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PMSF   Phenylmethanesulfonyl Fluoride 

POU2F1  Pou Class 2 Homeobox 1 

POU2F2  Pou Class 2 Homeobox 2 

PRKDC  Protein Kinase, Dna-Activated, Catalytic Polypeptide 

PTGES3  Prostaglandin E Synthase 3 

RIPK1   Receptor Interacting serine/threonine Kinase 1 

RIPK3   Receptor Interacting serine/threonine Kinase 3 
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RMA   Robust Multi-Array Average 

RNAP   RNA Polymerase 

RPM   Revolutions Per Minute 

S134   Serine 134 

S203   Serine 203 

S211   Serine 211 

S226   Serine 226 

S404   Serine 404 

SCAP   SREBF Chaperone 

SCF   Stem Cell Factor 

SD   Standard Deviation 

SDF1   Stromal cell-Derived Factor 1 

SDS   Sodium Dodecyl Sulfate 

SDS-PAGE  Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SEM   Standard Error Of The Mean 

SGK1   Serum/Glucocorticoid Regulated Kinase 1  

SMAD3  SMAD Family Member 3 

SMARCA4  SWI/SNF Related, Matrix Associated, Actin Dependent  

Regulator Of Chromatin, Subfamily A, Member 4 

STAT3  Signal Transducer And Activator Of Transcription 3 

STAT5B  Signal Transducer And Activator Of Transcription 5B  

STRING  Search Tool For The Retrieval Of Interacting Genes/Proteins 

STSFA  Signal Transduction Score Flow Algorithm 

SUMO   Small Ubiquitin-Like Modifier 

TBP   TATA-Binding Protein 

TBS   Tris Buffered Saline 

T-GR   Total GR 

TNF   Tumour Necrosis Factor 

TP53   Tumor Protein p53 

TRADD  TNF Receptor superfamily member 1A Associated via Death  

Domain 

TSC22D3  TSC22 Domain Family Member 3 
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TSG101  Tumor Susceptibility 101  

UBC   Ubiquitin C 

USCS   University of California Santa Cruz  
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Abstract 

 

Glucocorticoids and etoposide are used to treat acute lymphoblastic leukaemia (ALL) as 

they induce death in lymphoblasts through the glucocorticoid receptor (GR) and p53. 

However, glucocorticoid resistance, cell death mechanisms and the contribution of the 

bone marrow microenvironment to drug response/resistance all require investigation. 

 

Using microenvironment-mimicking conditioned media (CM), dexamethasone (a 

synthetic glucocorticoid) and etoposide to treat glucocorticoid-sensitive (C7-14) and 

glucocorticoid-resistant (C1-15) cells, pathways by which the microenvironment exerts 

its chemoprotective effect have been investigated. CM reduced caspase-3/8 activation, 

downregulated RIPK1 (necroptotic marker), and limited chemotherapy-induced BECN1 

downregulation, suggesting protective effects of CM. Glucocorticoids upregulated 

BIRC3 (which ubiquitinates RIPK1), whilst CM altered GR phosphorylation. GR 

occupancy was observed on the RIPK1, BECN1 and BIRC3 promoters and changed 

depending on its phosphorylation. High-molecular weight proteins reacting with the 

RIPK1 antibody increased with CM, and reduced following AT406 BIRC3 inhibitor 

treatment suggesting they represent ubiquitinated RIPK1. These results suggest 

mechanisms by which CM promotes survival, as well as indicating novel 

glucocorticoid-regulated pathways. 

 

Complementing laboratory investigation is the construction of a Boolean model of the 

GR‎ interaction‎ network‎ (GEB052,‎ GR‎ “interactome”)‎ containing‎ 52‎ nodes‎ (proteins,‎

inputs/outputs) connected by 241 interactions. In silico mutations and analyses have 

generated predictions that were subsequently validated on a genome-wide scale via 

comparison to microarray data. GEB052 demonstrated high prediction accuracy, 

consistently achieving a better prediction rate than a randomised model. Quantitative 

algorithmic analysis via microarray superimposition has also been performed, and lastly 

the model has been preliminarily validated as a clinical tool via superimposition of 

patient microarray data and comparing model predictions to clinical data. 
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In summary, this thesis provides novel insight into the effects of the microenvironment, 

and identifies new glucocorticoid-regulated pathways. The GEB052 model of GR 

signalling represents the novel application of this modelling approach to GR research, 

and generates accurate predictions. 
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Chapter 1 Introduction 

 

1.1 Introduction to Cancer 

 

Healthy cells in the body have a variety of mechanisms in place to ensure that they do 

not replicate beyond a certain point, or continue to grow despite mutations that they 

may have acquired. Such fine control of cell numbers is obviously essential to the 

healthy functioning of an organism, and yet in diseases such as cancer this control is 

disrupted (Donley and Thayer, 2013). Cancer is a broad term that incorporates a variety 

of different diseases but they share similar features, including the description that cancer 

is uncontrolled cell growth. Cancerous cells are those that have bypassed normal 

cellular mechanisms controlling cell fate and thus divide much more rapidly than their 

healthy counterparts. In advanced cases of cancer, the tumour (cancerous cell mass) can 

spread to other parts of the body and form secondary tumours in a process known as 

metastasis (Bashyam, 2002). 

 

The need to develop treatments for cancer, based both on humanitarian values as well as 

the impact of cancer to the economy, is self-evident. In 2014, there were 356,860 new 

cases of cancer across the UK whilst 163,444 individuals in the UK died from cancer in 

the same year. Incidence rates are also projected to increase by 2% between 2014 and 

2035 (CRUK, 2015b). In 2012, worldwide, there were approximately 14 million new 

cases of cancer, and approximately 8.2 million cancer-related deaths in the same year 

(WHO, 2015). 

 

In terms of the economic impact of cancer, it has been estimated that in 2008, cancer 

cost the economy approximately $895 billion. Importantly, this figure does not include 

the direct costs of treating cancer. It is thought that this economic impact is due to both 

premature death and disability, among other factors (ACS, 2010). Combined with the 

incidence and mortality statistics, there is an obvious need to improve therapeutics to 

improve clinical outcomes for the sake of patients and reduce the economical stain that 

cancer causes. 
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1.2 The Hallmarks of Cancer 

 

Decades of research into different types of cancer has unveiled similar mechanisms of 

disease progression across different types of cancer. These common mechanisms that 

change healthy cell populations to cancerous cell populations have been referred to as 

the‎ “hallmarks‎ of‎ cancer”‎ and‎ have‎ been‎ described‎ in‎multiple‎ papers‎ (Hanahan and 

Weinberg, 2000; Hanahan and Weinberg, 2011). Initially, there were six hallmarks of 

cancer that were described: sustaining proliferative signalling; limitless replicative 

potential; evading growth suppressors; resisting cell death; sustained angiogenesis and 

tissue invasion and metastasis (Hanahan and Weinberg, 2000). Hanahan and Weinberg 

(2000)‎described‎these‎as‎“acquired‎characteristics”,‎reflecting‎the‎idea‎that‎healthy‎cells‎

will obtain these characteristics and thus develop into cancerous cells. 

 

Although different cancers may all acquire the hallmarks of cancer, they may acquire 

these features in different ways. For example, sustaining proliferative signalling may be 

achieved through autonomous production of growth factor ligands, which cancer cells 

then respond to through their cognate receptor. As an alternative, it is possible that 

cancer cells could signal to healthy cells in the periphery and be supplied with growth 

factors in that way (Hanahan and Weinberg, 2011). Thus, although cancers may share 

the characteristic hallmarks, it is possible that they acquire them in a different way thus 

complicating treatment and options to reduce chemoresistance, as well as explaining the 

complexity behind understanding cancer development. 

 

Genomic instability was also identified as an‎ “enabling‎ characteristic”‎ of‎ cancer‎

progression (Hanahan and Weinberg, 2000). In reality mutation is a rare phenomenon 

and there are checkpoints in place (such as cell cycle checkpoints) to ensure that cells 

with mutations do not replicate – and yet the acquired hallmarks require some genetic 

mutation prior to their emergence. The amount of mutations required to accumulate the 

hallmarks of cancer would require a length of time that exceeds the normal human 

lifespan and thus pre-existing genomic instability facilities the acquisition of mutations 

that allow the hallmarks of cancer to be developed (Hanahan and Weinberg, 2000). 
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More than a decade after the first hallmarks of cancer paper, an update was released 

(Hanahan and Weinberg, 2011). Following new discoveries and an increased 

understanding of cancer aetiology, two additional acquired characteristics (described as 

“emerging‎hallmarks”)‎ and‎one‎additional‎enabling‎characteristic‎were‎described.‎The‎

two additional acquired characteristics were the reprogramming of metabolic processes 

and evasion of the immune system. It is increasingly evident that cancer cells reprogram 

their metabolism to fuel their high proliferative rate and this appears to be as common to 

different cancers as the other six previously-established hallmarks. 

 

Evasion of the immune system relates to the idea that the immune system can play a 

role in tumour suppression. It has been shown that tumour transplants from 

immunocompromised mice to immunocompetent mice were inefficient at forming 

secondary tumours, indicating a role for the immune system in tumour regulation 

(Hanahan and Weinberg, 2011). In cases where tumours from immunocompetent mice 

were transferred to immunocompromised mice, there was no loss of efficiency in the 

formation of secondary tumours (Hanahan and Weinberg, 2011). This provides further 

evidence for tumour regulation by the immune system. Furthermore, it has been 

hypothesised that evasion of immune surveillance is a mechanism by which leukaemia 

cells can survive (Bakker et al., 2016). Thus, the ability to evade immune detection is 

one that may also be a characteristic of cancer progression. 

 

The additional enabling characteristic described in the second paper was classified as 

tumour-promoting inflammation. Although immune evasion is described as a hallmark 

of cancer, inflammation may be pro-tumourigenic; for example, the inflammatory 

response may supply the cancer cells with bioactive molecules, including factors such 

as anti-apoptotic signalling and enzymes that aid in angiogenesis (Hanahan and 

Weinberg, 2011). 

 

The identification of common features across different cancers facilitates the 

development of novel therapeutics and thus is hugely important to study. The factors 

identified by Hanahan and Weinberg (Hanahan and Weinberg, 2000; Hanahan and 
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Weinberg, 2011) are useful in this regard, though it is of course important to study 

individual cancers and isolate the specifics of individual tumour types. 

  

1.3 Types of Cancer and Types of Leukaemia 

 

Although different cancers may share hallmarks of development and some clinical 

features, cancer is not one disease that occurs in different parts of the body but rather is 

a group of diseases that share similar properties. Further complicating the issue is that 

even for the same cancer, there can be both inter- and intra-tumoural heterogeneity, 

which makes it harder to both diagnose and successfully treat. Furthermore, because 

many different cell in the body could become cancerous, it has been estimated that there 

are over 200 different types of cancer (CRUK, 2015d). 

 

Despite this, cancer may be classified based on its characteristics such as the origin 

point of the tumour: sarcomas (originating from supporting cells such as bone and fat); 

carcinomas (cellular lining of external and internal body surfaces); 

lymphomas/myeloma (lymph nodes and immune cells); leukaemia (immature blood 

cells that grow in the bone marrow and spread through the bloodstream in high 

numbers) and brain/spinal cord cancers (CRUK, 2014b). Detail regarding incidence 

rates of different cancer types within the UK can be seen in Figure ‎1.3.1:  
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Figure ‎1.3.1: Incidence rates of different cancers. 

Types of cancer are shown on the y-axis whilst the number of persons are shown on the x-axis. Adapted 

from Cancer Research UK (CRUK, 2016). 

 

In addition to Figure ‎1.3.1 above, Figure ‎1.3.2 shows survival rates for different types of 

common cancers: 
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Figure ‎1.3.2: Survival rates for common cancers at one, five, and ten years. 

Cancer types are shown on the y-axis whilst the survival rate is shown on the x-axis. Green, red and blue 

bars indicate one, five and ten-year survival respectively. Adapted from Cancer Research UK (CRUK, 

2014a). 

 

As is clear from Figure ‎1.3.2, cancer mortality is still an issue. Projected ten-year 

survival for all cancer types is only 50%, indicating an urgent need to develop novel 

therapeutics and uncover the mechanisms behind cancer development. 

 

Although there are broad different types of cancer listed above in Figure ‎1.3.1 and 

Figure ‎1.3.2, within each type there are multiple sub-types and classifications within 

one type of cancer. With regard to leukaemia, it can be split into two broad 

classifications: acute and chronic. Acute leukaemia develops very quickly, and requires 

immediate treatment (ASH, 2008; Hoffbrand and Moss, 2011). On the other hand, 

chronic leukaemia develops much more slowly, can be asymptomatic for a great length 

of time, for months or even years (CRUK, 2015a). 
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Leukaemia can be further classified depending on the cell type from which the cancer 

originates. Leukaemia may thus be classified into one of four broad types: chronic 

lymphocytic leukaemia; chronic myelogenous leukaemia; acute lymphocytic leukaemia 

and acute myelogenous leukaemia. Myelogenous leukaemia refers to cancer of cells that 

will develop into blood cells such as erythrocytes and platelets, whilst lymphocytic 

leukaemia refers to cancer originating from cells that will become lymphocytes (ASH, 

2008; Hoffbrand and Moss, 2011). 

 

1.4 Acute Lymphoblastic Leukaemia 

 

Acute lymphoblastic leukaemia (ALL) is the most common form of childhood cancer 

(Cardoso et al., 2008; NCI, 2016b). As a cancer of lymphoblasts, immature immune 

cells, ALL may be of either early pre-B, pre-B-, B-cell or T-cell origin (Pui et al., 1990) 

with approximately 15% being T-ALL (Cardoso et al., 2008). Although paediatric 

patients with T-ALL generally have a poorer prognosis than the B-ALL counterparts, 

this difference can be corrected for by appropriately intensive treatment (NCI, 2016a; 

Pui et al., 1990). 

 

There are approximately four hundred diagnoses of paediatric ALL per year in the UK, 

and half of these diagnoses occur in children under five (Macmillan, 2016). Boys are 

affected at a slightly higher rate than girls, and the peak age of incidence for paediatric 

ALL is between 2-5 years old (Swensen et al., 1997). Symptoms of the disease include: 

pale skin; general fatigue and bone and joint pain; feeling breathless; repeated 

infections; weight loss; abdominal pain (due to a swollen liver or spleen); easily bruised 

skin; high temperature; night sweats and unusual, frequent bleeding (such as 

nosebleeds) (NHS, 2016). In cases of disease spread to the central nervous system, 

additional symptoms can include dizziness, vomiting, blurred vision, seizures and 

headaches (NHS, 2016). 

 

The exact aetiology and underpinnings of ALL development remains unclear, despite 

decades of research (Wiemels, 2012). Despite this, several factors have been implicated 

as a risk factor for ALL development, such as exposure to household chemicals; one 
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analysis found that ALL susceptibility may be linked to the use of solvents in paints 

(Freedman et al., 2001). Other environmental factors such as birth order in families and 

whether or not the child attends day-care have also been implicated (Chang et al., 2011). 

Day-care attendance is thought to decrease the probability of developing ALL through 

early exposure to common infectious agents. Risk factors that have been demonstrated 

for other cancer types such as ionising radiation and parental smoking have been 

identified for ALL (Wiemels, 2012). 

 

Unlike for other cancer types such as chronic myeloid leukaemia where there is a clear 

genetic causal factor, ALL has no such identified root cause. However, several genetic 

aberrations appear to occur at a higher rate in ALL patients than healthy individuals 

such as trisomy 21 (Watson et al., 1993) and translocations such as t(12;21) and t(9;22) 

which form the oncogenic fusion proteins TEL/AML-1 and BCR-ABL respectively 

(Velders et al., 2001). 

 

Curiously, there is a difference in the relative occurrence of different translocations 

between childhood and adulthood ALL; the Philadelphia chromosome (t(9;22)) is 

implicated in only 2-6% of childhood ALL cases, but approximately 25% of adult ALL 

cases (Velders et al., 2001). The opposite is true for the t(12;21) translocation; while 

present in only 2% of adult cases, it is present in 30% of childhood cases. These genetic 

differences between adult and paediatric cases of ALL could potentially provide a 

partial explanation for the different clinical outcomes that are observed between adult 

and child groups. 

 

For children, ALL is one of the most survivable cancers, with a successful treatment 

rate of approximately 80%. Adults, however, have a much poorer prognosis, with only 

30% cured; thus the difference between child and adult ALL in terms of prospects is 

substantial (Velders et al., 2001). This difference is potentially explained by the 

different trends in genetic mutations between adult and child cases, which in turn 

complicate the underlying aberrant molecular pathways, which may be altered both 

between adult and children, as well as inter- and intra-tumoural variation between 

individuals of the same group. 
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Treatment for ALL consists of multimodality therapy, with possible treatment options 

including approaches such as radiotherapy and chemotherapy. Radiotherapy employs 

the use of high-energy waves to induce cancer cell death and stop their growth, and may 

be used in conjunction with high-dosage chemotherapy in cases where ALL has 

metastasised to the brain and spinal cord, as chemotherapy is typically insufficient at 

reaching those areas (NCI, 2016b). However, radiotherapy in general is avoided where 

possible due to side-effects and the possibilities of long-term issues such as blindness 

(Margileth et al., 1977). 

 

1.5 Chemotherapy for ALL 

 

Chemotherapy treatment for ALL consists of a variety of drugs that are utilised in 

combination to exert an anti-cancer effect. Chemotherapy itself is of several phases: 

induction phase; consolidation phase; interim maintenance phase; delayed 

intensification phase; and maintenance phase (AboutKidsHealth, 2010; Cooper and 

Brown, 2015). Induction chemotherapy is the first stage of chemotherapeutic treatment 

and aims to eliminate cancerous lymphoblasts and induce remission. Multiple drugs are 

used at the induction phase such as asparaginase, vincristine, dexamethasone and 

methotrexate (Esterhay et al., 1982). Induction typically lasts 29 days, followed by a 

week of rest from chemotherapy (AboutKidsHealth, 2010). 

 

Following induction, an MRD (minimal residual disease) test is carried out; if negative, 

then no lymphoblasts are detected. However, if the test is positive then leukaemic cells 

are detected, and the child is placed into either very-high or high-risk, and may receive a 

bone marrow transplant or undergo more intensive chemotherapy (AboutKidsHealth, 

2010). 

 

Consolidation is the second phase of chemotherapy, which is performed as there may 

still be circulating lymphoblasts that are undetectable by the MRD test. Consolidation 

typically lasts between four to eight weeks and the same drugs from the induction phase 

may be utilised, or other new drugs such as etoposide added (AboutKidsHealth, 2010; 
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Pinkerton et al., 1987). The third phase of chemotherapy, the interim maintenance 

phase, lasts for eight weeks and servers a similar function to the consolidation phase. 

Vincristine, mercaptopurine, as well as methotrexate are examples of drugs utilised at 

this stage. 

 

The fourth stage of chemotherapy, delayed intensification phase, serves as another 

induction and consolidation phase and lasts for approximately eight weeks. Drugs such 

as vincristine are again utilised, but other drugs such as doxorubicin may also be 

prescribed. The final stage of chemotherapy, maintenance phase, lasts for two to three 

years, and is the point at which leukaemic cells are no longer detectable. Cancer cells 

may however still be present so this stage serves to prevent relapse (AboutKidsHealth, 

2010). 

 

1.6 Glucocorticoid Steroid Hormones 

 

One key class of chemotherapy drugs utilised in the treatment of ALL are 

glucocorticoid steroid hormones (GCs), utilised both for their immunosuppressive and 

anti-inflammatory properties as well as their ability to induce apoptosis in lymphoid 

malignancies (Schmidt et al., 2004; Piovan et al., 2013). Glucocorticoids are one of the 

most important drugs for ALL therapy, and are included in virtually all chemotherapy 

regimens for lymphoid malignancies (Schmidt et al., 2004). Rather than the natural 

glucocorticoid cortisol, synthetic glucocorticoids such as prednisolone and 

dexamethasone are utilised, due to the fact that synthetic glucocorticoids are both more 

stable and more potent than their natural counterparts (Inaba and Pui, 2010; Mokra and 

Mokry, 2011). Glucocorticoid use in chemotherapy for ALL previously utilised 

primarily prednisolone, though dexamethasone has seen increasing use recently, 

potentially due to its ability to penetrate the central nervous system and longer half-life, 

as well as its higher potency (Inaba and Pui, 2010). 
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Figure ‎1.6.1: Chemical structures of various glucocorticoids. 

Cortisol (far left) is the natural corticosteroid within the body, whilst prednisone (second left), 

prednisolone (first right) and dexamethasone (far right) are synthetic glucocorticoids with higher potency 

and stability than cortisol. Adapted from Inaba and Pui (2010). 

 

Glucocorticoids are prescribed for their treatment of ALL for their ability to induce cell 

death in white blood cells, though as stated earlier this is not their sole role. Within 

healthy individuals glucocorticoids are involved in a variety of bodily functions such as 

metabolism, the stress response, and growth and development. The other main use of 

glucocorticoids clinically is their prescription as anti-inflammatory agents (Zhou and 

Cidlowski, 2005). A common problem with the use of glucocorticoids in the clinic is 

that due to their diverse range of effects in the body, they often have numerous side-

effects‎ in‎ patients,‎ such‎ as‎weight‎ gain‎ (and‎ potentially‎Cushing’s‎ syndrome),‎ fragile‎

skin (leading to easy bruising), impaired wound healing, cardiovascular problems and 

potentially even behavioural issues (Stanbury and Graham, 1998). For children, the two 

main side effects that are a cause for concern are suppression of the immune response 

(leading to infection) and suppression of growth (Deshmukh, 2007). 

 

1.7 The Hypothalamic-Pituitary-Adrenal (HPA) Axis 
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Figure ‎1.7.1: Schematic representation of the HPA axis. 

In addition to circadian rhythm, stress triggers the release of corticotropin-releasing hormone (CRH) from 

the hypothalamus which promotes the release of adrenocorticotropic hormone (ACTH). ACTH in turn 

stimulates the adrenal gland to release glucocorticoids, which self-limit their own production through two 

negative feedback loops targeting both the anterior pituitary gland and the hypothalamus. 
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Glucocorticoid production in the body is controlled by the hypothalamic-pituitary-

adrenal (HPA) axis within the body. As summarised in Figure ‎1.7.1, following a trigger 

such as a stress signal, corticotropin-releasing hormone (CRH) is released by the 

hypothalamus, which stimulates the pituitary gland to release adrenocorticotropic 

hormone (ACTH) (Kadmiel and Cidlowski, 2013). ACTH then travels through the 

blood to the adrenal gland and stimulates the release of cortisol from the zona 

fasciculata of the adrenal cortex (O'Connor et al., 2000). Cortisol then self-regulates its 

own production through two negative feedback loops targeting both the pituitary gland 

and the hypothalamus (Kadmiel and Cidlowski, 2013). Cortisol itself is the active form 

of‎ the‎ hormone,‎ which‎ is‎ converted‎ from‎ inactive‎ cortisone‎ by‎ 11β-Hydroxysteroid 

dehydrogenase (11beta-HSD). Two forms of 11beta-HSD exist, 11beta-HSD1 and 

11beta-HSD2, the former of which converts cortisone to cortisol whilst the latter 

converts cortisol to inactive cortisone (Tomlinson and Stewart, 2001). 

 

1.8 The Glucocorticoid Receptor 

 

Regardless of whether the glucocorticoid in question is natural or synthetic, it is 

commonly accepted that most if not all of the actions of glucocorticoids are mediated 

through its intracellular receptor, the glucocorticoid receptor (GR) (Zhou and 

Cidlowski, 2005). The GR is a member of the steroid hormone receptor family (Khan et 

al., 2011) and a member of the nuclear receptor superfamily (Mangelsdorf et al., 1995). 

 

The nuclear receptor superfamily is divided into four broad types based on dimerisation 

and DNA-binding properties. Steroid hormone receptors are Type I, and are ligand-

dependent receptors that form homodimers and translocate from the cytoplasm to the 

nucleus following activation. Type II receptors include ligand-dependent receptors that 

are not steroid hormone receptors and are distinguished from Type I receptors by virtue 

of the fact that they reside in the nucleus bound to their DNA regions even in the 

absence of a ligand, in addition to the fact that they form heterodimers with retinoid X 

receptor. Type III nuclear receptors are similar to Type I except that their DNA 

response elements exhibit a different organisation (direct repeat instead of an inverted 
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repeat) whilst Type IV nuclear receptors bind as monomers to half-site response 

elements (Mangelsdorf et al., 1995; Sever and Glass, 2013) 

 

As with other members of the nuclear receptor superfamily, and as detailed in Figure 

‎1.8.1, the GR has features such as a central DNA-binding domain (DBD) consisting of 

two zinc fingers, and a ligand-binding domain (LBD) which controls hormone 

recognition and response selectivity (Mangelsdorf et al., 1995). 

 

 

Figure ‎1.8.1: Structure and relative location of human GRα domains. 

GR has numerous domains including the N-terminal domain, the DNA binding domain (DBD), and the 

C-terminal domain. The hinge region, nuclear localisation signal (NLS) and activation functions 1 and 2 

(AF-1 and AF-2) are important determinants of GR activity. Adapted from Kadmiel and Cidlowski 

(2013). 

 

The gene for the GR is located on chromosome five, more specifically 5q31-32 and the 

full-length GR protein is approximately 94 kilodaltons (kDa), consisting of several 

domains as detailed above in Figure ‎1.8.1 (Gehring et al., 1985; Quax et al., 2013; 

Japiassu et al., 2009). Domains for the GR include the N-terminal domain (NTD), the 

DNA-binding domain (DBD), the hinge region, and the C-terminal region, which 

contains the ligand-binding domain (LBD) (Zhou and Cidlowski, 2005). 

 

The N-terminal region of the GR contains the AF-1 (activation function 1) region, 

which is important for the interaction of the GR with its cofactors (Kadmiel and 

Cidlowski, 2013). The N-terminal region also contains important sites for post-

translational modifications such as phosphorylation which can have positive or negative 

effects on its activity depending on the site and type of modification (Oakley and 

Cidlowski, 2011). 
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The DBD of the GR allows it to interact with and bind to specific DNA sequences 

within genes called glucocorticoid response elements (GREs). The consensus GRE is a 

palindromic sequence consisting of two active half-sites (underlined): 

AGAACANNNTGTTCT (Del Monaco et al., 1997). However, because this is only a 

consensus sequence, the GR may regulate genes whose putative GREs do not closely 

match the consensus GRE (Le et al., 2005), and the GR may regulate genes without 

binding to a GRE, for example through the recruitment of cofactors or processes such as 

tethering (Teurich and Angel, 1995). This is expanded upon in the subsequent section 

“Mode of Action of Glucocorticoids” (Page 36). 

 

The hinge region of the GR has been shown to play a role in GR dimerisation (Savory et 

al., 2001) and is located between DBD and LBD. The first nuclear localisation signal 

(NLS1) is located in the hinge region (Carrigan et al., 2007) and it has been suggested 

that the hinge region allows the GR to have structural flexibility, which allows a single 

GR protein to contact multiple GREs (Nicolaides et al., 2010). 

 

As stated earlier, the C-terminus of the GR contains the ligand-binding domain, whose 

crystal structure contains twelve alpha helices and four beta sheets (Nicolaides et al., 

2010). The LBD also contains a section activation function region (AF-2) and a second 

nuclear localisation signal (NLS2) (Duma et al., 2006). As the name implies, the LBD is 

crucial to the ligand-dependent response of the GR and plays a role in cofactor 

interaction (Nicolaides et al., 2010). 

 

Alternative splicing of GR messenger RNA (mRNA) can lead to multiple protein 

isoforms‎of‎the‎protein,‎with‎the‎two‎most‎common‎being‎GRα‎(the‎classical‎GR)‎and 

GRβ‎ (Duma et al., 2006).‎ Though‎ GRβ‎ can‎ exert‎ a‎ dominant-negative effect when 

overexpressed (Duma et al., 2006), it appears to be transcriptionally inactive (Oakley et 

al., 1999). Both of these effects may be due to its inability to bind to the GC hormone, 

and‎ the‎dominant‎negative‎ effect‎may‎also‎be‎due‎ to‎ the‎ fact‎ that‎GRα‎and‎GRβ‎can‎

form heterodimers (Oakley et al., 1999). However, it has also been hypothesised that the 

dominant-negative‎effect‎of‎GRβ‎is‎explained‎through‎its‎competition‎to‎bind‎cofactors‎

(Charmandari et al., 2005).‎An‎important‎point‎is‎that‎the‎ratio‎between‎GRα‎and‎GRβ‎
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has been determined for different cell types, and this ratio is a key determinant of GR 

activity and hormone response (Schaaf and Cidlowski, 2002).‎GRγ,‎GR-A and GR-P are 

other splicing isoforms and each has been implicated in glucocorticoid resistance 

(Oakley and Cidlowski, 2011; Moalli et al., 1993). In addition to mRNA splicing forms 

leading to GR protein isoforms, alternative translation (use of different start codons) has 

also been identified for GR, leading to numerous forms in total. These alternatively 

translated GR proteins also play a role in glucocorticoid response (Lu and Cidlowski, 

2005). 

 

1.9 Mode of Action of Glucocorticoids 

 

 

 

Figure ‎1.9.1: Classical mode of action of glucocorticoids. 

The classical model for the activation of the glucocorticoid receptor (GR) is that in the absence of a 

ligand, the GR exists in the cytoplasm bound to chaperones such as heat-shock proteins (HSPs).  

Following ligand binding, these chaperones dissociate and, for transactivation, the GR would dimerise, 

translocate to the nucleus, and bind to a glucocorticoid response element (GRE) and facilitate target gene 

activation through the recruitment of cofactors. Transrepression under the classical model occurred via 

GR monomers. 
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A summary of the classical model for the control of the glucocorticoid receptor is 

summarised in Figure ‎1.9.1. The classical model states that in the absence of a ligand 

the GR is maintained in a stable state in the cytoplasm through interaction with 

chaperones such as heat-shock protein 90 (HSP90), heat-shock protein 70 (HSP70), 

PTGES3 (prostaglandin E synthase 3) and other chaperones. This complex stabilises the 

GR protein and prevents its degradation (Echeverría et al., 2009). Activation of the GR 

occurs following the entry of a glucocorticoid into the cell. It was originally 

hypothesised that ligand binding of the GC to the GR would cause dissociation of the 

chaperones such as HSP90, expose the nuclear localisation signal of the GR and cause 

its translocation into the nucleus, where it would affect its target genes (Vandevyver et 

al., 2012). However, this view has been challenged, as some studies have shown that 

HSP90 does not dissociate from the GR during translocation, rather it is instead 

required for nuclear import (Galigniana et al., 1998; Echeverría et al., 2009). 

 

Once in the nucleus, the GR will affect its target genes either by transactivation or 

transrepression. During transactivation the GR will bind to a GRE on the DNA of the 

target gene (consensus GRE sequence AGAACANNNTGTTCT). This binding will 

stimulate transcription of the gene either through direct interaction with transcription 

machinery or recruitment of chromatin remodelling complexes. During transrepression, 

the GR will bind to a negative GRE (nGRE), the consensus sequence of which is less 

well-defined than for GREs; though a potential sequence described is 

ATYACNNTNTGATCN (Schoneveld et al., 2004). Following binding to the nGRE the 

GR will inhibit the expression of that gene either by direct inhibition or prevention of 

the binding of general transcription factors (Schoneveld et al., 2004). 

 

It is possible for the GR to regulate genes by binding as a monomer to GRE half-sites 

(Segard-Maurel et al., 1996). Typically, the GR requires additional factors to regulate 

genes containing a GRE half-site, however if multiple GRE half sites are present the 

gene may be rendered glucocorticoid-inducible (Schoneveld et al., 2004). In addition to 

GREs, there are GRUs (glucocorticoid response units), which are composite regulatory 

elements containing not only GREs, but also binding sites for other transcription 

factors. GRUs may typically exhibit a stronger response to induction than GREs, though 
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this may not always be the case (Schoneveld et al., 2004; Scott et al., 1998). Lastly, the 

GR may also regulate genes through a process known as tethering; transcription factors 

other than the GR will bind to the DNA of their target gene, and recruit the GR to serve 

as a co-regulator independent of the GR binding to a GRE (Stocklin et al., 1996). 

Tethering may affect the target gene in a positive or a negative manner (Schoneveld et 

al., 2004). 

 

Because both transactivation and transrepression are facilitated through binding to a 

GRE,‎ a‎ question‎ often‎ arises‎ as‎ to‎ how‎ the‎ GR‎ can‎ “decide”‎ to‎ repress‎ or‎ activate.‎

Understanding this difference could lead to improved therapeutics as the side-effects of 

glucocorticoids detailed earlier can often arise from the opposite molecular pathway that 

cause the therapeutic effect – for example transrepression may be useful therapeutically 

(i.e. anti-inflammatory effect) whilst transactivation pathways cause the side-effects 

(Sedwick, 2014). A currently explored approach in research is investigating what is 

called “dissociated”‎glucocorticoid receptor ligands that are capable of transrepression 

or transactivation but not transactivation or transrepression respectively. A currently 

investigated compound is Compound A (Liberman et al., 2012). It is envisaged that 

dissociated glucocorticoid receptor ligands could improve therapy by reducing side-

effects. 

 

It was originally thought that when undertaking transactivation, the GR would dimerise, 

whilst GR monomers would undertake transrepression. This was thought due to several 

experiments conducted on a mutated GR protein (GRdim) which was thought to be 

unable to dimerise and could carry out transrepression but not transactivation. However, 

this view has recently been challenged as it has been shown that GRdim can in fact 

dimerise in vivo and a study found no difference between dimerisation state and 

transcriptional activity (Presman et al., 2014). Thus, further research into glucocorticoid 

function is necessary to fully understand its molecular effects and signalling 

mechanisms. 
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Figure ‎1.9.2: Summary of different mechanisms of GR action. 

The glucocorticoid receptor (GR) may regulate genes directly or indirectly through various mechanisms 

such as direct binding, binding with an additional cofactor, competitive binding, binding to a GRE 

(glucocorticoid response element) half-site or tethering. Figure adapted from Schoneveld et al. (2004).  

 

1.10 Glucocorticoid Receptor Post-Translational Modifications 

 

There are numerous ways in which the activity of a protein can be modified. In addition 

to regulation at the level of gene transcription, genes are also regulated at the mRNA 

level and when translated as proteins. Post-translational modifications occur by the 

addition of chemicals or small proteins to specific amino acid residues of the protein 

sequence. Numerous post-translational modifications exist, such as phosphorylation, 

ubiquitination and sumoylation, with each of these having different effects on the 

protein’s‎activity‎and‎function. 

 

Ubiquitination is the covalent attachment of a small protein (ubiquitin) to the modified 

protein. Ubiquitinated proteins are generally targeted toward the ubiquitin/proteasome-

dependent degradation pathway; thus, ubiquitination of the GR is linked to decreased 

activity through its degradation (Wang and DeFranco, 2005). However, ubiquitination 
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for other proteins has been shown to be important for maintenance of part of their 

activity (de Almagro et al., 2017), thus it should not be assumed that ubiquitination is 

equal to degradation. 

 

A similar process to ubiquitination is sumoylation, as it also involves the addition of a 

small protein to the modified protein. It has been established that the GR has three 

sumoylation sites: two in its N-terminal domain and one in the ligand-binding domain. 

Sumoylation involves the covalent attachment of SUMO (small ubiquitin-like 

modifier), a small protein, to the GR. Sumoylation of the GR typically has a repressive 

effect on its transcriptional capacity. However some studies have recently shown that 

sumoylation of the SUMO site within the ligand-binding domain can affect the GR 

positively (Druker et al., 2013). Moreover, it has been identified that phosphorylation of 

the GR at S246, which is the rat ortholog of human S226 (Lukic et al., 2015), can 

potentiate sumoylation of the GR, and that loss of S246 phosphorylation corresponded 

to loss of GR sumoylation (Davies et al., 2008)  

 

The most well-studied post-translational modification of the glucocorticoid receptor is 

phosphorylation, which is a post-translational modification that adds a phosphate group 

to specific amino acids such as serine or tyrosine. The GR contains many known 

phosphorylation sites as well as several putative ones, but the most well-studied in 

humans are serine 226 (S226), serine 211 (S211) and serine 203 (S203) and serine 404 

(S404). Phosphorylation at S203 and S404 correlate with reduced GR activity, whilst 

phosphorylation at S211 is correlated with increased transcriptional activity of the GR 

in leukaemia cells. However, phosphorylation at S226 correlates with a reduced 

hormone response, due to increased nuclear export of the GR (Galliher-Beckley and 

Cidlowski, 2009). 

 

The phosphorylation status of the GR is dependent upon kinases such as cyclin-

dependent kinases (such as CDK2) and ERK/p38 MAPK (mitogen-activated protein 

kinase), which modulate phosphorylation at S211, whilst phosphorylation at S226 is 

affected by JNK (c-Jun N-terminal kinase) and CDK5 (Lynch et al., 2010; Galliher-

Beckley and Cidlowski, 2009; Krstic et al., 1997). CDK5 is interesting as its function is 
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restricted to cells of the nervous system and it appears to phosphorylate the GR at 

multiple residues including S203, S211 and S226 (Galliher-Beckley and Cidlowski, 

2009). Phosphorylation also modulates the activity of other steroid receptors and is in 

fact one of the most well-studied post-translational modifications of steroid receptors 

(Faus and Haendler, 2006; Rochette-Egly, 2003). For several steroid receptors including 

the‎androgen‎receptor‎(AR),‎oestrogen‎receptor‎alpha‎(ERα)‎and‎oestrogen‎receptor‎beta‎

(ERβ)‎phosphorylation within the N-terminal (A/B) region by kinases such as MAPK or 

Akt‎facilitates‎coactivator‎recruitment,‎ thus‎exerting‎a‎positive‎effect‎on‎the‎receptor’s‎

activity (Rochette-Egly, 2003). Phosphorylation may also exert a negative effect on the 

activity‎ of‎ other‎ steroid‎ receptors,‎ such‎ as‎ phosphorylation‎ of‎ ERα‎ within‎ its‎ DNA‎

binding domain by PKA (Protein Kinase A/ Cyclic AMP-dependent protein kinase) 

(Rochette-Egly, 2003). Phosphorylation sites for different steroid receptors are shown in 

Figure ‎1.10.1: 

 

 

Figure ‎1.10.1: Phosphorylation sites in steroid nuclear receptors. 

Different nuclear receptors have similar structures including the glucocorticoid receptor (GR, top) 

progesterone receptor (PR, second), androgen receptor (AR, middle) and oestrogen receptor alpha and 

beta (ERα‎ and‎ ERβ,‎ bottom). Phosphorylation and post-translational modifications in general are key 

determinants of nuclear receptor activity. Figure adapted from Rochette-Egly (2003). 

 

It is crucial to have a detailed understanding of the post-translational modifications of 

the GR, as it is important towards improving therapies. For example it has been shown 
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that GC-resistant leukaemia exhibit defective S211 phosphorylation; if this 

phosphorylation aberration could be ameliorated then GC resistance may be overcome, 

allowing for improved therapeutics. 

 

1.11 Cofactors of the Glucocorticoid Receptor 

 

When bound to the DNA of its target genes, the GR will recruit cofactors that may be 

coactivators‎ or‎ corepressors.‎ Coactivators‎ are‎ recruited‎ and‎ may‎ act‎ as‎ a‎ “bridge”‎

between transcription machinery and the DNA-bound GR to begin transcription (Endler 

et al., 2014). In addition, coactivators may promote nucleosomal remodelling to make 

the DNA into a more accessible form to allow for activation, as described below 

(Kumar and Thompson, 2005). One common type of coactivator for nuclear receptors is 

histone acetyltransferases (HATs), which via histone acetylation promote unwinding of 

DNA and access of RNA polymerase II (Adcock, 2001). The GR is known to recruit 

HATs such as EP300 to facilitate the activation of target genes (Amat et al., 2007). 

Another type of coactivator for the GR include chromatin remodelers such as 

SMARCA4 (ATPase subunit of the SWI/SNF chromatin remodelling complex), which 

act via remodelling chromatin into a more accessible position for transcriptional 

machinery, exposing the GRE (Fryer and Archer, 1998). 

 

Corepressors may reduce transcription through for example the recruitment of histone 

deacetylases (HDACs), which induce a conformational change in the chromatin and 

makes it less accessible, thus reducing transcription (Gelmetti et al., 1998). HDACs 

serve as the opposite of HATs, as they deacetylate histones rather than acetylate. 

HDACs known to serve as corepressors for the GR include HDAC1 and HDAC6 

(Govindan, 2010; Jee et al., 2005). Other corepressors include NCOR1 and NCOR2, 

which are thought to achieve their repressive effects via recruitment of HDACs 

(Szapary et al., 1999; Ramamoorthy and Cidlowski, 2013). 

 

1.12 Overview of Transcription 
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The central dogma of molecular biology follows the logic that DNA is transcribed to 

RNA which is then translated to protein. Transcription itself is an essential process to 

both prokaryotic and eukaryotic cells, though the process is considerably more complex 

in eukaryotes (Cooper, 2000). Transcription is a process that is dependent upon RNA 

polymerase (RNAP). There are multiple types of RNAP, each regulating the 

transcription of different cellular components; for example RNAP I primarily 

transcribes ribosomal RNA whilst RNAP II is responsible for transcribing protein-

coding DNA to mRNA (Cooper, 2000). 

 

Transcription in eukaryotes is dependent not only upon RNAP, but also upon 

transcription factors. Transcription factors are broadly of two kinds: general 

transcription factors (those that are required for RNAP function and thus are relatively 

ubiquitous) and sequence-specific (such as the GR binding only to its target genes). 

Transcription by RNAP II is dependent upon binding to promoter regions, with the most 

common recognition sequence being an A-T rich sequence‎ commonly‎ called‎ “TATA 

box” which is typically thirty nucleotides upstream of the transcription start site. An 

early event is RNAP II transcription is the binding of the general transcription factor 

TFIID (comprised of subunits TBP (TATA-binding protein) and TBP-associated 

factors) to the TATA box, which is facilitated by transcription factors TFIIA and TFIIB 

(Imbalzano et al., 1994). TFIIB proceeds to bind RNAP II, and the transcription 

preinitiation complex is ultimately comprised of the aforementioned transcription 

factors in addition to others such as TFIIE, TFIIF and TFIIH (Cooper, 2000). 

