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Abstract. The cold-start is the situation in which the recommender
system has no or not enough information about the (new) users/items,
i.e. their ratings/feedback; hence, the recommendations are not accurate.
Active learning techniques for recommender systems propose to interact
with new users by asking them to rate sequentially a few items while
the system tries to detect her preferences. This bootstraps recommender
systems and alleviate the new user cold-start. Compared to current state
of the art, the presented approach takes into account the users’ ratings
predictions in addition to the available users’ ratings. The experimen-
tation shows that our approach achieves better performance in terms of
precision and limits the number of questions asked to the users.

Keywords: Active learning for recommender systems; Cold-start prob-
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1 Introduction

The new user cold start is the situation where a recommender system cannot
generate personalized recommendations for a new user because it has not learnt
yet his preferences. This issue is commonly encountered in collaborative filter-
ing recommendations as they rely mainly on the users’ feedback to predict fu-
ture users’ interests [1]. In addition, new users start evaluating the system from
their first usage [2]. This is a challenge for both academia and industry because
the recommendations’ accuracy is directly related to the users’ satisfaction and
fidelity [3].

The techniques used to alleviate the new user cold start can be categorized
into passive learning and active learning. Passive collaborative filtering tech-
niques [1] learn from sporadic users’ ratings; hence learning new users prefer-
ences is slow [4]. Active techniques interact with the new user in order to retrieve
a bunch of ratings that allow them to learn the user’s preferences. We focus on
active learning techniques for collaborative filtering because they quickly and
accurately bootstrap the generation of recommendations for users. In addtion,
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collaborative filtering only requires users preferences; analyzing users’ ratings
from (new) users can achieve better recommendation in cold-start than exploit-
ing other users’ attributes (e.g. age, genre) [5].

A naive active learning approach is to question users about their interests
and get their answers [6]. Such questions may include: ’Do you like this movie?’
with possible answers such as: ’Yes, I do’; ’No, I do not’; ’I have not seen it’. In
this context the questions are items and the answers are the users’ preferences to
these items. However, users are not willing to answer many questions [3, 7]. As
a consequence, the main goal is to present short (a maximum of 5-7 questions [2]),
but very informative questionnaires. Active learning creates personalized ques-
tionnaires which leads to a progressive understanding of the user’s preferences.
In fact, the personalization of the questionnaires is close to a recommender sys-
tem concept, although the latter seeks the items the user likes and the former
seeks the items the user recognizes.

Our contribution relies on an active learning technique based on decision
trees that exploits both available users’ ratings and warm users’ ratings predic-
tions in order to improve the questionnaire. The experimentation shows that
our approach enhances previously suggested ones in terms of accuracy and in
a smaller number of questions.

This paper is organized as follows: Section 2 presents the state of the art
for active learning using decision trees techniques. Section 3 presents our contri-
bution to enhance active learning based on past warm users’ rating predictions.
Section 4 shows the experimentations performed and the results of our approach.
Finally we conclude and present our future works in Section 5.

2 Related Work

In this research, we focus on active learning techniques in the domain of collabo-
rative filtering recommendations, particularly those using decision trees because:
(1) the sequential question paradigm allows a personalization of the question-
naire, and (2) they aim to well profile a new user by posing as less questions
as possible. Other techniques, such as Entropy0, Logarithmic Popularity En-
tropy (LPE) and Harmonic Entropy Logarithmic Frequency (HELF), are not
discussed [6]. Specifically, we do not mention passive learning techniques [8–
10], content-based techniques [11] or other hybrid techniques [12–14]. For more
information about these approaches, the readers can refer to [3, 7, 4].

Recent researches focus on user partitioning techniques that allow to group
users of similar tastes into clusters or nodes, and then find out to which group
the new user belongs to. In [15] authors use clustering techniques to find the cor-
rect users neighbors that match the new user with other users’ profiles. This
makes it easier to generate recommendations in cold-start. In [2] the authors
use non supervised ternary decision trees to model the questionnaire. The deci-
sion trees are built off-line to be completely available for new users that receive
the questions sequentially. To move to a new question they answer the current
one by clicking on one of the three possible answers (’like’, ’hate’ and ’unknown’).
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The users’ answers lead to a different child node of the trees. This creates a per-
sonalized tree path that depends on the past users’ answers. On the other hand,
this technique uses a collaborative filtering approach to choose questions. Using
available users’ ratings, they seek the best discriminative item in order to split
the population of users into three nodes (users who liked, those who hated and
those who do not know this item). The best item is the one which minimizes
a statistical error within the users’ ratings of the node.

