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ABSTRACT 

Gas lift is an artificial lift method used in the oil industry to lift reservoir fluid to the surface, 

by supplementing the reservoir pressure when it is depleted or insufficient. During oil 

production, this method can be affected by two-phase (gas-liquid) flow instability within the 

production tubing, which results in a reduction in the total oil recovered. There are three main 

flow instabilities caused by, the density wave oscillation, the casing heading pressure and the 

flow perturbation within the two-phase flow regime. 

 

Within this investigation of the flow structure, behaviours and instability of two-phase flow 

have been investigated experimentally using a high-speed motion imaging with a dedicated 

processing package “Dynamic studio 2015a” in a vertical transparent pipe (ID: 66 mm, 

Length: 2 m) thus simulating the prototype sizing of the common artificial gas lift. 

Numerically a Computational Fluid Dynamics (CFD) models were used with air and water as 

the working fluids for various cases. 

 

The experimental results demonstrated that initial bubble size plays a major role in the 

development and instability of the upward two-phase flow in the vertical pipe. A new 

Multiple Nozzle Injection Technique (MNIT) with the aim of reducing initial bubble size and 

distribution across the simulated vertical column was also utilised, thereby stabilising the gas 

lift system. Thus the present findings are compared with the current Single Nozzle Injection 

Technique (SNIT) (or so- called sharp-edge) that are utilised in normal gas lift operation. It 

has thus been manifested that the new method has the potential to increase the total oil 

production rate from gas lifted wells. It was found that this new injection technique reduced 

the overall average bubble size from 7.01 to 5.47 mm and the average overall minimum 

bubble size from 1.23 to 1.03 mm. The average large bubble size of the Taylor bubble was 

also reduced from 44.07 to 39.95 mm in the simulated pipe. This perceived to increase in 

production rate from 40 to 43.05 l/min, which give overall increment of 7.5% at different 

operating conditions. This is in comparison with the single orifice injection technique at the 

same operating conditions. Throughout this investigation, water was used as working fluid 

since the column of corresponding water in the petroleum production tubing has the highest 

hydrostatic pressure 0.20 bar compared with crude oil. Hence, during the gas lift process 

crude oil will be less cumbersome to produce than water. 

 

Moreover, it was found that when using the Multiple Nozzle Injection Technique the 

distribution of gas bubbles could changed from the middle of the vertical pipe (core peaking) 

to across the entire pipe area (wall peaking). This minimised the two-phase flow development 

and flow instability, even when the mixture velocity was increased. This was due to a 

reduction in the coalescence process of the gas bubbles as a result of improved bubble 

distribution when compared with the Single Nozzle Injection Technique with the same 

dimensions. 

 

The numerical three-dimensional CFD model using the multi-fluid volume of fluid (VOF) 

gas-lift with the same dimensions and operating conditions compared qualitatively with 

bubble distribution similar to those found by experimental trials. In addition, the pressure 

drop long the simulated test section was calculated numerically. It was also found that the 

pressure drop was reduced from 0.18 bar to 0.11 bar when the new MNIT was used as 

compared with the SNIT  that are normally used in gas lift operation practise. 
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CHAPTER 1 

Introduction 

1.1 Background 

Generally, in oil production, crude oil flows through well tubing naturally by primary oil 

recovery, which involves natural drive mechanisms that lift crude oil from the oil reservoir to 

the surface without any artificial method or aid. Nevertheless, in most cases, this primary oil 

recovery will not last for a long period and becomes inefficient production process. This is 

due to the reservoir pressure being depleted and lacking sufficient energy to lift the crude oil 

to the surface. Also, there is still a substantial amount of residual oil in the reservoir, making 

this the most common production problem in oil fields. Therefore, to extract the remaining 

crude oil from the reservoir, future reservoir developments, studies and methods must be 

considered including the secondary oil recovery methods such as gas injection and water 

injection. These methods are designed depending on reservoir data and driving mechanisms. 

Other artificial lift methods can also be used to lift crude oil to production facilities, such as 

electric submersible pumps (ESPs), sucker rod pumps, hydraulic pumps and gas lift methods 

(Schlumberger, 1999, Forero et al., 1993). 

The gas lift method is known as an effective artificial lift technique. The principle of the gas 

lift method is underlined by its ability to increase drawdown pressure in the reservoir by 

injecting gas at the bottom of the oil production tubing, where the gas mixes with the 

reservoir fluid. Since the gas has a lower density than the reservoir fluid, it will lower the 

overall density of fluid in the tubing and the hydrostatic pressure of the fluid. When bottom-

hole pressure decreases, this allows the production from the reservoir to increase (Guet, 

2004). Moreover, it is known that, when the crude oil flows from the oil reservoir, it 

encounters a drop in pressure through the production scheme. Starting from the reservoir to 

the well bore, through well perforations and then the backpressure that is caused by the 

hydrostatic pressure in the production tubing string, as well as the fall in gas/oil ratio and 

increase of water cut.     

These pressure drop stages can have a negative impact, either decreasing or stopping the total 

production flow rate from gas lifted wells. The optimisation of the gas lift method mainly 

relies on a good understanding of the reduction effects that each parameter is capable of 
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causing on the total oil production. These parameters include gas flow rate, gas injection 

pressure, port size, depth, gas lift valve spacing and the two-phase flow behaviours along 

production tubing which has a crucial phenomenon known as gas lift flow instability 

(Ebrahimi, 2010). 

 

1.2 Research Problem 

During the gas lifting method process, gas is injected into the casing annulus, down to the 

well into the production tubing through gas lift valves, in order to lift the crude oil column to 

the surface. However, a very critical and chaotic unstable production phenomenon occurs, 

known as flow instability. Flow instability can cause serious flow oscillations and turbulence, 

which can lead to a reduction in total oil production from gas lifted wells. In some cases 

when the flow instability becomes very severe, it may stop oil production completely in some 

wells. Flow instability is believed to be a result of three main problems: 

(i) Casing heading 

(ii) Density wave oscillations  

(iii) Flow perturbations 

These are briefly explained as a matter of completeness and further clarity of the physical 

arrangement of the gas lifting operation. 

 

1.2.1 Casing Heading Concept 

Casing heading is a dynamic cyclic process that occurs when there is no equilibrium between 

tubing flow pressure and casing annulus pressure. This cyclic process can be summarised in 

the following steps; initially casing heading begins in the gas lift valves at the orifice 

injection point, especially when there is a sudden decrease in the tubing pressure, resulting in 

an increase in gas flow rate to the tubing column through the orifice. Secondly, when the gas 

rate is continuously flowing for a certain period to the tubing string, this causes a reduction in 

the tubing flow pressure. Since the gas supply at the surface choke (compressor facility unit) 

cannot maintain the high gas flow rate and pressure to the casing for a period, the upstream 

pressure in the casing annulus will be reduced, causing a decrease in gas flow rate to the 

tubing column, thereby gradually increasing the tubing pressure because of the reduction of 
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gas flow rate from the casing. Finally, since tubing pressure increases due to low discharging 

pressure from upstream while at the same time gas is supplied at the surface, by injection of 

gas upstream into the casing annulus, and then pressure begins to build up again in the casing 

annulus and the cycle is repeated. These were comprehensively described by also (Hu, 2005, 

Torre et al., 1987). 

 

1.2.2 Density Wave Oscillation 

Density wave oscillation is defined as a density wave instability, and it is related to the 

kinematic wave propagation phenomena of fluid. Density wave oscillation is caused when 

fluids with different densities flow together and create very abnormal fluid behaviours that 

cause turbulence in the system. This is commonly defined as a void wave or continuity wave. 

 

1.2.3 Flow Perturbations  

When the gas injection occurs through the gas lift valve into the tubing column, a reaction 

occurs between the gas phase and liquid phase, resulting in small bubbles. These bubbles are 

flowing upward in the vertical column as superficial velocity increases, and the flow 

develops, resulting in different flow patterns such as bubbly flow, slug flow, churn flow and 

annular flow. However, as the flow develops, a powerful dominant fluid behaviour occurs in 

the transitional regions including the bubbly to slug, slug to churn and churn to annular flow 

regions. The cause of this behaviour is related to bubble collapse and backflow, which will 

lead to a random dispersion and distribution of bubbles in this region. Therefore, abnormal 

fluid behaviour occurs and causes flow perturbations that can sometimes become very severe, 

particularly when the velocity increases and the flow reaches the annular region. As  results 

of this, undesired situations such as production of more injected gas than crude oil from the 

oil reservoir, reducing oil production considerably and causing operational problems such as 

shutdown of the gas compressor. 
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1.3 Research Contribution 

The contribution to research is the development of a novel technique to reduce flow 

instability within two-phase flow (gas and liquid). This technique is to reduce the initial gas 

bubble sizes and pressure drop flowing upward within the production tubing and also 

improve the bubble distribution across the pipe (production tubing). This has the potential to 

increase overall oil production for gas-lifted wells, within the operating conditions that have 

been adopted throughout this investigation. 

 

1.4 Aims  

The aims of the thesis are to: 

1- Design an apparatus in investigating a two-phase flow experiment for the flow 

instability in a vertical column when injecting gas in a cross flow. 

 

2- Study the reduction in bubble size and distributions in minimising the flow instability 

in the simulated production tubing in gas lifted wells. 

 

1.5 Objectives 

The prime objectives of the thesis are to:  

1. To carry out various trials in order to characterise the flow instability in two-phase 

flow in a vertical column using advanced image-processing techniques. 

 

2. To construct a numerical simulation model using Computational Fluid Dynamics 

(CFD) to investigate the effect of all identified variables that are capable of causing 

this phenomenon during the gas lift operation and benchmark them with experimental 

data as appropriate. 

 

 

3. Propose a novel approach that could be used within gas-lifted wells to improve oil 

production. 
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4. To contribute to a better understanding of fluid unsteady state and flow instability 

behaviours. 

 

 

1.6 Thesis Structure 

The thesis is comprises of seven chapters, as follows: 

Chapter 1: Introduction 

Chapter 1 gives a general insight into the gas lift method, and the associated issues 

surrounding this method. The chapter then highlights the main aims and objectives of the 

research. 

 

Chapter 2: Literature Review   

Chapter 2 provides a detailed description of the concept of the gas lift method and the types 

thereof. It also describes the experimental investigations of two- and multi-phase flow which 

have been carried out over the years to show the developments of the research, including 

previous attempts and techniques that have been used to overcome the research problem.  

 

Chapter 3: Experimental apparatus, set-up and method of data processing  

This chapter presents the experimental design, apparatus and set-up of the research 

experiment. In addition, the experimental procedure and measurement techniques that have 

been used to investigate the instability and behaviours of the two-phase flow are also 

described. 

 

Chapter 4: Experimental Results and Discussion  

This chapter presents the experimental results and discussions of the variables that will 

influence bubble sizes within upward two-phase flow and lead to flow instability. In addition, 

a novel technique is described that reduces initial bubble size, flow instability and increases 
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total oil production during the lifting process without increasing the backpressure to the 

lifting system and restrictions of the flow path inside the vertical pipe. 

 

Chapter 5: Two-Phase Flow Modelling using CFD-Fluent  

This chapter introduces ANSYS Fluent computational fluid dynamics modelling, a literature 

survey of using CFD simulating fluid behaviours in a vertical column and a detailed 

description of the concept of a comprehensive three-dimensional CFD VOF gas-lift model, 

which was developed to simulate the gas-liquid flow in a vertical column for both valves.  

 

Chapter 6: Numerical Results, Analysis and Discussion 

This chapter presents the numerical simulation results, analysis and discussions of variables 

that influence the upward two-phase flow behaviours in a vertical pipe related to the gas lift 

method in the oil industry. In addition, a comparison between the performances of the new 

multiple nozzles technique and the single orifice (sharp edge) technique is presented. 

 

Chapter 7: Conclusion and Future works 

This chapter provides the conclusions from this study and suggestions for future work. 
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2 CHAPTER 2 

LITERATURE REVIEW 
 

2.1  Introduction 

Transportation of fluids from the oil reservoir to the surface can occur naturally, however, 

occasionally it requires special artificial lift methods, especially when the reservoir energy is 

insufficient to obtain the desired and profitable oil flow rate. There are several artificial lift 

methods used in the oil industry to maintain or supplement oil reservoir energy, such as the 

gas injection method, water injection method, electrical submersible pump (ESP), hydraulic 

pump and gas lift method. The design of any artificial lift method is largely dependent on the 

existing reservoir driving mechanisms. The oil reservoir driving mechanism is the ability of 

the reservoir to deliver fluid to the surface naturally, including gas cap solution, water drive 

mechanism, dissolved gas drive and a combination of all of these. Gas lift method is one of 

artificial lift methods, which widely used in the oil industry. In addition, there are a number 

of requirements to make the gas lift project successful and petroleum engineers must be 

aware of the golden rules of the gas lift. Firstly, there is the availability of a gas source in the 

oil field. Secondly, well completion should be considered in the design for a single point lift 

and with all modes of operation in mind. Finally, detailed attention must be paid to the 

stability of the  gas lift, which  can be achieved by understanding the unloading process and 

multi-phase flow behaviours in the vertical production string (Forero et al., 1993).  

 

2.2 Gas Lift Concept 

Gas lift is one of the most common artificial lift methods used in the oil production industry.  

The principle of gas lift is explained by the injection of external energy such as natural gas 

through a casing annulus down into the tubing through subsurface gas lift valves. This thus 

enables and assists the formation mechanism to lift the fluid to the surface, depending on the 

productivity index (PI) of the reservoir. Moreover, this high-pressure gas is injected into the 

bottom of the production tubing to reduce the mixture density of the fluid by creating gas 

bubbles, which decrease the liquid hydrostatic pressure and then lift the fluid through the 

column to the surface.  As a result, oil flows from the reservoir to the wellbore, due to the 

decrease in pressure that occurs in the production tubing; thus as the bottom-hole pressure 



8 

 

decreases, the oil production increases. This method has surface and subsurface equipment. 

The surface equipment consist of a gas source which is separated from crude oil by 

production facilities (production separators), and then this gas is dehydrated by a special 

dehydration unit or filters and then compressed to a certain pressure depending on the 

injection pressure of the oil reservoir in the compressor station. Thereafter, the gas can be 

distributed through a gas injection manifold by gas pipelines to the wellheads as shown 

Figure 2-1, (Schlumberger, 1999). 

 

 

Figure 2-1: Gas lift method components (Schlumberger, 1999). 

 

Figure 2-2 illustrates a schematic view of subsurface gas-lift system equipment. The gas is 

injected from the surface to the casing annulus down to the well and then it enters the 

production tubing through unloading valves to lift the long accumulated fluid column above 

these valves. This process is known as the kick operation. Thereafter, these valves will be 

closed automatically after some time, depending on their pressure settings. Subsequently, the 

operating gas lift valve at the bottom of the column will be open during the lifting process to 

reduce bottom-hole pressure (BHP) to the reservoir. In addition, there are two types of gas lift 
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method; intermittent gas lift and continuous flow gas lift. These systems are designed 

depending on the productivity index of the reservoir (PI), which is the ability of fluids to flow 

through surrounding reservoir rocks to the wellbore under certain operating conditions 

(Sanderford and W, 1981). 

 

Figure 2-2: Schematic view of a gas-lift system. The gas enters the tubing and lift reservoir (Shaded in grey) to 

the surface (Sanderford and W, 1981). 

 

2.2.1 Continuous Flow Gas lift System 

In terms of fluid dynamics, continuous gas lift is very similar to natural flow. The gas is 

injected continuously via a casing annulus down to the well into the bottom of the tubing, 

through the gas lift valves as an additional source of energy to supplement the formation 

driving mechanism and to reduce the hydrostatic pressure gradient over the injection point. 

This thereby allows the natural reservoir pressure to cause the reservoir fluid to flow to the 

well bore and then up to the surface facilities. This is dependent on certain factors such as 

high productivity index (PI), highly deviated wells, high-static bottom-hole pressure (BHP) 

and high gas/oil ratios (GORs) reservoirs are considered good candidates for the continuous 

flow gas lift method. Moreover, continuous gas lift can also be applied to offshore fields, due 

to its influential water drive mechanism compared to other artificial lift methods; but this 
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depends on the availability of gas in that particular field. Figure 2-3 shows  the principle of 

continuous gas lift (Kaji et al., 2009, Eikrem, 2006a). 

 

Figure 2-3: The principle of continuous gas lift (Eikrem, 2006b). 

 

2.2.2 Intermittent Flow Gas Lift System 

As the name implies, intermittent flow gas lift method is the discontinuous flow of high-

pressure gas injected into tubing through subsurface valves for a certain length of time, 

according to the design settings and fluid accumulation in the tubing column, which is then 

stopped at intervals Figure 2-4. This cyclic process is repeated after a certain amount of time. 

The intermittent gas flow lift method is considered as an excellent approach in cases of low 

productivity index (PI) (< 0.5 psi/bbl), low flowing bottom-hole pressure and low volume 

production fluid wells (Schlumberger, 1999).  The main disadvantage of this method is the 

interruption (on/off) caused by the discontinuous flow, which makes the gas handling on the 

surface utilities more difficult, leading to surging in the pipeline and the flowing bottom-hole 

pressure (Kaji et al., 2009). 
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Figure 2-4: Intermittent Gas Lift (Schlumberger, 1999). 

 

Moreover, the gas injection rate through the orifice plate in the intermittent flow gas lift 

method is calculated by using the following equation (2.1): 

 

                          𝑄 =

𝟏𝟓𝟓.𝟓  𝐂𝐝 (𝐀)  𝐏𝟏 √𝟐𝗀(
𝐤

𝐤−𝟏
)  [𝑟

𝑎2
𝑘 −𝑟

𝑎𝑘+1
𝐤 ]

                   

G∗T
                                                 (2.1) 

Where: 

Q =  Flow rate of the gas at standard conditions (14.7 psia and 60°F), Mscf/D, 

𝐶𝑑  =  discharge coefficient, determined experimentally and dimensionless, 

A  =  area of orifice or choke opening to gas flow, in2, 

P1  =  gas pressure upstream of an orifice or choke, psia, 

P2  =  gas pressure downstream of an orifice or choke, psia, 

g  =  acceleration of gravity, = 32.2 ft/sec2, 

k  =  ratio of specific heats (Cp/Cv), dimensionless, G  = Specific gravity (Air =1), 
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T =  Inlet gas temperature, °R, k = Ratio 
𝐶𝑝 

𝐶𝑉
 = 

Specific heat at constant pressure

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒
 

r  =  pressure ratio, P2/P1  ≥  𝑟𝑜, 𝑟𝑜 = [
2

𝑘+1
]

𝑘

𝑘+1
 = critical flow pressure ratio 

 

2.3 Two-Phase Flow in Vertical Column 

Two-phase flow behaviours and transportation (gas-liquid) are very challenging in many 

industrial applications, such as air lift pumps, boilers, nuclear power plant steam generators, 

chemical reactors and the oil and gas industries. Particularly in the oil industry, the gas lifting 

method is affected by two-phase flow behaviours. The transportation mechanisms of this type 

of flow is largely affected by the pipe wall, the gradual decrease in the pressure drop, the 

length of the pipe, as well as the interfacial transfer between the two phases. These effects 

have a negative impact on the oil production in terms of quantity, and it depends on the 

stability of the flow . Recently, several attempts have been carried out in order to identify the 

flow regimes, and these methods are the signals that represent the phase distribution, such as 

pressure and capacitance (Pan et al., 2016). 

Furthermore, Sun et al. (1999) have experimentally analysed the void fraction waves in 

different two-phase flow regimes, using an impedance void fraction meter. The authors have 

reported that the propagating velocities alternate with a change in the type of flow regime and 

increase as the void fraction rises and become higher at a disturbance point in the vertical 

pipe. Furthermore, the disturbance wave affects the void fraction wave as its wavelength 

increases. Also, the frequency of the disturbance wave is largely reliant on the growth rate of 

void fraction waves. Therefore, when the void fraction growth rate increases, the void 

fraction fluctuations increase. This accelerates the transition from bubbly flow to other flow 

regimes and leads to the development of flow.  

According to Brill (1987) and Guet (2004), the development of  two-phase flow in the  

vertical pipes created four major flow regimes, which are known as bubbly flow, slug flow, 

churn flow and annular flow, which occur in accordance with the increase in the superficial 

velocity as shown in Table 2-1. Each of these flow regimes will be defined in the following 

section. These flow patterns in a vertical pipe are categorised according to the superficial 

velocities of liquid and gas. However, the flow patterns depend on specific operating 

conditions.  
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Table 2-1: Flow regimes in gas-liquid vertical flow 

Flow Transition Flow Regime  Formation Description Geometry 

Dispersed 

Flows 

Bubbly Gas bubbles in liquid 

 

Mixed Flows Cap or Slug 

turbulent flow 

Gas pocket in liquid 

 

Churn Flow Gas bubbles coalescing in 

liquid 

 
Bubbly annular Gas bubbles in liquid film 

with gas core 

 

Separated 

Flows 

Annular Gas core and liquid film 

 

Sources; (Levich and Krylov, 1969). 

 

2.3.1 Bubbly flow 

Bubbly flow is divided into two different turbulent sub-regimes; first the bubble is dispersed 

in the liquid phase and second the sub-regimes are determined by their bubble size. The 

transition from low to moderate liquid bubbly flow is identified by small bubbles compared 

to the diameter of the pipe which are spread randomly in the fluid flow within the pipe 

(Cheng et al., 1998). In addition, the gas bubbles are usually spherical. The characteristics of 
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this pattern can be noticed by the low void fraction conditions, no bubble break-up occurs, 

and it is affected by the inlet. On the other hand, the other sub-regime is the finely dispersed 

bubble-flow regime with large liquid input, which takes place away from the inlets. Then the 

bubbles start to collapse, which is due to the turbulent eddies and the bubble flow is 

connected to the turbulence conditions and surface tension properties as the fluid flow moves 

along the vertical pipe.  

 

2.3.2 Slug flow 

Another pattern of gas-liquid flow is known as slug flow. In comparison to the bubbly flow 

regime, the slug flow regime has a larger value of void fraction, creating less distance 

between the bubbles and leading to the bubbles colliding and coalescing to form bigger 

bubbles. The flow consists of large pockets of liquid and gas and also contains dispersed 

bubbles in the pipe. The regime exhibits strong fluctuations in the liquid flow rate and 

pressure. Slug flow pattern has a bullet-shaped bubble (Taylor bubble), flowing upward of 

the pipe separated by a thin film of liquid near the pipe wall. Figure 2-5 illustrates gas 

bubbles deforming from a spherical bubble to a cap and lastly to a Taylor bubble in the slug 

flow pattern (Levich and Krylov, 1969, Alamu, 2010). 

 

 

  

 

 

 

 

 

 

 

  Spherical bubble 

       Cap bubble 

     Taylor bubble 

Flow direction 

Figure 2-5: The formation and shapes of gas bubbles in the slug flow pattern  (Levich and Krylov, 1969). 
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2.3.3 Churn flow 

Moreover, a different pattern that occurs during the gas-liquid flow is the churn flow pattern. 

The main characteristics of the churn flow regime are defined by the large gas input and 

moderate void fraction. The pressure and void fraction during the churn flow pattern are 

constantly fluctuating as the bubble travels up the pipe. This flow instability is mainly caused 

by the shear stress and gravity. The structure of the fluid becomes unsteady due to fluid 

fluctuation when the velocity of the flow is increased (Levich and Krylov, 1969, Alamu, 

2010). 

 

2.3.4 Annular flow 

The last two-phase flow pattern (gas-liquid) that takes place in a vertical direction is known 

as annular flow, where the annular flow possesses an annular film of liquid near the wall of 

the pipe with a large flow of gas and small droplets of liquid at the centre of the pipe. The 

flow is continuous at the centre of the pipe with a higher velocity of gas and liquid droplets 

being pushed away in both sides of the gas phase (Alamu, 2010). 

In addition, previous studies by Da Hlaing et al. (2007) carried out an isothermal two-phase 

flow experiment in a vertical pipe to investigate the effect of liquid viscosity on flow patterns 

and the corresponding pressure gradient for each flow regime using air with water and air 

with glycerol solutions respectively as a working fluid. The authors reported that the 

increasing liquid viscosity has a remarkable impact on the boundaries of the flow patterns in 

the pipe, especially for transitional region bubble-slug flow regime, where the Reynold 

numbers of air of each regime were found to be laminar. Figure 6-2 illustrates the relationship 

between air and water Reynold numbers during the flow. The results showed that the pressure 

gradient fluctuations occurred between the bubbly and slug flow regimes. Furthermore, these 

oscillations became severe at the slug to churn transition regime. However, they reduced 

between the annular and mist flow regimes.  
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Figure 2-6: Flow pattern regimes for air and pure water mixture (Da Hlaing et al., 2007). 

 

In addition, Sardeshpande et al. (2015)  have performed two-phase flow experiments in a 

small vertical tube, 1m long and with 19 mm ID to mimic boiling flows in the reboilers at 

various mass and heat flux operating conditions. The results have shown that it was possible 

to identify flow regimes by analysing the accurate pressure drop and pressure fluctuation 

measurements. Furthermore, it was observed that as heat flux increases, the fluid vapour 

increases, while the pressure drop decreases. Although the effect of increasing temperature on 

pressure drop was clearly noticed and significant from pressure analysis, the increase in 

temperature is not the only parameter that can cause pressure oscillations.  Two-phase 

pressure drop can be affected by several parameters such as geometric configuration, 

pressure, mass and volume fractions of each phase, fluid properties, mass flux, and also the 

development of flow patterns (Orkiszewski, 1967) . 

 

On the other hand, a different approach was studied by Ansari and Azadi (2016). The authors 

experimentally investigated the effect of tube diameter on two-phase flow behaviours in 

vertical pipes using tubes standing in vertical position made of transparent acrylic with inner 

diameters of 40 mm and 70 mm. The authors used two different sets of air and water 

superficial velocities of 0.054-9.654 m/s and 0.015-0.877 m/s for the 40 mm diameter tube, 

and 0.038-20.44 m/s and 0.036-1.530 m/s for the 70 mm diameter tube. The authors reported 

that an increase in the tube diameter from 40 mm to 70 mm did not have any significant 
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effect on the transition from bubbly to slug flow and its transition boundary. However, it 

shrinks the transition region from slug to churn pattern considerably. Furthermore, as a result 

of using image-processing techniques, the study has reported that the bubbly flow in the 40 

mm tube can be divided into three sub-patterns: dispersed, agitated and agglomerated bubbly. 

Also, two types of slug pattern are also noticed in the same tube diameter, which are named 

as small and large slugs, whereas a semi-annular flow is clearly noticed as an independent 

pattern in the 70 mm tube that does not behave like known churn or annular patterns. 

Although the study has positively contributed to understanding two-phase flow pattern 

behaviours, they did not report the main cause of Taylor bubble instability, especially when 

Taylor bubbles reach the critical diameter and then burst. Isao and Mamoru (1987) reported 

that this collapse leads to fluctuations and undesired operating conditions, which reduce 

production rate.  

 

On a similar note, Omebere-Iyari and Azzopardi (2007) conducted an experimental study to 

investigate the flow pattern transitions in a 5mm vertical pipe using conductance probes and a 

high-speed camera for observations. The result of this study did not massively differ from the 

previously developed flow model studies. However, it did give better delineat-ing  

predictions for the churn to annular flow transition compared with the study of Taitel et al. 

(1980), as shown in Figure 2-7. However, the bubbles coalescence and disturbances will be 

addressed throughout the present investigation. 

 

Figure 2-7: Description of film thickness parameters in vertical annular flow (Taitel et al., 1980). 
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Pringle et al. (2015) performed an experiment to investigate the effect of pipe diameter on the 

behaviours of Taylor bubbles and their stability in two vertical tubes with different internal 

dimeters (0.121 m and 0.290 m) and a height of 9.3 m, using high-speed digital cameras. The 

authors observed stable Taylor bubbles in a bigger pipe, which had not previously  been 

reported in the literature. Although their Taylor bubble observations were novel, the bubble 

rise rate measurements only matched when the gas injection was cut. This means that there 

was no flow and the condition of the column was stagnant, and also there was no bubble 

break and coalescence mentioned, which is the main cause of the flow instability. The present 

study aims to critically investigate the main cause of the flow instability. 

 

2.4 Flow Pattern Modelling 

Gas-liquid two-phase flow is commonly faced in the petroleum, chemical, and geothermal 

industries. For example, in the petroleum industry, there are certain complex problems related 

to two-phase flow behaviours in pipes, vessels and artificial methods. This includes the 

calculation of flow rate, liquid holdup and pressure loss. These factors are crucial in the 

design of production vessels, starting from the section of production tubing in the oil well to 

other surface facilities. Gas-liquid two-phase flow in vertical pipes can be classified into five 

main patterns: bubbly, slug, churn, annular and dispersed flow (E.Brown and Beggs, 1977). 

However, there is no single model to capture all these flow pattern behaviours due to their 

complexity. For that reason, several attempts have been undertaken over the years since the 

1950s to model gas-liquid two-phase flow. Previously, (Hasan and Kabir, 1988) have 

developed a physical model to predict the multi-phase flow patterns in vertical pipes and 

analysed the transitional flow patterns under hydrodynamic conditions. They have reported 

that the difference between flow patterns depends on the depth of the vertical well, which 

near the bottom-hole may only have a single phase. Moreover, as the fluid flows upward in 

the vertical pipe, its pressure decreases gradually until it reaches a point less than bubble 

point pressure, where the gas starts to vaporise from the fluid mixture, and then the flow 

patterns – bubbly flow, slug flow, churn flow and annular flow – will be created respectively, 

as shown in Figure 2-8.  
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Figure 2-8: Flow pattern transitions in vertical pipe (Hasan and Kabir, 1988). 

 

Bordalo and Gaspari (1997) conducted an extensive analysis to determine the most suitable 

conditions to stabilise the upward flow in a vertical pipe and also analyse the flow instability, 

especially for the annular flow regime. The authors used two approaches: a transient flow 

model that treats phases individually and a linear analysis known as Akin, which was 

developed by Kelvin-Helmholtz. Both models took into account the effect of the gas 

compressibility factor in the calculations and how it could influence the prediction within 

interphase and patterns of two-phase flow as shown in Figure 2.9. The results showed that the 

gas compressibility had a considerable effect on flow instability and it was the main 

governing parameter. 
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Figure 2-9: Pictorial presentation of vertical annular, intermittent and churn flow (Bordalo and Gaspari, 1997) 

 

Furthermore, they reported that as the gas compressibility decreased, the system became 

unstable. Moreover, the gas critical flow rate does not rely on the liquid flow rate, but is 

dependent on the gas compressibility due to the unstable behaviour of the gas, reaching 

equilibrium quickly (quasi-steady flow). Therefore, the flow stability might depend on the 

gas composition (molecular composition and flow pressure and temperature). The authors 

concluded that the surface tension has a positive effect but at low rates only; however, the 

compressibility is the stabilising parameter, particularly in vertical annular flow at high 

velocities, because it dominates the interphase fluid system.  

 

(Asheim, 1999) developed an analytical solution to predict the dynamic behaviour of multi-

phase flow in the gas lifted wells in comparison to the commercially available simulator 

OLGA. His analytical solution includes flow friction, interface slippage and certain 

assumptions in the physical system that is known as the gas lift pumps. This system consists 

of a vertical pipe submerged in liquid, with gas injected at the bottom inlet. These 

assumptions have reservoir pressure and outlet pressure as constants, and the fluid flow is 

assumed incompressible.  
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In addition, the author has stated that OLGA gave good predictions for steady state fluid 

behaviour compared to his analytical solution; however, there were different predictions in 

the dynamic conditions, especially when his analytical solution showed certain oscillations 

that the OLGA simulator did not predict. It seems that his analytical solution was developed 

only for gas lift pumping research purposes rather than for application to practical gas-lift 

design and operation. Therefore, no field trial or experiment or any application cases were 

reported. On the other hand, Grimstad and Foss (2014) developed a non-linear two-phase 

flow model of an oil producing well with gas lift. This model was based on several 

assumptions and topside measurements to estimate the well flow rates and downhole 

pressure. Despite the fact that the model gave good agreements with downhole pressure, no 

details were mentioned about the prediction of flow instability within the gas lift system. 

 

Moreover, another study was carried out by Waltrich and Barbosa (2011) who investigated 

the liquid loading in a synthetic vertical well by using the market-leading software package 

and two research codes; the first code is known as GRAMP, which is used for steady state 

flow with one-dimensional and two-phase flow in a vertical pipe. The second code is known 

as HyTAF and it is used for transient flow with one-dimensional, upward co-current annular 

flow. They focused on the capabilities and limitations of these simulators and how to capture 

the onset liquid loading and to diagnose the following characteristics in a vertical pipe, as 

shown in Figure 2-10: pressure drop and liquid up profiles, the transient between churn and 

annular flow and liquid droplets and flow reversal characteristics. 
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Figure 2-10: Mass transfer mechanisms between phases in annular flow (Waltrich and Barbosa, 2011). 

 

In addition, Waltrich and Barbosa (2011) have stated that the GRAMP code is reliable in 

measuring the experimental pressure gradient during the steady state conditions for annular 

flow; however, the authors have shown less confidence in liquid hold up and liquid film 

velocities. On the other hand, they have suggested that the HyTAF code was not able to 

capture pressure waves and transient flow in a vertical pipe, which is very important to solve 

in research on gas lifted wells.  

Moreover, a previous attempt was carried out by Waltrich et al. (2013), where they compared 

several transitional models for slug, churn and annular flow regimes with their visual 

experimental observations in 0.048 m ID, 42 m length vertical pipe under operating 

conditions where slug, churn, and annular were observed. Results showed a reasonable 

agreement with the models. Also, they confirmed the existence of churn flow regime as a 

separate flow regime. However, the flow structure frequency did not show significant 

variation for gas velocities between 0.2 and 1.6 m/s. One model was proposed by Jayanti and 

Hewitt (1992) for slug to churn transition triggered by flooding in the Taylor bubble as gas 

superficial velocity; they studied the critical value at which Taylor bubbles developed as 

shown in Figure 2.11. The present study aims to investigate the relationship between 

behaviours of Taylor bubbles and the flow instability within two-phase flow and propose new 

technique to remedy its development.  
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Figure 2-11: The development of Taylor bubble (Waltrich et al., 2013). 

 

2.4.1 The Effect of Bubble Velocity on Bubble Size 

The bubble rise velocity is an important parameter that characterises the bubble behaviours 

and most of the previous research studies have investigated the bubble rise velocity on single 

isolated bubbles. However, the hydrodynamic behaviours of an individual bubble in a gas-

liquid system generally differ from those of a single isolated bubble due to interactions with 

its neighbouring bubbles. Because the mechanism of bubble-bubble interactions is extremely 

complex, the bubble rise velocity could affect the bubble shape, bubble coalescence process, 

breakup, bubble size distribution, and gas-liquid interfacial area. Therefore understanding the 

velocity of the bubbles rising could provide significant innovation of the bubble-bubble 

interaction mechanism (Zhang and Fan, 2003, Tan et al., 2013). Furthermore, another study 

by Liu et al. (2016) investigated the terminal rising velocity of a single bubble in stagnant 

water and glycerol aqueous solution using high-speed photography and digital image 

analysis. The results showed that the bubble terminal velocity increases while the aspect ratio 

decreases in water, and does so almost linearly in the region where d < 0.83 mm. However 

the terminal velocity and aspect ratio tended to scatter, especially when the diameter of 
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bubbles was in the range of 0.8-6 mm. The authors concluded that the terminal velocity 

increases gradually with increasing bubble diameter. 

In addition, Acuña and Finch (2010) carried out a study to identify and track individual 

bubbles flowing in a bubble swarm with diameters ranging between 0.2-5 mm using a 2D 

column, slot-type spargers, a digital high-speed camera and image analysis software 

developed for tracking multiple moving objects. The results showed that 60,000 bubbles were 

matched and tracked per test. Further, the faster moving large bubbles speed up slower small 

moving bubbles less than 2.5 mm. On the other hand, Krishna et al. (1999) performed 

experimental work to investigate the rise velocity of a swarm of bubbles in a bubble column 

operating in churn flow regime and proposed two correction factors. 

 

These correction factors are represented by the scale correction factor (SF), which takes into 

account the influence of the column diameter as a function of the ratio of bubble 

diameter (𝑑𝑏) to the column diameter (𝐷𝑇), and the second factor is known as the correction 

factor (AF) which considers the increase in rise velocity of the bubble due to its interaction 

with the wake of a bubble preceding it. The authors found that increasing liquid viscosity 

reduces the wake acceleration effect and the large bubbles’ swarm velocity increases six 

times more than a single isolated bubble. Although their investigation results showed good 

agreement with the volume-of-fluid (VOF) simulation, they did not notice any pressure 

fluctuations due to bubble breakup when the velocity increased.   

Azzopardi et al. (2015) reported that the use of the capacitance techniques, which consist of 

electrodes mounted on the side or the outside of an acrylic resin pipe of 67 mm diameter, 

improves the drift equation for bubble rise velocity, which is quite different from the present. 

This has also helped to make a useful observation of the flow. The authors have suggested 

that the void fraction, the mean void fraction in the slug region, the dimensionless length of 

the liquid slug, all increase with the reduction of the gas superficial velocity. On the other 

hand, when the gas superficial velocity increases, the Taylor bubble velocity increases as 

shown in Figure 2.12. Consequently, a new version of the drift flux equation for bubble 

velocity was proposed and was found to perform well against the present data derived from 

the literature. This new approach to calculate the Taylor bubble superficial velocity proves to 

be more accurate, as it takes into account the shape of the nose of the Taylor bubbles, which 

is affected by the small bubbles in the liquid slug (Abdulkadir et al., 2014a). 
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Figure 2-12: Predicted and measured Taylor bubble velocities (Azzopardi et al., 2015). 

 

2.5 Multi-phase Flow in a Vertical Pipe 

Multi-phase flow is when various fluid phases (oil, water and gas) are flowing together 

simultaneously. This type of flow is characterised by its abnormal behaviours (concurrent 

movement of three phases or more such as solid). According to the visual appearance of the 

flow, flow regimes play a role in categorising the flow development depending on the 

geometry and direction of the multi-phase flow domain, and whether that is vertical, 

horizontal or inclined). In addition, when this type of flow reaches a fully developed flow, it 

causes huge oscillations and interactions in the pipe, which can lead to unstable operational 

conditions. This has a negative impact on the oil production, as it significantly decreases the 

amount of crude oil produced by the wells. For example, during a gas-lift system process in 

the oil industry, fluid flow instabilities occur when the gas is injected into the production 

tubing and mixed with the reservoir fluid (Guet and Ooms, 2006).  