 

The transcription cycle as a whole consists largely of three steps: initiation, elongation 

and termination. Initiation, which involves promoter binding, DNA melting and short 

RNA transcript synthesis, proceeds to elongation via a transition known as “promoter‎

escape”  (Conaway and Conaway, 2004). Following promoter escape and during 

elongation‎RNAP‎II‎ traverses‎along‎the‎coding‎region‎towards‎the‎3’‎end‎of‎the‎gene,‎

synthesising the RNA strand (Shandilya and Roberts, 2012). Lastly, termination occurs 

following mRNA synthesis when RNAP II dissociates from the DNA. Termination for 

protein-coding genes in eukaryotes commonly occurs through a poly-A site due to what 

is commonly referred to as the cleavage and polyadenylation complex recognising the 
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poly-A site and then cleaving the transcript (Shandilya and Roberts, 2012; Grzechnik et 

al., 2014). 

 

1.13 The Role of the Bone Marrow Microenvironment in Chemoresistance 

 

Although glucocorticoids are utilised as part of many treatment regimens for lymphoid 

malignancies, GC resistance and disease relapse remain a problem. Microenvironments 

(also called stem cell niches) have been defined as‎“local‎tissue‎microenvironments‎that‎

maintain‎ and‎ regulate‎ stem‎ cells”‎ (Morrison and Spradling, 2008). Within healthy 

adults, the microenvironment plays a crucial role in the maintenance of multipotent 

stem cells. In the case of the bone marrow microenvironment, haematopoietic stem cells 

(HSCs) are maintained in a quiescent state through interaction with the niche (see 

Figure ‎1.13.1). HSCs themselves differentiate into a variety of blood cell types such as 

leukocytes, erythrocytes, and platelets, indicating their importance (Bakker et al., 2016). 

 

The bone marrow microenvironment was classically said to consist of two parts: the 

endosteal niche and the vascular niche. The endosteal niche, also called the osteoblastic 

niche, comprises the inner surface of the bone cavity and is lined with cells that are 

involved in osteogenesis such as osteoclasts and osteoblasts. The vascular niche, also 

called the sinusoidal niche, is comprised of several structures including sinusoids, which 

are thin-walled blood vessels that serve as an interface between the circulating blood 

and marrow cavity (Bakker et al., 2016). As stated above and summarised in Figure 

‎1.13.1, the bone marrow microenvironment contributes to the maintenance of HSCs. A 

variety of factors are crucial to HSC maintenance, in particular CXCL12 (chemokine 

(C-X-C motif) ligand 12, also known as stromal cell-derived factor 1 (SDF1)) which is 

thought to be an important attractant for HSCs (Bakker et al., 2016) 
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Figure ‎1.13.1: Summary of the bone marrow microenvironment. 

Numerous signalling pathways between the microenvironment and haematopoietic stem cells (HSCs) and 

leukaemic stem cells (LSCs) may exist. Factors important for HSC maintenance include matrix 

metalloproteinase 9 (MMP9), stem cell factor (SCF), Chemokine (C-X-C motif) ligand 12 (CXCL12), 

and transforming growth factor beta (TGF-β).‎The‎bone‎marrow‎microenvironment‎is said to comprise of 

two components: the osteoblastic (endosteal) niche and the vascular (sinusoidal) niche. Figure taken from 

Bakker et al (2016). 

 

Understanding the maintenance of HSCs is crucial as it links to the concept of cancer 

stem cells (CSCs). CSCs are a sub-type of tumour that exhibit stem-like properties, such 

as the fact that they are capable of self renewal. CSCs have been identified in a variety 

of cancers, including leukaemia. Although the microenvironment is crucial for HSC 

maintenance in healthy individuals, it is also well-established that these niches may 

undergo a two-way exchange of information with circulating cancer cells that creates an 

environment suitable for cancer progression and tumour growth (Bakker et al., 2016). A 

summary of the different ways in which the microenvironment and cancer cells can 

communicate are shown in Figure ‎1.13.2: 
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Figure ‎1.13.2: Summary of microenvironment-leukaemia interactions. 

The microenvironment may communicate in a variety of ways such as cell-cell contact, secreted factors 

such as microvesicles, and modulation of the immune system to allow escape from immune detection. 

Figure taken from Bakker et al (2016). 

 

As is clear in Figure ‎1.13.2 above, there are numerous ways by which the 

microenvironment may nurture chemoresistance. Cell-cell contact between leukaemic 

cells and stromal cells is one method of communication, as are soluble factors as well as 

microenvironment-mediated immune evasion. Soluble factors include substances 

secreted by constituents of the microenvironment such as microvesicles (exosomes), 

which are small lipid vesicles that are conserved throughout evolution and contain 

substances such as microRNAs that can alter gene expression and cell fate (Bakker et 

al., 2016). An example of altered signalling by leukaemic cells and the 

microenvironment is the aforementioned CXCL12; though important for HSC 

maintenance and attraction, leukaemic stem cells (LSCs) are also attracted by CXCL12, 
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though they alter the niche via stem cell factor (SCF) which is important for 

haematopoiesis (Bakker et al., 2016). 

 

Ultimately leukaemia cells may have a two-way exchange with the niche, be affected by 

secreted factors such as cytokines, and acquire a chemoresistant phenotype (Konopleva 

et al., 2009). Although the microenvironment may nurture chemoresistance, it is 

possible for this to be overcome through targeted therapy aimed at eliminating the 

factors that promote a drug-resistant phenotype (Sison et al., 2013). Thus, an increased 

understanding of the microenvironment and how it can contribute to leukaemic 

chemoresistance is important towards improving therapies and clinical outcomes. 

 

Research has made it possible to simulate certain properties of the microenvironment in 

vitro.‎This‎ approach‎utilises‎what‎ is‎ called‎ “conditioned‎media”‎ – that is, cell growth 

media that has been incubated with (for example) bone cells for a set period of time. 

After incubation, and after which the bone cells should have secreted factors into the 

media, this media is collected, processed and ultimately utilised as part of the media 

used to grow leukaemia cells. It has been demonstrated that this conditioned media can 

also exert a chemoprotective effect on leukaemia cells (Gordon et al., 2014; Liu et al., 

2012; Liu et al., 2015). 

 

Previous analysis has utilised the approach of conditioned media to investigate 

glucocorticoid resistance. As part of this a microarray experiment was carried out, 

treating glucocorticoid-sensitive cells with dexamethasone in the presence and absence 

of conditioned media (Qattan, 2014). The microarray revealed that conditioned media 

modulated the expression of numerous genes, but one gene that was significantly 

repressed by conditioned media was RIPK1 (receptor interacting serine/threonine kinase 

1), shown by the microarray to be significantly repressed at the mRNA level. RIPK1 is 

an interesting target as it is a key mediator of necroptosis, a form of cell death (see the 

next‎section,‎“Autophagy, Apoptosis, Necrosis and Necroptosis”) (Huang et al., 2013). 

It also plays a role in apoptosis (Loder et al., 2012), has been implicated in 

glucocorticoid-induced cell death (Belz, 2014), and its induction of necroptosis can be 
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reduced through autophagy (Bray et al., 2012). Combined, these highlight RIPK1 as an 

interesting target for future research. 

 

1.14 Autophagy, Apoptosis, Necrosis and Necroptosis 

 

Cells, both within the body and cultured in vitro, may survive and die through different 

processes and mechanisms. In summary there are four pathways to be considered: 

autophagy, apoptosis, necrosis, and necroptosis. Of‎these,‎apoptosis‎(“programmed‎cell‎

death”)‎ is‎ the‎ most‎ well-characterised and studied, with key morphological features 

such as nuclear condensation, fragmentation and cleavage of chromosomal DNA and 

packaging of the cell into apoptotic bodies (Edinger and Thompson, 2004). This is 

contrasted with necrosis and necroptosis, where morphological features are less well-

defined. However necrotic/necroptotic cells can be distinguished from apoptotic cells by 

their ruptured membrane and cytoplasmic vacuolation, and similarly autophagy, which 

is generally a pro-survival process, is characterised by the formation of autophagic 

vesicles (Edinger and Thompson, 2004). Healthy, apoptotic, autophagic and necrotic 

cell morphologies are shown in Figure ‎1.14.1: 
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Figure ‎1.14.1: Healthy (a), apoptotic (b), autophagic (c) and necrotic (d) cells. 

Cell morphology differs significantly between the four cell types, with features such as nuclear 

condensation for apoptotic cells (b), the formation of autophagic vesicles for autophagic cells (c) and 

ruptured membrane (d) for necrotic cells. Figure adapted from Edinger and Thompson (2004). 

 

The study of apoptosis has a long history. Initial apoptotic mechanisms were identified 

previously (Kerr, 1965) but the term apoptosis was not used until 1972 (Kerr et al., 

1972). Since then, a highly significant amount of research has been carried out to 

investigate the detailed mechanisms that underlie apoptosis. Apoptosis is characterised 

by multiple important steps: nuclear condensation and fragmentation; fragmentation of 

chromosomal DNA; and packing of deceased cell into apoptotic bodies to avoid 

immune detection (Edinger and Thompson, 2004). The overall signalling behind 

apoptosis is highly complicated, but two main pathways are recognised: the intrinsic 

pathway and the extrinsic pathway (Lawen, 2003; Chipuk and Green, 2006). 
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Figure ‎1.14.2: Intrinsic and extrinsic apoptosis. 

Two major apoptotic pathways exist, the intrinsic apoptotic pathway (left) and the extrinsic apoptotic 

pathway (right). The intrinsic pathway is characterised by the regulation of the BCL-2 family, and there is 

crosstalk between the two pathways following caspase-8 activation which leads to cleavage of BID (BH3 

interacting-domain death agonist). Adapted from Chipuk and Green (2006).  

 

The intrinsic apoptotic pathway is the more complex of the two and is characterised by 

the use of mitochondria; a key event in the intrinsic apoptotic pathway is the 

mitochondrial outer membrane permeabilisation (MOMP), which ultimately promotes 

the release of mitochondrial proteins (Spierings et al., 2005). The intrinsic apoptotic 

pathway occurs in response to a cellular stress such as DNA damage which triggers the 

regulation of BCL-2 family, a family of proteins that contain pro- and anti-apoptotic 

members (Ploner et al., 2008). BCL-2 proteins form what is called the BCL-2 rheostat 

whereby the switch to apoptosis or survival is regulated by the balance between relative 

activation of pro- and anti-apoptotic BLC-2 family members (Schlossmacher et al., 

2011). Activation of pro-apoptotic BCL-2 family members leads to MOMP, which 

releases of mitochondrial proteins such as cytochrome c into the cytosol, leading to the 

activation of APAF-1 (apoptotic protease activating factor 1), which induces a caspase 
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activation cascade beginning with pro-caspase-9 (Spierings et al., 2005). Mitochondrial 

proteins may also act as caspase-independent death effectors within the cell (Fulda and 

Debatin, 2006). 

 

Caspases are the main executors of apoptosis, cleaving important cellular entities such 

as actin to ultimately cause the migration of CAD (caspase-activated DNase) to the 

nucleus, which cleaves nuclear DNA, in turn leading to cell death (Lawen, 2003). 

 

The extrinsic apoptosis pathway is stimulated through ligand binding to death receptors 

of the tumour necrosis factor (TNF) superfamily (Fulda and Debatin, 2006). The TNF 

superfamily share common structural features, most importantly a cytoplasmic domain 

of approximately eighty amino acids called the‎“death‎domain”‎which‎plays‎a‎key‎role‎

in‎ transferring‎ the‎ apoptotic‎ signal‎ from‎ the‎ cell’s‎ surface‎ to‎ intracellular‎ pathways‎

(Elmore, 2007). As there are numerous death receptors each have been studied to a 

different degree, with the most well-characterised ligand-receptor pathways being FasL 

(FAS ligand)/FasR (FAS receptor) and TNF-α/TNFR1‎ pathways.‎Under‎ these,‎ ligand‎

binding to the receptor induces recruitment of factors such as FADD (Fas-associated 

protein with death domain), TRADD (TNF receptor superfamily member 1A associated 

via death domain) and RIPK1 (Elmore, 2007). FADD then associates with pro-caspase-

8, which is activated by the formation of a death-inducing signalling complex (DISC). 

 

The activation of pro-caspase-8 leads to the execution of downstream caspases such as 

caspase-3 and caspase-7 (Elmore, 2007). The extrinsic apoptotic pathway exhibits 

crosstalk with the intrinsic pathway through its cleavage of BID (BH3-interacting-

domain death agonist) which beings a process that ultimately induces MOMP (Chipuk 

and Green, 2006). The extrinsic apoptotic pathway can be blocked by CFLAR (CASP8 

(caspase-8) and FADD-like apoptosis regulator, also called c-FLIP) which binds FADD 

and caspase-8 to render them ineffective (Elmore, 2007). 

 

Autophagy is a cellular process that is linked to both cell death and cell survival (Gump 

and Thorburn, 2011). Autophagy is a‎term‎that‎refers‎to‎the‎“degradation‎of‎cytoplasmic‎

components‎ within‎ lysosomes”‎ (Mizushima, 2007) and is essentially a pro-survival 
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process, where autophagosome assembly leads to clearance of pathogens, proteins, and 

damaged organelles. Autophagy also helps cells to survive during periods of starvation 

(Gump and Thorburn, 2011). Despite this, autophagy has also been shown to influence 

apoptosis, as inhibition of key autophagic molecules lead to a reduction in mortality in 

one study (Yu et al., 2006), and inhibition of Beclin-1 (BECN1), previously 

demonstrated to be important for autophagy, resulted in inhibition of dexamethasone-

induced apoptosis in leukaemic cells (Laane et al., 2009). Thus, autophagy is a highly 

interesting process due to its complex nature. 

 

 

 

Figure ‎1.14.3: Overview of autophagy. 

Autophagy consists of several steps including initiation, nucleation, elongation, closure, maturation and 

degradation. Phagophore formation may be around various organelles including the endoplasmic 

reticulum (ER) and mitochondria, whilst the phagophore ultimately undergoes a stepwise maturation 

process. Figure adapted from Kang et al. (2011). 

 

Autophagy itself is mediated by autophagosomes, consists of several steps such as 

sequestration, degradation, and amino acid/peptide generation and is typically triggered 

due to factors such as starvation (Mizushima, 2007). The first step of autophagosome 

formation involves the sequestration of the cytoplasmic contents by the phagophore (or 

isolation membrane) which may be generated by sources such as the Golgi apparatus, 
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the endoplasmic reticulum or mitochondria (Kang et al., 2011). These membranes are 

then fused at their edges to create autophagosomes, double-membrane vesicles. 

Autophagosomes undergo a maturation process involving fusion with acidified vesicles, 

and eventually deliver the cytoplasmic contents to the lysosomal components, where 

contents are degraded and recycled (Kang et al., 2011). Key genes for the function of 

autophagy include ATG5 (autophagy protein 5), ATG7 (autophagy protein 7), LC3 

(microtubule-associated protein light chain 3), and BECN1 has also been shown to be 

highly important for its process (Kang et al., 2011). The complexity of autophagy 

signalling indicates the need for further research as increased understanding of 

molecular pathways may improve therapeutics. 

 

Necrosis‎ is‎what‎ has‎ been‎ described‎ as‎ a‎ “passive”‎ form‎ of‎ cell‎ death‎ as‎ it‎ typically‎

forms in response to an injury and is usually detrimental to the host organism (Berghe et 

al., 2010). However, it is now known that there are distinct programmed cell death 

approaches‎that‎differ‎morphologically‎from‎apoptosis;‎“necroptosis” is called such due 

to its morphological resemblance to necrosis. Necroptosis is characterised in vitro by 

cytoplasmic swelling, rounding of the cell, absence of chromatin condensation and 

dilated organelles (Berghe et al., 2010). 

 

TNF stimulation is widely used to study necroptosis, due to the fact that RIPK1 (one of 

its key effectors) is known to be recruited and activated by receptors such as FasR. 

RIPK1 may activate RIPK3 (receptor interacting serine/threonine kinase 3) and 

subsequently necroptosis (Oberst, 2016). A summary of TNF-driven necroptosis is 

shown in Figure ‎1.14.4: 
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Figure ‎1.14.4: Overview of TNF-driven necroptosis. 

Necroptosis consists of numerous steps and has crosstalk between multiple pathways and 

proteins/complexes such as the cellular inhibitors of apoptosis (CIAP1/2), caspase-8 (casp8), MLKL 

(mixed lineage kinase domain like pseudokinase) and nuclear factor kappa b (NF-kB). Ubiquitination 

(Ub) and phosphorylation (P) statuses are important determinants of which signalling pathway is 

undertaken. Other important proteins in this pathway include FLIP (Cellular FLICE (FADD-like IL-1β-

converting enzyme)-inhibitory protein). Figure adapted from Oberst (2016). 

 

RIPK1 is established as a key mediator of necroptosis, as inhibition of RIPK1 through 

Necrostatin-1 (a RIPK1 inhibitor) lead to inhibition of necroptosis, and RIPK3 is 

another key mediator of necroptosis. MLKL (mixed lineage kinase domain like 

pseudokinase) is another key player of necroptosis, and is activated and phosphorylated 

by RIPK3, which ultimately leads to the morphological features of necroptosis such as 

swelling and rupture (Oberst, 2016). Activated MLKL translocates to the cellular 

membrane, where it interacts with phospholipids to trigger permeabilisation and 

swelling, which is markedly different to the mechanisms of apoptosis (Oberst, 2016). 

However, the exact details regarding how MLKL exerts its effects and indeed 

necroptosis as a whole remain unclear. The key necroptotic mediator RIPK1 represents 

an interesting target due to its apparent connectedness with multiple cellular pathways 
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such as the extrinsic apoptotic pathway and caspase-8 (Elmore, 2007), key role in 

necroptosis (Berghe et al., 2010), and potential link to the activation of NF-κB‎(Oberst, 

2016). 

 

Although these forms of cell death and survival have been identified, the full details of 

the signalling pathways through which their effects are mediated are not yet completely 

established; this is particularly true for necroptosis. Furthermore, though many drugs are 

used in the clinic to treat leukaemia, how they induce cell death is not fully understood, 

nor is potential crosstalk between their mechanism of cell death and other cellular 

processes. 

 

Dexamethasone and etoposide are two of the most common drugs used to treat 

leukaemia, and act via the GR and tumour protein p53 (TP53, involved in the DNA 

damage response) respectively. Both are known to affect mediators of cell death and 

survival in multiple ways. Mechanisms behind glucocorticoid-induced cell death remain 

unclear, though several factors such as low expression of the GR and overexpression of 

the anti-apoptotic Bcl-2 protein have been indicated as resistance factors 

(Schlossmacher et al., 2011; Bakker et al., 2016).  

 

Glucocorticoid-induced cell death is thought to work primarily through the intrinsic 

apoptotic pathway via induction of pro-apoptotic BCL-2 family members such as 

BCL2L11 (Bcl-2-like protein 11, also known as BIM) or repression of anti-apoptotic 

BCL-2 family members such as the Bcl-2 protein (Schlossmacher et al., 2011). 

Evidence corroborating this is that knockout of pro-apoptotic BCL-2 family members 

confers resistance to glucocorticoid-induced apoptosis in thymocytes (Rathmell et al., 

2002), whilst a microarray analysis unveiled that several pro-apoptotic BCL-2 family 

members were induced by glucocorticoid treatment, whilst other anti-apoptotic BCL-2 

family members were repressed (Lynch et al., 2010). Thus, the GR appears to modulate 

BCL-2 family members to promote apoptosis via the intrinsic pathway. 

 

However, there has also been some evidence of glucocorticoids affecting the extrinsic 

apoptotic pathway, such as glucocorticoid treatment inducing FasL in mouse 
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thymocytes (Schmidt et al., 2004), which indicates potentially indicates cell type-

specific differences and the need for further research. There is further crosstalk between 

the GR and cell death pathways such as autophagy and necroptosis. For instance, it has 

been indicated that autophagy may be important for glucocorticoid-induced cell death 

through the key autophagy mediator BECN1 (Laane et al., 2009), and there is also a 

link to necroptosis as it has previously been demonstrated that glucocorticoid resistance 

can be overcome by autophagy-dependent necroptosis (Bonapace et al., 2010). 

Bonapace et al. (2010) demonstrated the necessity of RIPK1 to overcome 

glucocorticoid resistance, further demonstrating the crosstalk between these pathways. 

 

Etoposide induces apoptosis via DNA damage activation of TP53, which following 

activation accumulates in the nucleus to control the expression of numerous pro-

apoptotic genes including BAX (BCL2 associated X, apoptosis regulator) and BID (BH3 

interacting-domain death agonist) (Chipuk and Green, 2006). In the case of these genes 

being silenced, partial resistance to TP53-induced apoptosis was seen, providing further 

evidence for the idea that TP53/DNA damage-induced apoptosis occurs primarily 

through the intrinsic apoptotic pathway (Chipuk and Green, 2006). 

 

1.15 Computational approaches to glucocorticoid signalling 

 

High-throughput research methodologies, where the aim is to generate findings on 

thousands of genes or proteins as opposed to traditional laboratory methodologies which 

focus on a small subset of genes at a time, are changing the field of biological and 

biomedical research. These high-throughput techniques apply to a variety of fields and 

are‎ informally‎ referred‎ to‎ as‎ “omics”‎ (i.e.‎ genomics,‎ transcriptomics,‎ proteomics). 

Although it is only natural that research methodologies evolve over time, be it due to 

changing resources, technology or knowledge, the quantity of information generated by 

these omics approaches presents a daunting task for analysis, generally requiring the use 

of computers to analyse the large datasets in both a more efficient and more integrated 

manner (Wang, 2010). 
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The‎ terms‎ “bioinformatics”‎ and‎ “computational‎ biology”‎ are‎ often‎ used‎

interchangeably, but they are arguably two distinct fields, albeit with overlapping and 

similar aims. The NIH (2000)‎has‎defined‎computational‎biology‎as‎“[t]he‎development‎

and application of data-analytical and theoretical methods, mathematical modeling and 

computational simulation techniques to the study of biological, behavioral, and social 

systems”,‎whilst‎bioinformatics‎was‎defined‎as‎“[r]esearch,‎development,‎or‎application‎

of computational tools and approaches for expanding the use of biological, medical, 

behavioral or health data, including those to acquire, store, organize, archive, analyze, 

or visualize such‎ data”‎ (NIH, 2010). Thus, although similar, the NIH highlights a 

difference between the two terms, with computational biology referring to the use of 

computers to study biological data whilst bioinformatics largely refers to the 

development of tools to analyse data (NIH, 2010). 

 

In order to integrate the large data generated by omics fields, effectively analyse them 

and elucidate relationships between constituents of the dataset in question, it is 

necessary to employ mathematical theory and computation to the data, as traditional 

laboratory-based approaches cannot carry out this task (Wang, 2010). Many approaches 

are utilised within bioinformatics and computational biology, with one subspecialty 

being Systems Biology. 

 

1.16 Systems Biology 

 

Systems biology is a field that aims to integrate different sources of omics data and 

analyse them effectively (Wang, 2010). It is interesting to observe the fact that since the 

early 2000s, there has been a steadily rising and ultimately exponential increase in the 

number of publications relating to systems biology, as summarised in Figure ‎1.16.1: 

 



58 

 

 

Figure ‎1.16.1: Cumulative PubMed entries containing "Systems Biology" per year. 

The x-axis shows the year whilst the y-axis shows the number of publications. Data extracted from 

PubMed‎“Results‎by‎Year”‎and‎processed‎into‎a‎cumulative‎form. 

 

It is clear from Figure ‎1.16.1 that there has been a dramatic increase in the number of 

publications relating to systems biology in recent years, most notably after 2010. Such a 

significant increase in the number of publications relating to the field indicates quite 

clearly the interest in its methodologies, its importance in the field, as well as the fact 

that it is capable of generating publishable-quality data at a relatively rapid rate. 

 

The goal of computational biology is to generate models that are a good fit to in vivo 

behaviour and thus provide accurate predictions to aberrations in the network. 

Modelling offers several advantages over traditional laboratory-based research. One key 

advantage of computational modelling is its cost-effectiveness; other than requiring 

dedicated hours from the researcher, models can be constructed, analysed, and even 

validated at little or no monetary cost; this is made possible through the use of open-

source software and public databases. 

 

Furthermore, once a model has been constructed, numerous analyses can be undertaken 

(such as different in silico knockout scenarios compared to wild-type) again at no extra 

cost other than time and computation power. There are other advantages, such as that 

during construction of the model gaps in the knowledge of a signalling network (for 

example) may be uncovered – and in fact, once the model is built it may provide an 
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answer or insight into this gap through network analysis (Klipp et al., 2009). Lastly, 

computational modelling may drive research forward through predictions; if a model is 

sufficiently large and accurate, it will generate predictions as to how the system behaves 

following a perturbation to the network. These predictions may then be validated in the 

laboratory and provide novel insights, thus driving the field and research forward. 

 

However, as stated earlier and despite the advantages offered by computational 

approaches, modelling is not without its own problems. The statement by statistician 

George Box – “essentially,‎ all‎ models‎ are‎ wrong‎ but‎ some‎ are‎ useful”‎ – is worth 

remembering. There are several key issues to acknowledge during model building. The 

first is that the initial construction of a model is limited to the currently available 

knowledge, which in turn is dependent on the quality of the experiments used to 

generate that knowledge. Another limitation of modelling is that by the very nature of 

the approach models will only encapsulate a small portion of the whole system, 

meaning that other aspects, which may be crucially important for network regulation, 

are by necessity simplified or omitted (Klipp et al., 2009). Ultimately, however, a 

combined approach of modelling and wet laboratory investigation would provide more 

insight than either approach alone. 

 

1.17 Approaches to Computational Modelling 

 

There are numerous approaches to modelling depending on the size and scope of the 

model, in addition to the aims that the research hopes to address. As a whole, modelling 

can be generally split into two different categories: top-down and bottom-up (Edwards 

and Thiele, 2013). 

 

The top-down approach adopts a holistic method to modelling, aiming to generate a 

model of an entire system that can be a good overall fit to in vivo behaviour (Klipp et 

al., 2009). By‎starting‎at‎the‎“top”,‎such‎as‎genome-wide data or a model of the entire 

signalling network in question, the top-down approach aims to uncover relationships 

closer‎ to‎ the‎ “bottom”‎ (Bruggeman and Westerhoff, 2007). Top-down modelling has 

been‎ described‎ as‎ “phenomenological”:‎ model‎ interactions‎ are‎ not‎ based‎ on‎ exact‎
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mathematical modelling of the kinetics of reactions, but rather are based on an overall 

approach of i.e. Protein 1 activates Protein 2 (Bruggeman and Westerhoff, 2007). 

 

Contrasting with top-down modelling is its opposite, bottom-up modelling. Bottom-up 

modelling studies elementary processes in isolation and applies them to a model (Klipp 

et al., 2009). Such a modelling approach requires detailed knowledge of the exact 

mechanisms of reactions such as enzyme kinetics and diffusion properties (Bruggeman 

and Westerhoff, 2007). Thus, a bottom-up model accurately models a small portion of 

the whole, with accurate mechanisms and reaction rates.  One aim of bottom-up 

modelling is to combine several small-scale models of different process in isolation to 

form the whole, thus reaching‎the‎“top”‎(Bruggeman and Westerhoff, 2007). Bottom-up 

modelling has been applied to a variety of fields within biological science, such as a 

model of E. coli metabolism based on a plethora of factors such as transcription factor 

kinetics (Bettenbrock et al., 2006) and modelling of glycolysis in yeast based on 

enzyme properties (Teusink et al., 2000). As a whole, bottom-up modelling can be 

described‎as‎“mechanism-based”,‎reflective‎of‎the‎fact‎that‎the‎modelling‎approach‎aims‎

to accurately model biological phenomena by using exact detailed knowledge of the 

reactions underpinning the network. 

 

It is clear from the above paragraphs that there are various modelling approaches that 

may be used in biological research; the type chosen depends largely on the aims of the 

study and scope of the modelling practice. There are many different types of modelling 

approaches, but specific examples include ordinary differential equation (ODE) 

modelling, Petri nets, and Boolean logical modelling, all expanded upon in the 

following sections.  

 

1.18 ODE Modelling 

 

ODE modelling is one of the most common modelling approaches within systems 

biology, and has been extensively applied to biological research (Klipp et al., 2009). 

ODE modelling employs numerical values (such as transcription rates) to smaller-scale 

models to study the underlying interaction phenomena of a system in a quantitative 
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manner (Baker et al., 2013). The state of a node (model constituent such as protein or 

mRNA) is dependent on a variable; a typical variable utilised for ODE modelling is 

time (de Jong, 2002). A simple example is that the change in the mRNA levels of a 

protein could be measured experimentally over time, following a drug treatment. This 

data (combined with others such as protein levels and biological outputs) could then be 

used to generate an ODE model of the system. 

 

The detailed biological data required prior to model generation represents a limitation of 

ODE models, as although these values may be obtained through in vitro experiments, 

this is often difficult, time-consuming, and may not even be possible (Lillacci and 

Khammash, 2010). The application of ODE models to systems biology is thus limited 

due to the requirement for several kinds of initial parameters (such as basal 

mRNA/protein concentrations), as well as the fact that ODE models on a larger scale 

necessitates a large computational demand (Khan et al., 2014; Akman et al., 2012). 

 

Despite this, there are numerous advantages to ODE modelling, most particularly that 

they retain the quantitative nature and inherent causality of biological systems (Chen et 

al., 2012). Another advantage to ODE modelling is that many different programs have 

been developed to handle ODE simulations, which can handle the complex 

mathematical processes without a significant amount of user input. One example of 

such software is COPASI (Complex Pathway Simulator), which is a freely-available 

program that requires only the details of (for example) protein interactions and related 

kinetic data, whilst not requiring an in-depth understanding of the mathematical 

processes underlying model analysis (Tindall, 2012). Thus with software such as 

COPASI it is possible to generate models and analyse them without detailed knowledge 

of how the models are solved; this can thus increase the pace at which research can be 

carried out as it is accessible to more users. 

 

1.19 Petri Net Modelling 

 

In addition to ODE modelling as a way to measure time-dependent processes is the use 

of another modelling technique known as Petri Net modelling (Klipp et al., 2009). Petri 
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Net models consist of three components: places, transitions and arcs, which connect 

places to transitions (Chaouiya, 2007). A place is an object, such as a metabolite or 

protein, which represents the resources of the network, which contains either zero or a 

positive‎ number‎ of‎ “tokens”,‎ which‎ represent‎ factors‎ such as the amount of that 

particular place. Transitions represent events that can change the state of resources, 

whilst arcs connect places and transitions and thus depict the relationship between a 

place and a transition (Klipp et al., 2009; Chaouiya, 2007). Thus, transitions determine 

how and when an interaction (arc) will proceed. 

 

A‎ transition‎ will‎ become‎ active‎ (“fire”)‎ if‎ its‎ input‎ place‎ has‎ at‎ least‎ the‎ minimum‎

tokens required by the weight of the arc. Tokens will then appear at the output place 

connected to the transition, with the number of tokens being determined by the weight 

of the arc. The distribution of tokens within the Petri Net is called a mark, and 

determines the state of the model at any given point. The starting distribution, the initial 

marking, is referred to M0. Any transitions that can fire (due to having sufficient tokens 

from their input places) will do so, leading to a new distribution of tokens within the 

model. This thus changes the marking to M1, and any new transitions will fire (leading 

to the sequential marking M2, and so on).‎This‎process‎has‎been‎described‎as‎a‎“token‎

game”‎ (Chaouiya, 2007; Klipp et al., 2009). Very simple examples of Petri Nets are 

shown in Figure ‎1.19.1 to clarify and summarise the process: 

 

 

Figure ‎1.19.1: Examples of Petri Nets. 
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Places are represented by circles, transitions are represented by squares, and arcs are represented by 

directed arrows. Small black circles represent tokens, whilst the number above an arc refers to its weight. 

“M”‎refers‎to‎“marking”;‎“p”‎to‎place;‎and‎“t”‎to‎transition. 

 

In Figure ‎1.19.1A above, the arc connecting p1 to t1 has a weight of two, whilst p1 has 

two tokens. This thus allows t1 to fire, thus transitioning from M0 to M1, whilst p2 has 

four tokens due to the output arc from t1 having a weight of four. However, in Figure 

‎1.19.1B the input arc for t1 has a weight of 3, whilst p1 still only has two tokens. Thus 

t1 does not fire, and the marking for the Petri Net remains the same. This is of course a 

very simple example of how Petri Nets can operate, though in reality they are capable of 

modelling more complex interactions. For example multiple places can be connected to 

a single transition element, using a logical operator such as “AND”. This can for 

instance be used in cases where, biologically, two proteins are required to cooperatively 

activate another. 

 

Although classical Petri Nets do not contain time as a variable (Chaouiya, 2007), since 

their inception researchers have developed extensions to Petri Nets which allow for 

more in-depth analysis to be carried out. One example is Coloured Petri Nets (CPNs) 

which, among other things, permit data values to be assigned to tokens, and allow for 

timed transitions (Chaouiya, 2007). Timed Petri Nets have been successfully applied to 

biological research, for instance modelling apoptotic signalling events (Chen et al., 

2007). 

 

Petri Nets are a promising modelling approach due to their relative simplicity in terms 

of understanding, as well as the fact that they can be easily described graphically as well 

as mathematically. Furthermore, the extensions that have been developed since their 

inception allows for their usage in systems biology (Klipp et al., 2009). However, they 

are not without issue as there is a lack of graphical tools to visualise large (>100 nodes) 

models and there is little modularity support for Petri net models (Krepska et al., 2008) 

 

1.20 Modelling Larger Networks: Boolean Modelling 
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Although small networks may be modelled using quantitative approaches, this is 

generally less feasible for larger networks. Due to the high computational demand of 

quantitative approaches and due to the need for detailed kinetic data for the network 

constituents, for larger networks discrete modelling may be adopted. Discrete modelling 

simplifies the modelling process by removing the need for parameters such as initial 

concentrations and kinetic data such as rate constants. Thus analysis of discrete models 

is not quantitative, but instead is qualitative, relying primarily on network structure and 

topology (Khan et al., 2014). 

 

Network modelling for larger networks can be applied to a variety of biological 

phenomena such as metabolic networks (Feist et al., 2007) and protein-protein 

interaction networks (Jeong et al., 2001). Mathematical graphs are utilised to formalise 

and represent the networks, with the nodes of the graphs representing biological entities 

such as proteins or genes, whilst the edges of the graph represent (for example) the 

interactions between the nodes of the network (Klipp et al., 2009). The edges of the 

graph may be directed or undirected; for directed edges the interaction consists of 

ordered node pairs (linked by a directed arrow) whilst undirected edges are represented 

by unordered node pairs linked by an edge, represented by a line (Klipp et al., 2009). 

Analysis can be undertaken in both directed and undirected graphs, though analysis of 

undirected graphs is limited in that you may only see node connectivity. For analysis of 

gene regulatory networks, directed graphs are most suitable as they show which node is 

affected in any particular interaction (Liu et al., 2014). 

 

The simplest form of discrete modelling is Boolean modelling (Saadatpour and Albert, 

2012). Boolean modelling utilises the principles of Boolean logic: everything is either 

true (1, ON) or false (0, OFF). Logical operators such as AND, OR and NOT may be 

used alone or in combination to modify statements/interactions. Under a Boolean model 

every network constituent will have a value/state of either 1 (ON) or 0 (OFF). Although 

this is of course not as quantitatively precise as ODE models, such logic is a good 

representation of certain processes such as gene regulatory networks, since many genes 

or proteins exhibit ON/OFF styles of function (Khan et al., 2014). 
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Boolean modelling utilises mathematical graph theory to represent the network. Nodes 

can represent biological entities such as proteins, whilst edges represent the interactions 

between those proteins. Interactions within a Boolean model may be represented with 

different formalisms such as interaction graphs and interaction hypergraphs (Klamt et 

al., 2006). The difference between an interaction graph and interaction hypergraph is 

that interaction hypergraphs are capable of connecting more than one node to a 

downstream node simultaneously. A simple example is clarified in Figure ‎1.20.1: 

 

 

Figure ‎1.20.1: An interaction graph compared to an interaction hypergraph. 

Figure ‎1.20.1A represents the interaction graph whilst Figure ‎1.20.1B represents the interaction 

hypergraph. Adapted from a similar example in Klamt et al. (2006). 

 

In the hypothetical example above in Figure ‎1.20.1, the biological effect that is intended 

to be modelled is that both Protein A and Protein B are required for the activation of 

Protein C, which subsequently activates Protein D. As is clear, the interaction 

hypergraph (Figure ‎1.20.1B) represents this interaction more accurately, as it allows for 

simultaneous interactions of upstream nodes. The interaction graph, however, in Figure 

‎1.20.1A does not present this as accurately and would allow for the activation of Protein 

C with Protein A or Protein B alone. Thus, Klamt et al. (2006) argued that the 

interaction hypergraph makes for a more accurate simulation of cellular networks due to 

the biological reality that proteins often work in tandem with each other to exert their 
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effects. The allowance of logical operators such as “AND”, “OR” and “NOT” further 

improves model simulation and analysis (Klamt et al., 2006). 

 

Klamt et al. (2007) introduced a MATLAB package called CellNetAnalyzer (CNA), 

which can be used to create and analyse Boolean models. Two types of models can be 

created within CNA: mass-flow (suitable to metabolic network) and signal-flow 

(suitable for gene regulatory networks). Interaction graphs and interaction hypergraphs 

are accepted into CNA as are logical operators such as AND, OR and NOT which 

allows for more complex models to be constructed. CNA has been successfully applied 

to cancer research, for instance a model on the TP53 protein interaction network was 

generated and analysed in CNA by Tian et al. (2013). Several analyses were undertaken 

in CNA for this model, such as logical steady state analysis (LSSA), dependency matrix 

generation, in silico knockouts, in addition to wet laboratory verification of model 

predictions (Tian et al., 2013). Approaches such as LSSA are described in detail in 

Chapter 2 (Materials and Methods). 

 

The model constructed by Tian et al. (2013) showed high accuracy (up to 71%), 

demonstrating the power and usefulness of CNA. A semi-quantitative algorithm (called 

the signal transduction score flow algorithm, STSFA) that superimposes microarray 

and/or ChIP-seq onto a network model (Isik et al., 2012) was later applied to the TP53 

model generated by Tian et al. (2013), and demonstrated improved predictive power 

over LSSA (Hussain et al., 2014). The TP53 model was later expanded to consider 260 

nodes and 980 interactions, with this expanded model again showing accuracy of up to 

71% when compared to microarray data (Hussain et al., 2015). 

 

Boolean modelling as a whole offers many advantages. The simplification of 

interactions (down to a simple ON or OFF as opposed to exact kinetic mechanisms) 

requires only a low level of computational demand, which in turn allows for the 

modelling of much larger networks than is generally feasible for ODE models. Though 

not as quantitatively precise as ODE models, the advantage of Boolean models through 

the ability to capture large networks and the possibility of semi-quantitative analysis 
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through the use of algorithms such as the STSFA highlights their strengths and 

usefulness (Albert and Othmer, 2003). 

 

1.21 Steps of Model Development 

 

Regardless of the modelling approach used, there are several key steps towards model 

development that are undertaken within systems biology: network construction and 

visualisation, network analysis, and wet laboratory validation of model predictions 

(Wang, 2010). Model construction refers to collating the known signalling dynamics of 

the target system in question. This may be carried out through multiple approaches such 

as integration of high-throughput datasets, reverse engineering of genome-wide studies, 

or use of curated databases (Wang, 2010; Ross et al., 2013). 

 

Model visualisation employs various different programs to visualise the network once it 

has been constructed. Model visualisation is useful not only for providing an overview 

of the network, but also for the fact that the human mind is capable of leaps of intuition 

(Woolley and Kostopoulou, 2013). When a network is visualised, rather than held as an 

abstract thought, it can aid in analysis through pattern recognition and identification of 

overarching themes and trends. 

 

Visualisation of the network can be carried out in different ways, depending on the 

nature of the model and goals of the visualisation. Small networks can be visualised in 

in-depth detail, allowing for detailed examination of individual interactions. Larger 

networks, however, are generally only seen on a larger scale, seeing overall trends 

within the model. Networks are generally depicted in a static manner, though there is an 

increasing drive to develop dynamic visualisations of models. For example, a model 

consisting of multiple interactions between two nodes depending on an outside variable 

such as time or cell type may have colour-coded interactions (Wang, 2010). A versatile, 

popular and open-source program used to visualise models is Cytoscape (Cytoscape, 

2016), not only for its visualisation capabilities but also its plug-ins that allow for 

extension of its function and different types of analysis to be performed such as 



68 

 

algorithm application (Shannon et al., 2003). Cytoscape was used to visualise the TP53 

models discussed previously (Hussain et al., 2015; Tian et al., 2013). 

 

Model analysis employs the use of various mathematical and computational testing to 

the model. Algorithms, logical analysis, and in silico knockouts can be performed, 

which will all generate predictions as to how the system would behave in vivo and thus 

provide a series of potential experiments upon which the model could be validated. 

Ultimately validation of these predictions would assess the reliability, accuracy, and 

predictive power of the model, which may in turn lead to the identification of novel 

therapeutic targets, assuming the model is linked to disease. 

 

1.22 Applications of Computational Modelling to Cancer Research 

 

The use of computational modelling in cancer research is a recently established practice. 

With increasing knowledge of protein signalling networks, the complexity underlying 

drug response and diverse patient responses to treatment, computational biology is 

increasingly required to integrate this data and provide novel insight into improving 

therapy. 

 

The tumour suppressor protein TP53 is widely recognised as one of the most important 

proteins‎ in‎ cancer‎ research.‎ The‎ “guardian‎ of‎ the‎ genome”‎ plays‎ a‎ crucial‎ role‎ in‎

suppressing overproliferation of cells, and with its pathways represents a major target 

for the development of novel therapeutics. However, the complexity of its signalling 

provides complications to understanding its network dynamics and development of 

therapies. To this end, computational approaches to understand TP53 have been 

developed, such as an integrated interactome model that aimed to encapsulate its 

signalling dynamics (Tian et al., 2013). 