In [16] authors suggest to apply matrix factorization while building every
node of a decision tree, yet this is computationally expensive. In [17] the authors
proposed to ”learn” the active learning technique. They assumed that warm
users can be thought of as new users from whom some ratings are known. Thus,
this is seen as a supervised decision trees which internally reduces the accuracy
of the technique by picking the best discriminative items. Moreover, they split
the tree nodes into six, a 1-5 natural scale rating and an unknown node.

The approach in this paper uses decision trees as in [2, 17], and it picks better
discriminative items and hence better bootstraps the new users’ preferences.

3 Contribution

Supervised and non supervised active learning decision trees aim to find out the
best discriminative items for every node of the tree in order to better capture
the new users preferences.

Formally, let R be the available ratings. The rating of a user u in an item
i is defined by ru,i ∈ R. In addition, let t be a node in the decision trees. We
define Ut, It, and Rt as the set of users, items and ratings currently in the node
t. Furthermore, Rt(u) and Rt(i) are ratings of the user u and item i in the node
t. Given the current node t, these techniques iterate over all candidate items
i ∈ It by analyzing users’ ratings on i. The users populations are then grouped
into users’ who rated item i and users who did not. Typically, the latter is
more populated due to the sparse nature of the available dataset. Furthermore,
the users who rated item i can be grouped into further categorizations, e.g. users
who liked/hated, or who rated ’1, 2, 3, 4, 5’. Then, the population of users in
these nodes, and their ratings, are used to evaluate the performance of choosing
i as one discriminative item of Rt.

Our contribution exploits the predictions over the existing R. Thus, we define
P as the predicted set of R, so that for each ru,i ∈ R there is a prediction pu,i ∈
P . The set P is computed by using collaborative filtering techniques, e.g matrix
factorization. Highlight that the number of users, items, and entries in R and P
are the same. Finally, Pt is the set of predictions currently in the node t, and
Pt(u) and Pt(i) are the set of users and items predictions in the node t.

Current decision trees techniques exploit only the available ratings in R in
order to (1) find the discriminative items, (2) split the users’ population, and
(3) compute predictions over the candidate items. These techniques use a simple
item prediction method based on the ”item rating average” in order to evaluate
a prediction accuracy and to compute prediction labels for candidate items.
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Note that this technique is fast and accurate in large datasets, which allows
a quicker generation of predictions from the available ratings in Rt. On the other
hand, using more accurate prediction techniques is possible but (1) it can be
very expensive and time consuming to do it for every node of the tree, and (2)
the predictions needed in decision trees are item-oriented regardless of the user
(the same prediction value to any user).

We propose to change this paradigm by using more accurate predictions over
the available ratings R. The main idea is to introduce the prediction P as a new
source. Hence, R and P are available from the root node of the tree. Then,
when the node is split into child nodes, Rt is split into Rt−child. As long as we
want to preserve that for every rating ru,i ∈ Rt there is an associated prediction
pu,i ∈ Pt, for every node t, we split Pt into Pt−child as well. In addition, we
propose to use the available ratings in R only to split the users population, and
P to find out the best discriminative items to enhance the prediction label of
candidate items.

This makes sense since finding discriminative items and label predictions are
associated with computing an error. As long as P is built by using more accurate
methods than the ”item rating average”, this error is minimized efficiently. We
propose using efficient algorithms, such as matrix factorization [18]. The main
drawback of using matrix factorization is that it computes different item pre-
dictions for different users. The decision trees require a unique item prediction
value to be applied to any user. In [2, 17] the authors use the ”item rating av-
erage” within Rt. We suggest using a similar method, with a major difference
that is computing the ”item prediction average”, which is indeed the average of
the predictions within Pt.