Another approach by Duns Jr and Ros (1963) demonstrated that pressure losses in gas-liquid 

vertical flow do not always increase the oil production due to the gas in the tubing tending to 

slip through the liquid phase without lifting the whole liquid in the pipe. The focus of these 

studies was centred on how to predict the characteristics of multi-phase flow behaviours 

during the process, which is very critical and complex. Therefore, this research work is aimed 

at developing a new approach or technique in order to optimise and stabilise the multi-phase 

flow in gas-lift systems. 
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Previously, different studies had been carried out to study the multi-phase characteristics, 

including that of Descamps et al. (2007), where they performed a multi-phase flow (oil-water 

and air) experiment in a vertical pipe using optical fibre probes. The main aim of this study 

was to investigate the phase inversion phenomenon region. This phenomenon occurs when 

the continuous phase changes to a dispersed phase and vice versa. The authors mentioned that 

the pressure gradient and pressure increase when they reach the phase inversion region and 

observed that the dispersed phase (oil and water) had a major effect on bubble size. In 

addition, the authors reported that the gas flow rate has a significant effect on the distribution 

of oil and water phases in the cross-section of the vertical pipe. Despite the fact that this 

research demonstrated extensive understanding of the multi-phase flow behaviours, the study 

did not provide enough specific information about bubble shapes using these two-point 

probes and failed to discover the main cause of inversion phenomena. Their approach was not 

practically applicable to real oil fields, because putting any tool such as a ring inside the 

production tubing would create a restriction to the flow from the reservoir to the surface and 

for wireline unit operations. Therefore, another method should be developed for injecting the 

gas into the column without causing any restriction to the vertical column.     

In addition, another attempt was reported by (Zabaras, 1994) to develop a new method to 

predict pressure profiles of a multi-phase flow in a vertical pipe. This method includes flow 

pattern transition criteria, and models to calculate pressure loss and liquid hold up for each 

flow pattern in the vertical pipe. Furthermore, the author applied a method based on 

physically modelling multi-phase flow in the calculations, which divided the pipe into several 

segments from bottom to top or vice versa, and involved calculation of pressure and 

temperature. Also fluid physical properties of gas, oil and water were calculated for each 

segment. The authors used a convenient pressure gradient model to determine average 

pressure drop for every segment. This obtained pressure drop and considered the pressure and 

temperature. Although the study provided sufficient data of the pressure drop, however did 

not mention how to reduce the pressure drop along the pipe, which can cause the 

development of flow and flow instability.  

 

On the other hand, Kaji et al. (2009) investigated the slug flow pattern using gas and liquid at 

different flow rates and at different vertical riser axial lengths, with similar pipe diameters: 3a 

.5 m riser with 51.2mm ID and a 9 m riser with 52.3 mm ID. The authors’ approach was to 
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use a wire mesh sensor and ultrasonic flow in order to determine the void fraction of Taylor 

bubbles as shown in Figure 2-13, liquid slug lengths, and slug frequency for a slug flow 

regime. Their study made a remarkable contribution to two-phase flow in vertical risers, 

however, it did not mention any details or observations regarding the Taylor bubble 

breakdown and backflow, which causes the flow instability phenomena in two-phase flow.  

 

Figure 2-13: The schematic model of slug flow pattern (Kaji et al., 2009). 

 

On a similar note, Kaji and Azzopardi (2010) investigated the periodic structure of two-phase 

flow in a 7m riser for a range of different pipe diameters (0.5 mm to 70 mm). They applied 

ring-type conductance probes to obtain film thicknesses, pressure gradients and frequencies. 

The authors reported that as the pipe diameter increased, the flow transitional regions (slug to 

churn transition and churn to annular) clearly occurred. Their results relied only on the visual 

observations of flow regime transitions and periodic structures, but they did not focus in their 

investigations on any variables that were dominant in causing abnormal two-phase 

behaviours or periodic structure and flow instability. 

Another attempt to study two-phase behaviour was carried out by Szalinski et al. (2010). The 

authors employed a wire-mesh sensor as shown in Figure 2-14 in a vertical transparent 6 m 

pipe with ID of 67mm using air/water and air/silicone. They reported that the void fraction 

time series of cross-sectional figures was used to characterise amplitude and frequency space. 

Furthermore, volume fraction profiles and bubble size distribution were determined and then 
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both scenarios were compared. These data were then processed to identify the flow patterns 

for each flow rate. Interestingly the bubbles in the air/water tended to be larger than those in 

air/silicone under similar operational conditions and superficial velocities. Even though the 

results of the study were promising in understanding the behaviour of two-phase flow in a 

vertical column, and determined important relationships between variables, and the system 

recorded acceptable data for both liquids with different densities, the transitional regions 

from slug to churn and churn to annular could not be ‘predicted’, and these flow regions are 

where oscillations are dominant and cause unstable flow.    

 

 

Figure 2-14: A wire-mesh sensor (Szalinski et al., 2010) 

 

Furthermore, Alamu and Azzopardi (2011) demonstrated drop concentration frequency by 

using a laser diffraction technique and a light scattering technique on ID 19 mm, 7m length 

vertical pipe. This study used air and water as the working fluids and their experiment 

operated at 13-43 m/s for gas superficial velocity and 0.05 to 0.15 m/s for liquid velocity. 

Their main research focus was on annular flow regime and they analysed the fluctuation of 

drop concentration and film hold up with time and reported that flow structure frequencies 

showed that wave frequency was higher than drop frequency. Moreover, they observed that 

there was a link between coalescence rate and turbulent diffusion Figure 2-15. 

 

   Wire-mesh sensor 
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Figure 2-15: Collision field and coalescence of drops in annular two-phase flow (Alamu and Azzopardi, 2011). 

 

Although their study was comprehensive and used advanced techniques to determine drop 

concentration and frequency and flow structure frequencies on an annular flow regime, it did 

not provide clear evidence about the main cause of bubble collapse: bubble distributions and 

flow instability, especially at the transitional regions. In addition, Xu et al. (2012) carried out 

multi-phase flow (oil, water and air) experiment in a vertical pipe to investigate the effect of 

gas injection pressure on multi-phase flow and the average in situ phase fraction. The results 

indicated that gas injection pressure had a small effect on the phase invasion phenomena and 

the average in situ gas fraction decreased when the phase invasion point was reached. 

Moreover, injecting gas into a liquid phase (oil and water) reduced the gravity gradient. This 

caused the total pressure gradient to drop in the vertical column. However, the gas phase can 

increase the mixture velocity, which raises the fractional pressure. Although there was little 

agreement between the experimental data, the available prediction methods for multi-phase 

flow pressure gradient still gave poor predictions, due to assumptions in the methods 

considering the flow as homogenous or oil and water as a single phase. The total pressure 

gradient, which includes gravity pressure and fractional pressure, can be calculated for fully 

developed three-phase dispersed flow in a vertical pipe.  

 



30 

 

Abdulkadir et al. (2014b) examined two-phase flow behaviour in a vertical riser of 6 m with 

67 mm ID using electrical capacitance tomography (ECT) and a differential pressure 

transducer. Their main research focus was particularly on the slug flow regime and they 

determined the velocity of Taylor bubbles, liquid slugs, the slug frequencies, and the length 

of Taylor bubbles, liquid slug, void fraction with Taylor bubbles, liquid slug, and liquid film 

thickness. In this experiment, the film thickness could not be measured using ECT directly. 

 Although their investigations were precise, the bubble dispersion, backflow after Taylor 

bubbles collapsed, and distribution of Taylor bubbles, which are the main causes of flow 

instability and chaotic behaviour in the transitional regions, were not mentioned in this study. 

A different approach was followed by Azzopardi et al. (2014) to investigate the Taylor 

bubbles that coalesced, and small bubbles formed in a 6.5 m riser with 240 mm ID using an 

advanced tomographic instrument on highly viscous liquid. The authors focused on slug flow 

regime and reported that as the void fraction increased rapidly, gas superficial velocity 

increased at low gas flow rate, however it rose slowly at higher gas velocities. Despite the 

fact that they used advanced instruments for their measurements in this experiment, 

dispersion and backflow of Taylor bubbles, and bubbles collapsing (especially at the 

transitional region) were not investigated.  

 

2.6  Gas Lift Flow Instability 

Continuous and intermittent gas lifted wells have very abnormal fluid behaviours and 

unstable operating conditions. Because of the development of two-phase flow in these gas lift 

systems small fluid perturbations can develop into big fluctuations and flow oscillations 

along the production tubing. In addition to this, most gas lift wells in the oil fields use gas lift 

single (sharp edge) orifice valves and (Nova) venturi valves, and these types of valve operate 

in subcritical flow conditions at the injection point and causing subcritical operating 

conditions especially at low differential pressure between tubing and casing pressure. This 

leads to uncontrolled cyclic operating conditions of the flow. As a result of this, there is a 

reduction in the total oil production from this method along with other disadvantages. First, 

the pressure surges in the surface production facilities can cause serious operational problems 

such as the gas compressor shutting down. Second, gas allocation and distribution to other 

wells becomes difficult. This may affect the overall measurement of production rates when 

these wells are tested (Alhanati et al., 1993). According to Guet and Ooms (2006), there are 
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several fluid-flow phenomena influencing vertical gas-liquid flows. Figure 2.16 demonstrates 

the flow instability in a gas-lift system. The flow instability effects contain the radial 

distribution of void fraction, flow regime changes and system stability problems. The main 

instabilities in the gas-lift system are due to changes in tubing pressure when the gas pressure 

is not high enough. If the injected gas pressure becomes higher, then the flow can be critical. 

The gas lift valve port size cannot be too large, as this can cause considerable instability 

(Bellarby, 2009). 

 

 

Figure 2-16: Gas-lift instability (Guet and Ooms, 2006) 

 

The flow instability of the gas lift method can be classified into two types depending on the 

degree of its severity and impact in the entire gas lift system: microscopic and macroscopic 

flow instabilities.  
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2.6.1  Microscopic instability 

Every two-phase flow in a pipe has small-scale flow instability and perturbations due to 

bubbles forming and collapsing during the flow of the liquid phase and gas phase together in 

the same path. The hydrodynamic slugs always occur in two-phase flow but are considered as 

disturbances and would not cause any trouble within the system. These are known as 

microscopic instabilities, and happen locally within the liquid-gas interface (Hu, 2005). In 

gas-lift optimisation, the critical parameter for greater efficiency is ‘the bubble coalescence 

and breakup effects’. Wu et al. (1998a) considered five mechanisms responsible for bubble 

coalescence and breakup. The mechanisms are coalescence due to: random collisions driven 

by turbulence, breakup due to impact of turbulent eddies, coalescence due to wake 

entrainment, breakup of large cap bubbles due to interfacial instabilities and shearing-off of 

small bubbles from cap bubbles. There is a relative velocity between single gas bubbles and 

the liquid in the pipe resulting in gravity and drag force. Gravity is the main force for large 

bubbles and therefore, as bubble size increases, so too does bubble terminal velocity. Also the 

terminal velocity is changing constantly because of the changes in bubble shape in the pipe, 

affecting the drag force coefficient (Guet et al., 2004). 

The void fraction is defined as the ratio of the volume of gas to the volume of liquid 

occupying the pipe. According to Guet and Ooms (2006), the void faction radial profiles 

depends on the flow conditions. This was demonstrated at the peak near the pipe wall or at 

the centre line. The authors suggested that the void fraction radial profile evolves from a 

wall-peak to a core-peak trend as the gas input increases. However, Koide et al. (1968) 

showed that the bubble size  can be increased with gas input and the type of gas injection 

point. A further study by Liu (1997) considered the effect of bubble size and gas injection 

rate separately under certain operating  conditions. The author concluded that as gas input 

increased, the bubble size increased. In the study of Taitel et al. (1978), different models for 

each flow were used in predicting the void fractions and the pressure drop. Further work 

undertaken by Taitel et al. (1980) demonstrated that small bubbles coalesce to create Taylor 

bubbles and the void fraction in this flow regime is at least 0.25. 
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2.6.2  Macroscopic instability 

This type of flow instability is called systematic instability and it involves the entire two-

phase flow system and depends on the boundary conditions. The systematic flow instability 

can cause serious flow oscillations within the system. In most cases, these oscillations are a 

major cause of production losses and are harmful to operational smoothness, safety and 

efficiency (Hu, 2005). Therefore, several experimental investigations and attempts have been 

conducted throughout the literature to understand the main cause of two- and multi-phase 

flow macroscopic instability. Another  previous attempt by Gilbert (1954) performed a study 

using vertical performance curves, inflow performance curves and bean (choke) performance 

curves to analyse the behaviours of natural flowing fluid, especially for gas lift wells. The 

research focus was in understanding and distinguishing between flow patterns along a vertical 

pipe for petroleum engineers. The author demonstrated the fundamental effect of the depth 

pressure gradient in two-phase vertical flow by using gradient curves, which showed different 

ranges of gas-liquid ratios, rate of liquid flow and tubing sizes. The analyses were very useful 

and important for predicting the overall pressure gradient along the pipe. However, the author 

did not use any technique to reduce the flow oscillations in production tubing in the gas lifted 

wells and natural flow wells. 

A previous study by Poettman and Carpenter (1952) was conducted to develop correlations 

and calculations for predicting the overall pressure gradient for multi-phase flow of gas and 

liquid through a vertical pipe, considering flowing bottom-hole pressure, down-hole pressure 

(DHP), the depth at which gas is injected into the well, injection rate, the ideal horsepower 

needed to lift the oil to the well surface, production rate and tubing size. However, the 

authors neglected the gas flow rate in the casing annulus, which affects the tubing pressure in 

this study. Another approach by Bertuzzi et al. (1953) tested the gas lift well performance 

under specific conditions by reducing the tubing diameter to ¾ of an inch and observing the 

gas injection at a certain injection point. The results showed that the surface gas injection 

pressure was regulated by the flow rate controller valve, however, there was no packer in the 

well to seal the casing annulus between the casing and tubing. Thus, the system pressure was 

minimised and the valve’s injection depth could be changed. The operating conditions could 

also be changed by lowering and raising the tubing, depending on the productivity index of 

the reservoir (PI) and hydrostatic fluid level in the tubing string. The gas lift valves can be 

adjusted before installation. However, these types of valve could not be controlled in the 

opening and closing positions from the surface, since the valves were operated under 
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pressurised conditions. Thus, this approach led to unstable flow rate (unsteady state 

conditions), which affects the vertical performance.  

 

Hagedorn and Brown (1964) conducted an experiment to investigate the effect of viscosity on 

pressure gradient in two-phase flow along a vertical pipe. The experiment consisted of 1¼ 

inches tubing diameter and 1500 ft length. The authors considered different variables in their 

investigations such as air injection pressure, temperature and surface pressures. The results 

showed that when the liquid viscosity was less than 12 cp, the influence on the flow rate was 

low. However, when it was above 12 cp, it caused huge reductions in the liquid flow rates, 

especially when the flow reached the laminar flow regime. As result of this, there was 

remarkable energy loss due to friction. Therefore, liquid viscosity must be taken into account 

in any two-phase flow investigation, because it increases the friction within fluid interfaces.  

The authors reported that liquid viscosity plays the main role in increasing fractions within 

the liquid phase and raises slippage between the gas phase and liquid phase. Furthermore, 

when flow rate was low, slippage in the fluid interfaces was observed, which causes velocity 

distribution inside the liquid phase, because of the effect of the pipe wall. The authors 

concluded that as liquid viscosity decreased, the slippage and friction of the interface 

decreased. In addition, as the gas-liquid ratio increased, the slippage decreased, especially at 

high rates, and this led to an increase in energy losses due to friction. 

On the other hand, Asheim (1988) developed two gas lift stability criteria: inflow response 

and pressure depletion response. Firstly, the inflow response criterion dictates that when the 

reservoir fluid reaction (PI) is fast and sufficiently sensitive to the tubing pressure, then the 

reservoir fluid will flow into the tubing column quickly and then increase the fluid mixture 

density as the tubing pressure decreases. This leads to an increase in tubing column pressure, 

thereby stabilising the well. This inflow instability criterion can be expressed as shown in 

equation (2-2). 

                                           

            𝐹1 =
𝜌𝘨𝑠𝑐 𝐵𝑄 𝑞𝘨𝑠𝑐

2

𝑞𝐿𝑠𝑐

𝐽

(𝐸𝐴𝑖)2
> 1                                                                       (2.2) 

Where: 
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𝘱𝘨𝑠𝑐 = Gas lift density at standard surface conditions, Kg/𝑚3, 𝑞𝑔𝑠𝑐 = Flow rate of lift gas 

at STD conditions, m3/𝑠 . 𝑞𝐿𝑠𝑐 = Flow of liquids at STD conditions, m3/𝑠 J = Productivity 

of reservoir STDm3/𝑠 . 𝑃𝑎. E = Orifice efficiency factor, here assumed to equal 0.9, A = 

Injection port size, m2, 𝐹1
 =  inflow response criterion. 

Secondly, the pressure depletion response criteria occurs when tubing pressure decreases; 

then gas injection flow rate will increase as well as liquid flow rate. This  leads to a reduction 

in the tubing pressure and also a drop in the casing annulus pressure. Therefore, if the annulus 

pressure is depleted faster than the tubing pressure, this will minimise the differential 

pressure between the tubing and casing annulus and gas lifting rate, thus stabilising the well. 

This pressure depletion response criterion can be expressed as shown in equation (2-3): 

 

                      𝐹2 =  
 𝑉𝑡

𝑉𝑐

1

𝘨𝐷

𝑃𝑡

(𝜌𝑓𝑖−𝜌𝑔𝑖)

𝑞𝑓𝑖+ 𝑞𝘨𝑖

𝑞𝑓𝑖(1−𝐹1)
> 1                                        (2.3) 

Where: 

𝐹2 = pressure depletion response criteria,  𝑉𝑡 = tubing volume downstream of gas 

injection point, m3, 𝑉𝑐 = gas conduit volume, m3, g = acceleration of gravity, m/s2, D = 

vertical depth to injection point, m, 𝑃𝑡 = tubing pressure, Pa, 𝜌𝑓𝑖  = reservoir fluid density at 

injection point, kg/m3, 𝜌𝑔𝑖 = lift‐gas density at injection point, kg/m3, 𝑞𝑓𝑖 = flow rate of 

reservoir fluids at injection point, m3/sec, 𝑞𝘨𝑖 = flow rate of lift gas at injection point, m3/sec.  

Furthermore, Alhanati et al. (1993) investigated the stability criteria proposed by Asheim 

(1988) and then stated that certain assumptions were not correct, because some gas lift 

components were neglected in Asheim’s criteria, such as gas injection choke, tubing-casing 

annulus and subsurface gas lift valves, especially at low flow rate and gas-liquid ratio (GLR). 

Furthermore, the gas-liquid ratio of reservoir fluid is less than the gas-liquid ratio during the 

gas lifting process, because the gas liquid ratio of the gas lift method is equal to the reservoir 

GLR plus the injected gas ratio. Therefore, the formation’s response to well-bore should not 

be neglected. Moreover, Alhanati suggested a simple and reliable full transient simulator, 

with low accuracy and not for design purposes. The authors recommended unified criteria for 

continuous gas lift instabilities, including the reservoir dynamic response to bottom-hole 

pressure variation which Asheim (1988) had neglected. 
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Ter Avest and Oudeman (1995) developed a dynamic gas lift simulator to aid in the diagnosis 

of gas lift problems associated with the casing heading stability problem. The simulator 

includes valve model to capture gas passage through gas lift valve. The main goal of the 

developed simulator was to improve the gas lift performance curve and optimise the 

unloading procedure. The results showed that when gas injection rates were low, wells 

became unstable. However, at high gas rates, the pressure drop along the production tubing 

was dominated by the friction of phases. In addition, the optimisation of gas injection port 

size was an important parameter. However, reducing the port size of the gas lift valve is not 

the solution for two-phase flow instability, because it will decrease the gas flow rate and 

pressure passage upstream to downstream (tubing), which will thus reduce total oil 

production from this method, regardless of the simulator predictions of improved gas lift 

performance. However, a technique should be developed to optimise two-phase flow unstable 

behaviours at the same time as not increasing the backpressure to the casing annulus or to the 

tubing from the wellhead at the surface. 

 

Another approach by Bordalo and Gaspari (1997) improved an extensive analysis to 

determine the most suitable operating conditions to stabilise upward two-phase flow in a 

vertical pipe. The authors analysed the flow instability, especially for annular flow regime as 

shown in Figure 2-17. The authors used two approaches in their investigations: a transient 

flow model, which treats phases individually, and a linear analysis called Akin, which was 

developed by Kelvin-Helmholtz and is one-dimensional. These two methods considered the 

effect of gas compressibility in the calculations and predictions within interphase. The 

authors stated that gas compressibility has a considerable effect on the stability of two-phase 

flow, and is the main governing parameter.  



  

37 

 

 

Figure 2-17: Pictorial presentation of vertical annular, intermittent and churn flow (Bordalo and Gaspari, 1997). 

 

The unloading process and type of gas lift valve have a major impact on fluid behaviours. 

Another practical attempt by Faustinelli et al. (1999) investigated the performance of the 

Nova gas lift valve and conventional (square edge) orifice gas lift valve to eliminate two-

phase flow instability and minimise fluctuations of tubing pressures in continuous gas-lift 

wells. The authors indicated that the casing heading and the flow fluctuations within gas lift 

systems occur due to subcritical flow conditions at the injection point. This process occurs 

when there is low differential pressure between the casing pressure and tubing pressure. As a 

result of this, there is insufficient pressure differential to maintain critical flow conditions. 

These fluctuations can be monitored from a pressure and differential pressure recorder in the 

wellhead. Figure 2-18 shows pressure and differential pressure recorder charts. The red 

circular outer line is the tubing pressure when there is no gas injection to tubing (static 

pressure) and the blue fluctuating line is the differential pressure during gas injection to 

tubing (flowing injection pressure). This creates a critical flow conditions such as sonic 

velocity, critical pressure and critical temperature due to interaction between injected gas and 

reservoir fluids and development of two-phase flow when large gas bubbles collapse. This 

causes a huge pressure drop within two-phase flow. The authors stated that the Nova valve 

and square edge orifice valve have limitations under operating conditions. The authors 

mentioned that if the ratio obtained from dividing the tubing pressure (Pt) and casing pressure 

(Pc) is more than 0.9, then the Nova valve cannot handle and perform these critical 

conditions. However, it may be used if the ratio is between 0.6 and 0.9. 



38 

 

 

 

 

 

 

 

 

 

Furthermore, if the ratio is less than 0.6 then conventional (square edge) orifice valves can be 

used. However, these valves still require optimisation for every particular well and also have 

limitations, especially when the ratio is more than 0.9, when very severe fluid behaviours will 

occur as well as flow instability phenomena. Therefore, there must be another technique to 

reduce these fluctuations within fluid flow and increase oil production.  

Furthermore, Posenato and Rosa (2012) have proposed a procedure for the well unloading 

process through gas lift valves to eliminate erosion at the gas injection point due to liquid 

flow rate and pressure drop variations. This erosion causes an increase in port size diameter 

and gas injection rate to the tubing. Therefore, this leads to an undesired situation and 

vibrations due to cavitation, which happens after the valve throat due to pressure recovery 

and a huge pressure drop between upstream and downstream. These initial fluid behaviours 

are crucial in causing the severe oscillations and the flow instability in the entire gas lift 

system, even though the unloading process is important in the gas lift process. This protocol 

has worked with wells equipped with single gas lift valves. However, this procedure is not 

applicable for wells equipped with more than one gas lift valve due to the complexity of 

dynamic fluid behaviours that occurs in front of the injection point. Another similar study by 

Guerrero-Sarabia and Fairuzov (2013) considered the gas lift instability by using linear and 

nonlinear methods. The authors investigated the effect of the heading severity on the amount 

of production loss in gas lift systems. The results showed that as flow fluctuations due to 

heading severity increased, the production rate decreased. Thus, a new technique should be 

developed to solve this problem in gas lifted wells. 

  Figure 2-18: Tubing pressure fluctuations at wellhead pressure recorder (Faustinelli et al., 1999). 
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2.7 Gas Lift Optimisation 

The improvement in design of gas lift valves to achieve the optimum total oil production rate 

from an existing gas lift system is the main concern of many oil companies with low 

investment costs to increase oil recovery and maximise profit. The optimisation can be 

obtained from collecting data from gas lifted wells, including the design, well test data, well 

schematics and pressure surveys. There is very important well data that reflects the efficiency 

and optimisation of gas lifed wells, such as gas injection rate, formation GLR, total 

production, water cut, tubing pressure and casing pressure (Mantecon, 1993). 

The optimisation of a gas lift system aims to achieve the maximum oil production rate, profit 

and output under specified operating conditions. For example, the gas lift performance curve 

(LPR) of a gas lift well, as shown in Figure 2.19, indicates that the production rate increases 

considerably and reaches a peak at the beginning. Thereafter, it starts to decrease gradually at 

the same gas injection rate. This is because of the pressure drop increasing due to friction 

losses within the flow phases and pipe wall. This  leads to the development of two- phase and 

turbulent gas slugs along the pipe,  thus creating unstable operating conditions (Hu, 2005). 

 

Figure 2-19: Gas lift performance curve (Hu, 2005). 

 

Gas-lift optimisation principles were developed in the oil industry during the early 1950s by 

establishing the relationships between gas injection rate, gas injection pressure, the most 

efficient injection point, and the production rate from a particular well. These relationships 

enabled the creation of technical procedures, applications and standards for gas-lift design 
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methods. However these design methods need to be optimised and developed for further 

studies, especially in gas-lift design performance, to maximise oil production and to solve 

undesired flow instability problems that still occur in gas lift systems (Asheim, 1988). 

Optimising gas-lift systems is crucial in order to obtain the optimum production rate that can 

be achieved by a certain amount of gas injected into the system. This requires a better 

understanding of two-phase flow behaviours in production tubing (Yasin et al., 2014). The 

gas lift system operation conditions should be taken into account in any optimisation process. 

Figure 2.18 illustrates the bottom-hole pressure against the production rate of a typical gas lift 

in which the production rate increases greatly as the gas injection rate increases, then tends to 

stabilise before reaching a peak. The operating conditions can be classified into three ranges, 

when gas is injected into the well: an unstable, optimum (stable) and normal gas lift operation 

according to gas injection pressure as shown in Figure 2.20. The unstable region is where 

there are wide variations in injection pressure due to two mix phases of gas and liquid mixing 

with each other, and normally the stable region is subject to higher injection rates. The 

optimum gas lift region is when there is minimum a slippage of the gas phase. If there is an 

increase in injected gas, the production rate steadily decreases because the reduced 

hydrostatic pressure drop cannot compensate for the increased friction loss induced by the 

gas flow rate (Hatton and Potter, 2011).  

 

Figure 2-20: The effect of injection pressure on production rate using optimisation curve (Hatton and Potter, 

2011) 
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Furthermore, the gas lift valve performance is crucial in any optimisation protocol. Elldakli et 

al. (2014) and Decker (1993) investigated gas lift valve performance under different 

operating conditions and how this affected the overall unloading gas lift performance. The 

authors’ results indicated that the gas lift valves do not open fully during the lifting process 

and have certain restrictions in flow path due to the valve stem. This is because of lack of 

valve performance data and understanding the reaction of the valve with operating pressures 

considering load rate, stem travel, flow coefficient (Cv) and differential pressure ratio (xt)  

across the orifice inside the valve as shown in Figure 2.21. Therefore, the design and 

calculations of available gas lift valves must be developed in such a way that any restrictions 

that may affect the flow rate through the valve are avoided, and also static force balance 

equations are not applicable for this case. In addition to that, the stability of set pressure, 

vibration suppression and the overall stability that reduces total production from gas lifted 

wells must be considered. 

 

 

Figure 2-21: Components of gas lift valve (Elldakli et al., 2014) 

 

Fairuzov and Guerrero-Sarabia (2005) studied the effect of operating valve characteristics on 

the stability of gas lift systems for four different injection valve designs with fixed port sizes. 

The injection valves that were investigated were a square-edged orifice valve, a nozzle 

venturi valve, a fully open conventional gas lift valve and a gas lift valve operated in 

throttling range. The results showed that the first three mentioned valves had almost the same 

stability map regions and performance. In addition, the casing heading reduced partially at 
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any gas rate when the gas lift valves were operated in the throttling range. However, this 

required high casing pressure. In addition, it was difficult to achieve stability at low injection 

rates when the venturi valve was used. This was good evidence that the existing gas lift 

valves have limitations and should be developed.  

 

Furthermore, Rilian et al. (2012) investigated the performance of venturi  and  square edge 

orifice gas lift valves in two gas lifted wells. The aim of these investigations was to reduce 

the differential pressure between casing and tubing pressures to allow a greater amount of gas 

to flow from upstream to downstream as shown in Figure 2.22. As a result of this, the 

performances of both valves were different. In addition to that, the results showed that oil 

production increased partially. However, at the same time, gas injection rate rose 

considerably until it reached a point that affected the gas supply availability when the venturi 

valve was used. Therefore, the distribution of gas to other gas lift wells in the field must be 

taken into account when the venturi valve is used. 

 

 

 

Another previous attempt by Elldakli et al. (2014) developed the design of a conversational 

orifice gas lift valve (GLV) by modifying the (GLV) seat. This modification was achieved by 

changing the angle of the taper valve seat, as illustrated in Figure (2.23). Consequence, this 

seat modification reduced the required stem travel to allow a flow area equal to the port area. 

The results indicated that the modified design improved stem travel compared with 

Figure 2-22: Port profile of an orifice and venturi gas lift valve (Rilian et al., 2012) 



  

43 

 

conversational gas lift valves and also increased the volumetric gas flow rate through the 

valve. However, the ability of the modified design to stabilise the gas lift system was not 

mentioned during this experimental study. The stem travel can be calculated from port 

bottom radius (𝑟𝑝) and port top radius (𝑟𝑇). 

 

Figure 2-23: Comparison of sharp edged seat and modified (Elldakli et al., 2014). 

 

On the other hand, Chia and Hussain (1999) investigated gas lift systems with dual gas lift 

completion wells using the gas lift optimisation allocation model (GOAL), nodal analysis, 

gas lift databases and gas lift monitoring system (GLMS), also involving a modified wireline 

fishing technique for retrievable gas lift valves as shown in Figure 2.24 to maximise oil 

production from gas lifted wells. However, the authors’ optimisation processes encountered a 

number of problems related to emulsion, sand and multi-phase flow fluid behaviours. The 

authors highlighted the flow stream countercurrent to the formation of liquid stream. This 

action can create significant turbulence, which reduces gas lift efficiency. Furthermore, 

Mahdiani and Khamehchi (2015) investigated gas lift flow instability in several gas lift wells 

in the early stage of gas allocation optimisation and put it as a constraint or limit in injecting 

gas, considering the amount of available gas and the oil production rate in the field. The 

authors indicated that it was not necessary to stabilise gas lift wells by increasing the gas 

injection rate or even doubling it, because there are still some wells that have flow instability 

phenomena, even when gas injection rates are doubled. Therefore, other techniques should be 

developed to minimise this problem and optimise the multiphase flow behaviours.   
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Figure 2-24: The modified fishing technique was designed to tackle the tight dummy valve problem(Chia and 

Hussain, 1999) 

 

In addition, Mahmudi and Sadeghi (2013) developed a mathematical model to track the 

variation of several parameters during gas lift operations in different vessels. These stages 

began from the oil reservoir, gas lift valve, surface choke valve at the wellhead, and 

production separators and ended in the crude oil store tanks as shown in Figure 2.25. This 

model is connected with the Marquardt optimisation method and genetic algorithm to 

optimise the long-term economic return of the oil field. The results showed that when 

production lifetime is divided into consecutive intervals with gas injection rate, tubing 

diameter and separator pressures, the maximum net present volume increased.     
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Figure 2-25: The differential liberation continuous gases lift process (Mahmudi and Sadeghi, 2013). 

 

 

2.8  Gas Lift Feedback Control Systems 

The multi-phase flow behaviours (oil, water and gas) can be changed when transported 

upward in a vertical pipe, especially gas lift methods in the oil industry where this type of 

flow causes a reduction in the total oil production rate and serious operational problems in 

surface production facilities due to its flow instability. Therefore, there are several 

conventional approaches to manage these flow instabilities in oil wells, such as choking the 

flow in the wellhead, increasing the gas lift injection rate or changing the surface production 

facilities capacity to accommodate gas and liquid slugs that are produced from gas lifted 

wells. However, all these practical attempts are inefficient or expensive in over-design. In 

most cases, increasing the backpressure to the system from the surface is partially effective in 

minimising flow oscillations and reduces the oil production rate from the gas lift method 

(Forero et al., 1993). 
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In recent years, active feedback control systems have been introduced in the oil industry. A 

feedback control system is defined as a special control system for the inlet and outlet of the 

system. This can be achieved by either opening or closing surface valves, for example, inlet 

and outlet choke valves in the wellhead. The feedback control systems are based on certain 

settings and measurements of pressure, temperature, level or flow. Furthermore, these 

feedback control systems can be operated manually by setting certain points, or 

automatically. In addition, the automatic feedback can be controlled mechanically, 

electrically, hydraulically and electronically (Dalsmo et al., 2002).  

In addition, (Eikrem et al., 2002) developed two realistic gas lift systems models using the 

multi-phase flow simulator OLGA 2000. These control structure models were based on 

controlling input and output pressures on the gas lift systems. The first control structure 

model relied on measurements of the down-hole pressure and the second used the 

measurements of pressure at the top of the annulus. Despite both control structures being able 

to slightly increase oil production,  these control structures increase the backpressure to the 

system, which consequently necessitates more horsepower compressors and down-hole 

pressure measurements, and is not reliable because of harsh operating conditions in the well 

bore. Furthermore, these structures do not consider fluid behaviours in production tubing due 

to flowing of fluid with different densities upward of the vertical column.    

Furthermore, Eikrem (2006a) investigated different types of control structures for single gas-

lift wells. The author stated that all these control structures were examined by using 

simulation studies and verified by laboratory experiments; moreover, the author developed 

two control structure models for open-loop and closed-loop. The open-loop control structure 

controls the pressure drop across the upstream of the production choke by adjusting the 

opening of the well head production choke; and the closed-loop control structure controls an 

estimate of down-hole pressure of the well by adjusting the opening of the production choke 

by using an extended Kalman filter. In addition, the author presented another control 

structure for different gas lift completion, which is a dual gas lift to distribute gas between 

two tubing strings in the same well. Although these control structures can maintain the cyclic 

heading pressure in a gas lift well automatically. However, these feedback control systems 

increase the backpressure to the well. This leads to decreased oil production from gas lifted 

wells, as there are several parameters that affect flow instability, such as the development of 

two-phase flow and its density-wave along the vertical column. 
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Evers et al. (2009) constructed a laboratory experiment and used the OLGA simulator to 

investigate the effect of density wave instability in a continuous gas lift. The authors used a 

Smart choke algorithm in their experiment, which was developed by the Shell Oil Company 

to control the volumetric flow rate to reduce the density wave instability that occurs in the 

tubing column during the lifting process, thereby optimising oil production from the well. 

The Smart choke algorithm is an active control technique used to maintain a fixed total 

volumetric flow rate to a certain set point.  

The authors mentioned that the performance curves are used only for steady state conditions. 

Therefore, initial indications of oscillations and perturbation can be obtained from the curves, 

but not for fully developed flow behaviours. The authors reported that the density wave is 

distinguished clearly at low gas injection rates. OLGA simulation results showed that the 

small scale of frequency and cyclic flow behaviour caused density wave instability. As the 

flow rate increased, the fluctuations disappeared and the system stabilised slightly. The 

authors concluded that low bottom-hole pressure is recommended to prevent any possible 

damage to reservoir formation and to increase the ultimate recovery of the reservoir. 

Although the Smart choke algorithm increased the volumetric flow, this happens only when 

the pressure drop is measurable and the Smart choke algorithm could not be tested in their 

gas lift experiment because the downstream of the valve was opened to atmospheric pressure. 

  

In addition, Plucenio et al. (2012) have proposed a feedback control technique to suppress the 

oscillations during gas lift operations due to the casing heading and density wave phenomena. 

Even though the technique optimises the opening of the choke valve and gas injection rate to 

the casing annulus space by using a control algorithm, this technique increases the 

backpressure to the well bore, which restrict the reservoir’s natural flow. This restriction 

reduces total oil production from the well and there is a limitation in this technique’s reaction 

with downhole pressure during operation. This present study will develop new technique 

stabilize fluid behaviours by reducing bubble sizes .This leads to increase oil production from 

gas lifted wells without increasing backpressure or changing the gas compressors in the oil 

fields. 
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2.9  Summary  

This chapter provides a detailed description of the concept of the gas lift method for both 

continuous and intermittent methods. In addition, literature reviews of two-phase and multi-

phase flow in a vertical pipe show the development of the research over the years. This 

includes types of flow regime that may occur due to the development of this type of flow, and 

other attempts for modelling the flow patterns. This chapter also presents a clear explanation 

of the flow instability and its types within two-phase flow in the gas lift method and what has 

been done in the gas lift industry to optimise or improve gas lift valve performance. Finally, 

chapter two describes previous attempts and techniques that have been used to overcome the 

research problem. The present study aims to critically investigate the cause of the flow 

instability within two-phase flow in gas lifted wells. In addition, developing new technique to 

stabilise flow behaviours thus increase total oil production without increasing backpressure to 

the system or change the surface production facilities.  
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3 CHAPTER 3 

 

EXPERIMENTAL APPARATUS, SET-UP AND METHOD OF 

DATA PROCESSING  

 

3.1 Introduction 

This Chapter presents consequent of the designs, apparatus and set-up of the two-phase flow 

experiment. In addition, measurement techniques, procedure of rig operation and the 

experimental data processing have been descried. Furthermore, the upward two-phase flow 

behaviours, such as measuring the sizes of air bubbles and their velocities have been 

explained. These aimed at understanding the physics behind the fluid behaviours and to 

unravel the main cause of the flow instability occurrence. 