 

The work by Tian et al. (2013) generated a large-scale model consisting of 203 nodes 

representing genes or proteins, in addition to an input node of DNA damage, and two 

output nodes of apoptosis and cellular senescence. Within this model a variety of 

analyses could be employed such as analysis of the relationships between all model 
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constituents (and how these relationships change followed perturbations such as an in 

silico TP53 knockout) in addition to genome-wide validation of model predictions 

through comparison to microarray data. This model ultimately showed accurate 

prediction rates (as stated previously, up to 71%) and provided several potentially novel 

predictions as to how the network would change following the loss of TP53. Thus, with 

the laboratory validation of these predictions novel insight into TP53 signalling was 

obtained. 

 

Computational modelling has also been applied to the glucocorticoid receptor and its 

signalling. Numerous approaches have been carried out to understand glucocorticoid 

signalling, including expression profiling of leukaemia patients, microarray analysis on 

a genome-wide scale, and transcriptional studies (Chen et al., 2010). Chen et al. (2010) 

identified a gap in the application of computational biology to GR research and thus 

developed a small-scale kinetic model of glucocorticoid-induced gene regulation. Two 

types of models were developed: a direct model (for genes that are transcriptional 

targets of GR) and an indirect model (for genes indirectly regulated by GR). 

 

Due to the fact that these models were kinetic models, detailed information of the 

mechanisms underlying the regulation and knowledge of parameters such as 

transcription rates were required. Thus Chen et al. (2010) first performed detailed 

molecular analysis on the mRNA and protein levels of glucocorticoid-target genes 

under investigation at various time points. Following this, parameters were estimated to 

create integrated models of both direct and indirect regulation, and for glucocorticoid-

sensitive and glucocorticoid-resistant cells. Model simulations generally displayed 

agreement with experimental data, thus demonstrating the reliability of the models. The 

models ultimately identified BMF (Bcl2 modifying factor) as a novel direct target for 

GR modulation, as the wet laboratory results had a closer fit to the direct model 

simulation results than the indirect model simulation results. This identification was 

confirmed by a preliminary chromatin immunoprecpitation experiment, which identified 

occupancy of the GR on the BMF gene. 
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The paper by Chen et al. (2010) is just one example of many of the application of 

computational biology to cancer research and glucocorticoids/nuclear receptors. Other 

examples include computational screening of potential ligands for nuclear receptors, 

structural simulations to elucidate mechanisms behind cofactor interactions or 

particularly important amino acid residues, and in silico methods to identify toxicity 

levels of nuclear receptor modulators (Ai et al., 2009). Another approach utilised 

microarray data generated from rats following treatment with methylprednisolone, and 

built on previous work to generate mechanistic models of the 

pharmacokinetic/pharmacodynamic properties of corticosteroid-responsive genes (Jin et 

al., 2003). Different models were developed for the type of regulation (such as induction 

and repression), and the approach by Jin et al. (2003) provided insight into the 

mechanics of the global effects of corticosteroids. 

 

However, despite the applications above, to date no detailed model of the glucocorticoid 

receptor protein interaction network (similar to the TP53 network described previously) 

has been developed. Given the high predictive power demonstrated by both TP53 

models mentioned previously (Hussain et al., 2015; Tian et al., 2013), as well as the 

possibility of semi-quantitative analysis via the STSFA, herein an initial GR 

interactome model has been developed using a similar approach to that used to generate 

the TP53 models.   
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1.23 Hypothesis and Aims of Research 

 

The overarching aim of this research is to provide insights into the routes by which the 

microenvironment may exert its chemoprotective effects, and also to increase current 

understanding of glucocorticoid receptor signalling. This will be investigated through a 

branched approach of wet laboratory experiments and computational modelling.  

 

Specifically, a global approach of interactome generation similar to Tian et al. (2013) 

will be undertaken, with the model being analysed through qualitative and semi-

quantitative approaches and validated using laboratory and clinical data. 

 

This global modelling approach will be complemented by a detailed molecular analysis 

of the effects of the microenvironment (simulated by bone marrow cell-conditioned 

media (CM)) and the chemotherapeutic drugs dexamethasone and etoposide on 

glucocorticoid-sensitive (C7-14) and glucocorticoid-resistant (C1-15) ALL cell lines. 

The effect of these treatments will be analysed at the molecular level through 

approaches such as western blotting, chromatin immunoprecipitation and cell viability 

assays, investigating pathways linked to cellular processes such as apoptosis, autophagy 

and necroptosis, with the overall effect on cells being validated at the functional level 

through approaches such as flow cytometry. 

 

Ultimately, it is envisaged that this branched approach will provide increased insight 

into the role of the microenvironment in nurturing chemoresistance, and that an 

increased understanding of glucocorticoid receptor signalling will be obtained. 
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Chapter 2 Materials and Methods 

 

2.1 Wet Laboratory Approaches 

 

2.1.1 Table of Materials 

 

Numerous materials from various companies have been utilised throughout the 

production of this thesis: 

 

Table ‎2.1.1: Reagents and consumables utilised throughout research. 

Product Name Supplier Catalogue Number 

Bio-Rad Protein Assay Kit Bio-Rad 500-0001 

BioScript™‎Reverse‎

Transcriptase Kit 
Bioline BIO-27036 

CellTiter 96® Aqueous 

MTS Reagent Powder 
Promega G1112 

Dexamethasone Sigma-Aldrich D1756 

Dextran Coated Charcoal 

FBS 
Hyclone SH30068.03 

Diaminoethanetetra-acetic 

acid disodium salt (EDTA) 
Fisher Scientific 10020140 

Dynabeads® Protein A for 

Immunoprecipitation 

ThermoFisher 

Scientific 
10002D 

Dynabeads® Protein G for 

Immunoprecipitation 

ThermoFisher 

Scientific 
10004D 

Etoposide Sigma-Aldrich E1383 

Foetal Bovine Serum (FBS) Labtech FB-1090/500 

PageRuler Prestained 

Protein Ladder 

ThermoFisher 

Scientific 
26616 

Penicillin/Streptomycin Labtech LM-A4118/100 

Phenazine methosulfate Sigma-Aldrich P9625-500MG 
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(PMS) 

Proteinase K Sigma-Aldrich P2308-5MG 

ProtoGel (30%) National Diagnostics EC-890 

QIAquick PCR purification 

kit 
QIAGEN 28104 

QIAshredder QIAGEN 79654 

Ribonuclease A (RNase A) Sigma-Aldrich R5500-10MG 

RNeasy Plus Mini Kit QIAGEN 74134 

Roswell Park Memorial 

Institute-1640 (RPMI-1640) 

Scientific Laboratory 

Supplies 
LZ12-167F24 

SensiFAST™‎SYBR®‎No-

ROX Kit 
Bioline BIO-98005 

SuperSignal West Femto 

Chemiluminescent Substrate 

ThermoFisher 

Scientific 
34095 

SuperSignal West Pico 

Chemiluminescent Substrate 

ThermoFisher 

Scientific 
34080 

Trypan Blue Solution Sigma-Aldrich T8154-20ML 

Vybrant® FAM Caspase-8 

Assay Kit, for flow 

cytometry 

ThermoFisher 

Scientific 
V35119 

 

 

2.1.2 Table of Antibodies 

 

Table ‎2.1.2 shows the antibodies used throughout the production of this thesis for both 

Western blotting and chromatin immunoprecipitation. 

 

Table ‎2.1.2: Antibodies used throughout research. 

Antibody Supplier Catalogue Number 

Actin Antibody Abcam AB8227 

Beclin-1 Antibody Abcam AB15417 

Caspase-3 Antibody New England Biolabs 9662S 
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GR (Phospho S211) 

Antibody 
Abcam ab55189 

GR (Phospho S226) 

Antibody 
Abcam ab93104 

GR monoclonal antibody 

(for chromatin 

immunoprecipitation) 

Diagenode 
C15200010 (MAb-010-

050) 

RIPK1 Antibody Santa Cruz Biotechnology SC-7881 

Total GR Antibody 

(Westerns) 
Santa Cruz Biotechnology SC-8992 

 

 

2.1.3 Table of Buffers 

 

Buffers used throughout the research presented in this thesis, and their compositions, 

are shown in Table ‎2.1.3: 

 

Table ‎2.1.3: List of buffers and their composition. 

Buffer Composition 

0.1% PBS/Tween 

(PBST) 
100ml 1xPBS, 900ml dH2O, 1ml Tween-20 

10X SDS Running 

Buffer 
247.7mM Tris, 1.9M Glycine, 35mM SDS 

10X Western 

Transfer Buffer 
272.4mM Tris, 1.5M Glycine 

1XSDS Running 

Buffer 
10% 10xSDS Running Buffer, 90% dH2O 

1XWestern 

Transfer Buffer 
10% 10xWTB, 20% Methanol, 70% dH2O 

3XSDS Loading 

Buffer 

187mM Tris, 30% Glycerol, 6% SDS,15% 2-mercaptoethanol, 

0.01% bromophenol blue 

ChIP Blocking 0.5% Bovine Serum Albumin w/v in PBS 



75 

 

Solution 

ChIP Buffer 1 
10% Glycerol, 0.5% Igepal CA-630 0.25% Triton X-100, 50mM 

Hepes-KOH; pH 7.5, 1mM EDTA, 140mM NaCl 

ChIP Buffer 2 
10mM Tris-HCl; pH 8.0, 0.5mM EGTA, 1mM EDTA, 200mM 

NaCl 

ChIP Buffer 3 
0.5% N-lauroylsarcosine, 0.1% Sodium Deoxycholate, 0.5mM 

EGTA, 1mM EDTA, 100mM NaCl, 10mM Tris-HCl; pH 8.0 

ChIP Elution 

Buffer 
50mM Tris-HCl; pH 8, 100mM EDTA and 1% SDS w/v 

Formaldehyde 

Solution 

11% Formaldehyde, 50mM Hepes-KOH, 0.5mM EGTA, 1mM 

EDTA, 100mM NaCl 

High Salt Lysis 

Buffer (HSLB) 

45mM HEPES pH 7.5, 400mM NaCl, 1mM EDTA, 10% 

Glycerol, 0.5% NP-40 1mM DTT, 1mM PMSF, 1µg/ml protease 

inhibitors (leupeptin, pepstin, and aprotinin) 2mM NaOV, 20mM 

BGP, 5mM NaPPi 

Phosphate 

Buffered Saline 

(PBS) 

170mM NaCl, 3.3mM KCL, 1.8mM Na2HPO4, 10.6mM 

KH2PO4. Adjusted to pH 7.4 using concentrated HCL or NaOH. 

Proteinase K 

Reconstitution 

Solution 

50mM Tris-HCl pH 8.0 and 10mM CaCl2 

RIPA Wash Buffer 
1% Igepal CA-630, 0.7% Sodium Deoxycholate, 1mM EDTA, 

500mM LiCl, 50mM Hepes-KOH; pH 7.5 

TE Buffer 10mM Tris-HCl; pH 7.5, 1mM EDTA 

Tris Buffered 

Saline (TBS) 
150mM NaCl, 20mM Tris-HCl; pH 7.6 

Western Blocking 

Solution 
5% milk powder in PBS 

Western Stripping 

Buffer 
100mM 2-Mercaptoethanol, 2% SDS, 65.5mM Tris Hcl. pH 6.7 
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2.1.4 Cell Culture and Cell Lines 

 

Two acute lymphoblastic leukaemia cell lines have been utilised throughout the wet 

laboratory half of this research, CEM-C1-15 (C1-15, resistant to glucocorticoid 

treatment) and CEM-C7-14 (C7-14, sensitive to glucocorticoid treatment). These cell 

lines are subclones of a parental ALL cell line CCRF-CEM, which was isolated from a 

female ALL patient aged four in 1964 (Foley et al., 1965). 

 

From the original CCRF-CEM cell line, glucocorticoid-sensitive and glucocorticoid-

resistant‎ cell‎ lines‎ were‎ isolated‎ by‎ Thompson’s‎ group through mutagenesis and 

incubation with dexamethasone (Norman and Thompson, 1977; Medh et al., 1998). 

(Harmon and Thompson, 1981). C7-14 and C1-15 are glucocorticoid-sensitive and 

glucocorticoid-resistant‎cell‎lines‎respectively‎that‎were‎isolated‎by‎Thompson’s group 

(Medh et al., 2003). 

 

Cells were grown in RPMI-1640 (Lonza) supplemented with 1% 

penicillin/streptomycin (Labtech), 1% l-glutamine (Labtech), and 10% foetal bovine 

serum (FBS, Labtech). Cells were kept in vented 25cm
3
 T25 flash (Fisher) and 

maintained in a humidified incubator at 5% CO2 and 37°C, at a confluence suitable for 

CEM cells (less than 2x10
6
 cells/ml) (ATCC, 2016). Cells were subcultured every two 

to three days as and when required depending on cell confluence. Cell culture was at all 

times carried out in a Class II Biological Safety Cabinet for a sterile environment. 

 

An important note to consider is that prior to any experiments, cell culture media was 

replaced with media that had been supplemented with dextran-coated charcoal treated 

FBS (DCC-FBS) instead of normal FBS and maintained in this media until the 

experiment’s‎completion.‎The‎reason‎for‎this‎is‎that‎it‎has‎been‎shown‎that‎certain‎FBS‎

constituents interfere with response to hormone treatment (such as a glucocorticoid), 

and that these causative constituents are absorbed by the charcoal (Chen, 1967). 

Furthermore, due to the fact that some treatments contain combination of hormone 

treatment with other treatments (such as combination dexamethasone and etoposide), all 
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cells for all treatments for all experiments were grown in media supplemented with 

DCC-FBS, to ensure experimental consistency. 

 

2.1.5 Subculture of Leukaemia Cells 

 

Cells were collected into a sterile 30ml universal tube and spun at 2000RPM for three 

minutes in a centrifuge to pellet living cells. After this the supernatant was aspirated and 

the pellet was resuspended in fresh media. The amount added to a pellet varied 

depending on how many cells were required for future experiments but for general 

subculture 5ml of fresh media was used to resuspend the pellet, after which 1ml was 

taken and transferred to a new flask containing 9ml of fresh media (therefore a 1:5 split 

from original confluence). 

 

2.1.6 Freezing and Thawing of Leukaemia Cells 

 

For freezing, cells were pelleted as per subculture, and 2ml of 10% DMSO (dimethyl 

sulphoxide)/FBS was used to resuspend the pellet following supernatant aspiration. The 

2ml suspension was then split into two cryovials, which were stored first at -80°C, and 

subsequently transferred to liquid nitrogen for long-term storage. 

 

For thawing, cryovials were rapidly thawed and immediately placed inside a T25 flask 

containing 13ml of fresh, pre-warmed media. The following day, the cells were 

collected, centrifuged as per subculture, and then the entirety of the pellet was 

transferred to a new flask containing 10ml fresh media. This was to remove the 

cytotoxic effect of DMSO on the cells. 

 

2.1.7 Cell Counting 

 

In order to seed specific numbers of cells for subsequent experiments, cell counting via 

haemocytometers (Labtech) was used to estimate the current number of cells and to 

calculate the dilution volume.  
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Figure ‎2.1.1: Typical layout of a haemocytometer. 

 

Figure ‎2.1.1 above shows the typical layout of a haemocytometer when viewed under 

the microscope. 10µl of cells were taken from the flask and loaded onto the 

haemocytometer and cells were counted in the four corner squares A, B, C and D as 

shown above in Figure ‎2.1.1. An average of these four corner squares was then obtained 

and the current number of cells per ml was calculated by multiplying the average by 

10
4
. 

 

After the approximate number of cells/ml was calculated, the equation C1V1 = C2V2 

could be used to calculate how to obtain an appropriate number of cells/ml for specific 

subsequent experiments. Cell counting was often performed in tandem with the trypan 

blue exclusion assay (see Section ‎2.1.8) to count only living cells. This was particularly 

important for counting prior to cell viability assays. 
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2.1.8 Trypan Blue Exclusion Assay 

 

Trypan blue may be used as an assay to assess viability of cells, and to give 

approximate ratios of alive/dead cells within a cell suspension. Thus, trypan blue allows 

for a base measurement of how healthy a cellular population is, and can be used prior to 

other assays (such as cytotoxic assays) to ensure that equal numbers of viable cells are 

seeded between different independent experimental replicates. To perform trypan blue, 

10µl of cell suspension was mixed with 10µl of the trypan blue solution (Sigma-

Aldrich) in an Eppendorf tube. 10µl of this mixture was then loaded onto the 

haemocytometer (depicted previously in Figure ‎2.1.1, Page 78). Living cells exclude the 

trypan blue dye (and thus appear colourless) whilst dead cells are stained blue. 

 

2.1.9 MTS Assay 

 

Cells were seeded at a concentration of approximately 40,000 cells per well (chosen 

based on previous experience and optimisation experiments), dosed with the relevant 

concentration of each drug or treatment, and incubated for the indicated length of time. 

MTS and PMS reagents were prepared according to the manufacturer’s‎ instructions 

(2mg/ml in sterile PBS for MTS and 0.92 mg/ml in sterile PBS for PMS), and following 

the end of incubation, the MTS working solution was prepared according to the 

manufacturer’s‎ instructions (100µl PMS per 2ml MTS). 20µl of the MTS working 

solution was then added to 100µl of the cell suspension. Each treatment was plated in 

triplicate onto a 96-well plate, providing three values for each treatment per experiment. 

 

Following addition of MTS working solution, the plate was incubated for four hours in 

a humidified Galaxy CO2 incubator at 5% CO2 and 37°C. After this, the plate was read 

on a Thermo Labsystems Multiskan Ascent plate reader at both 490nm (suitable to 

detect the dye)  and 690nm (as a reference wavelength to correct for background) 

(Promega, 2012). Following this, the 690nm reading was subtracted from the 490nm 

reading, and then all readings expressed relative to the Control/untreated cells to 

provide a percentage of cell growth. 

 



80 

 

2.1.10 Conditioned Media Generation 

 

A bone marrow stromal cell line, HS5, was grown in RPMI-1640 media supplemented 

with 10% FBS, 1% l-glutamine and 1% penicillin/streptomycin. After growing cells to 

confluence, they were washed twice with PBS and incubated with 15ml of serum-free 

RPMI for 48 hours at 37°C and 5% CO2. After 48 hours the cell-conditioned medium 

was collected, centrifuged at 1000g for 10 minutes to remove debris, and the 

supernatant was stored as conditioned media (CM) generated from bone marrow 

stromal fibroblasts. 

 

2.1.11 Quantitative Reverse Transcriptase Polymerase Chain Reaction 

 

For quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) 

experiments, cells were seeded at a concentration of approximately 1x10
6
 cells per well, 

dosed with the appropriate concentration of treatments, and left to incubate at 37°C and 

5% CO2 for the duration of the treatment. After this, cells were collected, pelleted as per 

subculture, and the pellet was washed with cold PBS following aspiration of the 

supernatant. After this, the PBS was aspirated and the RNA was extracted from the cells 

using the RNeasy Plus Mini Kit (QIAGEN), in combination with QIAshredder 

(QIAGEN), following‎the‎manufacturer’s‎instructions‎(QIAGEN, 2013). In brief, Buffer 

RLT was added to pellets after which samples were passed through QIAshredder 

columns to homogenise them. Following this lysates were passed through gDNA 

eliminator columns, mixed with equal volumes of 70% ethanol, loaded onto an RNeasy 

spin column and centrifuged, then washed with Buffer RW1 and centrifuged again. 

Buffer RPE was then used to wash cells twice with a centrifugation step following each 

wash. Columns were then dry spun and RNA eluted via centrifugation after the addition 

of RNase-free water. 

 

Following extraction of RNA, its concentration was determined using NanoDrop 2000 

Spectrophotometer and‎approximately‎1µg‎was‎converted‎ to‎cDNA‎using‎BioScript™‎

Reverse Transcriptase kit using an Oligo (dT)18 primer,‎ following‎ the‎manufacturer’s‎

instructions (Bioline, 2016). In brief, Oligo (dT)18, dNTPs, and DEPC-treated water 
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were mixed with the RNA sample on ice, after which samples were incubated at 70°C 

for five minutes and then chilled on ice for one minute. 5xRT Buffer, RNase Inhibitor, 

BioScript Reverse Transcriptase and DEPC-treated water were mixed together and 

added, after which samples were incubated at 42°C for thirty minutes, then reactions 

were terminated at 85°C for five minutes followed by chilling on ice. 

 

After cDNA conversion, cDNA was diluted to a concentration of approximately 

25ng/µl to allow for each PCR reaction to have 100ng per well (4µl DNA in a 20µl total 

reaction). DNA was then subjected to qPCR using the SensiMix™‎SYBR®‎No-ROX 

Kit with the data analysis being performed in Opticon Monitor 3.1. After an initial 

denaturation step at 95°C, qPCR cycling conditions involved a ten-second incubation at 

95°C (denaturation), followed by an incubation at a lower temperature that was 

dependent on primer melting temperature (typically two degrees lower) in a process 

known as annealing for ten seconds, whilst the third step of the cycle involved 

incubation at 72°C for ten seconds (extension). Approximately 45 cycles were used per 

qPCR experiment. After cycle completion the samples were held at 72°C for five 

minutes, and a melting curve analysis was then performed from 72-95°C, obtaining a 

reading at every degree. Data was analysed via the standard curve method. Primers 

utilised for qPCR are listed in Table ‎2.1.4: 

 

Table ‎2.1.4: Primers for qRT-PCR. 

Gene Primer Sequence 

BECN1 
Forward TTG GCA CAA TCA ATA ACT TCA GGC 

Reverse CCG TAA GGA ACA AGT CGG TAT CTC 

BIRC3 
Forward ACT TGA ACA GCT GCT ATC CAC ATC 

Reverse GTT GCT AGG ATT TTT CTC TGA ACT GTC 

RIPK1 
Forward TGG AAA AGG CGT GAT ACA CA 

Reverse GAC TTC TCT GTG GGC TTT GC 

RPL19 
Forward ATG TAT CAC AGC CTG TAC CTG 

Reverse TTC TTG GTC TCT TCC TCC TTG 
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To complement the primer sequences, amplicon regions for each gene are shown in the 

following figures: 

 

 

Figure ‎2.1.2: Amplicon region for BECN1. 

The forward primer sequence is coloured in red, whilst the reverse complement of the reverse primer is 

coloured in green. Nucleotides between the two primer sequences are coloured in blue. The full sequence 

shown is of the nucleotide sequence for BECN1. Sequence obtained via CCDS from NCBI Gene. 
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Figure ‎2.1.3: Amplicon region for BIRC3. 

The forward primer sequence is coloured in red, whilst the reverse complement of the reverse primer is 

coloured in green. Nucleotides between the two primer sequences are coloured in blue. The full sequence 

shown is of the nucleotide sequence for BIRC3. Sequence obtained via CCDS from NCBI Gene. 
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Figure ‎2.1.4: Amplicon region for RIPK1. 

The forward primer sequence is coloured in red, whilst the reverse complement of the reverse primer is 

coloured in green. Nucleotides between the two primer sequences are coloured in blue. The full sequence 

shown is of the nucleotide sequence for RIPK1. Sequence obtained via CCDS from NCBI Gene. 

 

 

Figure ‎2.1.5: Amplicon region for RPL19. 

The forward primer sequence is coloured in red, whilst the reverse complement of the reverse primer is 

coloured in green. Nucleotides between the two primer sequences are coloured in blue. The full sequence 

shown is of the nucleotide sequence for RPL19. Sequence obtained via CCDS from NCBI Gene. 
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2.1.12 Protein Extraction 

 

Cells were counted by haemocytometer and seeded at a concentration of 1x10
6
 cells per 

ml in a six-well plate and treated with indicated treatments for the specified times. To 

reduce loss of protein from the cells, protein extractions were carried out on ice. 

Following treatment, cells were pelleted as per subculture and the supernatant aspirated, 

after which the pellet was washed in ice-cold 1xPBS. After a second centrifugation step 

the supernatant was again aspirated and the pellet was resuspended in 130µl of high salt 

lysis buffer (HSLB) and transferred to an Eppendorf tube. Tubes were rotated for 

twenty minutes at 4°C, and then centrifuged at 12,000 RPM for fifteen minutes at 4°C. 

The supernatant after centrifugation was then kept as protein extract by transfer to a new 

Eppendorf without disturbing the pellet. After obtaining the protein extract, the 

Bradford Assay (see Section ‎2.1.13) was performed to quantify the levels of protein in 

the extract to ensure even amounts between different samples could be used for 

subsequent techniques. 

 

2.1.13 Bradford Assay 

 

The Bradford method is a well-established assay to determine protein concentration. 

800µl of distilled water was used to dilute 200µl of the Bio-Rad reagent (Bio-Rad), 

creating the working solution. With each semi-micro cuvette containing 1ml working 

solution, either 2µl of the protein sample or 2µl HSLB (for calibration purposes) was 

added. Cuvettes were prepared in duplicates for each protein sample to obtain an 

average. Cuvettes were read at 595nm in a spectrophotometer, using the cuvette 

containing HSLB for calibration. 595nm is utilised as the dye-protein complex absorbs 

maximally at this wavelength (Lu et al., 2010). 

 

Protein extraction was carried out prior to subsequent techniques such as Western 

blotting. To ensure equal amounts of protein were loaded between different samples for 

each experiment, calculations based on the values obtained at 595nm were performed. 

The sample with the lowest 595nm absorbance would have a value of 40µl (given the 
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maximal loading of the gels used for subsequent electrophoresis), whilst other samples 

would receive the appropriate relative amount using the formula (lowest 

absorbance*40)/595nm absorbance value of the current protein.  

 

Based on these calculations, protein extracts could be frozen after the addition of 

3xSDS sample buffer (with the amount of 3xSDS added being equal to half of the 

volume of the protein extract, hence diluting the loading buffer to 1xSDS). 

 

2.1.14 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

 

Protein samples prepared as above were separated by size using sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) gels. Different percentage gels were 

used depending on the size of the proteins in question as well as the degree of 

separation required. For most experiments, 7.5% gels were used, however for finer 

separation (such as for separating the two cleaved caspase-3 bands at 17 and 19 kDa) 

12% or 15% gels were used. Preparation for each is shown in Table ‎2.1.5: 

 

Table ‎2.1.5: Preparation of gels for SDS-PAGE. 

Constituent 
7.5% 

Resolving 

12% 

Resolving 

15% 

Resolving 
Stacking 

Distilled 

Water 
6.65ml 4.55ml 3.15ml 3.365ml 

ProtoGel 3.5ml 5.6ml 7ml 835µl 

1M Tris pH 

6.95 
N/A N/A N/A 625µl 

1.5M Tris 

pH 8.95 
3.5ml 3.5ml 3.5ml N/A 

0.2M 

EDTA 
140µl 140µl 140µl 50µl 

10% SDS 140µl 140µl 140µl 50µl 

10% APS 78.5µl 78.5µl 78.5µl 78.5µl 

TEMED 8.5µl 8.5µl 8.5µl 8.5µl 
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Following assembly of the Bio-Rad Mini PROTEAN 3 gel casting apparatus, the 

resolving gel was cast as shown in Table ‎2.1.5. Immediately after it was cast, 0.1% SDS 

was used to overlay the gel to remove air bubbles and generate a flat surface. After the 

resolving gel had set, the 0.1% SDS was removed and the stacking gel was added, at 

which point a 1.5mm comb was inserted to form the wells. 

 

Once the stacking gel had polymerised, the gel was placed into the running chamber 

which was filled with 1xSDS running buffer. The 1.5mM comb was removed and 

samples were then boiled at 95°C for three minutes and briefly centrifuged.  A Hamilton 

microlitre glass syringe was used to load all samples. In the first lane of every gel 5µl 

protein ladder (PageRuler 26616) was added to serve as a marker. Gels were run at 80V 

until the samples entered the resolving gel, at which point the voltage was increased to 

110V until the samples had adequately resolved. 

 

2.1.15 Western Blotting 

 

Western blotting was employed to detect specific proteins from whole cell extracts. 

After SDS-PAGE, transfer cassettes were prepared as follows: sponge; filter paper; gel; 

polyvinylidene fluoride (PVDF) membrane (Millipore immobilon-p); filter paper; 

sponge. Prior to loading each cassette item they were all (except the gel and the 

membrane) soaked in 1xWestern transfer buffer. The PVDF membrane was first 

activated in methanol, and then washed in 1xWestern transfer buffer. Completed 

cassettes were loaded into the transfer chamber (Bio-Rad Mini Trans-Blot 

Electrophoretic Transfer Cell), which also had an ice-pack loaded and was filled with 

1xWestern transfer buffer. A magnetic stirrer was also used to ensure even distribution 

of the Western transfer buffer constituents. Transfer was completed at 0.4 amperes for 

two hours, with the ice-pack being replaced halfway through to ensure a cool 

temperature. 

 

Membranes were subsequently blocked with 5% milk/PBS for one hour at room 

temperature to prevent non-specific binding of the antibody to the membrane. After 
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blocking, membranes were incubated at 4°C overnight with the primary antibody 

(prepared in 2.5% milk/PBST with an appropriate dilution of antibody according to the 

manufacturer’s‎instructions).‎Following‎overnight‎incubation‎with‎the‎primary‎antibody,‎

membranes were washed three times at ten-minute intervals with PBST on a shaker and 

then incubated with the appropriate secondary antibody (prepared in 2.5% milk/PBST 

with an appropriate dilution of antibody according to the manufacturer’s‎ instructions)‎

for one hour. After this hour, membranes were again washed three times in PBST at ten-

minute intervals, after which the membrane was developed. 

 

The working solution for Supersignal West Pico Chemiluminescent Substrate (Thermo 

Scientific)‎was‎prepared‎according‎to‎the‎manufacturer’s‎instructions‎and‎developed‎on‎

a Photon Ecomax Automatic X-Ray Film Processor using high-sensitivity blue-sensitive 

film. In cases where no band could be obtained with West Pico reagent even after 

extended exposure, SuperSignal West Femto Chemiluminescent Substrate (Thermo 

Scientific) was used due to its higher sensitivity. 

 

After films were obtained, digital copies were created by scanning the film and saving 

them as high-quality PDF files. This digital copy was used both to create figures and 

also to analyse the bands obtained via densitometric software (see next subheading). 

 

2.1.16 Densitometric Analysis of Western Blot Data 

 

In order to carry out a more quantitative analysis of Western blot data, densitometry was 

employed through the use of ImageJ (https://imagej.nih.gov/ij/). Densitometry allows 

for‎a‎“semi-quantitative”‎analysis‎of‎blot‎data‎through‎measurement‎of‎optical‎density.‎

An average of three readings was obtained for each band for the protein of interest, 

which was normalised to the average of three readings for the housekeeping/loading 

control protein (actin). Normalised band readings were then expressed as a percentage 

of the control (untreated cells) and bar charts were created using the average and SEM 

values from multiple percentages from independent experiments. 
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2.1.17 Stripping Western Membranes 

 

After development of the first protein of interest, membranes could be stripped to allow 

for re-probing with another antibody. Stripping was only used when the two weights of 

the proteins were so close that their development would overlap; otherwise, if the 

weights were different enough that they would appear on different parts of the 

membrane, then stripping was not performed. 

 

Stripping buffer was prepared as in Table ‎2.1.3 (Page 74) and placed into a closed 

container along with the membrane. This was then incubated at 55°C with occasional 

agitation for thirty minutes. After this, the stripping buffer was drained in the sink of a 

chemical hood and the membrane was immediately washed twice with PBST. 

Following the immediate wash, the membrane was washed twice with PBST at ten-

minute intervals. Once complete, the membrane could be blocked with 5% milk/PBS 

and then incubated with the primary antibody.  

 

2.1.18 Chromatin Immunoprecipitation (ChIP) 

 

The chromatin immunoprecipitation procedure was adapted from Rajendran and 

colleagues (Rajendran et al., 2013). All buffers used in throughout ChIP are described 

in Table ‎2.1.3 (Page 74). Cells were left untreated or treated with dexamethasone for 24 

hours. The day before cells were taken for processing, 100µl of magnetic beads per 

antibody per treatment were taken, and washed three times in 1ml ChIP blocking 

solution and then resuspended in 250µl ChIP blocking solution. 2µg of the antibody was 

then added. All experiments used total GR (Diagenode), S211-phosphorylated GR 

(Abcam) and S226-phosphorylated GR (Abcam) in addition to using a negative control 

IgG. After the addition of antibody, beads were rotated overnight at 4°C. 

 

Following treatment, over 60x10
6
 cells were collected per treatment. Proteins were 

crosslinked to DNA the addition of formaldehyde solution (11% formaldehyde in the 

formaldehyde solution itself, to a final concentration of 1% formaldehyde when added 

to the cells). Cells were incubated with formaldehyde on a rocker for ten minutes at 
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room temperature. After this, the effect of formaldehyde was quenched by rocking the 

cells for five minutes after the addition of glycine at a final concentration of 125mM. 

Cells were centrifuged to obtain a pellet, washed with cold 1xPBS, centrifuged again 

and then the pellet was resuspended in 2ml ice-cold ChIP Buffer 1 supplemented with 

100µM PMSF and 1µg/ml protease inhibitors (leupeptin, pepstin, and aprotinin) (PI). 

After incubation and vortex with ChIP Buffer 1, cells were centrifuged at 4700 RPM for 

five minutes and the pellet was washed with 10ml ChIP Buffer 2 (again supplemented 

with 100µM PMSF and PI). After centrifugation at 4700 RPM for five minutes, the 

pellet was resuspended into 3ml ChIP Buffer 3 (again supplemented with 100µM PMSF 

and PI). 

 

This 3ml cell suspension was then separated into six 500µl aliquots in 1.5 ml 

Bioruptor® Pico Microtubes and the chromatin was sheared using the Bioruptor Pico 

with 15 cycles and a pulse rate of 30 ON and 30 OFF (this setting was determined after 

performing a shearing efficiency experiment). After shearing, the lysate was cleared by 

centrifugation at 4°C at 11,400 RPM for ten minutes. During this waiting time the beads 

that were prepared on the previous day were washed three times in ChIP blocking 

solution and then resuspended in 100µl of ChIP blocking solution. After the 

centrifugation was complete, the supernatant was then transferred to fresh, sterile tubes. 

Some supernatant was stored at -20°C as input (to serve as a baseline for future 

analysis) whilst the remainder was split to incubate with each of the four 

antibodies/beads listed earlier. Beads were left to rotate overnight at 4°C. 

 

After an overnight incubation, beads were collected and washed five times with 1ml 

RIPA Buffer, and then once with 1ml of Tris Buffered Saline (TBS). After the TBS 

wash the TBS is thoroughly removed (potentially by centrifugation or use of a magnetic 

stand) and the beads are resuspended in 200µl of ChIP Elution Buffer and incubated for 

16 hours at 65°C. 

 

Following the incubation in elution buffer, the supernatant was transferred to fresh tubes 

(as the DNA-Protein complex should have eluted from the beads at this point). The 

Input sample that was stored earlier was taken out of storage and to both Input and IP 
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samples an appropriate equal volume of TE Buffer was added. 8µl of 1mg/ml RNase A 

was added and then everything was incubated at 37°C for thirty minutes. 4µl of 

20mg/ml Proteinase K was added and incubated at 55°C for two hours. After this the 

DNA was purified through QIAquick PCR purification kit, following the 

manufacturer’s‎ instructions.‎ Quantitative‎ PCR‎ was‎ then‎ performed‎ using‎ primers‎

designed around putative GREs, listed in Table ‎2.1.6: 

 

Table ‎2.1.6: Primers used for ChIP Experiments. 

Gene / GRE 

Number 
Primer Sequence 

BECN1 GRE 1 
Forward ACT CCT GAC CTT GTG ATC CG 

Reverse AGA ATC GCT TGA ACC TGG GA 

BIRC3 GRE 3 
Forward AAG ATG TGT TAG CCA GTC CTG TT 

Reverse CCC AAT TTT TCT CCA ATT AGT CA 

BIRC3 GRE 5 
Forward TTA GTC GCC ACG CAG CAT 

Reverse CCA CGT GAT AAA AAC CCA CA 

RIPK1 GRE 1 
Forward CTC CGC AGC TCC CAG C 

Reverse TGG GTA AGA GTG CTC GGA TT 

RIPK1 GRE 2 
Forward AGT CTT GCT CTG TCA CCC A 

Reverse GGT GAA GCC CTG TCT CTA CT 

 
Data for each antibody from qPCR for ChIP was normalised first to its respective 

negative control IgG, and then values for each IgG-normalised antibody was further 

normalised to the value of the IgG-normalised antibody for untreated cells (thus 

allowing examination of the effect of dexamethasone on promoter occupancy as all 

antibodies‎for‎untreated‎cells‎become‎“1”). 

 

2.1.19 Cell Type Analysis and Caspase-8 Activation Assay 

 

Cells were seeded at a concentration of 1x10
6
 cells/ml and treated with CM for 48 

hours, dexamethasone for 36 hours, and etoposide for 24 hours. Following treatment 

cells were processed in accordance with the‎ manufacturer’s‎ protocol (ChemoMetec, 

2017). In brief, 5µl diluted FLICA (fluorochrome-labeled inhibitor of caspases assay) 
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reagent was added to 93µl of suspended cells, and 2µl 500 µg/ml Hoechst 33342 was 

added. After incubation at 37°C for one hour, cells were washed twice in 400µl 1x 

Apoptosis Wash Buffer, pelleted by centrifugation, and resuspended in 100µl of 

Apoptosis Wash Buffer supplemented‎ with‎ 10‎ μg/ml propidium iodide. 30µl of the 

sample was then immediately loaded onto an NC-Slide‎ A2™, inserted into the 

NucleoCounter® NC-3000™‎ machine‎ and‎ ran‎ under‎ the‎ “Caspase‎ Assay”‎ setting.‎

Analysis of the data obtained utilised the gating approach in the ChemoMetec guide, 

which is also summarised in Figure ‎2.1.6. 

 

 

Figure ‎2.1.6: Gating strategy for cell types and caspase activation experiments. 

Left panels gate for cell types (healthy in Q1ll, necrotic in Q1ul, late apoptotic in Q1ur and early 

apoptotic in Q1lr) based on dye intensity. Caspase activation is shown in the right panels. Untreated C7-

14 cells are shown on the top whilst dexamethasone-treated C7-14 cells are shown on the bottom. 

 

Following the gating of cells as shown above in Figure ‎2.1.6, the values obtained were 

expressed relative to untreated cells. For example for caspase activation in Figure ‎2.1.6, 
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for untreated cells it would be 100%, whilst for dexamethasone-treated cells it would be 

435% (61/14*100). 

 

2.1.20 Flow Cytometry 

 

Cells were seeded at a concentration of approximately 1x10
6
 cells and either left 

untreated or treated with CM for 48 hours, dexamethasone for 36 hours, or etoposide for 

24 hours. After completion of treatments, cells were pelleted as per subculture and the 

pellet was washed in 1ml cold 1xPBS. After removal of the PBS cell pellets were 

resuspended in 1ml 50% ethanol/PBS which was added dropwise. Solutions were then 

stored at -20°C for thirty minutes and immediately analysed or stored at 4°C for up to 

one week before proceeding with analysis. 

 

After this, cells were pelleted by centrifugation and the supernatant was aspirated, after 

which 200µl of 100µg/ml RNase A was added to the cells and then incubated at 37°C 

for fifteen minutes in the dark. Following a fifteen minute incubation period after the 

addition of 800µl 50µg/ml propidium iodide, the samples were loaded onto a BD 

FACSVerse™‎flow‎cytometer‎and‎analysed‎using‎BD‎FACSuite™‎software.‎Cells‎were‎

captured on forward and side scatter and then gated for cell cycle phases based on 

propidium iodide intensity. 

 

2.1.21 Concentrations of Treatments Used on Cells 

 

Unless otherwise stated, the following concentrations and treatment lengths were used 

to treat cells: 

 

Table ‎2.1.7: Concentration and duration of treatments. 

Treatment Concentration Treatment Length 

Dexamethasone 1µM 24 Hours 

Etoposide 10µM 24 Hours 

AT406 (BIRC3 

Inhibitor) 
10µM 48 Hours 
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Conditioned 

Media (CM) 

1/6
th

 Total Media (i.e. 500µl 

CM per 3ml total cell 

suspension) 

48 hours 

 

2.1.22 Identification of Transcription Factor Binding Sites 

 

This approach was carried out following qRT-PCR and Western experiments which 

indicated possible regulation of genes by the GR. Thus, the QIAGEN Champion ChiP 

Transcription Factor Search Portal was used to search for putative GREs on BECN1 and 

RIPK1. By entering the NCBI Gene Official Symbol into Champion ChIP, potential 

regulators were listed. Following links within Champion ChIP would allow for the gene 

sequence to be seen, at which point the surrounding nucleotides around the putative 

GREs could be identified, allowing for the design of primers. Champion ChIP in 

addition to sequence analysis for GRE half-sites was used to identify putative GREs on 

BECN1, BIRC3, and RIPK1. 

 

2.1.23 Statistical Analysis 

 

Unless otherwise stated, data in figures represents the average of at least three 

independent experiments +/- SEM (standard error of the mean). Unless otherwise stated, 

asterisks (*) above bars indicate statistical significance at p<0.05 when compared to the 

control, as assessed by a paired two-tail t-test. 
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2.2 Computational Approaches 

 

2.2.1 Extraction from STRING and Manual Curation of Interactions 

 

The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database 

was chosen as the source of a starting point for predicted protein interactions, based on a 

previous extensive analysis of the available databases and which was most suitable 

(Tian, 2013). STRING was first introduced in the early 2000s (Snel et al., 2000), and is 

an excellent resource as it integrates information from various sources such as curated 

pathway databases, automatic text-mining, and high-throughput studies (Szklarczyk et 

al., 2011). 

 

From the STRING website (http://string-db.org/, V9.1 at the time) the 

“protein.actions.v9.1.txt.gz”‎ file‎ was‎ downloaded,‎ decompressed,‎ and‎ opened‎ in‎ the‎

UltraEdit text editor. This file was chosen as it is the part of the database that contains 

the predicted functional and physical links between proteins. The UltraEdit search 

function was used to extract all lines containing the STRING ID of the human 

glucocorticoid receptor (9606.ENSP00000231509). Only interactions with a high-

confidence score (greater than or equal to 0.7) were retained after this initial extraction. 

