16.75 -15.69 
g+p -8350 5800 20600 851 -5.36 -4.85 -6.92 -7.26 
delta= 2         
g -8490 12000  865 -7.67 -6.54 10.56 8.60 
p 0 0.0103 18800 865 2.23 2.08 -16.98 -15.05 
g+p -8490 12000 20700 865 -5.37 -4.45 -6.66 -6.41 
delta 3         
g -8630 21600  880 -8.65 -7.71 11.88 9.75 
p 0 0.0163 18800 880 2.32 1.95 -17.30 -16.86 
g+p -8630 21600 20800 880 -6.16 -5.52 -6.65 -7.13 
delta = 4         
g -8790 26300  860 -9.35 -7.87 11.25 10.88 
p 0 0.0229 18900 896 2.46 2.20 -17.18 -16.19 
g+p -8790 26300 20900 896 -6.75 -5.73 -6.02 -5.48 
delta =5         
g -8960 34700  914 -10.35 -8.66 13.00 12.07 
p 0 0.0306 18900 914 1.06 0.85 -17.18 -15.60 
g+p -8960 34700 21100 914 -9.48 -7.74 -4.25 -3.40 
delta =6         
g -9150 44400  932 -11.78 -9.46 15.18 13.20 
p 0 0.0395 18900 932 2.56 1.28 -17.60 -15.45 
g+p -9150 44400 21200 932 -9.40 -8.19 -2.54 -2.30 
delta =7         
g -9380 55300  953 -12.85 -10.60 15.42 13.53 
p -36.8 218 18900 953 2.70 2.32 -17.05 -15.12 
g+p -9380 55300 21400 953 -10.15 -8.49 -1.86 -1.45 
delta =8         
g -9640 68200  953 -14.50 -9.93 18.09 17.35 
p -36.8 218 16600 953 2.68 0.72 -17.30 -16.96 
g+p -9640 68200 21700 953 -11.95 -9.28 0.65 0.34 



155 
 

4.6.2 Design criteria as a class 1 prestressed concrete section 
To examine the load capacity of the sections with different prestress forces (class 1, i.e. no 

tensile stress at service limit state) in relation to their curvature, all of the models were subject to 

distributed load to determine how much load each span could carry before tensile stress starts to 

show at the midspan section. Hence this provides an overview of the limit of curvature a 

particular prestress can achieve.  

This investigation has been carried out using the previous three dimensional FEM model of the 

box girder with the four different levels of prestressing. The details for the box girder are the 

same as provided in Appendix 4. 

Table (4.6) shows all cases of prestressing and curvature subjected to uniformly distributed loads 

which just cause tension in the section, however, only the values for cases 1 to 4 are shown here. 

Table (4.6) Uniformly distributed loads at different curvatures (loads unit are kN/m2). 

Delta 
(m) 

Curvature 
1/R (m-1) 

Case 1 
P=31000kN 

Case 2 
P=35000kN 

Case 3 
P=39000kN 

Case 4 
P=45000kN 

0 0 6.2 8.7 11.2 15.3 
1 0.0027 4.85 7.1 9.3 12.9 
2 0.0055 3.15 5.2 7.1 10.4 
3 0.0081 1.6 3.4 5.1 8.0 
4 0.0107 0.1 1.7 3.3 5.9 
5 0.0133  0.2 1.6 4.0 
6 0.0157   0.1 2.2 
7 0.0178    1.15 

 

Case 1 (prestressed force = 31000kN) Curved box girder bridge (δ =4 m) with an applied load 

(0.2 kN/m2) distributed on each element of the slab. 

 

The deformed shape contour is shown in figure (4.78) and the longitudinal stress contours and 

longitudinal mid-span stresses are shown in figures (4.79) & (4.80). 

The longitudinal stresses for the mid-span location for case 1 are provided in table (4.7). 

Figure (4.90) shows the relationship between load and curvature. 
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Figure (4.79) Longitudinal stresses (UDL, prestress plus gravity, curved, delta =4m, case1) 

 
 

 

Figure (4.78) Deformed shape (UDL, prestress plus gravity, curved, delta =4m, case1) 
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Table (4.7) Reactions, torsional moments, prestress, mass and stresses for the mid-span section. 
Delta (m)  
Load (kN/m2) 

Mass 
(Tonnes) 

Reaction 
(kN) 

My 
(kN.m) 

Prestress 
(kN) 

Stresses (kN/m2) 
Slab Soffit 

delta=0     Interior Exterior Interior Exterior 
Load=6.2 840 -12100 0 15400 -8.43 -8.02 0.052 0.027 
delta=1         
load =4.85 851 -11400 7950 15400 -8.24 -7.88 0.013 0.010 
delta=2         
load 3.15 865 -10500 14900 15300 -8.07 -7.45 0.030 0.022 
delta=3         
Load= 1.6 880 -9680 24200 15200 -8.01 -7.39 0.065 0.051 
delta= 4         
load=0.1 896 -8860 26500 15200 -8.02 -7.30 0.029 0.018 

 
Case 2 (prestressed force = 35000kN) curved box girder bridge (δ =5m) with an applied load of 

(0.2 kN/m2) distributed on each element of the slab. 

The deformed shape contour is shown in figure (4.81) and the longitudinal stress contours and 

longitudinal mid-span stresses are shown in figures (4.82) & (4.83). The longitudinal stresses for 

Figure (4.80) Longitudinal stresses at mid-span (UDL, prestress plus gravity, curved, delta =4m, case1) 
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the mid-span location for case 2 are presented in table (4.8). Figure (4.90) shows the relationship 

between load and curvature.  

 
  
 

 
Figure (4.82) Longitudinal stresses (UDL, prestress plus gravity, curved, delta =5m, case2) 

Figure (4.81) Deformed shape (UDL, prestress plus gravity, curved, delta =5m, case2) 
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Table (4.8) Reactions, torsional moments, mass, prestressand stresses for the mid-span section. 
Delta (m)  
Load (kN/m2) 

Mass 
(Tonnes) 

Reaction 
(kN) 

My 
(kN.m) 

Prestress 
(kN) 

Stresses (N/mm2) 
Slab Soffit 

delta=0     Interior Exterior Interior Exterior 
Load=8.7 840 -13700 0 17400 -9.25 -8.86 0.034 0.021 
delta=1         
load =7.1 851 -12900 8950 17300 -9.32 -8.71 0.014 0.009 
delta=2         
load =5.2 865 -11800 16800 17200 -9.12 -8.49 0.055 0.018 
delta=3         
Load= 3.4 880 -10900 27200 17200 -9.01 -7.85 0.062 0.048 
delta= 4         
load=1.7 896 -9930 29800 17100 -8.88 -7.81 0.010 0.006 
delta=5         
Load=0.2 914 -9100 35300 17000 -8.77 -8.08 0.016 0.015 

 
Case 3 (prestressed force = 39000 kN) curved box girder bridge (δ =6m) with an applied load 

(0.1kN/m2) distributed on the deck of the box girder. 

 

Figure (4.83) Longitudinal stresses at mid-span (UDL, prestress plus gravity, curved, delta =5m, case2) 
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The curved box girder in this case is similar to case 1 the same philosophy. Deformed shape 

contour shows in figure (4.84) and the longitudinal stress contours and longitudinal mid-span 

stresses are shown in figures (4.85) & (4.86). The longitudinal stresses for the midspan location 

for case 3 are summarised in table (4.9). Figure (4.90) shows the relationship between load and 

curvature.  

 

 
 
 Figure (4.84) Deformed shape (UDL, prestress plus gravity, curved, delta =6m, case3) 
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 Figure (4.86) Longitudinal stresses at mid-span (UDL, prestress plus gravity, curved, delta =6m, 

case3) 

Figure (4.85) Longitudinal stresses (UDL, prestress plus gravity, curved, delta =6m, case3) 
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Table (4.9) Reactions, torsional moments, mass, prestress and stresses for the mid-span section. 
Delta (m)  
Load (kN/m2) 

Mass 
(Tonnes) 

Reaction 
(kN) 

My 
(kN.m) 

Prestress 
(kN) 

Stresses (kN/m2) 
Slab Soffit 

delta=0     Interior Exterior Interior Exterior 
Load=11.2 840 -15200 0 19400 -10.67 -9.45 0.055 0.041 
delta=1         
load =9.3 851 -14300 9920 19300 -10.40 -9.15 0.025 0.020 
delta=2         
load =7.1 865 -13100 18600 19100 -10.18 -9.06 0.008 0.011 
delta=3         
Load= 5.1 880 -12000 30000 19000 -9.85 -8.43 0.023 0.015 
delta= 4         
load=3.3 896 -11000 33000 18900 -9.91 -8.45 0.024 0.021 
delta=5         
Load=1.6 914 -10000 39000 18800 -9.78 -8.14 0.007 0.009 
delta=6         
Load=0.1 932 -9220 44600 18700 -9.56 -7.80 0.41 0.25 

 
Case 4 (prestressed force = 45000 kN) curved box girder bridge (δ =7m) with an applied load of 

(1.15kN/m2) distributed on the deck. 

Deformed shape contour shows in figure (4.87) and the longitudinal stress contours and 

longitudinal mid-span stresses are shown in figures (4.88) & (4.89). The longitudinal stresses for 

the mid-span location for case 4 are mentioned in table (4.10) and figure (4.90) shows the 

relationship between load and curvature.  
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Figure (4.88) Longitudinal stresses (UDL, prestress plus gravity, curved, delta =7m, case4) 

Figure (4.87) Deformed shape (UDL, prestress plus gravity, curved, delta =7m, case4) 
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Table (4.10) Reaction, torsional moments, mass, prestress and stresses for the mid-span section. 
Delta (m)  
Load (kN/m2) 

Mass 
(Tonnes) 

Reaction 
(kN) 

My 
(kN.m) 

Prestress 
(kN) 

Stresses (N/mm2) 
Slab Soffit 

delta=0     Interior Exterior Interior Exterior 
Load=15.3 840 -17800 0 22600 -12.23 -11.35 0.058 0.043 
delta=1         
load =12.9 851 -16500 11500 22400 -11.65 -10.90 0.006 0.018 
delta=2         
load =10.4 865 -15200 21600 22200 -11.17 -10.55 0.038 0.030 
delta=3         
Load= 8 880 -13900 34800 22100 -11.46 -10.30 0.015 0.010 
delta= 4         
load=5.9 896 -12700 38100 21900 -11.40 -10.03 0.010 0.016 
delta=5         
Load=4 914 -11700 42600 21800 -11.36 -9.21 0.060 0.043 
delta=6         
Load=2.2 932 -10700 51700 21700 -11.54 -8.73 0.066 0.050 
delta=7         
Load=1.15 953 -10200 59900 21700 -11.24 -8.95 0.032 0.027 

 

Figure (4.89) Longitudinal stresses at mid-span (UDL, prestress plus gravity, curved, delta =7m, case4) 
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There are a number of general observations which can be made from the results: 

• The study is based purely on the mid-span stresses. 