In fact, collaborative filtering methods are very accurate for recommending
items to users by replicating the users’ rating behavior. As a consequence, they
are good as well in guessing the average prediction of users, items, and in general
the average rating value of the dataset. Figure 3 supports this statement. In
addition, this is true as well for the ”item prediction average”. Figure 2 develops
this by considering different group of users split by quantity of ratings. We
observe that ”item prediction average” based on matrix factorization predictions
(MF-Avg) are close to the item rating average predictions (Item-Avg), while as
normal the matrix factorization (MF) outperforms these predictions.

3.1 Apply Warm Predictions to decision trees algorithms

The difference between supervised and non-supervised approaches is that the for-
mer considers that some users’ ratings can be used to validate the technique.
As a consequence, these ratings can be used as a validation set to evaluate the
accuracy of the tree node. On the contrary, since non supervised techniques do
not have any validation, they compute a statistical error based on the available
ratings in the node. Nevertheless, in both approaches a validation is not possible
in the ’unknown’ nodes, since by definition, there is no rating label for these
users to this item. As a consequence, a statistical error is mandatory in this
case. Our approach uses similar statistics as [2].
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Statistic Movielens MF

1st Quartile 3.00 3.13
Median 4.00 3.58
Mean 3.51 3.51

3rd Quartile 4.00 3.96

Fig. 1. Statistics for available ratings and
matrix factorization (MF) predictions of
Movielens 10M [19].

Fig. 2. Prediction techniques and
average comparisons regarding
the RMSE for Movielens 10M [19].

Non Supervised Approach In [2], the authors define a set of statistics and
an internal error using these statistics to find out the best discriminative item.
In this approach, the best item is the one which reduces this error. In addition,
as long as the tree nodes contain many ratings, they use the item rating average
method to compute item label predictions for items.

In our approach we use the same statistics to compute the same error, with
two major differences. First, the available ratings are only used to split the pop-
ulation of users. As a consequence, the statistics and the items predictions are
computed by using the proposed set of predictions P . Second, once a discrimi-
native item is chosen in a parent node it does not pass to the child nodes. This
is done for two reasons: (1) to avoid to choose the same item, and hence, to
avoid to pose twice the same question to the same user, and (2) to delete the in-
fluence of the items’ ratings in the child nodes. In fact, one can avoid choosing
an item without deleting their ratings as done in [2]. This approach is described
in Algorithm 1.

Supervised Approach In [17], the authors suggested using warm-users as cold-
users from whom some interests are known. This assumption allows to create
a supervised decision trees where some labels are known for validation purposes.

We suggest again to use the predictions P over the available ratings in R in
order to enhance this technique. We make use of R to split the users’ population,
meanwhile P is used to (1) validate the approach, and (2) obtain items label for
the chosen discriminative items. The validation requires the items predictions,
which in [17] is given by the item rating average within the child node. As
long as P contains the predicted values pu,i, this validation is more accurate. In
addition, the item prediction average over P is also used to obtain a prediction,
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Algorithm 1 Non-supervised decision tree algorithm

1: function BuildDecisionTree(Rt, Pt, currentTreeLevel)
2: for rating ru,i in Rt do
3: accumulate statistics for i in node t using pu,i
4: end for
5: for candidate item j in It do
6: for ru,j in Rt(j) do
7: obtain Pt(u) and split Ut 3 child nodes based on j
8: find the child node where u has moved into
9: for rating pu,i in Pt(u) do

10: accumulate statistics for i in node t− child using pu,i
11: end for
12: end for
13: derive statistics for j in node tU from the tL and tD statistics
14: candidate error: et(j) = etL(j) + etD(j) + etU (j)
15: end for
16: candidate item i∗ = argmini

17: compute pi∗ by using item prediction average
18: if currentTreeLevel ¡ maxTreeLevel then
19: create 3 child nodes Ut−child based on i∗ ratings
20: for child in child nodes do
21: exclude i∗ from Rt−child

22: BuildDecisionTree( Rt−child, Pt−child, currentTreeLevel +1 )
23: end for
24: end if
25: return i∗

26: end function

and we split the nodes into 3 child nodes (’like’, ’dislike’, ’unknown’) rather than
6. Algorithm 2 shows this approach.