Although given a low confidence score, EP300 and TSC22D3 (GILZ, glucocorticoid-

induced leucine zipper) were also included due to similarity to CREBBP or for their 

known importance in GR signalling respectively. 

 

Extensive literature searches were undertaken to manually curate each predicted 

interaction – this involved reading numerous papers for each interaction to ensure its 

validity. It should be noted that all curations for the interactions contained within this 

model were performed by the author of this thesis, but all curations were checked by the 

PhD Supervisor Professor Marija Krstic-Demonacos to ensure curations were correct 

and so that all interactions included in the model had been double-curated, thus 

increasing the reliability of the model. Often,‎STRING‎predicted‎a‎ ‘binding’‎ reaction,‎

which has no predicted activation or inhibition. However for these interactions literature 

searching often unveiled a functional activation/inhibition relationship that could be 
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included in the model. Completed curations of the interactions involving GR will from 

now‎be‎called‎the‎“primary‎layer”‎of‎the‎model. 

 

Following‎ construction‎ of‎ the‎ primary‎ layer,‎ the‎ “protein.actions.v9.1.txt.gz”‎ file‎ and‎

UltraEdit were again used to extract interactions for the genes that interact with GR. 

These interactions were filtered both for high-confidence and interactions only between 

the genes in the primary layer. Manual curation through extensive literature searching 

was again carried out. Interactions between the genes in the primary layer will be 

referred‎to‎as‎the‎“second‎layer”‎of‎the‎model. 

 

2.2.2 Connection to Model Outputs via the Gene Ontology Consortium 

 

The Gene Ontology Consortium (GO Database, http://www.geneontology.org/) is a 

collaborative project which aims to provide vocabularies for gene annotations, gene 

products and sequences, with annotations being biological processes such as DNA 

binding (GO, 2008). The GO database was used to connect the model constituents to 

biological outputs. After curation of the second layer, direct annotations for each gene 

in the model were extracted and all annotations for all genes were compiled and ranked 

by the most common, and the most common annotations relating to cell death and 

inflammation (two of the important outputs for GR) were taken. Annotations such as 

“protein‎ binding”‎ were‎ excluded‎ as‎ although‎ this‎ is‎ a‎ biological‎ process, it is not a 

measurable or specific output compared to others such as apoptosis. Multiple 

annotations relating to the same overall process were pooled into one output, for 

example tissue-specific forms of apoptosis (such as GO:0043525, positive regulation of 

neuron apoptotic process) were all combined into one node of “CELL-DEATH”.‎In‎all‎

cases, all predicted annotations were confirmed by extensive literature searching to 

verify the effect of the gene on the biological process. 

 

2.2.3 Cytoscape 

 

Visualisation of networks was undertaken through the use of Cytoscape, an open-source 

software that may be used for network imaging (Cytoscape, 2016). Cytoscape is a 
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highly versatile program that can undertake model visualisation and analysis. Networks 

may either be manually created or automatically generated through Cytoscape accessing 

pathway databases (Cytoscape, 2016; Shannon et al., 2003). Manually curated 

interaction records were imported into the program and the network was visualised to 

the required standard by adjusting parameters such as node and edge colour. Node 

connectivity within the model was assessed via the NetworkAnalyzer plugin. Figure 

‎2.2.1 shows an example network visualised through Cytoscape: 

 

 

 

Figure ‎2.2.1: Example network visualised through Cytoscape. 

Green directed arrows represent activation, whilst red blunted arrows represent inhibition. 

 

2.2.4 Import to and Analysis in CellNetAnalyzer 

 

After the model was fully constructed (i.e. primary layer, second layer, and outputs 

through GO are all complete), the final interaction list was imported into 

CellNetAnalyzer (CNA). CNA provides a powerful framework that allows for detailed 

model construction and analysis. CNA can handle two model types: mass-flow (i.e. 

metabolism models) and signal flow (i.e. gene regulatory models) (Klamt et al., 2007). 

 

CNA is capable of performing multiple analyses, the first of which is the generation of 

an interaction matrix. The interaction matrix provides a visual representation of the role 
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of each node (gene/protein, input or output) in every interaction (edge). Three states are 

possible for every node in every interaction: -1 (green or red, denoting that the node 

plays a stimulatory or inhibitory role in the interaction respectively); 0 (black, node not 

involved) and 1 (blue, the node is regulated in this interaction). A “NOT” modifier (“!”)‎

may also be used to represent an inhibitory effect of the node with a -1 value 

(corresponding to negatively affecting the node with a value of 1). The interaction 

matrix thus provides a useful overview of the entire system. However, it is limited in 

that it only visualises what was input to CNA; there is no detailed analysis performed, 

as it more provides a visual reference of the basal model state. Figure ‎2.2.2 shows the 

interaction matrix for the network represented in Figure ‎2.2.1: 

 

 

Figure ‎2.2.2: Interaction Matrix for the network shown in Figure ‎2.2.1. 

Interactions are shown on the x-axis, whilst nodes are shown on the left-side y-axis. The right-hand y-axis 

details the number of reactions the node is involved in. Numbers in brackets represent the number of 

nodes it activates, the number of nodes it inhibits, and the number of nodes it is regulated by respectively. 

 

Although an interaction matrix is useful for providing an overview of the network, for 

in-depth analysis other approaches such as logical steady state analysis (LSSA) and 

dependency matrix generation are utilised. Dependency matrices utilise graph theory to 
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calculate the overall effect of every node within the model upon every node within the 

model, by tracing paths based on the edges connecting nodes. Paths can be either 

positive (activation) or negative (“NOT” modifier/inhibition). 

 

Thus, by taking into account all of the signalling present in the network, in addition to 

feedback loops, CNA can provide insight into relationships between individual nodes 

that may otherwise escape notice due to complicated signalling events. Furthermore, 

comparison of a wild-type dependency matrix to the dependency matrix of a KO model 

would allow for further elucidation as to how the system behaves following 

perturbation. Utilising a similar example to Klamt et al. (2007), the following details the 

six possible relationships possible in a dependency matrix: 

 

1. A has no effect on B if there are no pathways (direct or indirect, positive or 

negative) between A and B. 

2. A is a strong activator of B if there are positive paths between A and B, and no 

negative paths between A and B. A third node, C, may also exist. If A is 

connected to C, and C is connected to B (i.e. A influences C, C influences B), C 

must not be involved in a negative feedback loop to itself. 

3. A is a weak activator of B if there are positive paths between A and B, and no 

negative paths between A and B. A third node, C, must also exist that affects A 

and is affected by B. Node C must also be involved in a negative feedback loop 

with itself. 

4. A is a strong inhibitor of B if there are negative paths between A and B, and no 

positive paths between A and B. A third node, C, may also exist. If A has paths 

to C, and C has paths to B (i.e. A influences C, C influences B), C must not be 

involved in a negative feedback loop to itself. 

5. A is a weak inhibitor of B if there are negative paths between A and B, and no 

positive paths between A and B. A third node, C, must also exist, that affects A 

and is affected by B. Node C must also be involved in a negative feedback loop 

with itself. 

6. A is ambivalent to B if both positive and negative paths exist between A and B. 
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Figure ‎2.2.3 shows the dependency matrix for the example network shown in Figure 

‎2.2.1: 

 

 

Figure ‎2.2.3: Dependency Matrix for example network shown in Figure ‎2.2.1. 

Dependencies show the effect of the node on the y-axis on the node on the x-axis. 

 

2.2.5 Application of LSSA and Comparison of LSSA Results 

 

As mentioned earlier, logical steady state analysis (LSSA) is another analytical 

approach in CNA. LSSA calculates the steady state of every node in the model on the 

basis of a given set of input values and then proceeding with downstream reactions. By 

setting starting nodes to ON or OFF (such as the input of a glucocorticoid to ON for a 

GR model), CNA calculates node states downstream of the inputs based on the 

interactions in the model. Three states are possible: Activated (1), Inactivated (0) or, if 
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the node cannot be determined or may be active or inactive, undetermined (NaN) 

(Klamt et al., 2007). 

 

In addition to the analyses described above, in silico knockouts were performed (i.e. 

removing a node in the model) and then analyses such as dependency matrix generation 

were repeated on the KO model. This allows simulation for a variety of in vivo mutation 

simulations such as GC-resistant cells (GR KO). LSSA and dependency matrix results 

were compared between the full model and various knockout models. 

 

In addition to obtaining a logical steady state for each node under different conditions, 

comparisons between two sets of resultant node states were also performed as described 

previously (Tian et al., 2013). This approach allows the capturing of up and 

downregulation of nodes between the two LSSA result sets. 

 

As stated earlier, LSSA assigns a state of either activated (1), undetermined (NaN) or 

inactivated (0) to nodes within the network. For LSSA Scenario 1, node i state was 

defined as S(i)1 which takes the value of 1, 0 or NaN. Similarly for Scenario 2 (i.e. an 

LSSA where a node is OFF or deleted) node i state was defined as S(i)2, which can take 

the same node state values. Lastly the value Emod was used to calculate the predicted 

change in node state from Scenario 1 to Scenario 2, where 0 means the node state is 

unchanged, 1 means the node is upregulated and -1 means the node is downregulated: 

 

Emod = 0  if  S(i)1 = 1  and S(i)2 = 1 

Emod = 0  if  S(i)1 = 0  and S(i)2 = 0 

Emod = 0  if  S(i)1 = NaN  and S(i)2 = NaN 

 

Emod = 1  if  S(i)1 = 0  and S(i)2 = 1 

Emod = 1  if  S(i)1 = NaN  and S(i)2 = 1 

Emod = 1  if  S(i)1 = 0  and S(i)2 = NaN 

 

Emod = -1  if  S(i)1 = 1  and S(i)2 = 0 

Emod = -1  if  S(i)1 = 1  and S(i)2 = NaN 
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Emod = -1  if  S(i)1 = NaN  and S(i)2 = 0 

 

Emod was used to describe the overall predicted change from one state to another, but 

was also utilised to compare model predictions to experimental data, to allow for 

assessment of model accuracy. 

 

2.2.6 Genome-Wide Model Validation 

 

In order to assess model accuracy, model predictions based on Emod were compared to 

experimentally-obtained microarray data (obtained from the Gene Expression Omnibus 

database). As Emod was based on a comparison of two different LSSA states (for 

instance Scenario 1 could be the wild-type model, GC-sensitive, whilst Scenario 2 could 

be a GR KO model, GC-resistant) a value known as Eexp was generated via comparison 

between two different microarray experiments (for instance one from GC-sensitive, one 

from GC-resistant, thus matching the LSSA scenarios). 

 

To generate Eexp, the method from Tian et al. (2013) and Hussain et al. (2015) was used. 

For each genome-wide validation a GC-resistant microarray was used as the target 

scenario whilst GC-sensitive arrays were used as the source scenario. Fold changes for 

all probe IDs between the target and source scenarios were calculated, in addition to 

Log10 values for the fold changes. Based on the average +/- standard deviation of all of 

the Log10 fold changes, a dynamic threshold was generated. The upper threshold was 

determined by the average + standard deviation, whilst the lower threshold was 

determined by the average – standard deviation. 

 

To determine whether the genes present in the model were seen as upregulated, 

downregulated, or unchanged based on experimental data, the median value for all 

probe IDs for each gene in question was generated for both the target and source 

scenario, and the fold change of the median scores determined. In the case of model 

nodes such as NFKB which represented more than one gene, the median of all probe 

IDs for all constituent genes was used. The Log10 of the fold change was then compared 

to the dynamic threshold; if its value was higher than the upper threshold, then the gene 
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was determined as upregulated (1), whilst if its value was lower than the lower 

threshold, the gene was determined as downregulated (-1). Otherwise, if its score was 

between the lower and upper thresholds, the gene was determined as unchanged (0). 

This zero score indicates that that the gene was determined as unchanged as its value 

did not change significantly (as assessed by passing either threshold) between the two 

scenarios. 

 

Model validation was carried out by calculating the absolute value of Emod – Eexp. This 

could take three possible values: 0 (model prediction was correct), 1 (small scale error; 

model predicts for example that a gene is unchanged but it is increased, or for example 

that a gene is decreased but there is no change) and 2 (large scale error; model predicts 

opposite of what occurs, for example the model predicts a gene is downregulated when 

in fact it is upregulated). Scores of 0, 1 and 2 were tallied and percentages of correct 

predictions were created for each microarray validation. 

 

2.2.7 Preliminary Clinical Validation of Model with Patient Data (LSSA) 

 

Microarray data from thirteen leukaemia patients (taken after treatment with 

prednisolone) were obtained from the Gene Expression Omnibus database (detailed in 

Table ‎4.5.1, Page 170). For each patient individually, Log10 RMA values for all probe 

IDs were calculated. A dynamic threshold of upper and lower limits based on the 

average +/- standard deviation of the Log10 RMA values were calculated and genes 

were considered as upregulated, unchanged, or downregulated based on their relation to 

the threshold. If the Log10 of the median RMA values for the gene’s‎probe‎ IDs‎were‎

higher than the upper threshold, genes were deemed upregulated (1); if lower than the 

lower threshold then genes were deemed downregulated (-1). Otherwise, if the values 

were between the lower and upper thresholds, genes were deemed unchanged (0). This 

value of up, down, or no change was then compared to LSSA results of a GC-sensitive 

simulation where (from the LSSA results) a value of 1 is equivalent to upregulation (1), 

0 to downregulation (-1), and NaN to unchanged (0). 
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2.2.8 Signal Transduction Score Flow Algorithm (STSFA) Analysis 

 

The STSFA is a Cytoscape plugin that allows for superimposition of microarray or 

ChIP-seq data onto a signalling model to allow for a more quantitative analysis to be 

performed (Isik et al., 2012). In this context, quantitative analysis indicates that rather 

than a Boolean fixed state of 1 or 0 to indicate ON or OFF, each node within the model 

could‎be‎assigned‎a‎“score”‎to‎allow‎for‎comparison‎of‎relative‎activation/inhibition.‎An 

overview of the principles of STSFA can be seen in Figure ‎2.2.4: 

 

 

Figure ‎2.2.4: Principles of STSFA analysis. 

STSFA assigns a starting score to every node based on its value from the ChIP-seq/microarray data. 

These scores then quantitatively traverse through the model depending on downstream signals to update 

node scores throughout the model, ending when outputs are reached. Figure adapted from Isik et al. 

(2012). 

 

Under STSFA analysis each node within the model is given a starting score based on 

(for example) the microarray data. Downstream reactions are then processed based on 

the node score; for instance Node A in Figure ‎2.2.4 has a starting score of 20.  It has 

two downstream nodes (Node B, with a starting score of 8, and Node C with a starting 

score of 2). The total of eight and two is ten, so Node B receives 80% (8/10) of Node 

A’s‎score,‎whilst‎node‎C‎receives‎20%‎(2/10)‎of‎Node‎A’s‎score.‎This‎corresponds‎to‎16‎

and 4 respectively. Node C only has one downstream node (Node F) so it receives 

100%‎of‎Node‎C’s‎score‎(6).‎Combined‎with‎its‎starting‎score‎of‎9,‎Node‎F‎now‎has‎a‎

score of 15 which it uses to‎ activate‎ its‎ biological‎ output‎ (which‎ serves‎ as‎ a‎ “stop”‎

signal of sorts for STSFA analysis) (Isik et al., 2012). 

 

Comparatively, Node B has two downstream nodes (Node D and Node E). Notably, 

Node D is negatively regulated by Node B, whilst Node E is positively regulated. Node 
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D has a starting score of 2, whilst Node E has a starting score of 4. Thus, Node D 

receives 33.33%‎ (2/6)‎ of‎ Node‎ B’s‎ score,‎ whilst‎ Node‎ E‎ receives‎ 66.66%‎ (4/6).‎

However, Node B regulates Node D in a negative manner, so a weight of -8 (one-third 

of‎24)‎is‎added‎to‎the‎edge.‎Since‎Node‎D’s‎starting‎score‎was‎2,‎its‎score‎now‎drops‎to‎

zero and its output is inactive. Node E, however, receives a score of 16 (two-thirds of 

24) which, combined with its starting score of 4, gives it a new value of 20 which 

activates its output (Isik et al., 2012). 

 

To perform STSFA analysis, as with previous studies Log2 microarray values were 

scaled up by a factor of 100 and superimposed onto the model using the STSFA plugin 

(Pathway Scoring plugin) (Hussain et al., 2014). One limitation of STSFA is that due to 

the method it uses to assess effects on downstream nodes, directly ambivalent 

relationships cannot be considered. For instance, if Node A directly activates and 

inhibits Node B, then STSFA cannot compute this effectively. To correct for this, all 

direct ambivalent interactions were removed from the model before STSFA analysis. 

From a mathematical perspective this is reasonable as even if the direct ambivalent 

interactions were taken into account, the net effect would be zero as it would 

theoretically be positively and negatively regulated by the same amount. 

 

STSFA results based on GC-sensitive and GC-resistant microarray data were used to 

generate an Emod value, which could then be compared to the Eexp value obtained by 

direct comparison of microarray data (Eexp was generated as detailed previously in 

Section ‎2.2.6, Page 102). To generate Emod for STSFA output data, fold changes 

between resistant and sensitive node scores were calculated, followed by Log10 of each 

fold change. Based on the Log10 fold change for each node a dynamic threshold was 

generated based on the average +/- standard deviation of the fold changes. Nodes were 

determined as upregulated if they exceeded the upper threshold, downregulated if they 

were less than the lower threshold, and unchanged if their values lay between the lower 

and upper thresholds. These Emod values were compared to the Eexp values to assess 

STSFA predictive power. This again allowed for assessment of model accuracy, in 

addition to assessing the accuracy of STSFA analysis compared to LSSA. 
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2.2.9 Preliminary Clinical Validation of Model with Patient Data (STSFA) 

 

The capacity of the GEB052 model as a predictive clinical tool was assessed using 

patient microarray data extracted from a previous study (Schmidt et al., 2006). 

Microarray data from thirteen paediatric acute lymphoblastic leukaemia patients were 

taken from the Gene Expression Omnibus database (detailed in Table ‎4.6.2, Page 174) 

and each in turn was processed as described above to be used with STSFA for the 

model. The microarray data files used were taken prior to patients being treated. 

 

STSFA generates scores for each node of the model, including and stopping at 

biological outputs such as cell death, which is one output of the model described in this 

thesis. Model edges are also assigned weights based on the interactions within the 

model (Isik et al., 2012). All incoming edge weights to the node CELL-DEATH were 

totalled for each patient. Patients were divided into two groups (alive at risk assessment 

or dead at risk assessment) and the average total edge weight for each group was 

calculated, thus correlating model predictions with clinical outcomes. 
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Chapter 3 Wet Laboratory Results 

 

3.1 Introduction to Wet Laboratory Research 

 

As described in the Introduction, the bone marrow microenvironment (which may be 

mimicked in vitro through the use of bone cell-conditioned media) represents a source 

of chemoresistance in leukaemia. The research in this chapter presents molecular and 

functional analysis of the effects of CM and the chemotherapeutic drugs dexamethasone 

and etoposide in varying combinations on glucocorticoid-sensitive (C7-14) and 

glucocorticoid-resistant (C1-15) cell lines. In particular, the effect of these treatments on 

proteins relating to cell death and survival has been investigated, in addition to their 

effects on GR phosphorylation, and GR occupancy on potential glucocorticoid-

regulated genes has also been assessed. 

 

3.2 CM and Chemotherapy Alter Leukaemic Cell Fate 

 

Before carrying out molecular analysis, MTS assays were performed to determine the 

appropriate concentration of CM and to assess the effects of CM and chemotherapy on 

C1-15 and C7-14 cells. Concentrations and treatment lengths for dexamethasone‎(1μM, 

36 hours)‎ and‎ etoposide‎ (10μM, 24 hours) were chosen based on optimisation 

experiments previously conducted within the laboratory (Qattan, 2014), whilst CM 

concentration was chosen as one-sixth CM/total media based on MTS optimisation 

experiments (see Appendices). Based on these concentrations, an MTS assay was 

performed with all three treatments in various combinations: 

 



108 

 

 

Figure ‎3.2.1: Cell viability under CM and chemotherapy. 

Cell viability was assessed by MTS assays. C1-15 and C7-14 cells were treated with CM for 48 hours, 

1μM‎ dexamethasone (D) for‎ 36‎ hours‎ and‎ 10μM‎ etoposide (E) for 24 hours individually or in 

combination. Data represents the average of at least three independent experiments +/- SEM. P-value 

<0.05 is indicated by * (black asterisk for comparison of treatment to control). Red asterisks indicate 

statistical significance at p<0.05 between other groups. 

 

As shown above, CM did not exert any significant effects on cell death for either cell 

line (compare lane 2 to lane 1). Dexamethasone exerted a highly significant cytotoxic 

effect in C7-14 cells, whilst it also inhibited the growth of C1-15 cells, though to a 

much lower degree (compare dark and light bars of lane 3 to lane 1). Addition of CM, in 

both cell lines, resulted in a slight increase in viability (with the difference being 

statistically significant in C1-15 cells), which may suggest a trend for CM to increase 

survival (compare lane 4 to lane 3). In both cell lines, etoposide demonstrated a 

significant cytotoxic effect. C7-14 cells were more sensitive to the drug and showed 

consistently higher cytotoxicity rates compared to C1-15 for all treatments containing 

etoposide (compare light to dark bars of lanes 5-8). 

 

3.3 Conditioned Media Influences The Glucocorticoid Receptor 
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As established in Section ‎1.10 (Page 39) the phosphorylation status of the GR is a 

crucial determinant of its activity. It is known that ligand-binding ultimately leads to 

altered phosphorylation status, and that GC-sensitive and GC-resistant cells exhibit 

different patterns of phosphorylation. 

 

Due to the widespread effects of the microenvironment and the key role of the GR in 

numerous physiological pathways, it was hypothesised that the microenvironment (and 

CM) could alter GR levels or post-translational status, which in turn could affect 

response of leukaemia cells to dexamethasone or other chemotherapeutic agents. 

 

To investigate this, Western blot analysis (complemented by densitometry) was 

employed on C1-15 and C7-14 cells under CM, dexamethasone and etoposide treatment 

in varying combinations. The proteins analysed were Total GR (H300), S211-

phosphorylated GR, S226-phosphorylated GR, with Actin being used as a loading 

control: 

 

 

 

Figure ‎3.3.1: Western blot analysis of the GR and its phosphoisoforms. 

C1-15 and C7-14‎ cells‎ were‎ treated‎ with‎ CM‎ for‎ 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for 24 hours or 

10μM‎etoposide‎(E)‎for‎24‎hours‎individually‎or‎in‎combination.‎Cells‎were‎lysed‎and‎ the‎GR‎and‎two‎

phosphoisoforms were detected by Western blot analysis. Actin was used as a loading control. Data is 

representative of at least three independent experiments. 

 

Although the Westerns above provide a visual analysis, densitometry allows for a semi-

quantitative approach to the Western data. Each antibody above will be analysed in the 

following sections. 
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3.3.1 Analysis of Total GR 

 

 

Figure ‎3.3.2: Densitometric analysis of GR protein levels. 

C1-15 and C7-14‎ cells‎ were‎ treated‎ with‎ CM‎ for‎ 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎etoposide‎(E)‎for‎24‎hours‎individually‎or‎in‎combination. Blots were analysed with ImageJ. GR 

band readings were normalised to the corresponding actin band reading and then expressed relative to 

untreated cells. This Figure contains quantification of blot data generated by both the author of this thesis 

and an additional researcher. Data is representative of at least three independent experiments +/- SEM. P-

value <0.05 is indicated by *. 

 

In Figure ‎3.3.2 above, CM trends towards reducing the GR in C1-15 cells, but 

increasing the GR in C7-14 cells (lane 2, compare dark bars to light bars). The 

difference in cellular response to hormone can be observed under dexamethasone 

treatment, with C7-14 cells showing tendency towards increased GR levels under 

hormone treatment (lane 3, compare dark to light bars). Etoposide trended towards 

reducing GR levels, whilst dexamethasone and etoposide combination led to a 

statistically significant reduction in GR levels (compare light bars of lanes 1 and 7). 

This is consistent with established knowledge, as it has been shown previously that GR 

and TP53 (activated by etoposide) may exhibit negative crosstalk (Sengupta et al., 

2000). 

  

3.3.2 Analysis of S226-Phosphorylated GR 
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Figure ‎3.3.3: Densitometric analysis of S226-phosphorlated GR. 

C1-15 and C7-14‎ cells‎ were‎ treated‎ with‎ CM‎ for‎ 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎etoposide‎(E)‎for‎24‎hours individually or in combination. Blots were analysed with ImageJ and 

S226 values were normalised to the corresponding actin-normalised total GR values. Values were then 

expressed relative to untreated cells. This Figure contains quantification of blot data generated by both the 

author of this thesis and an additional researcher. Data is representative of at least three independent 

experiments +/- SEM. P-value <0.05 is indicated by * (black asterisk for comparison of treatment to 

control). Red asterisks indicate statistical significance at p<0.05 between other groups. 

 

As shown in Figure ‎3.3.3, differential effects of CM between C1-15 and C7-14 cells are 

still observed. In C1-15 cells, CM induces a statistically significant increase in S226-

phosphorylated GR, whilst this effect is not seen in C7-14 cells (lane 2, compare dark to 

light bars). This correlates with the trend towards reduction of T-GR by CM in Figure 

‎3.3.2, given that phosphorylation at S226 is associated with nuclear export and reduced 

GR activity (Galliher-Beckley and Cidlowski, 2009). 

 

Opposing effects of dexamethasone on phosphorylation at S226 were observed between 

C1-15 and C7-14 cells, with C1-15 trending towards an increase whilst C7-14 cells 

trended towards a decrease (lane 3, compare dark to light bars of Figure ‎3.3.3). 

However, addition of CM to this led to a decrease in S226-phosphorylated GR levels 

(compare dark bar of lane 4 to dark bar of lanes 3 and 1 of Figure ‎3.3.3). In C1-15 cells, 

etoposide induced a statistically significant downregulation of S226-phosphorylated 
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GR, which was inhibited by the addition of CM (compare dark bars of lane 5 to lane 6 

of Figure ‎3.3.3). 

 

A similar effect was observed with dexamethasone and etoposide combination 

treatment; although etoposide lead to a statistically significant decrease in S226-

phosphorylated GR, this was lost following the addition of dexamethasone (compare 

dark bars of lane 5 to lane 7 of Figure ‎3.3.3). This provides further evidence for the role 

of dexamethasone in increasing S226 phosphorylation in C1-15 cells. However, 

addition of CM to dexamethasone and etoposide combination reduced levels of S226-

phosphorylated GR, though there was no change in statistical significance. Thus, it 

appears CM exerts different effects depending on the treatment combinations; most 

effects in C1-15 cells appear to be increasing S226-phosphorylated GR, with the 

exception of when dexamethasone is present, at which point CM appears to exert a 

negative effect, potentially interfering with the hormone response. 

 

Although etoposide lead to a statistically significant reduction of S226-phosphorylated 

GR in C7-14 cells, this effect was not inhibited by CM, indicating a cell-specific 

difference in response to CM (compare light bars of lanes 5 and 6 of Figure ‎3.3.3). 

Although dexamethasone and etoposide lead to a slight loss of the inhibition of S226-

phosphorylated GR (compare light bars of lanes 5 and 7 of Figure ‎3.3.3). Lastly, 

addition of CM to dexamethasone and etoposide treatment led to a statistically 

significant reduction in S226 levels relative to dexamethasone and etoposide alone in 

C7-14 cells (compare light bars of lanes 7 and 8 of Figure ‎3.3.3). Thus, CM appears to 

have a generally negative effect on S226 expression in C7-14 cells, while its effects in 

C1-15 cells may be slightly more complex. 

 

3.3.3 Analysis of S211-Phosphorylated GR 
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Figure ‎3.3.4: Densitometric analysis of S211-phosphorylated GR. 

C1-15 and C7-14‎ cells‎ were‎ treated‎ with‎ CM‎ for‎ 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎etoposide‎(E)‎for‎24‎hours‎ individually‎or in combination. Blots were analysed with ImageJ and 

S211 values were normalised to the corresponding actin-normalised total GR values. Values were then 

expressed relative to untreated cells. This Figure contains quantification of blot data generated by both the 

author of this thesis and an additional researcher. Data is representative of at least three independent 

experiments +/- SEM. P-value <0.05 is indicated by *. 

 

Analysis of phosphorylation at S211 indicates a trend for CM to increase its expression 

in both C1-15 and C7-14 cells. Other than CM treatment, levels of S211-phosphorylated 

GR were largely unchanged for C1-15 cells, whilst C7-14 showed increase in S211-

phosphorylated GR across all treatments. 

 

3.4 Modulation of cell death and survival markers by CM and chemotherapy 

 

Results described in Section ‎3.3 above suggest that the microenvironment modulates 

glucocorticoid receptor levels and phosphorylation status, which in turn may impact its 

effects on downstream cellular processes such as apoptosis, autophagy and necroptosis. 

Importantly, a microarray carried out by a colleague prior to this study indicated that 

CM modulated the expression of numerous genes, including a repression of RIPK1, 

further highlighting it as an interesting target and providing a basis for its study via 

qRT-PCR validation and immunoblotting (Qattan, 2014). Thus, CM alone may affect 
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apoptotic, necroptotic or autophagic pathways either independently of the GR or 

through altering cellular processes downstream of the GR.  

 

In order to investigate this hypothesis, qRT-PCR and Western blot analysis was 

performed BECN1 (marker for autophagy), RIPK1 (marker for necroptosis) and 

caspase-3 (marker for apoptosis). For caspase-3, only protein levels were followed as 

the important event demonstrating apoptosis is cleavage of the full-length caspase to 

two smaller subunits.  

 

3.4.1 Effects on BECN1 and RIPK1 mRNA 

 

 

Figure ‎3.4.1: BECN1 mRNA Expression. 

C1-15 and C7-14‎ cells‎ were‎ treated‎ with‎ CM‎ for‎ 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎ etoposide‎ (E)‎ for‎ 24‎ hours‎ individually‎ or‎ in‎ combination.‎ RNA‎ extracts‎ from‎ the‎ cells‎ were‎

processed to cDNA and subjected to qPCR. Data represents at least three independent experiments +/- 

SEM. 

 

Despite trends appearing in BECN1 mRNA levels under various treatments (Figure 

‎3.4.1 above), no statistically significant differences were observed. The previous finding 

of CM exerting opposing cell-specific differences was again observed, as CM treatment 

for C1-15 trended towards increasing BECN1 mRNA, whilst the trend for C7-14 was a 
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marginal decrease (lane 2, compare dark to light bars). Increasing BECN1, which is 

linked to the potentially pro-survival process of autophagy, may increase cell viability 

and be a route by which CM exerts a cytoprotective effect. Although dexamethasone 

trended towards increasing BECN1 mRNA, these levels were again statistically 

insignificant. Treatments in general did not exert significant effects for BECN1, at least 

at the mRNA level. 

 

 

Figure ‎3.4.2: RIPK1 mRNA Expression. 

C1-15 and C7-14‎ cells‎ were‎ treated‎ with‎ CM‎ for‎ 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎ etoposide‎ (E)‎ for‎ 24‎ hours‎ individually‎ or‎ in‎ combination.‎ RNA‎ extracts‎ from‎ the‎ cells‎ were‎

processed to cDNA and subjected to qPCR. Data represents at least three independent experiments +/- 

SEM. P-value <0.05 is indicated by *. 

 

CM appears to exert opposite effects between C7-14 and C1-15 cells, with C1-15 

trending towards increase of RIPK1 mRNA whilst C7-14 cells under CM treatment 

exhibit a statistically significant loss of RIPK1 mRNA (compare dark and light bars of 

lane 2 to lane 1 of Figure ‎3.4.2). Importantly, this demonstrates a validation of the 

microarray described previously, providing further evidence for the role of CM in 

repressing RIPK1 in C7-14 cells. Dexamethasone in C7-14 cells trended towards 

decreasing RIPK1 levels; however this was not seen in C1-15 cells (lane 3, compare 

dark to light bars of Figure ‎3.4.2). Combination of CM with dexamethasone further 
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repressed RIPK1 in C7-14, restoring the statistical significance (compare light bars of 

lanes 1 and 4 of Figure ‎3.4.2). Again, this was not seen for C1-15 cells. 

 

Dexamethasone treatment in C7-14 cells did not result in a statistically significant 

decrease of RIPK1 levels. However, a trend towards reduction was observed and further 

evidence for RIPK1 repression in GC-sensitive cells can be seen by the fact that 

etoposide alone did not have a significant effect on RIPK1 (though a trend for reduction 

was seen), whilst dexamethasone and etoposide combination lead to a statistically 

significant loss of RIPK1 levels (compare light bars of lanes 5 and 7 of Figure ‎3.4.2). 

This loss was maintained following the addition of CM (compare light bars of lanes 7 

and 8 of Figure ‎3.4.2). The same treatments in C1-15 cells did not exhibit any 

significant changes or notable trends. 

 

3.4.2 Effects on BECN1, Caspase-3 and RIPK1 Protein Levels 

 

 

Figure ‎3.4.3: CM and chemotherapy modulate BECN1, caspase-3 and RIPK1. 

C1-15 and C7-14‎ cells‎ were‎ treated‎ with‎ CM‎ for‎ 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎ etoposide‎ (E)‎ for‎ 24‎ hours‎ individually‎ or‎ in‎ combination.‎ Cells‎ were‎ lysed and Western blot 

analysis was used to detect RIPK1, BECN1, caspase-3 (FL, full-length) and caspase-3 (CL, cleaved). 

Actin was used as a loading control. Data is representative of at least three independent experiments. 

 

Although the raw immunoblot data presented above is useful for visual analysis, 

densitometry has also been applied to analyse this data and additional western blot 

replicates (data not shown) in a more quantitative manner: 
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Figure ‎3.4.4: Densitometric analysis of RIPK1 protein levels. 

C1-15 and C7-14‎ cells‎ were‎ treated‎ with‎ CM‎ for‎ 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎ etoposide‎ (E)‎ for‎ 24‎ hours‎ individually‎ or‎ in‎ combination.‎ Blots‎ were‎ analysed‎ with‎ ImageJ.‎

RIPK1 band readings were normalised to the corresponding actin band reading and then expressed 

relative to untreated cells. Data is representative of at least three independent experiments +/- SEM. P-

value <0.05 is indicated by *. 

 

Densitometric analysis of RIPK1 protein levels reveals a good degree of consistency 

between this and the previous experiments on mRNA levels (Figure ‎3.4.2, Page 115). 

Opposing effects of CM are seen and show the same pattern as for mRNA levels, with 

C1-15 trending towards increased RIPK1 and C7-14 exhibiting statistically significantly 

lower RIPK1 protein levels (compare dark and light bars of lane 2 to lane 1). In C7-14 

cells dexamethasone leads to a statistically significant reduction of RIPK1 protein 

levels, whilst this is not seen for C1-15 cells (compare dark and light bars of lane 3 to 

lane 1). This again correlates with the trend towards lower RIPK1 mRNA identified in 

C7-14 cells in Figure ‎3.4.2 (Page 115). Notably, although CM and dexamethasone 

individually each repress RIPK1 protein to a significant degree in C7-14 cells, 

combined CM/dexamethasone treatment abolishes this downregulation. 
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In general, RIPK1 expression is lowered in C7-14 cells across the majority of the 

treatments, whilst for C1-15 it is largely unchanged, save for a trend for increase under 

CM treatment and a statistically significant reduction following combination treatment 

with dexamethasone and etoposide (compare dark bars of lanes 2 and 7 to lane 1). 

 

 

Figure ‎3.4.5: Densitometric analysis of caspase-3 (FL) protein levels. 

C1-15 and C7-14 cells were treated with CM for 48 hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎ etoposide‎ (E)‎ for‎ 24‎ hours‎ individually‎ or‎ in‎ combination.‎ Blots‎ were‎ analysed‎ with‎ ImageJ.‎

Caspase-3 (FL) band readings were normalised to the corresponding actin band reading and then 

expressed relative to untreated cells. This Figure contains quantification of blot data generated by both the 

author of this thesis and an additional researcher. Data is representative of at least three independent 

experiments +/- SEM. P-value <0.05 is indicated by *. 

 

Caspase-3 (FL) analysis revealed a significant degree of modulation across numerous 

treatments in both cell lines. For both cell lines, CM reduced the expression of Caspase-

3 (FL), though the reduction is only statistically significant for C7-14, and a similar 

pattern is seen for dexamethasone (compare lanes 2 and 3 to lane 1).  However, 

dexamethasone and CM combination treatment removed this loss, or at least its 

statistical significance in C7-14 cells (compare lane 4 to lane 3). A difference can be 

seen in etoposide treatment between the cells; for C7-14, etoposide induces a 

statistically significant loss of the full-length caspase, whilst although a loss was also 

seen in C1-15 cells, the reduction was not statistically significant (compare dark and 
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light bars of lane 5). Etoposide and CM combination in both cell lines statistically 

significantly reduces Caspase-3 (FL), though a higher loss is seen in C7-14 cells, and 

this trend is observed across all treatments containing etoposide (compare lanes 5-8 to 

lane 1). 

 

 

Figure ‎3.4.6: Densitometric analysis of BECN1 protein levels. 

C1-15 and C7-14‎ cells‎ were‎ treated‎ with‎ CM‎ for‎ 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎ etoposide‎ (E)‎ for‎ 24‎ hours‎ individually‎ or‎ in combination. Blots were analysed with ImageJ. 

BECN1 band readings were normalised to the corresponding actin band reading and then expressed 

relative to untreated cells. This Figure contains quantification of blot data generated by both the author of 

this thesis and an additional researcher. Data is representative of at least three independent experiments 

+/- SEM. P-value <0.05 is indicated by *. 

 

Similar to the mRNA analysis for BECN1 (Figure ‎3.4.1, Page 114), CM trends towards 

increasing BECN1 protein levels in C1-15 cells, though again similar to mRNA analysis 

this change was not statistically significant (compare dark bars of lane 2 to 1). Overall, 

dexamethasone had no significant effect in either cell line. 

 

Generally, higher levels of BECN1 protein were detected in C1-15 than C7-14 cells 

across all treatments (compare dark to light bars in lanes 2-8). Etoposide reduces 

BECN1 protein levels in both cell lines, though a larger (and statistically significant) 

loss is observed in C7-14 cells (compare lane 5 to lane 1). Dexamethasone and 
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etoposide combination treatment for both C1-15 and C7-14 induced a statistically 

significant loss of BECN1 protein, and yet addition of CM to this resulted in a loss of 

statistical significance in the decrease for C7-14 cells. Taken together, the protein data 

for BECN1 indicates that CM may modulate its expression in a positive manner, 

reducing the chemotherapy-induced downregulation of BECN1 to promote survival. 

 

3.5 GR Occupancy on the BECN1 and RIPK1 Promoters 

 

Section ‎3.4 above identified that dexamethasone exerts a negative effect on RIPK1 

expression in glucocorticoid-sensitive cells. BECN1 and RIPK1 are both interesting 

targets not only for their involvement in cell death and survival pathways, but also for 

their known interaction with factors such as NF-κB,‎which‎is‎known‎to‎have‎high‎levels‎

of crosstalk with GCs and GR signalling. 

 

3.5.1 GRE Identification for BECN1 and RIPK1 

 

In order to investigate if the GR occupies the BECN1 and RIPK1 upstream genetic 

regions (and thus identify whether BECN1 and RIPK1 may be under GR control) 

bioinformatics approaches were first used to identify putative GREs within the two 

regions. Using the QIAGEN Champion ChiP Transcription Factor Search Portal and 

sequence analysis to identify GRE half-sites, numerous GREs were identified on the 

BECN1 genetic region, with several identified by QIAGEN Champion ChiP 

Transcription Factor Search Portal: 

 

 

Figure ‎3.5.1: Identification of putative GREs on the BECN1 upstream region. 
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Figure adapted from the QIAGEN Champion ChiP Transcription Factor Search Portal. 

 

Such a high number of putative GR binding sites half-sites strongly suggests the 

possibility that BECN1 is a target for GR, albeit under possibly a very complex control. 

Furthermore, some GREs were adjacent to NF-κB‎ binding‎ sites,‎ indicating‎ the‎

possibility of crosstalk, which may further complicate the potential regulation of 

BECN1 by the GR. 

 

The QIAGEN Champion ChiP Transcription Factor Search Portal was also used to 

identify putative GREs on the RIPK1 upstream region: 

 

 

Figure ‎3.5.2: Identification of putative GREs on the RIPK1 upstream region. 

Figure adapted from the QIAGEN Champion ChiP Transcription Factor Search Portal. 

 

Two putative GREs were identified by the QIAGEN Champion ChiP Transcription 

Factor Search Portal on the RIPK1 upstream region. Similar to BECN1, these GREs 

were located close to NF-κB‎binding‎sites. 

 

The Champion ChiP Transcription Factor Search Portal uses SABiosciences' Text 

Mining Application and the University of California Santa Cruz (UCSC) Genome 

Browser as a data source (SABiosciences, 2012). To verify that the genetic region 

shown in Figure ‎3.5.1 and Figure ‎3.5.2 is active the UCSC Genome Browser was used 

for K562 cells: 
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Figure ‎3.5.3: UCSC Genome Browser output for the BECN1 region shown in Figure ‎3.5.1. 

Figure adapted from the UCSC Genome Browser.
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Figure ‎3.5.4: UCSC Genome Browser output for the RIPK1 region shown in Figure ‎3.5.2. 

Figure adapted from the UCSC Genome Browser.
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3.5.2 Occupancy of the GR on the BECN1 and RIPK1 Upstream Region 

 

Following identification of the putative GREs described above ChIP experiments were 

performed against one putative GRE for BECN1 and both putative GREs for RIPK1, 

using antibodies against total GR, S211-phosphorylated GR and S226-phosphorylated 

GR. 

 

 

Figure ‎3.5.5: Relative promoter occupancy at RIPK1 GRE 1. 

C1-15 and C7-14‎cells‎were‎treated‎with‎dexamethasone‎(1μM)‎for‎24‎hours‎and‎subjected‎to‎chromatin‎

immunoprecipitation analysis. Data for each antibody was normalised first to the respective negative 

control IgG, and then to the IgG-normalised value for the antibody for untreated cells. 

Data represents the average of at least three independent experiments +/- SEM. P-value <0.05 is indicated 

by *. 