• The results are logical, the higher prestress provides more load capacity as governed by 

the mid-span section. 

• There are areas of concentrated stress where the tendon profile changes direction. This is 

to be expected as there is equivalent loading applied in both the vertical and radial 

directions due to the angling of the tendon. 

• At the mid-span of the beam the torsional moment from the curvature will theoretically 

be zero, hence the longitudinal stresses should be predominantly due to axial and bending 

effects of the applied loads and prestress. At the ends of the beam, the rotation about the 

longitudinal axis is zero, so warping is prevented and appears to be causing no warping 

stresses - as expected. 

• The table shows that all prestress losses were lower that 20% and those losses mainly 

occur due to elastic shorting. 

 

Figure (4.90) Relationship between load and curvature for all cases of box girder bridges. 
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Chapter Five 

Traffic Pattern 

 

 

 

5.1 Traffic load patterning 
This part of the study focusses on the variations of loading experienced by the bridge deck due to 

self-weight, prestress, additional UDL’s and traffic patterning. Hence the traffic loadings 

considered in this chapter examine the effects of the location of the vehicles on the structural 

behaviour of the bridge. 

The dead load of the girder is distributed on the decks based on the respective widths of the 

various structures. The dead load will be applied as superimposed dead loads. Superimposed 

dead loads will contain wearing course, future wearing surface, railings and barriers, except for 

footpath loads which will be distributed equally to all deck lines. Superimposed load (UDL) is 

calculated by multiplying the density of the material by the sectional area of the elements. 

Superimposed dead loads in this study were divided between parapet and pavement and the next 

section will explain the calculations of superimposed dead loads in detail.  The sections are 

shown in figure (5.1). Complete dimensions of the section contained in figure (4.1). 
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(A)  Parapet and pavement. 
 

Parapet load distribution Parapet load distribution

 
 

(B) Parapet load distribution. 
 

     Figure (5.1) Load distribution on box girder bridge. 
 
 
 

The calculation of the superimposed dead load is as follows: 

The parapet is assumed to be 1.3m high and 0.26m in width with a concrete unit weight of 

24kN/m3. This leads to a parapet UDL of approximately 8kN/m. The nodes are spaced at 0.6m 

apart in both the radial and tangential direction. Hence a tangential apportioning of force of 4.8 

kN, split between two nodes in the radial direction leads to 2.4 kN per node.   

- Parapet UDL=24×1.3×0.26= 8.11 approximately 8 kN/m. 

- Parapet nodal loading on each flank of the span = 8×0.6= 4.8 kN. 

The road surface (pavement) will be assumed 20mm thick with a unit weight of 22kN/m3  

Parapet thickness=0.26 m 

 Pavement thickness=0.02 m 
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- Road surface/pavement =0.02×22= 0.44 kN/m2 and will be applied as a pressure on deck. 

The traffic loading will be applied conservatively as a series of 25 ton lorries. This is in 

accordance with AASHTO. The standard values of vehicle load from this code of practice are 

shown in figure 5.2A. The chosen vehicle load that applied on the box girder is shown in figure 

5.2B. 

 
(A) Standard value of vehicle load from AASHTO 

 

 
(B) Vehicle load 

Figure (5.2) AASHTO vehicle load 

 

Source: http://www.fhwa.dot.gov/publications/publicroads/05jul/09.cfm 

- Vehicle loads in accordance with AASHTO are about 222.5 kN 

In this study the vehicle load will be rounded to 225 kN 
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The vehicle length is 6 m long and has a width of 1.8m (AASHTO) 

In terms of a patch UDL, the load will be = ""#
(%.'×))              = 20.83 kN/m2  

5.2Vehicle loads 
There will be four cases of pattern loading to be analysed depending on the traffic location. In 

detail, this will be referred to as the left or right side, and location along the bridge, i.e. near end, 

middle or the far end. Figures (5.3) to (5.13) show the traffic location for each case of study. 

1- Patterned traffic UDL 

A- Near end 

The traffic here will comprise two vehicles situated close to the cross-section axes end of the 

bridge deck as viewed in plan. These cases (near end patterned traffic UDL) are termed TL1 & 

TR1. TL1 & TR1 cases are left and right as shown in figures (5.3) & (5.4). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure (5.3) Load case (TL1) for traffic loads      Figure (5.4) Load case (TR1) for traffic loads 
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B- Middle  

Case B is similar to case A in terms of traffic load magnitude however the location of the traffic 

is on the left or the right side of mid-span (mid-length). These cases are TL2 & TR2, as shown in 

figures (5.5) & (5.6).  

Figure (5.5) Load case (TL2) for traffic loads     Figure (5.6) Load case (TR2) for traffic loads 
 
C. Far end 

The same as in A and B the two vehicles will move on left or right of the far span end. There will 

be also two cases TL3 & TR3 as shown in figures (5.7) & (5.8). 

Figure (5.7) Load case (TL3) for traffic loads         Figure (5.8) Load case (TR3) for traffic loads        
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2- Full Traffic UDL 

The deck will be loaded with all the vehicles. This case is shown in figure (5.9) and will be 

represented as T4. 

 
Figure (5.9) Load case (T4) for traffic loads 

 
3- Near End+ Far End Traffic UDL 

A- Left Near End + Right Far End Traffic 

For this case, the traffic will be applied as shown in figure (5.10). This case will be called TL5. 
 
 
 

 
 
 
 

 

Figure (5.10) Load case (TL5) for traffic loads 
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B- Right Near End + Left Far End Traffic 

For this case, the traffic will be applied as shown in figure (5.11). This case will be called TR5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (5.11) Load case (TR5) for traffic loads 
 

4- Total traffic UDL 

A- Total Traffic UDL Left  

The traffic will be positioned all above the left side of the deck as shown in figure (5.12). This 

case will be called TL6. 

 
Figure (5.12) Load case (TL6) for traffic loads 
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B- Total traffic UDL Right 

The traffic will be positioned all above the right side of the deck as shown in figure (5.13). This 

case will be called TR6. 

 
Figure (5.13) Load case (TR6) for traffic loads 

 
 

 
 
 
 
 
 
 
 
 
 
 

 



174 
 

5.3 Traffic patterning parametric models of varying curvature and 

prestressing. 
The four cases with different prestress values that were investigated in chapter four will be 

developed in this chapter. Table 5.1. illustrates the various combinations of load patterning, 

prestress and curvature which were studied.  

Table (5.1) Parametric combinations of traffic patterning, prestressing and curvature. 

Delta 
m 

Case 1 (P = 31000 kN) 
TL1 TR1 TL2 TR2 TL3 TR3 T4 TL5 TR5 TL6 TR6 

δ= 0 ü ü ü ü ü ü ü ü ü ü ü 
δ= 1 ü ü ü ü ü ü  ü ü ü ü 
δ= 2 ü ü ü ü ü ü  ü ü ü ü 
δ= 3 ü ü ü  ü ü      
Delta 
m 

Case 2 (P = 35000 kN) 
TL1 TR1 TL2 TR2 TL3 TR3 T4 TL5 TR5 TL6 TR6 

δ= 0 ü ü ü ü ü ü ü ü ü ü ü 
δ= 1 ü ü ü ü ü ü ü ü ü ü ü 
δ= 2 ü ü ü ü ü ü ü ü ü ü ü 
δ= 3 ü ü ü ü ü ü  ü ü ü ü 
δ= 4 ü ü ü ü ü ü      
Delta 
m 

Case 3 (P = 39000 kN) 
TL1 TR1 TL2 TR2 TL3 TR3 T4 TL5 TR5 TL6 TR6 

δ= 0 ü ü ü ü ü ü ü ü ü ü ü 
δ= 1 ü ü ü ü ü ü ü ü ü ü ü 
δ= 2 ü ü ü ü ü ü ü ü ü ü ü 
δ= 3 ü ü ü ü ü ü ü ü ü ü ü 
δ= 4 ü ü ü ü ü ü  ü ü ü ü 
δ= 5 ü ü ü ü ü ü      
δ= 6      ü      
Delta 
m 

Case 4 (P = 45000 kN) 
TL1 TR1 TL2 TR2 TL3 TR3 T4 TL5 TR5 TL6 TR6 

δ= 0 ü ü ü ü ü ü ü ü ü ü ü 
δ= 1 ü ü ü ü ü ü ü ü ü ü ü 
δ= 2 ü ü ü ü ü ü ü ü ü ü ü 
δ= 3 ü ü ü ü ü ü ü ü ü ü ü 
δ= 4 ü ü ü ü ü ü ü ü ü ü ü 
δ= 5 ü ü ü ü ü ü  ü ü ü ü 
δ= 6 ü ü ü ü ü ü  ü ü   
δ= 7 ü ü          
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5.4 Prestress = 31000 kN 
The same bridge model presented in chapter four is analysed under the effects of moving loads 

(traffic) mentioned in the previous section. The prestress will be taken as 31000 kN and the 

results are shown in a similar way to the previous chapter i.e.: 

1- Straight box shell model          
2- Curved box shell model 

For the straight box shell model  
As in the previous chapter the deformed shape and longitudinal stress diagrams have been 

produced but with the addition of traffic loads moving along the span. These load patterns also 

allow the influence lines to be produced to look at the effect of deflection and stresses at a 

particular location as the load moves.  

The following figures show the load cases as follows: 

1-Case (TL2), deformed shape figure (5.14),). Longitudinal stresses figure (5.15), and mid-span 

longitudinal stresses figure (5.16).  

2-Case (TR2), deformed shape figure (5.17). Longitudinal stresses figure (5.18) and mid-span 

longitudinal stresses figure (5.19).  

3-Case (T4), deformed shape figure (5.20). Longitudinal stresses figure (5.21) and mid-span 

longitudinal stresses figure (5.22).  