3.2 Complexity of the algorithm

The complexity of our approaches for non-supervised decision trees and su-
pervised decision trees is very similar to [2, 17]. In fact, these algorithms fol-
low a similar procedure. The complexity of splitting the users in node t is
O(

∑
u∈Ut

|Rt(u)|2), and thus, for all the nodes in the same level we use O(
∑

u∈U |R(u)|2).

As a consequence, the complexity to build a tree of N questions is O(N
∑

u∈U |R(u)|2).
In fact, adding the prediction set P does not affect the complexity of the algo-
rithms, although, the memory footprint of the approaches may vary according to
their implementations. Considering that rating and prediction datasets are coded
equally, our approach consumes double of the memory size to store the set P .

4 Experimentation

The goal of our experimentation is two-folds (i) to present the behaviour of
current techniques in smaller datasets and (ii) to show the performance of our



Enhancing New User Cold-Start 7

Algorithm 2 Supervised decision tree algorithm

1: function BuildDecisionTree(Ut, Rt−train, Rt−validation, Pt, currentTreeLevel)
2: for user u ∈ Ut do
3: compute RMSE1

u on Rt−validation(u) and Pt(u)
4: end for
5: for candidate item j from Rt−train do
6: split Ut 3 child nodes based on j
7: for user u ∈ Ut do
8: find the child node where u has moved into
9: compute RMSE2

u on Rt−validation(u) and Pt(u)
10: Mu,i= RMSE1

u −RMSE2
u

11: end for
12: end for
13: δ = aggregate all Mu,i; and pick candidate item i∗ = argmaxiδi
14: compute pi∗ by using item prediction average
15: if currentTreeLevel ¡ maxTreeLevel and Mi∗≥ 0 then
16: create 3 child nodes Ut−child based on based on i∗ ratings
17: for child in child nodes do
18: exclude i∗ from Rt−child

19: BuildDecisionTree( Ut−child, Rt−child−train, Rt−child−validation,
Pt−child, currentTreeLevel +1 )

20: end for
21: end if
22: return i∗

23: end function

presented approach. Recent techniques have presented their results using Netflix
dataset. However, this dataset is no longer available for research. Hence, we use
the Movielens 10M dataset [19], which contains 71567 users, 10681 items and 10
million ratings. Since our approach considers external techniques prediction as
a new source, in order to build our decision trees we use matrix factorization [18]
due to its accuracy. We compare our approach in non supervised decision trees,
as in [2], and in supervised decision trees, as in [17].

In order to compare the approaches we use the RMSE metric oriented to
users, which measures the squared difference between the real ratings and the pre-
dicted ratings:

RMSEu =

√
1

N

∑
(ru,i − pi)2 (1)

Where N is the number of ratings of the user u, pi is the predicted label
value of the candidate item in the question node and ru,i is the real rating of
the user u for the item i. Hence, the evaluation of the error in one question is
the average of the users error in this question number. As a consequence, for this
metric the lower is the better.

The experimentation carried out in [2] splits the datasets into 90% training
set, Dtrain and 10% test set, Dtest. However, this is not a real cold-start context
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since the same user may appear in both training and test set. We suggest a real
cold-start situation. We split the set of users in the datasets into 90% training
set, Utrain and 10% test set, Utest. Hence, the users in the training set help to
build the decision trees and the users in the test set are considered as new user
to evaluate the performance of the approach.

The process we have followed to run this experimentation is as follows. First
we split the dataset into Utrain and Utest. Second, we compute the collabora-
tive filtering algorithms over ratings R in Utrain and we extract the associated
predictions P . Third, we train the approach of Golbandi by using Utrain. Our
approach is trained by using both ratings in training set R and the prediction
of the training set P . Finally, the performance of the decision trees is evaluated
by using the test set Utest. The users in this set are used to answer the ques-
tions. If the item is known, we compute the RMSE associated to this answer and
this question. Then, the user answer a new question. At the end, we compute
the average of the accumulated nodes RMSE.