  

3.2 Experimental Apparatus Designs 

The real design of the gas lift method depends on several factors such as productivity index 

of the oil reservoir, depth of the well, the design settings and the accumulation of crude oil in 

the production tubing. The gas injection point (gas lift valve) can be located at the bottom of 

the production tubing up to 1000 m or more in some designs. This is based on the level of 

crude oil in the vertical production tubing and productivity index of the reservoir as shown in 

Figure 3.1. The vertical production tubing was simulated in 2 m long with a 66 mm ID to 

understand the fluid behaviours and the main cause of the flow instability within two-phase 

flow as these fluid behaviours repetitively occur along the vertical column.  
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Figure 3-1: the real design of gas lift method  

 

Under laboratory conditions this system was simulated by scaled down to 2 m and operated at 

different operating conditions to allowed the two-phase flow to develop and obtained the 

main fluid behaviours which causing the flow instability within the gas lift column. The 

following provides the apparatus that used during this investigation. Two experiments were 

therefore designed in this research investigation ; the first design was a small-scale 

experiment for visualization of fluid flow, as shown in Figure 3.2 and the second design 

presented in Section 3.3.2 was used for the main two-phase flow experiment, as shown 

Figure 3.3.  
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Figure 3-2: Small-scale fluid visualization design 
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Figure 3-3: Schematic design of two-phase flow apparatus 
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3.3 Experimental Apparatus and Set up 

3.3.1 Small Scale Visualisation Experiment: Design-1 

The purpose of the small-scale visualisation experiment was to determine the best visualise 

way to the fluid behaviour inside a PVC transparent pipe. This involved using different 

coloured lighting techniques to visualise the air bubbles in stagnant water by applying 

different lights colours (blue, green and white) under the test section before designing the 

large-scale two-phase flow experiment. This test was conducted to achieve the best and 

clearest view of air bubbles shapes and edges within the two-phase flow in the transparent 

PVC pipe and to avoid any light reflections from the surroundings. The small-scale 

visualisation experiment as shown Figure 3.4 consisted of a transparent PVC pipe (1) with an 

injection point (2), a small lighting cell (3) which was powered by batteries (4) and 

changeable small lamp (5) which was protected by a lighting cell housing (6) and a digital 

camera. The transparent pipe was 0.9 m long with a 66 mm ID and had an injection point of 

0.11m from the base of the pipe with a port size of 4 mm. The injection point was attached 

with a needle valve to enable the manual adjustment of the air flow rate to the transparent test 

section.  

 

Figure 3-4: Small-scale visualisation experiment setup 
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3.3.2 Two-Phase Flow Apparatus: Design-2 

The two-phase flow experiment rig as shown in Figure 3.5 consists of a 2 m long transparent 

PVC (Polyvinyl chloride) pipe (13) with an internal diameter of 66 mm and 76 mm external 

diameter. The transparent PVC pipe (13) also highlighted in Figure 3.6 was the test section 

for the two-phase flow investigation. As shown in Figure 3.5, the transparent PVC pipe was 

connected to the pipework in the loop by upper flange (12) with 120 mm OD and sealed with 

soft rubber. The air injection point (18) and its holder are designed to permit an easy change 

between the Multiple Nozzles Injection Technique (MNIT) and Single Nozzle Injection 

Technique (SNIT) as illustrated in Figure 3.7 by inserting them inside the injection point 

holder which is then closed by the other isolation valve. The liquid tank (1) was used to store 

water and as separator for separating air from water. Furthermore, the liquid phase (water) 

from the liquid tank (1) was circulated continuously and intermittently in this experiment 

loop by a 0.5 horse power (HP) centrifugal pump (17). It should be noted that throughout this 

investigation water was used as working fluid since the column of corresponding water in the 

petroleum production tubing has the highest hydrostatic pressure compared with crude oil. 

Therefore, lifting process of the crude oil column will be easier. As the density of crude oil is 

less than density of water. In addition, as the difference in density between the reservoir fluid 

and injected gas increases, the fluid behaviours become chaotic and unstable. This allows the 

researcher to investigate distinctly into this flow instability phenomenon. In comparison with 

using crude oil. Moreover, the health and safety issues in using flammable liquid are 

considered. 

The liquid flow rate was measured using digital flow rate meters in the inlet (8) and outlet 

pipe section (5). The inlet digital flow meter (8) was installed at the outlet of the pump after 

the bypass line (2). The outlet digital flow meter (5) was installed at the outlet line of the 

transparent PVC pipe (13) after the choke valve (9) at the top of the rig. Each flow rate meter 

consists of two parts: the meter and mount device and both flow rate meters. The flow rate of 

the inlet digital flow meter (8) and outlet digital flow meters (5) are ranged from 3 l/min to 

100 l/min and an accuracy of +/- 5%. The two pressure gauges used in the two-phase flow 

experiment ranged from 0 to 60 psi. The inlet pressure gauge (14) was connected to the inlet 

pressure sensor (19) while the outlet pressure gauge (6) was connected to the outlet pressure 

sensor (11). The inlet temperature sensor (20) measured the initial temperature of the two-

phase flow before entering the transparent PVC pipe (13) while the outlet temperature sensor 

measured (10). The inlet and outlet temperature sensors were connected to a digital 
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thermometer (4), installed in the front panel of the two-phase flow rig. A Cannon Eon high-

speed digital camera (16) with 18-551:3.5-5.6 IS zoom lens was used to capture the fluid 

behaviours in the transparent PVC pipe (13). The Cannon Eon high-speed digital camera (16) 

had a resolution of 3456 x 2304, and frame rate of 60 frames per second. 

 

Figure 3-5: Two-phase flow apparatus simulating gas lift system 
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Figure 3-6: Schematic diagram of transparent PVC simulated the gas lift column 
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Figure 3-7: Multiple nozzles injection technique (MNIT) and single nozzle injection technique (SNIT) 

 

3.4 Design of Multiple Nozzles Injection Technique (MNIT)  

As shown previously in Figure 3.7, is essential part of this investigation since the 

determination of the diameter and distribution of orifices in the head of the gas lift valve is 

critical. This could affect the behaviours of the upward two-phase flow, gas injection rate and 

gas injection pressure considerably. It should be thus estimated as accurate as possible and 

compared with the design of previous investigators (Faustinelli et al., 1999) that used they 

used the sharp edge orifice valve, which uses a Single Nozzle Injection Technique (SNIT). In 

addition, both these techniques must have the same geometrical dimensions in terms of 

diameter and total area to achieve a reduction of two-phase flow instability, which still occurs 

even when the orifice valve is used. The nozzle diameter used in the multiple nozzles 

injection technique in this work was 1 mm, giving a geometric area shown in Table 3.1:   

 

SNIT technique  

O-ring  

MNIT technique  

Single orifice  
Nozzles  
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Table 3-1: Geometrical dimensions of each orifice 

Geometric parameter 
Single orifice 

(SNIT) 

Multiple nozzles 

(MNIT) 

No. of orifice 1 5 

Total Diameter   (mm) 2.24 2.24 

Total area   (mm2) 3.93 3.93 

 

The following sections provide the procedures that were used in operating the two apparatus: 

Design-1 and design – 2. 

 

3.5 Procedure of Rig Operation 

 

3.5.1 Small-Scale Visualisation Rig: Design-1 

The procedure was followed systemically utilising the set-up rig shown in Figure 3.4, in order 

to find the white lighting source was the best lighting colour in terms of enabling a clear view 

of the bubble shapes and their edges when recorded with a digital camera. Additionally, light 

reflection was avoided when recording videos in a dark room in the university laboratory by 

the use of a black background. Light reflection is one of most common problems in achieving 

good image quality, because it may hide very important characteristics of the flow in the test 

section. The light reflection can also cause errors in the image processing measurements, 

because the bright reflection can be wrongly identified as bubbles, which can negatively 

affect the accuracy of readings. Therefore, all these troubleshooting problems were avoided 

and considered in the large-scale experiment. Finally, the decision was made to construct a 

large-scale two-phase flow experiment and avoid anything that affected the accuracy of the 

measurement of the fluid behaviours. 
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3.5.2 Two-Phase Flow Apparatus: Design-2 

The experimental procedure of the two-phase flow apparatus are summarised in the 

following: 

1. Fill up the rig tank with approximately 50 litres of tap water. This gives 

approximately 45% of the tank level and the remaining space is for the separation of 

air from water, when the fluid mixture is returned from the test section. 

2. Ensure that the water level is higher than the heater inside the water tank, if the heater 

is used. 

3. Make sure that the valves are fully open, except the air valves to the injection point, 

which are set to closed. 

4. Start the centrifugal pump and adjust the water flow rate to a minimum to check there 

is no leakage in the experiment loop. 

5. Adjust the choke valve at 20%. This gives the lowest backpressure to the system and 

permits the flow to develop in the test section. 

6. Place the black background behind and around the transparent test section in order to 

avoid any light reflections. 

7. Attach the measuring tape along the pipe vertically to measure the length of each 

segment and is also used for calculating the velocity of the bubbles with the image 

processing software. 

8. Place the portable white lamps at the bottom of the vertical column to obtain the best 

visualisation of the fluid. 

9. Set up the digital camera in front of the test section at the required height depending 

on the segment level (starting from the injection point to the top of the test column) 

being observed. 

10. Open the air supply valve to the air regulator and adjust the air pressure to the 

required pressure, which must not exceed the maximum pressure (5 bar) when the 

choke valve is opened at 20%.  

11. Adjust the water flow rate by using the bypass line and inlet flow rate digital meter. 

12. Switch on the thermometers to measure temperature for both the inlet and outlet. 

13. Switch on the digital camera and then start recording videos of fluid behaviours at 

different operating conditions for single orifice technique and multiple nozzles 

injection techniques.  
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3.6 Method of Processing and Acquisition 

3.6.1 Method of Data Processing 

This Chapter provide the details of data processing and acquisition using simulated two-phase 

flow gas lift rig design that previously shown in Figure 3.5. These include:  

a) Two-phase flow gas lift rig (§ 3.6.1.1) 

b) Practical sizing and bubble velocity (§ 3.6.2) 

 

3.6.1.1 Two-phase flow gas lift rig 

The flow structure and fluid behaviours of two-phase flow have been investigated 

experimentally in a vertical transparent pipe (ID: 66 mm, Length: 2 m) using an image 

processing package called DynamicStudio 2015a. The test column is divided into five 

segments, starting from the injection point from the bottom to the top of the column. The first 

segment was 0.38 m in length and was 0.1 m upward from the injection point and then the 

remaining segments have the same lengths up to the end of the column, at two metres length 

as shown in Figure 3.8. The test section is attached with a measuring tape to provide a length 

scale so that the velocity of the bubbles can be calculated. Each segment was operated under 

different operating conditions and the flow recorded by the digital camera in front of the 

column and at different levels, with each recording being for 30 seconds for each operating 

scenario. Data was recorded for different variables such as sizes, velocities and shapes of 

bubbles.  
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Figure 3-8: The flow diagram of simulated vertical column apparatus for the gas lift optimisation 

 

The videos were recorded by using a digital camera respectively from segment 1 to segment 

5, and were converted to single frames by using the Free Video to JPG converter software, 

V.5.0.61 build 805. The frame rate was 0.016 ms. These frames were checked to make sure 

they were all clear, after which, these frames were imported to the image processing package 

DynamicStudio 2015a.  
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3.6.1.2 Data Acquisition of Bubble Velocity and Bubble Sizing 

The bubble sizes and velocity data obtained from  segment 1 to segment 5 of the transparent 

PVC test pipe respectively as shown in Figure 3.8 are summarised in Tables in the appendix 

A for both techniques. For example, Table 3.4 represents experiment data sheet for 

measurement of bubble sizes and velocities for segment one when the single orifice technique 

while Table 3.5 represents experiment data sheet for measurement of bubbles sizes and 

velocities for (MNIT) technique. There are some definitions and measurement used in this 

experiment as the following: 

The equivalent bubble diameter is an irregularly shaped air bubble is the diameter of 

a sphere of equivalent area.  

The average bubble diameter is the average sizes of air bubbles including small and large 

bubbles in each frame.  

The minimum bubble size is the size of the smallest air bubble in each frame. 

The maximum bubble size is the size of the large bubble in each frame.  

Bubble velocity is the velocity of the bubbles between two point located in each measured 

segment along the test section. 

The bubble account is the number of air bubbles measured in each frame. 

 

3.6.2 Practical sizing and bubble velocity processing 

Commercial DynamicStudio software package was used for image acquisition and analysis 

for Particle Image Velocimetry (PIV) and particle sizing. The software also has tools for 

acquisition, configuration, analysis, and post processing of acquired data. This software has 

been used for detecting and measuring particle sizing but in this investigation, it was used to 

measure bubble sizes and velocities within two-phase flow in the simulated gas lift column. 

The software can provide information about fluid behaviours, such as bubble sizes (average, 

maximum, minimum and equivalent bubble diameters), velocity of bubbles, bubble area and 

bubble count, which are important for the distribution of bubbles. In addition, this package 

has an interesting feature known as shadow processing. It is capable of detecting bubbles’ 

shapes and edges and has an adaptive PIV function to show bubbles’ velocity profiles. This 

https://en.wikipedia.org/wiki/Diameter
https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Volume
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feature captured and showed details and observations about the interactions between bubbles, 

especially when bubbles were forming and collapsing. This fluid dynamic process was 

achieved statically and dynamically. This means, the software allows the user to capture 

bubble sizes and their velocities in one frame and double frames. This feature allow the user 

to connect all frames together to give continuous flow. Finally, there are several steps that 

must be followed to distinguish between gas phase (air bubbles) and liquid phase (water) and 

capture bubble sizes and their velocities in the simulated test section. These steps are 

summarised and shown in Figure 3.9. 

(a) Model Calibration 

 (b) Image min/max 

 (c) Image arithmetic Image  

(d) Image masking  

(e) Image processing library & double frame  

(F) Shadow processing & sizing 

 

Figure 3-9: Advanced image-processing procedure of Dynamic studio2015a 
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The following briefly describes these steps: 

 

a) Model calibration 

The calibration of the model is an important step, because the conditions of recording videos 

and digital camera positions can be changed from time to time during the experiment. 

Therefore, when frames are imported to the model, the first frame can be used as a starting 

point for other remaining frames. Thus, the calibration of this frame and measuring its scale 

factor are essential, and subsequently these calibration settings can be applied for the 

remaining frames. For velocity measurements, the scale factor has to be determined. This can 

be achieved by using the calibrated first frame then duplicating to locate two points – A for 

the starting point and B for ending point – located at the measuring tape, and then the 

program will calibrate and calculate the measure scale factor for the remaining frames. 

Therefore, the velocity can be calculated for every bubble flowing from point A to point B. In 

addition, dewarping method is also useful to validate and/or verify the parameters, since 

dewarping one or more of the calibration images should produce a de-warped image where 

calibration markers are well aligned. 

 

b) Image Min/ Mean/Max 

This feature is useful to distinguish between phases (air and water). The 'Image 

Min/Mean/Max' method is located in the "Image Processing" category in the software 

settings. It is used to compute power mean greyscale values from a series of images. The 

Power Mean (or generalised mean) 𝑀𝑃with exponent 'p' of the positive real 

numbers 𝑥1,…….,𝑥𝑛 is defined as: 

𝑀𝑃  = (𝑥1,……..𝑥𝑛) = (
1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 )

1

𝑝
                                      (3.1) 

 

Where  

P = approaching minus infinity will return the minimum of all x-values and for p approaching 

plus infinity will return the maximum. 

M1 (p=1) is the conventional (arithmetic) mean, and in the limit of p approaching 0 we get 

the geometric mean: 
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𝑀0 (𝑥1,……..,𝑥𝑛) = √∏ 𝑥𝑖
𝑛
𝑖=1

𝑛
                                                  (3.2) 

 

The recipe supports already known p-values of: 

 

P = +∞ (Maximum) ,P = 2 (Quadratic Mean), P = 1 (Arithmetic Mean), P = 0 (Geometric 

Mean), P = -1 (Harmonic Mean), P = -∞ (Minimum). 

 

The Power means for a given series of values can be ordered as follows: Maximum > = 

Quadratic > = Arithmetic > = Geometric >= Harmonic > = Minimum The formula for power 

mean is defined with positive x-values in mind, but Maximum, Quadratic, Arithmetic and 

Minimum can be computed for negative values as well. The Geometric and Harmonic mean 

has been designed to return zero if just a single non-positive grey value is found among the 

input grey values. 

 

c) Image arithmetic 

As the name implies, this method enables arithmetic on pixel values and it can be performed 

on any type of image (for example 8-, 10- or 12-bit images) as well as floating point images, 

and can be applied to both single- and double-frame images. 

There are four types of operation that can be performed in this method: 

i. Addition and subtraction 

ii. Multiplication and division 

            And the two operand types: 

iii. Image as operand 

iv. Constant value as operand 

It is possible to combine the two operands, so for example subtract another image and then 

add the constant value. Finally, there is an option to perform data clamping on the result. This 

is useful to limit the output to a certain range. 

 

d) Define mask 

Define mask enables the user to define a mask for regions or areas of specific interest on the 

frame and avoid any regions not required for these investigations, which may affect the 

analysis and results. 
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e) Image masking 

This method is used to mask images by assigning specific grey-values in regions defined by 

the software user as being of no interest. In order to apply this function, a mask has to be 

defined using the analysis method "Define Mask". The mask ensemble must contain either 

one static mask or N dynamic masks, where N equals the number of images. 

 

f) Image processing library (IPL) 

The filters featured in the IPL module can be used to smooth images (Low-pass), detect the 

bubbles’ edges (High-pass), and enhance image contrast (Low-pass & Morphology) as well 

as for non-linear calculations (Signal processing). It also includes various image-processing 

tools (Utility and Threshold). Finally, a Custom filter is available to allow filtering with user- 

defined filter kernels. The following are brief descriptions of some filters available in the 

image processing library: 

 

i. Low pass filter               

This filter is the simplest linear, local filter used to smooth images. This filter does not take 

spatial gradients inside the kernel into consideration, as shown in Figure 3.10. Thus, for 

applications related to fluid mechanics, kernel sizes of (3x3) or (5x5) are recommended. 

Larger kernel sizes may significantly increase numerical diffusion. 

 

 

Figure 3-10: Low pass filter 

 

 

The NxN mean filters use very simple convolution kernels: 
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                        3x3 

1 1 1 

/9 1 1 1 

1 1 1 

 

                       5x5 

1 1 1 1 1 

/25 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

 

ii. Morphology filters 

Morphology filters are a class of nonlinear filters, which in their most basic form correspond 

to the minimum and maximum filters as shown in Figure 3.11. Combining these in different 

ways can however produce results that are more advanced. 

 Dilation & erosion filters 

 Opening & closing filters 

 Tophat & blackhat filters 

 

 

Figure 3-11: Opening & closing filters 
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g) Shadow size processing 

The package also includes the Shadow Sizing Processing as well as various filtering 

procedure that described above. The shadow size processing is a method where bubbles’ 

edges are detected and measured as shown in Figure 3.12. This feature provides detailed 

measurements, such as different bubble sizes, the bubbles’ positions, the shape of bubbles 

and the velocity of bubbles. According to Dentec Company 2015, this technique has no 

limitations in measuring sizes and shapes of bubbles or droplets, and it can be used both with 

transparent and opaque bubbles, as well as droplets.  

 

 

Figure 3-12: Shadow-sizing technique 

 

 

3.7 Errors and Accuracy 

The accuracy of devices and instruments used in this two-phase flow experiments could be 

affected by water and air flow rates, pressure and temperature measurements. The water 

digital flow meter had of accuracy of: +/- 5% and repeatability: +/- 1%. 

The accuracy of pressure gauges was +/- 1.6 %.  

The digital thermometer with 2 external K-type thermocouples was up to 0.1 C / 0.1 F in 

accuracy. 

The temperature calibration can be achieved before every run of the experiment by using the 

self-calibration function and restoring factory settings on the device. The overall accuracy of 
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air bubble sizes measurements using the shadow processing technique (DynamicStudio2015a 

software) was ± 0.0006 pixels. 

All tests were repeated at least 3 times ensuring the consistency and confidence in the acquire 

data 

 

3.8  Summary 

This Chapter presents the experimental apparatus, set up and method of data processing and 

acquisition for this investigation. The software used to investigate the two-phase flow in 

simulated gas lift rig using recorded videos commercial package, DynamicStudio 2015a. The 

software provides detail of fluid behaviours such as bubble sizes (average, maximum, 

minimum and equivalent bubble diameters), velocity of bubbles, bubble area and bubble 

count. In addition, this Chapter proposes new technique for gas lift methods called multiple 

nozzles injection technique (MNIT) to stabilise the system during operations without 

increasing the backpressure to the system. Instead of the existing gas lift valves, which have 

single (sharp edge) orifice technique (SNIT). 
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4 CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Introduction  

This Chapter discuss the results of gas lift optimisation and flow instability utilising the 

apparatus and procedure that already described in Chapter-3. Especially the Chapter presents 

the results using:  

 Single Nozzle Injection technique (SNIT) (§ 4.2) 

 Multiple Nozzle Injection Technique (MNIT) (§ 4.3)  

The SNIT results demonstrates the following prior to use of MNIT. The use of SNIT also 

provides the benchmark comparison on fluid behaviours, as currently used on gas lift 

operation, with MNIT proposed tested and presented in this investigation. 

i. Factors affecting the behaviours of bubbles using SNIT (§ 4.2) 

a) Effect of injection pressure on bubble sizes (§ 4.2.1) 

 Effect of injection pressure on average bubble sizes (§ 4.2.1.1) 

 Effect of injection pressure on small bubble sizes (§ 4.2.1.2) 

 Effect of Injection pressure on large bubble sizes (§ 4.2.1.3) 

 

b) Effect of bubble velocity on the development of bubble sizes (§ 4.2.2) 

c) Effect of port size on bubble sizes (§ 4.2.3) 

d) Bubble coalescence and development (§ 4.2.4) 

 

ii. Optimisation of two-phase flow behaviours using MNIT (§ 4.3) 

 Reducing initial bubble sizes within two-phase flow (§ 4.3.1) 

 Reducing initial average bubble sizes (§ 4.3.1.1)  

 Reducing initial average small bubble sizes (§ 4.3.1.2) 
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 Reducing initial average large bubble sizes (§ 4.3.1.3) 

 Effect of gas injection rate on outlet liquid flow rate (§ 4.3.2) 

 Effect of velocity of liquid-phase on average bubble sizes (§ 4.3.3) 

 Comparison between distribution of bubbles for both techniques (§ 4.3.4) 

 Confirmation and observation of the growth rate of bubble sizes (§ 4.3.5) 

 Distribution of bubbles at 1m above injection point (§ 4.3.5.1) 

 Effect of Reducing initial Bubble Size on Production Rate (§ 4.3.6) 

 

4.2 Factors Affecting the Behaviours of Bubbles Using SNIT 

There are a number of variables that can effect bubble sizes and thus lead to flow instability 

within upward two-phase flow in a vertical pipe during gas lifting. The main variables that 

have been considered are the coalescence process among bubbles, injection pressure, 

injection rate, port size, and velocity of bubbles, velocity of liquid-phase, and distribution of 

bubbles across the test section and the performance of each technique in increasing outlet 

flow rate (oil production rate). Table 4.1 shows the operating conditions that were used 

throughout all the trials utilising SNIT as shown in Figure 3.7. 
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Table 4-1: The single nozzle injection technique (SNIT) operating conditions 

Liquid 

flow rate 

l/min 

Air 

Injection 

Pressure 

(bar)* 

Air flow 

rate 

l/min 

Inlet 

pressure 

(Psi) 

Outlet 

pressure 

(Psi) 

Inlet 

Temp 

𝑪𝒐 

Outlet 

Temp 

𝑪𝒐 

Outlet 

flow rate 

l/min 

5 l/min 

0.5 1 3 0.5 17.3 17.7 5.88 

1 3 3.2 0.7 17.3 17.7 7.24 

2 5 3.3 0.7 17.3 17.7 11.83 

3 6.4 3.4 0.8 17.3 17.7 12.89 

4 8 3.5 1 17.3 17.7 15.53 

5 9 3.8 1 17.3 17.7 16.30 

10 l/min 

0.5 1 3.4 1 17.3 17.7 12.90 

1 2.8 3.5 1 17.3 17.7 13.97 

2 5 3.7 1 17.3 17.7 15.40 

3 6 3.8 1 17.3 17.7 16.6 

4 8 3.8 1.4 17.3 17.8 18.69 

5 9 3.9 1.4 17.4 17.8 20.70 

20 l/min 

0.5 1 4.2 1.8 17.4 17.8 23.4 

1 2.8 4.2 1.8 17.4 17.8 25.3 

2 4.8 4 1 17.4 17.8 27.0 

3 6 4 1.5 17.4 17.8 29.7 

4 7.8 4 1.5 17.4 17.8 31.92 

5 9 4 1.6 17.4 17.8 34.5 

30 l/min 

0.5 1 4 0.8 17.4 17.8 34.8 

1 2.8 4.5 1 17.4 17.8 36.10 

2 4.8 5 1.8 17.4 17.8 38.6 

3 6 5.2 2 17.4 17.8 40.7 

4 7.8 5.8 2 17.4 17.8 43.2 

5 9 6 2.1 17.4 17.8 46.6 

 

Note (*): 1 bar = 14.5 psi 
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4.2.1 Effect of Injection Pressure on Bubble Sizes  

4.2.1.1 Effect of Injection Pressure on Average Bubble Sizes  

The increase in injection pressure has a considerable effect on the two-phase flow behaviour. 

Figure 4.1 illustrates the relationship between air injection pressure and average bubble sizes 

using Single Nozzle Injection Technique (SNIT) with port size of 2.24 mm, which was 

shown previously in Figure 3.7. This effect was investigated at constant liquid phase (water) 

velocity of 2.4 cm/s and at different air injection pressures from 0.5 bar to 5.0 bar. Overall, 

the most significant feature shown in Figure 4.1 is that as the injection pressure increases the 

average bubble sizes decrease, as highlighted by Descamps et al., 2007 that injection pressure 

effect on the bubble sizes. Because the water is about 1000 times denser then air and both (air 

and water) have different bulk elastic properties. In addition, the air is a homogenous 

scattering of many types of molecules, meaning it has a huge potential for compression and 

its composition is mainly N2 and O2, which have very weak forces between them. Moreover, 

the molecules have low enough kinetic energy that, due to intermolecular forces. Therefore, 

as injection pressure increases, the fractional volume “bulk modulus” of air bubbles reduces. 

 The present results, however, shows that there was a steep reduction in the average bubble 

size from 9.75 to 6.80 mm when the injection pressure increased from 0.5 to 1 bar see Figure 

4.1. Thereafter, it reduces to 6.2 mm at 3 bar, followed by a marked decline in average bubble 

size ending at 5.06 mm when the injection presure was increased to 5 bar. In addition, the 

total number of bubbles measured was 14850 bubbles and the mean and standard deviation 

was 0.8. 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html#c2
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Figure 4-1: The effect of injection pressure on average bubble size at constant liquid velocity 2.4 cm/s 

 

The increase in the injection pressure provides evidence that the injection pressure has a large 

effect on the behaviours of the two-phase flow in the gas lifted systems, as shown in Figure 

4.2. This is due to the increase in the backpressure to the test section and reduces in the 

pressure drop along due to the bubble sizes were shrunk. This shrinkage in bubbles sizes is 

because of the density of water is approximately 1000 kg/m3. The average density of air is 

about 1 kg/m3. Thus, liquid water is about 1000 times denser then air and both have different 

bulk elastic properties. In addition, the air is a homogenous scattering of many types of 

molecules, meaning it has a huge potential for compression and its composition is mainly N2 

and O2,which have very weak forces between them. Moreover, the molecules have low 

enough kinetic energy that, due to intermolecular forces. Therefore, as injection pressure 

increases, the fractional volume “bulk modulus” of air bubbles reduces. 

Furthermore, high turbulence at low injection pressure because of the diameter of bubbles 

was quite a large. This has relationship and  impact on the development of flow patterns 

(bubbly, slug, churn and annular) and their behaviours within the two-phase flow as observed 

by (Alamu and Azzopardi, 2011) that there was a link between bubble sizes and turbulent 

diffusion. Consequently, the injection pressure plays an important role in decreasing bubbles 

size gradually and stabilises the upward flow. This would restrict the development of flow. 

However, the increase in the injection pressure is limited, as it requires large capacity gas 

compression units (gas compressors) with financial impact. Thus, the evidence from the 

results show that as injection pressure increases, the average bubble size decreases in the 
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vertical test section. Furthermore, the bubble sizes must be reduced to minimise the number 

of bubbles reaching a certain diameter (maturation) and then collapsing, thus causing 

turbulence and flow instability.  

 

Figure 4-2: The effect of injection pressure on average bubble size using shadow sizing for SNIT at constant 

liquid phase velocity 2.4cm/s 

 

4.2.1.2 Effect of Injection Pressure on Average Small Bubble Sizes 

The effect of injection pressure was investigated for minimum (small) and large bubbles 

depending on their sizes to understand which bubbles were collapsing and causing the flow 

instability in the vertical test section. Figure 4.3 demonstrates the relationship between the 

injection pressure and small bubble sizes at different injection pressures. Overall, the average 

minimum bubble size was very sensitive and decreased dramatically, especially at low 

injection pressures. The results show that there was a sharp decline in minimum average 

bubble size from 1.37 to 1.16 mm when the injection pressure is increased from 0.5 to 2 bar, 

and thereafter it increased slightly to 1.22 mm, then remained stable, ending at 1.2 mm when 

injection pressure is increased to 5 bar. It was observed experimentally that the small bubbles 

did not collapse due to their tiny sizes. However, there were a number of bubbles coalescing 

with other neighbouring bubbles due to collision and eddies created within the flow, 

especially at low pressure. The average standard deviation between measured bubbles sizes 

Large bubble 

Water phase 

Ruptured bubble 

0.5 bar 1 bar 2 bar 3 bar 4 bar 5 bar 
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was 0.12. In addition, the small bubble sizes are required for the gas lift process, but with a 

good distribution. 

 

 

Figure 4-3: The influence of injection pressure on the average minimum (small) bubble sizes at constant liquid 

phase velocity 2.4 cm/s 

 

4.2.1.3 Effect of Injection Pressure on Large Bubble Size 

The influence of injection pressure even reaches mature large bubbles (Taylor bubbles) 

travelling in the centre of the test section. This is due to the reduction in the pressure drop 

along test section when the injection pressure is increased. Figure 4.4 illustrates the 

relationship between air injection pressure and the average maximum (large) bubble size at a 

constant water velocity of 2.4 cm/s. The results showed that there was a marked increase in 

the average large bubble size from 34 to 50.36 mm when the pressure was increased from 0.5 

to 3 bar. Nevertheless, the average maximum bubble size declined gradually from 48.94 mm 

to 43.33 mm when the injection pressure reached 5 bar. This means that there were two 

different effects of injection pressure on large bubble sizes. Furthermore, the effects are 

positive because the average bubble size was reduced at higher pressure. In addition, it was 

observed that a number of large bubbles collapsed when the injection pressure was 3 bar at 

1.5 m pipe length, this a greed with study of the critical value of (Taylor) bubbles by 

(Waltrich et al., 2013, Azzopardi et al., 2015) as shown previously in Figure 2.11-12 causing 
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large oscillations and pressure drop within the two-phase flow. Figure 4.5 also shows 

qualitatively the collapse of Taylor bubbles in the present study similar to that of Waltrich et 

al., 2013. Therefore, this observation of large bubble ruptures is critical and one of the main 

aims of this research work, as the collapse of these bubbles is the main cause of the pressure 

drop and turbulence and flow instability within the upward flow and also caused the collision 

with other neighbouring bubbles as shown in Figure 4.6. These behaviours are the main cause 

of flow instability during upward flow. Thus, the bubble sizes must be reduced in order to 

minimise this fluid flow phenomenon. 

 

 

Figure 4-4: The effect of injection pressure on maximum (large) bubble size at constant liquid phase velocity 

2.4 cm/s 
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Figure 4-5: collapse and collision of the (Taylor) bubble captured by shadow sizing technique at 3 bar injection 

pressure 

 

Therefore, a new approach or technique should be developed to reduce the initial bubble sizes 

and at the same time distribute them across the entire pipe area. This transformation will 

change the structure of the two-phase flow, minimise the development of upward two-phase 

flow, and prevent the bubbles from reaching critical sizes large bubbles collapse and maintain 

the flow regime in bubbly flow pattern as much as possible. In order, not reaching the 

transitional flow regions such as bubbly to slug, slug to churn and churn to annular. This will 

increase the lifting performance, reduce the collapse of bubbles, and increase the productivity 

of the gas lift method.  
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Figure 4-6: The effect of injection pressure on the bubbles’ behaviours 

 

4.2.2 Effect of Reynolds number on the development of bubble sizes 

It is essential to consider the bubbles’ movements, velocities and their Reynolds number in 

this case to investigate whether Reynolds number is one of the variables causing bubbles to 

grow. Figure 4.7 demonstrates the relationship between the Reynolds number of bubbles and 

bubble sizes at a constant liquid phase velocity of 2.4 cm/s and at different injection 

pressures. In general, the increasing in Reynold number has a great impact on bubble size. 

The results showed that as Reynold number increases, the bubble sizes rise, and this agrees 

with the results obtained by Liu et al., 2016, and Guet, 2004. It should also be noted that this 

effect was observed for all injection pressures. The maximum bubble size measured at 3 and 

4 bar. In addition, it was found that the velocity of bubbles was strongly dependent on bubble 

sizes and the large bubbles had higher velocities compared with smaller bubbles and these 

results matched with observations by Acuña and Finch, 2010 that found that large bubbles are 

faster than bubbles with diameter less than 2.5 mm. This was very clear from the velocity 

profiles and data. However, there was a slight a reduction in Reynold number of bubbles 

when injection pressure increased to 5 bar due to reduction in bubble sizes and their 

velocities at higher pressure at these operating conditions. Therefore, if the bubble sizes were 

reduced, then the Reynolds number of bubbles would decrease and then the development of 

two-phase flow would be optimised and postponed, and would not reach the higher Reynolds 

number where bubbles start to collapse and cause oscillations and turbulence within vertical 

flow. 

Flow turbulence 
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Figure 4-7 The relationship between the gas phase Reynolds number and bubble size at constant liquid velocity 

2.4 cm/s. 

 

Furthermore, the measurements of bubble velocities during the upward flow gave very 

interesting and clear evidence that there were fluctuations within the two-phase flow due to 

rupture and collapse of bubbles. This happens when bubbles reach critical sizes at specific 

velocity. Therefore, it is necessary to reduce the average flowing bubble sizes to minimise the 

development of two-phase flow. During the oil production process, any restrictions to flow 

within production tubing in the gas lift method are not recommended, because there are other 

operations undertaken during the lifting process such as wireline operation Therefore, there 

should be a new technique to change the initial fluid behaviours during the lifting process and 

prevent bubbles reaching these critical sizes, especially when bubbles collapse and collide 

with neighbouring flowing bubbles. These regions are known as the transitional flow regions, 

where the flow behaviour is critical and depending on interfacial forces between phases.     

There is another type of velocity that must be considered in two-phase flow in the gas lift 

method. It is known as the liquid phase velocity and in the oil industry it is referred to as the 

reservoir response (PI) (Asheim, 1988). It is the ability of fluid to flow though reservoir rocks 

to the wellbore when gas is injected through gas lift valves to the production tubing. Figure 

4.8 illustrates the effect of liquid-phase velocity (water) on average bubble size. The results 

showed that the average bubble size remained stable at 10 mm at low liquid phase velocity 
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from 2.4 cm/s to 4.8 cm/s, then it rose gradually ending at 14.02 mm when the liquid phase 

velocity increased from 4.8 to 14.6 cm, as shown in Figure 4.9. This confirms that the effect 

productivity index of the reservoir (PI) should be considered in any gas lift flow instability 

criteria, because as the liquid-phase velocity increases, so to do the bubble sizes. This is 

supporting the unified criteria for continuous gas lift instabilities by Alhanati et al, 1993 

which was neglected by Asheim,1988. Thus, the flow oscillations within the two-phase flow 

increase. Therefore, average bubble size within the two-phase flow must be reduced to reduce 

these fluctuations and to achieve better stability. 

 

Figure 4-8: The effect of liquid phase velocity on average bubble size 

 

 

Figure 4-9: The effect of liquid phase velocity on average bubble size at 1m length 
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The large bubbles (Taylor bubbles) flowing in the centre of the pipe have the highest 

velocities. This is due to their large size and buoyancy as highlighted by Acuña and Finch, 

2010 and shown in Figure 2.12. The results showed that the maximum bubble size increased 

gradually from 34 mm to 37 mm when the liquid phase velocity was increased from 2.4 cm/s 

to 14.6 cm/s when the injection pressure was 0.5 bar, as shown in Figure 4.10. This is 

evidence that the velocity of the liquid phase has a slight effect in contributing to large bubble 

sizes. As the flow develops downstream these bubbles collapse along the test section. These 

fluctuations could be reduced if the bubble sizes were reduced slightly. 

 

 

Figure 4-10: The influence of liquid phase velocity on maximum bubble size 

 

4.2.3 Effect of port size on bubble size 

The port size has a significant effect on the upward two-phase behaviours and this agrees 

with  results obtained by (Ter Avest and Oudeman, 1995, Faustinelli et al., 1999) that using 

single orifice causes subcritical flow conditions at the injection point. Overall, there was a 

sharp increase in the average bubble size when the single port size was increased. Figure 4.11 

demonstrates the effect of increasing port size on average bubble size at a constant liquid 

flowrate of 5 l/min and injection pressure of 1 bar. The results showed that as port size 

increases, the average equivalent bubble size increases. The graph indicated that there was a 

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14

A
V

G
 M

ax
im

u
m

 b
u
b

b
le

 s
iz

e 
(m

m
)

Velocity of liquid phase (cm/s)

I 



  

83 

 

slight increase in the bubble sizes from 30.42 to 32.11 mm when the port size was increased 

from 0.2 to 0.7 mm. Thereafter, it dropped slightly from 32.11 to 31.50 mm when port size 

was 0.9 mm, followed by a sharp increase in the average equivalent bubble size ending at 

34.44 mm when the port size increased to 1.2 mm.  In addition, it was found that a higher jet 

velocity produced from a smaller diameter orifice shows higher breakup frequency of the 

bubbles at 6.6 m/s in the plunging zone and consequently smaller bubbles are observed 

throughout the column with a smaller diameter orifice. This means that there was high air 

velocity in front of the injection point which causing large flow fluctuations and turbulence in 

the vertical test section. This is due to subcritical flow conditions at the injection point such 

as sonic velocity, critical pressure and critical temperature due to interaction between injected 

air and liquid –phase (water) as this supported by (Faustinelli et al., 1999) . 

     

 

Figure 4-11: The effect of port size on bubble size at constant flow rate 5 l/min and pressure 1 bar 

  

In addition, the increase in the orifice port size of the gas lift valve has a negative effect on 

the stability of upward two-phase flow. This was clear from the relationship between the 

increase in the port size and the bubble sizes in the vertical column. These fluctuations in the 

average bubble size continued to occur as port size increased. Therefore, the increase in port 

size leads the overall average bubble size to oscillate, even under constant operating 

conditions. It can be concluded that the increase in port size has a destabilising effect and 

causes an increase in the bubble size. Moreover, the smaller port sizes cause an increase in 
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the air velocity in front of the injection point. This led to an undesired situation when the 

large bubbles in the centre of pipe started to collapse and caused a large amount of turbulence 

and eddies in the pipe. This is one of the causes of two-phase flow instability and reduction in 

outlet flow rate and lifting performance in the vertical test section (Guet and Ooms, 2006). 