4-Case (TR5), deformed shape figure (5.23). Longitudinal stresses figure (5.24) and mid-span 

longitudinal stresses figure (5.25) 

5-Case (TL6), deformed shape figure (5.26). Longitudinal stresses figure (5.27) and mid-span 

longitudinal stresses figure (5.28).  

 

In order to investigate the effect of changing the locations of the traffic the influence lines have 

been produced. The influence lines are built up from the traffic load cases where the vehicles are 

moving from near end to mid-span and to the far end and from right to left side as shown in 

figure (5.29). The cases for influence lines are TL1, TL2 & TL3 and TR1, TR2 & TR3 and the 

investigation has carried out for both deflections and stresses: 
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1-Influence line for defection at mid-span for left and right are in figures (5.30) & (5.31), near 

end for left and right are in figures (5.34) & (5.35) and far end for left and right are in figures 

(5.38) & (5.39) 

2-Influence line for stresses at mid-span for left and right are in figures (5.32) & (5.33), near end 

for left and right are in figures (5.36) & (5.37) and far end for left and right are in figures (5.40) 

& (5.41). 

 

The final step through this study was to examine the deflections by introducing the deflection for 

each case (vehicle load cases) of study and comparing with the bridge original shape in the 

global section directions X and Z Also a comparison with the deflection of the bridge under 

prestressing, gravity, pavement and parapet loading. The deflection graphs show the bridge 

model cross-section with the deflection of the bridge under pavement loading and the deflection 

of the bridge under traffic loads (prestressed, gravity, pavement, parapet and vehicle loads). To 

magnify the effect of these deflections (so that they are discernible), they are multiplied by a 

factor of 20. 

 

This part of the study will illustrate only two cases, those cases are: 

 

1-Deflection at near end figure (5.42), mid-span figure (5.43) and far end figure (5.44) for case 

(TL2) and 

2-Case (TR2), the deflection at near end figure (5.45), mid-span figure (5.46) and far end figure 

(5.47). The results are summarised in table (5.2). 

 

Figure (5.29) provides a key for influence line graphs. 
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Figure (5.14) Deformed shape for load 
case (TL2) 

Figure (5.15) Longitudinal stresses for load 
case (TL2) 

Figure (5.16) Longitudinal stresses at mid-span for load case (TL2), 
straight bridge model (N/m2) 
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Figure (5.17) Deformed shape for load 
case (TR2) 

Figure (5.18) Longitudinal stresses for load 
case (TR2) 

Figure (5.19) Longitudinal stresses at mid-span for load case (TR2), 
straight bridge model 
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Figure (5.20) Deformed shape for 
load case (T4) 

Figure (5.21) Longitudinal stresses for 
load case (T4) 

Figure (5.22) Longitudinal stresses at mid-span for load case (T4), 
straight bridge model 
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Figure (5.23) Deformed shape for load 
case (TR5) 

Figure (5.24) Longitudinal stresses for load 
case (TR5) 

Figure (5.25) Longitudinal stresses at mid-span for load case (TR5), 
straight bridge model 



181 
 

 
 
 
 

 
St t6 l 
 
 
 
 

Figure (5.26) Deformed shape for load 
case (TL6) 

Figure (5.27) Longitudinal stresses for load 
case (TL6) 

Figure (5.28) Longitudinal stresses at mid-span for load case (TL6), 
straight bridge model 
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Figure (5.29) Influence lines (nodes location) 
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Figure (5.30) Influence line for deflection at 
mid-span for load cases (TL1, TL2 & TL3) 

Figure (5.31) Influence line for deflection at 
mid-span for load cases (TR1, TR2 & TR3) 

Figure (5.32) Influence line for stresses at 
mid-span for load cases (TL1, TL2 & TL3) 

Figure (5.33) Influence line for stresses at 
mid-span for load cases (TR1, TR2 & TR3) 
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Figure (5.34) Influence line for deflection at 
near end for load cases (TL1, TL2 & TL3) 

Figure (5.35) Influence line for deflection at 
near end for load cases (TR1, TR2 & TR3) 

Figure (5.36) Influence line for stresses at near 
end for load cases (TL1, TL2 & TL3) 

Figure (5.37) Influence line for stresses at 
near end for load cases (TR1, TR2 & TR3) 
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Figure (5.38) Influence line for deflection at 
far end for load cases (TL1, TL2 & TL3) 

Figure (5.39) Influence line for deflection at 
far end for load cases (TR1, TR2 & TR3) 

Figure (5.40) Influence line for stresses at far 
end for load cases (TL1, TL2 & TL3) 

Figure (5.41) Influence line for stresses at far 
end for load cases (TR1, TR2 & TR3) 
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Figure (5.42) Deflected shape at near end for 
load cases (TL2) 

Figure (5.43) Deflected shape at mid-span for 
load cases (TL2) 

Figure (5.44) Deflected shape at far end for load cases (TL2) 
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Examining the results from this series of analyses, a number of observations can be made. 

Firstly, it can be seen that in proportion to the self-weight of the bridge, prestress and additional 

weight from the pavement and parapet, the traffic loading is considerably lower, However the 

effects of traffic volume and location on the deflection and longitudinal stresses are evident from 

the figures. 

As curvature increases, so too does the rotation of the deck and hence the warping stress. 

Similarly, as curvature increases, so too does deflection and longitudinal stress. The most 

onerous deformations are associated with asymmetrical load cases. 

Figure (5.45) Deflected shape at near end for 
load cases (TR2) 

Figure (5.46) Deflected shape at mid-span for 
load cases (TR2) 

Figure (5.47) Deflected shape at far end for load cases (TR2) 



188 
 

When the load is asymmetrical, although the bridge section remains comfortably in compression 

across its entirety, the effects of torsion become clear from the mid-span contour plots, figure 

(5.19). The warping stresses in the deck are such that tension is produced at the loaded side and 

compression at the unloaded side (expected from the direction of twist). This is evident when 

observing the stresses across the deck, i.e. the compression is lower on the loaded side. When 

looking at the soffit, the lowest compression should therefore be on the opposite diagonal of the 

box section to the loaded deck side. This is corroborated by the contour plot. 

The influence lines for stress are only meaningful for the moving load (2 lorries) along the deck 

span as presented in figures (5.32), (5.33), (5.36), (5.37), (5.40) and (5.41). Again, these support 

the presence of relatively low warping stresses, and the effects of twist can be seen clearly. As 

the loads for load cases 1 and 3 are asymmetrical about the mid-span, this accounts for the 

asymmetry in the influence line. 

Load case T4 is effectively presents the worst case in terms of full loading, and produces tensile 

stresses. Therefore, case T4 will not be considered in the curved box girder studies for prestress 

force equal 31000 kN due to the heavy traffic loads applied. 

 

Curved box shell model 

The same philosophy used for the straight box model was adopted and the results are shown in 

the following figures for each of the load cases: 

1-Case TL2, the boundary conditions for different load (traffic) are shown in figure (5.48). 

Deformed shape figure (5.49), longitudinal stresses figure (5.50) and mid-span longitudinal 

stresses figure (5.51).  

2-Case TR2, the boundary conditions for different load (traffic) are shown in figure (5.52). 

Deformed shape figure (5.53), longitudinal stresses figure (5.54), and mid-span longitudinal 

stresses figure (5.55).  

3-Case TR5, the boundary conditions for different load (traffic) are shown in figure (5.56). 

Deformed shape figure (5.57), longitudinal stresses figure (5.58) and mid-span longitudinal 

stresses figure (5.59). 

4-Case TL6, the boundary conditions for different load (traffic) are shown in figure (5.60). 

Deformed shape figure (5.61), longitudinal stresses figure (5.62) and mid-span longitudinal 

stresses figure (5.63). 
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5-Influence line for defection at mid-span for left and right sides are shown in figures (5.64) & 

(5.65), near end figure (5.68) & (5.69) and far end figure (5.72) & (5.73). 

6-Influence line for stresses at mid-span figures (5.66) & (5.67), near end figure (5.70) & (5.71) 

and far end figure (5.74) & (5.75). 

7-Case TR5 deflection at near end figure (5.76), mid-span figure (5.77) and far end figure (5.78). 

8-Case TL6 deflection at near end figure (5.79), mid-span figure (5.80) and far end figure (5.81).  

The results are summarised in table 5.2. 

 
 
 
 

 

Figure (5.49) Deformed shape for load 
case TL2, Delta = 3 m 

Figure (5.48) Load case TL2 for traffic 
loads, Delta = 3m 

Figure (5.50) longitudinal stresses for load 
case TL2, Delta = 3 m 

Figure (5.51) longitudinal stresses for load 
case TL2, Delta = 3 m 
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Figure (5.53) Deformed shape for load 
case TR2, Delta = 2 m 

Figure (5.52) Load case TR2 for traffic 
loads, delta = 2m 

Figure (5.54) Longitudinal stresses for load 
case TR2, Delta = 2 m 

Figure (5.55) Longitudinal stresses at 
mid-span for Load case TR2, Delta = 2 m 
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Figure (5.57) Deformed shape for load 
case TR5, Delta = 2 m 

Figure (5.56) Load case TR5 for traffic 
loads, Delta = 2m 

Figure (5.58) Longitudinal stresses for load 
case TR5, Delta = 2 m 

Figure (5.59) Longitudinal stresses at mid-
span for Load case TR5, Delta = 2 m 
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Figure (5.61) Deformed shape for load 
case TL6, Delta = 2 m 

Figure (5.60) Load case TL6 for traffic 
loads, Delta = 2m 

Figure (5.62) Longitudinal stresses for load 
case(TL6), Delta = 2 m 

Figure (5.63) Longitudinal stresses at mid-
span for load case TL6, Delta = 2 m 
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Figure (5.64) Influence line for deflection at 
mid-span for load cases (TL1, TL2 & TL3), 
Delta = 2m 

Figure (5.65) Influence line for deflection at 
mid-span for load cases (TR1, TR2 & TR3), 
Delta = 2m 

Figure (5.66) Influence line for stresses at 
mid-span for load cases (TL1, TL2 & TL3), 
Delta = 2m 

Figure (5.67) Influence line for stresses at 
mid-span for load cases (TR1, TR2 & TR3), 
Delta = 2m 
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Figure (5.68) Influence line for deflection at 
near end for load cases (TL1, TL2 & TL3), 
Delta = 2m 