 

No significant difference in promoter occupancy was identified in C1-15 cells following 

dexamethasone treatment, regardless of the GR antibody used Figure ‎3.5.5A). Contrary 

to this, as shown in Figure ‎3.5.5B, dexamethasone induced a statistically significant 

increase in the relative promoter occupancy of T-GR in C7-14 cells, indicating presence 

of the GR at this GRE. However, there was no overall change (and in fact a trend 

towards reduced levels) of S211/S226-phosphorylated GR. 
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Figure ‎3.5.6: Relative promoter occupancy at RIPK1 GRE 2. 

C1-15 and C7-14‎cells‎were‎treated‎with‎dexamethasone‎(1μM)‎for‎24‎hours‎and‎subjected‎to‎chromatin‎

immunoprecipitation analysis. Data for each antibody was normalised first to the respective negative 

control IgG, and then to the IgG-normalised value for the antibody for untreated cells. 

Data represents the average of at least three independent experiments +/- SEM. P-value <0.05 is indicated 

by *. 

 

As before with RIPK1 GRE 1, there was no significant difference in recruitment for T-

GR for C1-15 cells following dexamethasone treatment (Figure ‎3.5.6A). Curiously, 

there was a noted decrease in the phosphorylated forms of the GR following hormone 

treatment. The same was shown – and statistically significant – for the phosphorylated 

forms of the GR in C7-14 cells Figure ‎3.5.6B). However, as with RIPK1 GRE 1 (Figure 

‎3.5.5B), treatment with dexamethasone lead to a statistically significant increase in the 

relative promoter occupancy of T-GR in C7-14 cells (Figure ‎3.5.6B). Thus, a difference 

between GC-resistant and GC-sensitive cells has been highlighted, as has the 

identification of RIPK1 as a target for control by GR through promoter binding. 

 

In addition to the two putative GREs within the RIPK1 promoter, one putative GRE 

within the BECN1 promoter was assessed by ChIP experiments: 
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Figure ‎3.5.7: Relative promoter occupancy at a putative GRE at BECN1. 

C1-15 and C7-14‎cells‎were‎treated‎with‎dexamethasone‎(1μM)‎for‎24‎hours‎and‎subjected‎to‎chromatin‎

immunoprecipitation analysis. Data for each antibody was normalised first to the respective negative 

control IgG, and then to the IgG-normalised value for the antibody for untreated cells. 

Data represents the average of at least three independent experiments +/- SEM. P-value <0.05 is indicated 

by *. 

 

For C1-15 cells, there was no significant change in recruitment of either T-GR or S226-

phosphorylated GR, whilst there was a statistically significant reduction in S211-

phosphorylated GR promoter occupancy following hormone treatment (Figure ‎3.5.7A). 

The same was not seen in C7-14 cells; there was no change, positive or negative for 

either phosphorylated form of the GR following hormone treatment, whilst there was a 

statistically significant increase in the relative promoter occupancy of T-GR Figure 

‎3.5.7B). 

 

3.6 Modulation of BIRC3 and Caspase-8 by CM and chemotherapy 

 

BIRC3 (Baculoviral IAP Repeat-Containing Protein 3, also known as cIAP2) is a 

protein that, as a member of the Inhibitor of Apoptosis (IAP) family, has an established 

anti-apoptotic function. IAP family members are aberrantly expressed amongst a variety 

of cancer types (Fulda, 2008) and their expression has thus been implicated in the 

development of chemoresistance. BIRC3 is particularly relevant to this study due to the 

fact it is involved in the ubiquitination of RIPK1 which, depending on its ubiquitination 

status, may alter cell fate to either pro-survival signalling through NF-κB‎ activation 

(Wu et al., 2012), promotion of apoptosis when deubiquitinated (Schenk and Fulda, 

2015), or promotion of necroptotic signalling when caspase-8 activity (and subsequent 
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caspase-8-mediated RIPK1 cleavage) is blocked (Schenk and Fulda, 2015). This thus 

highlights BIRC3 and caspase-8 as important targets to follow due to their role in 

determining cell fate. 

 

3.6.1 Analysis of BIRC3 mRNA Levels 

 

As clarified above, the interplay between caspase-8, RIPK1, and BIRC3 can be a key 

determinant of cell fate. Due to this, mRNA levels of BIRC3 were followed under CM 

and chemotherapy treatment under the hypothesis that its expression would be 

modulated, thus providing insight into therapeutic shortcomings. 

 

 

Figure ‎3.6.1: BIRC3 mRNA Expression. 

C1-15 and C7-14 cells were treated with CM for 48‎ hours,‎ 1μM‎ dexamethasone‎ (D)‎ for‎ 24‎ hours‎ or‎

10μM‎ etoposide‎ (E)‎ for‎ 24‎ hours‎ individually‎ or‎ in‎ combination.‎ RNA‎ extracts‎ from‎ the‎ cells‎ were‎

processed to cDNA and subjected to qPCR. Data represents at least three independent experiments +/- 

SEM. P-value <0.05 is indicated by *. 

 

In C1-15, a statistically significant upregulation of BIRC3 was observed when cells 

were treated with CM (compare dark bars of lanes 1 and 2 of Figure ‎3.6.1), indicating a 

potential route through which CM exerts its cytoprotective effects. All treatments 

containing etoposide lead to significant increase in BIRC3, with the most prominent 

being dexamethasone, etoposide and CM combination (compare dark bars of lane 1 to 
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lanes 5-8 of Figure ‎3.6.1). The same effects of etoposide were recapitulated in C7-14 

cells, with all treatments containing etoposide demonstrating a statistically significant 

increase of BIRC3 expression (compare light bars of lane 1 to lanes 5-8 of Figure ‎3.6.1). 

However, CM resulted in a statistically significant reduction in BIRC3 levels in C7-14 

cells (compare light bars of lanes 1 and 2 of Figure ‎3.6.1). This is curious, given the 

established pro-survival influence of CM and the fact that this anti-apoptotic protein is 

significantly repressed. Dexamethasone, and to a slightly lesser extent dexamethasone 

and CM combination, both induced a dramatic, statistically significant increase in 

BIRC3 expression (compare lanes 3 and 4 of Figure ‎3.6.1). Crucially, dexamethasone 

and etoposide combination lead to a sharp decrease in BIRC3 levels relative to 

dexamethasone alone (compare lanes 3 and 5 of Figure ‎3.6.1), which may indicate the 

molecular basis for the beneficial effects observed with this combination therapy in the 

clinic. 

 

3.6.2 Occupancy of the GR on the BIRC3 Promoter 

 

Due to the highly significant increase in BIRC3 expression following dexamethasone 

treatment identified in the previous section, ChIP experiments were employed to 

investigate the occupancy of the GR on the BIRC3 promoter in C1-15 and C7-14 cells. 

Five putative GREs within the BIRC3 sequence were identified; three in the promoter 

region and two in the coding region. To address the occupancy of GR, two putative 

GREs were investigated: one in the coding region (GRE 5) and one in the promoter 

region (GRE 3). 

 

 

Figure ‎3.6.2: Relative promoter occupancy at putative GRE 5 on BIRC3. 
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C1-15 and C7-14‎cells‎were‎treated‎with‎dexamethasone‎(1μM)‎for‎24‎hours‎and‎subjected‎to‎chromatin‎

immunoprecipitation analysis. Data for each antibody was normalised first to the respective negative 

control IgG, and then to the IgG-normalised value for the antibody for untreated cells. 

Data represents the average of at least three independent experiments +/- SEM. P-value <0.05 is indicated 

by *. Due to the fact that experimental differences here result in lack of statistical significance, the 

individual replicates used to generate this figure are shown in Appendix Figure 6 - Appendix Figure 8 

(Page 211). 

 

No significant differences in recruitment for T-GR or S226-phosphorylated GR 

following dexamethasone treatment was observed in C1-15 cells at putative GRE 5. 

However, a significant loss of S211-phosphorylated GR was observed following 

hormone treatment, which may indicate the possibility of some regulation at that GRE 

by the GR (Figure ‎3.6.2A). For C7-14 cells, no change in either phosphorylated form 

was observed, whilst an increase of the recruitment of T-GR was seen following 

hormone treatment (Figure ‎3.6.2B).  However, this recruitment increase was not 

statistically significant. 

 

 

Figure ‎3.6.3: Relative promoter occupancy at putative GRE 3 on BIRC3. 

C1-15 and C7-14 cells were treated‎with‎dexamethasone‎(1μM)‎for‎24‎hours‎and‎subjected‎to‎chromatin‎

immunoprecipitation analysis. Data for each antibody was normalised first to the respective negative 

control IgG, and then to the IgG-normalised value for the antibody for untreated cells. 

Data represents the average of at least three independent experiments +/- SEM. P-value <0.05 is indicated 

by *. 

 

As with putative GRE 5 in Figure ‎3.6.2, there was no significant change in recruitment 

for T-GR and S226-phosphorylated GR at putative GRE 3 following hormone treatment 

in C1-15 cells, whilst a significant loss of S211-phosphorylated GR was seen (Figure 

‎3.6.3A). C7-14 cells showed a statistically significant loss of occupancy for S211/S226-
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phosphorylated GR following hormone treatment, whilst there was a statistically 

significant increase in the occupancy of T-GR. 

 

3.6.3 Analysis of Caspase-8 Activation 

 

 

Figure ‎3.6.4: Caspase-8 activation under CM and chemotherapy treatments. 

Cells‎were‎treated‎with‎CM‎for‎48‎hours,‎1μM‎dexamethasone‎(D)‎for‎36‎hours‎and‎10μM‎etoposide‎(E)‎

for 24 hours individually or in combination. Cells were processed and loaded onto the NucleoCounter 

machine‎ and‎ ran‎ under‎ the‎ “Caspase‎ Assay”‎ setting. Data is representative of the average of three 

independent experiments +/- SEM. P-value <0.05 is indicated by *.  

 

Although not statistically significant, CM in both cell lines resulted in a trend for 

reduction of caspase-8 activation, representing another mechanism by which the 

microenvironment may promote cell survival (Figure ‎3.6.4, compare lane 2 to lane 1). 

The differential cellular response to hormone can be seen, with C7-14 cells exhibiting a 

trend of higher levels of caspase activation, whereas C1-15 cells did not achieve higher 

levels of caspase activation under the same treatment (Figure ‎3.6.4, compare dark and 

light bars of lane 3). Addition of CM did not alter activation levels for C1-15, but a 

slight reduction in activation for C7-14 (Figure ‎3.6.4, compare lanes 3 and 4) was seen. 

Etoposide, in both cell lines, trended towards or statistically significantly increased 

caspase-8 activation, with C7-14 generally displaying a higher trend of activation than 

C1-15 (Figure ‎3.6.4, compare dark to light bars of lanes 5-8). This higher activation, in 
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combination with other findings detailed previously, may partially explain the higher 

sensitivity of C7-14 to etoposide. 

 

3.7 Functional analysis of CM and chemotherapy effects 

 

In order to validate and expand upon the molecular findings described above, functional 

assays were undertaken to verify the observed effects at a whole-cell level. Two 

approaches were employed: cell type analysis (sorting cells into healthy cells and 

apoptotic cells) and fluorescence activated cell sorting (FACS) cell cycle analysis, with 

a focus on dead cells in Sub-G1. As detailed Section ‎2.1.19 (Page 91), this cell type 

analysis was captured in parallel with the caspase-8 activation shown previously. 

 

3.7.1 Cell Type Analysis 
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Figure ‎3.7.1: Cell type analysis under CM and chemotherapy treatments. 

Cells‎were‎treated‎with‎CM‎for‎48‎hours,‎1μM‎dexamethasone‎(D)‎for‎36‎hours‎and‎10μM‎etoposide‎(E)‎

for 24 hours individually or in combination. Cells were processed and loaded onto the NucleoCounter 

machine‎ and‎ ran‎ under‎ the‎ “Caspase‎Assay”‎ setting‎ (results‎ in‎ this‎ Figure‎were‎ captured‎ concurrently‎

with capturing of caspase-8 activation results (Figure ‎3.6.4)). Four cell types are recognised by the 

machine: healthy; early apoptotic; late apoptotic and necrotic (Figure ‎2.1.6, Page 92). In this figure early 

and late apoptotic are combined. Necrotic cells are shown in Appendix Figure 9 (Page 212). Data is 

representative of the average of three independent experiments +/- SEM. P-value <0.05 is indicated by *.  

 

Cell type analysis unveiled a trend for CM towards decreasing the number of apoptotic 

cells in C7-14 cells, whilst this effect was not seen in C1-15 cells (compare light bars of 

lane 2 to lane 1 in Figure ‎3.7.1A and Figure ‎3.7.1B). This is somewhat consistent with 
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the caspase-8 activation levels shown previously, where CM trended towards decreasing 

caspase-8 activation (Figure ‎3.6.4). Similar to this, C1-15 cells did not show significant 

changes in healthy or apoptotic cells following hormone treatment, or indeed under 

dexamethasone and CM combination treatment (compare lanes three and four to lane 1 

of Figure ‎3.7.1A). However, this was not the case for C7-14 cells, where 

dexamethasone and dexamethasone/CM combination treatment both lead to a 

statistically significant decrease in healthy cells (compare dark bars of lanes 3 and 4 to 

lane 1 of Figure ‎3.7.1B) and a statistically significant increase in apoptotic cells 

(compare light bars of lanes 3 and 4 to lane 1 of Figure ‎3.7.1B). In both cell lines, all 

treatments containing etoposide lead to a statistically significant reduction in healthy 

cells (compare dark bars of lanes 5-8 to lane 1 of Figure ‎3.7.1) as well as a statistically 

significant increase in apoptotic cells (compare light bars of lanes 5-8 to lane 1 of 

Figure ‎3.7.1). 

 

3.7.2 Sub-G1 FACS Analysis of CM and Chemotherapy Effects 

 

Analysis of cell types by the NucleoCounter provided insight into distribution of cell 

types present within an aliquot of cells. However, the identification of healthy and 

apoptotic cells is dependent upon gating intensities of caspase-8 activity and PI intensity 

(see gating strategy in Figure ‎2.1.6, Page 92). Thus, this approach does not analyse cells 

individually, but rather based on the staining intensities of a whole population. To 

complement this approach, FACS analysis was employed due to it analysing data on a 

cell-by-cell basis. Cell cycle analysis was performed, and the Sub-G1 phase 

(representative of dead cells) was examined: 
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Figure ‎3.7.2: FACS analysis of CM and chemotherapy effects. 

C1-15 and C7-14 cells were‎ treated‎with‎CM‎ for‎48‎hours,‎ 1μM‎dexamethasone‎ (D) for 36 hours and 

10μM‎etoposide‎(E) for 24 hours individually or in combination. Cell cycle phases were gated and values 

for Sub-G1 across different treatments were expressed as a percentage of the value for untreated cells. 

Data in this Figure combines results from both the author of this thesis and an additional researcher. Data 

represents at least three independent experiments +/- SEM. P-value <0.05 is indicated by * (black asterisk 

for comparison of treatment to control). Red asterisks indicate statistical significance at p<0.05 between 

other groups. 

 

The FACS data presented in Figure ‎3.7.2 above shows that CM reduces the number of 

cells accumulating in the Sub-G1 phase in both cell lines, though the effect was only 

statistically significant for C1-15 cells (compare lane 2 to lane 1).  A similar effect was 

observed for C1-15 cells under dexamethasone, etoposide and CM treatment compared 

to dexamethasone and etoposide treatment alone (compare dark bars of lane 7 and 8). 

As expected, and consistent with the caspase-8 activation experiment (Figure ‎3.6.4, 

Page 130) and cell types analysis (Figure ‎3.7.1 Page 132), C1-15 cells were insensitive 

to dexamethasone as well as dexamethasone/CM combination, with both treatments 

showing no significant change in the number of cells in Sub-G1 (compare dark bars of 

lanes 3 and 4 to lane 1 of Figure ‎3.7.2). Conversely, and again consistent with previous 

experiments, dexamethasone induced a statistically significant increase in the number of 

cells accumulating in the Sub-G1 phase (compare light bars of lane 3 to lane 1 of Figure 

‎3.7.2). Addition of CM resulted in a reduction in the number of cells accumulating in 
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Sub-G1 phase, though its increase compared to untreated cells was still statistically 

significant (compare light bars of lanes 4 and 3 of Figure ‎3.7.2). In both cell lines, all 

treatments containing etoposide increased the number of cells accumulating in Sub-G1 

phase, with higher Sub-G1 accumulation in C7-14 cells (compare lanes 5-8 to lane 1 of 

Figure ‎3.7.2). 

 

3.8 Analysis of Putative Ubiquitinated RIPK1 and BIRC3 Inhibition 

 

Previous sections have identified repression of RIPK1 by CM; regulation at the mRNA 

level may be through factors such as microRNAs or influence of upstream regulators, 

whilst regulation at the protein level can be due to previous downregulation at the 

mRNA level or protein-specific regulation such as targeting to degradation pathways 

through post-translational modifications. RIPK1 ubiquitination status plays a role in the 

determination of cell fate, whilst BIRC3 is known to be involved in the ubiquitination of 

RIPK1. The molecular weight of RIPK1 is approximately 74kDa, and during the 

Western experiments against RIPK1 (Figure ‎3.4.3 and Figure ‎3.4.4) a consistent band 

pattern under CM treatment at approximately 130kDa across several experiments was 

detected. The consistency of the band pattern suggested that these were not non-specific 

bands, but rather that they may potentially represent a modified RIPK1, such as a 

sumoylated or ubiquitinated form of the protein. This was investigated through Western 

blot analysis via treatment with AT406, a BIRC3 inhibitor. If these high molecular 

weight proteins are altered by AT406 treatment, it provides an indication that they may 

indeed represent ubiquitinated RIPK1, given that BIRC3 is known to ubiquitinate 

RIPK1. 
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Figure ‎3.8.1: Preliminary analysis of putative ubiquitinated RIPK1. 

C1-15 and C7-14‎cells‎were‎treated‎either‎with‎10μM‎AT406‎(AT)‎or‎CM‎for‎48‎hours.‎Actin was used as 

a loading control. The bottom of the RIPK1 panel represents the native RIPK1 at approximately 74kDa 

whilst higher bands are at approximately 130kDa. 

 

As shown above, treatment with CM decreased the band intensity of the approximately 

74kDa RIPK1 in C7-14 cells (compare lower part of RIPK1 panel in lanes 3 and 4), 

whilst this effect was not seen in C1-15 cells (compare lower part of RIPK1 panel in 

compare lanes 5 and 6). Treatment with AT406 led to a significant reduction in the 

approximately 74kDa RIPK1 (compare lower part of RIPK1 panel in lanes 1 and 2). By 

contrast, the approximately 130kDa RIPK1 (high molecular weight bands interacting 

with the RIPK1 antibody) were significantly reduced by AT406 treatment (compare 

higher part of RIPK1 panel in lanes 1 and 2) in C7-14 cells, whilst the same bands were 

increased by CM (compare higher part of RIPK1 panel in lanes 3 and 4) in C7-14 cells, 

whilst there was no effect in C1-15 cells (compare higher part of RIPK1 panel in lanes 5 

and 6). Though preliminary, the reduction of these bands by AT406 indicates that they 

may represent ubiquitinated RIPK1, given the role of BIRC3 in ubiquitinating RIPK1. 

Furthermore, this putative ubiquitination of RIPK1 is likely to be polyubiquitination 

given the increase in molecular weight and it is unlikely to be dimerisation of proteins 

due to the denaturing nature of the SDS gel. 
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Chapter 4 Computational Results 

 

4.1 Introduction to Computational Research 

 

As established in the Introduction, computational systems biology offers the possibility 

of generating models that can be used to provide insight into how a system behaves 

following network perturbation. This approach has been successfully applied to cancer 

research previously, such as the generation of TP53 models (Tian et al., 2013; Hussain 

et al., 2015). Here, a computational model of the GR signalling network has been 

established, with the model predictions being validated at both a laboratory and clinical 

level. The model (GEB052) demonstrated good predictive ratios and indicates key 

points for future expansion. 

 

4.2 GEB052: A Systems Approach to Uncover GR Signalling Dynamics 

 

As a complement to the detailed molecular approaches described in the previous 

chapter, computational systems biology has also been applied to develop an in silico 

model of the glucocorticoid receptor protein signalling network. An overview of the 

workflow is shown in Figure ‎4.2.1: 
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Figure ‎4.2.1: Overview of GEB052 model generation and analysis. 

 

The modelling process begins with extraction of predicted protein interactions from 

STRING using UltraEdit. These interactions are then manually curated, and form the 

GEB052 model. Model outputs are added via the manual curation of gene ontology 

annotations. Following completion of the model, analysis is undertaken through 

CellNetAnalyzer and STSFA, with model validation assessing model accuracy. Model 

validation may be by literature searching, wet laboratory verification, or genome-wide 

validation by comparison to microarray data. Model validation can then be used to feed 

back to the model, identifying its shortcomings and indicating components for 

improvements. 

 

During the modelling process, several rules regarding the interactions to be included 

were put into place to ensure model consistency. For the primary layer, proteins 

interacting directly with GR would be included within the model. Regarding cofactors 

for the GR (such as NCOA1, NCOR2, and others), a general rule was established that 

corepressors repress the GR, whilst coactivators would activate the GR. The extensive 

literature curation to verify each predicted interaction would provide at least one 

PubMed ID for a paper to provide evidence for the interaction. In the case of cofactors, 

this evidence would either be of the activation/inhibition of the GR or of the fact that it 

was a coactivator/corepressor. 

 

The second layer, consisting of interactions between the proteins that interact with GR, 

established‎ the‎ “intermediary‎ rule”‎ in‎ cases‎ where‎ it was discovered (following 

literature curation of a predicted direct relationship between Protein 1 and Protein 2) 

that Protein 1 modulates Protein 2 indirectly via modulation of a third protein between 

the two (i.e. Protein 1  Intermediary Protein  Protein 2). If the intermediary protein 

was within the primary layer (i.e. it already existed within the model) then the reactions 

would be included in the model as Protein 1  Intermediary Protein  Protein 2, even 

if STRING predicted a direct relationship (provided no additional evidence of a direct 

relationship was found). If the intermediary protein was not in the primary layer (i.e. it 
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is not already present in the model) then the reaction would be put as directly occurring 

from Protein 1  Protein 2. 

 

In several cases, multiple individual proteins were combined into one node within the 

model, often in cases where both proteins were subunits of a heterodimer or proteins 

from the same family were grouped into one node. Within the model, these nodes are 

AP-1 (consisting of FOS and JUN), NFKB (consisting of RELA and NFKB1) and 14-3-

3 (consisting of various 14-3-3 proteins such as SFN/YWHAS, YWHAB, YWHAE, 

YWHAH, YWHAG, YWHAQ, and YWHAZ). Similarly, CREBBP and EP300 are 

combined as one CREBBP/EP300 node, and SUMO consists of interactions for 

SUMO1, SUMO2, SUMO3 and SUMO4. It is also worth noting that the node named 

PKA actually contains only the interactions for PRKACG, the gamma catalytic subunit 

of PKA (as this was the only PKA constituent to have a predicted high-confidence 

interaction with GR). However it is named PKA so that it may serve as an intermediary 

in the interactions between ABCA1/IL-10 and CRH/AP-1 (in both cases, STRING 

predicted a direct reaction but literature verification unveiled PKA as an intermediary). 

Lastly, the node named HSP90 contains only interactions for HSP90AA1 (HSP90 

alpha). 

 

The model was connected to the outputs of cell death and inflammation, as these are the 

two of the most important outputs for the GR. As detailed in Section ‎2.2.2 (Page 96) 

model outputs were based on GO direct annotations for all nodes in the model, ranked 

by the most common, and the most common annotations relating to cell death and 

inflammation were taken. 

 

Presented in this and subsequent sections is the GEB052 (Glucocorticoid Receptor 

model by Emyr Bakker, consisting of 52 nodes) model, consisting of 52 nodes 

(proteins, inputs or outputs) connected by 241 logical interactions, in addition to 

detailed analysis and model validation. Sections ‎4.2.1 - ‎4.2.3 detail all of the 

interactions present within the model, as well as providing PubMed ID evidence for 

each interaction as the result of extensive literature verification of STRING predictions. 
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4.2.1 List of Primary Layer Interactions in the GEB052 Model 

 

Table ‎4.2.1: List of primary layer interactions in the GEB052 model. 

 

Node 1 
Activates (1) or 

Inhibits (0) 
Node 2 PubMed ID Evidence 

14-3-3 0 GR 12730237 

14-3-3 1 GR 9079630, 11266503, 16338219 

AP-1 0 GR 8388998 

AP-1 1 GR 8388998 

ARHGAP35 0 GR 10385430, 20427664 , 1894621 

BAG1 0 GR 11101523, 9603979, 19595997. 

CREB1 0 GR 1387550 

CREBBP/EP

300 
0 GR 8616895, 10528999 

CREBBP/EP

300 
1 GR 17884810, 9792627, 10528999 

DAP3 1 GR 10903152, 12099703 

DAXX 0 GR 12595526, 17081986 

GC 1 GR No PMID - Logical Input For Model 

GR 0 ABCA1 16254209 

GR 1 ABCA1 17241464 

GR 1 AFP 11549270 

GR 0 AP-1 2169352, 2169353, 9731701 

GR 1 AP-1 7583019 

GR 1 ARHGAP35 1894621 

GR 0 CD2 9144521 

GR 1 CD2 9172010 

GR 1 CD40LG 11160161 

GR 0 CREB1 21804312 

GR 1 CREB1 21804312, 14668092 

GR 1 
CREBBP/EP

300 
23125313 

GR 0 CRH 22232675, 19177170 
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GR 0 FSCN1 10026156 

GR 1 GLUL 10453053, 14962810 

GR 0 HDAC1 16762839, 12727880 

GR 0 HDAC6 20538901 

GR 1 IL10 10940925, 16341266 

GR 0 IL6 22042221, 12114264, 11007957 

GR 0 LIF 
10080876, 8432990, 7579343, 

9099902 

GR 1 MED1 17827210 

GR 0 NCOA1 11196413, 12039076 

GR 0 NFKB 7823959, 8290595 

GR 1 NFKB 9885901, 23693080 

GR 1 NR1I3 11093784, 12511605, 15557560 

GR 1 NR2F2 14739255 

GR 1 PKA 16319314 

GR 1 POU2F1 9584182 

GR 0 POU2F2 1714379 

GR 1 POU2F2 9584182 

GR 1 SCAP 15133039 

GR 1 SGK1 22590650, 17595317 

GR 0 SMAD3 10518526 

GR 0 STAT3 20881248 

GR 1 STAT3 14522952 

GR 1 STAT5B 9973262, 15037546 

GR 0 TP53 11562347, 11080152 

GR 1 TSC22D3 9430225, 16239257 

GR 1 UBC 17875808, 11872750, 10913373, 

HDAC1 0 GR 15826950 

HDAC1 1 GR 15826950, 16762839 

HDAC6 0 GR 20018896 

HSP90 0 GR 2005120, 16087666 

HSP90 1 GR 2005120, 16087666 

IL10 1 GR 16341266 

LIF 0 GR 15985451 
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MED1 1 GR 
17827210, 10508170, 16239257, 

19630272 

NCOA1 1 GR 12569182, 16339206 

NCOA2 1 GR 19805480 

NCOA3 1 GR 11094166, 16179382 

NCOA6 1 GR 10567404 

NCOR1 0 GR 12011091, 12569182, 23428870 

NCOR2 0 GR 10598585 

NFKB 0 GR 7823959, 8290595 

NR2F2 0 GR 14739255 

NRIP1 0 GR 10364267, 12773562 

POU2F1 1 GR 9584182 

PRKDC 0 GR 9038175 

PTGES3 0 GR 17261597 

PTGES3 1 GR 17438133 

SGK1 1 GR 23650397 

SMAD3 1 GR 12753290 

SMARCA4 0 GR 17043312 

STAT3 1 GR 9388192, 12904256,20204302 

STAT5B 0 GR 8878484 

SUMO 0 GR 12193561 

SUMO 1 GR 12193561 

TP53 0 GR 9215863 

TSG101 0 GR 10508170, 15033475 

TSG101 1 GR 15657031 

 

 

4.2.2 List of Second Layer Interactions in the GEB052 Model 

 

Table ‎4.2.2: List of second layer interactions in the GEB052 model. 

 

Node 1 

Activates 

(1) or 

Inhibits (0) 

Node 2 PubMed ID Evidence 
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14-3-3 0 TP53 18339856 

14-3-3 1 TP53 9620776, 14517281 

ABCA

1 
0 IL6 19783654, 17079792 

ABCA

1 
1 PKA 23055522 

AP-1 1 
CREB

1 
11976688, 1827203 

AP-1 1 IL10 16569682, 22634314, 15067049 

AP-1 1 IL6 8453101, 15158360, 20833374 

AP-1 0 NFKB 12181357 

AP-1 1 NFKB 9468519, 8404856 

AP-1 0 
SMAD

3 
10903323, 10871633, 17660955 

AP-1 1 
SMAD

3 
16730810, 11134003 

AP-1 1 STAT3 11356008 

AP-1 0 TP53 10072388, 11136975 

BAG1 1 AP-1 11329370, 20516211 

CREB

1 
0 AP-1 1840296, 2140898 

CREB

1 
1 AP-1 12432566, 9770464, 16151051, 2140898 

CREB

1 
1 IL10 19564345, 16920714, 18263767 

CREB

BP/EP

300 

0 AP-1 11689449 

CREB

BP/EP

300 

1 AP-1 7588605, 21937452, 9388250, 10327051, 8545107 

CREB

BP/EP

300 

1 
CREB

1 
13678586 



144 

 

CREB

BP/EP

300 

0 
HDAC

1 
16762839 

CREB

BP/EP

300 

1 
NCOA

1 
15688032 

CREB

BP/EP

300 

1 
NCOA

2 
20448036, 9430642, 10899170 

CREB

BP/EP

300 

0 NFKB 12419806 

CREB

BP/EP

300 

1 NFKB 9890939, 9096323, 11739381 

CREB

BP/EP

300 

1 
SMAD

3 
9679056 

CREB

BP/EP

300 

1 STAT3 15649887, 15653507 

CREB

BP/EP

300 

0 TP53 19805293 

CREB

BP/EP

300 

1 TP53 18485870, 9288775 

CRH 0 IL6 10922080, 11602623, 1731761 

CRH 1 IL6 1623564, 8246669 

CRH 1 PKA 
1663213  17895291, 11960782, 7783858, 8793851, 

11325519 (N.B. Full pathway is CRH --> PKA --> AP-1) 

DAXX 0 
CREB

1 
22185778 

DAXX 1 SUMO 17081986 
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DAXX 0 TP53 15570294, 15364927 

DAXX 1 TP53 14557665 

HDAC

1 
0 

CREB

1 
12567184 

HDAC

1 
0 

CREB

BP/EP

300 

14968110 

HDAC

1 
0 NFKB 11931769 

HDAC

1 
0 

SMAD

3 
16876108 

HDAC

1 
0 STAT3 15653507, 18611949 

HDAC

1 
1 SUMO 18025037 

HDAC

1 
0 TP53 12426395, 10777477 

HDAC

1 
0 UBC 19304753 

HDAC

6 
1 HSP90 15916966, 19158084, 18591380 

HSP90 1 
HDAC

6 
21109931 

HSP90 1 
PRKD

C 
22753480, 16263121 

HSP90 1 
PTGES

3 
15040786 

HSP90 1 STAT3 12559950, 18339423, 12235142 

IL10 1 
ABCA

1 
16336952, 20354139 

IL10 0 AP-1 9864163, 8709636, 20045008 

IL10 0 IL6 12017175 

IL10 1 IL6 8703029 

IL10 1 STAT3 8830676 
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IL6 1 
ABCA

1 
21757719 

IL6 1 AP-1 10465257, 9240403, 17018293, 8398910 

IL6 1 CRH 1846105, 2845968, 10465257 

IL6 1 IL10 23349310 

IL6 1 LIF 12151548 

IL6 1 
NCOA

2 
19240160 

IL6 1 STAT3 17065510, 18160665 

IL6 0 TP53 15930285, 1852210 

LIF 1 AP-1 9711940, 9545305, 8621626, 1628710, 8917449, 2144331 

LIF 1 IL6 11160255 

LIF 1 STAT3 9813052 

NCOA

1 
1 AP-1 9642216, 10847592, 18511550,  16860316 

NCOA

1 
1 

CREB

BP/EP

300 

15688032 

NCOA

1 
1 

NCOA

3 
20685850 

NCOA

1 
1 NFKB 9556555 

NCOA

1 
1 STAT3 11773079 

NCOA

2 
1 AP-1 18511550 

NCOA

2 
1 

CREB

BP/EP

300 

15731352, 20448036 

NCOA

3 
1 

CREB

BP/EP

300 

10866661 

NCOA

3 
1 

NCOA

1 
20685850 
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NCOA

6 
1 

PRKD

C 
12519782 

NCOR

1 
1 

NCOA

3 
12089344 

NCOR

2 
1 

NCOA

3 
20392877 

NCOR

2 
0 NFKB 10777532 

NCOR

2 
0 

POU2F

1 
11134019 

NFKB 1 AP-1 8404856 

NRIP1 0 AP-1 12554755,  10379892 

PKA 1 AP-1 
1663213  17895291, 11960782, 7783858, 8793851, 

11325519 (N.B. Full pathway is CRH --> PKA --> AP-1) 

PKA 1 
CREB

1 
15337521 

PKA 1 IL10 23055522 

PKA 0 NFKB 15642694 

PRKD

C 
1 HSP90 22270370, 19021771 

PRKD

C 
1 

NCOA

6 
12519782 

PRKD

C 
0 

POU2F

1 
14612514 

PRKD

C 
1 

POU2F

1 
17213819 

PRKD

C 
1 TP53 9363941 

PTGES

3 
0 HSP90 11812147 

PTGES

3 
1 HSP90 9148915, 11060043 

SGK1 1 
CREB

1 
15733869 
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SGK1 0 TP53 19756449 

SMAD

3 
0 AP-1 14752027 

SMAD

3 
1 AP-1 21829441, 9125213 

SMAR

CA4 
0 AP-1 12372840, 10082538 

SMAR

CA4 
1 AP-1 11053448 

SMAR

CA4 
1 

SMAD

3 
21900401, 18003620 

SMAR

CA4 
1 STAT3 21785422 

SMAR

CA4 
0 TP53 19448667, 18822392 

STAT3 1 AP-1 

16205632, 9271408, 11319221, 7568080, 10490649, 

20463008, 12600988, 19404962 (mutual activation due to 

widespread synergy) 

STAT3 1 FSCN1 21937440 

STAT3 1 HSP90 9461509, 23228483 

STAT3 1 IL10 19234181 

STAT3 1 IL6 19751774, 19284588, 18160665, 21122157 

STAT3 0 TP53 16107692, 22303479 

SUMO 0 AP-1 16055710, 10788439, 23396363 

SUMO 1 DAXX 17081986 

SUMO 0 
HDAC

1 
11960997 

SUMO 1 
HDAC

1 
24068740 

SUMO 0 TP53 21900752 

SUMO 1 TP53 17012228 

TP53 1 14-3-3 14517281, 17546054 

TP53 1 
CREB

BP/EP
9194564 
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300 

TP53 0 IL6 21092249, 11830554 

TP53 1 SGK1 19756449, 8647846 

TSC22

D3 
0 AP-1 11397794, 12391160 

TSC22

D3 
1 SGK1 20947508 

 

4.2.3 List of GEB052 Output Interactions (Cell Death and Inflammation) 

 

Table ‎4.2.3: GEB052 model links to cell death. 

 

Node 1 
Activates (1) or 

Inhibits (0) 
Node 2 PubMed ID Evidence 

14-3-3 0 
CELL-

DEATH 
12426317, 11222372, 24626062, 22562251 

AP-1 1 
CELL-

DEATH 
10080190 

AP-1 0 
CELL-

DEATH 
9141200 

BAG1 0 
CELL-

DEATH 
11257006 

CD2 1 
CELL-

DEATH 
9270771 

CD40LG 0 
CELL-

DEATH 
12697681 

CD40LG 1 
CELL-

DEATH 
12885753 

CRH 0 
CELL-

DEATH 
23380766 

CRH 1 
CELL-

DEATH 
23686762, 22494987, 11790788, 22763913. 

DAP3 1 
CELL-

DEATH 
20563667, 17135360 



150 

 

DAXX 1 
CELL-

DEATH 
1598338 

GR 1 
CELL-

DEATH 
15940303, 21530661, 12039857 

IL10 0 
CELL-

DEATH 
8312229 

IL10 1 
CELL-

DEATH 
9184696 

IL6 0 
CELL-

DEATH 
7595060, 11751424 

IL6 1 
CELL-

DEATH 
9949178 

NFKB 0 
CELL-

DEATH 
10747850, 10849002 

NFKB 1 
CELL-

DEATH 
10747850 

SGK1 0 
CELL-

DEATH 
17571248 

SMAD3 0 
CELL-

DEATH 
14517210 

SMAD3 1 
CELL-

DEATH 
15107418, 11839804 

STAT3 0 
CELL-

DEATH 
23807222 

STAT3 1 
CELL-

DEATH 
21336304 

STAT5B 0 
CELL-

DEATH 
21826656 

TP53 1 
CELL-

DEATH 
19879762 

TSC22D

3 
0 

CELL-

DEATH 
9430225 

UBC 0 
CELL-

DEATH 
17491588 
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UBC 1 
CELL-

DEATH 
15033975, 15620210 

 

 

Table ‎4.2.4: List of GEB052 model links to inflammation. 

 

Node 1 
Activates (1) or Inhibits 

(0) 
Node 2 PMID 

AP-1 1 INFLAMMATION 23163821 

CD40LG 1 INFLAMMATION 9468137 

CRH 0 INFLAMMATION 17117478 

CRH 1 INFLAMMATION 17117478 

IL10 0 INFLAMMATION 
10443688, 12452830, 

14971032 

IL6 1 INFLAMMATION 
2199284, 10443688, 

25031389 

NFKB 0 INFLAMMATION 18270204, 20457564 

NFKB 1 INFLAMMATION 
18029230, 23776175, 

20457564 

SMAD3 0 INFLAMMATION 14752027 

SMAD3 1 INFLAMMATION 20231525, 15253712 

STAT5B 0 INFLAMMATION 24412367 

STAT5B 1 INFLAMMATION 17148664 

 

4.2.4 GEB052 Network Structure 
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Figure ‎4.2.2: The GEB052 Model. 

Nodes are shown in small blue circles, whilst the Input Node (GC) is shown as a larger green circle. The 

central node (GR) is shown as a larger red circle. Model outputs (cell death and inflammation) are shown 

in blue squares. Activation reactions are represented by directed green arrows, whilst inhibition reactions 

are shown as directed blunted red arrows. 

 

The GEB052 model, visualised above in Figure ‎4.2.2, consists of 52 nodes connected 

by 241 logical interactions. Although the visualisation is useful for providing a detailed 

overview of the network (thus quickly identifying features such as whether there are 

more activation or inhibition reactions or identifying the most highly connected nodes), 

following individual interactions can be difficult. To complement the full model 
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visualisation shown above, an interaction matrix (generated in CNA) of the model is 

shown in Figure ‎4.2.3: 
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Figure ‎4.2.3: Interaction Matrix for GEB052 model. 

Figure adapted from the interaction matrix generated in CNA. Nodes are shown on the left-side y-axis. The right-side y-axis details the number of reactions the node is 

involved in. Numbers in brackets represent the number of nodes it activates, the number of nodes it inhibits, and the number of nodes it is regulated by respectively. 

Every node for every reaction in the interaction matrix is assigned a value. Black means no participation within the reaction, whilst blue means the node is regulated 

(i.e. affected) by the interaction. Green means the node has an activation input whilst red means the node has an inhibition input. 
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As has been previously shown, feedback loops within a biological network are often 

crucial towards maintenance of network integrity and resistance to perturbation (Tian et 

al., 2013). Feedback loops within the model can be excessively long and consider 

numerous reactions; therefore, to further facilitate analysis, only two-step feedback 

loops are to be considered, consistent with previous research into interactome modelling 

(Tian et al., 2013). When limited to two-step feedback loops, 64 loops were identified, 

26 of which (40.6%) involve the GR. An example of a two-step feedback loop is the 

classical regulation of TP53 by MDM2; TP53 activates MDM2 whilst MDM2 inhibits 

TP53 (Tian et al., 2013). 

 

To further assess connectivity within the model, the NetworkAnalyzer plugin in 

Cytoscape was used to analyse the network topology to uncover node connectivity: 

 

 

Figure ‎4.2.4: Node connectivity of GEB052 model. 

Values were generated in the NetworkAnalyzer plugin for Cytoscape and imported into Excel. 

 

The node connectivity of the GEB052 model shown above in Figure ‎4.2.4 demonstrates 

the high node connectivity within the model. Excluding model Outputs, six nodes 

exhibited a very high degree of connectivity (20 or more interactions). On the far right 
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of Figure ‎4.2.4 is the GR, with 83 interactions. Other nodes exhibiting a very high 

degree of connectivity include AP-1 (36 interactions), TP53 (22 interactions), IL6 (21 

interactions), CREBBP/EP300 (20 interactions) and STAT3 (20 interactions). Highly 

connected nodes (exhibiting ten or more interactions but excluding Outputs) include 

NFKB (16 interactions), IL10 (15 interactions), HDAC1 (14 interactions), SMAD3 (13 

interactions), CREB1 (12 interactions), HSP90 (11 interactions) and SUMO (10 

interactions). Other than these, other nodes (n=37) exhibited a lower degree of 

connectivity, possessing less than ten interactions. The following summarises the node 

connectivity within the model: 

 

Table ‎4.2.5: Node connectivity of GEB052 model. 

 

Node Connectivity Range Number of Nodes 
Percentage of Total 

Nodes 

Connectivity>80 1 1.9% 

10<Connectivity<80 14 26.9% 

0<Connectivity<10 37 71.2% 

 

Understanding node connectivity is crucial for further downstream analysis, as in silico 

knockouts are performed on highly connected nodes (due to their high connectivity, 

their removal will have the biggest impact on signalling within the network). 

Subsequent sections detailing in silico knockout analysis results involved the knockout 

of the highly connected nodes (each having ten or more interactions) identified in this 

section. 