Therefore, there should be an alternative orifice shape for injecting air into the system. 

 

4.2.4 Bubble coalescence and development 

When the SNIT was used, it was observed at the air injection point that the initial bubble size 

was approximately equivalent to the size of the orifice and as soon as these bubbles left the 

orifice port size directly, they went to the centre of the vertical test section and then started to 

coalesce together depending on the mixture velocity. This process causes bubble sizes to 

increase and flow to develop quickly via the creation of large bubbles in the centre of the 

pipe. This also reported in the work by Zhang and Fan, 2003 and Tan et al., 2013. This fluid 

behaviour was investigated by analysing the recorded videos frame by frame as shown in 

Figure 4.12. Subsequently, these large bubbles collapse when they reach mature sizes. Wu et 

al., 1998, also mentioned this observation. This size depends on port size, pipe diameter and 

operating conditions. Moreover, it was observed that the distances between the bubbles were 

very small, and this aids the possibility of speedy coalescence. 

Therefore, the distribution of bubbles in the pipe needs to be changed to a better distribution 

to keep sufficient distance between the flowing bubbles and to distribute them from the centre 

of the pipe to the rest of the pipe area close to the pipe wall. This will minimise bubble 

coalescence and delay the development of two-phase flow as much as possible. Furthermore, 

the initial two-phase flow behaviours at the injection point are crucial, because the first 

interaction between phases with different densities (gas and liquid) at the injection point has a 

large impact on and relation to other upward two-phase flow behaviours in the vertical 

column. For example, if the distribution of bubbles changes directly once they leave the 

injection point, this will change many behaviours of the upward two-phase flow, especially if 

the sizes of the bubbles have been reduced at the same time. This will maintain a bubbly flow 

regime as much as possible along the pipe, with smaller bubbles travelling smoothly with 

good distribution and approximately the same mixture velocity. Thus, this minimises the 

coalescence process among air bubbles in the test section. This is therefore increase the 
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lifting performance and total oil production rate from the gas lift method by minimising the 

flow instability with upward two-phase flow along the pipe. 

 

Figure 4-12: The bubble coalescence process at low liquid-phase velocity 2.4 cm/s and 0.5 bar 

 

4.3 Optimisation of the two phase-flow behaviours using MNIT 

Table 4.2 shows the operating parametric conditions that were used in this phase of the 

experiments using MNIT, which was shown in Figure 3.7.  The fluid behaviour in the vertical 

column during oil production using  gas lift methods are very challenging due to the complex 

multi-phase behaviours, which can cause a reduction in the total oil production. Therefore, 

there should be a new way or technique to reduce and optimise these chaotic fluid behaviours 

during the lifting process, without increasing backpressure by choking the gas lifted wells or 

using the conventional feedback control systems, which are only partially effective. This new 

technique would reduce the flow instability within the two-phase flow, resulting in an 

increase in the total oil production from the gas lift method. 
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Table 4-2: The multiple nozzles injection technique (MNIT) operating conditions 

Liquid 

flow rate 

l/min 

Air 

Injection 

Pressure 

(bar) 

Air flow 

rate 

l/min 

Inlet 

pressure 

(Psi) 

Outlet 

pressure 

(Psi) 

Inlet 

Temp 

𝑪𝒐 

Outlet 

Temp 

𝑪𝒐 

Outlet 

flow 

rate 

l/min 

5 l/min 

0.5 1 2.9 0.5 17.1 17.6 6.6 

1 3 3 0.5 17.1 17.6 7.8 

2 4.8 3 0.5 17.1 17.6 9.6 

3 6 3 0.5 17.1 17.6 13 

4 8 3.1 1 17.1 17.6 15 

5 9 3.2 1 17.1 17.6 16.6 

10 l/min 

0.5 1 3 1 17.1 17.6 12.9 

1 2.9 3.2 1 17.1 17.6 14.1 

2 4.8 3.5 1 17.1 17.6 16.4 

3 6 3.6 1 17.1 17.6 19 

4 7.8 3.7 1 17.1 17.6 20.6 

5 9 3.8 1 17.1 17.6 23.9 

20 l/min 

0.5 1 4.2 1.6 17.1 17.6 24 

1 3 4 1 17.1 17.6 26.2 

2 4.5 4 1.2 17.1 17.6 28.84 

3 6 4 1.4 17.1 17.6 31.4 

4 8 4 1.7 17.2 17.7 36.4 

5 9 4.1 2 17.2 17.7 39.4 

30 l/min 

0.5 1 5 1 17.2 17.7 36.6 

1 2.8 5.3 1.2 17.2 17.7 38.2 

2 4.5 5.7 2 17.2 17.7 41.2 

3 6 5.9 2 17.2 17.7 45.3 

4 7.8 6 2 17.2 17.7 47 

5 9 6 2.8 17.2 17.7 50.1 

 

Note (*): 1 bar = 14.5 psi 
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A new modified gas lift valve with multiple nozzles injection technique (MNIT) also shown 

in Figure 3.7 is designed and introduced for the first time in the gas lift method in the oil 

industry instead of the single (sharp edge) orifice gas lift valve and other existing valves. The 

purpose of the valve is to reduce initial bubble sizes and to distribute the smaller bubbles 

from the centre of the pipe (core peaking) to the rest of the pipe area (wall peaking). 

Consequently, there will be an increase in the gas lifting performance and total oil production 

and also stabilisation of the multi-phase flow behaviours. This can be achieved by 

maintaining better bubble distribution by keeping sufficient distance among these small 

bubbles to reduce the coalescence process between flowing bubbles. As result of this, reduces 

initial bubble sizes and also minimises further interaction between phases and the collapse 

process between the travelling bubble sizes. 

The design of small nozzles in the new technique as shown in Table 3.1 depends on the gas 

injection flow rate required for that particular oil well. The total area of these nozzles gives 

an equivalent or less gas injection rate compared with the same geometrical area of single 

orifice technique. This was considered in the design of nozzles in the head of multiple 

nozzles injection technique. The new technique (MNIT) gave acceptable results compared 

with the single orifice technique in terms of reducing initial bubble sizes, and distribution of 

bubbles in the vertical test section. In addition, it increased the production and performance 

of the gas lift method. The results obtained from the multiple nozzles injection technique will 

be presented successively in the following sections and compared with SNIT results where 

appropriate. 

 

4.3.1 Reducing Bubble Sizes within Two-Phase Flow  

4.3.1.1 Reducing Initial Average Bubble Sizes  

Reducing the initial bubble sizes has a major impact on the stability of two-phase flow in the 

vertical column in the gas lift method, especially if these bubble sizes were reduced and have 

a better distribution across the entire pipe area. Figure 4.13 illustrates a comparison between 

the performances of the new multiple nozzles injection technique (MNIT) and the single 

orifice gas lift valves in reducing the initial average bubble sizes at different injection 

pressures and a constant liquid flow rate of 5 l/min. Overall, the most significant features of 

the line graph are: the average bubble sizes generated by the new technique (MNIT) were 
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lower than the average bubble sizes produced by the SNIT at different injection pressures. 

This is due to smaller diameter of each nozzle in the new technique, which creates higher jet 

velocity at the injection point.  Figure 4.13 shows there is a steep decrease in the initial 

average bubble sizes from 9.76 to 7.23 mm at 0.5 bar, when the new multiple nozzles 

injection technique was used, representing a 25% reduction in the average initial bubble 

sizes. Then the size declined considerably to 4.42 mm at 4 bars, which represented a 34% 

reduction compared with an orifice valve. Subsequently, a rapid drop in the average bubble 

sizes ending at 3.89mm, when injection pressure was 5 bars. Moreover, there was a 23% 

decline in average bubble size between the two systems. As a result of this, the average 

overall reduction between the two techniques was 22% at different injection pressures with 

the same port size dimensions of 2.24 mm.  

 

 

Figure 4-13: Comparison between the new MNIT and the SNIT for gas lift optimisation at a constant flow rate 

5 l/min. 

 

4.3.1.2 Reducing Initial Average Minimum (small) Bubble Sizes  

Furthermore, there was confirmation of the performance of the new multiple nozzles 

injection technique (MNIT) in reducing all different bubbles sizes including the small 

flowing bubble sizes in the vertical test section. Further investigations were carried out to 

ensure that the small bubble sizes were reduced likewise. Figure 4.14 demonstrates a 

comparison between using the new multiple nozzles injection technique and the SNIT in 

0

2

4

6

8

10

12

0 1 2 3 4 5

A
V

G
 b

u
b

b
le

 s
iz

es
 (

m
m

)

Injection pressure (bar)

SNIT MNIT

I 

I 



  

89 

 

reducing small bubble sizes at different air injection pressures during the upward two-phase 

flow in the test section. In gerenal, the results showed that the average minumum bubble size 

produced from the MNIT was lower than the SNIT under the same operating conditions. 

There was a gradual reduction in minimum average bubbles size to 1.17 mm when the new 

technique was used, compared with the single orifice technique was 1.37 mm at 0.5 bar 

injection pressure. Thus, the reduction in average small bubble size was 14.54% at this point, 

and reduced to 0.99 mm at 3 bars. The sharp edge orifice valve was 1.23 mm under the same 

operating conditions. Moreover, the reduction in the small bubble sizes was 19% at this point 

between both techniques, and then there was a regular reduction ending at 0.96 mm when the 

injection pressure was 5 bar, compared with the single orifice, which was 1.19 mm. In 

addition, the average overall reduction in the small bubble sizes between both gas lift valves 

was 16.1% at different injection pressures. Therefore, the new technique is effective in 

reducing bubble sizes, including the small sizes.  

 

 

Figure 4-14: Comparison between the new MNIT and the SNIT for gas lift optimisation at constant flow rate 5 

l/min 
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4.3.1.3 Reducing Initial Average Maximum (large) Bubble Sizes  

In addition, large bubbles (Taylor bubbles) flowing in the middle of the pipe have a great 

influence on the stability of two-phase flow in the gas lifted wells. This is due to their sizes 

being critical and close to the collapse region of bubbles. Therefore, it is very important to 

reduce the sizes of large bubbles to avoid the rupture of these large bubbles and their collision 

with other nearby bubbles. This is one of the main causes of the flow instability phenomenon. 

Figure 4.15 demonstrates a comparison between the performances of the MNIT and SNIT in 

decreasing the average large bubble sizes flowing in the centre of the test section. The results 

showed that at the first injection pressures, the average large bubble sizes produced from the 

new multiple nozzles injection technique were higher than for the orifice valve. Because of at 

the low injection pressure less than 1.3 bar, the velocity of the air was slightly low through 

the nozzles of the MNIT to shear the air bubbles. However, after 1.3 bar injection pressure, 

the trend in average large bubble sizes from the single orifice became higher than for the 

multiple nozzles. This means, at this intersection point and operating conditions the average 

bubble size of air bubbles are the same sizes. Furthermore, the average large bubble sizes 

started to decline gradually after the injection pressure reached 1.5 bar, followed by a slight  

decline to 43.49 mm when the injection pressure was 2 bar when the multiple nozzles was 

used. In comparison, the single nozzle valve was 48.8 mm at the same pressure, and 

thereafter descended moderately to 42.09 mm at 3 bar. In comparison with the single nozzle 

orifice average bubble size was 50.64 mm, then there was a sharp drop in the average large 

bubble sizes ending at 38.30 mm when the new MNIT was used, at 5 bar injection pressure, 

which was 43.33 mm at the same injection pressure. The overall reduction in the average 

large bubble sizes between both techniques at different injection pressures was 8.22%. It can 

be concluded that Multiple Nozzle Injection Technique is capable in reducing large bubble 

sizes in the test section compared with Single Nozzle Injection Technique with the same 

geometrical dimensions and operating conditions especially at higher injection pressures.    
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Figure 4-15: Comparison between the MNIT and SNIT for gas lift optimisation at a constant flow rate 5 l/min 

 

4.3.2 Effect of gas injection rate on outlet liquid flow rate 

The gas injection rate is an important parameter that has a major impact in any gas lift 

operation. Therefore, it is essential to investigate and optimise the gas injection rate. Figure 

4.16 illustrates the effect of the gas injection rate on the outlet flow rate using the new 

multiple nozzles injection technique and single nozzle injection technique at different air 

injection flow rates. Overall, the results showed that as the gas injection rate increases, the 

outlet flow rate rises. The flow rate is measured by a digital flow meter at the experiment 

outlet lines. These digital flow meters measure the volumetric flow rate not mass flow rate. 

As result of this, there are small differences between inflow and out flow figures. This is due 

to the complexity of measurement of multiphase flow. In addition, the injected air was 

ventilated to the atmosphere through a ventilation point. This could lead to an increase in the 

production rate when the new multiple nozzles injection technique is used. Figure 

4.16 reveals that there was a marked increase in the outlet flow rate to 36.6 l/min when the 

new multiple nozzles injection technique was used, compared with the SNIT which was 34.8 

l/min at the same gas injection rate of 1 l/min. Thereafter, there was a sharp increase to 45.2 

l/min when the gas injection rate increased to 6 l/min using the MNIT. However, it was only 

40.7 l/min when the SNIT was used under the same operating conditions. Furthermore, when 

the gas injection rate was raised to 9 l /min, the outlet flow rate was 50.1 l/min using the 

MNIT, which was higher than the outlet flow rate from the SNIT, which was 46.6 l/min.  
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It can be concluded that the performance of the new multiple nozzle injection technique was 

better than the single nozzle orifice at the same air injection rates. This is due to reduction of 

the initial bubble sizes and improved distribution of bubbles as shown in (§ 4.3.1) and 

(§4.3.1.6). In addition, the design of the new technique gave equivalent or lower air injection 

flow rate. In comparison with the single nozzle orifice.  

 

 

Figure 4-16: The performance of the MNIT and the SNIT for gas lift optimisation at different air injection rates. 

 

4.3.3 Effect of velocity of liquid-phase on average bubble sizes 

The velocity of liquid-phase (water) is one of the variables that have a slight effect on the 

average bubble sizes. Therefore, it is important to ensure that the average bubble sizes in the 

test column were reduced and maintained even if the velocity of the liquid-phase increased. 

Figure 4.17 demonstrates a comparison between the new multiple nozzles injection technique 

and single nozzle orifice at different liquid-phase velocities and a constant pressure of 0.5 

bar. In gerenal, the results showed that the average  bubble size produced from the multiple 

nozzles injection technique was still lower than the single (sharp edge) technique under 

different liquid –phase velocilties.. The results showed that there was a gradual increase in 

the average bubble sizes as the velocity of the liquid-phase was increased. This is due to the 

liquid-phase velocity is low at these ranges and it did not shear bubble sizes at the injection 

point as can be seen in Figure 4.17. The graph showed that the average bubble sizes were 
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phase velocity of 2.4 cm/s compared with the orifice valve was 9.75 mm. This gives an 

overall reduction in the average bubble sizes of 25% at this liquid velocity. Furthermore, at a 

high liquid phase velocity of 14.6 cm/s, the average bubble sizes reached 14mm using the 

orifice valve. Nevertheless, when the new technique was installed, the average bubble sizes 

were reduced to 13mm, even though the velocity of the liquid-phase had increased. However, 

the average bubble sizes produced from the new multiple nozzles injection technique were 

still smaller than the average bubble sizes created by the conventional orifice valve under 

different liquid-phase velocities.  

 

 

Figure 4-17: Comparison between the MNIT and SNIT at constant injection pressure 0.5 bar. 
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the new multiple nozzles injection technique was used compared with the single nozzle 

orifice valve, where there were 25 bubbles above the injection point. This gave an increase in 

the number of bubbles of 56%. Thereafter, the number of bubbles rises to 104 bubbles when 

the injection pressure was increased to 2 bars while using the multiple nozzle injection 

technique. In comparison with the single nozzle orifice there were 63 bubbles. The increment 

in the number of bubbles was 65% under these operating conditions. 

Furthermore, at a higher injection pressure of 4 bar using the new multiple nozzles injection 

technique, the average number of bubbles increased to 200 bubbles compared with the single 

nozzle orifice were 105 bubbles. The increase in the number of bubbles was 90.5% at this 

injection pressure. It can be concluded that the new multiple nozzle caused a significant 

increase in the number of smaller bubbles in the test column of about 60.2% compared with 

the orifice valve at different injection pressures. Therefore, this led to improved distribution 

of bubbles and lifting performance in the test section. 

 

 

 

Figure 4-18: Comparison between the MNIT and SNIT under the same operating conditions 
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bubbles should be changed from the middle of the vertical pipe to across the entire pipe area. 

This will reduce the possibility of the coalescence process among air bubbles, avoid the 

creation of large bubbles in the test section, and thus delay the development of two-phase 

flow regimes. This agrees with distribution of air void fraction reported by (Szalinski et al., 

2010). 

Figure 4.19 demonstrates a comparison between the performances of the new Multiple 

Nozzles Injection Technique and the Single Nozzle Injection Technique in distributing initial 

bubbles at 0.5 bar injection pressure. 

Figure 4.19 shows that there is a considerable increase in smaller bubble frequency of 

bubbles sizes between 6.5 and 7 mm when the MNIT is used, compared with the SNIT, 

which had a frequency of 11 with larger bubbles between 9 to 9.5 mm at 0.5 bar injection 

pressure. This is because MNIT creates a large number of smaller bubbles via its small 

orifices. 

In addition to that, when these small bubbles enter the test column they spread across the pipe 

area and even close to the pipe wall. This is perceived to be due to the high bubble velocities’ 

penetration in the liquid phase across the pipe area at the injection point and the smaller 

orifice sizes in the new technique. This type of bubble distribution is called wall peaking, as 

typified in Figure 4.20. This type of distribution increases the liquid phase lifting 

performance. On the contrary, the path of bubbles which exit port-size of the single orifice 

valve moves directly to the centre of pipe and then they rapidly coalesce with neighbouring 

bubbles. This is called core peaking and it is one of main reasons for the development and 

instability of the two-phase flow in a vertical pipe, as this type of bubble distribution gives a 

high possibility for bubbles to coalesce and develop in the middle of the vertical column. 
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Figure 4-19: Comparison between the distribution of air bubbles using the MNIT and SNIT at 0.5 bar; with S.D 

=1.01 

 

 

Figure 4-20: Changing bubble distribution from core peaking to wall peaking using the MNIT 
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Moreover, when both techniques were investigated at higher injection pressures, it was found 

that as the injection pressure increases, the distribution of bubbles improved significantly, 

especially when the new multiple nozzle injection technique was used, due to the increase in 

the number of smaller bubbles occupying the entire area of the pipe, including in the vicinity 

of the pipe wall. There was sufficient distance between the upward flowing bubbles to 

minimise the collision and coalescence processes between neighbouring bubbles when the 

superficial velocity increased and with the development of the flow patterns (bubbly, slug, 

churn and annular). Therefore, this two-phase flow development can be controlled by 

reducing the initial air bubble sizes and changing the distribution of bubbles in the column. 

Furthermore, this has the potential to increase the total oil production from the gas lift method 

in the oil industry because the performance is improved, as shown in Figure 4.16.  

Figure 4.21 demonstrates the comparison between the bubble distributions of the new 

multiple nozzle injection technique and a single nozzle injection technique at 5 bar injection 

pressure. As can be seen in Figure 4.21 there was a sharp increase in the frequency of bubbles 

with sizes between 3 to 3.5 mm when comparing the two techniques. There was peak 

frequency of bubble sizes between 5.25 to 5.5 mm with SNIT. Figure 4.21 also indicates that 

the bubble distribution shifted to smaller bubble sizes with better distribution when MNIT 

was used.  In addition, the air injection rates were the same for both cases. Finally, could be 

concluded that the distribution of initial small bubble sizes has a major effect on the stability 

of two-phase flow behaviours and increases the performance of the gas lifting process. Thus, 

the growth rate of bubble sizes generated by the new technique along the vertical pipe makes 

it impossible for the bubbles to reach the size of the large bubbles produced from the SNIT, 

even if the flow is developed. This is because the type of bubble distribution from the new 

technique is maintained wall peaking. This means that the possibility of smaller bubbles 

coalescing and developing is lower and is due to these smaller bubbles travelling along the 

pipe with almost the same size and mixture velocity. In comparison, the bubbles produced 

from the SNIT have a greater opportunity to grow and coalesce with other bubbles, creating 

large bubble sizes then collapsing when they reach their critical size. This is one of the main 

reasons for the pressure fluctuations and two-phase flow instability along the test section. 
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Figure 4-21: Comparison between the bubble distribution of the two techniques at 5 bar injection pressure 

 

4.3.5 Confirmation and observation of the growth rate of bubble sizes  

Reducing the initial bubble sizes is essential and should be observed and maintained along 

the test section to ensure that the smaller bubble sizes generated from the MNIT are still 

smaller than the bubble sizes produced from the SNIT, which is widely used in the oil 

industry. Therefore, the bubble sizes were measured at the middle of the transparent test 

section 1 metre above the injection point when both valves were used to confirm that the 

bubble sizes produced from the new technique were still smaller than those bubble sizes 

created from the single nozzle orifice. Figure 4.22 demonstrates the performances of the  two 

techniques in reducing the average bubble sizes at different injection pressures at the middle 

of the test section. Overall, the results showed that the average flowing bubble sizes produced 

from the multiple nozzle were still smaller than those generated by the single orifice nozzle. 

Figure 4.22 shows that there is a gradual decline in the average bubble sizes when the MNIT 

and SNIT was used at the initial injection pressure and the difference between both is slightly 

small. This is due to the air injection velocity was low to shear the air bubbles. However, then 

there is a steep reduction in the average bubble size to 2.50 mm when the injection pressure 

was increased to 2 bar using the new multiple nozzle injection technique. In comparison, the 

average size with the single orifice was 2.9 mm. Thereafter, the average bubble size declined 

sharply to 2.17 mm with the multiple nozzle when the injection pressure was increased to 3 

bar. The average bubble size produced from the single orifice was 2.76 mm under the same 

operating conditions. The reduction in the average bubble size between both techniques was 
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21% at this point. Furthermore, when the injection pressure reached 4 bar, the average bubble 

size decreased moderately to 2 mm when the multiple nozzle was used in comparison with 

the single orifice nozzle, where the size was 2.46 mm. The reduction in average bubble size 

was 15% under these operating conditions. When the injection pressure reached 5 bar, the 

average bubble size reduced regularly to 1.96 mm, compared with 2.43 mm with the single 

orifice. The overall reduction in the average bubble size between both techniques was 11% at 

different injection pressures.   

 

  

Figure 4-22: The relationship between the average bubbles size and injection pressure for both nozzle 

configurations at the middle region of the test section 

 

Investigations were also carried out to ensure that large bubble sizes (Taylor bubbles) were 

reduced and did not develop after 1 metre above the injection point. Figure 4.23 illustrates the 
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at different injection pressures. In general, the results showed that there was a fluctuation in 
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at the injection point was slightly low to shear the air bubbles through the orifices. However, 
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middle of the pipe. In comparison, with the single orifice nozzle the average size was 20.93 

mm. 

In addition, the reduction in the average bubble sizes was 27% at this point, and then it rises 

slightly to 15.59 mm when the injection pressure is increased to 3 bar when the MNIT was 

used, compared with the single orifice nozzle, where it was 24.08 mm. The difference 

between both techniques was 35.26% in the middle of the test section at 3 bar. As a final 

point, the average maximum bubble size reduces to 14.63 mm when the injection pressure 

reached 5 bar with multiple orifices compared to 25.99 mm using single nozzle orifice. It can 

be concluded that the bubble sizes produced from the multiple orifices are still smaller than 

with the single orifice even at different heights of the simulated column, due to consistant 

bubble distribution. The overall reduction in the bubble sizes between both techniques was 

21% at different injection pressures.  

 

 

Figure 4-23: Comparison between the two nozzle configurations, 1m above the injection point 

 

Even small bubble sizes were measured at the middle region of the simulated column of the 

apparatus to ensure that their smaller size compared to the single orifice was maintained. 

Figure 4.25 illustrates a comparison between the two nozzles in reducing the average small 

bubble sizes. Overall, the most significant feature shown in Figure 4.25 is that there was a 

sharp decrease in the small bubble sizes when the injection pressure was increased from 0.5 
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to 5 bar when the multiple orifices was used in comparison to a gradual reduction in the 

average minimum bubble sizes when the single orifice nozzle was installed. In addition, at 

the first injection pressures, the average small bubble sizes produced from the SNIT were 

smaller than the new multiple nozzles injection technique. Because of at the low injection 

pressure less than 1.5 bar, the velocity of the air was slightly low through all nozzles of the 

MNIT to shear the air bubbles compare with SNIT. However, after 1.5 bar injection pressure, 

the trend in average small bubble sizes from the single orifice became higher than for the 

multiple nozzles. This means, at this intersection point and operating conditions the average 

bubble size of air bubbles are the same sizes. 

Furthermore, the results also shows that there is a steep decline in the average minimum 

bubble sizes to 0.92 mm, compared with the average minimum bubble size of 0.93 mm using 

the single orifice at 2 bar injection pressure. Afterward, it dropped to 0.91 mm when the 

injection pressure increased to 3 bar using the new multiple orifices, the average size of 0.93 

mm. There then followed a moderate reduction to 0.91 mm in the average minimum bubble 

size once the injection pressure reached 5 bar, compared with the single orifice where the 

average size was 0.92 mm under the same operating conditions.  

 

  

Figure 4-24: Comparison of two nozzle configurations in reducing the average minimum bubble sizes at the 

middle of the region of simulated column of apparatus 

 

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0 1 2 3 4 5

M
an

im
u
m

 b
u
b

b
le

 s
iz

es
 (

m
m

)

Injection pressure (bar)

MNIT SNIT

I 

I 



102 

 

The effect of the velocity of the liquid phase was checked at the middle of the simulated 

column of the apparatus to ensure that the average bubble sizes produced from the multiple 

orifices were not affected by this velocity and that the bubble sizes were still smaller than 

those created from the single orifice. Figure 4.25 demonstrates the effect of the liquid phase 

velocity on the average bubble sizes at the middle region of the simulated column of the 

apparatus. In general, the most significant feature on Figure 4.25  is that the average bubble 

sizes generated from the multiple orifices are still lower than using the single orifice, even if 

the velocity of the liquid phase was increased. 

The results show that as the velocity of the liquid phase rises, the average bubble sizes 

increase. There is a slight increase in the average bubble sizes to 3.67 mm when the liquid 

phase velocity was 2.4 cm/s by comparison, where the average size was 4.14 mm. The 

difference between both techniques was 11.3% at this velocity. Subsequently, the bubble 

sizes rises moderately to 3.8 mm when the liquid phase velocity is increased to 4.8 cm/s, 

compared with the single orifice, where the size was 4.85 mm. The reduction in the average 

bubble sizes between both techniques was 21.64% at this point. Subsequently there was 

growth in the average bubble size to 4.98 mm at 14.6 cm/s liquid phase velocity. In 

comparison, the average bubble size was 5.51 mm between two techniques. It can be 

concluded that the multiple orifices is still capable of reducing the average bubble size at 

different pipe lengths and different liquid phase velocities.  

 

  

Figure 4-25: The effect of velocity of the liquid phase on the average bubble size for both nozzle configurations 

at the middle region of the simulated column apparatus 
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It is essential to track and observe the number and sizes of small bubbles, which are 

generated from the multiple orifices along the simulated column of the apparatus to ensure 

that the number of these small bubbles is still higher than with the single nozzle orifice and 

that the bubbles do not exhibit considerable coalescence. Figure 4.26 illustrates the number of 

detected bubbles at 1 m above the injection point at different injection pressures using both 

techniques. 

The results show that the number of bubbles produced from the new multiple orifice nozzle is 

more than the number produced from the single orifice, especially when the injection 

pressure is increased above 2 bar. As can be seen there is a steep increase in the number of air 

bubbles to 262 bubbles at 4 bar injection pressure. When both configurations compared 

together the number is 208 for single orifice. The increment in the number of bubbles was 

20.60 % under these operating conditions. Thereafter, it grew sharply, ending at 294 bubbles 

when the multiple orifices are used at 5 bar and 211 bubbles with single orifice. It can be 

concluded that the number of small bubbles produced from the MNIT was still higher than 

the number produced with the SNIT, even at the middle region of the pipe, due to their 

improved initial distribution of small sizes. It seems that the coalescence rate was reduced 

when the distribution of bubbles changed from core peaking to wall peaking. This is because 

these small bubbles travel at almost the same velocity, and thus the chance to coalesce and 

develop is lower.  
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Figure 4-26: The number of bubbles at 1m above the injection point using both techniques at different injection 

pressures 

 

4.3.5.1 Distribution of bubbles at 1m above injection point 

The distribution of air bubbles above the middle of the simulated column of the apparatus 

found to have the distribution that to be still normal and spread across the entire pipe area 

(wall peaking). Figure 4.27 demonstrates a comparison between the nozzle configurations in 

the distribution of air bubbles at 1m above the injection point at 4 bar injection pressure.  

The most significant features shows the distribution of air bubbles using the MNIT typified in 

Figure 4.27 that is still normal and better than the distribution of bubbles when the single 

orifice is used. It note that the performance of the MNIT  in distributing air bubbles increases 

as the injection pressure increases to 5 bar, and also air bubble sizes are reduced, as shown in 

Figure 4.28. The results shows that there is a sharp increase in the frequency of smaller air 

bubbles between 2 and 2.15 mm bubble sizes when the multiple orifices are used compared 

with the single orifice, where the peak frequency is between 2.47 and 2.56 mm in size. It was 

found that the bubble distribution of the multiple orifice was across the entire the simulated 

column with smaller bubble sizes. It can be concluded that the MNIT tends to be more 

reliable in distributing air bubbles, especially at higher injection pressures, when compared 

with the single orifice.  
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Figure 4-27: Comparison between the distribution of bubbles for both configurations at 1m above the injection 

point at 4 bar 

 

 

 

 

Figure 4-28: Comparison between the distribution of bubbles for both configurations at 1 m above the injection 

point at 5 bar 
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4.3.6 Effect of reducing initial bubble size on production rate 

The new the multiple orifice nozzle was installed at the injection point, the initial bubble 

sizes were reduced as discussed in the previous sections, and the distribution of air bubbles 

improved significantly. As a result of this, the systemic instability within two-phase flow was 

reduced, the vertical lifting performance was increased and gas lift system became more 

stable in comparison with the single sharp edge orifice. This was reported by (Hu, 2005) that 

the systematic flow instability can cause serious flow oscillations within the system. In most 

cases, these oscillations are a major cause of production losses and are harmful to operational 

smoothness, safety and efficiency. Figure 4.29 illustrates the performance of the multiple 

nozzle injection technique and single (conventional) orifice valve in increasing the outlet 

flow rate (oil production rate) at different injection pressures and a constant inlet flow rate 30 

l/min. The flow rate is measured by a digital flow meter at the experiment outlet lines. This 

digital flow meter measures the volumetric flow rate not mass flow rate. As result of this, 

there are small differences between inflow and out flow figures. This is due to the complexity 

of measurement of multiphase flow and it’s behaviours within vertical test section. 

 

 Overall, the most significant feature shown in Figure 4.29 is the outlet liquid flow rate 

(production rate): that tends to be higher with the multiple orifice nozzle than with the single 

orifice nozzle. The results shows that there is an increase to 36.6 l/min when the multiple 

orifice nozzle injection technique was used at 0.5 bar injection pressure, compared with the 

single orifice nozzle of 34.8 l/min. The increment in the outlet production rate was 5.2% at 

low pressure. Afterwards, it rises sharply to 41.2 l/min when the MNIT was used in 

comparison with the SNIT, which is only 38.6 l/min at 2 bar injection pressure. The 

difference between both techniques at these operating conditions was 6.7%. Subsequently 

there was a rapid growth ending at 50.10 l/min at 5 bar injection pressure, compared with the 

single orifice nozzle, which is 46.6 l/min. Finally, it is concluded that the new multiple orifice 

injection technique increased the average lifting performance and production rate by 7.5% at 

different injection pressures compared with the conventional single orifice gas lift.  
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Figure 4-29: Comparison between the performance of the two techniques in increasing (production rate) at a 

constant inlet liquid flow rate 30 l/min. 

 

 

4.4 Summary 

This Chapter presents the experimental results and discussions of the variables that can affect 

the growth of bubble sizes within upward two-phase flow and lead to flow instability in gas 

lift system. The two design configurations that were used Single Nozzle Injection Technique 

(SNIT) and Multiple Nozzle Injection Technique (MNIT) on a simulated column apparatus 

for gas lift optimisation were compared against each other. The summary of the findings are 

as following:  

a) § 4.2.1 showed that when the air injection pressure was increased from 0.5 to 5 bars, 

the average air bubble sizes reduced from 9.75 to 5.06 mm at contant liquid phase 

velocity 2.4 cm/s. 

b) § 4.2.2 indicated that as bubble velocity increases, the bubble sizes increases. 

However the velocity of bubbles reduced at 5 bar injection pressure. 

c) § 4.2.3 showed that as port size increases, the bubble sizes increases and have a 

negative effect on the stabiltiy of the two-phase flow. 

d) § 4.2.4 presented the mechanism of bubble coalescence and development at the 

middle of the test section when the single orifice technique was used. 

e) § 4.3.1.1 showed the MNIT reduced the initial bubble sizes by 22%. 
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f) § 4.3.1.2 showed that the MNIT decreased the average small bubble within two-phase 

flow by 16%. 

g) § 4.3.1.3 indicated that the MNIT is capable in reducing large bubble sizes (Taylor 

bubbles) by 8%. 

h) § 4.3.3 indicated that the MNIT is cable of changing the distribution of bubbles in the 

simulated column apparatus from the core peaking to wall peaking. 

i) § 4.3.5 confirmed that the average bubbles sizes generated from the MNIT are smaller 

than using the SNIT, even at different length of the test section. 

j) § 4.3.6 showed that the lifting performance was increased by 7.5% when the MNIT 

was used compared with SNIT 
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The overall effect of parameters on the stability of two-phase flow in gas lifted well can also 

be summarised in Table 4.3.  

 

Table 4-3: Summary of the effect of parameters on the stability of two-phase flow 

Parameters 
Stability of  

Two-phase flow 

Lifting 

performance 
Production rate 

Port size 

The increase of port 

size has destabilising 

effect 

The increase of port 

size decrease the 

lifting performance 

of gas lifted system 

Reduce the 

production rate 

because it cause flow 

instability 

Injection rate 

At high rate stabilising 

effect but at low rate 

destabilising 

Increase partially Increase partially 

Injection pressure 

Increase has stabilising 

effect because it 

reduces bubble sizes 

Increase partially Increase partially 

Distribution of gas 

bubbles 

Core peaking 

distribution has 

destabilising effect 

,however, wall peaking 

stabilising effect 

Core peaking 

decreasing and wall 

peaking  increasing 

Both effects 

Reducing bubble 

sizes 
Stabilising effect Increase Increase 

 

Single nozzle (SNIT) 

 

Destabilising effect Reducing Reducing 

Multiple orifice 

nozzle (MNIT)  
Stabilising effect increase increase 
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5 CHAPTER 5 

Two-phase Flow Modelling using Computational Fluid Dynamics  

 

5.1 Introduction 

A huge amount of oil and gas are consumed every day and the slightest enhancement in 

extraction efficiency will have a substantial influence on profits for companies in the oil and 

gas industry. Therefore, solving the flow instabilities of multiphase flow in gas lift systems is 

the priority for oil companies. One of the methods used to understand fluid behaviours and 

optimise multi-phase flow is computational fluid dynamics (CFD) (Çengel and Cimbala, 

2014). 

The aim of this chapter is to use ANSYS Fluent computational fluid dynamics to simulate 

and validate the experimental results data. The research will investigate the reasons for flow 

instabilities and aspects of optimising gas-lift effectively and efficiently. This will be 

achieved by assessing the effects of operating conditions of flow formation, bubble 

behaviours, pressure drop, gas void fraction and the interactions between phases. In addition, 

a novel technique will be introduced to stabilise gas lift systems with potential increase the 

total oil production rate by replacing SNIT by the MNIT to reduce the initial gas bubble sizes 

and improve the distribution of gas bubbles in the column. Therefore, a comprehensive three-

dimensional gas-lift model was developed to simulate the gas-liquid flow consists of a 66 mm 

wide and 2 m high gas-lift system, and it will be presented in this chapter. 

 

5.2 Computational Fluid Dynamics (CFD) 

CFD is a numerical method in which applied mathematics, physics and commercial 

computational software are used to visualise fluid flows (gas and/or liquid). The governing 

equation for CFD is based on the Navier-Stokes equations. CFD can obtain details about the 

flow field that experiments cannot achieve, such as shear stress, velocity, pressure profiles 

and flow streamlines. Engineers compare both experimental and numerical data analyses in 

order to validate their results (Çengel and Cimbala, 2014). 

Numerical methods can give initial good predictions of fluid flow in different scenarios 

before building any experiment, and also they can be used to calculate certain parameters that 
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cannot be measured in the experiments. The simulation software also allows the user to 

change variables such as the velocity of oil or gas and pressure outlet. In the last decades, the 

improvement in computer and chemical technologies has contributed to an increase in 

research to optimise gas-lift systems using computational fluid dynamics (CFD). There is 

much literature studying different aspects of fluid behaviours along a vertical pipe (Morel et 

al., 2010, Ohnuki and Akimoto, 1996, Dai et al., 2013). However, there are not many topics 

of research on the effect of reducing bubble sizes and bubble formation in gas-lift systems. 

The following are definitions of common terms that one might come across in this section: 

 

5.2.1 Finite Volume Method (FVM) 

The discretisation technique method that is most commonly used in CFD is the finite volume 

method (FVM). FVM allows the computational domain to divide the domain into control 

volumes where the variable is located at the centre of the control volume. It integrates the 

differential form of the governing equations over each control volume using interpolation. 

This is an advantage for FVM where it ensures conservation: in the cells and globally in the 

domain. It also allows unstructured mesh or grids, which decreases the computational time. 