Figure (5.69) Influence line for deflection at 
near end for load cases (TR1, TR2 & TR3), 
Delta = 2m 

Figure (5.70) Influence line for stresses at 
near end for load cases (TL1, TL2 & TL3), 
Delta = 2m 

Figure (5.71) Influence line for stresses at 
near end for load cases (TR1, TR2 & TR3), 
Delta = 2m 
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Figure (5.72) Influence line for deflection at 
far end for load cases (TL1, TL2 & TL3), 
Delta = 2m 

Figure (5.73) Influence line for deflection at 
far end for load cases (TR1, TR2 & TR3), 
Delta = 2m 

Figure (5.74) Influence line for stresses at 
far end for load cases (TL1, TL2 & TL3), 
Delta = 2m 

Figure (5.75) Influence line for stresses at 
far end for load cases (TR1, TR2 & TR3), 
Delta = 2m 
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Figure (5.78) Deflection shape at far end for load case TR5, Delta = 2 m 

Figure (5.76) Deflection shape at near end for 
load case TR5, Delta = 2 m 

Figure (5.77) Deflection shape at mid-span 
for load case TR5, Delta = 2 m 
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Figure (5.79) Deflection shape at near end for 
load case TL6, Delta = 2 m 

Figure (5.80) Deflection shape at mid-span 
for load case TL6, Delta = 2 m 

Figure (5.81) Deflection shape at far end for load case TL6, Delta = 2 m 
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Table (5.2) Stresses values at mid-span (prestress, P = 31000kN) 
Traffic Delta 

(m) 
Location Reaction 

(kN) 
Moment 
(kN.m) 

Prestress 
(kN) 

Slab stresses 
(N/mm2) 

Soffit stresses 
(N/mm2) 

Interior Exterior Interior Exterior 
T1 δ=3 Left, TL1 -10280 28620 15290 -8.57 -7.70 0.55 0.30 

δ=3 Right, TR1 -10270 22400 15280 -8.55 -8.01 0.48 0.45 
T2 δ=3 Left, TL2 -10280 27000 15370 -8.65 -7.90 0.95 0.40 

δ=2 Right, TR2 -10110 13600 15300 -8.46 -8.31 0.11 0.06 
T3 δ=3 Left, TL3 -10280 26600 15320 -8.65 -8.16 0.72 0.55 

δ=3 Right, TR3 -10270 24500 15300 -7.99 -7.85 0.69 0.31 
T4 δ= 0  -12500 0 15480 -8.76 -8.15 0.33 0.32 
T5 δ=2 Left, TL5 -11000 15400 15350 -8.41 -8.10 0.45 0.31 

δ=2 Right, TR5 -11000 15400 15350 -8.39 -8.12 0.45 0.32 
T6 δ=2 Left, TL6 -11300 19200 15410 -8.60 -8.22 0.66 0.41 

δ=2 Right, TR6 -11200 12500 15410 -8.82 -8.35 0.95 0.65 

 

For the three others prestress forces (35000 kN, 39000kN and 45000 kN) the same philosophy 

was applied and the results have been illustrated through tables (5.3), (5.4) and (5.5). 

 

Table (5.3) Stresses values at mid-span (prestress, P = 35000kN) 
Traffic Delta 

(m) 
Location Reaction 

(kN) 
Moment 
(kN.m) 

Prestress 
(kN) 

Slab stresses 
(N/mm2) 

Soffit stresses 
(N/mm2) 

Interior Exterior Interior Exterior 
T1 δ=4 Left, TL1 -10460 31700 17110 -9.30 -8.95 0.40 0.31 

δ=4 Right, TR1 -10440 29600 17090 -9.42 -9.18 0.35 0.28 
T2 δ=4 Left, TL2 -10460 32800 17200 -9.72 -8.85 0.90 0.75 

δ=4 Right, TR2 -10430 30700 17230 -9.85 -9.20 0.95 0.91 
T3 δ=4 Left, TL3 -10460 32160 17140 -9.59 -9.07 0.62 0.41 

δ=4 Right, TR3 -10440 30100 17130 -9.43 -8.64 0.50 0.42 
T4 δ=2  -12840 18100 17370 -9.92 -9.15 1.05 0.86 
T5 δ=3 Left, TL5 -12000 27600 17180 -9.32 -9.01 0.28 0.21 

δ=3 Right, TR5 -12000 27600 17180 -9.32 -9.02 0.27 0.21 
T6 δ=3 Left, TL6 -11500 31900 17250 -9.20 -8.51 0.55 0.48 

δ=3 Right, TR6 -11400 24900 17250 -9.68 -8.81 0.75 0.34 
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Table (5.4) Stresses values at mid-span (prestress = 39000kN) 
Traffic Delta 

(m) 
Location Reaction 

(kN) 
Moment 
(kN.m) 

Prestress 
(kN) 

Slab stresses 
(N/mm2) 

Soffit stresses 
(N/mm2) 

Interior Exterior Interior Exterior 
T1 δ=5 Left, TL1 -10600 41400 18870 -9.89 -9.37 0.50 0.22 

δ=5 Right, TR1 -10600 39300 18870 -10.02 -9.41 0.46 0.26 
T2 δ=5 Left, TL2 -10600 43000 18990 -10.68 -10.05 1.05 0.54 

δ=5 Right, TR2 -10600 40700 18910 -10.70 -9.94 1.28 0.73 
T3 δ=5 Left, TL3 -10600 42000 251.6 -10.32 -9.67 0.68 0.45 

δ=6 Right, TR3 -10800 51000 216.9 -11.48 -10.85 0.15 0.09 
T4 δ=3  -13000 32400 19210 -10.66 -9.83 0.11 0.10 
T5 δ=4 Left, TL5 -11400 33600 18940 -9.99 -8.91 0.30 0.24 

δ=5 Right, TR5 -11400 23600 18940 -10.01 -9.06 0.33 0.24 
T6 δ=5 Left, TL6 -11600 38300 19110 -9.75 -8.98 0.67 0.55 

δ=5 Right, TR6 -11600 30900 19010 -10.51 -8.17 0.95 0.72 
 

Table (5.5) Stresses values at mid-span (prestress = 45000kN) 
Traffic Delta 

(m) 
Location Reaction 

(kN) 
Moment 
(kN.m) 

Prestress 
(kN) 

Slab stresses 
(N/mm2) 

Soffit stresses 
(N/mm2) 

Interior Exterior Interior Exterior 
T1 δ=7 Left, TL1 -11100 65000 21860 -12.45 -11.70 1.10 0.95 

δ=7 Right, TR1 -11000 62700 21840 -12.30 -11.28 0.95 0.63 
T2 δ=6 Left, TL2 -10900 54400 21800 -12.14 -10.92 0.61 0.47 

δ=6 Right, TR2 -10800 52000 218.2 -12.32 -11.75 0.87 0.72 
T3 δ=6 Left, TL3 -10900 53300 21720 -11.95 -11.68 0.22 0.20 

δ=6 Right, TR3 -10800 51000 21700 -11.82 -10.85 0.15 0.14 
T4 δ=4  -13300 39500 22050 -12.00 -11.05 0.65 0.55 
T5 δ=6 Left, TL5 -11800 56300 21950 -12.87 -11.45 0.13 0.85 

δ=6 Right, TR5 -11800 56200 21940 -12.89 -11.50 0.14 0.92 
T6 δ=5 Left, TL6 -11900 49400 21840 -11.25 -10.91 0.12 0.09 

δ=5 Right, TR6 -11800 41700 251.6 -11.89 -11.25 0.34 0.30 
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For the curved bridge model, it can be seen that the effects of horizontal curvature exaggerate the 

variation of longitudinal stress around the section. The results demonstrate the effects of the 

various parameters on the behaviour of the member. 

For the prestress, the level of pretension appears to act in a similar fashion whether the bridge is 

curved or not. The level of pretension is usually selected on a desired longitudinal stress profile 

under service loading, and as the pretension varies the balance of the vertically applied loading is 

altered accordingly (the lower prestress values in the study present under-balanced conditions). 

As the bridge curves on plan the line of the prestressing tendons generally follow the horizontal 

centroid, and therefore do not impose any equivalent horizontal load. Essentially, they apply 

compression to the section akin to a prestressed arch on plan. In the vertical plane, eccentricity 

from the section centroid does apply an upward equivalent load which can balance a portion of 

the downward UDL. 

Considering the traffic positioning (influence lines), it can be seen that the increased curvature 

causes more disparity in the longitudinal (tangential) stresses at the four corners of the box 

section, as demonstrated by larger gaps between the influence lines. As curvature increases, so 

too does rotation of the deck, hence so too does warping stress. Also, the size of the traffic 

loading when compared to self-weight is such that it has minimal effect on the stresses. The 

stresses at sab edges are very similar along the deck because shear leg and flange cross bending 

permit stress relief. However, at the soffit, the section is torsionally very stiff and stresses are 

almost ten times larger at mid-span, see figure (5.82). However, the influence lines do show how 

the torsional warping stresses change across the section as the position of the applied torque from 

the traffic alters, for example the influence lines for the stresses at mid-span in figures (5.66) and 

(5.67). 

The deflections have been factored to enhance the visualization. Again, the physical twist is 

slightly evident from the date for the unsymmetrical loading conditions when viewing the 

displaced section diagrams. 

Hence, it is still the horizontal curvature of the bridge which appears to have the most effect on 

the results. As the curvature increases, the torsional effects of both UDL loading and traffic are 

increased accordingly. As the horizontal eccentricity of the load from the supports increases as 

the curvature increases and the torsional moment increases too.  
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For example, δ= 2 m where s1 is stress for TR2 and s2 is stress for TR6 
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Figure (5.82) Stresses for mid-span box girder bridge, TR2 & TL6, Delta = 2 m 
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Chapter Six 

Conclusion and Recommendations 

6.1 Conclusion 
The aim of the study was to develop and present a readily scriptable finite element representation 

of a concrete box girder bridge with a particular prestress, that can be curved in plan. This was 

achieved and validated against published works Khaloo & Kafimosavi (2007).   The model was 

then successfully modified and subject to a number of parametric studies to provide insight to the 

influence of curvature, prestress and traffic load patterning. The results were presented in terms 

of section stresses, deflections and influence lines for traffic loading.  