 

4.3 Dependency and in silico knockout analysis of the GEB052 model 

 

As detailed in Figure ‎2.2.3 (Page 100, Section ‎2.2.4), within CNA it is possible to 

undertake an in-depth analysis of the effects of every model constituent on every model 

constituent. This is performed through the generation of a dependency matrix, which 

takes into account all possible signalling and feedback loops within the model to 
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determine the overall effect of every node on every node. Figure ‎4.3.1 shows the 

dependency matrix for the GEB052 model: 
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Figure ‎4.3.1: Dependency Matrix for GEB052 Model. 

Dependencies show the effect of the node on the y-axis on the node on the x-axis.
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Dependency analysis of the full model, visualised above in Figure ‎4.3.1, shows that the 

overwhelming majority of dependencies within the model are ambivalent (meaning the 

source node exerts both a positive and negative influence on the target node). This 

correlates with the large number of feedback loops present within the model, as the 

feedback loops can lead to negative autoregulation and thus a negative as well as a 

positive influence. The high number of ambivalent dependencies further demonstrates 

the interconnectivity of the model, and provides an excellent starting point for in silico 

knockout analysis as ambivalent dependencies are the ones most likely to change 

following network perturbation (Tian et al., 2013). In total, 2704 (52*52) dependencies 

were identified in the full GEB052 model. Of these, 896 were of no effect, 1710 were 

ambivalent, 33 were weak inhibitors, 63 were weak activators, 2 were strong activators 

and there were no strong inhibitors. The strong activators in the wild-type model were 

CD2 as a strong activator of cell death and CD40LG as a strong activator of 

inflammation. 

 

As described in the Introduction, one of the benefits of computational biology is the 

ability to conduct numerous different analyses to unveil how models may change 

following a loss of network elements. It has been demonstrated across several studies 

that in silico knockout analysis can provide good insight into in vivo behaviour, for 

example by mimicking mutation effects through node deletion or activating hormone-

dependent GR activation through turning node ON or OFF,  provided the model is well-

constructed. 

 

To analyse the potential effects of the loss of network elements, in silico knockouts 

were performed against the highly connected (>10 interactions) nodes identified 

previously in Section ‎4.2.4 (Page 151), with the exception of model outputs (as they 

have no outgoing reactions, their removal would have no effect on other nodes within 

the model). The following summarises the effects of the knockouts on network 

relationships: 

 

Table ‎4.3.1: Dependency matrix alterations following in silico knockouts. 
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Scenario 

Number of Each Dependency 

No Effect Ambivalent 
Weak 

Inhibitor 

Weak 

Activator 

Strong 

Inhibitor 

Strong 

Activator 
Total 

Full Model 896 1710 33 63 0 2 2704 

AP-1 KO 877 1581 66 75 0 2 2601 

CREB1 KO 877 1626 33 63 0 2 2601 

CREBBP/ 

EP300 KO 
877 1576 61 85 0 2 2601 

GR KO 1602 955 5 35 1 3 2601 

HDAC1 KO 953 1541 36 65 0 6 2601 

HSP90 KO 993 1481 53 68 0 6 2601 

IL6 KO 877 1607 43 72 0 2 2601 

IL10 KO 877 1626 33 63 0 2 2601 

NFKB KO 877 1626 33 63 0 2 2601 

SMAD3 KO 877 1626 33 63 0 2 2601 

STAT3 KO 877 1574 63 85 0 2 2601 

SUMO KO 917 1589 33 60 0 2 2601 

TP53 KO 917 1579 36 67 0 2 2601 

 

All KO scenarios above have only 2601 (51*51) total reactions (as opposed to 2704) 

due to the removal of the node (in turn removing all of its dependencies). As expected 

based on the number of interactions it participates in and its centrality to the network, 

the removal of the GR had the largest effect on the dependencies within the network: 
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Figure ‎4.3.2: Distribution of dependency alterations following GR KO. 

 

The majority of dependency changes were from ambivalent factors to no effect, which 

is logically consistent when it is considered that many nodes will signal through the GR 

to affect others. Thus, removal of this central node removes many of the effects between 

other node pairs. However, there were also numerous changes from ambivalent factors 

to weak activators or weak inhibitors, as well as strong activators and strong inhibitors. 

Previous research (Hussain et al., 2015; Tian et al., 2013) has focussed primarily on the 

change to strong activators or strong inhibitors (as defined in Section ‎2.2.4, Page 97), as 

these are the changes most likely to show effects at the biological level. In addition to 

this, only strong activators and inhibitors are considered due to the sheer number of 

predictions generated. Across all knockout scenarios for the GEB052 model, 1249 

predictions as to how model relationships change following a knockout was obtained. 

Even if changes from ambivalent factors to no effect are discarded (as there is no net 

change in activation or inhibition) then across all the knockout scenarios GEB052 

produced 323 predictions in dependency changes. Analysis of this high number would 

be cumbersome, so there is a necessary focus on strong activators and strong inhibitors. 

 

Following removal of the GR, one ambivalent dependency was changed to a strong 

activator, and another ambivalent dependency was changed to a strong inhibitor. Both 
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of these dependencies related to the output of cell death; in the full model, STAT5B is 

ambivalent to cell death, whereas following removal of the GR it becomes a strong 

inhibitor of cell death. Conversely, DAP3 is ambivalent to cell death in the full model, 

whereas following removal of the GR it becomes a strong activator of cell death. 

Identifying aberrant signalling following loss of functional GR is a key factor in 

improving therapies. It is known that STAT5 has an anti-apoptotic role in 

haematopoietic cells (Debierre-Grockiego, 2004), however it is interesting that the 

model indicates its pro-survival effect is stronger in glucocorticoid-resistant (which GR 

KO simulates) cells, which may point towards the potential of combining glucocorticoid 

treatment with anti-STAT5B treatments. 

 

Other than the GR KO scenario, only two of the knockout scenarios detailed in Table 

‎4.3.1 (Page 159) demonstrated changes to strong activators or inhibitors: HDAC1 KO 

and HSP90 KO. Their changes are tracked in Figure ‎4.3.3: 

 

 

Figure ‎4.3.3: Distribution of dependency alterations following HDAC1 KO. 

 

Loss of HDAC1 promoted four new strong activation dependencies. Dependency 

analysis takes into account all of the signalling within the model and thus even the 

effect of nodes on themselves can be seen. In the full model, DAXX was ambivalent to 
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itself and to SUMO, whilst SUMO was also ambivalent to itself. Loss of HDAC1, 

however, promoted a change in these dependencies; DAXX became a strong activator 

of itself, as did SUMO, whilst DAXX also became a strong activator of SUMO. In the 

full model, SUMO was a weak activator of DAXX, whereas following the loss of 

HDAC1 it became a strong activator of DAXX. 

 

 

Figure ‎4.3.4: Distribution of dependency alterations following HSP90 KO. 

 

Loss of HSP90 promoted four new strong activator dependencies to emerge. In the full 

model, NCOA6 was ambivalent to itself and PRKDC, whilst PRKDC was ambivalent 

to itself. Loss of HSP90, however, changed all of these dependencies to strong 

activation. In the full model, PRKDC was a weak activator of NCOA6, whilst in the 

HSP90 KO model it became a strong activator of NCOA6. 

 

4.4 Genome-Wide Model Analysis 

 

Although the dependency analysis detailed in the previous section provided some useful 

insight into a small subset of genes within the whole model, one of the larger aims of 

systems biology is to simulate and assess entire systems. This section aimed to assess 

the state of every network element in a simulation of glucocorticoid-responsive cells 
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and glucocorticoid-resistant cells, and to compare the model predictions to microarray 

data (thus verifying nodes/genes within the model based on genome-wide data). 

 

4.4.1 Logical Steady State Analysis of GEB052 Model 

 

As described in Section ‎2.2.4 (Page 97) CellNetAnalyzer has two main analytical 

functions: dependency matrix generation and logical steady state analysis (LSSA). 

LSSA allows for the capture of the overall activation state of a node (ON, OFF or 

undetermined) following upstream inputs. At the beginning of an LSSA, every node 

(other than selected inputs which are manually modified) is given a value of NaN 

(undetermined). After setting any input nodes to the desired value, LSSA is then ran 

which processes all reactions downstream of the input, and iterates until each node 

reaches‎ a‎ “steady‎ state”‎ (ON,‎ OFF‎ or‎ undetermined). To simulate glucocorticoid-

sensitive cells, all nodes were left as NaN, GC turned to 1, and then the simulation was 

ran. To simulate GC-resistant cells, all nodes were left as NaN, excepting GR which 

was set to 0 (OFF), and GC turned to 1. Emod was calculated as described in the 

Materials and Methods (Section ‎2.2.6, Page 102) whereby -1 is equivalent to 

downregulation in the GC-resistant scenario relative to the GC-sensitive, 0 is equivalent 

to no change, and 1 is equivalent to upregulation. 

 

Table ‎4.4.1: LSSA Results for GEB052 Model. 

Node 

GC-Sensitive 

(GC=1) 

Simulation 

GC-Resistant 

(GC=1, GR=0) 

Simulation 

Emod 

14-3-3 1 1 0 

ABCA1 1 1 0 

AFP 1 0 -1 

AP-1 1 1 0 

ARHGAP35 1 0 -1 

BAG1 NaN NaN 0 

CD2 1 1 0 

CD40LG 1 0 -1 
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CELL-DEATH 1 1 0 

CREB1 1 1 0 

CREBBP/EP300 1 1 0 

CRH 1 1 0 

DAP3 NaN NaN 0 

DAXX NaN 1 1 

FSCN1 1 1 0 

GC 1 1 0 

GLUL 1 0 -1 

GR 1 0 -1 

HDAC1 NaN 1 1 

HDAC6 1 1 0 

HSP90 1 1 0 

IL10 1 1 0 

IL6 1 1 0 

INFLAMMATIO

N 
1 1 0 

LIF 1 1 0 

MED1 1 0 -1 

NCOA1 1 1 0 

NCOA2 1 1 0 

NCOA3 1 1 0 

NCOA6 1 1 0 

NCOR1 NaN NaN 0 

NCOR2 NaN NaN 0 

NFKB 1 1 0 

NR1I3 1 0 -1 

NR2F2 1 0 -1 

NRIP1 NaN NaN 0 

PKA 1 1 0 

POU2F1 1 1 0 
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POU2F2 1 1 0 

PRKDC 1 1 0 

PTGES3 1 1 0 

SCAP 1 0 -1 

SGK1 1 1 0 

SMAD3 1 1 0 

SMARCA4 NaN NaN 0 

STAT3 1 1 0 

STAT5B 1 0 -1 

SUMO NaN 1 1 

TP53 1 1 0 

TSC22D3 1 0 -1 

TSG101 NaN NaN 0 

UBC 1 0 -1 

 
% ON 80.8 63.5 

 
% OFF 0 23.1 

 
% Determined 80.8 86.6 

 
% Undetermined 19.2 13.4 

 
 

Although more determined nodes (ON or OFF) were seen in the GC-resistant scenario 

(86.6% against 80.8% in the sensitive simulation), an overall loss in functionality of the 

network was also observed through the sharp increase in nodes that were OFF (23.1% 

against 0% in the sensitive simulation). The Emod value shows the change from sensitive 

to resistant (-1 equalling downregulation, 0 equalling no change, and 1 equalling 

upregulation). The following summarises the Emod values for each node: 
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Table ‎4.4.2: Node state comparison from GC-sensitive to GC-resistant scenarios. 

Upregulated means the node is more activated in the GC-resistant scenario than the GC-sensitive 

scenario, whilst downregulated means the node is less activated in the GC-resistant scenario than the GC-

sensitive scenario. 

Upregulated (3) Unchanged (37) Downregulated (12) 

DAXX, HDAC1, SUMO 

14-3-3, ABCA1, AP-1, 

BAG1, CREBBP/EP300, 

CD2, CELL-DEATH, 

CREB1, CRH, DAP3, 

FSCN1, GC, HDAC6, 

HSP90, IL10, IL6, 

INFLAMMATION, LIF, 

NCOA1, NCOA2, 

NCOA3, NCOA6, 

NCOR1, NCOR2, NFKB, 

NRIP1, PTGES3, TP53, 

PKA, POU2F1, POU2F2, 

PRKDC, SGK1, SMAD3, 

SMARCA4, STAT3, 

TSG101 

AFP, NR1I3, CD40LG, 

GLUL, GR, ARHGAP35, 

MED1, NR2F2, SCAP, 

STAT5B, TSC22D3, 

UBC 

 

The model predictions in terms of the overall activation/state of a node can be verified 

either by literature searching or experimental approaches. For example, the model 

predicted that GLUL would be downregulated in the GC-resistant simulation, which is 

consistent with a previous report showing GLUL to be downregulated in GC-resistant 

cells (Beesley et al., 2009). However, validation of all model predictions in this way 

would be cumbersome and provide less information than high-throughput 

methodologies; therefore, model predictions have been validated via comparison to cell-

based microarray data, detailed in the following section. 

 

4.4.2 High-throughput Model Validation 
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In order to assess model accuracy on a larger scale, the Emod values obtained in the 

previous section have been compared to microarray data. In total twelve sets of 

microarray data have been utilised, resulting in six comparisons that have been used to 

validate model predictions. For each Comparison, an Eexp value for each node was 

obtained as detailed in Section ‎2.2.6 (Page 102). Details for each Comparison (including 

treatment conditions and the GEO ID for the microarray dataset) are shown in Table 

‎4.4.3. For all microarray validations, all genes within the model were identified within 

the microarray data files. 

 

Table ‎4.4.3: Microarray data comparisons used to validate model predictions. 

Comparison GC-Sensitive Array GC-Resistant Array 

Comparison 1 

T-ALL (C7H2 Cells), 24 

Hours Dexamethasone 

Treatment (GEO ID 

GSM60544) 

T-ALL (C1 Cells), 24 

Hours Dexamethasone 

Treatment (GEO ID 

GSM60562) 

Comparison 2 

T-ALL (C7H2 Cells), 6 

Hours Dexamethasone 

Treatment (GEO ID 

GSM60543) 

T-ALL (C1 Cells), 6 Hours 

Dexamethasone Treatment 

(GEO ID GSM60561) 

Comparison 3 

T-ALL (C7H2 Cells), 6 

Hours 0.1% Ethanol 

Treatment (GEO ID 

GSM60542) 

T-ALL (C1 Cells), 6 Hours 

0.1% Ethanol Treatment 

(GEO ID GSM60560) 

Comparison 4 

B-ALL (PreB 697 Cells), 

24 Hours Dexamethasone 

Treatment (GEO ID 

GSM60547) 

B-ALL (PreB 697 R4G4 

Cells), 24 Hours 

Dexamethasone Treatment 

(GEO ID GSM60586) 

Comparison 5 

B-ALL (PreB 697 Cells), 6 

Hours Dexamethasone 

Treatment (GEO ID 

GSM60546) 

B-ALL (PreB 697 R4G4 

Cells), 6 Hours 

Dexamethasone Treatment 

(GEO ID GSM60583) 

Comparison 6 B-ALL (PreB 697 Cells), 6 B-ALL (PreB 697 R4G4 
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Hours 0.1% Ethanol 

Treatment (GEO ID 

GSM60545) 

Cells), 6 Hours 0.1% 

Ethanol Treatment (GEO 

ID GSM60581) 

 

For each comparison shown above, the Eexp values obtained were compared to the 

model predictions (Emod). Tables for each comparison are shown in Appendix Table 1 - 

Appendix Table 6 (Page 212-221) whilst a summary is shown in Table ‎4.4.4. Note that 

for all comparisons, model inputs and outputs (GC, CELL-DEATH, 

INFLAMMATION) were all excluded from validation as these are impossible to assess 

through microarray data. Similarly, the GR was excluded from analysis as during the 

LSSA for GC-resistant cells it was manually set to zero (rather than its inactive state 

being a model prediction). Thus, comparison exists solely on the 48 remaining nodes. 

 

A summary of the correct/small error/large error percentages for each comparison is 

provided in Table ‎4.4.4. 

 

Table ‎4.4.4: Summary of prediction rates from all LSSA comparison scenarios.  

Comparison Correct (%) Small Error (%) Large Error (%) 

1 58.3 41.7 0.0 

2 54.2 43.8 2.1 

3 60.4 37.5 2.1 

4 58.3 39.6 2.1 

5 54.2 41.7 4.2 

6 54.2 45.8 0.0 

AVERAGE 56.6 41.7 1.8 

 

As summarised above, the GEB052 model displayed consistently accurate prediction 

rates. The correct prediction range for GEB052 (54.17% to 60.42%, with an average of 

56.60%) represents a good level of correct prediction. Given that there are three 

possible outcomes (correct, small error and large error) a fully random model would 

demonstrate a correct prediction rate of 33.33%. 56.60% is significantly higher than 

33.33%, and furthermore if the six correct percentage values are compared to six 
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33.33% via statistical analysis, the p-value is less than 0.01, providing further evidence 

for the strength of the GEB052 model and its potential value. 

 

4.5 Preliminary Clinical Validation of GEB052 Model (LSSA) 

 

Following analysis of the model and validation through comparison to cell-based 

microarray data, model validation using patient data has also been performed to assess 

model accuracy at a whole-organism and disease-specific level. Microarray data from 

thirteen leukaemia patients were utilised, with the microarray data being taken after 

treatment with prednisolone. 

 

Table ‎4.5.1: Patient microarray data used for validation of LSSA results. 

Patient data obtained from Schmidt et al. (2006). Microarray data obtained from the GEO database after 

its deposit from the original study (Schmidt et al., 2006). 

 

Patient 

Number 
Gender 

Age 

(Years) 
Clustering 

Status at 

Risk 

Assessment? 

GEO ID 

2 M 8.5 T-ALL Alive GSM51710 

13 M 5.9 
Not 

assigned 
Alive GSM51677 

17 F 14.7 Hyperploidy Deceased GSM51680 

20 M 5 T-ALL Alive GSM51704 

24 M 2.6 
Not 

assigned 
Alive GSM51674 

25 F 10.3 T-ALL Alive GSM51707 

31 F 17.2 Hyperploidy Alive GSM51683 

32 F 3.7 TEL-AML Alive GSM51686 

33 M 2.5 Hyperploidy Alive GSM51689 

37 F 15.1 
Not 

assigned 
Alive GSM51692 

38 M 3.2 TEL-AML Alive GSM51695 
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40 M 17.3 
Not 

assigned 
Alive GSM51698 

43 F 1.6 TEL-AML Alive GSM51701 

  

 

Each microarray data set shown above was assessed and compared to LSSA results. As 

previously, predictions were marked as correct, small error, or large error: 

 

 

Figure ‎4.5.1: Clinical validation of GEB052 model against LSSA results. 

The‎“patient‎number”‎shown‎on‎the‎x-axis refers to the number of the individual patient from the original 

study that these thirteen patients were taken from (Schmidt et al., 2006). 

 

As shown in Figure ‎4.5.1 above, the model performs less well with clinical data from 

patients than cell-based microarrays. Using patient data, an average of 42% correct 

predictions was obtained, with an average of 55% small error and 3% large error. Thus, 

although there are a high number of small error predictions, the fact that there is less 

than 5% large error is promising. Furthermore, although 42% correct is less than what 

was obtained for cell-based data, if the correct prediction score for each of these thirteen 

patients is compared to what a random model would obtain (33.3% due to three possible 

outcomes) then the p-value is <0.0001, indicating the higher correct predictions and 

improvement over a random model. In addition to this, although 42% is relatively low, 

such a score could arguably make sense given the tissue-specific differential effects 
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glucocorticoid hormones have, when the fact that the model is not yet tissue-specific is 

taken into consideration, as well as the relatively small size of the model. 

 

4.6 Quantitative Model Analysis 

 

As established in the Introduction, different modelling types are available depending on 

the end goal. For large networks, Boolean models are usually employed, as the 

simplified logic allows for a lower computational demand, whilst mathematically 

precise models are typically used for smaller-scale networks. One persistent limitation 

of Boolean models is that the discrete states (1, 0, NaN) allow for only a limited 

capturing of the overall state of a node. There is a continuing drive to develop 

algorithms that allow for a more quantitative analysis to be performed on Boolean 

models. One such algorithm is the STSFA, which superimposes ChIP-seq and/or 

microarray data onto a model to analyse it quantitatively (Isik et al., 2012). 

 

4.6.1 Model Validation by STSFA Analysis 

 

The same twelve microarray datasets described in Table ‎4.4.3 (Page 168) were used to 

analyse the model via the STSFA and the same six comparisons were used to evaluate 

the prediction accuracy of STSFA. Individual comparison results are shown in 

Appendix Table 7 - Appendix Table 12 (Page 223-238). 

 

A summary of the correct/small error/large error percentages for each comparison is 

provided in Table ‎4.6.1. Comparisons 1-6 are the same comparisons performed 

previously (Table ‎4.4.3, Page 168) 

 

Table ‎4.6.1: Summary of prediction rates from all STSFA comparison scenarios. 

Comparison Correct (%) Small Error (%) Large Error (%) 

1 82.6 17.4 0.0 

2 83.0 17.0 0.0 

3 87.2 12.8 0.0 

4 72.3 25.5 2.1 
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5 74.5 23.4 2.1 

6 80.9 17.0 2.1 

AVERAGE 80.1 18.9 1.0 

 

Examination of Table ‎4.6.1 shows high correct prediction rates obtained via STSFA 

analysis. With a correct prediction range from approximately 72% to 87% and large 

errors occurring at 2.1% in three simulations (0% in the other three), the increased 

accuracy provided by the semi-quantitative approach of the STSFA provides a more 

robust analysis. 

 

4.6.2 Comparison of LSSA and STSFA 

 

It is expected that quantitative (even semi-quantitative) analysis would yield better 

prediction outcomes than static Boolean analysis, and indeed this has been shown 

previously (Hussain et al., 2014). The correct prediction rates of LSSA and STSFA with 

cell-based microarray data (Table ‎4.4.4, Page 169 for LSSA and Table ‎4.6.1, Page 172 

for STSFA) were compared as shown in Figure ‎4.6.1: 

 

 

Figure ‎4.6.1: LSSA vs STSFA. 

Data represents the average correct predictions across the six comparisons detailed in Table ‎4.4.3 (Page 

168) +/- SEM. P-value <0.05 is indicated by * as assessed by an unpaired two-tail t-test. 
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As shown above, the use of the STSFA lead to a significantly higher level of correct 

predictions obtained when compared to LSSA. Although both were improved over a 

random model, STSFA still remains higher than LSSA likely due to its semi-

quantitative nature. 

 

4.6.3 Preliminary Clinical Validation of GEB052 Model (STSFA) 

 

To assess the predictive power of the model under STSFA analysis at the clinical level, 

microarray data from thirteen leukaemia patients (taken before patients were treated) 

were used. 

 

Table ‎4.6.2: Patient microarray data used for STSFA analysis. 

Patient data obtained from Schmidt et al. (2006). Microarray data obtained from the GEO database after 

its deposit from the original study (Schmidt et al., 2006). 

Patient 

Number 
Gender 

Age 

(Years) 
Clustering 

Status at 

Risk 

Assessment? 

GEO ID 

2 M 8.5 T-ALL Alive GSM51712 

13 M 5.9 
Not 

assigned 
Alive GSM51679 

17 F 14.7 Hyperploidy Deceased GSM51682 

20 M 5 T-ALL Alive GSM51706 

24 M 2.6 
Not 

assigned 
Alive GSM51676 

25 F 10.3 T-ALL Alive GSM51709 

31 F 17.2 Hyperploidy Alive GSM51685 

32 F 3.7 TEL-AML Alive GSM51688 

33 M 2.5 Hyperploidy Alive GSM51691 

37 F 15.1 
Not 

assigned 
Alive GSM51694 

38 M 3.2 TEL-AML Alive GSM51697 

40 M 17.3 Not Alive GSM51700 
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assigned 

43 F 1.6 TEL-AML Alive GSM51703 

 

 

The microarray data shown above were each in turn superimposed onto the model and 

analysed via the STSFA. The edge weights for all edges to cell death were totalled (for 

each patient individually) and patients were grouped as shown in Figure ‎4.6.2: 

 

 

 

Figure ‎4.6.2: Preliminary clinical validation of GEB052 model (STSFA, alive/deceased status). 

Patient groups (Died Before Risk Assessment, n=1, Alive at Risk Assessment, n=12) are shown on the x-

axis, whilst the y-axis shows the average for each group of the total edge weights targeting cell death +/- 

SEM. 

 

As shown above, the model under STSFA analysis predicted that the patient who died 

before risk assessment would have a lower (more negative) total edge weight for edges 

that affect cell death than those who were alive at risk assessment. What this translates 

to‎is‎that‎cell‎death‎is‎“more‎inhibited”‎in‎that‎patient‎than‎those who were alive at risk 

assessment, at least according to the model predictions. Given that cell death in this 

context equates to the death of the cancer cells, the fact that this patient died before risk 

assessment (i.e. before other patients) is consistent with the model prediction. However, 

the sample size and unequal groupings make the above data insufficient to draw full 

conclusions, though it is a promising and interesting indication nonetheless. 
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To complement the above analysis, patients were also grouped by age: 

 

 

Figure ‎4.6.3: Preliminary clinical validation of GEB052 model (STSFA, age groupings). 

Patient groups (<15 years old, n=10, >15 years old, n=3) are shown on the x-axis whilst the y-axis shows 

the average for each group of the total edge weights targeting cell death +/- SEM.  

 

According to Cancer Research UK, ALL patients aged fourteen or younger have a five-

year survival rate of approximately 90%, whilst patients aged between fifteen and 

twenty-four have a five-year survival rate of approximately 70% (CRUK, 2015c). 

Therefore, if this difference in survival rate was seen through the GEB052 model 

predictions as shown in Figure ‎4.6.3, then the first group (less than fifteen years old) 

would have a higher (less negative) total edge weight to cell death. However, this is not 

the case. Although the difference between the two groups was statistically insignificant 

(p>0.05), the trend shown in Figure ‎4.6.3 is that patients who were less than fifteen 

years old have cell death as more negatively regulated (in turn, meaning less death of 

the cancer cells and arguably reduced survival). Thus, although the alive/deceased status 

shown in Figure ‎4.6.2 appears to correlate with clinical outcomes, this does not appear 

to be the case for Figure ‎4.6.3, which indicates some shortcomings of the model and 

required improvements. 
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Chapter 5 Discussion 

 

5.1 Detailed discussion of wet-laboratory results 

 

5.1.1 Alteration of cell fate by CM 

 

It is established that the bone marrow microenvironment, known to be important for the 

maintenance of HSCs, plays a role in chemoresistance in leukaemia via two-way 

communication with cancer cells through mechanisms including cell-cell contact (such 

as Kurtova and colleagues who found a contact-dependent protective effect of stromal 

cells on chronic lymphocytic leukaemia (CLL) cells (Kurtova et al., 2009)) and secreted 

factors (such as Nefedova and colleagues who found that soluble factors produced 

following bone marrow stromal cell-myeloma cell interaction protected myeloma cells 

from mitoxantrone (Nefedova et al., 2003)) (Bakker et al., 2016). Two-way exchange of 

signalling between leukaemic cells and the constituents of the microenvironment may 

occur through a variety of mechanisms such as through cell contact between osteoblasts 

and leukaemic cells or through secreted factors. 

 

Simulation of the microenvironment may be carried out in multiple ways, though the 

most common is direct co-culture of stromal cells and leukaemia cells and use of bone 

cell-conditioned media which is fed to the leukaemia cells. One study by Konopleva 

and colleagues demonstrated that co-culture of two leukaemic cell lines (HL-60 and 

NB-4) with MS-5 stromal cells led to reduced level of apoptosis through the 

upregulation of anti-apoptotic proteins. Importantly, these effects were reproduced with 

the use of MS-5 conditioned media instead of co-culture (Konopleva et al., 2002). 

 

Konopleva and colleagues utilised conditioned media at a concentration of 30% and saw 

a reduction in apoptotic cells (Konopleva et al., 2002). This is consistent with the data 

in this thesis, where one-third CM/total media led to an increased number of viable C7-

14 cells (as assessed by MTS assays - Appendix Figure 2, Page 208), compare light 

bars). However, a negative effect of one-third CM/total media was seen with C1-15 

cells (compare dark bars of Appendix Figure 2, Page 208). However, MTS assays are a 
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limited approach in that the approach shows only whole cell populations, and that it is 

dependent on mitochondrial activity. Thus, any treatments that affect mitochondria will 

have an impact on the outcomes of an MTS assay. CM was ultimately used at a final 

concentration of 1/6
th

 CM/total media, and future functional assays were designed either 

to analyse whole cells individually (Sub-G1 FACS analysis) or populations based on 

fluorescence intensity of dyes to classify cells as healthy or apoptotic (which due to 

quantitative measurement is more reliable than mitochondrial activity). Thus MTS 

assays were used as an initial starting point but further analyses relied on a more 

functional approach.  

 

5.1.2 GR phosphorylation is modulated by CM and chemotherapy 

 

Numerous factors‎ control‎ the‎ level‎ of‎ a‎ cell’s‎ response‎ to‎ glucocorticoid‎ treatment,‎

including the expression levels of the GR, the relative activity of the GR, and the 

phosphorylation status of the GR (Bakker et al., 2016). Thus understanding these key 

determinants can improve therapeutic opportunities and aid in elucidating the link 

between treatment and response. In particular, an effect of the microenvironment on the 

GR would provide a direct link to a key determinant of the chemotherapeutic response, 

potentially providing a route to targeted therapy. 

 

The phosphorylation status of the GR is important determinant of its activity, as detailed 

in Section ‎1.10 (Page 39). GR may be phosphorylated in the absence and presence of a 

ligand (Galliher-Beckley et al., 2011). Phosphorylation at S134 occurs in the absence of 

ligand and appears to be controlled via p38 MAPK (Galliher-Beckley et al., 2011). 

There are numerous characterised phosphorylation sites for the GR such as S203, which 

is thought to be an inactive form of the GR due to its localisation to the cytoplasm 

(Galliher-Beckley and Cidlowski, 2009). Among the most well-characterised and 

important for GR function are S211 and S226. Phosphorylation at S211 is mediated by 

kinases such as p38 MAPK and is one of the key determinants of GR activity; in most 

cell types the GR is hyperphosphorylated at S211 following hormone binding, which 

leads to increased promoter occupancy and glucocorticoid-induced apoptosis (Galliher-

Beckley and Cidlowski, 2009). Contrasted with S211 is S226, which is primarily 
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associated with reduced GR activity through enhanced nuclear export of the GR (Itoh et 

al., 2002). Due to their opposed effects the ratio between S211/S226 has been 

considered an indicator for GR activity (Simic et al., 2013). Interestingly, alteration of 

one phosphoisoform can lead to altered levels of another; for instance, it has been 

shown that inhibition of JNK, which phosphorylates GR at S226, can ultimately lead to 

restored GR activity and phosphorylation at S211 (Miller et al., 2007; Galliher-Beckley 

and Cidlowski, 2009). Thus, the phosphorylation status of the GR is important in 

determining its activity; it was for this reason that the phosphorylation status of the GR 

was followed under CM and chemotherapy (Section ‎3.3, Page 108). 

 

In agreement with previously published research, C7-14 cells exhibited a consistent 

trend for higher levels of GR protein than C1-15 cells, particularly following hormone 

treatment  (compare light to dark bars of Figure ‎3.3.2, Page 110) (Lynch et al., 2010). 

Interestingly, CM trended towards a decrease in total GR in C1-15 cells, which 

correlates with the statistically significant increase in S226-phosphorylated GR 

following CM treatment (compare dark bars of lane 2 to lane 1 of Figure ‎3.3.2, Page 

110 and Figure ‎3.3.3, Page 111). S226 is classically associated with reduced GR 

activity, excepting the emergence of target gene-specific phosphorylation (Lynch et al., 

2010). Thus this negative effect of CM on the GR, key receptor for ALL chemotherapy, 

in C1-15 cells could represent a mechanism by which the microenvironment may exert 

its effects. However analysis is complex in that CM, under MTS assays, did not 

improve survival of C1-15 cells (though for FACS analysis, arguably a more reliable 

technique, an improved survival was seen and similar to this an improved survival for 

C1-15 cells was seen when comparing dexamethasone to dexamethasone and CM 

treatment under MTS assays (Figure ‎3.2.1)). A further complication is that in C1-15 

cells dexamethasone and CM combination treatment had a statistically significantly 

lower level of S226-phoshorylated GR than dexamethasone treated cells (Figure ‎3.3.3, 

Page 111). 

 

Dexamethasone lead to an increase in S226-phosphorylated GR in C1-15 cells, whilst 

this effect was not seen in C7-14 cells (compare dark to light bars of lane 3 of Figure 

‎3.3.3, Page 111). S226 phosphorylation was generally predominant in C1-15 cells; in 
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particular, the increase in S226 phosphorylation could partially explain the resistance of 

these cells to dexamethasone.  

 

Converse to S226 levels and consistent with established literature, S211 

phosphorylation was higher in C7-14 cells than C1-15 cells (compare light to dark bars 

of Figure ‎3.3.4, Page 113). The positive effects of S211 phosphorylation on GR, 

correlated with the relative expression levels of it between the two cell lines, could 

again partially explain the difference in GC-sensitivity that is seen between C1-15 and 

C7-14 cells. 

 

The respective roles of different kinases under treatments can be elucidated through the 

use of specific inhibitors. For instance, SB203580 is a p38 MAPK inhibitor whilst 

SP600125 is a JNK inhibitor. Use of these inhibitors would lead to altered GR 

phosphorylation, and there is some preliminarily evidence supporting this (Qattan, 

2014; Lynch et al., 2010). 

 

Based on the data presented in this thesis, there was no significant increase in S226 

phosphorylation in C7-14 cells following treatment with CM (Figure ‎3.3.3, Page 111). 

It is possible that inhibition of one kinase (and in turn reduction of the phosphorylated 

form it modulates) would lead to altered predominance of phosphoisoforms. CM may 

positively modulate p38 MAPK, in turn affecting GR, due to the trend for CM to 

increase phosphorylation at S211 (compare light bars of lane 2 to lane 1 of Figure ‎3.3.4, 

Page 113). Inhibition of p38 MAPK would therefore blunt this potential stimulatory 

effect of CM, and thus alter the phosphorylation status of GR. 

 

Data presented in this thesis have indicated that the microenvironment can influence the 

post-translational state of the GR, which given the importance of GR phosphorylation in 

determining its activity, provides a link from the microenvironment to drug response 

and resistance. Comparison of the results obtained to unpublished data generated by a 

former colleague has indicated that the effects of the microenvironment on the GR may 

be mediated through kinases such as p38 MAPK. 
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5.1.3 CM and chemotherapy affect BECN1, RIPK1, Caspase-3 and BIRC3 

 

The choice for a cell to undergo apoptosis, necroptosis or autophagy is determined by 

complex crosstalk involving numerous proteins. To provide preliminary insight as to the 

effect of CM and chemotherapy on these pathways, a key marker for each (BECN1 for 

autophagy, RIPK1 for necroptosis and caspase-3 for apoptosis) was analysed by both 

qRT-PCR and Western blotting. 

 

Analysis of BECN1 mRNA did not reveal any significant changes, though there were 

trends identified such as increasing BECN1 expression in C1-15 cells (Figure ‎3.4.1, 

Page 114). Conversely, at the protein level, a statistically significant loss of BECN1 was 

seen in C7-14 cells following etoposide, etoposide/CM combination, and 

dexamethasone and etoposide combination. However, dexamethasone, etoposide and 

CM combination did not show a statistically significant loss of BECN1 (see light bars 

of lanes 5-7 of Figure ‎3.4.6, Page 119), which may indicate pro-survival effects of CM 

through modifying cellular response to combination chemotherapy. C1-15 cells 

exhibited a consistently higher level of BECN1 protein expression across all treatments, 

particularly for treatments containing etoposide. Given that BECN1 is linked to the 

generally pro-survival process of autophagy, this higher expression could represent an 

explanation for why C1-15 cells exhibit less sensitivity to etoposide treatment (see MTS 

experiment, Figure ‎3.2.1, Page 108). 

 

BECN1 represents an interesting target not only for its link to autophagy, but also for 

the fact that there are previously reported studies linking the glucocorticoid receptor and 

BECN1. For instance, it has been shown by Laane et al (2009) that BECN1 may be 

required for dexamethasone-induced cell death in lymphoid leukaemia (Laane et al., 

2009). Further evidence for the fact that BECN1 may be influenced by glucocorticoids 

is the fact that numerous putative GR binding sites were identified by QIAGEN 

Champion ChIP (Figure ‎3.5.1, Page 120), which was verified by chromatin 

immunoprecipitation experiments, where C7-14 cells exhibited a statistically significant 

increase in promoter occupancy following hormone treatment (Figure ‎3.5.7, Page 126). 

Thus, the GR has been identified as occupant on the BECN1 promoter; combined with 
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previous literature detailing BECN1 to be important for dexamethasone-induced 

apoptosis (Laane et al., 2009), it is likely that some level of crosstalk exists between 

these two proteins. However, no significant changes under dexamethasone treatment 

were observed for either cell line at the mRNA or protein level (Figure ‎3.4.1 and Figure 

‎3.4.6, Pages 114 and 119 respectively), which indicates a need for further research to 

fully elucidate the relationship between the GR and BECN1. It is possible that the 

regulation of BECN1 by the GR is complicated due to the high number of putative GR 

binding sites, in addition to the fact that BECN1 is known to be regulated by the NF-κB‎

subunit RELA (Copetti et al., 2009). 

 

As summarised in Figure ‎1.14.3 (Page 52) autophagy is a multistep process involving 

numerous genes. Autophagy is a particularly interesting process due to the fact that 

although it is generally pro-survival, there have been reports of autophagy-dependent 

cell death,‎ potentially‎ due‎ to‎overactivation‎of‎ the‎ “self-eating”‎process (Laane et al., 

2009; Gump and Thorburn, 2011). As previously described, autophagy involves several 

steps such as autophagosome formation and maturation (Mizushima, 2007). Autophagic 

vesicle formation is dependent upon proteins such as BECN1 and class III 

phosphatidylinositol 3-kinase (PI3KIII), whilst class I PI3K/Akt signalling is an 

upstream inhibitor of autophagy (Laane et al., 2009). 

 

Promyelocytic leukemia protein (PML) has been shown to be a negative regulator of 

PI3K/Akt signalling by blocking Akt through recruitment of the Akt phosphatase PP2a 

and nuclear Akt into PML bodies (Trotman et al., 2006). In PML KO cells there is a 

nuclear clearing deficiency of phosphorylated Akt (Trotman et al., 2006). Thus, PML 

serves as a negative regulator of Akt signalling. Akt itself is an upstream activator of 

MTOR (mechanistic target of rapamycin), which serves as a negative regulator of 

autophagy (Grander et al., 2009). 

 

Laane et al. (2009) identified that dexamethasone appears to induce PML in 

glucocorticoid-sensitive but not glucocorticoid-resistant cells, and that PML was 

essential for dexamethasone-induced cell death. Thus, they concluded that 

dexamethasone induces cell death through PML/Akt-dependent induction of autophagy 
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(Laane et al., 2009). Thus, it is clear that there is some crosstalk between glucocorticoid 

treatment and autophagy, however the downstream pathways are complex as 

dexamethasone is known to regulate members of the BCL-2 superfamily, which are 

highly important for apoptosis (Lynch et al., 2010). 

 

Caspase-3 experiments result in two sets of bands – the full-length (uncleaved) caspase 

(Caspase-3 (FL)), and the cleaved bands (Caspase-3 (CL)), which are produced 

following apoptotic signalling. Analysis of Caspase-3 (FL) a reduction in these bands 

by CM in both cell lines, though the effect was statistically significant only for C7-14 

cells (compare lane to lane 1 of Figure ‎3.4.5, Page 118). Loss of Caspase-3 (FL) was 

also seen in dexamethasone-treated C7-14 cells, as well as some treatments containing 

etoposide for both C1-15 and C7-14 cells (Figure ‎3.4.5, Page 118). 

 

Loss of full-length caspase-3 may either be due to cleavage of the protein during 

apoptotic processes, or general loss of the protein as a whole due to reduced stimulation 

of its mRNA. If a loss of Caspase-3 (FL) is observed and yet there is a corresponding 

increase in Caspase-3 (CL), it is possible that the loss of full-length is due to its 

processing to the cleaved form. By the same logic, if a loss of Caspase-3 (FL) is 

observed but there is no corresponding increase in Caspase-3 (CL), it is again not 

unreasonable to assume that this loss is due to less caspase-3 being present within the 

cell. Thus, the reduction of Caspase-3 (FL) by CM, due to the fact that there is generally 

no corresponding increase in cleaved bands, indicates a potential route by which CM is 

suppressing apoptotic pathways. 

 

Further evidence for the above is that, based on the microarray, phosphatidylinositol-4-

phosphate 3-kinase catalytic subunit type 2 beta (PIK3C2B) was upregulated by CM, 

and phosphatidylinositol-4-phosphate 3-kinase is known to block caspase-3 (Qattan, 

2014). Opposite to this is the fact that etoposide induces a significant loss of Caspase-3 

(FL), and yet there is a significant increase in the abundance of Caspase-3 (CL). This is 

best seen by examining Figure ‎3.4.3 (Page 116) and comparing bands for Caspase-3 

(FL) to Caspase-3 (CL). The fact that C1-15 cells exhibit less loss of Caspase-3 (FL) 

compared to C7-14 cells may be due to less caspase-3 cleavage, in turn explaining the 
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relative resistance of the cells to etoposide treatment (Figure ‎3.2.1, Page 108, Figure 

‎3.7.1, Page 132 and Figure ‎3.7.2, Page 134). 

 

It was observed that dexamethasone treatment did not result in the formation of 

Caspase-3 (CL) bands (Figure ‎3.4.3, Page 116). It has been previously shown that 

dexamethasone induces cleavage of caspse-3 (Grander et al., 2009) and perhaps this is 

due to a cell type-specific phenomenon. However, dexamethasone-induced apoptosis in 

eosinophils did not appear to activate caspase-3 or caspase-8 (Zhang et al., 2000). 