However, the discretised equations also include the values for the cell faces (Stenmark, 

2013). Therefore, the interpolation methods are used to obtain approximate values at certain 

positions. This method affects the numerical stability, convergence rate and accuracy. In the 

vertex-centred method, the control volumes are constructed around each mesh vertex. The 

control volume lies within several mesh elements, the discretisation is carried out within each 

element, and the properties are distributed to the corresponding control volume. The 

appearance of the shape functions depends on the element type. Figure 5.1 illustrates the two 

mesh element methods (Stenmark, 2014). 
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Figure 5-1: The cell-centred (left) and the vertex-centred (right) method (Stenmark, 2013) 

 

5.3  Multi-phase Numerical Modelling Approaches 

Models are used in order to describe and predict the fluid flow. As mentioned earlier, 

modelling a multiphase flow is very difficult due to its complexity and limitations. For 

example, the procedure is time consuming and the capacity of the computer is not sufficient 

to cope. This has led scientists to develop models that can be applied to different multiphase 

flow applications. There are two main types of modelling; Eulerian-Lagrange and Eulerian-

Eulerian. 

 

5.3.1  Euler-Lagrange Model 

The Lagrangian method is tracking an object to determine its properties. The method is used 

when a fluid particle is being followed at each point. The fluid properties are then determined 

as the fluid particles move around. The method does not have a specific boundary layer and it 

can track fluid movement, direction and location wherever it moves. The method can obtain 

information by simply following an object’s movement (Stenmark, 2013).  

 

5.3.2 Euler-Euler Model 

The Eulerian method is observing fluid properties as a function of time and space. The phases 

in the method are assumed to be continuous. Multi-fluid models are suitable for two-phase 

gas-liquid flows as both phases are treated as a continuum. Imagine a container where fluid 

particles can flow in and out. The method can observe and monitor the particles inside the 

container. However, outside the container the method is not able to monitor the fluid 
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particles. The model can also be used to simulate a dispersed flow where the overall flow  

interest area can  track every individual particles. The volume fraction should be high in order 

to describe the dispersed phase is continuum. Each phase is calculated independently and a 

set of conservation equations is solved for each phase. The model coupled pressure and 

interphase exchange coefficients need to be modelled. The user must have knowledge of this 

and it is up to the user which model to include for their simulation. A number of models are 

suitable for different flow types and this is all based on empirical evidence and developed 

from other literature. The mixture model is another Eulerian method where the phases are 

treated as interpenetrating continua. However, in the mixture model the transport equations 

are based on mixture properties, such as mixture velocity or mixture viscosity. It also solves 

the mixture momentum equation and can also be used without relative velocities for the 

dispersed phases to model a homogeneous multiphase flow (Stenmark, 2013).  

 

5.3.3 Volume of Fluid Model 

The volume of fluid (VOF) model solves for two or more immiscible fluids, where the 

interest is the location of the boundary between the fluids. The momentum equations shared 

by the fluids and the volume fraction of each fluid in each cell are calculated throughout the 

domain. It solves using a single set of momentum equations and tracking the volume fraction 

of each of the fluids in the domain.  

The transport equations solve the mixture properties, which means the variables are presumed 

to be shared between the phases. The VOF model tracks the interface between two or more 

phases, and is suitable for flows with sharp interfaces. In order to obtain a sharp interface the 

discretisation of the equation is crucial (Stenmark, 2013).  

 

5.4 Modelling Two-phase Flow 

5.4.1  Multi-Fluid Modelling 

In a gas-lift system a turbulence model will be used in bubbly flow and slug flow regimes. 

The way to model a multiphase flow is to model one flow regime at a time. It is not always 

possible to predict the flow transition from one flow regime to another using the same model. 

Common approaches for a gas-lift system for modelling two-phase flow are the Eulerian-
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Eulerian, Eulerian-Lagrange and direct numerical solution (DNS) (Sattar et al., 2013, Dai et 

al., 2013, Behbahani et al., 2012). The Eulerian-Lagrangian approach uses the discrete 

bubble model where all particles or bubbles in the gas phase are tracked individually. This 

approach needs high computational cost and time (Sattar et al., 2013). There are various 

Euler-Euler models that can be used, for example the mixture model, the Volume of Fluid 

(VOF) model and the Euler model. 

The model proposed by Dai et al. (2013) for modelling all flow regimes (bubbly, slug, 

annular, etc.) in a 3 m long and 189mm wide vertical pipe of Euler-Euler coupled with the 

multi-fluid VOF approach is the most suitable to implement in CFD. Bubble sizes were on 

average from 5-15mm, where larger bubbles (>10mm) have more inertia and tend to separate 

from the incoming liquid. This area of interest is important because they create pockets of 

high gas volume fraction at the top section of pipe. Through this study, the authors concluded 

that the pressure gradient and other transport characteristics such as mass and heat transfer 

are closely related to the flow regimes in the pipe. Most of the numerical models used flow 

regime to recognise the flow and applied the experimental results to develop empirical 

correlations to calculate the void fraction, gas-liquid hold-up and pressure drop (Dai et al., 

2013). 

Harasek et al. (2010) performed transient ab initio simulations using OpenFOAM-1.6 and 

implemented a volume of fluid (VOF) model to describe the immiscible gas and liquid phase 

in a bubble column of Nakao (1983) at very high grid densities (173 million). The VOF 

model was chosen because the model assumes two or more immiscible fluids in which water 

and air were used in this paper. The superficial gas velocity was set to V=0.04m/s and a 

constant pressure of gas inlet was injected into a 1000 mm column filled with water for six 

seconds in real time. However in this case, they did not use any turbulence model due to the 

unphysically slow rise of the air bubbles and assumed that the turbulence model was giving 

unphysical results. Harasek et al. concluded that the simulation produced a good agreement 

with the experimental results, showing good gas hold-up results in the bubble column. 

Further studies made by Yasin et al. (2014) proposed a two-phase CFD simulation using an 

Euler-Euler model with a mixture model to calculate the gas-liquid flow in the pipe, varying 

the injection depth on vertical upward flow and the effect of the gas injection rate. This paper 

focused on velocity as the main variable of the flowing fluids. Three different depths of 

injection rate of 5, 15 and 25 metres from the casing shoe were studied. From the literature, it 
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was found that the gas-lift system was installed as deep as possible. The results determined 

that the lowest injected point had the highest velocity of 3.02 m/s. Furthermore, the effect of 

the gas injection rate was further developed and it was shown that the gas injection rate 

significantly increased the oil production rate because the density and the hydrostatic pressure 

in the column are reduced. Thus, the velocity increases, flowing vertically upward. because 

the total pressure depends on the static pressure losses, which is a function of the fluid 

density, and the dynamic pressure losses, which are due to the flow regime in the column. In 

a gas-lift system, static pressure has a constant gravity and height. Thus, the only variable that 

can be changed is the density of the fluid. Conversely, the introduction of a gas phase to the 

flow is crucial because the gas is less dense than the liquid. However, fluid instabilities 

known as slippage can occur during the flow. Thus, the gas phase will move faster than the 

liquid phase, consequently reducing the production rate, and it would be economically 

inefficient. Additional research of economic analysis needs to be performed in order to 

determine the optimum gas injection rate for certain wells. The author concluded that the 

lower the gas injected, the higher the velocity of flowing fluid in the gas-lift system. The 

CFD model showed that when the gas injection rate was increased by 20%, the velocity of 

flowing fluid increased by 1.7%. 

Guet et al. (2004) developed a numerical model based on the Euler-Euler modelling approach 

for predicting the radial profile of the void fraction and velocity due to bubble size changes. 

The results obtained were compared with the experimental results shown in the literature. 

Furthermore, the model was used to conclude the bubble size effect on the gravitational 

pressure gradient by calculating the drift-flux distribution parameter depending on the bubble 

size and liquid input. Other studies carried out by Behbahani et al. (2012) reported that the 

radial profiles were affected by forces from turbulent dispersion, lift and the wall.  They 

learned that to predict the correct value of peak void fraction they had to reduce the standard 

Tomiyama lift and wall forces. 

Stenmark (2013) compared multiphase flow in a vertical T-junction using ANSYS Fluent and 

CFX. The numerical model was validated using an experimental model of air-water mixtures 

in a T-junction with a horizontal branch. The focus of this paper is to predict the flow 

phenomenon and investigate the effect accurately using different settings of the numerical 

solver. The Euler-Euler model and the gas dispersed phase diameter were chosen. Stenmark 

concluded that the predicted volume fraction was in good agreement, however the velocity 
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was in low agreement. Thus, additional models were added for polydispersed flow to increase 

the agreement for velocity. 

Tabib et al. (2008) modelled 3D transient CFD simulations of a bubble column using three 

different turbulence closures of k − ε, RSM and LES models and implemented a sensitivity 

study of different interphase forces (drag, lift, turbulent dispersion and added mass). The 

purpose of this paper was to compare the turbulence models that could predict the experiment 

carried out by (Bhole et al., 2006, Kulkarni et al., 2007). They concluded that the RSM 

model was in better agreement than the k − ε in predicting the turbulent kinetic profiles, 

whereas the LES model performed well at predicting the average behaviour of the flow. 

Conversely, they determined that the LES model was best at simulating flow structures and 

instantaneous flow profiles. In the interphase forces, the drag law of (Zhang and 

Vanderheyden, 2002) was the best; and the lift coefficient by Kulkarni (2003) was found to 

give better predictions. Turbulent dispersion is concluded to be intuitive and for the added 

mass there are no significant contributions.  

Behbahani et al. (2012) explored a multi-fluid Euler-Euler model with the standard k − ε to 

predict bubbly flow in an 80D air-water vertical pipe simulation. The models were tuned with 

the help of direct numerical solution (DNS) and experimental data. They used many 

experimental studies conducted by other researchers (Prasser et al., 2003, Lucas et al., 2005, 

Liu, 1998, Wang et al., 1987) and compared the results to different numerical studies. The 

multiphase flow in the well is assumed to be isothermally incompressible, with no mass 

transfer, in one continuous phase and one or more dispersed phases. The authors also tuned 

the proposed model to simulate gas lift in an oil reservoir of 20 m height, 73 mm diameter 

and 8mm gas diameter. Four different bubble sizes (2, 3, 4.5, 5.5 mm) were used and for each 

size, four gas superficial velocities (0.05, 0.1, 0.2, 0.3 m/s) were simulated. The multi-fluid 

model was validated and plotted on a graph with eight other correlations for the bubble flow 

regime carried out by the researchers. (Guet, 2004) had the most accurate results predicted in 

all ranges of bubble diameter. 

Deen et al. (2001) compared the LES and k − ε turbulence models in modelling a bubble 

column reactor. Previous studyies considered the lift and virtual mass force, however the 

result showed no influence on the study. The LES was able to capture the transient movement 

of the bubble plume significantly compared to the k − ε turbulence models. The results 
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concluded that the velocity and velocity fluctuations showed quantitative agreement with the 

experimental results. 

 

5.4.1.1 Bubble Coalescence and Break up 

Morel et al. (2010) modelled a numerical simulation of isothermal bubbly flows with 

different bubble sizes using the Multi-Size-Group (MUSIG) approach. They tested four 

different approaches and used isothermal flows without phase change as a first stage. The 

approaches were: single approach for bubbly flows (Wu et al., 1998b), first moment density 

approach using a bubble diameter distribution function represented by a log-normal law, 

second moment density approach using a bubble diameter distribution function represented 

by a quadratic law and multi-field (MUSIG) approach. (Lucas et al., 2005).  They took into 

account the bubble coalescence and break-up phenomena, as well as the gas expansion due to 

compressibility. The first method chosen by Wu et al. (1998b) was the single approach for 

the bubble coalescence and break-up. It gave reasonable results in the experimental case. The 

first method of the moment density approach based on log-normal law was able to model the 

bubble coalesce but not the bubble break-up due to the divergence of the log-normal law. The 

second method of the moment density approach assumed the quadratic law parabolic shaped 

function; due to this, it was not able to reproduce the bubble coalescence and break-up. The 

multi-field approach was tested using the CFD simulation to model bubble coalescence and 

break-up. Morel recommended further investigations into the effect of bubble diameter range, 

model discretisation, and bubble coalescence mass exchange. 

Sattar et al. (2013) developed the population balance modelling approach, where the author 

predicted and tracked the number density of different bubble classes ranging from 1.57 −

12.56 mm. The model illustrated an improved bubble break-up and bubble coalescence based 

on work undertaken by Hagesaether et al. (2002) and also concluded that the Sauter mean 

diameter increased as the height increased. The paper used the Euler-Euler model, as the 

liquid is considered as the continua and the gas (bubbles) is considered as the dispersed 

phase.  The simulation was carried out in a cylindrical bubble column. The bubble column 

was 4,600 mm high, with 78 mm internal diameter and an inlet diameter of 2.34 mm. The 

stationary liquid in the model was filled in the column and gas was injected at the bottom 

with a gas superficial velocity of 0.01, 0.02 and 0.06m/s. The momentum interfacial 

exchanges are also important. They take into account the effect between the gas phase and 
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liquid phase interaction by using the interfacial momentum source. The turbulence k-e model 

was used and the momentum and turbulence were classed as first order upwind. The results 

showed good agreement with the experimental results. 

Pourtousi et al. (2015) implemented sensitivity analysis to determine the effect of bubble size 

at different superficial gas velocities and illustrate the bubble formation and flow regime 

inside the bubble column. 

It is assumed that in the column, the interaction between the dispersed gas and the liquid 

affects the interphase forces (drag, lift, and so on), turbulence and bubble diameter. Thus, the 

correct selection of numerical settings is needed to simulate an accurate model.  

The Ansys CFX 13 solver was used to simulate the numerical model using an Euler-Euler 

model with the SIMPLEC procedure to calculate the equation coupled with the total variation 

diminishing (TVD) method and the maximum Courant-Friedrichs-Lewy  (CFL) number must 

be less than one to improve the accuracy and use less computational effort in comparison 

with other methods. The operational conditions, gas-liquid properties and flow regimes 

depend on bubble shape and diameter. Therefore, experimental observation and a sensitivity 

study of bubble diameters on the accuracy of flow patterns are needed. One bubble size can 

be used for the numerical study to lower computational cost. The Schiller-Naumann drag 

model is appropriate for spherical bubble shape. The results shown in the numerical model 

were computed for 1400s for various bubble sizes (3-5.5mm). The paper established that the 

3mm bubble is in good agreement with the experimental data for superficial gas velocities 

ranging from 0.0015 to 0.025m/s. However, these numerical settings are used for low gas 

velocities.  

Deju et al. (2013) assessed the gas-liquid flow using population balance modelling (PBM) to 

capture bubble coalescence and break-up. The authors uses two particular PBE methods; 

namely the direct quadrature method of moment (DQMOM) and the Multi-Size-Group 

(MUSIG) model. The computational fluid dynamics ANSYS CFX 11 was used and the 

average bubble number density was added to capture the flow. The DQMOM was observed 

to be closer to the measurements compared with the MUSIG. This emphasised the key 

parameters of coalescence and break-up kernels have a vital role in predicting the physical 

behaviour of bubble size evolution for different PBE methods. The assumption of a spherical 

bubble will work in a bubbly flow, however in the case of slug flow or Taylor bubbles, the 

wake entrainment and surface instability could become significant. Thus, there is greater 
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emphasis on improving the interfacial force model, including other possible bubble 

mechanisms. 

Further studies by Khan et al. (2015) proposed a signal processing based technique to 

calculate and classify bubble size. The numerical model is run using ANSYS Fluent and the 

volume of fluid model was used. The captured data are analysed using signal processing. 

Signal processing is a scheme to classify and determine the size of bubbles with a short-time 

Fourier transform base. A cylindrical vessel was filled with water to a height of 40mm. 

Tetrahedral elements was used to refine the grid at the air inlet. Air was injected at the bottom 

of the tube with a radius of 1mm at four different velocities of 0.02, 0.05, 0.2 and 0.4m/s. A 

SIMPLEC algorithm is used for pressure-velocity coupling and a first-order implicit time 

scheme with convergence criteria of 0.001 was used. The results showed that the proposed 

technique is able to predict the bubble size with information from bubbles passing through a 

single sensor point.  

Taha and Cui (2006) assessed the motion of single Taylor bubbles in vertical tubes. The 

authors also investigated the Taylor bubbles in stagnant and flowing fluids to obtain the 

complete bubble formation. The volume of fluid (VOF) model was implemented to capture 

the shape, velocity magnitude and velocity distribution of the slug flow and was compared 

with experimental findings. It was found that the Taylor bubbles had a cylindrical body with 

a spherical nose and fluctuating tail.  

 

5.4.1.2  Turbulence Model 

Turbulent flow is much more difficult to solve than laminar flow. The flow field is always 

unsteady and turbulent eddies occur in three dimensions where random, swirling and vortical 

structures take place. Turbulence models are to solve turbulent flow solutions. The turbulent 

flow simulation needs a fine and quality grid to resolve all the unsteady three- dimensional 

turbulent eddies. The models have additional transport equations that enhance mixing and 

diffusion of turbulence that must be solved along with the mass and momentum equations 

(Çengel and Cimbala, 2014). 
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For a gas-liquid flow, there is no standard turbulence model (LES, DNS, k − ε, k − ω, etc.) 

specifically used for this case. From numerical investigation, one turbulence model that is 

widely used for gas-liquid bubbly flow in a vertical pipe is the two transport equation model; 

the k − ε model. The model is preferred to predict the liquid flow pattern and gas hold-up 

because of its lower computational cost, and it provides good results and the simplest 

algorithm (Sattar et al., 2013, Pourtousi et al., 2015, Behbahani et al., 2012).  

 

For the disperse bubbly phase, a zero equation turbulence model is used while the standard 

k − ε model is applied for the continuous phase. These two turbulence methods have better 

performance when the coalescence and break-up occur under higher superficial gas velocity, 

hence the k − ε model is commonly used for simulating 3D gas-liquid flow (Pourtousi et al., 

2015), where 𝑘 is the kinetic energy and 𝜀 is the turbulent dissipation. Turbulent dissipation 

is the rate at which velocity fluctuations dissipate. The equations are solved simultaneously 

with the equations of mass and momentum. However, the variables are not necessarily 

known, and instead it is used for specifying turbulence intensity and turbulent length scale 

(hydraulic diameter). Turbulent models are heavily reliant on the approximations of empirical 

constants for mathematical closure of the equations (Behbahani et al., 2012).  Furthermore, 

two new equations will add two additional boundary conditions specific to the turbulence 

properties at inlets and outlets. Most of the literature uses the standard k − ε model, which is 

suitable for the turbulence model to capture the flow inside the column, especially when the 

Reynolds number is low (Çengel and Cimbala, 2014). 

 

5.5 Numerical Simulation Methodology  

5.5.1 Introduction 

Fluid flow in a gas-lift system is extremely complex and the user needs to have a well-

rounded knowledge in a multiphase flow and computational fluid dynamics (CFD) 

background in order to design and simulate the fluid behaviours in a gas-lift system. This 

system is a widely used technique that uses high-pressure gas to lift reservoir fluid to the 

surface artificially. In simple terms, the principle of gas-lift is that the gas is injected down 

into the well to reduce the density of the reservoir fluid, which then decreases the flowing 

pressure gradient and then the bottom-hole pressure so that it is lower than the static pressure, 
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thus allowing the fluid to flow in the wellbore and to the surface facilities. There are many 

advantages of gas-lift, such as outstanding flexibility with wide ranges of depth, especially 

for offshore oil wells as well as low maintenance and operating costs. Gas-lift optimisation is 

an important process to achieve optimum design and efficient operation, and thus the 

operating parameters must be understood.  

Furthermore, the relationship between the development of flow regimes and design 

assumptions must be considered, as it will influence significantly the total production rate 

from this method. The gas-lift method undergoes a huge pressure drop, turbulence of flow 

and mixing of fluids with different densities along the production tubing. Computational fluid 

dynamics (CFD) has developed into a powerful tool to simulate the operating parameters in a 

gas-lift system in different scenarios. The CFD software enables the user to incorporate a 

multiphase model with turbulence and a discrete model to capture or emulate a real-world 

gas-lift. In addition to solving the mass and continuity equations for the continuous phase, the 

discrete phase model (DPM) allows simulation of a discrete phase (spherical bubbles) 

dispersed in the continuous phase (liquid). This will help to gain exceptional knowledge of 

the factors affecting the flow instability, which influence total production flow rates and 

cause operational problems such as gas compressor shutdown in this system. The discrete 

phase model will provide further insights into the dynamics of multiphase flows. It also 

predicts the trajectory and interaction among the gas bubbles in dispersed flow (discrete 

phase particle). Thus, the discrete phase model is very important for reasonable predictions of 

bubble formation.  

 

The objectives of this simulation study are: 

(i) To investigate the upward two-phase flow behaviours that are capable of causing 

flow instability in a vertical column, using a multi-fluid Volume of fluid (VOF) 

model, and assess their applicability in predicting the local dynamic flowing fluid 

behaviours, such as pressure, pressure drop, void fraction and velocity, which are 

relevant in a gas-lift system.  

(ii) To reduce the initial bubble sizes and improve the distribution of flowing air bubbles 

by replacing the conventional single orifice gas lift valve (SNIT) by a new gas lift 

valve with the multiple nozzles injection technique (MNIT) at the injection point at 

the bottom of the vertical column.  
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(iii) To enhance the lifting performance and increase the total oil production rate from gas 

lifted wells by stabilising the upward two-phase flow behaviours using a gas injection 

rate that is the same as or lower than other existing techniques.  

This section presents the simulation design steps that were used in the study: the computer-

aided tool (CAD), the design stages of the new technique, boundary conditions and flow 

parameters for the numerical simulations.  

 

5.5.2 Numerical Simulation (CFD) 

The research focuses on understanding the main cause of the flow instability in gas-lift 

systems using numerical methods. This will give more details about upward two-phase flow 

behaviours in the vertical column in this system. Moreover, the results obtained from these 

numerical simulation methods will be benchmarked with experimental results. Hence it was 

important to learn about different multi-fluid modelling methods to capture the two-phase 

flow behaviours concerning bubble breakup and bubble coalescence. The software used will 

be presented in this section. The fluid flow in the gas-lift system will be simulated in three 

dimensions. It is important to have some background in computer aided design (CAD) 

software that will be used in order to build a comprehensive 3D model. There will be a brief 

description of (CAD) software, Rhinoceros 5 and ICEM CFD (Integrated Computer 

Engineering and Manufacturing) used for geometry and mesh generation respectively. Also, 

the commercial computational fluid dynamics (CFD) programme, ANSYS (Analysis System) 

Fluent, will be introduced. 

 

5.5.3  Computer Aided Design (CAD) 

5.5.3.1  Rhinoceros software 

Rhinoceros, also known as Rhino or Rhino 3D, is a versatile 3D CAD modeller that allows a 

detailed and accurate model design. A 3D gas lift model will be constructed consisting of a 2 

m long vertical pipe with an injection point 0.1m from the base of pipe using the NURBS 

(Non-Uniform B-Spline Surface) curves and surfaces, a feature in the Rhinoceros Computer 

Aided Design (CAD) tool. This design tool is very accurate as it supports scalable 

geometrical entities having parametric curves and surfaces up to 3-5 degrees (Rhino, 
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2016)(Rhino 3D, 2015). These gas lift 3D models are constructed in different scenarios, then 

imported to CFD software to investigate the fluid behaviours. The properties and accuracy of 

the 3D models’ geometries are summarised in Table 5.1: 

 

Table 5-1: Properties and accuracy of 3D models  

Grid properties Units (layouts and models) 

 Grid count = 200 

 Minor grid line every 0.05 

metres 

 Major lines every 10 minor 

grid lines 

 Absolute tolerance (1𝑒−10) 

 Relative tolerance (1𝑒−10) 

 Angle tolerance (1𝑒−2) 

 Unit is metres 

 

5.5.4 ICEM CFD (Grid Generation) 

ICEM CFD is a meshing software that can produce high quality volume or surface meshes 

with minimal effort. In ICEM CFD, structured and unstructured mesh blocking approaches 

can be applied for tetrahedral or hexahedral meshes in a simple and complex geometry 

(Ansys Inc., 2016b). According to Çengel and Cimbala (2014), generating the grid on a 

model is one of the most important steps in CFD, as it has a great influence on the solver 

convergence and solution. The flow domains are split into smaller cells and the grid 

designates the cells on which the flow is solved. Factors that can affect the mesh quality for a 

good solution are skewness, mesh refinements, grid density, element quality, aspect ratio, and 

so on. Those factors were carefully treated and checked within the model to ensure quick 

convergence and accuracy in the numerical solution. Sattar et al. (2013) generated two 

different meshes of the model with a total number of elements of 148,127 and 293,307 

respectively. Both models were run identically and when compared, the results showed no 

significant differences, and thus the 148,127 mesh was used. Furthermore, Pourtousi et al. 

(2015) also did a mesh sensitivity study where three different qualities of mesh were 

generated of 40,500, 59,000 and 82,320 elements. The grid proved that the denser or more 

closely compacted grid increased the accuracy of the results.  
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5.5.5 Fluent  

Computational Fluid Dynamics Fluent software is a product by ANSYS. The Fluent software 

contains a comprehensive suite and it is widely used for modelling fluid flow and other 

related engineering applications. It has the ability to simulate a wide range of phenomena: 

mixtures of liquids and gas, turbulence, heat transfer, and reactions for industrial applications 

and the transient flow phenomena are quickly solved (Ansys Inc., 2016a). It provides the 

tools needed to investigate two-phase flow instabilities. 

Fluent software will solve conservation equations for mass and momentum and for flows 

involving turbulence, and an additional equation for viscous and transport equation is solved. 

Fluent is based on the robust finite volume method (FVM) discretisation technique and it 

allows the user to use segregated and coupled solution methods. As mentioned in the 

previous section, the FVM method divides the domain into small control volumes where the 

choice of discretisation method will also dictate the results in other multiphase models. 

Hence, the volume of fluid (VOF) method interface is retained as dispersed. Furthermore, 

Fluent contains a number of discretisation techniques. To model the interfacial momentum 

forces, the equations of drag, lift and wall forces can also be solved (Stenmark, 2013). 

In a gas-lift system, to model the dispersed phases with two-phase gas-liquid flow, there are 

three main approaches. The default settings will assume the dispersed phase has a constant 

diameter defined by a user-defined function (hydraulic diameter). However, bubble 

coalescence and bubble breakup are not considered. To investigate the dispersed phase, the 

population balance modelling (PBM) or the interfacial area concentration (IAC) settings can 

be used. The IAC is the interfacial area between the two phases and the approach is a more 

simple technique than the PBM in which only one additional transport equation is solved per 

secondary phase. Furthermore, the IAC model can simulate the bubble coalescence and 

bubble breakup. However, it cannot predict the distribution of particle sizes. The PBM 

method in Fluent as described in the previous sections allows three methods to solve: the 

discretised population balance, the Standard Method of Moments (SMM) and the Quadrature 

Method of Moments (QMOM) (Ansys Inc., 2013). In discrete methods, the particles are 

individually separated by a finite number of size intervals. 

This approach is really appropriate to use when the size is known and assumed to be constant 

throughout the domain. However, the computational effort can be heavy if the number of 

intervals is excessive. In the SMM method, the population balance modelling is converted to 



  

125 

 

a set of transport equations for moments of the distribution, however this may reduce the 

number of equations to be solved significantly compared to the discrete method. SMM is 

very useful when the overall quantities and average are sufficient to represent the particle 

distribution. The QMOM is implemented in a wide range of flow cases, and exchanges any 

closure required compared to the SMM. Please see the ANSYS Fluent Population Balance 

Module Manual for a more detailed description (2013). 

 

5.5.5.1 Numerical CFD Modelling  

A typical CFD analysis will be broken down into three main stages: pre-processor, solver, 

and post-processor.  

Pre-processor:  

1. Create a gas-lift design on Rhinoceros 5; export the design using a STEP file. 

2. Create a quality grid on ICEM CFD 17.1 and list the boundary conditions. Export the 

grid using an Unstructured Mesh file and read the mesh on Fluent; 

 

Solver: 

3. Apply the settings and boundary conditions and then solve the numerical problem on 

Fluent 17.1 by using a turbulence model and multiphase model; Grid Independency 

test. 

4. Monitor the convergence of the model; 

Post-processor: 

5. Visualise and analyse the CFD results on CFD-Post 17.1. Validate the model using 

the experimental results; 

6. Further analysis on the validated numerical model. Figure 5.3 describes the 

computational fluid dynamic simulation method that will be followed in this research. 
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Figure 5-2: Computational fluid dynamics (CFD) simulation flow chart 

 

5.5.6 The Numerical Design of the Gas Lift Model  

The gas lift simulation model was simplified as much as possible to concentrate on the area 

where the flow instability phenomenon occurs within the simulated column of the apparatus, 

starting from the gas injection point at the bottom of the test section, and also to avoid 

complication in the construction of the model. The geometry dimensions of the model are 

shown in Figure 5.4. The gas lift model consists of 2000 mm high, 66 mm internal diameter 

with an injection point 0.1 m from the base of the pipe as shown in Figure 5.3. The gas 

injection point was changed for the first scenario for the different port sizes of 0.2, 1, 2, and 4 

mm when the orifice valve was used as shown in Figure 5.5, to investigate the effect of 

varying the port size on the stability of upward two-phase behaviours, and also to compare 

with the new technique with multiple nozzles injection (MNIT). The MNIT consists of five 
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small nozzles, each of 1 mm diameter, as shown in Figure 5.6. In addition, the total diameter 

of the five nozzles was calculated as 2.24 mm as shown in Table 3.1, and then this new 

technique was compared with the single (sharp edge) orifice technique (SNIT) with the same 

port size of 2.24 mm. Furthermore, the lifting performance and distribution of the void 

fraction in the column of both valves were investigated to ascertain which one of them was 

better to stabilise the system and thus increase the oil production rate of the gas lift method. 

The parameters of the gas lift geometry model are listed in Table 5.2. The model design was 

created in Rhino 3D and saved as a STEP file in order that it would be recognised by ICEM 

CFD.  In this case, the simulation type is a turbulent two-phase flow. The parameters defining 

the flow in the domain taken from the experimental study are listed. 

 

 

 

 

 

 

 

  
Gas Injection point 

Outlet 

Water Inlet 

 

Figure 5-3: Gas lift simulation CAD model 
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Figure 5-4: Dimensions of gas lift geometry simulation model 
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Water Inlet 

Outlet 

Figure 5-5: Gas injection point with an orifice of 2.24 mm 
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Figure 5-6: Gas injection point with 2.24mm (MNIT) (Each nozzle diameter is 1mm) 

 

 

Table 5-2:  Parameters of gas lift geometry model 

 

Parameter 

 

Value Units 

Length of pipe  2000 mm 

Internal diameter of  pipe  66 mm 

Orifice Diameter  

 

0.2, 1, 2  , 4 

 

mm 

Diameter of each nozzle of (MNIT)   1 mm 
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5.5.7 Mesh Generation 

The grid domain of the gas lift column was created using ANSYS ICEM CFD 17.1. During 

modelling and mesh generation, simplification of complex shapes was taken into 

consideration, as the production tube and gas injection pipe were assumed to be cylindrical 

with a smooth surface. An unstructured meshing approach was used to create the mesh with 

only tetrahedral cells. Refinements of 0.05 mm were added near the junction of the gas inlet. 

The distribution of cells at the inlet and near the connection can be seen in Figure 5.7. 

Furthermore, two different grids of the models was generated – 448,044 elements for the 

model with the orifice valve and 547,090 elements for the model with the multiple nozzles 

injection (MNIT). 

Table 5.3 lists the properties for the mesh generated. Furthermore, the hexahedral mesh may 

perhaps be employed in the geometry, however due to time constraints, the geometry grid 

volume near the junction is unstructured. Therefore, the tetrahedral mesh was selected for the 

gas-lift model. The junction is the main area of interest where fluid instabilities begin to 

occur, and thus refinements were made. The mesh statistics of the grid are shown in Table 

5.3. 

 

5.5.7.1 ICEM Interactive Mesh 

1. Start by opening Workbench and double click the Fluid Flow (Fluent) project. 

2. Upload or import geometry of the step file (Rhino) in the DesignModeler. 

3. Generate the uploaded geometry to the project and create the named selection that 

has two inlets and one outlet. 

4. Launch the ANSYS meshing application and edit the mesh by assigning a 

tetrahedron mesh, set on patch independent with Interactive ICEM CFD. 

5. Additional settings applied before generating mesh. 

6. Create a refined mesh by applying edge sizing to the junction of the pipe and alter 

the global mesh sizing by changing the minimum and maximum element sizes.  

7. Once done with the alteration, generate mesh and save the unstructured mesh file 

(MSH). 
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Table 5-3: The mesh statistics & quality 

Mesh No. of elements Skewness Aspect ratio Element quality 

Orifice 448,044 0.11653 1.6495 0.90071 

MNIT 547,090 0.88675 1.6914 0.88675 

 

Figure 5-7: The mesh of the gas lift model 
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5.5.8 Numerical Simulation Settings 

The simulation model consists of a vertical column and gas injection point into which water 

and air enter respectively at a specific flowrate and injection pressure. The height of the gas 

injection point is 10 mm above the base of the column domain. The water is the primary 

phase (continuous) and the air was set as the secondary phase due to gas being a discrete 

phase. The air is injected at a specified velocity at the initial simulation; the model was filled 

with water. The water is introduced from the bottom of the column at a certain pressure, 

known as the bottom-hole pressure (BHP). Table 5.4 presents the relevant information and 

properties of the fluids used. In addition, assumptions were made that the water and air were 

well mixed in front of the injection point before reaching the top of the column. The 

parameters defining the flow in the domain and the known initial conditions are taken from 

the experimental data and listed in Table 5.5.  

Table 5-4 : Fluid properties 

Fluid Properties Density (kg m-3) Viscosity (Pa.s) 

Water 998.2 0.001 

Air 1.225 1.7894e-5 

 

Table 5-5: The boundary conditions for the model 

Boundary conditions Pressure Velocity (𝐥/𝐦𝐢𝐧) 

Water Inlet 0.21 bar 5 

Gas Inlet 0.5, 1, 2, 3, 4 bar N/A 

Mixture Outlet 0.070 bar 6.6 

 

In this section, the multi-fluid volume of fluid (VOF) is used to simulate the gas lift system. 

The computational domain and boundary conditions are demonstrated in the previous section. 

The gas is injected into the three-dimensional domain. The governing equation is solved 

using the finite volume based discretisation and the k − ε model was added for the turbulence 

model. The pressure and velocity coupling were set in SIMPLE and the terms were 

discretised by the highest order upwind scheme. The no slip boundary conditions with 
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standard wall functions for the turbulence model were applied at the pipe wall. The boundary 

conditions of the velocity inlet and pressure outlet were observed to be working well in the 

gas-lift system compared to other boundary conditions. The discrete phase model was 

combined in which the fluid phase is treated as the continuum while the dispersed phase is 

solved by tracking a large number of bubbles through the domain. This is used because the 

dispersed phase can exchange momentum, mass and energy with the fluid phase. There were 

several simulations conducted in this research investigation using the VOF model in the 

simulated gas lift system models and Table 5.6 shows the implemented settings for all 

scenarios: 

 

Table 5-6: Scenarios of numerical simulations 

Parameter 
Case 1 

Orifice valve 

            Case 2 

Orifice valve 

 

   MNIT valve          
Units 

Port size  0.2, 1, 2, 4 2.24 2.24 mm 

Air pressure  0.5, 1, 2, 3, 4, 5 0.5, 1, 2, 3, 4, 5 0.5, 1, 2, 3, 4, 5 bar 

Water flow rate  5, 10, 20, 30 5,10,20,30 5, 10, 20, 30 l/min 

 

Case one reports the effect of different port sizes (0.2, 1, 2 and 4 mm) on upward two-phase 

flow behaviours in the model under operating conditions of 0.5 bar air pressure and 5 l/m 

water flow rate. Moreover, the effect of air injection pressure was investigated for 0.5, 1, 2, 3, 

4, and 5 bar using 0.2 mm port size at 5 l/m water flow rate. Furthermore, the effect of 

varying the water flow rate to 5, 10, 20 and 30 l/m has been studied at 0.2 mm port size and 

0.5 bar air pressure. 

Furthermore, case 2 studies the performance of the single orifice with 2.25 mm port size and 

is compared with the new multiple nozzles injection technique (MNIT). Each nozzle diameter 

is 1 mm, which gives the same total diameter of single orifice of 2.24 mm as shown in Table 

3.1. The comparison of both techniques under the same operating conditions and gas 

injection rates is presented in the next chapter. 
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6 CHAPTER 6 

NUMERICAL RESULTS, ANALYSIS AND DISCUSSION 

 

 
This Chapter presents the basis for CFD qualitative results, analysis and discussions from a 

comprehensive three-dimensional CFD multi-fluid volume of fluid (VOF) gas-lift simulation 

developed model to predict the two-phase flow behaviours in the simulated column of the 

apparatus and compared with experimental results and observations when it is appropriate. In 

addition, the numerical simulation results obtained from the new multiple nozzles injection 

technique MNIT were modelled and the results compared with the SNIT at the same 

operating conditions and dimensions.  

The presentation and discussions of the numerical simulation results that were performed in 

chapter 5 are shown below: 

1) Single Nozzle Injection  Technique (SNIT) (§ 6.1) 

a) Effect of port size on the upward tow-phase flow behaviours (§ 6.1.1) 

b) Effect of pressure drop on two-phase flow behaviours (§ 6.1.2) 

c) Effect of gas injection rate on two-phase flow behaviours (§ 6.1.3) 

d) Effect of mixture velocity on two-phase flow behaviours (§  6.1.4) 

e) Effect of air injection pressure on distribution of air bubbles (§ 6.1.5) 

 

2) Multiple Nozzles Injection Technique (MNIT) (§ 6.2) 

a) Pressure Drop along Test Section Pipe ( § 6.2.1) 

b) Effect of mixture velocity on two-phase flow behaviours (§ 6.2.2) 

c) Distribution of the air void fraction (§ 6.2.3) 

 

3) Comparison between the performance of the multiple nozzle technique and single 

orifice technique (§ 6.3) 
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6.1 SNIT Gas Lift Technique 

6.1.1 Effect of Port size on the Upward Two-phase Flow Behaviours 

The gas-lift simulation model was undertaken with different port sizes of 0.2 mm, 1 mm, 2 

mm and 4 mm to understand the effect of varying port size on the upward flow stability in 

gas lift methods. Further, it was found that every port size produces a different initial velocity 

and allows a certain air injection rate at a specific air injection pressure. The gas port size is 

certainly one of the important variables that needs to be determined as it would affect the 

fluid flow behaviours in a gas-lift system (Ter Avest and Oudeman, 1995). T the port size is 

capable of changing the initial flow behaviours and creating huge differential pressure 

between upstream and downstream in front of the injection point at the bottom of the column, 

this leads to the fluid flow behaviours being affected over the entire length of the column. 