 

The various effects of the parameters are discussed in the following five sections: 

 

6.1.1 Effects of curvature 
 
The straight bridge exhibits symmetrical behaviour about its vertical section centreline acting as 

expected as a simply supported beam subject to a UDL (i.e. a parabolic bending moment profile). 

The longitudinal stresses in the section are uniform and vary linearly with the section depth. The 

combination of bending stresses from the applied UDL, prestress and direct compression, 

governs the final stress profile. The FE model was successfully validated in this sense with a 

balanced self-weight in terms of approximately uniform compression from top to bottom. 

As the bridge takes on a curved profile on plan, the geometric volume of the bridge increases, 

hence the mass of the bridge will be larger as the curvature increases hence an increased UDL 

will also be experienced. The vertical load now has an eccentricity which increases toward mid-

span, causing a twist or torque. So, this is present in addition to the normal vertical bending 

effects and can possibly cause some degree of warping. All of this contributes to a change in 

direct stresses within the section which at increased curvatures cause the beam to violate service 

stress limits. This has clearly been shown in the studies carried out in Chapter 4. From figure 

4.90 in Chapter 4, the relationships clearly show that the higher levels of prestress do allow the 
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bridge to take on more load at increased curvature, however this trend might also be expected of 

straight bridges as long as transfer stresses were kept within acceptable limits (to avoid applying 

too much prestress). 

 

 

6.1.2 Effects of prestress 

As eluded to already, the level of prestressing tends to allow increased curvatures to be 

acceptable in terms of keeping the longitudinal stress (figure 4.89) within class 1 levels (i.e. no 

cracking present). Specifying these design criteria allows the FE model to remain linear. 

The tendon profile represented as piecewise linear does not balance the applied load as a 

continuously curved tendon would do (upward point loads at third points in opposition to a 

downward UDL), but provides a reasonable balance in light of the modelling/meshing issues a 

continuously curved tendon would produce. 

The prestress as represented in the finite element model is akin to a pretensioned beam. Full 

compatibility between the nodes of the concrete beam and the prestressing tendon ensure that 

this is the case. Loss of prestress would be expected whether the beam was post or pretensioned 

(elastic shortening would occur in pretensioned beams), hence as long as the level of prestress is 

known in the FE model after any losses, the cause and type of losses is not of concern. By way of 

validation a sample calculation of elastic shortening prestress losses is presented in Appendix 5. 

From the box girder shell FE model with an initial prestressing force of 45000kN, the reported 

prestressing forces in the steel without and with the applied self-weight are approximately 

37000kN and 42000kN respectively. This equates to a loss of around 18% From the design 

calculations provided in Appendix 5 it can be seen that the predicted losses are quite close to the 

losses obtained (within 1% at 36385kN and 41788kN respectively).  It was also observed that the 

elastic shortening prestress loss is insensitive to the amount of horizontal curvature of the bridge 

deck. 

It should be noted that long term losses such as creep, shrinkage and relaxation are not accounted 

for in the model. Also, friction and anchorage draw-in are also not applicable as these are 

associated with post-tensioned members. No anchorage strengthening was considered, but as the 

model was linear, this was not problematic (also the tendons terminate close to the centroid of 

the section so will spread the anchorage loading). Transmission lengths (the length over which 
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the force builds up from zero at the beam end to its full value within the beam span) are short and 

have no significant effects on the performance of the bridge deck. 

6.1.3 Boundary conditions 

Considering the boundary conditions, the intention was to maintain the beam as simply 

supported as the form of the bridge became horizontally curved in plan. Initially a range of 

supports were tried and tested, but these would generate a range of design issues with tendon 

profiles and consistency of support conditions as the bridge curved in plan. To achieve this 

consistency, the rigid beam structure at the ends provides a single node point at the section 

centroid which is a means of conveniently providing a range of support conditions.  

 

Having taken the decision to provide a simple span with zero moments at the ends of the bridge, 

it was evident that the six degrees of freedom (three translational and three rotational) would 

need to be orientated in accordance with the radial and tangential directions of the curve, i.e. 

rotated into cylindrical coordinates. If the boundary conditions remained in the Cartesian 

directions this would have provided complications with varying degrees of moment fixity at the 

ends. Hence the nodes were rotated into the cylindrical co-ordinate system so that with the 

boundary rotation about the tangential direction prevented global rotation of the curved structure.   

It is accepted that in practice the curved spans are likely to be one of a set of continuous 

members with continuity over intermediate supports, however an understanding of the structural 

behaviour of the basic curved bending element is required before the number of parameters and 

details are built up.  

 

6.1.4 Traffic patterning 

The results from Chapter 5 regarding the load patterning from traffic suggest that the traffic 

loading is significantly lower than the bridge self-weight loading. Unsymmetrical load patterning 

causes disruption in the uniform flow of torque along the bridge and hence can present itself as 

warping stresses. As expected the stresses become more pronounced and disparate at higher 

curvatures as the torque (and loading) increases.  
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6.2 Discussion 

 

6.2.1 Shell vs Beam models 

The decision was made to model the box girder using shell elements. It can be seen that this 

allows for stresses and local behaviour to be captured within the model, as well as allowing the 

profile of the prestressing tendon to be altered as desired. 

Stress resultants (such as bending moments, shearing forces and axial forces) are harder to 

process with such detailed models, but are usually readily available from beam element models. 

As a small additional exercise a beam element model was developed using ANSYS to examine, 

compare and contrast with the shell element model. A brief description follows: 

The beam element model nodes were laid out using cylindrical coordinates on plan. To represent 

the section properties in the correct manner, Beam 44 was used (which is a 3D tapered beam 

element). This element allowed the input of individual section properties with centroidal offsets 

at each end of the element. To represent the prestress, a link element (Link 8) was applied across 

the nodes and an initial strain input to create the prestress. 

When the prestress is applied in this manner, it tends to create only a precompression akin to a 

straight tendon positioned along the centroid of the section. To capture the additional bending 

effects of a profiled tendon, an equivalent transverse load was also applied to the model. 

The boundary conditions for the model at the ends of the beam are exactly the same as for the 

shell model, i.e. restrained in torsion about the longitudinal/tangential axis, restrained in radial 

and vertical translation at both ends, and in tangential translation at one end only 

As an example, the bridge with a sector dimension delta of 5m (curvature of 0.0133 per metre) is 

shown as an example (refer to Chapter 4 for dimensions and section properties). Figure (6.1) 

shows the general bridge arrangement constructed from beam elements and the deflected shape 

under self-weight. The maximum deflection is 31mm which compares well with the 29mm 

reported for the shell model. 
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Figure (6.1) Deflection of bridge under self-weight, delta = 5m 

The bending and torsional moment diagrams are shown in figures (6.2) and (6.3) respectively: 
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   Figure (6.2) Vertical bending moment of bridge under self-weight, delta = 5m 

 

 
    Figure (6.3) Torsion of bridge under self-weight, delta = 5m 
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The form of the bending moment diagram and torsion moment diagrams are as expected for a 

curved member subject to a UDL. The maximum bending moment occurs at the mid-span 

(58700 kNm) and the maximum torsion occurs at the end (14300 kNm). Compared to the shell 

model reactions, there is a marginal difference between the reported torsions at the boundaries, 

with the shell model being slightly higher. On closer inspection, as the shell model represents the 

deck in 2D on plan, then as the arc length (as viewed on plan) increases moving from the inner to 

the outer radius, there will naturally be more mass toward the outer edge. Therefore, there is an 

increased weight distribution across the deck from the inner to the outer radius causing a torsion 

which would not be considered in the beam element model. This additional torsion will register 

at the supports. 

The torsion will cause St. Venant shear stresses and in-plane warping stresses along the length of 

the beam. However, as the section is of a closed box form the effects of warping should be 

minimal, and only prevalent at the ends of the beam. 

A calculation for the equivalent transverse point loading created by the piecewise linear prestress 

is presented in Appendix 5. This has been subsequently applied to the model as shown in figure 

(6.4). The vertical bending moment is shown in figure (6.5) and the torsion is shown in figure 

(6.6). This shows that the conventional load balancing is affected to a degree by the curvature of 

the bridge in so much that this needs to be considered in the calculation in terms of the developed 

length of the curve. Hence the equivalent loads calculated using the straight beam geometry will 

tend to overestimate the bending moment required to balance the applied downward UDL. The 

upward deflection due to the prestress is approximately 34mm, hence the combined effects 

produce an upward camber of approximately 3mm as seen in figure (6.4). 
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Figure (6.4) Deflection of bridge under self-weight and equivalent load, delta = 5m 

 

 
Figure (6.5) Vertical bending moment of bridge under self-weight and equivalent load, delta = 

5m 
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Figure (6.6) Torsion of bridge under self-weight and equivalent load, delta = 5m 

 

It can be seen that the effects of abrupt changes in tendon profile causing point equivalent loads 

will also cause abrupt changes in torsion along the bridge axis (as seen in figure 6.6). As stated 

earlier the effects of torsion are generally resisted by the closed geometric box form of the 

section. 

6.3 Further work 
Clearly, with just a simply supported model there are many further parameters which can be 

examined. In terms of application to a real bridge structure, the following presents some 

recommendations for further study: 

• Introduce fixed boundary conditions. This would necessitate that the tendon profiles would 

need to rise above the centroid at supports. This would then serve as preliminary work for 

investigating the effect of continuity and the presence of a degree of rotational stiffness at 

supports. 

• Introduce continuity with intermediate piers/supports. These would be likely to require 

reversed curvature of the tendon over the support sections and local thickening of the deck 
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soffit to cope with increased bearing stresses. The added complication of secondary (parasitic) 

moments would arise, so the effects of these would be interesting to investigate (a parametric 

study could be conducted through linear transformation of the tendon profile). 

• Consider the implications of partial prestressing, i.e. allow tension to develop in the section 

(class 2 and 3 sections). The material would also need to capture the effects of concrete 

cracking. With ANSYS this would mean exploring a model constructed from solid elements, 

so an alternative code such as ABAQUS might be preferable. 

6.4 Recommendations for practice 
The procedure presented in this work has highlighted that modern FE software packages can be 

programmed/scripted to quickly provide shell based finite element models which can be used to 

either validate a design or as part of the design process. 

For class 1 sections it is recommended that the usual prestressing design processes are carried 

out to a code of practice for a straight deck in plan. Once an FE model has been validated against 

this design, the desired curvature can be introduced and the FE model will allow the user to 

examine a range of prestressing options rapidly.  