Similarly, analysis in 697 B-ALL cells demonstrated that dexamethasone-induced 

apoptosis was dependent upon cleavage of caspase-6, not caspase-3 (Miyashita et al., 

1998). Thus, the results of dexamethasone not inducing caspase-3 cleavage are 

reasonable and consistent with previously published data on lymphoid malignancies. 

Interestingly, dexamethasone demonstrated a clear trend for high activation levels of 

caspase-8 (Figure ‎3.6.4, Page 130) indicating some evidence of apoptotic signalling. 

 

RIPK1 represents an interesting target for numerous reasons, including its role as a 

mediator of necroptosis (Berghe et al., 2010) and its‎ role‎ as‎ a‎determinant‎of‎ a‎ cell’s‎

choice to undergo apoptosis, necroptosis, or pro-survival signalling through NF-κB‎

activation (Wu et al., 2012). The initial microarray analysis which provided the basis for 

much of this study indicated that RIPK1 was repressed by CM in C7-14 cells (Qattan, 

2014). This was validated by qRT-PCR, where additional experiments also indicated a 

trend for dexamethasone to repress RIPK1 in C7-14 cells (Figure ‎3.4.2, Page 115). At 

the protein level, RIPK1 was again suppressed by CM in C7-14 cells, whilst 

dexamethasone also led to a statistically significant reduction in RIPK1 levels (Figure 

‎3.4.4, Page 117). Most treatments containing etoposide (other than etoposide/CM 

combination) in C7-14 cells exhibited a statistically significant reduction in RIPK1 

levels, whilst for C1-15 cells the only statistically significant change was 

dexamethasone/etoposide combination, whilst also exhibiting a trend for CM to increase 

it (Figure ‎3.4.4, Page 117). 

 

To further verify the regulation of RIPK1 by the GR, GREs were identified by QIAGEN 

Champion ChIP (Figure ‎3.5.2, Page 121) and chromatin immunoprecipitation 
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performed against the two putative GREs (Figure ‎3.5.5 and Figure ‎3.5.6, Page 124 and 

Page 125). No increase in recruitment in C1-15 cells was seen following hormone 

stimulation at both GREs, whereas C7-14 cells exhibited a statistically significant 

increase in GR recruitment following dexamethasone treatment at both GREs. Thus, the 

GR has been identified as occupant on the RIPK1 promoter, and it exerts a negative 

effect on RIPK1 protein levels (a repressive trend was seen at mRNA level, though not 

statistically significant). Curiously, S211- and S226-phosphorylated GR were both 

recruited less in both cell lines following hormone stimulation. This is surprising given 

the propensity for S211-phosphorylated GR to be active at GREs. Previous research has 

assessed promoter occupancy of S211- and S226-phosphorylated GR demonstrating 

recruitment at genes such as GILZ (Blind and Garabedian, 2008). If phosphoisoforms 

are recruited less in the presence of hormone but the total GR is recruited more (as was 

seen for the RIPK1 ChIP experiments) this could be due to either quality of antibodies, 

selective recruitment of different GR posttranslationally modified forms or other 

unknown factors. Given that numerous phosphorylation sites exist on GR it is possible 

they play a role in this promoter. In any case, the occupancy of the GR on the RIPK1 

promoter, combined with glucocorticoid effects on its protein and mRNA levels, 

suggests that RIPK1 may be a target for GR control. 

 

The link of RIPK1 being involved in the activation of NF-κB‎ (Oberst, 2016) is a 

particularly interesting one, given that the crosstalk between the GR and NF-κB‎is‎very‎

well-established and GR-mediated suppression of NF-κB‎ signalling‎ is‎ a‎ common‎

explanation for the anti-inflammatory effects of glucocorticoid treatment (Barnes, 

1998). Thus, the identification of the repression of RIPK1 by dexamethasone may 

represent a potentially novel explanation for the anti-inflammatory effects of 

glucocorticoid steroids. RIPK1, and necroptosis, are also interesting to study as it has 

been shown that glucocorticoid resistance may be overcome through autophagy-

dependent necroptosis (Bonapace et al., 2010). 

 

In particular, Bonapace et al. (2010) demonstrated that the use of obatoclax (a putative 

antagonist against BCL-2 family members) reverted glucocorticoid resistance, which 

was associated with release of BECN1 from a complex with myeloid cell leukemia 
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sequence 1 (MCL-1) and a reduction in MTOR activity (Bonapace et al., 2010). 

Combination dexamethasone/obatoclax  lead to MTOR inhibition, and ultimately 

autophagy-dependent necroptosis, which is interesting as this agrees with the findings 

by Laane et al. (2009) detailed previously regarding dexamethasone promoting 

autophagy via the upregulation of PML (and subsequent downstream inhibition of Akt 

and MTOR). Bonapace et al. (2009) indicated RIPK1 as key for the execution of cell 

death, is interesting given that the results presented in this thesis demonstrate 

downregulation of RIPK1 in glucocorticoid-sensitive cells that die from dexamethasone 

exposure. It is possible that this can be explained by the multiple pathways RIPK1 is 

involved in, including NF-κB‎signalling‎that‎can‎promote‎inflammation‎and‎survival‎as‎

well as in determination of whether cell will undergo necrosis, necroptosis of apoptosis 

depending on the above described molecular complexes and signals. 

 

BIRC3 is known to ubiquitinate RIPK1, whose ubiquitination status plays a role in 

determining (along with other factors such as caspase-8 activity) cell fate between 

apoptosis, necroptosis and pro-survival signalling (Wu et al., 2012; Schenk and Fulda, 

2015). BIRC3 is already known as a target gene of the GR (Webster et al., 2002), 

though the results presented in this thesis verify that in leukaemic cells (at least 

glucocorticoid-sensitive C7-14 cells) BIRC3 is significantly stimulated by 

dexamethasone treatment (Figure ‎3.6.1, 127) and that the GR is occupant on its 

promoter following hormone stimulation, though curiously the same phenomenon of 

phosphoisoforms being less recruited following hormone stimulation was apparent 

(Figure ‎3.6.3, Page 129). 

 

CM altered the expression of BIRC3 in opposing ways between C1-15 and C7-14 cells, 

increasing its expression in C1-15 and decreasing in C7-14 (Figure ‎3.6.1, Page 127). 

The anti-apoptotic role of BIRC3 would explain its stimulation in C1-15 cells (pro-

survival influence of the microenvironment), though its decrease by CM in C7-14 cells 

is puzzling. C7-14 cells exhibited a dramatic increase in BIRC3 mRNA following 

dexamethasone treatment (approximately 22-23 fold), which was significantly blunted 

following co-treatment with etoposide (compare lane 7 to lane 3 of Figure ‎3.6.1, Page 

127), which may indicate the molecular basis of the benefits of co-therapy in the clinic. 
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Alternatively, given that BIRC3 has established anti-apoptotic function, this 

upregulation by a chemotherapy drug is highly interesting, as it points to either aberrant 

BIRC3 activity or highlights BIRC3 as a prospective target for drug development. 

 

5.1.4 Effects of CM and chemotherapy on cell fate 

 

As stated in the previous section, caspase-8 activation is a determinant of cell fate. 

Caspase-8 activation was tracked in C1-15 and C7-14 cells to assess its relative 

activation across different treatments. In both cell lines, CM decreased caspase-8 

activation (Figure ‎3.6.4, Page 130), which provides further evidence for CM 

suppressing apoptotic pathways. Caspase-8 activity was increased in C7-14 for 

dexamethasone treatments, whilst this was less so for C1-15. Treatments containing 

etoposide showed maximal caspase-8 activation (Figure ‎3.6.4, Page 130). Cell type 

analysis demonstrated a reduction in apoptotic cells for C7-14 cells, whilst drug 

treatments (excepting dexamethasone or dexamethasone/CM combination for C1-15 

cells) in both cell lines caused a significant reduction in healthy cells and a significant 

increase in apoptotic cells (Figure ‎3.7.1, Page 132). This generally correlates with both 

cell viability assessment via MTS assays (Figure ‎3.2.1, Page 108) and the Sub-G1 

FACS analysis (Figure ‎3.7.2, Page 134). 

 

Although the MTS assays (Figure ‎3.2.1, Page 108) did not show significant or negative 

differences with CM treatment, this was not the case for the Sub-G1 FACS analysis, as 

in both cell lines a reduction in the number of cells accumulating in Sub-G1 was 

observed following CM treatment, with the effect in C1-15 cells being statistically 

significant (Figure ‎3.7.2, Page 134). Though this is slightly inconsistent, it is arguably 

not unreasonable and the difference may be explained through the difference in how 

each technique generates the data. MTS assays are dependent on mitochondrial activity 

and simply rely on the entire cell population converting a dye to the product. By 

contrast, Sub-G1 FACS analysis scans cells individually one-by-one and tracks the 

cell’s‎ fluorescence‎ intensity.‎ Thus,‎ Sub-G1 FACS analysis is arguably more reliable 

than MTS assays, potentially explaining the difference in results observed. 
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Ultimately, the functional analysis discussed here represents the end outcome of the 

molecular approaches detailed previously. The microenvironment modulates numerous 

pathways and genes, including the GR, caspase-3/8 and RIPK1, with the overall 

modulation appearing to be a promotion of cell-survival based on the outcome of 

treatments. 

 

5.1.5 Putative ubiquitinated RIPK1 and BIRC3 inhibition  

 

During experiments on RIPK1 protein levels, consistent high molecular weight band 

patterns were observed, with CM generally increasing a band seen at 130kDa. The 

consistency of this band appearance and its effect being seen primarily in C7-14 cells 

led to the hypothesis that these high molecular weight bands represented some modified 

form of RIPK1, potentially ubiquitinated RIPK1. AT406, a BIRC3 inhibitor, was used 

to determine if this band formed in its presence and indeed the high molecular weight 

bands were reduced following AT406 treatment (Figure ‎3.8.1, Page 136). Thus, 

although this is preliminary as further evidence is required before confirming these 

bands are modified forms of RIPK1, there is some evidence here to suggest that part of 

the‎microenvironment’s‎effect‎is‎achieved‎through‎alteration‎of‎post-translational status. 

Particularly for RIPK1, due to its ubiquitination status being a determinant of cell fate, 

this provides novel insight that may be of therapeutic benefit. 

 

  



189 

 

5.2 Detailed discussion of computational results 

 

5.2.1 Application of modelling to GR research 

 

One of the most significant challenges facing scientific research at present is the 

integration and analysis of high-throughput data. Particularly for fields such as cancer 

research, where the molecular details of drug signalling pathways is increasingly 

complex, modelling may provide additional insight that traditional laboratory-based 

research cannot uncover. Ultimately, models aim to be a predictive tool. 

 

As described in the Introduction (Section ‎1.22, Page 68), modelling techniques have 

previously been applied to glucocorticoid/nuclear receptor research. These include 

approaches such as a top-down approach which utilised microarray data to build 

mechanistic models of corticosteroid effects (Jin et al., 2003), development of ODE 

models of glucocorticoid direct and indirect gene induction based on detailed mRNA 

and protein levels (Chen et al., 2010) or virtual screening for potential nuclear receptor 

ligands (Ai et al., 2009). 

 

Given the good prediction ratios obtained by the original TP53 interactome (Tian et al., 

2013), the STSFA analysis of the original TP53 interactome (Hussain et al., 2014) and 

the expanded TP53 interactome (Hussain et al., 2015), a similar approach was utilised 

here to undertake the novel application of this modelling approach to GR research. The 

GEB052 model is distinguished from other published models in that it aims to integrate 

hundreds of interactions at once as a Boolean model, incorporating not only GR 

signalling but interactions between GR interaction partners as well as linking the model 

to the measurable biological outputs of cell death and inflammation. This discussion 

compares the GEB052 model to the TP53 interactomes generated previously, as these 

models were built using the same approaches herein and thus they represent a good 

comparison point for relative model analysis. 

 

5.2.2 GEB052 Network Structure 
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Following extensive literature curation, the GEB052 model was developed, consisting 

of 52 nodes and 241 logical interactions, one input of a glucocorticoid activating the 

GR, and two outputs of cell death and inflammation. The model consists of 64 two-step 

feedback loops, signifying the interconnectivity of the model. Interestingly, the TP53 

model described previously (consisting of 206 nodes and 738 interactions) contained 

only 30 two-step feedback loops (Tian et al., 2013), whilst the expanded TP53 

interactome published at a later date (consisting of 260 nodes with 980 interactions) 

contained only 34 feedback loops (Hussain et al., 2015). Despite the much smaller size 

of the GEB052 model (only 52 nodes compared to 206 or 280), there is a much higher 

number of feedback loops within it, potentially signifying a greater degree of 

interconnectivity between model constituents. 

 

The node connectivity assessment indicated that 15 out of 52 nodes (29%) exhibited 

high connectivity (>10 interactions), with each of these nodes, excepting outputs, being 

taken forward for in silico knockout analysis. The original TP53 model had 31 nodes 

with a connectivity of equal to or more than ten (Tian et al., 2013), which corresponds 

to 15% of the nodes. This provides further evidence of the interconnectivity of the 

GEB052 model compared to the TP53 model. 

 

This enhanced connectivity could have arose either due to higher inherent connectivity 

for GR signalling in vivo, updates to the STRING database, or differences in the 

filtering process following automatic extraction. During the curation of the interaction 

records for the GEB052 model, all possible interactions were considered, even those 

where a predicted interaction of activation or inhibition‎was‎not‎present‎(i.e.‎“binding”‎

reactions). Though these interactions did not have a predicted activation or inhibition 

based on STRING data, literature curation would often unveil a stimulatory or 

inhibitory relationship between the two proteins. Thus, a significant number of the 

activation/inhibition‎ interactions‎ in‎ GEB052‎ model‎ were‎ based‎ off‎ “binding”‎

predictions. The thesis describing the construction of the TP53 model indicates that only 

posttranslational modification, activation, and inhibition interactions from STRING 

were considered (Tian, 2013). Thus, the expanded scope of starting interactions in the 
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GEB052 model can partially explain its more significant degree of interconnectivity, 

despite the smaller size of the network. 

 

5.2.3 Dependency Analysis of GEB052 model 

 

Dependency analysis of the GEB052 model unveiled that the most significant 

dependency matrix alterations occurred for those nodes exhibiting the highest 

connectivity. Removal of the GR, which is the most connected node in the model, lead 

to the most significant alterations in the dependency matrix. Surprisingly, despite 

performing thirteen KO scenarios (for nodes, other than outputs, whose connectivity 

was >10), only three KO scenarios (GR KO, HSP90 KO, and HDAC1 KO) 

demonstrated changes to strong activators or strong inhibitors. As stated previously, it is 

typical that changes to strong activators or strong inhibitors are focussed on, as these are 

the changes most likely to exhibit an effect in vivo due to their relative rarity and lack of 

feedback loops making their effects stronger. 

 

The TP53 interactome model, across its numerous KO scenarios, demonstrated a 

significant number (63) of alterations to strong activators/inhibitors (Tian et al., 2013). 

Comparatively, of all the KO scenarios performed on the GEB052 model, only ten 

alterations to strong activators/inhibitors were seen. Changes to or from weak activators 

and inhibitors may well exert an effect on the cell, however analysis of these 

dependencies would be cumbersome due to the high number. As previously stated, 

across all KO scenarios in the GEB052 model a total of 1249 dependency alterations 

were observed; when ambivalent to no effect changes were removed, this dropped to 

323 dependency alterations. Although more manageable, 323 is still a significant 

amount of changes to follow individually and thus initial analysis has focussed only on 

changes to or from strong activators/inhibitors. 

 

Although less significant (changes to or from strong activators or inhibitors) alterations 

were seen, it is important to note that only three of the thirteen (23%) KO scenarios 

yielded changes. Comparatively, for the TP53 model, 11 out of 31 KO scenarios (35%) 

yielded significant changes (Tian et al., 2013). Thus, the TP53 model in general was 
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more prone to disruption. This is potentially justified given the enhanced connectivity of 

the GEB052 model relative to the TP53 model, as described earlier. With a significantly 

higher number of two-step feedback loops (especially relative to model size), and more 

interconnectivity between the nodes, the model relationships and dependencies would 

be less prone to disruption, which may explain why fewer significant changes to the 

dependencies were observed. 

 

Despite changes to or from strong activators or inhibitors being most likely changes to 

exert an effect in vivo, it is possible that changes to or from weak activators or weak 

inhibitors would also demonstrate an effect in vivo, particularly if all of the 

dependencies for which a node is the target are altered. Furthermore, as indicated in 

Table ‎4.3.1 (Page 159) and figures such as Figure ‎4.3.2 (Page 161), numerous 

alterations to or from weak activators or inhibitors were seen. Thus, analysis of these 

changes across the KO scenarios represents a point for future work. 

 

5.2.4 LSSA Interpretation and Validation 

 

The use of LSSA allows for the capturing of the overall state of a network element 

following completion of its input signals. To assess model predictive power, LSSA was 

performed to simulate both GC-sensitive cells and GC-resistant cells (Table ‎4.4.1, Page 

164), and model predictions of node state changes were compared to microarray data 

from glucocorticoid-resistant and glucocorticoid-sensitive cells (Table ‎4.4.4, Page 169). 

The average correct prediction rate across the six validations was 56.60%, whilst small 

errors accounted for 41.67%, and large errors accounted for 1.74%. 

 

The TP53 model developed using a similar methodology to GEB052 displayed correct 

prediction rates ranging from 52% to 71% (Tian et al., 2013). Although the range of 

correct predictions for GEB052 is smaller (54.17% to 60.42%), less large error 

predictions were seen in the GEB052 model. Every validation of the TP53 model had at 

least two large errors (large error prediction ranged from 2% to 6%). However, the 

presence of large errors was significantly less in the GEB052 model, with two out of six 

simulations showing no large errors, and the other four showing a large error range from 
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2.08% to 4.17%. Interestingly, the expanded TP53 interactome later published showed 

less large errors than the original TP53 inteactome, though all validations included at 

least one large error (Hussain et al., 2015). Thus, model expansion may represent a way 

to improve model accuracy, which in turn indicates a future direction for the GEB052 

model. 

 

In addition to the validation based on microarray data obtained from cells, the model 

LSSA results have also been compared to microarray data from thirteen patients 

following treatment with glucocorticoids (Figure ‎4.5.1, Page 171). Correct predictions 

here dropped to an average of 42%, with 55% small error and 3% large error. Although 

the level of correct predictions is lower than that for cell-based microarray data (42% 

against 56.6%), this is potentially justified given that the model is currently of a small 

size, in addition to the fact that the evidence used for the interactions are primarily from 

cell-based studies. Furthermore, the GEB052 model encapsulates only a small part of 

the signalling that occurs following hormone treatment, and model expansion may 

improve predictive power.  Lastly, effects of glucocorticoids are very cell-type specific, 

and yet the model does not account for cell type at present. This thus represents a source 

of future work for the model. 

 

Furthermore, the validation methodology was different between the two approaches, as 

the cell-based microarray data had obvious groups that could be compared (i.e. sensitive 

to resistant microarray, compared to sensitive to resistant LSSA). However, this was not 

possible for the patient data utilised and thus this represents a further reason for why the 

correct prediction rate at the patient level is lower than for cell-based microarray data. 

However, this falls largely as a limit for LSSA, as other approaches allow for a more 

quantitative analysis to be performed, even for individual patients (see STSFA 

discussion in the subsequent section). 

 

Comparison of the LSSA results for the glucocorticoid-sensitive and glucocorticoid 

resistant scenarios unveiled that the majority of the nodes (37 out of 52) were 

unchanged between the two scenarios, whilst three were upregulated in GC-resistant 

cells and twelve were downregulated in GC-resistant cells (Table ‎4.4.2, Page 167). 
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It is interesting that DAXX, a pro-apoptotic node, was upregulated in the GC-resistant 

simulation. However, other genes affecting cell death were downregulated in the GC-

resistant simulation (relative to GC-sensitive). CD40LG and UBC are each directly 

ambivalent to cell death (and as such, they cannot be classified alone as pro- or anti-

apoptotic within the model). TSC22D3 and STAT5B, the former of which is better 

known as the anti-inflammatory protein GILZ (glucocorticoid-induced leucine zipper) 

(Hahn et al., 2014) and the latter of which is a transcription factor implicated in 

pancreatic chemoresistance that is activated by the GR and negatively feeds back to the 

GR (Stocklin et al., 1996; Sumiyoshi et al., 2016; Wyszomierski et al., 1999) are both 

anti-apoptotic nodes within the model, and each were downregulated in the GC-resistant 

scenario. Importantly, most nodes under LSSA were unchanged, with only three 

exhibiting upregulation in the GC-resistant scenario and eleven (excluding the GR) 

exhibiting downregulation; the remainder were unchanged, and this includes several 

nodes linked to cell death (n=13). This again highlights a limit of LSSA; fixed states 

limit the analysis. If a more quantitative analysis was employed (as performed later via 

STSFA) it is likely these unchanged nodes would show differences and provide further 

insight. Although it is surprising that a pro-apoptotic node was upregulated in resistant 

simulation, and these two anti-apoptotic nodes were downregulated in the resistant 

simulation, it may be worth noting that the cytotoxic effects of GCs are limited to very 

few cell types, whereas they exert pro-survival effects in other tissues (Bailly-Maitre et 

al., 2001). The model is not yet tissue-specific, and so predictive power could be further 

improved by building cell type-specific versions of the GEB052 model. 

 

For the nodes relating to inflammation, only CD40LG and STAT5B were shown to 

have altered expression between the sensitive and resistant simulations (the remainder 

were unchanged), and both were downregulated in the resistant simulation. STAT5B 

has been previously discussed. CD40LG is stimulated by glucocorticoids and plays a 

role in isotype switching, a process that allows for B-cells to change the type of 

antibodies they produce (Jabara et al., 2001) STAT5B is directly ambivalent to 

inflammation, meaning that similar to before it alone cannot be classified as pro- or 

anti-inflammatory‎ within‎ the‎ model’s‎ framework.‎ However,‎ CD40LG,‎ a‎ pro-
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inflammatory node, was downregulated in the resistant simulation relative to the 

sensitive simulation. Again, this is quite surprising, as glucocorticoids should reduce 

inflammation, in theory through the modulation of inflammatory-related genes. If a pro-

inflammatory gene is less active in resistant cells, then that means there is less 

inflammation in resistant cells, which is contrary to the logic that the resistant cells are 

unresponsive to glucocorticoid treatment. 

 

Potential explanations for this finding include the fact that the model is small, consisting 

of 52 highly connected nodes. Furthermore, only eight nodes had a direct reaction with 

the inflammation node. It is needless to say that the inflammatory process in vivo is 

affected by far more than eight genes, and thus CD40LG is only one gene out of many. 

In addition to this, this observation highlights a shortcoming in the LSSA approach, in 

that values are fixed and show 1, 0 or NaN. Thus, if a node receives even one 

stimulatory signal, it achieves a state of 1. In addition to the nodes themselves, all edges 

(interaction) in the model under LSSA are represented with a steady state, which does 

not allow for quantitative analysis. It is for this reason that following analysis of the 

LSSA results, a more quantitative approach by STSFA was used. 

 

5.2.5 Quantitative Model Analysis 

 

The use of STSFA (Isik et al., 2012) has previously been shown to have enhanced 

predictive power over LSSA (Hussain et al., 2014). The nature of STSFA is that it 

allows for semi-quantitative analysis of Boolean models by superimposing numerical 

data (based on microarray or ChIP-Seq data) onto nodes and assigning weights to each 

edge. Thus, rather than having states of ON, OFF, or undetermined, node and edges are 

assigned a numerical value following the completion of signalling paths within the 

network. 

 

Application of STSFA to the GEB052 model led to significantly more accurate 

predictions being generated. Six comparisons were used to validate STSFA results. 

Curiously, large errors appeared only in simulations for B-ALL, and not for T-ALL 
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(Table ‎4.6.1, Page 172). This may be an indication that the model predicts T-ALL better 

than B-ALL, though this remains to be seen.  

 

Compared to LSSA, STSFA demonstrated a statistically significantly higher level of 

correct predictions, to a degree of 56.6% for LSSA and 80.1% correct for STSFA 

(Figure ‎4.6.1, Page 173). This is consistent with previous application of the STSFA to 

the TP53 model, where it was again shown that the STSFA resulted in more accurate 

predictions (Hussain et al., 2014), though the application of the STSFA to the TP53 

model lead to a correct prediction rate of approximately 77%, indicating that application 

of the STSFA to the GR model results in slightly more accurate predictions than those 

obtained for the TP53 model (80.1% against 77%). LSSA and STSFA both have their 

respective advantages and disadvantages. STSFA, though more quantitatively precise 

and appearing to demonstrate improved predictive power, requires expression data prior 

to use and cannot handle directly ambivalent relationships. LSSA, though more 

qualitative in its analysis, does not require expression data and can still provide insight 

into‎ the‎ function‎ of‎ the‎ network.‎ However,‎ LSSA’s‎ use‎ of‎ fixed‎ states‎ presents‎ a‎

limitation on its accuracy as eventually quantitative analysis is required to provide 

deeper insights. 

 

Due to the enhanced predictive power of the STSFA, the algorithm was also used to 

superimpose patient microarray data (taken before treatment) to analyse the model 

(Figure ‎4.6.2, Page 175). Thirteen leukaemia patients were divided into two groups: 

Dead at Risk Assessment (one patient) and Alive at Risk Assessment (twelve patients) 

and the edge weights relating to cell death were totalled for each patient, and an average 

was made for each group. Though preliminary due to the small patient number, and the 

uneven group number, it is nonetheless highly interesting that GEB052 under the 

STSFA predicted‎ a‎ “more‎ negative”‎ total‎ for‎ the patient who died before risk 

assessment than for those who were alive at risk assessment. This translates to more 

negative signals towards apoptosis, which results in more tumour growth, in turn posing 

a bigger risk to the patient. What is particularly interesting is that the microarray data 

used for this was taken before the patients were treated. Thus, what is seen here is a true 

prediction, as it is not following treatment with prednisolone or dexamethasone. In 
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theory, if several different models are built of different chemotherapy drug receptors, 

then the same microarray data taken before treatment could be applied to each of these 

models, which would provide an indication of which drugs may work best on an 

individual level. It is still too preliminary for this, as the model requires tissue 

specificity and expansion, but this clinical assessment of GEB052 is highly promising 

indication nonetheless. Furthermore, an additional issue is that the age group cell death 

edge weight analysis (Figure ‎4.6.3) did not appear to correlate with clinical outcomes, 

indicating a need for model refinement.  



198 

 

5.3 Conclusions and Summary of Key Findings 

 

The data presented in this thesis suggests that the bone marrow microenvironment 

facilitates leukaemic cell survival through alteration of multiple pathways within the 

cell. Cell viability assay suggested that CM alters leukaemic cell fate, which is 

corroborated by the fact that. CM was identified as exerting effects on GR 

phosphorylation (Section ‎3.3, Page 108), which suggests modified GR function by the 

microenvironment and provides a link from the microenvironment to drug response. 

Markers relating to cell death and survival were also modulated by CM and 

chemotherapy (Section ‎3.4, Page 113), with some evidence that CM modulates BECN1, 

in turn indicating a potential regulation of autophagy. CM reduced RIPK1 mRNA and 

protein, indicating a potential suppression of necroptosis, though analysis of RIPK1 is 

complicated given its link to NF-κB.‎Dexamethasone‎trended‎towards‎reducing‎RIPK1, 

though effects were only statistically significant at the protein level. Again, given the 

link of RIPK1 to NF-κB,‎ a‎ primary‎ driver‎ of‎ inflammation,‎ this‎ repression could 

represent a novel route through which glucocorticoids exert their anti-inflammatory 

effect. Lastly, CM reduced caspase-3 protein levels and caspase-8 activation, which 

indicates a potential suppression of apoptotic signalling. Thus, CM appears to exert an 

effect on numerous pathways that are important in determining cell fate. 

 

GR occupancy on the BECN1, RIPK1 and BIRC3 upstream regions is an interesting 

outcome, particularly the high number of putative GREs on BECN1. GR presence on 

the BECN1 and RIPK1 promoters may indicate the discovery of novel glucocorticoid-

regulated genes, though this has not been fully shown within this thesis. Although 

dexamethasone lead to some modulation of RIPK1 (trending towards reduction at 

mRNA, and a statistically significant reduction at the protein level), no clear effects 

were observed for BECN1. If the GR is indeed occupant on the BECN1 promoter, its 

effects could be complicated via crosstalk with other transcription factors and the fact 

that there are numerous putative GR binding sites. Although BIRC3 is a known target of 

the GR (Webster et al., 2002), it is surprising that this anti-apoptotic protein is strongly 

stimulated by dexamethasone in lymphoblast cells, given that glucocorticoids induce 

leukaemic cell death and indicates a potential co-therapy of BIRC3 inhibition and 
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cheomotherapy. Use of the BIRC3 inhibitor AT406 indicated that CM effects may be 

partially mediated by alteration of protein post-translational status (Section ‎3.8, Page 

135). 

 

The GEB052 model represents the novel application of this modelling approach to GR 

research (Section ‎Chapter 4, Page 137) and demonstrates good predictive rates across 

numerous different analyses such as LSSA, dependency matrices, in silico KOs and 

STSFA. Model validation by cell-based microarray data led to a correct prediction rate 

of 54-60%, whilst large errors constituted only a minor of prediction outcomes (average 

<2%) (Section ‎4.4, Page 163). When validated with clinical data from thirteen 

individual patients, the ratio of correct predictions dropped to an average of 

approximately 42%, indicating some potential shortcomings of the model (Section ‎4.5, 

Page 170). However, large errors were again seen to only a minor degree (less than 5% 

across all simulations), which suggests that the model, though not yet ready for clinical 

applications under basic LSSA approaches, has the potential to improve. 

 

Model validation by STSFA analysis showed a significantly higher level of correct 

predictions, with an average of 80% across the six simulations (Section ‎4.6, Page 172). 

Large error predictions accounted only for an average of 1% across the six simulations. 

When LSSA and STSFA analyses were compared, STSFA demonstrated a statistically 

significantly higher level of correct predictions, proving the improved power of 

quantitative or semi-quantitative analysis over classical Boolean. The improved power 

of STSFA was again demonstrated when microarray data from thirteen leukaemia 

patients was used to analyse the model, with the analytical output showing good 

correlation with clinical data. Thus, the semi-quantitative analysis by STSFA 

demonstrates significantly more accurate predictions than fixed LSSA states. Though 

preliminary, the validation using STSFA and patient microarray data shows good 

correlation with clinical outcomes and is a promising indicator of the strength of the 

GEB052 model. 
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5.4 Study Limitations 

 

5.4.1 Limitations of Wet Laboratory Research 

 

One limitation of the present study is that the work has been conducted on only two 

leukaemia cell lines, both of which originate from the same parental line. Although 

some preliminary validation has been performed in another leukaemia cell line (MOLT-

4; Appendix Figure 4 and Appendix Figure 5, Page 209 and Page 210 respectively) 

more experiments are required to ensure that the effects observed in this study are not 

isolated to only one glucocorticoid-sensitive and one glucocorticoid-resistant cell line. 

 

There are some limitations of the laboratory techniques used that have to be considered. 

For qRT-PCR, SYBR Green was used instead of TaqMan and it is known that this 

approach may generate false positive results. Although this is mitigated through 

assessment of primer efficiency, melting curve analysis and careful primer design, it is 

nonetheless a point to consider. Western analysis is semi-quantitative at best; therefore, 

although another approach such as the enzyme-linked immunosorbent assay has a 

higher false positive rate and lower specificity, it is more quantitatively precise. The 

chromatin immunoprecipitation assays, though yielding positive results, are also limited 

as there is a lack of suitable antibodies to assess occupancy of specific phosphoisoforms 

of the GR; the S211 and S226 antibodies used were the same as for western blotting, 

whilst the total GR was a specific ChIP-grade antibody. 

 

A recurrent problem with in vitro studies is in vitro-in vivo extrapolation; how well the 

findings here translate to both animal and clinical models remains to be seen. This is 

particularly relevant when considering the fact that molecular biology necessitates 

focussing on only a small part of the whole molecular signalling network. 

 

5.4.2 Limitations of Computational Research 

 

A persistent limitation of Boolean modelling is that the qualitative nature of the 

approach limits the information that can be garnered from the study. Although this can 
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be mitigated through approaches that aim to allow for a more quantitative analysis (such 

as the STSFA), these models remain mechanistically imprecise. Despite the mechanistic 

imprecision, the GEB052 model demonstrated good predictive ratios across all 

scenarios. However, the model has currently only been validated using data from either 

B-ALL or T-ALL cell-based microarrays or clinical data from leukaemia patients. 

Therefore, one limitation to‎the‎current‎study‎is‎that‎the‎model’s‎predictive‎capacity‎for‎

other cell types (such as lung, which would be important for the use of glucocorticoids 

in diseases such as chronic obstructive pulmonary disease) has not been assessed. 

Similarly, the model is currently at a very small size (only 52 nodes connected by 241 

edges) and thus it cannot fully simulate glucocorticoid-regulated pathways. These points 

therefore represent a source for future work. 

 

5.5 Future Directions 

 

5.5.1 Future Directions for Wet Laboratory Research 

 

The microenvironment may communicate with cells in a variety of ways such as cell-

cell contact mediated by factors such as integrins or secreted factors such as 

microvesicles (exosomes), which may contain contents such as proteins, microRNAs or 

nucleic acids (Bakker et al., 2016). Previous fractionation of CM unveiled that one 

chemoprotective fraction (<3kDa) was Proteinase K, RNase and heat resistant, and that 

this fraction contained exosomes (Liu et al., 2012). If the constituents of CM are 

identified, then targeted co-therapy combining chemotherapy and specific antagonists of 

CM constituents could be used to improve clinical outcomes. In addition to this, if 

microRNAs are hypothesised to be contained within CM exosomes, then bioinformatics 

approaches could be used to identify potential microRNAs that modulate the expression 

of the genes identified in this thesis as modulated by CM (i.e. RIPK1). 

 

The occupancy of the GR on the BECN1 and RIPK1 promoters was a particularly 

interesting find, as it indicates that their expression may in some way be under 

glucocorticoid control. However, the results presented within this thesis do not show 

this completely, as although dexamethasone led to a statistically significant decrease in 
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RIPK1 protein levels, its effects at mRNA were less clear and analysis of BECN1 was 

inconclusive. In particular, the adjacency of the putative GREs to putative NF-κB‎

binding sites should be investigated, as well as the potential anti-inflammatory route of 

GR to NF-κB‎ through‎ RIPK1‎ modulation. Although no clear effects of GR were 

observed on BECN1, it is possible that different concentrations, time of treatment or 

ligands could unveil this. 

 

Although the use of IAP inhibitors is currently highly investigated due to their aberrant 

expression in multiple cancer types, this thesis has identified that they are particularly 

relevant for leukaemia where glucocorticoids are used in treatment, due to the 

stimulatory effect of glucocorticoids on this anti-apoptotic protein. Combination therapy 

of prednisolone/dexamethasone with anti-IAP treatments may yield improved 

therapeutic outcomes. AT406 in this thesis was used only to assess putative 

ubiquitination, though its effects on apoptosis, autophagy and necroptosis in leukaemia 

cells should be investigated. 

 

5.5.2 Future Directions for Computational Research 

 

The GEB052 model at present consists of 52 nodes, which despite being highly 

interconnected is a relatively small model. Therefore, model expansion and reevaluation 

is the first source for future research. This can be carried out in numerous ways; re-

extraction following updates to the STRING database; consideration of all predicted 

interactions‎regardless‎of‎confidence‎or‎addition‎of‎a‎“third‎layer”‎to‎the‎model. 

 

Two other useful future research approaches would be to make the model tissue-specific 

and to validate the model using microarray data from cell types other than leukaemia. 

Tissue specificity was applied to a preliminary version of the model (Bakker et al., 

2014) which indicated differential predictions based on the tissue-type simulated. Since 

glucocorticoids are used to treat a variety of diseases and have varying effects 

depending on the cell type, models catering to different cell types such as leukaemic and 

lung would be highly useful. Furthermore, the current GEB052 model could undergo 

genome-wide validation using microarrays from other tissue types (such as lung, which 
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may be useful for diseases such as chronic obstructive pulmonary disease). This was not 

performed‎ in‎ this‎ thesis‎ due‎ to‎ the‎ thesis’‎ focus‎ on‎ leukaemia. In addition, wet 

laboratory verification of the predictions generated by dependency matrix comparisons 

would be useful. Lastly, further clinical assessment of the model with a larger patient 

cohort would strengthen the STSFA clinical validation findings presented in this thesis. 
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Chapter 6 Appendices 

 

6.1 Publications and Conference Proceedings Resulting From Research 

 

Throughout the course of research during the PhD, results (preliminary or otherwise) 

have been presented at both national and international conferences. Thus part of the 

work within this thesis has been published as part as conference proceedings. Following 

from this are the generation of original research articles, which are either published at or 

submitted to peer-reviewed journals. The author of this thesis has also published a 

review article on the field in Biochimica et Biophysica Acta (BBA) - Molecular Cell 

Research. All publications and conference proceedings relevant to this thesis are listed 

as follows: 

 

6.1.1 Conference Proceedings 

 

BAKKER, E., TIAN, K., ANDREWS, J., DEMONACOS, C., SCHWARTZ, J.-M. & 

KRSTIC-DEMONACOS, M. 2014. Glucocorticoid receptor interactome. Society for 

Endocrinology BES 2014. Liverpool, UK: Endocrine Abstracts. 

 

QATTAN, M., CHEN, D. W. C., SAHA, V., LIU, J. Z., ZEEF, L., SCHWARTZ, J. M., 

BAKKER, E., DEMONACOS, C. & KRSTIC-DEMONACOS, M. 2014. Determinants 

of drug and microenvironment response in acute lymphoblastic leukaemia. 

International Journal of Molecular Medicine, 34, S112-S112. 19th World Congress on 

Advances in Oncology and 17th International Symposium on Molecular Medicine 

Athens, Greece. 

 

QATTAN, M., BAKKER, E., CHEN, DW-C., SAHA, V., LIU, JZ., ZEEF, L., 

SCHWARTZ, J-M., DEMONACOS, C. & KRSTIC-DEMONACOS, M. 2015. 

Implications of the bone marrow microenvironment in drug response and resistance in 

acute lymphoblastic leukaemia (ALL). Genes & Cancer Annual Meeting 2015. 

Cambridge, UK. 
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QATTAN, M., BAKKER, E., SAHA, V., LIU, JZ., ZEEF, L., SCHWARTZ, J-M., 

DEMONACOS, C. & KRSTIC-DEMONACOS, M. 2015. The effect of bone marrow-

derived factors on cell death and survival signalling and resistance to chemotherapy. 

Nuclear receptors: From molecules to humans. Ajaccio, France. 

 

QATTAN, M., BAKKER, E., RAJENDRAN, R., CHEN, D. W. C., SAHA, V., LIU, J. 

Z., ZEEF, L., SCHWARTZ, J. M., MUTTI, L., DEMONACOS, C. & KRSTIC-

DEMONACOS, M. 2016. The role of the microenvironment in acute lymphoblastic 

leukaemia drug response. International Journal of Molecular Medicine, 38, S46-S46. 

21st World Congress on Advances in Oncology and 19th International Symposium on 

Molecular Medicine. Athens, Greece. 

 

6.1.2 Articles 

 

Articles relating to the thesis: 

 

BAKKER, E., QATTAN, M., MUTTI, L., DEMONACOS, C. & KRSTIC-

DEMONACOS, M. 2016. The role of microenvironment and immunity in drug 

response in leukemia. Biochim Biophys Acta, 1863, 414-26. 

 

QATTAN, M. Y.*, BAKKER, E. Y.*, RAJENDRAN, R., CHEN, D. W., SAHA, V., 

LIU, J., ZEEF, L., SCHWARTZ, J. M., MUTTI, L., DEMONACOS, C.# & KRSTIC-

DEMONACOS, M.# 2017. Differential regulation of cell death pathways by the 

microenvironment correlates with chemoresistance and survival in leukaemia. PLoS 

One, 12, e0178606. 

*#Authors contributed equally 

 

BAKKER, E., TIAN, K., DEMONACOS, C., SCHWARTZ, J.M.* & KRSTIC-

DEMONACOS, M.*. 2017. Insight into glucocorticoid receptor signalling through 

interactome model analysis. [manuscript invited for resubmission at PLOS 

Computational Biology] 

*Authors contributed equally 
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In addition to the above, the author of this thesis has also contributed towards review 

articles relating to mesothelioma: 

 

GUAZZELLI, A., BAKKER, E., KRSTIC-DEMONACOS, M., LISANTI, M. P., 

SOTGIA, F. & MUTTI, L. 2017a. Anti-CTLA-4 therapy for malignant mesothelioma. 

Immunotherapy, 9, 273-280. 

 

BAKKER, E., GUAZZELLI, A., KRSTIC-DEMONACOS, M., LISANTI, M., 

SOTGIA, F. & MUTTI, L. 2017b. Current and prospective pharmacotherapies for the 

treatment of pleural mesothelioma. Expert Opinion on Orphan Drugs, 5, 455-465. 

 

GUAZZELLI, A., BAKKER, E., TIAN, K., DEMONACOS, C., KRSTIC-

DEMONACOS, M. & MUTTI, L. 2017. Promising investigational drug candidates in 

phase I and phase II clinical trials for mesothelioma. Expert Opinion on Investigational 

Drugs, 26, 933-944. 

 

BAKKER, E., GUAZZELLI, A., ASHTIANI, F., DEMONACOS, C., KRSTIC-

DEMONACOS, M. & MUTTI, L. 2017a. Immunotherapy advances for mesothelioma 

treatment. Expert Review of Anticancer Therapy, 17, 799-814. 

 

  



207 

 

6.2 Supplementary Data 

 

This section includes several results that are related to the thesis, but were not included 

in the primary results section. 

 

6.2.1 CM Concentration Optimisation 

 

 

Appendix Figure 1: Viability of leukaemia cells grown in 100% CM for 48 hours. 

Cell viability was assessed by MTS assays. Data is representative of three experiments +/- SEM. An 

asterisk (*) indicates p<0.05. 

 

As shown above, there was a negative effect on the growth of both C1-15 and C7-14 

leukaemic cells grown in 100% CM. This is contrary to established literature and also 

what was hypothesised at the beginning of the study. 