Figure 6.1 illustrates the void fraction of injected air in flowing water at different port sizes 

(Qw = 5 l/m and air pressure, Pa = 5 bar), measured by percentage. Overall, the results showed 

that as port size increases, the air void fraction increases along the column to the outlet. This 

is due to the greater mass flow through port size, which permits larger initial bubbles to the 

column. This was expected, as the bubbles would coalescence with one another, creating 

larger (Taylor) bubbles, as this was demonstrated at different time steps in Figure 4.12 and 

also matched the experimental investigations. From observation, the contour and graph 

showed a gradual increase in void fraction near the gas inlet, which indicates bubbly flow at 

0.5 m high and then the coalescence process started within the air bubbles, creating 

bubbly/slug flow at 1 m height, when the 0.2 mm port size was used. 

 

The 0.2 mm port size has been observed to have the higher void fraction, which means that 

the injected bubbles coalesced quicker, and bubble diameters increased dramatically, 

compared with other orifice port sizes. This is because the jet velocity at the injection point 

was higher with smaller port sizes. On other hand, the 1 mm port size created the lowest void 

fraction throughout the simulation even though at 1.5 m there was a large gas pocket, but it 

decreased again at 1.7 m along the column. In addition, the 4 mm port size produced the 

highest air void fraction, especially at 1.5 m length from the downstream.  
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It was noted that the increase in orifice valve port size has a destabilising effect on the 

stability of the upward two-phase flow. This was due to increased air injection rate, and 

larger initial bubble sizes in the column. Therefore, this leads to bubbles coalescing together 

quickly in the middle of the pipe, creating bigger bubbles, which then ultimately collapse. 

These cause serious oscillations within the two-phase flow and reduce the lifting performance 

of the gas lift systems. Thus, there should be a new technique to reduce the initial bubble 

sizes and at the same time distribute bubbles in such a way as to minimise the coalescence 

process within the flow by increasing the distance between flowing bubbles. If there is 

sufficient distance between the flowing bubbles and they are travelling with the same fluid 

mixture velocity, then the coalesce rate will decrease. As a result of this, the gas lift system 

and surface facilities become more stable and the oil production rate from this method 

increases at the outlet. 
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Orifice size = 0.2mm Orifice size = 1mm Orifice size = 2mm Orifice size = 4mm 

 
 

Figure 6-1: Contours of the horizontal and vertical gas void fraction of 0.2mm, 1mm, 2mm and 4mm port size. 
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6.1.2 Effect of Pressure Drop on Two-phase Flow Behaviours 

The pressure drop plays a major role in liberating the air bubbles from the liquid phase within 

upward two-phase flow along the vertical pipe. Figure 6.2 shows the relationship between the 

pressure drop and 2 m distance downstream at different injection pressures with the same port 

size of 2.24 mm. The pressure drop was calculated in the developed simulation model at 

different points along the test section, starting from 0.02 m and ending at the top of the pipe 

at 2 m, as shown in appendix 7.5. In general, the results showed that as the length of the pipe 

increased, the pressure drop increases. Moreover, the graph showed that the maximum 

pressure was at the bottom of the column, as a result of the hydrostatic pressure of the water 

in the vertical pipe. 

This pressure was decreased gradually as soon as the air was injected into the bottom of the 

column. This led to a reduction in the density of the liquid phase (water). Thus, as the 

pressure drop increases, the bubble sizes, the air void fraction and velocity increase along the 

pipe. There was a sharp decrease in pressure between the inlet and outlet from 34,772 to 

17,231 Pa along the vertical pipe, when the air injection pressure was 0.5 bar. In this case, the 

maximum pressure drop was 0.18 bar (∆P = 17,541 Pa). compared with other injection 

pressure scenarios. This is because the air bubbles were larger at low injection pressures, 

which created the highest air void fraction across the pipe. However, when the injection 

pressure was increased in the other scenarios (1, 2, 3, 4 and 5 bar), it was noticed that the 

pressure drop decreased as the injection pressure increased. For example, when the air 

injection pressure was 5 bar, the pressure drop decreased considerably to 0.11 bar, from 

28,411 to 17,220 Pa (∆P = 11,191 Pa) . Therefore, when the injection pressure was 

increased, the bubble sizes decreased and this caused the pressure drop to decrease along the 

pipe length. Thus, the smaller air bubbles have the lower air void fraction within the two-

phase flow. 

Finally, it was concluded that as the pressure drop increases, the bubble sizes increase and 

this leads the bubbles to coalesce together and grow until they reach the critical bubble size, 

at which point these large bubbles collapse. This is the main reason for fluctuations and 

development of the upwards two-phase flow along the pipe. Therefore, the pressure drop 

must be minimised within the two-phase flow by reducing the flowing bubble sizes and 

distributing the air bubbles through the whole pipe area instead of having them flowing only 
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in the centre of the column. This will reduce the oscillations within the two-phase flow (gas 

and liquid) and minimise the flow instability that occurs in gas lifted wells. 

 

 

Figure 6-2: Pressure-drop along the pipe at different injection pressures using orifice port size of 2.24mm 

 

6.1.3 Effect of Gas Injection Rate on Two-Phase flow Behaviours 

Gas injection rate is an important aspect in gas-lift systems and distribution of gas to other 

gas lift wells in the field. Therefore, the gas injection rate must be optimised  to maximise the 

production rate and enhance the well performance without causing any large flow oscillations 

within the upward two-phase flow. Figure 6-3 demonstrates the effect of air injection rates on 
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the flow. The results showed that as the air injection rate increased, the void fraction also 
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void fraction reached 60 percentage particularly at the bottom of the test section and reached 

a peak at 90 percentage at the end of the simulated test section when air injection rate was 6.4 

l/min. Then it fluctuated sharply when the air injection rate increased to 8 l/min. In addition, 

the graph showed that there was a gradual reduction in the void fraction, when the air 

injection rate was 9 l/min, especially after the middle of the test section. These oscillations 

occur due to the frequent collapse of the large bubbles in the middle of the pipe.  

The relationship between the air injection pressure and the flow rate is directly proportional. 

As a result of this, as the injection pressure increases, the air mass flow rate increases through 

the port size. This is the main reason for the decrease in the void fraction at high flow rates. 

As the air flow rate increases, the injection pressure also increases. This leads to a reduction 

in the bubble sizes along the pipe, and reduces the oscillations slightly. It can be concluded 

that the increase in the gas injection rate has a stabilising effect on the upward two-phase 

flow behaviours, especially at high flow rates.    
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Figure 6-3: The effect of air injection rate on void fraction long the vertical column using 2.24 mm single 

orifice port size 
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6.1.4  Effect of Mixture Velocity on Two-Phase Flow Behaviours 

The velocity has a major effect on the development of upward two-phase flow, because as the 

velocity increases, the bubble sizes increase within the flow. However, this increase in bubble 

size must be minimised to reduce the mixture velocity. The experimental results showed that 

the larger bubble sizes have higher velocity than the small bubble sizes due to greater 

buoyancy, the action of gravity and the difference between the density of the air and water 

phases. The results from the CFD simulation volume of fluid (VOF) models give a prediction 

of the mixture velocity profiles at different injection pressures along the test section. Figure 

6.4 illustrates the mixture velocity at different injection pressures using a sharp edge orifice 

port size of 2.24 mm at the injection point. The results show that there was a steep fluctuation 

in the mixture velocity, especially when the injection pressures were 2, 3 and 4 bar. However, 

the mixture velocity declined when the injection pressure was increased to 5 bar. This might 

be a result of the decrease in bubble sizes at high injection pressures.  

Therefore, there should be a new technique to reduce the bubble sizes during the flow and 

minimise the mixture velocity. This will reduce the development of flow regimes and make 

the system more stable. 
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Figure 6-4: The mixture velocity at different injection pressures using orifice port size 2.24mm 
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6.1.5 Effect of Air Injection Pressure on Distribution of Air Bubbles 

The increase in injection pressure has a considerable effect on the distribution and behaviours 

of bubbles within the upward two-phase flow in gas lifted wells. Overall, the distribution of 

air bubbles was poor when the orifice valve was used and there were still large slugs of air 

along the vertical column. Figure 6-5 demonstrates the effect of injection pressures on the air 

bubbles’ void fraction using the single orifice gas lift valve with a port size of 2.24 mm at the 

injection point. The results showed that there were still large pockets of air (Taylor bubbles) 

with approximately the same diameter of the pipe travelling along the column, especially 

when the injection pressures were 3 and 4 bars as shown in Figure 6.5. Furthermore, these 

large bubbles with high void fraction ratio collapsed when they reached the critical bubble 

diameter (maturation), as the superficial velocity increased and the flow was fully developed. 

Thus, the distribution of void fraction results agreed with results obtained by  (Azzopardi et 

al., 2015). In addition, the distribution of air bubbles is still in the middle of the pipe and not 

spreading throughout the entire pipe area. This leads bubbles to coalesce together, rapidly 

creating bigger bubbles. At 5 bars injection pressure, there were few Taylor bubbles detected. 

This is due to the slight decrease in bubble sizes when injection pressure increases. 

 

This collapse of large bubbles causes serious pressure fluctuations and backflow and creates a 

large pressure drop within the flow. This is the main cause of the flow instability within two-

phase flow and the reduction in total oil production from gas lifted wells. Therefore, there 

should be a new method to reduce air bubble sizes and at the same time distribute them from 

core-peaking to wall-peaking to enhance lifting performance and to increase oil production 

from gas lifted wells in the oil industry. 
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Figure 6-5: The effect of injection pressures on air void fraction along the simulated column apparatus 

using single orifice technique (SNIT) with port size 2.24 mm 
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6.2 Multiple Nozzles Injection Technique (MNIT) 

It was very clear from the experimental and numerical simulation results obtained for the 

orifice valve with 2.24 mm port size that the upward two-phase flow developed quickly and 

flow oscillations (due to bubbles collapsing) and flow instability still occurred along the 

vertical test section. This is because the air bubbles injected from the single orifice valve 

(initial bubble sizes) is reasonably large and as soon as these bubbles depart from the port, the 

bubbles moved toward the centre of the pipe and then coalesced directly with each other. In 

addition, it was observed that the distribution of air bubbles was very poor and the distances 

between the bubbles were small. Therefore, this led bubbles to coalesce together very 

quickly, thus creating big bubbles (Taylor bubbles) which then collapsed along the pipe. This 

is the main reason for the two-phase flow instability, which results in a reduction in oil 

production in the gas lift system in the oil industry or any other similar applications using gas 

to lift liquid. 

Therefore, a new technique was developed to reduce the bubble sizes within the two-phase 

flow and improve the distribution of the bubbles across the entire pipe area via changing the 

flow path of the smaller bubbles with the use of the multiple nozzles technique from the 

centre of the pipe to rest of the area. The new technique is called the multiple nozzles 

injection technique (MNIT) and consists of a gas lift valve without an orifice or a venturi and 

multiple nozzles technique at the outlet of the valve. The multiple nozzles injection technique 

is comprised of a number of nozzles as shown in Figure 3.5 in chapter 3. The design and 

diameter of nozzles depend on the gas injection rate required for that particular gas lift well. 

The results obtained from this new technique are presented in the following section. 

 

6.2.1 Pressure Drop along Test Section Pipe 

The pressure drop plays an important role in the development and behaviours of air bubbles 

within the upward two-phase flow along the vertical pipe. Therefore, the MNIT and SNIT 

were tested under the same operating conditions in order to be able to compare the 

performances of both valves. Figure 6-6 shows the relationship between the pressure drop 

and the length of pipe at different injection pressures using the new multiple nozzles injection 

technique. In general, the most significant feature of the line graph is that the pressure drop 

rises as the pipe length increases. The pressure drop was calculated in the simulation model 
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every 0.02 m along the pipe, as shown in appendix B. The results showed that there was a 

marked decrease in the pressure drop along the pipe when the multiple nozzles injection 

technique was used at different injection pressures compared with the pressure drop along the 

pipe when an orifice valve was used. 

Furthermore, when the injection pressure was 0.5 bar, the pressure drop between the inlet and 

the outlet of the simulated column of the apparatus was 0.11 bar, (31,539-20,684 =(∆P =

10,855 Pa)) when the MNIT was used. In comparison, the SNIT  pressure drop was 0.18 bar 

(∆P =17,541 Pa) (Sardeshpande et al., 2015). This indicated that the Multiple Nozzles 

Injection Technique produced smaller air bubbles and these bubbles had smaller void 

fractions along the pipe. The void fraction of small bubbles creates less pressure drop along 

the pipe. Therefore, reducing the pressure drop within two-phase flow minimises the 

coalescence process among air bubbles, because the bubble growth is restricted within the 

flow when the pressure drop is reduced gradually and there is no huge flowing differential 

pressure due to the dispersal of large bubbles, such as Taylor bubbles. This leads to a 

reduction in the development of two-phase flow and flow instability, which happens due to 

the collapse of large bubbles.  

 

 

Figure 6-6: The relationship between pressure drop and the length of pipe at different injection pressures using 

the MNIT with port size of 2.24 mm. 
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In addition, the pressure drop was compared for both valves at a high injection pressure. At a 

high injection pressure, the performance of the new multiple nozzles injection technique is 

better in terms of reducing bubble sizes and improving the distribution of bubbles inside the 

column. Figure 6-7 illustrates the comparison of the pressure drop between the MNIT and the 

SNIT at 5 bar injection pressure. The results showed that in the first pipe length, the pressure 

drop of the sharp edge orifice valve was higher than the new multiple nozzles injection 

technique. However, after 1.2 m pipe length, the multiple nozzles injection technique’s 

pressure drop trend became higher than the orifice valve’s trend. There was a gradual 

decrease in the pressure drop along the vertical column when the multiple nozzles injection 

technique was used (Orkiszewski, 1967). It was only 0.05 bar (25,739-20,684 =(∆P =

5,055 Pa)) between the inlet and the outlet of the test section. This means that there is no 

large pocket of air (Taylor bubbles) along the pipe. 

In comparison with the orifice valve, there was a steep decrease in the pressure drop when the 

orifice valve was used and the pressure drop was 0.11 bar (28,411-17,220 = (∆P =

11,191 Pa)) at the same injection pressure and under the same operating conditions. This is 

good evidence that reducing bubble sizes has a major effect on pressure drop. This is due to 

the air void fraction being distributed equally in the form of small bubbles along the column. 

Therefore, minimising the pressure drop within two-phase flow reduces the coalescence 

process and restricts bubble size growth rate along the vertical pipe. This will diminish the 

fluctuations within the two-phase flow due to the collapse of big bubbles. It can be concluded 

that the new MNIT reduces the pressure drop within the two-phase flow by decreasing the 

flowing bubble sizes and distributing them throughout the entire pipe area. This stabilises the 

upward two-phase flow better than the SNIT.  
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Figure 6-7: Comparison of the pressure drop between the MNIT technique and the single orifice valve at 5 bar 

injection pressure. 
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Figure 6-8: The mixture velocity along the simulated column apparatus using the MNIT at different injection 

pressures. 
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6.2.3 Distribution of the Air Void Fraction 

It is clear from the different numerical simulation scenario results that reducing bubble sizes 

and distribution of these smaller air bubbles throughout the entire pipe area have a major 

effect on the stability and lifting performance of upward two-phase flow in the gas lift 

method. Figure 6-9 shows the distribution of the air void fraction along the vertical pipe using 

the MNIT at different air injection pressures. The results showed that the MNIT is capable of 

changing the distribution of air bubbles within the two-phase flow along the vertical test 

section. The graph showed that as the injection pressure increases, the performance of the 

MNIT in distributing the air bubbles within two-phase flow improves. The distribution of 

flowing air bubbles was changed from core-peaking in the middle of the pipe to wall- 

peaking near to the pipe wall when the new technique was used. This means that the air 

bubble coalescence process has been reduced and this is achieved by decreasing the pressure 

drop and distributing the smaller bubbles within the two-phase flow along the vertical pipe. 

The small flowing bubbles were evenly distributed and it was observed that the dominant 

flow pattern was bubbly flow pattern, and that bubbles had approximately the same flowing 

velocities and sizes.  

Furthermore, when the MNIT was used, there was no large air pocket flowing along the test 

section that would cause a large pressure drop within the flow. Moreover, it was observed 

that the best wall-peaking distribution was achieved when the air injection pressure was 5 bar 

and the air void fraction was distributed throughout the entire pipe area (Azzopardi et al., 

2014). This reduces the fluctuations and stabilises the upward two-phase flow in the test 

section. Hence, the lifting performance and production rate were increased markedly in the 

outlet flow meter (Guet and Ooms, 2006). These simulation results matched the experimental 

results in terms of distribution of bubbles, increasing the lifting performance and production 

rate in the outlet of the column. In comparison with the SNIT, there were large air pockets 

occupying the entire pipe diameter, especially when the injected air pressure was 3 and 4 bar. 

In addition, these large pockets (Taylor bubbles) frequently occur along the vertical pipe, 

because the initial bubble sizes were quite large and coalescing in the middle of the pipe. 

However, these fluid behaviours were changed when the MNIT was used and the initial 

bubble sizes were reduced, and the distribution was changed from core-peaking to wall-

peaking throughout the entire pipe area. This was achieved without increasing the 

backpressure to the system or putting any flow restrictions in the pipe.   
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Figure 6-9: The distribution of air void fraction along the vertical simulated column apparatus using the MNIT 

at different air injection pressures. 
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The stability in distributing the air bubbles void fraction within the two-phase flow is crucial. 

Figure 6-10 illustrates the air void fraction along the test section at different injection 

pressures, measured by percentage. The results showed that there were smaller fluctuations in 

the air void fractions along the pipe when the MNIT was used compared with the orifice 

valve under the same operating conditions. This is good evidence that air bubbles were 

distributed perfectly along the vertical column and the variations in air void fraction had been 

reduced. The injected bubbles have small sizes and flow at the same mixture velocity and 

there is no large difference between their velocities because of their equal sizes upward of the 

vertical column. Therefore, the air void fraction was steady and stable during the lifting 

process, and this reduces the chaotic and turbulent flow behaviours within the two-phase flow 

due to the collapse of large flowing bubbles. It can be concluded from the air void fraction 

results along the test pipe that the reduction in size and improved distribution of air bubbles 

play an important role in the stability of two-phase flow in the gas lift method.  
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Figure 6-10: The stability of the air void fraction along the simulated column apparatus at different injection 

pressures using the MNIT with port size of 2.24 mm. 
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6.3 Comparison between the Performance of the Multiple Nozzles 

Injection Technique (MNIT) and Single Nozzle Injection Technique 

(SNIT) 

The simulation results that were obtained from the new multiple nozzles injection technique 

at different scenarios and under different operating conditions were better than for the normal 

orifice valve in terms of reducing bubble sizes and improving the distribution of smaller 

bubbles along the vertical test section. Therefore, reducing the bubble sizes decreases the 

pressure drop along the vertical column. This confines the development of the flow because 

most of the bubbles are small. Thus, the velocity of bubbles and the mixture will be 

minimised due to the bubbles’ small sizes and buoyancy. In addition, distributing smaller 

bubbles throughout the entire pipe area (wall-peaking) reduces the coalescence process that 

happens between neighbouring bubbles as shown in Figure 6.11. This was clear from the air 

void fraction distribution results along the test section. This leads to a decrease in the bubble 

size growth rate along the pipe. As a result of this, the lifting performance and production rate 

were increased. Furthermore, the flow instability within the upward two-phase flow was 

minimised to the lowest point in the vertical column. 

 

On the other hand, when the SNIT simulated, the bubble sizes increased rapidly, because the 

initial bubble sizes were large and at the same time flowing in the middle of the pipe very 

close to each other. This leads bubbles to coalesce faster and thus creates large bubbles 

(Taylor bubbles) as shown in Figure 6.11. As soon as these large bubbles reach maturity and 

a critical size, they collapse, causing collisions with neighbouring bubbles as shown 

previously in Figure 4.5. Thereafter, this causes serious oscillations and flow instability 

within the flow. In addition, it was observed that distribution of the air void fraction was poor 

and core-peaking. The pressure fluctuations due to bubbles collapsing were dominant and this 

process was repeated frequently. Therefore, the multiple nozzles injection technique is a good 

choice for gas lifted wells suffering from flow instability and any other application using gas 

to lift liquid in a vertical column. It is evident that Figure 6.11, the flow instability occurs 

with SNIT which are also supported by the experimental finding shown previously 4.29 in 

which the production rate can be improved using the Multiple Nozzle Injection Technique 

compared to current Single Nozzle Injection Technique.  
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Figure 6-11 Comparison between both techniques in distributing air bubbles in the simulated column apparatus 

at 4 bar injection pressure. 
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6.4 Proposed MNIT from Present Study 

 

Figure 6.12, shows the proposed MNIT which is capable in reducing the initial bubble sizes 

and changing the distribution of the  gas bubbles from middle of the production tubing core 

peaking to across the entire pipe area wall peaking. This minimise the two-phase flow 

instability within the gas lift operation. The systematic flow instability can cause serious flow 

oscillations within the system. In most cases, these oscillations are a major cause of 

production losses and are harmful to operational smoothness, safety and efficiency. These are 

some advantages of MNIT as following: 

1. Stabilise the gas lift system by reducing the initial bubble sizes and distributing the 

gas bubbles across the entire pipe area. This leads to increase gas lifting performance. 

2. This technique has potential to improve the total oil production rate from the gas lifted 

wells. 

3. It does not create any restriction inside the production tubing which may affect the 

other operation such as wireline operations. 

 

 

Figure 6-12: The proposed MNIT from the present study 
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6.5 Limitations 

The VOF model considers the interfacial forces and the superficial velocities for gas and 

liquid were assumed. However, the model only gave overall predictions about fluid 

behaviours in the test section and the model is not capable of giving more details such as 

bubble sizes, bubble formation and bubble collapse, as these have not been modelled. Also 

considered were the transitional regions between each flow pattern when the flow developed. 

Thus, developing a robust gas lift model mimicing the behaviours of multi-phase flow in a 

vertical pipe is complex.  

 

6.6 Summary 

This chapter presents the numerical simulation results and discussions of the variables that 

can affect behaviours of the two-phase flow and lead to flow instability phenomenon .These 

findings can be summarised as following:  

Section 6.1.3 showed that the increase in the port size has negative effect on the stability of 

two-phase flow and the distribution of air void fraction the test section. 

Section 6.1.2 indicated that the single orifice technique cause large pressure drop along the 

test section from 34,772 to 17,231 Pa between the inlet and outlet, when the air injection 

pressure was 0.5 bar. In this case, the maximum pressure drop was 0.18 bar (∆P =

17,541 Pa). 

Section 6.2.1 indicated that the multiple nozzles injection technique (MNIT) reduced the 

pressure drop between the inlet and outlet of the test section to 0.11 bar and the overall 

reduction by 50% compared with single orifice technique. 

Section 6.2.3 showed that the multiple nozzles injection technique (MNIT) changed the air 

void fraction from the centre of the test section cross the entire pipe area even near to the wall 

of the pipe. This reduced the air slug travelling the middle of pipe. 
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7 CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

 

7.1 CONCLUSIONS 

The flow structure, behaviours and instability of two-phase flow (air and water) have been 

investigated experimentally in simulated gas lift column with a vertical transparent pipe (ID: 

66 mm, Length: 2 m) using an image processing package (DynamicStudio 2015a) and 

numerically using a computational fluid dynamic (CFD) model. The experimental 

investigations were carried out with two different techniques: Single Nozzle Injection 

Technique (MNIT) and Multiple Nozzle Injection Technique (SNIT) focusing on the 

behaviours of air bubbles within two-phase flow. The two types of gas injection  with single 

orifice (SNIT) that are used in the existing gas lift systems in the oil fields and MNIT as 

proposed as alternative method. This was investigated in order to assess the suitability of the 

two methods for the gas lift method. The lifting performance of this proposed system tends to 

reduce the flow instability within upward two-phase flow. The following conclusions can be 

drawn from this research study: 

 

Single Nozzle Injection Orifice (Sharp Edge) (SNIT) 

An experiment were carried out using the SNIT at different port sizes to mimic the reality of 

upward fluid behaviours in gas lifts and to understand the effect of all variables that are 

capable of causing the flow instability phenomenon in gas lift systems. The following 

concluding remarks are derived from this study: 

1. The bubbly and slug flow patterns were observed in the simulated column made of 

PVC material, and the axial distribution of bubbles at different operating conditions 

showed an interesting observation on the air bubbles’ coalescence and collision 

mechanisms, both statically and dynamically. Furthermore, it has been found that 

bubble size had a significant effect on the stability of the axial structure of two-phase 

flow, especially when bubbles reached a critical size (maturation) and then collapsed. 

This behaviour causes the pressure drop and vacuum and backflow in that particular 

region of collapsed bubbles, which leads to collision with some bubbles nearby. Thus, 

this collision causes disturbances and small waves within the flow in the vertical pipe. 
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This process will be repeated simultaneously depending on the velocities of bubbles 

flowing upward in the pipe (Section 4.2.1) and (Section 4.2.4). 

 

2. The velocity of air bubbles had a considerable impact on fluctuations, structure and 

the development of two-phase flow. It provides evidence that air bubbles under the 

same operating conditions have different velocities depending on their sizes. 

Therefore, as air bubble velocity increases, the bubble sizes increase due to their 

buoyancy (Section 4.2.2). 

 

3. Port size diameter has a major effect on bubble sizes and the gas injection rate, as a 

higher breakup frequency was anticipated at smaller diameters of the injection point, 

resulting in lower bubble sizes being observed. The sensitivity analysis of the effect of 

port size on the bubble sizes within two-phase flow showed that port size has a 

destabilising effect on the stability of the upward two-phase flow because it increases 

bubble size with poor bubble distribution in the column. This develops upward two-

phase flow regimes and results in flow instability along the production tubing. 

Accordingly, there must be an alternative to the (sharp edge) single orifice injection 

technique (SNIT), as it operates on throttling range and creates large differential 

pressure between upstream and downstream pressure. This causes the casing heading 

phenomenon between the casing and production tubing in gas lift systems (Section 

4.2.3). 

 

4. The increase in injection pressure has a positive effect on the stability of upward two-

phase flow in a vertical column in gas lifted systems. As the injection pressure 

increases, the bubble sizes decrease. In addition, it was observed that large bubbles 

decrease in size at high pressures (Section 4.2.1).  

 

5. The velocity and flowrate of the liquid phase have a positive and stabilising effect on 

two-phase flow, because when inlet flow rate (reservoir response) increases in the test 

section, it compensates for the vacuum pressure caused by the gas lifting process 

(Section 4.2.2)   

 

It can be concluded that the increase in bubble sizes plays a major role in the rapid 

development and instability of upward two-phase flow when the normal orifice gas lift valve 
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is used. The initial bubble sizes were significantly large when bubbles departed the port, and 

grew speedily due to their poor distribution (core-peaking) when bubbles were flowing in the 

middle of the pipe. This resulted in the bubbles coalescing quickly, creating large bubbles. 

Subsequently, these bubbles collapse within the flow, causing collisions with neighbouring 

bubbles, large pressure drop along the pipe, pressure fluctuations and also flow instability 

within the two-phase flow. Therefore, the initial bubble sizes should be reduced and the 

distribution should be extended throughout the entire pipe area (wall- peaking) to stabilise the 

two-phase flow, as this would improve the lifting performance and total oil production rate 

from gas lifted wells.  

 

Multiple Nozzles Injection Technique (MNIT) 

 

When the orifice was replaced with the new Multiple Nozzles Injection Technique at the 

injection point at the bottom of the vertical column, the behaviours of the upward flowing 

two-phase flow structure were modified in terms of the bubble sizes, pressure drop and 

distribution. From the comparison of results obtained from both gas lift valves with the same 

dimensions (2.24 mm), the following conclusions can be drawn: 

1- The average overall bubble sizes were reduced from 7.01 to 5.47 mm. The reduction 

was 22% when the new multiple nozzles injection technique was used compared with 

the normal orifice valve at different injection pressures (Section 4.3.1.1). 

 

2- In addition, the average overall minimum bubbles sizes were decreased from 1.23 to 

1.03 mm, areduction of 16.1% when the new technique was applied (Section 4.3.1.2). 

 

3- The average large bubble sizes (Taylor bubbles) reduced from 44.07 to 39.95 mm 

with an the overall average reduction of 8.22% in the test section under different 

operating conditions (Section 4.3.1.3).  

 

4- It was found that the new multiple nozzles injection technique resulted in a significant 

increase (60.2%) in the number of detected bubbles in the column in comparison with 

the orifice valve under the same operating conditions. 
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5- The lifting performance improved and the average production rate was increased to 

7.5% when the multiple nozzles injection technique was used in comparison with the 

conventional orifice gas lift valve under the same operating conditions (Section 4.3.3). 

 

6- It was found that when the multiple nozzles injection technique was used and the 

velocity of the liquid phase was increased, the bubble sizes were 14.75% less than 

those produced from the orifice valve under the same operating conditions. 

 

7- The distribution of air bubbles was improved and changed from the middle of the 

vertical pipe (core-peaking) to the entire pipe area (wall-peaking) the SNIT was poor 

and air bubbles were flowing in the centre of the pipe. This assisted the two-phase 

flow to develop quickly and then caused the flow instability, which is the main reason 

for the reduction in the total oil production in gas lifted wells (Section 4.3.4).  

 

 

In conclusion, the new MNIT is capable of reducing initial flowing gas bubble sizes and 

changing the distribution of gas bubbles throughout the entire pipe area (wall-peaking). This 

leads to a stabilised flow within the upward two-phase flow, which therefore has the potential 

to increase the lifting performance and thus the total production rate of gas lifted wells. 

  

Conclusion: Numerical Simulations  

Finally, the three-dimensional numerical simulation results closely agreed with the 

experimental results, and the following conclusions can be drawn:  

1. The pressure drop calculations provided stronger evidence of the effect of the pressure 

drop in the development of the upward two-phase flow. Therefore, as the pressure 

drop increases, the bubble sizes increase, which then leads to the creation of large 

bubbles which then coalesce together until they reach a critical size and collapse. This 

is one of the main reasons for fluctuations, backflow and development of the upward 

two-phase flow along the pipe. Therefore, the pressure drop must be minimised within 

the two-phase flow by reducing the flowing bubble sizes and distributing the air 

bubbles throughout the whole pipe area instead of just flowing in the centre of the 
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column. This will reduce the oscillations within the two-phase flow (gas and liquid) 

and minimise the flow instability that occurs in gas lifted wells (§6.2.1). 

 

2. It was found that the MNIT is capable of reducing the pressure drop from 0.18 to 0.05 

bar. The overall average reduction was to just above 50% within two-phase flow by 

decreasing the sizes of the flowing bubbles and distributing them across the entire 

pipe area, especially at high-pressure. This stabilises the upward two-phase flow 

better than the SNIT (Section 6.2.1). 

 

3. The sensitivity analysis of increasing the orifice valve port size pointed out that this 

has a destabilising effect on the upward two-phase flow. This is because it increases 

the air injection rate, and produces larger initial bubble sizes in the column, especially 

with large port sizes. These cause faster development of two-phase flow, serious 

oscillations within two-phase flow and a reduction in the total production rate in gas 

lift systems (Section 6.1.1). 

  

4. The relationship between the air injection pressure and air flow rate is directly 

proportional. Thus, as the injection pressure increases, the air flow rate also increases.  

 

5. The air void fraction results showed that the new multiple nozzles injection technique 

changed the distribution of air bubbles in the simulated PVC vertical column from the 

centre of pipe (core-peaking) to the entire pipe area (wall-peaking). In addition, this 

void fraction was stable in different scenarios due to the bubble sizes being small and 

the bubbles being well distributed. This stabilised the two-phase flow, resulting in the 

lifting performance and the outlet flow rate by 8%, in comparison with the normal 

orifice gas lift valve (Section 6.2.3). 
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7.2 RECOMMENDATIONS FOR FUTURE WORK 

The following recommendations for future work and development of the new technique are 

suggested: 

 The author suggests adding mineral oil to the experimental working fluids (air, oil and 

water) in the experiment tank to investigate the multi-phase flow behaviours. 

 

 The design of the new technique’s nozzles can be developed with different angles and 

smaller orifice sizes in the head of the Multiple Nozzles Injection Technique.  

 

 

 The three-dimensional gas-lift simulation model should be developed to simulate a 

long vertical test section up to 1000 m. 

 

 The numerical model can integrate the population balance equations (PBE) along with 

the Euler-Euler model. This can be implemented to allow a better insight into the 

factors affecting the bubble size and their distribution in the column. The inclusion 

can also assist the interaction among bubbles in dispersed flow. PBE allows the 

bubble break-up and coalescence phenomena to be modelled. These phenomena are 

key parameters in predicting reasonable results for bubble size and distribution. 

  

 Investigate the bubble formation using advanced multi-phase models such as the 

Mixture and Eulerian models. The models solve a larger set of momentum and 

continuity equations for each phase. In addition to predict the actual flow in the 

column. The model will solve the equations for each phase (gas-liquid), which can 

give better qualitative results. 

 

 

 

 

 

 



  

165 

 

REFERENCES 
 

Abdulkadir, M., Azzi, A., Zhao, D., Lowndes, I. & Azzopardi, B. 2014a. Liquid film 

thickness behaviour within a large diameter vertical 180° return bend. Chemical 

Engineering Science, 107, 137-148. 

 

Abdulkadir, M., Hernandez-Perez, V., Lowndes, I. S., Azzopardi, B. J. & Dzomeku, S. 

2014b. Experimental study of the hydrodynamic behaviour of slug flow in a vertical 

riser. Chemical Engineering Science, 106, 60-75. 

 

Acuña, C. A. & Finch, J. A. 2010. Tracking velocity of multiple bubbles in a swarm. 

International Journal of Mineral Processing, 94, 147-158. 

 

Alamu, M. B. 2010. Investigation of Periodic Structures in Gas-Liquid Flow. PhD Thesis, 

University of Nottingham. 

 

Alamu, M. B. & Azzopardi, B. J. 2011. Wave and drop periodicity in transient annular flow. 

Nuclear Engineering and Design, 241, 5079-5092. 

 

Alhanati, F. J. S., Schmidt, Z., Doty, D. R. & Lagerlef, D. D. 1993. Continuous Gas-Lift 

Instability: Diagnosis, Criteria, and Solutions. Society of Petroleum Engineers. 

 

Ansari, M. R. & Azadi, R. 2016. Effect of diameter and axial location on upward gas–liquid 

two-phase flow patterns in intermediate-scale vertical tubes. Annals of Nuclear 

Energy, 94, 530-540. 

 

Ansys Inc. 2013. Fluent Population Balance Modul. 

 

Ansys Inc. 2016a. Fluent [Online]. Available: https://caeai.com/ansys-software-

support/ansys-software/computational-fluid-dynamics-ansys-cfx-and-fluent-cfd-

software. 

 

Ansys Inc. 2016b. ICEM CFD [Online]. Available: 

http://resource.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD. 

 

Asheim, H. 1988. Criteria for Gas-Lift Stability. 

 

Asheim, H. 1999. Verification of Transient, Multi-Phase Flow Simulation for Gas Lift 

Applications. Society of Petroleum Engineers. 

 

http://resource.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD


166 

 

Azzopardi, B. J., Do, H. K., Azzi, A. & Hernandez Perez, V. 2015. Characteristics of 

air/water slug flow in an intermediate diameter pipe. Experimental Thermal and Fluid 

Science, 60, 1-8. 

 

Azzopardi, B. J., Pioli, L. & Abdulkareem, L. A. 2014. The properties of large bubbles rising 

in very viscous liquids in vertical columns. International Journal of Multiphase Flow, 

67, 160-173. 

 

Behbahani, M., Edrisi, M., Rashidi, F. & Amani, E. 2012. Tuning a multi-fluid model for gas 

lift simulations in wells. Chemical Engineering Research and Design, 90, 471-486. 

 

Bellarby, J. 2009. Well completion design, Elsevier. 

 

Bertuzzi, A. F., Welchon, J. K. & Poettman, F. H. 1953. Description and Analysis of an 

Efficient Continuous-Flow Gas-Lift Installation. 

 

Bhole, M. R., Roy, S. & Joshi, J. B. 2006. Laser doppler anemometer measurements in 

bubble column: effect of sparger. Industrial & engineering chemistry research, 45, 

9201-9207. 

 

Bordalo, S. N. & Gaspari, E. F. 1997. Stability Parameter for Two-Phase Vertical Annular 

Flow. Society of Petroleum Engineers. 

 

Brill, J. P. 1987. Multiphase Flow in Wells. Journal of Petroleum Technology, 39. 

 

Çengel, Y. A. & Cimbala, J. M. 2014. Fluid mechanics fundamentals and applications. , 

McGraw-Hill Higher Education. 

 

Cheng, H., Hills, J. & Azzorpardi, B. 1998. A study of the bubble-to-slug transition in 

vertical gas-liquid flow in columns of different diameter. International Journal of 

Multiphase Flow, 24, 431-452. 

 

Chia, Y. C. & Hussain, S. 1999. Gas Lift Optimization Efforts and Challenges. Society of 

Petroleum Engineers. 

 

Da Hlaing, N., Sirivat, A., Siemanond, K. & Wilkes, J. O. 2007. Vertical two-phase flow 

regimes and pressure gradients: Effect of viscosity. Experimental Thermal and Fluid 

Science, 31, 567-577. 

 



  

167 

 

Dai, Y., Dakshinammorthy, D. & Agrawal, M. CFD Modeling of Bubbly, Slug and Annular 

Flow Regimes in Vertical Pipelines.  Offshore Technology Conference, 2013. 

Offshore Technology Conference. 

 

Dalsmo, M., Halvorsen, E. & Slupphaug, O. 2002. Active Feedback Control of Unstable 

Wells at the Brage Field. Society of Petroleum Engineers. 

 

Decker, K. L. 1993. Gas-Lift Valve Performance Testing. Society of Petroleum Engineers. 

 

Deen, N. G., Solberg, T. & Hjertager, B. R. H. 2001. Large eddy simulation of the gas–liquid 

flow in a square cross-sectioned bubble column. Chemical Engineering Science, 56, 

6341-6349. 

 

Deju, L., Cheung, S. C. P., Yeoh, G. H. & Tu, J. Y. 2013. Capturing coalescence and break-

up processes in vertical gas–liquid flows: Assessment of population balance methods. 

Applied Mathematical Modelling, 37, 8557-8577. 

 

Descamps, M. N., Oliemans, R. V. A., Ooms, G. & Mudde, R. F. 2007. Experimental 

investigation of three-phase flow in a vertical pipe: Local characteristics of the gas 

phase for gas-lift conditions. International Journal of Multiphase Flow, 33, 1205-

1221. 

 

Duns Jr, H. & Ros, N. Vertical flow of gas and liquid mixtures in wells.  6th World 

Petroleum Congress, 1963. World Petroleum Congress. 