The use of FEA within design practice should become routine procedure rather than considered 

as a specialist process, although this will require greater understanding of advanced modelling 

amongst industrialists. 
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Appendix 
Appendix1 

Ø Paper’s calculation for stresses 
Second Moment of Area                       I = 15.24 m4 
Cross Sectional Area                            A = 8.64 m2 
Distance from Soffit to Centroid         Ybar =1.822 m 
concrete unit weight                             ρ = 2400 kg. m-3  
Depth of Section                                  D = 3.3 m 
Width of Deck                                     B = 12 m 
Length of Deck                                   L =  54 m 
Acceleration                                       g= 9.81 m.sec-2 
Applied load                                      UDL = 25 kN.m-2 

Load per unit length                          W = UDL×B 
W =300 kN. m-1 

Moment at Midspan From Gravity 

M" =
W×L'
8  

 
Mg =1.093×105 kN.m 
Prestressing force from all tendons              P 45000 kN 
Eccentricity                                                  ecc= 1.822 m 
Moment at midspan from prestress              Mp= P×ecc 
Mp= 8.199×104kN.m 
Gravity Load Stresses 

σ"# =
-M#×(D − Y,-.)

I  
 

σ"# =	  - 10.605 N.mm-2 

σ"# =
Mg×Y)*+

I  
 

σ"#  = 13.073 N.mm-2 

Prestress Stresses 

σ"# =
P
A +

M#×(D − Y./0)
I  

 
!"#    = 2.743N.mm-2 

σ"# =
P
A -
M#×Y+,-

I  
 

σ"# = −15	N.mm,  
Total Stresses:     
σ"# + σ"% = 	−7.86	N.mm-0              
σ"# + σ"% = 1.94	N.mm-/  
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Appendix 2 
Ø Box girder model (APDL) 
A- APDL for the straight box girder 

!Example Input deck for Box girder section  
!Trapezoid bottom Flange Width 
*ask,TBFW,Trapezoid bottom Flange Width (m),8.4 
!Trapezoid bottom Flange thickness 
*ask,TBFT,Trapezoid bottom Flange Thickness (m),0.3 
!Trapezoid top Flange Width1 
*ask,TTFW,Trapezoid Top Flange Width (m),8.4 
!Trapezoid top deck thickness 
*ask,TTFT,Trapezoid Top Deck Thickness (m),0.3 
!Trapezoid web thickness 
*ask,TWT,Trapezoid Web thickness (m),0.3 
!Trapezoid web depth 
*ask,TWD,Trapezoid Web Depth (m),3.3 
!Extra wing width 
*ask,EWW,Extra wing width (m),1.8 
!Extra wing thickness 
*ask,EWT,Extra wing thickness (m),0.3 
!Span 
*ask,SPAN,span(m),54 
!No Elems in Extra wing 
*ask,NEEW, No of elements in Extra wing,3 
!No Elems in trapezoid top flange 
*ask,NETTF,No of elements trapezoid top flange,14 
!No Elems in trapezoid bottom flange 
*ask,NETBF,No of elements trapezoid bottom flange,14 
!No Elems in trapezoid web 
*ask,NETW,No of elements trapezoid web,5 
!No Elems in Span 
*ask,NES, No of elements in span,90 
/PREP7 
ET,1,SHELL63  
KEYOPT,1,3,0 
KEYOPT,1,4,0 
KEYOPT,1,5,0 
KEYOPT,1,6,0  
R,1,TBFT,TBFT,TBFT,TBFT,, 
R,2,TTFT,TTFT,TTFT,TTFT, , 
R,3,TWT,TWT,TWT,TWT, , 
R,4,EWT,EWT,EWT,EWT, ,   
MP,EX,1,17e9   
MP,PRXY,1,0.3 
!***************************** 
!***NODES FOR TOP DECK******** 
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!***************************** 
n,1,0,0,0 
ngen,NEEW+1,1,1,,1,EWW/NEEW 
ngen,NETTF+1,1,NEEW+1,,1,TTFW/NETTF 
ngen,NEEW+1,1,NEEW+NETTF+1,,1,EWW/NEEW 
!********************************************** 
!***GENERATE NODE AT TOP OF WEB ON DECK******** 
!********************************************** 
n,NEEW+NETTF+NEEW+2,EWW,0,0 
!***************************** 
!***NODES FOR BOX SECTION******** 
!***************************** 
ngen,NETW+1,1,NEEW+NETTF+NEEW+2,,1,,,TWD/NETW 
NGEN,NETBF+1,1,NEEW+NETTF+NEEW+NETW+2,,1,TBFW/NETBF 
ngen,NETW+1,1,NEEW+NETTF+NEEW+NETW+NETBF+2,,1,,,-TWD/NETW 
!************************************************************ 
n,NEEW+NETTF+NEEW+NETW+NETBF+NETW+3,(EWW+0.5*TTFW),0,TWD 
ngen,NETW+1,1,NEEW+NETTF+NEEW+NETW+NETBF+NETW+3,,,,,-TWD/NETW 
!************************************************************* 
ngen,NES+1,NEEW+NETTF+NEEW+NETW+NETBF+NETW+NETW+4,1,NEEW+NETTF+
NEEW+NETW+NETBF+NETW+NETW+4,1,0,SPAN/NES,0                                                                                                                                                                                                                                                                                                                                                                                                                                                 
Type,1 
Mat,1 
Real,2 
e,1,2,NEEW+NETTF+NEEW+NETW+NETBF+NETW+NETW+6,NEEW+NETTF+NEEW+N
ETW+NETBF+NETW+NETW+5 
egen,NEEW+NETTF+NEEW,1,1, 
Real,1 
e,(2*NEEW)+NETTF+2,(2*NEEW)+NETTF+3,(2*NEEW)+NETTF+(3*NETW)+NETBF+NE
TTF+(2*NEEW)+7,(2*NEEW)+NETTF+(3*NETW)+NETBF+NETTF+(2*NEEW)+6 
egen,(2*NETW)+NETBF,1,NEEW+NETTF+NEEW+1 
e,(2*NEEW)+NETTF+(2*NETW)+NETBF+3,(2*NEEW)+NETTF+(2*NETW)+NETBF+4,4*
NEEW+2*NETTF+4*NETW+2*NETBF+13,4*NEEW+2*NETTF+4*NETW+2*NETBF+12 
egen,NETW,1,2*NEEW+NETTF+2*NETW+NETBF+1 
egen,NES,2*NEEW+NETTF+3*NETW+NETBF+4,1,2*NEEW+NETTF+3*NETW+NETBF 
 

B- APDL curved box girder 
1- Delta (δ =1 m) 

!Example Input deck for Box girder section  
!Trapezoid bottom Flange Width 
*ask,TBFW,Trapezoid bottom Flange Width (m),8.4 
!Trapezoid bottom Flange thickness 
*ask,TBFT,Trapezoid bottom Flange Thickness (m),0.3 
!Trapezoid top Flange Width1 
*ask,TTFW,Trapezoid Top Flange Width (m),8.4 
!Trapezoid top deck thickness 
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*ask,TTFT,Trapezoid Top Deck Thickness (m),0.3 
!Trapezoid web thickness 
*ask,TWT,Trapezoid Web thickness (m),0.3 
!Trapezoid web depth 
*ask,TWD,Trapezoid Web Depth (m),3.3 
!Extra wing width 
*ask,EWW,Extra wing width (m),1.8 
!Extra wing thickness 
*ask,EWT,Extra wing thickness (m),0.3 
*ask,THETA,Angle(deg),8.48 
*ask,RD,Radius(m),365 
!Span 
*ask,SPAN,span(m),54 
!No Elems in Extra wing 
*ask,NEEW, No of elements in Extra wing,3 
!No Elems in trapezoid top flange 
*ask,NETTF,No of elements trapezoid top flange,14 
!No Elems in trapezoid bottom flange 
*ask,NETBF,No of elements trapezoid bottom flange,14 
!No Elems in trapezoid web 
*ask,NETW,No of elements trapezoid web,5 
CSYS,1 
!No Elems in Span 
*ask,NES, No of elements in span,90 
/PREP7 
ET,1,SHELL63  
KEYOPT,1,3,0 
KEYOPT,1,4,0 
KEYOPT,1,5,0 
KEYOPT,1,6,0  
R,1,TBFT,TBFT,TBFT,TBFT,, 
R,2,TTFT,TTFT,TTFT,TTFT, , 
R,3,TWT,TWT,TWT,TWT, , 
R,4,EWT,EWT,EWT,EWT, ,   
MP,EX,1,17e9   
MP,PRXY,1,0.3 
!***************************** 
!***NODES FOR TOP DECK******** 
!***************************** 
n,1,RD,0,0 
ngen,NEEW+1,1,1,,1,EWW/NEEW 
ngen,NETTF+1,1,NEEW+1,,1,TTFW/NETTF 
ngen,NEEW+1,1,NEEW+NETTF+1,,1,EWW/NEEW 
!********************************************** 
!***GENERATE NODE AT TOP OF WEB ON DECK******** 
!********************************************** 



224 
 

n,NEEW+NETTF+NEEW+2,RD+EWW,0,0 
!***************************** 
!***NODES FOR BOX SECTION******** 
!***************************** 
ngen,NETW+1,1,NEEW+NETTF+NEEW+2,,1,,,TWD/NETW 
NGEN,NETBF+1,1,NEEW+NETTF+NEEW+NETW+2,,1,TBFW/NETBF 
ngen,NETW+1,1,NEEW+NETTF+NEEW+NETW+NETBF+2,,1,,,-TWD/NETW 
!************************************************************ 
n,NEEW+NETTF+NEEW+NETW+NETBF+NETW+3,RD+(EWW+0.5*TTFW),0,TWD 
ngen,NETW+1,1,NEEW+NETTF+NEEW+NETW+NETBF+NETW+3,,,,,-TWD/NETW 
!************************************************************* 
ngen,NES+1,NEEW+NETTF+NEEW+NETW+NETBF+NETW+NETW+4,1,NEEW+NETTF+
NEEW+NETW+NETBF+NETW+NETW+4,1,0,THETA/NES,0                                                                                                                                                                                                                                                                                                                                                                                                                                                 
Type,1 
Mat,1 
Real,2 
e,1,2,NEEW+NETTF+NEEW+NETW+NETBF+NETW+NETW+6,NEEW+NETTF+NEEW+N
ETW+NETBF+NETW+NETW+5 
egen,NEEW+NETTF+NEEW,1,1, 
Real,1 
e,(2*NEEW)+NETTF+2,(2*NEEW)+NETTF+3,(2*NEEW)+NETTF+(3*NETW)+NETBF+NE
TTF+(2*NEEW)+7,(2*NEEW)+NETTF+(3*NETW)+NETBF+NETTF+(2*NEEW)+6 
egen,(2*NETW)+NETBF,1,NEEW+NETTF+NEEW+1 
e,(2*NEEW)+NETTF+(2*NETW)+NETBF+3,(2*NEEW)+NETTF+(2*NETW)+NETBF+4,4*
NEEW+2*NETTF+4*NETW+2*NETBF+13,4*NEEW+2*NETTF+4*NETW+2*NETBF+12 
egen,NETW,1,2*NEEW+NETTF+2*NETW+NETBF+1 
egen,NES,2*NEEW+NETTF+3*NETW+NETBF+4,1,2*NEEW+NETTF+3*NETW+NETBF 
 