 

However, after reflection it was thought that this negative effect could be due to the 

method used to generate CM as well as the incubation conditions the experiment was 

carried out in. Routine cell culture requires specific growth media for the cells, such as 

RPMI-1640 supplemented with l-glutamine and FBS. To generate CM, HS5 cells were 

incubated with serum-free RPMI for 48 hours. Not only would this deplete nutrients 

within the RPMI before it is even fed to the leukaemia cells, but cells grown in 100% 

CM would be serum-free. This quite clearly would lead to a negative effect on the 
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growth of cells. To further assess the role of CM, another concentration (1/3
rd

 CM) was 

used: 

 

 

 

Appendix Figure 2: Viability of leukaemia cells grown in 1/3
rd

 CM for 48 hours. 

Cell viability was assessed by MTS assays. Data is representative of two independent experiments, each 

performed in triplicate +/- SEM. An asterisk (*) indicates p<0.05. 

 

The use of 1/3
rd

 CM was motivated in part by a previous study which utilised 30% CM 

from and for different cells and saw chemoprotective effect (Konopleva et al., 2002). 

This is partially consistent with what is shown in Appendix Figure 2, with C7-14 cells 

showing a statistically significant increase in viability. However, C1-15 cells exhibited a 

negative response to 1/3
rd

 CM. 1/6
th

 CM was then examined: 
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Appendix Figure 3: Viability of leukaemia cells grown in 1/6
th

 CM for 48 hours. 

Cell viability was assessed by MTS assays Data represents at least three independent experiments +/- 

SEM. 

 

Appendix Figure 3 above demonstrates the effects of 1/6
th

 CM on leukaemic cell fate. 

Importantly, 1/6th CM did not exert a significant change (positive or negative) on either 

cell line, and therefore represents a good balance for further study. MTS assays are 

useful only as an indication, due to their dependence on mitochondrial activity. 

Metabolic rates between C1-15 and C7-14 cells could differ and may be affected by 

CM, and thus additional assays were employed to investigate CM effects. 

 

6.2.2 Validation of CM Effects in Another Cell Line (MOLT-4) 

 

 

Appendix Figure 4: RIPK1 protein expression in MOLT-4 cells. 

Experiment carried out two times. 

 

Appendix Figure 4 shows RIPK1 analysis in MOLT-4 cells, another ALL cell line. 

Experiments were performed in MOLT-4 cells to provide an additional validation that 
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effects seen by treatments (particularly CM) were not isolated to one cell line. Appendix 

Figure 5 shows the quantification of two experiments: 

 

 

 

Appendix Figure 5: Quantification of MOLT-4 RIPK1 blot data. 

RIPK1 band readings were normalised to the corresponding actin and these actin-normalised values were 

then expressed as a percentage of untreated cells. Data is the average of two experiments +/- SEM. 

 

Appendix Figure 5 above shows that the effects of CM repressing RIPK1 are also 

shown as a trend in MOLT-4 cells. Thus, although primary analysis is performed in C1-

15 and C7-14 cells, this provides some initial evidence that CM affects multiple ALL 

cell lines, and not simply CCRF-CEM cells or those subcloned from them. 

 

6.2.3 BIRC3 GRE 5 Separate Experiments 

 

The following figures show the individual experiments used to create Figure ‎3.6.2 (Page 

128): 
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Appendix Figure 6: Individual experiments used for T-GR for Figure ‎3.6.2 (Page 128). 

 

 

Appendix Figure 7: Individual experiments used for S211 for Figure ‎3.6.2 (Page 128). 

 

 

Appendix Figure 8: Individual experiments used for S226 for Figure ‎3.6.2 (Page 128). 

 

6.2.4 Cell Type Analysis – Necrotic Cells 

 

In addition to the healthy and apoptotic cells captured in Figure ‎3.7.1 (Page 132), 

necrotic cells were also captured: 
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Appendix Figure 9: Necrotic cell type analysis. 

Data represents the average of four independent experiments +/-SEM. An asterisk (*) indicates p<0.05. 

 

6.2.5 GEB052 Model Validation by Microarray Data 

 

The following tables show the individual results for each comparison shown in Table 

‎4.4.4 (Page 169). 

 

Appendix Table 1: GEB052 model validation by microarray data (Comparison 1). 

Comparison 

1 
Emod Eexp 

ABS (Emod-

Eexp) 

14-3-3. 0 0 0 

ABCA1 0 0 0 

AFP -1 0 1 

AP-1 0 -1 1 

ARHGAP35 -1 0 1 

BAG1 0 0 0 

CD2 0 0 0 

CD40LG -1 0 1 

CREB1 0 0 0 

CREBBP/EP

300 
0 0 0 

CRH 0 0 0 

DAP3 0 0 0 

DAXX 1 0 1 

FSCN1 0 1 1 

GLUL -1 -1 0 
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HDAC1 1 0 1 

HDAC6 0 0 0 

HSP90 0 0 0 

IL10 0 -1 1 

IL6 0 0 0 

LIF 0 0 0 

MED1 -1 0 1 

NCOA1 0 -1 1 

NCOA2 0 0 0 

NCOA3 0 0 0 

NCOA6 0 0 0 

NCOR1 0 0 0 

NCOR2 0 0 0 

NFKB 0 -1 1 

NR1I3 -1 0 1 

NR2F2 -1 0 1 

NRIP1 0 0 0 

PKA 0 0 0 

POU2F1 0 0 0 

POU2F2 0 0 0 

PRKDC 0 0 0 

PTGES3 0 0 0 

SCAP -1 0 1 

SGK1 0 -1 1 

SMAD3 0 -1 1 

SMARCA4 0 1 1 

STAT3 0 0 0 

STAT5B -1 0 1 

SUMO 1 0 1 

TP53 0 0 0 

TSC22D3 -1 -1 0 

TSG101 0 0 0 

UBC -1 0 1 

 
Correct 28 58.3% 

 
Small Error 20 41.7% 

 
Large Error 0 0.0% 

 
 

Appendix Table 2: GEB052 model validation by microarray data (Comparison 2). 

Comparison 

2 
Emod Eexp 

ABS (Emod-

Eexp) 
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14-3-3. 0 0 0 

ABCA1 0 -1 1 

AFP -1 0 1 

AP-1 0 -1 1 

ARHGAP35 -1 0 1 

BAG1 0 0 0 

CD2 0 0 0 

CD40LG -1 0 1 

CREB1 0 1 1 

CREBBP/EP

300 
0 0 0 

CRH 0 0 0 

DAP3 0 0 0 

DAXX 1 0 1 

FSCN1 0 1 1 

GLUL -1 -1 0 

HDAC1 1 0 1 

HDAC6 0 0 0 

HSP90 0 0 0 

IL10 0 -1 1 

IL6 0 0 0 

LIF 0 0 0 

MED1 -1 0 1 

NCOA1 0 0 0 

NCOA2 0 0 0 

NCOA3 0 1 1 

NCOA6 0 0 0 

NCOR1 0 0 0 

NCOR2 0 0 0 

NFKB 0 0 0 

NR1I3 -1 0 1 
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NR2F2 -1 0 1 

NRIP1 0 1 1 

PKA 0 0 0 

POU2F1 0 0 0 

POU2F2 0 1 1 

PRKDC 0 0 0 

PTGES3 0 0 0 

SCAP -1 0 1 

SGK1 0 0 0 

SMAD3 0 -1 1 

SMARCA4 0 0 0 

STAT3 0 0 0 

STAT5B -1 0 1 

SUMO 1 -1 2 

TP53 0 0 0 

TSC22D3 -1 0 1 

TSG101 0 0 0 

UBC -1 0 1 

 
Correct 26 54.2% 

 
Small Error 21 43.8% 

 
Large Error 1 2.1% 

 
 

Appendix Table 3: GEB052 model validation by microarray data (Comparison 3). 

Comparison 

3 
Emod Eexp 

ABS (Emod-

Eexp) 

14-3-3. 0 0 0 

ABCA1 0 0 0 

AFP -1 0 1 

AP-1 0 -1 1 

ARHGAP35 -1 0 1 

BAG1 0 0 0 
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CD2 0 0 0 

CD40LG -1 0 1 

CREB1 0 0 0 

CREBBP/EP

300 
0 0 0 

CRH 0 0 0 

DAP3 0 0 0 

DAXX 1 0 1 

FSCN1 0 1 1 

GLUL -1 -1 0 

HDAC1 1 0 1 

HDAC6 0 0 0 

HSP90 0 0 0 

IL10 0 0 0 

IL6 0 0 0 

LIF 0 0 0 

MED1 -1 0 1 

NCOA1 0 0 0 

NCOA2 0 0 0 

NCOA3 0 1 1 

NCOA6 0 0 0 

NCOR1 0 0 0 

NCOR2 0 0 0 

NFKB 0 0 0 

NR1I3 -1 0 1 

NR2F2 -1 0 1 

NRIP1 0 1 1 

PKA 0 0 0 

POU2F1 0 0 0 

POU2F2 0 0 0 

PRKDC 0 0 0 
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PTGES3 0 0 0 

SCAP -1 0 1 

SGK1 0 0 0 

SMAD3 0 -1 1 

SMARCA4 0 1 1 

STAT3 0 0 0 

STAT5B -1 0 1 

SUMO 1 -1 2 

TP53 0 0 0 

TSC22D3 -1 0 1 

TSG101 0 0 0 

UBC -1 0 1 

 
Correct 29 60.4% 

 
Small Error 18 37.5% 

 
Large Error 1 2.1% 

 
 

Appendix Table 4: GEB052 model validation by microarray data (Comparison 4). 

Comparison 

4 
Emod Eexp 

ABS (Emod-

Eexp) 

14-3-3. 0 0 0 

ABCA1 0 1 1 

AFP -1 -1 0 

AP-1 0 0 0 

ARHGAP35 -1 0 1 

BAG1 0 0 0 

CD2 0 0 0 

CD40LG -1 0 1 

CREB1 0 0 0 

CREBBP/EP

300 
0 0 0 

CRH 0 0 0 
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DAP3 0 1 1 

DAXX 1 0 1 

FSCN1 0 -1 1 

GLUL -1 -1 0 

HDAC1 1 0 1 

HDAC6 0 0 0 

HSP90 0 0 0 

IL10 0 0 0 

IL6 0 0 0 

LIF 0 -1 1 

MED1 -1 1 2 

NCOA1 0 -1 1 

NCOA2 0 0 0 

NCOA3 0 0 0 

NCOA6 0 0 0 

NCOR1 0 0 0 

NCOR2 0 0 0 

NFKB 0 -1 1 

NR1I3 -1 0 1 

NR2F2 -1 0 1 

NRIP1 0 0 0 

PKA 0 0 0 

POU2F1 0 0 0 

POU2F2 0 -1 1 

PRKDC 0 0 0 

PTGES3 0 0 0 

SCAP -1 -1 0 

SGK1 0 1 1 

SMAD3 0 0 0 

SMARCA4 0 0 0 

STAT3 0 -1 1 
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STAT5B -1 0 1 

SUMO 1 0 1 

TP53 0 -1 1 

TSC22D3 -1 -1 0 

TSG101 0 0 0 

UBC -1 0 1 

 
Correct 28 58.3% 

 
Small Error 19 39.6% 

 
Large Error 1 2.1% 

 
 

Appendix Table 5: GEB052 model validation by microarray data (Comparison 5). 

Comparison 

5 
Emod Eexp 

ABS (Emod-

Eexp) 

14-3-3. 0 0 0 

ABCA1 0 1 1 

AFP -1 1 2 

AP-1 0 0 0 

ARHGAP35 -1 0 1 

BAG1 0 0 0 

CD2 0 0 0 

CD40LG -1 0 1 

CREB1 0 0 0 

CREBBP/EP

300 
0 0 0 

CRH 0 0 0 

DAP3 0 1 1 

DAXX 1 -1 2 

FSCN1 0 -1 1 

GLUL -1 -1 0 

HDAC1 1 0 1 

HDAC6 0 0 0 
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HSP90 0 0 0 

IL10 0 0 0 

IL6 0 0 0 

LIF 0 0 0 

MED1 -1 0 1 

NCOA1 0 0 0 

NCOA2 0 0 0 

NCOA3 0 0 0 

NCOA6 0 0 0 

NCOR1 0 -1 1 

NCOR2 0 -1 1 

NFKB 0 -1 1 

NR1I3 -1 0 1 

NR2F2 -1 0 1 

NRIP1 0 -1 1 

PKA 0 0 0 

POU2F1 0 0 0 

POU2F2 0 0 0 

PRKDC 0 -1 1 

PTGES3 0 0 0 

SCAP -1 -1 0 

SGK1 0 0 0 

SMAD3 0 0 0 

SMARCA4 0 -1 1 

STAT3 0 0 0 

STAT5B -1 0 1 

SUMO 1 0 1 

TP53 0 -1 1 

TSC22D3 -1 0 1 

TSG101 0 0 0 

UBC -1 0 1 
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Correct 26 54.2% 

 
Small Error 20 41.7% 

 
Large Error 2 4.2% 

 
 

Appendix Table 6: GEB052 model validation by microarray data (Comparison 6). 

Comparison 

6 
Emod Eexp 

ABS (Emod-

Eexp) 

14-3-3. 0 0 0 

ABCA1 0 1 1 

AFP -1 0 1 

AP-1 0 0 0 

ARHGAP35 -1 0 1 

BAG1 0 0 0 

CD2 0 0 0 

CD40LG -1 0 1 

CREB1 0 0 0 

CREBBP/EP

300 
0 0 0 

CRH 0 0 0 

DAP3 0 1 1 

DAXX 1 0 1 

FSCN1 0 -1 1 

GLUL -1 0 1 

HDAC1 1 0 1 

HDAC6 0 0 0 

HSP90 0 0 0 

IL10 0 1 1 

IL6 0 0 0 

LIF 0 0 0 

MED1 -1 0 1 

NCOA1 0 0 0 
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NCOA2 0 0 0 

NCOA3 0 0 0 

NCOA6 0 0 0 

NCOR1 0 -1 1 

NCOR2 0 0 0 

NFKB 0 0 0 

NR1I3 -1 0 1 

NR2F2 -1 0 1 

NRIP1 0 -1 1 

PKA 0 0 0 

POU2F1 0 0 0 

POU2F2 0 0 0 

PRKDC 0 -1 1 

PTGES3 0 0 0 

SCAP -1 -1 0 

SGK1 0 0 0 

SMAD3 0 0 0 

SMARCA4 0 -1 1 

STAT3 0 0 0 

STAT5B -1 -1 0 

SUMO 1 0 1 

TP53 0 -1 1 

TSC22D3 -1 0 1 

TSG101 0 1 1 

UBC -1 0 1 

 
Correct 26 54.2% 

 
Small Error 22 45.8% 

 
Large Error 0 0.0% 

 
 

6.2.6 GEB052 Quantitative Model Analysis 
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The following tables show the individual results for each comparison shown in Table 

‎4.6.1 (Page 172). 

 

Appendix Table 7: Model validation by STSFA analysis (Comparison 1). 

Note that TP53 is excluded from this analysis as the final node score for TP53 for the sensitive array was 

zero; as such, calculating fold-change was not possible. 

Node 
Resistant 

Score 

Sensitive 

Score 

Fold Change 

(FC) 
Log10 FC Emod Eexp 

ABS 

(Emod-

Eexp) 

14-3-3 1111 1062 1.04613936 0.019589542 0 0 0 

ABCA1 374 463 0.807775378 
-

0.092709389 
0 0 0 

AFP 330 347 0.951008646 
-

0.021815535 
0 0 0 

AP-1 20 529 0.037807183 
-

1.422425676 
-1 -1 0 

ARHGAP35 496 557 0.89048474 
-

0.050373519 
0 0 0 

BAG1 801 787 1.017789072 0.007657784 0 0 0 

CD2 295 292 1.010273973 0.004439165 0 0 0 

CD40LG 361 380 0.95 
-

0.022276395 
0 0 0 

CREB1 983 1225 0.80244898 
-

0.095582571 
0 0 0 

CREBBP/EP300 1355 1191 1.137699412 0.056027534 0 0 0 

CRH 389 396 0.982323232 
-

0.007745585 
0 0 0 

DAP3 908 858 1.058275058 0.024598561 0 0 0 

DAXX 2138 1647 1.29811779 0.113314102 0 0 0 

FSCN1 1154 887 1.301014656 0.114282189 0 1 1 

GLUL 290 1119 0.259159964 
-

0.586432089 
-1 -1 0 

GR 243 881 0.275822928 
-

0.559369635 
-1 -1 0 

HDAC1 692 710 0.974647887 
-

0.011152254 
0 0 0 

HDAC6 1117 1110 1.006306306 0.002730194 0 0 0 
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HSP90 3483 3173 1.097699338 0.040483402 0 0 0 

IL10 618 1029 0.60058309 -0.2214269 0 -1 1 

IL6 367 364 1.008241758 0.003564681 0 0 0 

LIF 462 460 1.004347826 0.001884144 0 0 0 

MED1 758 763 0.99344692 
-

0.002855332 
0 0 0 

NCOA1 1179 1194 0.987437186 
-

0.005490522 
0 -1 1 

NCOA2 743 643 1.155520995 0.062777841 0 0 0 

NCOA3 1180 1127 1.047027507 0.019958091 0 0 0 

NCOA6 1486 1413 1.051663128 0.021876648 0 0 0 

NCOR1 644 645 0.998449612 
-

0.000673847 
0 0 0 

NCOR2 484 476 1.016806723 0.007238409 0 0 0 

NFKB 338 442 0.764705882 
-

0.116505569 
0 -1 1 

NR1I3 290 299 0.969899666 -0.01327319 0 0 0 

NR2F2 243 261 0.931034483 
-

0.031034234 
0 0 0 

NRIP1 838 847 0.989374262 
-

0.004639392 
0 0 0 

PKA 1005 1138 0.883128295 -0.0539762 0 0 0 

POU2F1 510 528 0.965909091 
-

0.015063746 
0 0 0 

PRKDC 2523 2316 1.089378238 0.037178695 0 0 0 

PTGES3 2456 2280 1.077192982 0.032293515 0 0 0 

SCAP 833 830 1.003614458 0.001566909 0 0 0 

SGK1 986 1126 0.875666075 
-

0.057661476 
0 -1 1 

SMAD3 608 808 0.752475248 
-

0.123507782 
0 -1 1 

SMARCA4 891 818 1.089242054 0.0371244 0 1 1 

STAT3 2712 2740 0.989781022 
-

0.004460878 
0 0 0 

STAT5B 665 711 0.935302391 
-

0.029047955 
0 0 0 

SUMO 1920 1728 1.111111111 0.045757491 0 0 0 

TP53 105 0 N/A N/A N/A N/A N/A 
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TSC22D3 895 1112 0.804856115 
-

0.094281752 
0 -1 1 

UBC 1143 1191 0.959697733 
-

0.017865531 
0 0 0 

 

 

AVG 
-

0.065376166  
Correct 82.6% 

STDEV 0.242351648 
 

Small 

Error 
17.4% 

Upper 0.176975481 
 

Large 

Error 
0.0% 

Lower 
-

0.307727814    

 

Appendix Table 8: Model validation by STSFA analysis (Comparison 2). 

Node 
Resistant 

Score 

Sensitive 

Score 

Fold 

Change 

(FC) 

Log10 FC Emod Eexp 

ABS 

(Emod-

Eexp) 

14-3-3 1096 1089 
1.00642791

6 

0.00278267

4 
0 0 0 

ABCA1 366 470 
0.77872340

4 

-

0.10861677

3 

0 -1 1 

AFP 373 364 
1.02472527

5 

0.01060744

8 
0 0 0 

AP-1 3 330 
0.00909090

9 

-

2.04139268

5 

-1 -1 0 

ARHGAP35 533 535 
0.99626168

2 

-

0.00162657

3 

0 0 0 

BAG1 760 775 
0.98064516

1 
-0.00848811 0 0 0 

CD2 359 351 
1.02279202

3 

0.00978733

2 
0 0 0 

CD40LG 360 338 
1.06508875

7 
0.0273858 0 0 0 

CREB1 971 959 1.01251303 0.00540062 0 1 1 
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4 3 

CREBBP/EP30

0 
1300 1072 

1.21268656

7 

0.08374856

7 
0 0 0 

CRH 433 425 
1.01882352

9 

0.00809896

6 
0 0 0 

DAP3 896 894 
1.00223713

6 

0.00097049

1 
0 0 0 

DAXX 2115 1791 
1.18090452

3 

0.07221478

6 
0 0 0 

FSCN1 1156 961 
1.20291363

2 

0.08023444

6 
0 1 1 

GLUL 316 1049 
0.30123927

6 

-

0.52108840

6 

-1 -1 0 

GR 65 506 
0.12845849

8 
-0.89123716 -1 -1 0 

HDAC1 694 728 
0.95329670

3 

-

0.02077190

9 

0 0 0 

HDAC6 1259 1132 
1.11219081

3 

0.04617930

3 
0 0 0 

HSP90 3479 3202 
1.08650843

2 

0.03603310

1 
0 0 0 

IL10 655 779 
0.84082156

6 

-

0.07529615

8 

0 -1 1 

IL6 374 335 1.11641791 
0.04782679

5 
0 0 0 

LIF 488 439 
1.11161731

2 

0.04595530

2 
0 0 0 

MED1 754 747 
1.00937081

7 

0.00405074

4 
0 0 0 

NCOA1 1094 1058 
1.03402646

5 

0.01453165

4 
0 0 0 

NCOA2 652 591 1.10321489 
0.04266011

5 
0 0 0 

NCOA3 1101 934 
1.17880085

7 

0.07144044

3 
0 1 1 
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NCOA6 1488 1393 
1.06819813

4 

0.02865181

5 
0 0 0 

NCOR1 638 674 
0.94658753

7 

-

0.02383921

8 

0 0 0 

NCOR2 496 490 
1.01224489

8 

0.00528559

6 
0 0 0 

NFKB 306 344 
0.88953488

4 

-

0.05083701

6 

0 0 0 

NR1I3 267 303 
0.88118811

9 

-

0.05493136

7 

0 0 0 

NR2F2 250 250 1 0 0 0 0 

NRIP1 832 751 
1.10785619

2 

0.04448338

9 
0 1 1 

PKA 1036 1110 
0.93333333

3 

-

0.02996322

3 

0 0 0 

POU2F1 491 533 0.92120075 

-

0.03564571

7 

0 0 0 

PRKDC 2521 2362 
1.06731583

4 

0.02829295

2 
0 0 0 

PTGES3 2425 2359 
1.02797795

7 

0.01198380

2 
0 0 0 

SCAP 806 831 
0.96991576

4 

-

0.01326598

2 

0 0 0 

SGK1 980 894 
1.09619686

8 

0.03988855

7 
0 0 0 

SMAD3 608 685 
0.88759124

1 

-

0.05178699

2 

0 -1 1 

SMARCA4 867 846 
1.02482269

5 

0.01064873

4 
0 0 0 

STAT3 2564 2386 
1.07460184

4 

0.03124758

2 
0 0 0 
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STAT5B 662 690 0.95942029 

-

0.01799110

1 

0 0 0 

SUMO 1915 1877 
1.02024507

2 

0.00870450

6 
0 -1 1 

TP53 141 138 1.02173913 
0.00934002

6 
0 0 0 

TSC22D3 886 959 
0.92387904

1 

-

0.03438488

5 

0 0 0 

UBC 1146 1131 
1.01326259

9 

0.00572201

3 
0 0 0 

 

 

AVG 

-

0.06695756

8 
 

Correc

t 
83.0% 

STDEV 
0.33278922

3  

Small 

Error 
17.0% 

Upper 
0.26583165

5  

Large 

Error 
0.0% 

Lower 

-

0.39974679

1 
   

 

Appendix Table 9: Model validation by STSFA analysis (Comparison 3). 

Node 
Resistant 

Score 

Sensitive 

Score 

Fold 

Change 

(FC) 

Log10 FC Emod Eexp 

ABS 

(Emod-

Eexp) 

14-3-3 1091 1104 
0.98822463

8 

-

0.00514432

3 

0 0 0 

ABCA1 382 379 
1.00791556

7 

0.00342415

3 
0 0 0 

AFP 358 349 
1.02578796

6 
0.0110576 0 0 0 

AP-1 181 368 
0.49184782

6 

-

0.30816924

4 

-1 -1 0 
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ARHGAP35 546 553 
0.98734177

2 

-

0.00553248

9 

0 0 0 

BAG1 806 776 
1.03865979

4 

0.01647332

1 
0 0 0 

CD2 318 355 
0.89577464

8 

-

0.04780123

3 

0 0 0 

CD40LG 372 401 
0.92768079

8 

-

0.03260143

3 

0 0 0 

CREB1 899 868 
1.03571428

6 

0.01523996

7 
0 0 0 

CREBBP/EP30

0 
1352 1169 

1.15654405

5 
0.06316218 0 0 0 

CRH 437 417 
1.04796163

1 

0.02034538

2 
0 0 0 

DAP3 894 905 
0.98784530

4 
-0.00531106 0 0 0 

DAXX 2169 2052 
1.05701754

4 

0.02408219

6 
0 0 0 

FSCN1 1250 1062 
1.17702448

2 

0.07078549

6 
0 1 1 

GLUL 302 942 0.32059448 -0.49404396 -1 -1 0 

GR 65 171 
0.38011695

9 

-

0.42008275

4 

-1 -1 0 

HDAC1 684 739 
0.92557510

1 

-

0.03358833

7 

0 0 0 

HDAC6 1215 1249 
0.97277822

3 
-0.01198616 0 0 0 

HSP90 3614 3520 
1.02670454

5 

0.01144548

5 
0 0 0 

IL10 750 706 
1.06232294

6 

0.02625656

2 
0 0 0 

IL6 412 429 0.96037296 
-

0.01756007
0 0 0 
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6 

LIF 481 483 
0.99585921

3 

-

0.00180205

4 

0 0 0 

MED1 749 726 
1.03168044

1 

0.01354519

7 
0 0 0 

NCOA1 1204 1115 
1.07982062

8 
0.03335162 0 0 0 

NCOA2 657 595 
1.10420168

1 

0.04304840

4 
0 0 0 

NCOA3 1129 991 1.13925328 
0.05662028

7 
0 1 1 

NCOA6 1534 1433 
1.07048150

7 

0.02957916

9 
0 0 0 

NCOR1 663 660 
1.00454545

5 

0.00196959

3 
0 0 0 

NCOR2 513 486 
1.05555555

6 

0.02348109

6 
0 0 0 

NFKB 321 343 
0.93586005

8 

-

0.02878908

8 

0 0 0 

NR1I3 272 289 
0.94117647

1 

-

0.02632893

9 

0 0 0 

NR2F2 226 256 0.8828125 

-

0.05413152

6 

0 0 0 

NRIP1 862 765 
1.12679738

6 

0.05184583

1 
0 1 1 

PKA 1083 1091 
0.99266727

8 

-

0.00319629

4 

0 0 0 

POU2F1 502 504 
0.99603174

6 

-

0.00172681

9 

0 0 0 

PRKDC 2654 2504 
1.05990415

3 

0.02526659

4 
0 0 0 

PTGES3 2498 2474 1.00970088 0.00419273 0 0 0 
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9 9 

SCAP 842 825 
1.02060606

1 

0.00885814

3 
0 0 0 

SGK1 766 700 
1.09428571

4 
0.03913073 0 0 0 

SMAD3 639 694 0.92074928 

-

0.03585861

2 

0 -1 1 

SMARCA4 938 855 
1.09707602

3 

0.04023672

4 
0 1 1 

STAT3 2762 2617 
1.05540695

5 

0.02341995

2 
0 0 0 

STAT5B 644 679 
0.94845360

8 

-

0.02298390

7 

0 0 0 

SUMO 1949 1996 
0.97645290

6 

-

0.01034869

8 

0 -1 1 

TP53 130 143 
0.90909090

9 

-

0.04139268

5 

0 0 0 

TSC22D3 506 535 
0.94579439

3 

-

0.02420326

5 

0 0 0 

UBC 1139 1125 
1.01244444

4 

0.00537120

2 
0 0 0 

 

 

AVG 

-

0.02064666

7 
 

Correc

t 
87.2% 

STDEV 
0.10790204

2  

Small 

Error 
12.8% 

Upper 
0.08725537

5  

Large 

Error 
0.0% 

Lower 

-

0.12854870

8 
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Appendix Table 10: Model validation by STSFA analysis (Comparison 4). 

Node 
Resistant 

Score 

Sensitive 

Score 

Fold 

Change 

(FC) 

Log10 FC Emod Eexp 

ABS 

(Emod-

Eexp) 

14-3-3 1054 1099 
0.95905368

5 

-

0.01815708

2 

0 0 0 

ABCA1 692 472 
1.46610169

5 

0.16616409

6 
1 1 0 

AFP 346 395 
0.87594936

7 

-

0.05752099

7 

0 -1 1 

AP-1 151 111 1.36036036 
0.13365396

9 
1 0 1 

ARHGAP35 520 528 
0.98484848

5 

-

0.00663057

9 

0 0 0 

BAG1 828 805 
1.02857142

9 

0.01223445

6 
0 0 0 

CD2 343 304 
1.12828947

4 

0.05242053

6 
0 0 0 

CD40LG 375 401 
0.93516209

5 

-

0.02911310

5 

0 0 0 

CREB1 1330 1215 
1.09465020

6 

0.03927536

3 
0 0 0 

CREBBP/EP30

0 
1456 1386 

1.05050505

1 

0.02139814

5 
0 0 0 

CRH 395 422 
0.93601895

7 

-

0.02871535

5 

0 0 0 

DAP3 914 853 
1.07151230

9 

0.02999716

5 
0 1 1 

DAXX 1898 1920 
0.98854166

7 

-

0.00500502

1 

0 0 0 

FSCN1 664 1017 
0.65290068

8 

-

0.18515287
-1 -1 0 
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4 

GLUL 952 1014 
0.93885601

6 

-

0.02740100

7 

0 -1 1 

GR 379 153 
2.47712418

3 

0.39394777

9 
1 -1 2 

HDAC1 643 695 
0.92517985

6 

-

0.03377383

2 

0 0 0 

HDAC6 1178 1167 
1.00942587

8 

0.00407443

4 
0 0 0 

HSP90 3462 3258 
1.06261510

1 

0.02637598

4 
0 0 0 

IL10 805 724 
1.11187845

3 

0.04605731

4 
0 0 0 

IL6 273 340 
0.80294117

6 
-0.09531627 -1 0 1 

LIF 429 516 
0.83139534

9 

-

0.08019240

9 

0 -1 1 

MED1 815 715 1.13986014 
0.05685156

7 
0 1 1 

NCOA1 1225 1307 
0.93726090

3 

-

0.02813949

9 

0 -1 1 

NCOA2 860 810 
1.06172839

5 

0.02601343

2 
0 0 0 

NCOA3 1185 1168 
1.01455479

5 

0.00627550

8 
0 0 0 

NCOA6 1308 1268 
1.03154574

1 
0.01348849 0 0 0 

NCOR1 613 643 
0.95334370

1 

-

0.02075049

8 

0 0 0 

NCOR2 431 479 
0.89979123

2 

-

0.04585824

3 

0 0 0 

NFKB 336 408 0.82352941 - -1 -1 0 
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2 0.08432088

6 

NR1I3 269 294 
0.91496598

6 
-0.03859505 0 0 0 

NR2F2 278 250 1.112 
0.04610478

7 
0 0 0 

NRIP1 1097 1121 
0.97859054

4 

-

0.00939898

5 

0 0 0 

PKA 1201 1158 
1.03713298

8 

0.01583444

8 
0 0 0 

POU2F1 502 523 
0.95984703

6 

-

0.01779797

2 

0 0 0 

PRKDC 2473 2356 
1.04966044

1 
0.02104883 0 0 0 

PTGES3 2436 2304 
1.05729166

7 

0.02419480

9 
0 0 0 

SCAP 719 775 
0.92774193

5 

-

0.03257281

2 

0 -1 1 

SGK1 1110 1097 
1.01185050

1 

0.00511635

1 
0 1 1 

SMAD3 1040 969 
1.07327141

4 

0.03070956

2 
0 0 0 

SMARCA4 878 929 0.94510226 

-

0.02452119

8 

0 0 0 

STAT3 2437 2626 
0.92802741

8 

-

0.03243919

3 

0 -1 1 

STAT5B 649 647 1.00309119 
0.00134041

6 
0 0 0 

SUMO 1760 1705 
1.03225806

5 

0.01378828

4 
0 0 0 

TP53 74 100 0.74 -0.13076828 -1 -1 0 

TSC22D3 718 839 
0.85578069

1 

-

0.06763751
0 -1 1 
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7 

UBC 1110 1097 
1.01185050

1 

0.00511635

1 
0 0 0 

 

 

AVG 
0.00195113

7  

Correc

t 
72.3% 

STDEV 
0.08230800

7  

Small 

Error 
25.5% 

Upper 
0.08425914

4  

Large 

Error 
2.1% 

Lower 

-

0.08035687

1 
   

 

Appendix Table 11: Model validation by STSFA analysis (Comparison 5). 

Node 
Resistant 

Score 

Sensitive 

Score 

Fold 

Change 

(FC) 

Log10 FC Emod Eexp 
ABS 

(Emod-Eexp) 

14-3-3 1055 1102 
0.95735027

2 

-

0.01892913

5 

0 0 0 

ABCA1 649 437 
1.48512585

8 
0.17176326 1 1 0 

AFP 410 325 
1.26153846

2 

0.10090049

6 
1 1 0 

AP-1 123 110 
1.11818181

8 

0.04851242

6 
0 0 0 

ARHGAP35 500 504 
0.99206349

2 

-

0.00346053

2 

0 0 0 

BAG1 804 801 
1.00374531

8 

0.00162353

3 
0 0 0 

CD2 294 280 1.05 
0.02118929

9 
0 0 0 

CD40LG 371 358 
1.03631284

9 

0.01549088

3 
0 0 0 

CREB1 1353 1203 
1.12468827

9 

0.05103216

9 
0 0 0 
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CREBBP/EP30

0 
1465 1429 

1.02519244

2 

0.01080539

6 
0 0 0 

CRH 397 395 
1.00506329

1 

0.00219341

1 
0 0 0 

DAP3 924 887 
1.04171364

1 

0.01774835

1 
0 1 1 

DAXX 1917 1990 
0.96331658

3 

-

0.01623096

4 

0 -1 1 

FSCN1 701 938 
0.74733475

5 

-

0.12648482 
-1 -1 0 

GLUL 972 1016 
0.95669291

3 

-

0.01922744

3 

0 -1 1 

GR 429 171 2.50877193 
0.39946118

2 
1 -1 2 

HDAC1 646 680 0.95 

-

0.02227639

5 

0 0 0 

HDAC6 1102 1142 0.96497373 

-

0.01548450

9 

0 0 0 

HSP90 3472 3323 
1.04483900

1 

0.01904937

5 
0 0 0 

IL10 734 670 
1.09552238

8 

0.03962125

7 
0 0 0 

IL6 266 342 
0.77777777

8 

-

0.10914446

9 

-1 0 1 

LIF 416 471 
0.88322717

6 

-

0.05392757

7 

0 0 0 

MED1 815 769 
1.05981794

5 

0.02523126

9 
0 0 0 

NCOA1 1217 1191 
1.02183039

5 

0.00937881

7 
0 0 0 

NCOA2 863 854 
1.01053864

2 

0.00455292

5 
0 0 0 
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NCOA3 1182 1161 
1.01808785

5 

0.00778525

7 
0 0 0 

NCOA6 1277 1287 
0.99222999

2 

-

0.00338765 
0 0 0 

NCOR1 578 641 
0.90171606

9 

-

0.04493019

1 

0 -1 1 

NCOR2 437 490 
0.89183673

5 

-

0.04971464

3 

0 -1 1 

NFKB 313 377 
0.83023872

7 

-

0.08079701

3 

0 -1 1 

NR1I3 293 282 
1.03900709

2 

0.01661851

2 
0 0 0 

NR2F2 231 244 
0.94672131

1 

-

0.02377784

6 

0 0 0 

NRIP1 1062 1119 
0.94906166

2 

-

0.02270557 
0 -1 1 

PKA 1216 1076 
1.13011152

4 

0.05312130

4 
0 0 0 

POU2F1 499 492 
1.01422764

2 

0.00613544

3 
0 0 0 

PRKDC 2464 2495 0.98757515 

-

0.00542984

6 

0 -1 1 

PTGES3 2465 2372 1.03920742 
0.01670223

9 
0 0 0 

SCAP 724 757 
0.95640686

9 

-

0.01935731

3 

0 -1 1 

SGK1 1194 1176 
1.01530612

2 

0.00659700

5 
0 0 0 

SMAD3 941 972 
0.96810699

6 

-

0.01407664

1 

0 0 0 

SMARCA4 854 916 0.93231441 - 0 -1 1 
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0.03043760

3 

STAT3 2439 2397 
1.01752190

2 

0.00754376

6 
0 0 0 

STAT5B 630 650 
0.96923076

9 

-

0.01357280

7 

0 0 0 

SUMO 1790 1792 
0.99888392

9 

-

0.00048497

4 

0 0 0 

TP53 41 117 0.35042735 

-

0.45540200

5 

-1 -1 0 

TSC22D3 779 784 
0.99362244

9 

-

0.00277860

5 

0 0 0 

UBC 1108 1101 
1.00635785

6 

0.00275244

1 
0 0 0 

 

 

AVG 
-

0.00204699  

Correc

t 
74.5% 

STDEV 
0.10056193

8  

Small 

Error 
23.4% 

Upper 
0.09851494

7  

Large 

Error 
2.1% 

Lower 

-

0.10260892

8 
   

 

Appendix Table 12: Model validation by STSFA analysis (Comparison 6). 

Node 
Resistant 

Score 

Sensitive 

Score 

Fold 

Change 

(FC) 

Log10 FC Emod Eexp 

ABS 

(Emod-

Eexp) 

14-3-3 1063 1082 
0.98243992

6 

-

0.00769399

6 

0 0 0 

ABCA1 722 457 
1.57986870

9 

0.19862099

7 
1 1 0 
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AFP 337 344 
0.97965116

3 

-

0.00892854

2 

0 0 0 

AP-1 199 218 
0.91284403

7 

-

0.03960341

7 

0 0 0 

ARHGAP35 526 515 
1.02135922

3 

0.00917851

5 
0 0 0 

BAG1 801 812 
0.98645320

2 

-

0.00592351

3 

0 0 0 

CD2 312 311 
1.00321543

4 

0.00139420

5 
0 0 0 

CD40LG 389 370 
1.05135135

1 

0.02174787

7 
0 0 0 

CREB1 1298 1234 
1.05186385

7 

0.02195953

3 
0 0 0 

CREBBP/EP30

0 
1509 1481 

1.01890614

4 

0.00813418

1 
0 0 0 

CRH 389 409 
0.95110024

4 

-

0.02177370

7 

0 0 0 

DAP3 926 887 
1.04396843

3 

0.01868736

7 
0 1 1 

DAXX 1956 2009 
0.97361871

6 

-

0.01161108

6 

0 0 0 

FSCN1 672 1010 
0.66534653

5 

-

0.17695210

1 

-1 -1 0 

GLUL 956 951 
1.00525762

4 

0.00227737

5 
0 0 0 

GR 560 196 
2.85714285

7 

0.45593195

6 
1 -1 2 

HDAC1 629 668 
0.94161676

6 

-

0.02612581

7 

0 0 0 

HDAC6 1138 1121 1.01516503 0.00653664 0 0 0 
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1 9 

HSP90 3570 3442 
1.03718768

2 
0.01585735 0 0 0 

IL10 976 752 1.29787234 
0.11323197

7 
1 1 0 

IL6 234 351 
0.66666666

7 

-

0.17609125

9 

-1 0 1 

LIF 401 453 
0.88520971

3 

-

0.05295382

9 

0 0 0 

MED1 848 817 
1.03794369

6 

0.01617379

6 
0 0 0 

NCOA1 1242 1213 
1.02390766

7 

0.01026079

5 
0 0 0 

NCOA2 876 896 
0.97767857

1 

-

0.00980390

3 

0 0 0 

NCOA3 1223 1207 
1.01325600

7 

0.00571918

7 
0 0 0 

NCOA6 1360 1361 
0.99926524

6 

-

0.00031921

7 

0 0 0 

NCOR1 590 652 
0.90490797

5 

-

0.04339558

4 

0 -1 1 

NCOR2 467 454 
1.02863436

1 

0.01226102

8 
0 0 0 

NFKB 329 384 
0.85677083

3 

-

0.06713532

6 

0 0 0 

NR1I3 266 283 
0.93992932

9 

-

0.02690479

9 

0 0 0 

NR2F2 245 235 
1.04255319

1 

0.01809822

2 
0 0 0 

NRIP1 1087 1142 
0.95183887

9 
-0.02143656 0 -1 1 
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PKA 1256 1112 
1.12949640

3 

0.05288485

2 
0 0 0 

POU2F1 512 511 
1.00195694

7 

0.00084906

1 
0 0 0 

PRKDC 2559 2591 
0.98764955

6 

-

0.00539712

7 

0 -1 1 

PTGES3 2512 2446 
1.02698282

9 

0.01156318

2 
0 0 0 

SCAP 735 786 
0.93511450

4 

-

0.02913520

7 

0 -1 1 

SGK1 1061 1094 
0.96983546

6 

-

0.01330193

8 

0 0 0 

SMAD3 960 934 
1.02783725

9 

0.01192435

7 
0 0 0 

SMARCA4 865 928 
0.93211206

9 

-

0.03053186

9 

0 -1 1 

STAT3 2517 2492 
1.01003210

3 

0.00433517

8 
0 0 0 

STAT5B 644 678 
0.94985250

7 

-

0.02234382

7 

0 -1 1 

SUMO 1819 1817 
1.00110071

5 

0.00047777

2 
0 0 0 

TP53 61 91 0.67032967 

-

0.17371155

7 

-1 -1 0 

TSC22D3 489 511 
0.95694716

2 

-

0.01911204

1 

0 0 0 

UBC 1126 1107 
1.01716350

5 
0.00739077 0 0 0 

 

 
AVG 

0.00075127

6  

Correc

t 
80.9% 
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STDEV 
0.09025993

2  

Small 

Error 
17.0% 

Upper 
0.09101120

8  

Large 

Error 
2.1% 

Lower 

-

0.08950865

7 
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