 

E.Brown, K. & Beggs, H. D. 1977. The technology of artificial lift methods. Book, Volume 1 

inflow performance multiphase flow in pipes the flowing well. 

 

Ebrahimi, M. 2010. Gas Lift Optimization in One of Iranian South Western Oil Fields. 

Society of Petroleum Engineers. 

 

Eikrem, G. O. 2006a. Stabilization of gas-lift wells by feedback control. Citeseer. 

 

Eikrem, G. O. 2006b. Stabilization of Gas-Lift Wells by 

Feedback Control. 

 

Eikrem, G. O., Foss, B., Imsland, L., Hu, B. & Golan, M. 2002. Stabilization of gas lifted 

wells. IFAC Proceedings Volumes, 35, 139-144. 

 



168 

 

Elldakli, F., Soliman, M. Y., Shahri, M., Winkler, H. W. & Gamadi, T. D. 2014. Improved 

Gas Lift Valve Performance Using a Modified Design for GLV Seat. Society of 

Petroleum Engineers. 

 

Evers, M. G. L., Van Beusekom, V. L. & Henkes, R. a. W. M. 2009. Appearance and 

Mitigation of Density Waves in Continuously Gas-Lifted Oil Wells. BHR Group. 

 

Fairuzov, Y. V. & Guerrero-Sarabia, I. 2005. Effect of Operating Valve Performance on 

Stability of Gas-Lift Wells. Society of Petroleum Engineers. 

 

Faustinelli, J., Cuauro, A. & Bermúdez, G. 1999. A Solution to Instability Problems in 

Continuous Gas-Lift Wells Offshore Lake Maracaibo. Society of Petroleum 

Engineers. 

 

Forero, G., Mcfadyen, K., Turner, R., Waring, B. & Steenken, E. 1993. Artificial lift manual 

part 2a. 

 

Gilbert, W. E. 1954. Flowing and Gas-lift well Performance. American Petroleum Institute. 

 

Grimstad, B. & Foss, B. 2014. A nonlinear, adaptive observer for gas-lift wells operating 

under slowly varying reservoir pressure. IFAC Proceedings Volumes, 47, 2824-2829. 

 

Guerrero-Sarabia, I. & Fairuzov, Y. V. 2013. Linear and non-linear analysis of flow 

instability in gas-lift wells. Journal of Petroleum Science and Engineering, 108, 162-

171. 

 

Guet, S. & Ooms, G. 2006. Fluid mechanical aspects of the gas-lift technique. Annu. Rev. 

Fluid Mech., 38, 225-249. 

 

Guet, S., Ooms, G., Oliemans, R. & Mudde, R. 2004. Bubble size effect on low liquid input 

drift–flux parameters. Chemical engineering science, 59, 3315-3329. 

 

Guet, S. C. L. 2004. Bubble size effect on the gas-lift technique, TU Delft, Delft University of 

Technology. 

 

Hagedorn, A. R. & Brown, K. E. 1964. The Effect of Liquid Viscosity in Two-Phase Vertical 

Flow. 

 

Hagesaether, L., Jakobsen, H. A. & Svendsen, H. F. 2002. A model for turbulent binary 

breakup of dispersed fluid particles. Chemical Engineering Science, 57, 3251-3267. 

 



  

169 

 

Harasek, M., Horvath, A., Jordan, C. & Kuttner, C. 2010. CFD simulation of bubble columns 

using a VOF model, na. 

 

Hasan, A. R. & Kabir, C. S. 1988. A Study of Multiphase Flow Behavior in Vertical Wells. 

 

Hatton, R. N. & Potter, K. 2011. Optimization of gas-injected oil wells. Science Applications 

International Corporation (SAIC), 1-4. 

 

Hu, B. 2005. Characterization of gas-lift instabilities. PhD Thesis, Norwegian University of 

Science and Technology. 

 

Isao, K. & Mamoru, I. 1987. Drift flux model for large diameter pipe and new correlation for 

pool void fraction. International Journal of Heat and Mass Transfer, 30, 1927-1939. 

 

Kaji, R. & Azzopardi, B. J. 2010. The effect of pipe diameter on the structure of gas/liquid 

flow in vertical pipes. International Journal of Multiphase Flow, 36, 303-313. 

 

Kaji, R., Azzopardi, B. J. & Lucas, D. 2009. Investigation of flow development of co-current 

gas–liquid vertical slug flow. International Journal of Multiphase Flow, 35, 335-348. 

 

Koide, K., Kato, S., Tanaka, Y. & Kubota, H. 1968. Bubbles generated from porous plate. 

Journal of Chemical Engineering of Japan, 1, 51-56. 

 

Krishna, R., Urseanu, M. I., Van Baten, J. M. & Ellenberger, J. 1999. Rise velocity of a 

swarm of large gas bubbles in liquids. Chemical Engineering Science, 54, 171-183. 

 

Kulkarni, A., Ekambara, K. & Joshi, J. 2007. On the development of flow pattern in a bubble 

column reactor: experiments and CFD. Chemical engineering science, 62, 1049-1072. 

 

Kulkarni, A. A. 2003. Transport phenomena and non-linear dynamics in multiphase systems. 

Ph. D. Thesis, University of Mumbai, India. 

 

Levich, V. & Krylov, V. 1969. Surface-tension-driven phenomena. Annual Review of Fluid 

Mechanics, 1, 293-316. 

 

Liu, L., Yan, H., Zhao, G. & Zhuang, J. 2016. Experimental studies on the terminal velocity 

of air bubbles in water and glycerol aqueous solution. Experimental Thermal and 

Fluid Science, 78, 254-265. 

 

Liu, T.-J. 1997. Investigation of the wall shear stress in vertical bubbly flow under different 

bubble size conditions. International journal of multiphase flow, 23, 1085-1109. 



170 

 

 

Liu, T. The role of bubble size on liquid phase turbulent structure in two-phase bubbly flow.  

Proc. Third International Congress on Multiphase Flow ICMF, 1998. 8-12. 

 

Lucas, D., Krepper, E. & Prasser, H.-M. 2005. Development of co-current air–water flow in a 

vertical pipe. International Journal of Multiphase Flow, 31, 1304-1328. 

 

Mahdiani, M. R. & Khamehchi, E. 2015. Stabilizing gas lift optimization with different 

amounts of available lift gas. Journal of Natural Gas Science and Engineering, 26, 

18-27. 

 

Mahmudi, M. & Sadeghi, M. T. 2013. The optimization of continuous gas lift process using 

an integrated compositional model. Journal of Petroleum Science and Engineering, 

108, 321-327. 

 

Mantecon, J. C. 1993. Gas-Lift Optimisation on Barrow Island, Western Australia. Society of 

Petroleum Engineers. 

 

Morel, C., Ruyer, P., Seiler, N. & Laviéville, J. M. 2010. Comparison of several models for 

multi-size bubbly flows on an adiabatic experiment. International Journal of 

Multiphase Flow, 36, 25-39. 

 

Ohnuki, A. & Akimoto, H. 1996. An experimental study on developing air-water two-phase 

flow along a large vertical pipe: effect of air injection method. International journal 

of multiphase flow, 22, 1143-1154. 

 

Omebere-Iyari, N. K. & Azzopardi, B. J. 2007. A Study of Flow Patterns for Gas/Liquid 

Flow in Small Diameter Tubes. Chemical Engineering Research and Design, 85, 180-

192. 

 

Orkiszewski, J. 1967. Predicting Two-Phase Pressure Drops in Vertical Pipe. 

 

Pan, L.-M., Zhang, M., Ju, P., He, H. & Ishii, M. 2016. Vertical co-current two-phase flow 

regime identification using fuzzy C-means clustering algorithm and ReliefF attribute 

weighting technique. International Journal of Heat and Mass Transfer, 95, 393-404. 

 

Plucenio, A., Ganzaroli, C. A. & Pagano, D. J. 2012. Stabilizing gas-lift well dynamics with 

free operating point. IFAC Proceedings Volumes, 45, 95-100. 

 

Poettman, F. H. & Carpenter, P. G. 1952. The Multiphase Flow of Gas, Oil, and Water 

Through Vertical Flow Strings with Application to the Design of Gas-lift 

Installations. American Petroleum Institute. 



  

171 

 

 

Posenato, A. & Rosa, V. R. 2012. Unload Procedure With Control of Liquid Flow Rate 

Through Gas Lift Valve. Society of Petroleum Engineers. 

 

Pourtousi, M., Ganesan, P. & Sahu, J. 2015. Effect of bubble diameter size on prediction of 

flow pattern in Euler–Euler simulation of homogeneous bubble column regime. 

Measurement, 76, 255-270. 

 

Prasser, H., Lucas, D., Krepper, E., Baldauf, D., Böttger, A. & Rohde, U. 2003. 

Strömungskarten und Modelle für transiente Zweiphasenströmungen 

Forschungszentrum FZR-379, 183. 

 

Pringle, C. C. T., Ambrose, S., Azzopardi, B. J. & Rust, A. C. 2015. The existence and 

behaviour of large diameter Taylor bubbles. International Journal of Multiphase 

Flow, 72, 318-323. 

 

Rhino, D. 2016. Rhinoceros 5 features [Online]. Available: 

http://resource.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD. 

 

Rilian, N. A., Rohman, A. F., Hamzah, K., Arseto, Y. I., Narso, N. & Kurniawan, C. 2012. 

Successful Application of Venturi Orifice Gas Lift Valve in Kaji-Semoga Field, South 

Sumatra: A Case Study. Society of Petroleum Engineers. 

 

Sanderford & W, D. 1981. Method and apparatus for optimizing production in a continuous 

or intermittent gas-lift well. Google Patents. 

 

Sardeshpande, M. V., Shastri, P. & Ranade, V. V. 2015. Two Phase Flow Boiling Pressure 

Drop in Small Channels. Procedia IUTAM, 15, 313-320. 

 

Sattar, M., Naser, J. & Brooks, G. 2013. Numerical simulation of two-phase flow with bubble 

break-up and coalescence coupled with population balance modeling. Chemical 

Engineering and Processing: Process Intensification, 70, 66-76. 

 

Schlumberger 1999. Gas lift design and technology. 

 

Stenmark, E. 2013. On multiphase flow models in ANSYS CFD software. Chalmers 

Universiy of Technology, Sweden. 

 

Sun, B., Yan, D. & Zhang, Z. 1999. The instability of void fraction waves in vertical gas-

liquid two-phase flow. Communications in Nonlinear Science and Numerical 

Simulation, 4, 181-186. 

http://resource.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD


172 

 

 

Szalinski, L., Abdulkareem, L. A., Da Silva, M. J., Thiele, S., Beyer, M., Lucas, D., 

Hernandez Perez, V., Hampel, U. & Azzopardi, B. J. 2010. Comparative study of 

gas–oil and gas–water two-phase flow in a vertical pipe. Chemical Engineering 

Science, 65, 3836-3848. 

 

Tabib, M. V., Roy, S. A. & Joshi, J. B. 2008. CFD simulation of bubble column—an analysis 

of interphase forces and turbulence models. Chemical Engineering Journal, 139, 589-

614. 

 

Taha, T. & Cui, Z. 2006. CFD modelling of slug flow in vertical tubes. Chemical 

Engineering Science, 61, 676-687. 

 

Taitel, Y., Bornea, D. & Dukler, A. 1980. Modelling flow pattern transitions for steady 

upward gas‐liquid flow in vertical tubes. AIChE Journal, 26, 345-354. 

 

Taitel, Y., Lee, N. & Dukler, A. 1978. Transient gas‐liquid flow in horizontal pipes: 

Modeling the flow pattern transitions. AIChE Journal, 24, 920-934. 

 

Tan, Y. H., Rafiei, A. A., Elmahdy, A. & Finch, J. A. 2013. Bubble size, gas holdup and 

bubble velocity profile of some alcohols and commercial frothers. International 

Journal of Mineral Processing, 119, 1-5. 

 

Ter Avest, D. & Oudeman, P. 1995. A Dynamic Simulator to Analyse and Remedy Gas Lift 

Problems. Society of Petroleum Engineers. 

 

Torre, A. J., Schmidt, Z., Blais, R. N., Doty, D. R. & Brill, J. P. 1987. Casing Heading in 

Flowing Oil Wells. 

 

Waltrich, P. J. & Barbosa, J. R. 2011. Performance of Vertical Transient Two-Phase Flow 

Models Applied to Liquid Loading in Gas Wells. Society of Petroleum Engineers. 

 

Waltrich, P. J., Falcone, G. & Barbosa Jr, J. R. 2013. Axial development of annular, churn 

and slug flows in a long vertical tube. International Journal of Multiphase Flow, 57, 

38-48. 

 

Wang, S., Lee, S., Jones, O. & Lahey, R. 1987. 3-D turbulence structure and phase 

distribution measurements in bubbly two-phase flows. International Journal of 

multiphase flow, 13, 327-343. 

 

Wu, Q., Kim, S., Ishii, M. & Beus, S. 1998a. One-group interfacial area transport in vertical 

bubbly flow. International Journal of Heat and Mass Transfer, 41, 1103-1112. 



  

173 

 

 

Wu, Q., Kim, S., Ishii, M. & Beus, S. G. 1998b. One-group interfacial area transport in 

vertical bubbly flow. International Journal of Heat and Mass Transfer, 41, 1103-

1112. 

 

Xu, J.-Y., Zhang, J., Liu, H.-F. & Wu, Y.-X. 2012. Oil–gas–water three-phase upward flow 

through a vertical pipe: Influence of gas injection on the pressure gradient. 

International Journal of Multiphase Flow, 46, 1-8. 

 

Yasin, S. S. M., Aziz, N. M. a. N., Zakaria, Z. & Samsuri, A. 2014. A Study of Continuous 

Flow Gas Lift System Using CFD. Journal of Applied Sciences, 14, 1265. 

 

Zabaras, G. J. 1994. Physical Modelling Of Vertical Multiphase Flow: Prediction Of Pressure 

Gradients In Oil And Gas Wells. Offshore Technology Conference. 

 

Zhang, D. & Vanderheyden, W. 2002. The effects of mesoscale structures on the disperse 

two-phase flows and their closures for dilute suspensions. Int. J. Multiph. Flow, 28, 

805-822. 

 

Zhang, J. & Fan, L.-S. 2003. On the rise velocity of an interactive bubble in liquids. 

Chemical Engineering Journal, 92, 169-176. 

 

 

  



174 

 

8 APPENDICES 

This appendices comprises of the following: 

 

A. Appendix A: Experimental Data for both techniques 

B. Pressure-drop along the test section for both techniques 

C. List of publications 
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8.1 Appendix -A  

Experimental data sheet that were used to record the operating conditions during each run for 

both SNIT and MNIT trials. 

Liquid 

flow rate 

 

 l/min 

Air 

Injection 

Pressure 

 

(bar)* 

Air flow 

rate 

 

l/min 

Inlet 

pressure 

 

(Psi) 

Outlet 

pressure 

 

(Psi) 

Inlet 

Temp 

 

𝑪𝒐 

Outlet 

Temp 

 

𝑪𝒐 

Outlet 

flow rate 

 

l/min 

5 l/min 

0.5 1 3 0.5 17.3 17.7 5.88 

       

       

       

       

5 9 3.8 1 17.3 17.7 16.30 

10 l/min 

       

       

       

       

       

       

20 l/min 

       

       

       

       

       

       

30 l/min 
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Typical data sheet for bubble sizes and velocities for each segment 

 

SEGMENT :1                                Video- 8775 

 

Single Nozzle Injection Technique (SNIT) 

 

Operating conditions: 

P = 0.5 bar 

Liquid Flow rate = 5 l/min,    Date: 15/04/2016 

 
Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts per 

frame 

0 -8.497 0.966 9.14 1.15 34.5 28 

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

   Average  Average 

 

Average 

 

 

 



  

177 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental Data for MNIT 
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SEGMENT :1                        Video- 8655 

 

Operating conditions: 

P = 0.5 bar 

Liquid Flow rate =5 l/min 
 

Bubble 

Diameter (mm) 

Bubble Velocity 

 (m/s) 

Equivalent 

Bubble 
Diameter (mm) 

Average 

Bubble 
Diameter (mm) 

Minimum 

Bubble size 
(mm) 

Maximum Bubble 

size (mm) 

Bubbles 

accounts 

0 -7.11 0.809 7.22 1.14 32 40 

1320 -6.884 1.685 7.22 1.14 30.2 39 

2640 -6.657 2.561 6.8 1.36 28.6 35 

3960 -6.43 3.436 6.84 1.14 27.4 41 

5280 -6.203 4.312 7.84 1.32 43.9 29 

6600 -5.976 5.188 6.89 1.14 28.9 33 

7920 -5.75 6.064 5.97 1.14 35.9 36 

9240 -5.523 6.939 6 1.14 32.2 37 

10560 -5.296 7.815 6.04 1.14 26.5 43 

11880 -5.069 8.691 6.41 1.14 34.2 34 

13200 -4.842 9.567 6.83 1.14 38.2 36 

14520 -4.616 10.443 6.79 1.14 40.5 32 

15840 -4.389 11.318 7.2 1.14 35.8 35 

17160 -4.162 12.194 5.22 0.991 39.3 49 

18480 -3.935 13.07 6.47 1.32 40.8 39 

19800 -3.708 13.946 7.12 1.14 44.6 27 

21120 -3.482 14.821 7.32 1.14 41.3 39 

22440 -3.255 15.697 7.21 1.32 28.9 40 

23760 -3.028 16.573 6.61 1.1 30.4 40 

25080 -2.801 17.449 7.63 1.62 30.2 39 

26400 -2.574 18.324 7.22 1.14 31 40 

27720 -2.348 19.2 9.01 1.14 30.1 35 

29040 -2.121 20.076 7.62 1.14 32.7 42 

30360 -1.894 20.952 9.11 1.14 28 39 

31680 -1.667 21.828 9.29 1.14 27.8 44 

33000 -1.44 22.703 7.62 1.04 27.2 44 

34320 -1.214 23.579 7.98 1.14 31.6 40 

35640 -0.987 24.455 6.86 1.14 41 50 

36960 -0.76 25.331 8.38 1.14 31.9 41 

38280 -0.533 26.206 9.65 1.14 33.9 45 

39600 -0.306 27.082 Average 

7.279 

Average 

1.1717 

Average 

33.5 

42 

40920 -0.08 27.958    36 
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42240 0.147 28.834    36 

43560 0.374 29.71    41 

44880 0.601 30.585    39 

46200 0.828 31.461    38 

47520 1.055 32.337    37 

48840 1.281 33.213    37 

50160 1.508 34.088    38 

51480 1.735 34.964    35 

52800 1.962 35.84    35 

54120 2.189 36.716    36 

55440 2.415 37.591    40 

56760 2.642 38.467    31 

58080 2.869 39.343    31 

59400 3.096 40.219    34 

60720 3.323 41.095    40 

62040 3.549 41.97    39 

63360 3.776 42.846    31 

64680 4.003 43.722    26 

 4.23 44.598    34 

 4.457 45.473    36 

 4.683 46.349    31 

 4.91 47.225    27 

 5.137 48.101    30 

 5.364 48.977    44 

 5.591 49.852    32 

 5.817 50.728    42 

 6.044 51.604    44 

 6.271 52.48    37 

 6.498 53.355    33 

 6.725 54.231    32 

 6.951 55.107    31 

 7.178 55.983    26 

 7.405 56.859    37 

 7.632 57.734    21 

 



180 

 

 

SEGMENT :1                        Video- 8656 

 

Operating conditions: 

P = 1 bar 

Liquid Flow rate =5 l/min 
 

Bubble Diameter 

(mm) 

Bubble Velocity 

 (m/s) 

Equivalent 

Bubble 
Diameter (mm) 

Average Bubble 

Diameter (mm) 

Minimum Bubble 

size (mm) 

Maximum Bubble 

size (mm) 

Bubbles 

accounts 

0 -7.572 0.808 8.27 1.14 46.6 48 

1320 -7.343 1.77 7.73 1.14 40.2 71 

2640 -7.114 2.732 6.91 1.14 42.1 73 

3960 -6.885 3.694 6.46 1.4 41.2 76 

5280 -6.656 4.657 7.18 1.09 44.7 64 

6600 -6.428 5.619 6.94 1.14 48.3 64 

7920 -6.199 6.581 5.58 0.989 55.3 74 

9240 -5.97 7.544 6.91 0.989 50.1 73 

10560 -5.741 8.506 7.25 0.932 61.5 44 

11880 -5.512 9.468 6.41 0.989 41.6 76 

13200 -5.283 10.43 7 0.872 61.1 71 

14520 -5.054 11.393 6.94 1.14 43.5 71 

15840 -4.825 12.355 5.97 0.989 33 89 

17160 -4.596 13.317 7.77 1.04 50.4 64 

18480 -4.367 14.279 5.01 1.14 30.6 99 

19800 -4.139 15.242 5.47 1.09 36.6 100 

21120 -3.91 16.204 6.87 1.14 50.7 75 

22440 -3.681 17.166 4.99 1.14 29 107 

23760 -3.452 18.129 5 1.14 37.6 107 

25080 -3.223 19.091 5.74 1.14 30.1 97 

26400 -2.994 20.053 5.49 0.932 52 91 

27720 -2.765 21.015 5.58 0.932 37.6 84 

29040 -2.536 21.978 5.49 0.989 40.1 94 

30360 -2.307 22.94 5.97 0.808 31.1 93 

31680 -2.078 23.902 5.36 0.989 55.4 96 

33000 -1.85 24.865 5.77 1.14 42.6 88 

34320 -1.621 25.827 5.62 1.14 46 90 

35640 -1.392 26.789 6.02 1.04 45.1 96 

36960 -1.163 27.751 5.51 1.09 30.7 104 

38280 -0.934 28.714 6.21 1.09 37.8 81 

39600 -0.705 29.676 Average 

6.247 

Average 

1.064 

Average 

43.086 

82 

40920 -0.476 30.638    77 



  

181 

 

42240 -0.247 31.601    80 

43560 -0.018 32.563    83 

44880 0.211 33.525    82 

46200 0.44 34.487    88 

47520 0.668 35.45    98 

48840 0.897 36.412    71 

50160 1.126 37.374    73 

51480 1.355 38.337    72 

52800 1.584 39.299    94 

54120 1.813 40.261    85 

55440 2.042 41.223    84 

56760 2.271 42.186    67 

58080 2.5 43.148    62 

59400 2.729 44.11    86 

60720 2.957 45.073    61 

62040 3.186 46.035    75 

63360 3.415 46.997    54 

64680 3.644 47.959    84 

 3.873 48.922    94 

 4.102 49.884    68 

 4.331 50.846    91 

 4.56 51.809    78 

 4.789 52.771    81 

 5.018 53.733    66 

 5.246 54.695    58 

 5.475 55.658    58 

 5.704 56.62    49 

 5.933 57.582    44 

 6.162 58.545    66 

 6.391 59.507    53 

 6.62 60.469    66 

 6.849 61.431    53 

 7.078 62.394    66 

 7.307 63.356    68 

 

 

 



182 

 

 

SEGMENT :1                        Video- 8657 

 

Operating conditions: 

P = 2 bar 

Liquid Flow rate =5 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -7.707 0.807 5.62 1.04 38.4 92 

1320 -7.472 1.746 5.3 1.09 61.8 93 

2640 -7.238 2.685 6 0.807 45.4 88 

3960 -7.003 3.624 6.09 1.09 48.1 98 

5280 -6.769 4.563 5.98 0.988 46.4 101 

6600 -6.535 5.502 5.72 1.09 38.8 96 

7920 -6.3 6.442 5.83 1.04 48.6 116 

9240 -6.066 7.381 6.2 1.09 48.9 97 

10560 -5.831 8.32 6.31 1.04 45.8 110 

11880 -5.597 9.259 6.17 0.988 35 113 

13200 -5.362 10.198 5.43 1.14 39 127 

14520 -5.128 11.137 5.75 1.14 45.4 120 

15840 -4.893 12.076 5.77 0.872 36.8 146 

17160 -4.659 13.015 6.48 0.932 50.2 99 

18480 -4.425 13.954 6.58 1.14 42.7 99 

19800 -4.19 14.894 6.29 0.932 41.9 88 

21120 -3.956 15.833 6.1 1.14 50.5 71 

22440 -3.721 16.772 5.02 1.04 30.5 134 

23760 -3.487 17.711 5.77 0.807 36.8 132 

25080 -3.252 18.65 8.3 1.14 36 66 

26400 -3.018 19.589 7.14 1.14 57.8 81 

27720 -2.783 20.528 6.03 0.988 39.3 121 

29040 -2.549 21.467 6.84 1.09 46.3 90 

30360 -2.315 22.406 5.83 0.807 33.2 135 

31680 -2.08 23.346 8.04 1.14 50.8 74 

33000 -1.846 24.285 5.59 0.932 35.5 142 

34320 -1.611 25.224 6.82 1.14 39.8 87 

35640 -1.377 26.163 5.93 1.14 39.5 84 

36960 -1.142 27.102 6.26 0.872 47.3 99 

38280 -0.908 28.041 5.77 1.14 48.3 106 

39600 -0.673 28.98 Average  

6.165 

Average 

1.031 

Average 

43.493 

116 



  

183 

 

40920 -0.439 29.919    122 

42240 -0.205 30.858    117 

43560 0.03 31.798    106 

44880 0.264 32.737    137 

46200 0.499 33.676    136 

47520 0.733 34.615    155 

48840 0.968 35.554    146 

50160 1.202 36.493    97 

51480 1.437 37.432    95 

52800 1.671 38.371    90 

54120 1.905 39.31    94 

55440 2.14 40.25    116 

56760 2.374 41.189    112 

58080 2.609 42.128    144 

59400 2.843 43.067    123 

60720 3.078 44.006    121 

62040 3.312 44.945    123 

63360 3.547 45.884    111 

64680 3.781 46.823    106 

 4.015 47.763    132 

 4.25 48.702    111 

 4.484 49.641    96 

 4.719 50.58    113 

 4.953 51.519    119 

 5.188 52.458    121 

 5.422 53.397    103 

 5.657 54.336    124 

 5.891 55.275    93 

 6.125 56.215    162 

 6.36 57.154    95 

 6.594 58.093    114 

 6.829 59.032    157 

 7.063 59.971    110 

 7.298 60.91    133 

 7.532 61.849    95 

 

 

 



184 

 

 

SEGMENT :1                        Video- 8658 

 

Operating conditions: 

P = 3 bar 

Liquid Flow rate =5 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -7.674 0.807 4.34 0.807 33.4 176 

1320 -7.439 2.119 4.3 0.989 50.1 191 

2640 -7.203 3.43 4.05 1.04 38.1 173 

3960 -6.967 4.741 4.72 0.872 59.2 156 

5280 -6.732 6.053 4.53 1.04 36.1 181 

6600 -6.496 7.364 5.39 1.09 42.5 150 

7920 -6.261 8.675 4.56 0.932 31.2 187 

9240 -6.025 9.986 3.93 0.989 26.2 211 

10560 -5.789 11.298 4.97 1.04 31 150 

11880 -5.554 12.609 4.3 0.982 48.8 192 

13200 -5.318 13.92 4.47 0.932 44.1 174 

14520 -5.082 15.232 4.32 0.872 43.2 159 

15840 -4.847 16.543 5.48 1.14 59.2 132 

17160 -4.611 17.854 4.92 0.932 36 145 

18480 -4.375 19.166 5.28 0.932 55.1 105 

19800 -4.14 20.477 4.68 0.932 50.3 156 

21120 -3.904 21.788 5.11 1.04 56.2 123 

22440 -3.668 23.099 4.11 0.932 38.2 153 

23760 -3.433 24.411 5.16 0.989 45.5 136 

25080 -3.197 25.722 4.28 0.872 40 170 

26400 -2.961 27.033 5.2 1.04 39.4 147 

27720 -2.726 28.345 5.13 0.989 32.4 146 

29040 -2.49 29.656 5.17 1.14 48.9 138 

30360 -2.254 30.967 5 0.932 39.6 140 

31680 -2.019 32.279 5.49 1.09 59.1 138 

33000 -1.783 33.59 5.71 1.14 36.1 131 

34320 -1.548 34.901 5.01 0.932 39.7 164 

35640 -1.312 36.213 5.1 1.14 34.5 144 

36960 -1.076 37.524 5.03 0.932 33.2 143 

38280 -0.841 38.835 4.14 0.989 35.6 186 

39600 -0.605 40.146 Average 

4.796 

Average 

0.9892 

Average 

42.096 

210 



  

185 

 

40920 -0.369 41.458    210 

42240 -0.134 42.769    199 

43560 0.102 44.08    184 

44880 0.338 45.392    179 

46200 0.573 46.703    141 

47520 0.809 48.014    146 

48840 1.045 49.326    195 

50160 1.28 50.637    157 

51480 1.516 51.948    164 

52800 1.752 53.259    139 

54120 1.987 54.571    167 

55440 2.223 55.882    170 

56760 2.459 57.193    180 

58080 2.694 58.505    160 

59400 2.93 59.816    168 

60720 3.166 61.127    162 

62040 3.401 62.439    188 

63360 3.637 63.75    158 

64680 3.872 65.061    149 

 4.108 66.373    123 

 4.344 67.684    167 

 4.579 68.995    152 

 4.815 70.306    122 

 5.051 71.618    141 

 5.286 72.929    145 

 5.522 74.24    130 

 5.758 75.552    176 

 5.993 76.863    132 

 6.229 78.174    110 

 6.465 79.486    123 

 6.7 80.797    154 

 6.936 82.108    153 

 7.172 83.42    185 

 7.407 84.731    185 

 7.643 86.042    161 

 

 

 



186 

 

 

SEGMENT :1                        Video- 8659 

 

Operating conditions: 

P = 4 bar 

Liquid Flow rate =5 l/min 

 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -7.207 0.808 4.71 1.03 34.9 215 

1320 -6.985 2.046 4.4 0.933 36 215 

2640 -6.762 3.284 4.75 1.04 37.5 179 

3960 -6.54 4.521 3.86 0.873 35.5 237 

5280 -6.318 5.759 4.29 0.933 36.1 212 

6600 -6.095 6.997 4.17 0.873 34.7 201 

7920 -5.873 8.235 4.14 0.933 29 213 

9240 -5.651 9.472 4.01 0.99 31 210 

10560 -5.428 10.71 3.42 0.933 51.7 246 

11880 -5.206 11.948 3.92 0.99 37.1 228 

13200 -4.984 13.185 4.3 1.14 31.4 189 

14520 -4.761 14.423 4.46 0.933 38.5 167 

15840 -4.539 15.661 3.97 0.933 31 221 

17160 -4.317 16.899 4.44 1.09 39 193 

18480 -4.094 18.136 4.26 0.99 30.9 192 

19800 -3.872 19.374 4.89 1.09 43.4 206 

21120 -3.649 20.612 4.74 0.873 51.9 181 

22440 -3.427 21.85 4.53 1.09 29.2 211 

23760 -3.205 23.087 5.98 0.933 38.9 138 

25080 -2.982 24.325 4.65 1.09 42.5 154 

26400 -2.76 25.563 5.01 0.873 32.3 182 

27720 -2.538 26.801 4.69 0.933 39.2 193 

29040 -2.315 28.038 4.75 1.09 54.1 157 

30360 -2.093 29.276 4.36 0.933 50.6 194 

31680 -1.871 30.514 4.38 1.04 50.2 192 

33000 -1.648 31.752 4.58 0.99 34.8 222 

34320 -1.426 32.989 4.17 1.04 33.6 222 

35640 -1.204 34.227 4.38 1.09 31.1 201 

36960 -0.981 35.465 4.25 0.99 52.9 206 

38280 -0.759 36.703 4.19 0.933 57.6 216 

39600 -0.537 37.94 Average 

4.421 

Average 

0.9867 

Average 

39.22 

220 



  

187 

 

40920 -0.314 39.178    260 

42240 -0.092 40.416    189 

43560 0.13 41.653    195 

44880 0.353 42.891    214 

46200 0.575 44.129    183 

47520 0.797 45.367    221 

48840 1.02 46.604    235 

50160 1.242 47.842    213 

51480 1.464 49.08    236 

52800 1.687 50.318    240 

54120 1.909 51.555    225 

55440 2.132 52.793    244 

56760 2.354 54.031    202 

58080 2.576 55.269    226 

59400 2.799 56.506    229 

60720 3.021 57.744    215 

62040 3.243 58.982    217 

63360 3.466 60.22    219 

64680 3.688 61.457    208 

 3.91 62.695    217 

 4.133 63.933    170 

 4.355 65.171    194 

 4.577 66.408    197 

 4.8 67.646    203 

 5.022 68.884    175 

 5.244 70.121    187 

 5.467 71.359    173 

 5.689 72.597    199 

 5.911 73.835    179 

 6.134 75.072    228 

 6.356 76.31    193 

 6.578 77.548    169 

 6.801 78.786    155 

 7.023 80.023    178 

 7.245 81.261    190 

 

 

 



188 

 

 

SEGMENT :1                        Video- 8660 

 

Operating conditions: 

P = 5 bar 

Liquid Flow rate =5 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -7.568 0.806 3.74 1.04 28.4 236 

1320 -7.341 1.999 4.44 1.09 35.6 157 

2640 -7.114 3.192 3.39 0.988 31 261 

3960 -6.888 4.385 3.72 0.871 51.1 211 

5280 -6.661 5.578 3.89 0.871 37.9 202 

6600 -6.435 6.77 3.76 0.871 44.2 196 

7920 -6.208 7.963 3.67 0.931 32.3 259 

9240 -5.981 9.156 4.64 1.04 78.3 128 

10560 -5.755 10.349 4.27 0.931 54.6 193 

11880 -5.528 11.542 3.78 0.931 37.9 229 

13200 -5.302 12.734 3.81 0.871 35.5 214 

14520 -5.075 13.927 3.66 0.931 54.2 190 

15840 -4.848 15.12 3.22 0.871 27.5 280 

17160 -4.622 16.313 3.57 0.988 23.3 253 

18480 -4.395 17.506 3.67 0.988 42.1 214 

19800 -4.169 18.698 3.33 0.931 40.1 241 

21120 -3.942 19.891 3.59 0.871 31.9 242 

22440 -3.715 21.084 3.7 0.871 26.6 241 

23760 -3.489 22.277 3.61 0.988 34.3 191 

25080 -3.262 23.47 4.07 0.988 43.1 170 

26400 -3.036 24.663 4.01 1.09 28.2 218 

27720 -2.809 25.855 3.85 0.988 26.8 221 

29040 -2.582 27.048 4.76 1.09 31.3 173 

30360 -2.356 28.241 4.1 0.931 39.7 198 

31680 -2.129 29.434 4.26 0.988 33.4 217 

33000 -1.903 30.627 4.16 0.931 46.6 211 

34320 -1.676 31.819 3.62 1.09 43.3 189 

35640 -1.449 33.012 4.05 0.931 32.7 225 

36960 -1.223 34.205 4.12 0.806 35.3 212 

38280 -0.996 35.398 4.39 0.931 42 185 

39600 -0.77 36.591 Average 

3.895 

Average 

0.9546 

Average 

38.31 

273 

40920 -0.543 37.783    196 



  

189 

 

42240 -0.317 38.976    195 

43560 -0.09 40.169    232 

44880 0.137 41.362    239 

46200 0.363 42.555    273 

47520 0.59 43.747    255 

48840 0.816 44.94    254 

50160 1.043 46.133    284 

51480 1.27 47.326    234 

52800 1.496 48.519    248 

54120 1.723 49.712    261 

55440 1.949 50.904    226 

56760 2.176 52.097    231 

58080 2.403 53.29    205 

59400 2.629 54.483    178 

60720 2.856 55.676    219 

62040 3.082 56.868    210 

63360 3.309 58.061    216 

64680 3.536 59.254    266 

 3.762 60.447    238 

 3.989 61.64    219 

 4.215 62.832    225 

 4.442 64.025    294 

 4.669 65.218    281 

 4.895 66.411    206 

 5.122 67.604    223 

 5.348 68.796    235 

 5.575 69.989    262 

 5.801 71.182    216 

 6.028 72.375    219 

 6.255 73.568    260 

 6.481 74.761    258 

 6.708 75.953    260 

 6.934 77.146    243 

 7.161 78.339    236 

 

 

 

 



190 

 

 

SEGMENT :1                        Video- 8662 

 

Operating conditions: 

P = 0.5 bar 

Liquid Flow rate =10 l/min 

 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -6.702 0.871 8.46 0.988 36.8 32 

1320 -6.484 1.853 8.81 1.14 37.6 35 

2640 -6.267 2.835 9.61 1.14 33 31 

3960 -6.05 3.817 8.72 1.09 41.6 34 

5280 -5.833 4.799 8.68 1.14 33.7 40 

6600 -5.616 5.781 10.4 1.47 40 25 

7920 -5.398 6.763 7.63 0.871 45.6 33 

9240 -5.181 7.745 8.34 1.14 33.4 30 

10560 -4.964 8.727 7.91 1.14 32.4 33 

11880 -4.747 9.709 10.2 1.14 35.2 21 

13200 -4.529 10.691 9.14 1.14 25.7 29 

14520 -4.312 11.673 7.94 1.14 34 32 

15840 -4.095 12.655 9.41 1.14 33.8 30 

17160 -3.878 13.637 9.51 0.931 38.1 22 

18480 -3.661 14.619 8.61 1.14 38.5 29 

19800 -3.443 15.601 8.08 1.14 35.1 30 

21120 -3.226 16.583 9.61 1.47 41 30 

22440 -3.009 17.565 8.2 1.14 36.1 32 

23760 -2.792 18.547 6.59 1.14 33.6 48 

25080 -2.575 19.529 8.05 1.14 38.9 34 

26400 -2.357 20.511 7.04 1.32 40.4 33 

27720 -2.14 21.493 8.84 1.14 35.6 30 

29040 -1.923 22.475 7.74 1.14 38.6 27 

30360 -1.706 23.457 7.28 1.14 32.3 37 

31680 -1.488 24.439 6.49 1.14 32.7 45 

33000 -1.271 25.421 7.49 1.09 32.4 36 

34320 -1.054 26.403 5.88 1.17 33.3 47 

35640 -0.837 27.385 7.99 1.14 26.7 38 

36960 -0.62 28.367 7.39 1.14 34.1 41 

38280 -0.402 29.349 7.69 1.14 34 42 

39600 -0.185 30.331 Average 

8.257 

Average 

1.144 

Average 

35.47 

38 

40920 0.032 31.313    33 



  

191 

 