2- Delta (δ=2 m) 
The same as delta=1 but with different radius (RD) and Angle (THETA)   
*ask,THETA,Angle(deg),8.48 
*ask,RD,Radius(m),365 
 

3- Delta (δ =3 m) 
*ask,THETA,Angle(deg),25.361 
*ask,RD,Radius(m),123 
 

4- Delta (δ =4 m) 
*ask,THETA,Angle(deg),33.708 
*ask,RD,Radius(m),93.125 
 

5- Delta (δ = 5 m) 
*ask,THETA,Angle(deg),41.966 
*ask,RD,Radius(m),75.4 
 

6- Delta (δ =6 m) 
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*ask,THETA,Angle(deg),50.115 
*ask,RD,Radius(m),63.75 
 

7- Delta (δ = 7 m) 
*ask,THETA,Angle(deg),58.138 
*ask,RD,Radius(m),55.571 
 

8- Delta (δ = 8 m) 
*ask,THETA,Angle(deg),66.017 
*ask,RD,Radius(m),49.563 
 

9- Delta (δ =9 m) 
*ask,THETA,Angle(deg),73.74 
*ask,RD,Radius(m),45 
 

10- Delta (δ =10 m) 
*ask,THETA,Angle(deg),81.293 
*ask,RD,Radius(m),41.45 
 

11- Delta (δ = 11 m) 
*ask,THETA,Angle(deg),88.665 
*ask,RD,Radius(m),38.636 
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Appendix 3 
Calculate (Delta δ, Theta ɵ and Radius R) for cases (2, 3, 4, 6, 7, 8, 9, 10) 

A. Case 2 
 
B.  
C.  
D.  
E.  

Radius                      R = #$%&'() *.,×. (

/×#$%&'
                  R= 183.25 m      

 

Theta                        θ = 2× tan-) *.,×-
./- *.,×- /                         θ = 16.946̊         

B- Case 3 
 
 
 
 
 

Radius                      R = #$%&'() *.,×. (

/×#$%&'
                  R= 123 m      

 

Theta                        θ = 2× tan-) *.,×-
./- *.,×- /                         θ = 25.361̊         

 
C- Case 4 

 
 
 
 

Radius                      R = #$%&'() *.,×. (

/×#$%&'
                  R= 93.125 m      

 

Theta                        θ = 2× tan-) *.,×-
./- *.,×- /                         θ = 33.708 ̊

 D- Case 6 
 
 
 
 
 

Radius                      R = #$%&'() *.,×. (

/×#$%&'
                  R= 63.75 m      

 

Length                     L =54 m 
Delta                           
 

Length                     L =54 m 
Delta                           
 

Length                     L =54 m 
Delta                           
 

Length                     L =54 m 
Delta                           
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Theta                        θ = 2× tan-) *.,×-
./- *.,×- /                         θ = 50.115 ̊

 
 E- Case 7         
         
 
 
 
 

Radius                      R = #$%&'() *.,×. (

/×#$%&'
                  R= 55.571 m      

 

Theta                        θ = 2× tan-) *.,×-
./- *.,×- /                         θ = 58.138 ̊

 F- Case 8 
  
 
 
 
 

Radius                      R = #$%&'() *.,×. (

/×#$%&'
                  R= 49.563 m      

 

Theta                        θ = 2× tan-) *.,×-
./- *.,×- /                         θ = 66.017 ̊

 G- Case 9 
 
 
 
 
 
 

Radius                      R = #$%&'() *.,×. (

/×#$%&'
                  R= 45 m      

 

Theta                        θ = 2× tan-) *.,×-
./- *.,×- /                         θ = 73.74 ̊

 
 H- Case 10 
 
 
 
 

Radius                      R = #$%&'() *.,×. (

/×#$%&'
                  R= 41.45 m      

Length                     L =54 m 
Delta                           
 

Length                     L =54 m 
Delta                           
 

Length                     L =54 m 
Delta                           
 

Length                     L =54 m 
Delta                           
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Theta                        θ = 2× tan-) *.,×-
./- *.,×- /                         θ = 81.293̊         

         
Appendix 4 

Ø Box girder model (APDL) 
A- APDL for the straight box girder 

!Example Input deck for Box girder section  
!Trapezoid bottom Flange Width 
*ask,TBFW,Trapezoid bottom Flange Width (m),6 
!Trapezoid bottom Flange thickness 
*ask,TBFT,Trapezoid bottom Flange Thickness (m),0.3 
!Trapezoid top Flange Width1 
*ask,TTFW,Trapezoid Top Flange Width (m),6 
!Trapezoid top deck thickness 
*ask,TTFT,Trapezoid Top Deck Thickness (m),0.3 
!Trapezoid web thickness 
*ask,TWT,Trapezoid Web thickness (m),0.3 
!Trapezoid web depth 
*ask,TWD,Trapezoid Web Depth (m),3 
!Extra wing width 
*ask,EWW,Extra wing width (m),1.8 
!Extra wing thickness 
*ask,EWT,Extra wing thickness (m),0.3 
!Span 
*ask,SPAN,span(m),54 
!No Elems in Extra wing 
*ask,NEEW, No of elements in Extra wing,3 
!No Elems in trapezoid top flange 
*ask,NETTF,No of elements trapezoid top flange,10 
!No Elems in trapezoid bottom flange 
*ask,NETBF,No of elements trapezoid bottom flange,10 
!No Elems in trapezoid web 
*ask,NETW,No of elements trapezoid web,5 
!No Elems in Span 
*ask,NES, No of elements in span,90 
/PREP7 
ET,1,SHELL63  
KEYOPT,1,3,0 
KEYOPT,1,4,0 
KEYOPT,1,5,0 
KEYOPT,1,6,0  
R,1,TBFT,TBFT,TBFT,TBFT,, 
R,2,TTFT,TTFT,TTFT,TTFT, , 
R,3,TWT,TWT,TWT,TWT, , 
R,4,EWT,EWT,EWT,EWT, ,   
MP,EX,1,17e9   
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MP,PRXY,1,0.3 
!***************************** 
!***NODES FOR TOP DECK******** 
!***************************** 
n,1,0,0,0 
ngen,NEEW+1,1,1,,1,EWW/NEEW 
ngen,NETTF+1,1,NEEW+1,,1,TTFW/NETTF 
ngen,NEEW+1,1,NEEW+NETTF+1,,1,EWW/NEEW 
!********************************************** 
!***GENERATE NODE AT TOP OF WEB ON DECK******** 
!********************************************** 
n,NEEW+NETTF+NEEW+2,EWW,0,0 
!***************************** 
!***NODES FOR BOX SECTION******** 
!***************************** 
ngen,NETW+1,1,NEEW+NETTF+NEEW+2,,1,,,TWD/NETW 
NGEN,NETBF+1,1,NEEW+NETTF+NEEW+NETW+2,,1,TBFW/NETBF 
ngen,NETW+1,1,NEEW+NETTF+NEEW+NETW+NETBF+2,,1,,,-TWD/NETW 
!************************************************************* 
ngen,NES+1,NEEW+NETTF+NEEW+NETW+NETBF+NETW+2,1,NEEW+NETTF+NEEW+
NETW+NETBF+NETW+3,1,0,SPAN/NES,0                                                                 
Type,1 
Mat,1 
Real,2 
e,1,2,NEEW+NETTF+NEEW+NETW+NETBF+NETW+4,NEEW+NETTF+NEEW+NETW+N
ETBF+NETW+3 
egen,NEEW+NETTF+NEEW,1,1, 
Real,1 
e,(2*NEEW)+NETTF+2,(2*NEEW)+NETTF+3,(2*NEEW)+NETTF+(2*NETW)+NETBF+NE
TTF+(2*NEEW)+5,(2*NEEW)+NETTF+(2*NETW)+NETBF+NETTF+(2*NEEW)+4 
egen,(2*NETW)+NETBF,1,NEEW+NETTF+NEEW+1 
egen,NES,2*NEEW+ !Example Input deck for Box girder section  
!Trapezoid bottom Flange Width 
*ask,TBFW,Trapezoid bottom Flange Width (m),6 
!Trapezoid bottom Flange thickness 
*ask,TBFT,Trapezoid bottom Flange Thickness (m),0.3 
!Trapezoid top Flange Width1 
*ask,TTFW,Trapezoid Top Flange Width (m),6 
!Trapezoid top deck thickness 
*ask,TTFT,Trapezoid Top Deck Thickness (m),0.3 
!Trapezoid web thickness 
*ask,TWT,Trapezoid Web thickness (m),0.3 
!Trapezoid web depth 
*ask,TWD,Trapezoid Web Depth (m),3 
!Extra wing width 
*ask,EWW,Extra wing width (m),1.8 
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!Extra wing thickness 
*ask,EWT,Extra wing thickness (m),0.3 
!Span 
*ask,SPAN,span(m),54 
!No Elems in Extra wing 
*ask,NEEW, No of elements in Extra wing,3 
!No Elems in trapezoid top flange 
*ask,NETTF,No of elements trapezoid top flange,10 
!No Elems in trapezoid bottom flange 
*ask,NETBF,No of elements trapezoid bottom flange,10 
!No Elems in trapezoid web 
*ask,NETW,No of elements trapezoid web,5 
!No Elems in Span 
*ask,NES, No of elements in span,90 
/PREP7 
ET,1,SHELL63  
KEYOPT,1,3,0 
KEYOPT,1,4,0 
KEYOPT,1,5,0 
KEYOPT,1,6,0  
R,1,TBFT,TBFT,TBFT,TBFT,, 
R,2,TTFT,TTFT,TTFT,TTFT, , 
R,3,TWT,TWT,TWT,TWT, , 
R,4,EWT,EWT,EWT,EWT, ,   
MP,EX,1,17e9   
MP,PRXY,1,0.3 
!***************************** 
!***NODES FOR TOP DECK******** 
!***************************** 
n,1,0,0,0 
ngen,NEEW+1,1,1,,1,EWW/NEEW 
ngen,NETTF+1,1,NEEW+1,,1,TTFW/NETTF 
ngen,NEEW+1,1,NEEW+NETTF+1,,1,EWW/NEEW 
!********************************************** 
!***GENERATE NODE AT TOP OF WEB ON DECK******** 
!********************************************** 
n,NEEW+NETTF+NEEW+2,EWW,0,0 
!***************************** 
!***NODES FOR BOX SECTION******** 
!***************************** 
ngen,NETW+1,1,NEEW+NETTF+NEEW+2,,1,,,TWD/NETW 
NGEN,NETBF+1,1,NEEW+NETTF+NEEW+NETW+2,,1,TBFW/NETBF 
ngen,NETW+1,1,NEEW+NETTF+NEEW+NETW+NETBF+2,,1,,,-TWD/NETW 
!************************************************************* 
ngen,NES+1,NEEW+NETTF+NEEW+NETW+NETBF+NETW+2,1,NEEW+NETTF+NEEW+
NETW+NETBF+NETW+3,1,0,SPAN/NES,0                                                                 
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Type,1 
Mat,1 
Real,2 
e,1,2,NEEW+NETTF+NEEW+NETW+NETBF+NETW+4,NEEW+NETTF+NEEW+NETW+N
ETBF+NETW+3 
egen,NEEW+NETTF+NEEW,1,1, 
Real,1 
e,(2*NEEW)+NETTF+2,(2*NEEW)+NETTF+3,(2*NEEW)+NETTF+(2*NETW)+NETBF+NE
TTF+(2*NEEW)+5,(2*NEEW)+NETTF+(2*NETW)+NETBF+NETTF+(2*NEEW)+4 
egen,(2*NETW)+NETBF,1,NEEW+NETTF+NEEW+1 
egen,NES,2*NEEW+NETTF+2*NETW+NETBF+2,1,2*NEEW+NETTF+2*NETW+NETBF+
NETBF+2,1,2*NEEW+NETTF+2*NETW+NETBF 
 