Knowing that the experimentation may depend on the split of the dataset,
we run it 50 times and then used the mean value of the RMSE. We use this
process to evaluate the performance for the MovieLens 1M and MovieLens 10M.
Figure 3(a) shows the results (the mean values and tendency curves) of this
experimentation for both MovieLens datasets, where ’Golbandi’ is the approach
used in [2]. On the one hand, our approach achieves a much lower error in less
number of questions. This matches with the needs of active learning; short but
very informative questionnaires. This is possible due to the higher accuracy of
the matrix factorization. On the the other hand, all the approaches tend to
converge into a pseudo-asymptotic behavior. This is due to the fact that nodes
in the bottom of the tree (nodes in 8th question) are less populated by users and
thus predictions and profiles are less accurate. This particularity is not shown
in [2, 17] due to their very large dataset.

We perform a similar experiementation to compare our approach to [17]. This
time the authors use a 4-fold set to evaluate their dataset: Dtrain set which is
split into Utrain and Uvalidation sets, and Dtest set which is split into Utest and
Uanswer sets. Utrain and Uvalidation are to train and validate the evolution of the
algorithm. Utest and Uanswer are used to evaluate the performance of the tree at
the question q and to answer to that questions. As long as the validation phase
aims to optimize the RMSE, the accuracy prediction of the matrix factorization
enhances this metric. This yields to better questions and hence the accuracy of
the decision tree is enhanced as well. Figures 3(b) shows better results than [17]
as well. Further analysis are not described in this paper due to a lack of space.

5 Conclusions and Future Work

The personalization of the active learning technique is crucial to better learn
the new users preferences and decision trees are interesting techniques to model
questionnaires. Indeed, decision trees can predict the items that new users have
already used, although we consider that recent approaches do not correctly ex-
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(a) MovieLens 10M dataset. (b) MovieLens 10M dataset.

Fig. 3. Questionnaire performance in RMSE.

ploit the ”prediction” inside the decision trees since they use very simple ap-
proaches (e.g. item rating average) to make it tractable.

The main idea of our contribution is to train an accurate collaborative fil-
tering techniques with a ratings dataset to generate a prediction dataset. Then,
both ratings and predictions dataset are used inside the decision trees. The
former properly split the users’ population while building the tree. The latter
enhances the seek of the best discriminative items (questions) and better predict
the associated labels. We have tested this approach in non supervised decision
trees and supervised decision trees. The experimentation shows that our ap-
proach find better questions to present to users in order to better understand
his preferences.

Our future work focuses on (1) detecting the new users preferences directly
on the fly, and (2) using new techniques to exploit the information coming from
questionnaires. We especially believe that the time (new) users spent to answer
a question is very significant for the answer itself. Thus, we focus on ”time-
aware” recommendation techniques and decision trees to retrieve and exploit
not only the users’ answers but also the users’ behavior.
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analysis of the state of the topic. Hipertext. net 6 (2008) 1–5

12. Ziegler, C.N., Lausen, G., Schmidt-Thieme, L.: Taxonomy-driven computation of
product recommendations. In: Proceedings of the thirteenth ACM international
conference on Information and knowledge management, ACM (2004) 406–415

13. Vozalis, M.G., Margaritis, K.G.: Using svd and demographic data for the enhance-
ment of generalized collaborative filtering. Information Sciences 177(15) (2007)
3017–3037

14. Barjasteh, I., Forsati, R., Masrour, F., Esfahanian, A.H., Radha, H.: Cold-start
item and user recommendation with decoupled completion and transduction. In:
Proceedings of the 9th ACM Conference on Recommender Systems, ACM (2015)
91–98

15. Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in recom-
mender systems: an information theoretic approach. ACM SIGKDD Explorations
Newsletter 10(2) (2008) 90–100

16. Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start
recommendation. In: Proceedings of the 34th international ACM SIGIR conference
on Research and development in Information Retrieval, ACM (2011) 315–324

17. Karimi, R., Nanopoulos, A., Schmidt-Thieme, L.: A supervised active learning
framework for recommender systems based on decision trees. User Modeling and
User-Adapted Interaction 25(1) (2015) 39–64

18. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative
filtering for the netflix prize. In: Algorithmic Aspects in Information and Manage-
ment. Springer (2008) 337–348

19. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst. 5(4) (December 2015) 19:1–19:19