B- APDL curved box girder 
1- Delta (δ =1 m) 

!Example Input deck for Box girder section  
!Trapezoid bottom Flange Width 
*ask,TBFW,Trapezoid bottom Flange Width (m),6 
!Trapezoid bottom Flange thickness 
*ask,TBFT,Trapezoid bottom Flange Thickness (m),0.3 
!Trapezoid top Flange Width1 
*ask,TTFW,Trapezoid Top Flange Width (m),6 
!Trapezoid top deck thickness 
*ask,TTFT,Trapezoid Top Deck Thickness (m),0.3 
!Trapezoid web thickness 
*ask,TWT,Trapezoid Web thickness (m),0.3 
!Trapezoid web depth 
*ask,TWD,Trapezoid Web Depth (m),3 
!Extra wing width 
*ask,EWW,Extra wing width (m),1.8 
!Extra wing thickness 
*ask,EWT,Extra wing thickness (m),0.3 
*ask,THETA,Angle(deg),8.48 
*ask,RD,Radius(m),365 
!Span 
*ask,SPAN,span(m),54 
!No Elems in Extra wing 
*ask,NEEW, No of elements in Extra wing,3 
!No Elems in trapezoid top flange 
*ask,NETTF,No of elements trapezoid top flange,10 
!No Elems in trapezoid bottom flange 
*ask,NETBF,No of elements trapezoid bottom flange,10 
!No Elems in trapezoid web 
*ask,NETW,No of elements trapezoid web,5 
CSYS,1 
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!No Elems in Span 
*ask,NES, No of elements in span,90 
/PREP7 
ET,1,SHELL63  
KEYOPT,1,3,0 
KEYOPT,1,4,0 
KEYOPT,1,5,0 
KEYOPT,1,6,0  
R,1,TBFT,TBFT,TBFT,TBFT,, 
R,2,TTFT,TTFT,TTFT,TTFT, , 
R,3,TWT,TWT,TWT,TWT, , 
R,4,EWT,EWT,EWT,EWT, ,   
MP,EX,1,17e9   
MP,PRXY,1,0.3 
!***************************** 
!***NODES FOR TOP DECK******** 
!***************************** 
n,1,RD,0,0 
ngen,NEEW+1,1,1,,1,EWW/NEEW 
ngen,NETTF+1,1,NEEW+1,,1,TTFW/NETTF 
ngen,NEEW+1,1,NEEW+NETTF+1,,1,EWW/NEEW 
!********************************************** 
!***GENERATE NODE AT TOP OF WEB ON DECK******** 
!********************************************** 
n,NEEW+NETTF+NEEW+2,RD+EWW,0,0 
!***************************** 
!***NODES FOR BOX SECTION******** 
!***************************** 
ngen,NETW+1,1,NEEW+NETTF+NEEW+2,,1,,,TWD/NETW 
NGEN,NETBF+1,1,NEEW+NETTF+NEEW+NETW+2,,1,TBFW/NETBF 
ngen,NETW+1,1,NEEW+NETTF+NEEW+NETW+NETBF+2,,1,,,-TWD/NETW 
!************************************************************* 
ngen,NES+1,NEEW+NETTF+NEEW+NETW+NETBF+NETW+2,1,NEEW+NETTF+NEEW+
NETW+NETBF+NETW+3,1,0,THETA/NES,0                                                                
Type,1 
Mat,1 
Real,2 
e,1,2,NEEW+NETTF+NEEW+NETW+NETBF+NETW+4,NEEW+NETTF+NEEW+NETW+N
ETBF+NETW+3 
egen,NEEW+NETTF+NEEW,1,1, 
Real,1 
e,(2*NEEW)+NETTF+2,(2*NEEW)+NETTF+3,(2*NEEW)+NETTF+(2*NETW)+NETBF+NE
TTF+(2*NEEW)+5,(2*NEEW)+NETTF+(2*NETW)+NETBF+NETTF+(2*NEEW)+4 
egen,(2*NETW)+NETBF,1,NEEW+NETTF+NEEW+1 
egen,NES,2*NEEW+NETTF+2*NETW+NETBF+2,1,2*NEEW+NETTF+2*NETW+NETBF  
 



233 
 

2- Delta (δ =2 m) 
The same as delta=1 but with different radius (RD) and Angle (THETA)   
*ask,THETA,Angle(deg),16.946 
*ask,RD,Radius(m),183.25 
 

3- Delta (δ=3 m) 
*ask,THETA,Angle(deg),25.361 
*ask,RD,Radius(m),123 
 

4- Delta (δ=4 m) 
*ask,THETA,Angle(deg),33.708 
*ask,RD,Radius(m),93.125 
 

5- Delta (δ=5 m) 
*ask,THETA,Angle(deg),41.966 
*ask,RD,Radius(m),75.4 
 

6- Delta (δ=6 m) 
*ask,THETA,Angle(deg),50.115 
*ask,RD,Radius(m),63.75 
  

7- Delta (δ= 7 m)     
*ask,THETA,Angle(deg),58.138 
*ask,RD,Radius(m),55.571 
 

8- Delta (δ= 8 m) 
*ask,THETA,Angle(deg),66.017 
*ask,RD,Radius(m),49.563 
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Appendix 5 

Ø Prestress Loss due to Elastic Shortening 
 

Elastic Modulus of Steel                          
Elastic Modulus of Concrete 
Modular ratio  

                          
Initial Prestress 
Cross Sectional Area of Tendons 
Initial stress in tendons 

               
Eccentricity of tendons 
Cross Sectional Area of Concrete Section 
Second moment of Area of Section 
Radius of gyration 

 
Stress in the concrete at the level of the tendons 

 
 
Change in tendon stress 

 
Loss of tendon force 

 
 
Tendon force after elastic shortening loss 

 
 
Elastic shortening losses with the addition of applied UDL 
Bending moment due to UDL (from FE model) 

 
Stress in the concrete at the level of the tendons 

mr
Es
Ecm

:=

sp0
P0
Ap

:=

r
Ic
Ac

:=

scg
sp0

mr
Ac

Ap 1
e2

r 2
+

æç
ç
è

ö÷
÷
ø

×

+
é
ê
ê
ê
ë

ù
ú
ú
ú
û

:=

Ds p mr scg×:=

DP Ds p Ap×:=

Mapplied 58703kN× m×:=

Es 200 kN× mm 2-
×:=

Ecm 17 kN× mm 2-
×:=

mr 11.765=

P0 45000kN×:=

Ap 41660mm2×:=

sp0 1080.173N mm 2-
××=

e 1.715m×:=

Ac 6.21 m2×:=

Ic 9.133m4×:=

r 1.213m×=

scg 17.577N mm 2-
××=

Ds p 206.786N mm 2-
××=

Peff P0 DP-:=

DP 8.615 103´ kN×=

Peff 36385kN×=
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Change in tendon stress 

 
 
Loss of tendon force 

 
 
Tendon force after elastic shortening loss in addition to applied UDL 

 
 

Ø Equivalent Load Calculation for Piecewise Linear Prestressing  
 
Length of Span 
 
 
Calculate Equivalent Loads at third points to produce the same moment as the UDL at 
midspan 


 
 
 
 
 
 
 
 

scg
sp0

mr
Ac

Ap 1
e2

r2
+

æç
ç
è

ö÷
÷
ø

×

+
é
ê
ê
ê
ë

ù
ú
ú
ú
û

Mapplied e×

Ic
-:=

Ds p mr scg×:=

DP Ds p Ap×:=

Peff P0 DP-:=

W
3Mapplied
Span

:=

scg 6.554 N mm 2-
××=

Ds p 77.1 N mm 2-
××=

DP 3.212 103´ kN×=

Peff 41788kN×=

Span 54m×:=

W 3261kN=