42240 0.249 32.295    35 

43560 0.467 33.277    36 

44880 0.684 34.259    37 

46200 0.901 35.241    36 

47520 1.118 36.223    35 

48840 1.335 37.205    25 

50160 1.553 38.187    25 

51480 1.77 39.169    24 

52800 1.987 40.151    23 

54120 2.204 41.133    31 

55440 2.421 42.115    43 

56760 2.639 43.097    35 

58080 2.856 44.079    31 

59400 3.073 45.061    25 

60720 3.29 46.043    39 

62040 3.508 47.025    33 

63360 3.725 48.007    40 

64680 3.942 48.989    35 

 4.159 49.971    32 

 4.376 50.953    24 

 4.594 51.935    26 

 4.811 52.917    36 

 5.028 53.899    51 

 5.245 54.881    41 

 5.462 55.863    37 

 5.68 56.845    29 

 5.897 57.827    30 

 6.114 58.809    26 

 6.331 59.791    31 

 6.549 60.773    34 

 6.766 61.755    37 

 6.983 62.737    41 

 7.2 63.719    30 

 7.417 64.701    26 

 

 

 

 

 



192 

 

 

SEGMENT :1                        Video- 8668 

 

Operating conditions: 

P = 0.5 bar 

Liquid Flow rate =20 l/min 

 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -7.414 0.873 8.75 1.14 29.8 40 

1320 -7.181 1.765 9.89 1.36 28.5 33 

2640 -6.949 2.657 8.83 1.09 22 43 

3960 -6.716 3.548 8.93 1.14 30.7 34 

5280 -6.484 4.44 9.36 1.14 43.8 28 

6600 -6.251 5.332 10.5 2.09 41.1 25 

7920 -6.018 6.224 10.2 1.28 34.1 24 

9240 -5.786 7.116 9.26 1.14 37.2 31 

10560 -5.553 8.008 9.24 1.09 27.2 33 

11880 -5.321 8.9 8.85 1.14 37.1 35 

13200 -5.088 9.792 11.5 1.14 39 22 

14520 -4.856 10.684 10.4 1.32 37.7 28 

15840 -4.623 11.576 11.5 1.36 44.6 21 

17160 -4.39 12.468 11.5 1.23 36.9 21 

18480 -4.158 13.36 10.5 1.48 37.9 23 

19800 -3.925 14.252 13 1.32 44.6 20 

21120 -3.693 15.144 9.67 1.04 32.8 30 

22440 -3.46 16.036 12.7 1.14 35.5 20 

23760 -3.228 16.927 10 1.14 41.2 32 

25080 -2.995 17.819 11.6 1.14 36.4 24 

26400 -2.762 18.711 10.2 1.36 30 31 

27720 -2.53 19.603 8.5 1.14 32.9 31 

29040 -2.297 20.495 9.87 1.14 31.4 29 

30360 -2.065 21.387 9.69 1.14 33.1 23 

31680 -1.832 22.279 11.6 1.14 38.6 23 

33000 -1.6 23.171 9.18 1.14 38.4 27 

34320 -1.367 24.063 11.8 1.32 27.2 26 

35640 -1.134 24.955 12 1.32 47 17 

36960 -0.902 25.847 11.6 1.36 45.4 18 

38280 -0.669 26.739 8.6 1.14 35.8 32 

39600 -0.437 27.631 Average 

10.307 

Average 

1.2373 

Average 

35.93 

30 

40920 -0.204 28.523    31 

42240 0.028 29.414    19 

43560 0.261 30.306    29 

44880 0.494 31.198    22 
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46200 0.726 32.09    24 

47520 0.959 32.982    20 

48840 1.191 33.874    24 

50160 1.424 34.766    24 

51480 1.656 35.658    23 

52800 1.889 36.55    30 

54120 2.122 37.442    29 

55440 2.354 38.334    25 

56760 2.587 39.226    23 

58080 2.819 40.118    27 

59400 3.052 41.01    26 

60720 3.284 41.901    28 

62040 3.517 42.793    23 

63360 3.75 43.685    28 

64680 3.982 44.577    28 

 4.215 45.469    34 

 4.447 46.361    26 

 4.68 47.253    38 

 4.912 48.145    24 

 5.145 49.037    31 

 5.378 49.929    35 

 5.61 50.821    24 

 5.843 51.713    30 

 6.075 52.605    28 

 6.308 53.497    29 

 6.54 54.388    28 

 6.773 55.28    36 

 7.006 56.172    37 

 7.238 57.064    24 

 7.471 57.956    30 

 7.703 58.848    31 
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SEGMENT :1                        Video- 8674 

 

Operating conditions: 

P = 0.5 bar 

Liquid Flow rate = 30 l/min 

 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -7.678 1.147 13.4 2.09 51.1 14 

2 -7.373 2.565 10.1 1.55 60.2 12 

4 -7.068 3.984 12.3 3.14 50.1 20 

6 -6.763 5.403 9.29 1.36 17.9 15 

8 -6.458 6.822 12.7 1.15 46.2 17 

10 -6.153 8.241 12.7 2.34 40.4 16 

12 -5.848 9.66 11.7 1.15 35.3 27 

14 -5.544 11.078 11.7 1.48 41.6 21 

16 -5.239 12.497 11.5 2.32 43.6 18 

18 -4.934 13.916 12.2 3.23 42.5 19 

20 -4.629 15.335 14.7 1.84 42.7 22 

22 -4.324 16.754 14.3 3.89 40.2 15 

24 -4.019 18.173 15.9 1.15 29 23 

26 -3.714 19.591 14 1.32 46.5 21 

28 -3.409 21.01 16.1 1.15 45.2 22 

30 -3.104 22.429 14.9 1.32 47.2 17 

32 -2.799 23.848 12.8 1.65 54.8 11 

34 -2.494 25.267 12.4 1.48 37.7 14 

36 -2.19 26.686 14.2 1.55 35.2 21 

38 -1.885 28.104 10.7 2.77 34.1 18 

40 -1.58 29.523 14.6 1.15 33.3 22 

42 -1.275 30.942 16.6 3.23 39 13 

44 -0.97 32.361 13.7 1.65 44 12 

46 -0.665 33.78 13.2 1.32 37.5 16 

48 -0.36 35.199 13.3 3.12 41.8 11 

50 -0.055 36.617 13.7 1.69 38.6 19 

52 0.25 38.036 14.9 2.89 31.1 19 

54 0.555 39.455 13.9 1.48 42.1 13 

56 0.86 40.874 11.1 4.19 39.3 15 

58 1.165 42.293 12.9 1.48 51.2 19 

60 1.469 43.712 13.183 2.004333 41.31333 12 

62 1.774 45.13    22 

64 2.079 46.549    18 

66 2.384 47.968    18 

68 2.689 49.387    16 
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70 2.994 50.806    24 

72 3.299 52.225    25 

74 3.604 53.643    12 

76 3.909 55.062    19 

78 4.214 56.481    22 

80 4.519 57.9    25 

82 4.823 59.319    22 

84 5.128 60.738    19 

86 5.433 62.156    23 

88 5.738 63.575    23 

90 6.043 64.994    16 

92 6.348 66.413    18 

94 6.653 67.832    23 

96 6.958 69.251    24 

98 7.263 70.669    23 
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8.2 Appendix –A 

 

 

 

 

 

Experimental Data for SNIT 
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SEGMENT :1                        Video- 8775 

 

Operating conditions: 

P = 0.5 bar 

Liquid Flow rate = 5 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -8.497 0.966 9.14 1.15 34.5 28 

1320 -8.24 1.758 11.9 1.46 35.9 20 

2640 -7.983 2.549 10.9 1.27 39 25 

3960 -7.726 3.34 11 1.27 42.1 21 

5280 -7.468 4.131 9.25 1.51 41 23 

6600 -7.211 4.923 8.89 1.27 28.6 20 

7920 -6.954 5.714 9.04 1.27 32.6 27 

9240 -6.697 6.505 6.55 1.27 35.2 33 

10560 -6.44 7.297 9.11 1.41 32.2 23 

11880 -6.182 8.088 9.71 1.27 30.5 24 

13200 -5.925 8.879 8.92 1.21 30.9 28 

14520 -5.668 9.671 9.72 1.27 30.5 30 

15840 -5.411 10.462 9.22 1.27 26 28 

17160 -5.154 11.253 9.49 1.27 25.2 28 

18480 -4.896 12.044 7.78 1.27 26.9 34 

19800 -4.639 12.836 9.25 1.46 30.6 29 

21120 -4.382 13.627 10.3 1.27 29.3 27 

22440 -4.125 14.418 9.38 1.27 38.3 29 

23760 -3.868 15.21 9.15 1.27 33.8 35 

25080 -3.61 16.001 12.4 1.63 32.5 19 

26400 -3.353 16.792 9.28 1.63 38.1 25 

27720 -3.096 17.583 7.89 1.27 30.6 33 

29040 -2.839 18.375 9.76 1.46 31.6 27 

30360 -2.582 19.166 8.91 1.37 29 32 

31680 -2.324 19.957 12.1 1.27 38.8 22 

33000 -2.067 20.749 9.45 1.27 37.1 25 

34320 -1.81 21.54 11.9 1.27 46.2 17 

35640 -1.553 22.331 9.68 1.46 43.3 24 

36960 -1.296 23.123 11.7 1.27 28.3 20 

38280 -1.038 23.914 11 2.53 42.1 23 
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39600 -0.781 24.705 9.759 1.371333 34.02333 18 

40920 -0.524 25.496    18 

42240 -0.267 26.288    18 

43560 -0.01 27.079    19 

44880 0.248 27.87    25 

46200 0.505 28.662    25 

47520 0.762 29.453    26 

48840 1.019 30.244    26 

50160 1.276 31.036    28 

51480 1.534 31.827    21 

52800 1.791 32.618    24 

54120 2.048 33.409    23 

55440 2.305 34.201    21 

56760 2.562 34.992    26 

58080 2.82 35.783    24 

59400 3.077 36.575    16 

60720 3.334 37.366    27 

62040 3.591 38.157    32 

63360 3.848 38.949    24 

64680 4.106 39.74    23 

 4.363 40.531    29 

 4.62 41.322    33 

 4.877 42.114    30 

 5.134 42.905    27 

 5.392 43.696    26 

 5.649 44.488    36 

 5.906 45.279    19 

 6.163 46.07    29 

 6.42 46.862    34 

 6.678 47.653    32 

 6.935 48.444    31 

 7.192 49.235    30 

 7.449 50.027    27 

 7.706 50.818    26 

 7.964 51.609    28 

 8.221 52.401    25 

 4.23421 26.6834    23 
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SEGMENT :1                        Video- 8776 

 

Operating conditions: 

P = 1 bar 

Liquid Flow rate = 5 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -8.126 0.896 7.33 0.967 45.4 50 

1320 -7.887 1.826 7.15 1.27 37.8 50 

2640 -7.648 2.755 6.75 1.27 36.6 46 

3960 -7.409 3.685 7.34 1.27 30.3 52 

5280 -7.17 4.615 6.17 1.27 32.4 62 

6600 -6.931 5.545 7.09 1.27 30.7 55 

7920 -6.693 6.475 7.24 1.27 32.9 51 

9240 -6.454 7.405 6.66 1.27 37.2 52 

10560 -6.215 8.335 7.22 1.27 40 55 

11880 -5.976 9.265 6.76 1.27 30.7 52 

13200 -5.737 10.195 7.23 1.27 37.4 50 

14520 -5.498 11.125 6.76 1.27 32.6 61 

15840 -5.259 12.055 6.24 1.27 34.5 64 

17160 -5.02 12.984 6.09 1.27 32.9 57 

18480 -4.781 13.914 5.75 1.27 35.8 57 

19800 -4.543 14.844 6.14 1.27 38 57 

21120 -4.304 15.774 6.58 1.27 47.5 46 

22440 -4.065 16.704 6.17 1.27 39.3 55 

23760 -3.826 17.634 5.91 1.03 43.5 54 

25080 -3.587 18.564 5.97 1.27 43.7 50 

26400 -3.348 19.494 6.54 1.27 37.1 52 

27720 -3.109 20.424 7.39 1.27 31.7 48 

29040 -2.87 21.354 6.61 1.27 39 58 

30360 -2.631 22.284 7.21 0.896 32.4 54 

31680 -2.393 23.214 7.21 1.27 31.4 57 

33000 -2.154 24.143 6.89 1.16 48.3 54 

34320 -1.915 25.073 7.5 1.16 47.4 41 

35640 -1.676 26.003 7.25 1.27 52.3 41 

36960 -1.437 26.933 8.28 1.27 41.4 45 
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38280 -1.198 27.863 6.66 1.27 59.7 44 

39600 -0.959 28.793 6.803 1.2321 38.66333 54 

40920 -0.72 29.723    67 

42240 -0.481 30.653    65 

43560 -0.243 31.583    60 

44880 -0.004 32.513    46 

46200 0.235 33.443    51 

47520 0.474 34.372    73 

48840 0.713 35.302    67 

50160 0.952 36.232    59 

51480 1.191 37.162    71 

52800 1.43 38.092    45 

54120 1.669 39.022    61 

55440 1.907 39.952    63 

56760 2.146 40.882    51 

58080 2.385 41.812    58 

59400 2.624 42.742    78 

60720 2.863 43.672    72 

62040 3.102 44.601    53 

63360 3.341 45.531    71 

64680 3.58 46.461    51 

 3.819 47.391    41 

 4.057 48.321    67 

 4.296 49.251    57 

 4.535 50.181    65 

 4.774 51.111    56 

 5.013 52.041    45 

 5.252 52.971    50 

 5.491 53.901    49 

 5.73 54.83    54 

 5.969 55.76    34 

 6.207 56.69    65 

 6.446 57.62    66 

 6.685 58.55    56 

 6.924 59.48    61 

 7.163 60.41    61 
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SEGMENT :1                        Video- 8777 

 

Operating conditions: 

P = 2 bar 

Liquid Flow rate = 5 l/min 

 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -7.782 0.908 6.03 1.19 55.5 76 

1320 -7.541 1.974 5.69 1.19 49.5 74 

2640 -7.299 3.041 7.14 1.19 58.2 62 

3960 -7.058 4.108 9.72 1.14 53 40 

5280 -6.817 5.175 6.46 1.19 46.5 74 

6600 -6.575 6.242 7.96 1.19 48.2 61 

7920 -6.334 7.309 6.33 1.19 39.7 80 

9240 -6.093 8.376 6.26 1.19 37.6 77 

10560 -5.851 9.443 6.71 1.19 39.6 74 

11880 -5.61 10.509 7.35 0.97 47.8 70 

13200 -5.369 11.576 6.67 1.19 38 75 

14520 -5.127 12.643 6.16 0.97 50 72 

15840 -4.886 13.71 7.51 1.37 58.8 60 

17160 -4.644 14.777 8.1 1.19 45.8 59 

18480 -4.403 15.844 9.34 1.19 46.9 43 

19800 -4.162 16.911 7.18 1.19 55.5 56 

21120 -3.92 17.977 7.97 1.19 50.9 55 

22440 -3.679 19.044 7.96 1.19 44.3 64 

23760 -3.438 20.111 6.68 1.14 61.1 75 

25080 -3.196 21.178 7.88 1.19 52.1 66 

26400 -2.955 22.245 9.87 1.19 49.8 41 

27720 -2.714 23.312 6.81 1.03 59.6 64 

29040 -2.472 24.379 8.06 1.19 51.3 54 

30360 -2.231 25.446 8.47 1.19 40.3 45 

31680 -1.99 26.512 7.33 1.19 46.9 59 

33000 -1.748 27.579 6.78 1.19 44.6 71 

34320 -1.507 28.646 6.69 1.19 37.3 76 

35640 -1.266 29.713 7.17 1.03 55.8 52 

36960 -1.024 30.78 7.9 1.19 48.2 50 

38280 -0.783 31.847 7.27 1.03 51.4 66 

39600 -0.542 32.914 7.381667 1.162 48.80667 51 

40920 -0.3 33.98    62 

42240 -0.059 35.047    60 

43560 0.182 36.114    48 
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44880 0.424 37.181    62 

46200 0.665 38.248    40 

47520 0.906 39.315    71 

48840 1.148 40.382    69 

50160 1.389 41.449    56 

51480 1.63 42.515    75 

52800 1.872 43.582    61 

54120 2.113 44.649    76 

55440 2.354 45.716    90 

56760 2.596 46.783    80 

58080 2.837 47.85    85 

59400 3.078 48.917    90 

60720 3.32 49.983    64 

62040 3.561 51.05    76 

63360 3.802 52.117    80 

64680 4.044 53.184    63 

 4.285 54.251    67 

 4.526 55.318    71 

 4.768 56.385    70 

 5.009 57.452    79 

 5.25 58.518    82 

 5.492 59.585    84 

 5.733 60.652    67 

 5.975 61.719    80 

 6.216 62.786    66 

 6.457 63.853    81 

 6.699 64.92    104 

 6.94 65.986    78 

 7.181 67.053    65 

 7.423 68.12    80 

 7.664 69.187    77 

 7.905 70.254    81 

 4.043757576 35.5807    55 
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SEGMENT :1                        Video- 8778 

 

Operating conditions: 

P = 3 bar 

Liquid Flow rate = 5 l/min 

 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -8.03 0.896 6.23 1.27 54.1 102 

1320 -7.783 2.094 5.81 1.27 53.5 127 

2640 -7.535 3.292 6.95 1.27 46.2 80 

3960 -7.287 4.49 5.98 1.27 54.3 109 

5280 -7.04 5.687 5.26 1.27 50.3 138 

6600 -6.792 6.885 6.16 1.27 49.6 104 

7920 -6.544 8.083 6.92 1.16 51.6 77 

9240 -6.297 9.281 7.01 1.27 48.1 96 

10560 -6.049 10.479 6.23 1.16 78.8 75 

11880 -5.802 11.676 7.03 1.27 49.9 93 

13200 -5.554 12.874 6.6 1.27 32.7 105 

14520 -5.306 14.072 7.47 1.21 53.4 84 

15840 -5.059 15.27 6.29 1.27 46.4 92 

17160 -4.811 16.468 6.52 1.1 46.8 96 

18480 -4.564 17.666 7.15 1.21 47.6 59 

19800 -4.316 18.863 6.2 1.27 46.9 91 

21120 -4.068 20.061 6.83 1.27 47.6 95 

22440 -3.821 21.259 6.06 1.27 54.5 106 

23760 -3.573 22.457 5.55 1.21 59.3 135 

25080 -3.325 23.655 4.72 1.27 52.7 156 

26400 -3.078 24.853 5.13 1.27 55.3 105 

27720 -2.83 26.05 5.89 1.27 42.8 105 

29040 -2.583 27.248 5.96 1.27 62.6 99 

30360 -2.335 28.446 5.71 1.27 49.3 117 

31680 -2.087 29.644 5.86 1.16 49.4 119 

33000 -1.84 30.842 5.87 1.27 62.4 96 

34320 -1.592 32.04 7.03 1.27 42.4 77 

35640 -1.345 33.237 6.73 1.27 44.5 85 

36960 -1.097 34.435 6.26 0.968 42.5 74 
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38280 -0.849 35.633 6.49 1.03 43.8 107 

39600 -0.602 36.831 6.263333 1.229267 50.64333 113 

40920 -0.354 38.029    65 

42240 -0.107 39.227    87 

43560 0.141 40.424    101 

44880 0.389 41.622    101 

46200 0.636 42.82    72 

47520 0.884 44.018    85 

48840 1.132 45.216    105 

50160 1.379 46.414    105 

51480 1.627 47.611    102 

52800 1.874 48.809    82 

54120 2.122 50.007    102 

55440 2.37 51.205    88 

56760 2.617 52.403    99 

58080 2.865 53.601    108 

59400 3.112 54.798    105 

60720 3.36 55.996    63 

62040 3.608 57.194    85 

63360 3.855 58.392    91 

64680 4.103 59.59    208 

 4.351 60.788    117 

 4.598 61.985    130 

 4.846 63.183    129 

 5.093 64.381    84 

 5.341 65.579    118 

 5.589 66.777    118 

 5.836 67.975    107 

 6.084 69.172    99 

 6.331 70.37    114 

 6.579 71.568    85 

 6.827 72.766    104 

 7.074 73.964    98 

 7.322 75.162    95 

 7.569 76.359    92 

 7.817 77.557    112 
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SEGMENT :1                        Video- 8779 

 

Operating conditions: 

P = 4 bar 

Liquid Flow rate = 5 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -8.275 0.896 5.21 1.16 27.8 175 

1320 -8.027 2.03 6.01 1.27 37.3 126 

2640 -7.779 3.163 7.97 1.27 49.6 92 

3960 -7.531 4.297 6.52 1.27 61.3 107 

5280 -7.283 5.43 7.25 1.27 43.3 105 

6600 -7.035 6.564 6.43 1.27 38.1 120 

7920 -6.787 7.698 7.44 1.27 50.1 99 

9240 -6.539 8.831 7.09 1.27 53.4 97 

10560 -6.29 9.965 6.39 1.27 52.5 96 

11880 -6.042 11.098 7.07 1.27 51.9 98 

13200 -5.794 12.232 6.2 1.27 74.3 67 

14520 -5.546 13.365 7.92 1.27 48.9 74 

15840 -5.298 14.499 6.38 1.04 46.6 115 

17160 -5.05 15.632 9.3 1.27 51.8 78 

18480 -4.802 16.766 7.3 1.04 54.5 87 

19800 -4.554 17.899 7.85 1.16 43.7 98 

21120 -4.306 19.033 7.43 0.968 46.5 97 

22440 -4.058 20.166 6.44 1.1 51.1 107 

23760 -3.81 21.3 6.25 1.27 50.7 110 

25080 -3.562 22.433 7.13 1.27 46.6 95 

26400 -3.314 23.567 6.76 1.27 48.1 113 

27720 -3.065 24.7 6.04 1.27 45.5 128 

29040 -2.817 25.834 7.86 1.27 46.5 96 

30360 -2.569 26.968 7.01 1.16 42 102 

31680 -2.321 28.101 5.65 1.1 43.4 107 

33000 -2.073 29.235 6.06 1.27 47.6 120 

34320 -1.825 30.368 6.29 1.16 55.4 130 

35640 -1.577 31.502 5.56 1.21 56.7 135 

36960 -1.329 32.635 5.88 1.04 44.1 115 

38280 -1.081 33.769 6.18 1.04 59.1 89 

39600 -0.833 34.902 6.762333 1.201267 48.94667 138 

40920 -0.585 36.036    105 

42240 -0.337 37.169    122 

43560 -0.089 38.303    134 
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44880 0.159 39.436    135 

46200 0.408 40.57    134 

47520 0.656 41.703    150 

48840 0.904 42.837    143 

50160 1.152 43.97    122 

51480 1.4 45.104    145 

52800 1.648 46.238    111 

54120 1.896 47.371    123 

55440 2.144 48.505    148 

56760 2.392 49.638    144 

58080 2.64 50.772    140 

59400 2.888 51.905    111 

60720 3.136 53.039    139 

62040 3.384 54.172    143 

63360 3.632 55.306    143 

64680 3.881 56.439    160 

 4.129 57.573    116 

 4.377 58.706    116 

 4.625 59.84    132 

 4.873 60.973    163 

 5.121 62.107    131 

 5.369 63.24    131 

 5.617 64.374    117 

 5.865 65.507    128 

 6.113 66.641    135 

 6.361 67.775    123 

 6.609 68.908    153 

 6.857 70.042    123 

 7.106 71.175    131 

 7.354 72.309    107 

 7.602 73.442    114 

 7.85 74.576    135 

 4.0046 37.7360    120 
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SEGMENT :1                        Video- 8780 

 

Operating conditions: 

P = 5 bar 

Liquid Flow rate = 5 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -7.272 0.896 5.18 1.21 40.8 134 

1320 -7.041 1.943 4.46 1.03 32.8 175 

2640 -6.809 2.991 5.43 1.21 50 107 

3960 -6.578 4.038 4.31 1.27 28.6 187 

5280 -6.346 5.086 4.6 1.27 42.7 169 

6600 -6.115 6.133 4.16 1.27 50.7 165 

7920 -5.883 7.181 5.11 1.21 56.5 128 

9240 -5.652 8.228 5.1 1.27 43.3 144 

10560 -5.42 9.276 5.42 1.21 41.3 151 

11880 -5.189 10.324 5.22 1.27 36.6 143 

13200 -4.957 11.371 5.15 1.21 45.4 145 

14520 -4.726 12.419 5.28 1.27 64.4 132 

15840 -4.494 13.466 4.69 1.1 38.5 168 

17160 -4.263 14.514 5.87 1.27 38.3 125 

18480 -4.031 15.561 4.89 1.1 36.8 160 

19800 -3.8 16.609 5.03 1.27 45.3 142 

21120 -3.568 17.656 5.26 1.27 39.7 143 

22440 -3.336 18.704 4.61 1.1 35 182 

23760 -3.105 19.752 4.46 1.16 38.6 182 

25080 -2.873 20.799 5 1.27 41.1 144 

26400 -2.642 21.847 4.89 0.967 50.6 131 

27720 -2.41 22.894 4.52 1.1 46 166 

29040 -2.179 23.942 5.63 1.16 49.4 113 

30360 -1.947 24.989 5.26 0.967 43 149 

31680 -1.716 26.037 5.49 1.21 36.2 144 

33000 -1.484 27.084 4.92 1.27 32.4 164 

34320 -1.253 28.132 4.82 1.27 40 163 

35640 -1.021 29.18 6.32 0.967 45 114 

36960 -0.79 30.227 5.37 1.27 58 118 

38280 -0.558 31.275 5.47 1.27 52.9 140 

39600 -0.327 32.322 5.064 1.1897 43.33 133 

40920 -0.095 33.37    112 

42240 0.136 34.417    141 

43560 0.368 35.465    134 
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44880 0.599 36.512    120 

46200 0.831 37.56    164 

47520 1.062 38.608    184 

48840 1.294 39.655    177 

50160 1.525 40.703    155 

51480 1.757 41.75    137 

52800 1.988 42.798    127 

54120 2.22 43.845    133 

55440 2.451 44.893    153 

56760 2.683 45.94    161 

58080 2.914 46.988    123 

59400 3.146 48.036    153 

60720 3.377 49.083    156 

62040 3.609 50.131    150 

63360 3.84 51.178    177 

64680 4.072 52.226    130 

 4.304 53.273    145 

 4.535 54.321    173 

 4.767 55.368    159 

 4.998 56.416    173 

 5.23 57.464    144 

 5.461 58.511    168 

 5.693 59.559    144 

 5.924 60.606    165 

 6.156 61.654    157 

 6.387 62.701    172 

 6.619 63.749    170 

 6.85 64.796    185 

 7.082 65.844    182 

 7.313 66.892    154 

 7.545 67.939    176 

 7.776 68.987    157 

 3.9562 34.941    140 
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SEGMENT :1                        Video- 8781 

 

Operating conditions: 

P =0.5 bar 

Liquid Flow rate = 10 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -8.49 1.213 8.36 1.27 34.5   30 

2 -8.148 2.232 9.28 1.27 28.8 28 

4 -7.805 3.251 8.69 1.42 29 24 

6 -7.463 4.269 9.59 1.27 30.6 24 

8 -7.12 5.288 10.3 1.27 33.5 23 

10 -6.778 6.306 12.2 1.46 30.8 16 

12 -6.436 7.325 9.86 1.27 29.7 16 

14 -6.093 8.343 9.59 1.64 27.7 19 

16 -5.751 9.362 10.1 1.27 33.5 17 

18 -5.408 10.38 8.99 1.27 32 22 

20 -5.066 11.399 11.4 1.68 31.3 16 

22 -4.724 12.417 9.02 1.46 28.9 20 

24 -4.381 13.436 7.63 1.27 30.2 25 

26 -4.039 14.454 11.6 1.27 28.3 16 

28 -3.697 15.473 7.85 1.27 36.7 22 

30 -3.354 16.491 10.9 2 35.2 14 

32 -3.012 17.51 7.59 1.37 28.8 20 

34 -2.669 18.529 7.81 1.27 32.7 20 

36 -2.327 19.547 11.8 1.27 37.1 16 

38 -1.985 20.566 12.4 1.27 34.8 18 

40 -1.642 21.584 8.92 1.51 27.2 14 

42 -1.3 22.603 11.7 1.27 35.1 14 

44 -0.958 23.621 10.8 1.51 30 22 

46 -0.615 24.64 10.8 1.27 27.4 20 

48 -0.273 25.658 9.82 1.51 29.4 23 

50 0.07 26.677 9.62 1.27 28.6 20 

52 0.412 27.695 9.97 1.27 24.6 22 

54 0.754 28.714 8.25 1.27 25.6 31 

56 1.097 29.732 8.26 1.27 25.9 29 

58 1.439 30.751 10.2 1.51 27.96 22 

60 1.782 31.769 9.776667 1.373333 30.52867 23 

62 2.124 32.788    21 

64 2.466 33.807    22 

66 2.809 34.825    17 



210 

 

68 3.151 35.844    24 

70 3.493 36.862    27 

72 3.836 37.881    26 

74 4.178 38.899    28 

76 4.521 39.918    27 

78 4.863 40.936    22 

80 5.205 41.955    28 

82 5.548 42.973    28 

84 5.89 43.992    25 

86 6.233 45.01    24 

88 6.575 46.029    24 

90 6.917 47.048    28 

92 7.26 48.066    26 

94 7.602 49.085    28 

96 7.944 50.103    23 

98 8.287 51.122    25 
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SEGMENT :1                        Video- 8787 

 

Operating conditions: 

P =0.5 bar 

Liquid Flow rate = 20 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -8.171 1.267 11.9 1.46 44.4 17 

2 -7.836 2.226 12.5 2.1 33.1 13 

4 -7.502 3.185 13.9 2.97 34.8 13 

6 -7.168 4.144 8.47 1.27 30.3 17 

8 -6.833 5.103 11 1.27 27.4 15 

10 -6.499 6.062 11.2 1.72 31.2 11 

12 -6.165 7.02 9.83 1.27 32.7 18 

14 -5.83 7.979 8.45 1.51 37.6 20 

16 -5.496 8.938 10.1 1.27 40.4 17 

18 -5.161 9.897 11.1 1.27 41.8 19 

20 -4.827 10.856 11.6 1.51 34.9 21 

22 -4.493 11.815 11.2 1.27 31.2 14 

24 -4.158 12.774 9.85 1.27 32.1 22 

26 -3.824 13.732 11.2 1.46 30.4 21 

28 -3.49 14.691 13.7 1.27 27.5 18 

30 -3.155 15.65 11.9 1.27 29.5 18 

32 -2.821 16.609 10.7 1.27 26.4 19 

34 -2.486 17.568 12.9 1.64 38.4 18 

36 -2.152 18.527 15.2 1.46 37.8 12 

38 -1.818 19.486 16.9 6.33 36.1 13 

40 -1.483 20.445 13 1.64 37.6 15 

42 -1.149 21.403 11.6 1.46 33.7 19 

44 -0.815 22.362 11.5 1.72 35.6 23 

46 -0.48 23.321 11.8 1.27 41.1 19 

48 -0.146 24.28 15.2 1.64 38 17 

50 0.189 25.239 11.2 1.27 45.2 20 

52 0.523 26.198 11.4 1.42 37.4 24 

54 0.857 27.157 11.7 2.04 27.3 18 

56 1.192 28.116 11.1 1.27 28.7 19 

58 1.526 29.074 9.9 1.42 25.3 19 

60 1.86 30.033 11.73333 1.667 34.26333 19 

62 2.195 30.992    23 

64 2.529 31.951    19 

66 2.864 32.91    9 
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68 3.198 33.869    15 

70 3.532 34.828    16 

72 3.867 35.786    15 

74 4.201 36.745    14 

76 4.535 37.704    17 

78 4.87 38.663    16 

80 5.204 39.622    21 

82 5.539 40.581    13 

84 5.873 41.54    14 

86 6.207 42.499    20 

88 6.542 43.457    22 

90 6.876 44.416    8 

92 7.21 45.375    12 

94 7.545 46.334    14 

96 7.879 47.293    13 

98 8.214 48.252    13 
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SEGMENT :1                        Video- 8793 

 

Operating conditions: 

P =0.5 bar 

Liquid Flow rate = 30 l/min 
 

Bubble 

Diameter 

(mm) 

Bubble 

Velocity 

 (m/s) 

Equivalent 

Bubble 

Diameter 

(mm) 

Average 

Bubble 

Diameter 

(mm) 

Minimum 

Bubble size 

(mm) 

Maximum 

Bubble size 

(mm) 

Bubbles 

accounts 

0 -8.133 1.214 16.8 1.87 31.2 14 

2 -7.795 2.371 13.8 1.27 32 20 

4 -7.458 3.528 12.3 1.27 33.8 15 

6 -7.121 4.685 8.49 1.27 32.6 24 

8 -6.783 5.842 15.3 1.87 32.9 13 

10 -6.446 6.998 16.2 1.6 33.3 20 

12 -6.109 8.155 11.2 1.51 32.7 17 

14 -5.771 9.312 12.9 1.6 36.1 17 

16 -5.434 10.469 14.9 1.87 37.5 14 

18 -5.096 11.626 14.2 1.51 38.4 19 

20 -4.759 12.782 13 1.27 43.1 16 

22 -4.422 13.939 15 1.27 42.6 18 

24 -4.084 15.096 10.2 1.27 42.9 15 

26 -3.747 16.253 11.5 1.9 46.6 18 

28 -3.41 17.41 12.6 1.46 41.7 16 

30 -3.072 18.566 14.3 2.1 43 17 

32 -2.735 19.723 18.4 1.27 48 21 

34 -2.398 20.88 15.8 1.51 45.8 16 

36 -2.06 22.037 13.6 1.27 38 18 

38 -1.723 23.194 16.4 1.27 27.2 22 

40 -1.386 24.35 12.7 1.46 34.7 17 

42 -1.048 25.507 15.6 1.87 39.8 18 

44 -0.711 26.664 16.2 1.27 30.6 15 

46 -0.373 27.821 15.7 1.27 38.7 16 

48 -0.036 28.978 18.1 1.46 39.8 14 

50 0.301 30.134 10.4 1.27 49.6 18 

52 0.639 31.291 10.6 3.04 34.1 18 

54 0.976 32.448 15.1 2.34 30.6 16 

56 1.313 33.605 16.3 1.51 30.2 18 

58 1.651 34.761 13.3 2.29 37.1 21 

60 1.988 35.918 14.02967 1.600333 37.48667 20 

62 2.325 37.075    14 

64 2.663 38.232    15 

66 3 39.389    16 
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68 3.337 40.545    14 

70 3.675 41.702    15 

72 4.012 42.859    14 

74 4.35 44.016    20 

76 4.687 45.173    14 

78 5.024 46.329    17 

80 5.362 47.486    13 

82 5.699 48.643    21 

84 6.036 49.8    19 

86 6.374 50.957    20 

88 6.711 52.113    19 

90 7.048 53.27    26 

92 7.386 54.427    14 

94 7.723 55.584    11 

96 8.06 56.741    11 

98 8.398 57.897    14 

  29.5559    19 
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8.3 Appendix –B 

 

 

 

 

 

 

 

 

 Pressure-drop data along simulated column for SNIT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



216 

 

Pipe 

length 

(mm) 

 

50000 Pa 

 

(0.5 bar) 

 

100000 Pa 

 

(1 bar) 

200000 Pa 

 

(2 bar) 

300000 Pa 

 

(3 bar) 

400000 Pa 

 

(4 bar) 

500000 Pa 

 

(5 bar) 

0.00 34772.47 32670.42 31793.19 28934.29 29222.25 28411.57 

0.02 34574.97 32472.74 31594.95 28726.54 29033.84 28221.75 

0.04 34377.42 32274.20 31403.68 28593.37 28885.47 28073.17 

0.06 34180.07 32084.63 31211.28 28467.75 28783.79 27982.32 

0.08 33982.64 31899.64 31020.96 28336.38 28693.99 27892.60 

0.10 33785.09 31709.15 30840.66 28255.68 28609.92 27810.80 

0.12 33596.70 31520.98 30669.97 28164.25 28500.30 27739.68 

0.14 33409.88 31341.16 30504.08 28040.80 28383.14 27658.76 

0.16 33224.03 31162.08 30341.47 27924.54 28256.93 27568.12 

0.18 33040.48 30997.02 30180.89 27818.54 28131.86 27462.30 

0.20 32858.87 30850.25 30021.92 27711.40 27998.45 27350.57 

0.22 32677.88 30717.26 29871.18 27599.81 27857.88 27255.71 

0.24 32497.72 30588.81 29724.71 27486.58 27728.34 27145.74 

0.26 32315.14 30443.01 29572.85 27367.64 27602.02 27032.96 

0.28 32130.12 30278.04 29418.19 27243.99 27471.16 26928.72 

0.30 31947.04 30109.85 29268.16 27121.59 27341.51 26826.12 

0.32 31765.57 29941.19 29119.52 27004.33 27212.12 26722.81 

0.34 31585.22 29770.71 28937.23 26886.77 27081.24 26615.45 

0.36 31403.27 29601.30 28759.09 26761.13 26954.73 26503.22 
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0.38 31221.45 29436.01 28611.46 26630.15 26837.51 26385.70 

0.40 31043.44 29271.72 28481.47 26502.00 26723.52 26274.62 

0.42 30865.11 29102.63 28346.48 26382.91 26604.15 26171.08 

0.44 30684.05 28931.31 28216.04 26268.52 26478.15 26074.99 

0.46 30500.66 28765.63 28096.83 26150.70 26354.81 25987.03 

0.48 30315.74 28604.41 27974.52 26031.11 26234.50 25892.79 

0.51 30130.06 28439.42 27850.30 25912.40 26112.82 25779.57 

0.53 29948.89 28268.17 27724.26 25796.00 25991.85 25667.14 

0.55 29772.15 28093.84 27589.80 25682.25 25872.33 25560.45 

0.57 29590.34 27921.05 27445.59 25574.90 25753.10 25456.61 

0.59 29411.71 27751.19 27295.44 25467.68 25633.35 25353.45 

0.61 29242.49 27579.35 27146.44 25347.56 25511.83 25249.19 

0.63 29075.14 27403.03 27006.53 25220.33 25391.05 25148.90 

0.65 28903.11 27226.44 26871.96 25096.07 25276.23 25058.47 

0.67 28729.35 27053.13 26736.65 24976.79 25176.27 24965.58 

0.69 28558.57 26882.01 26598.49 24865.86 25076.78 24867.11 

0.71 28391.95 26710.87 26462.14 24760.87 24960.08 24773.47 

0.73 28224.39 26540.33 26332.77 24661.51 24826.19 24686.82 

0.75 28054.55 26372.50 26208.70 24567.48 24681.83 24605.52 

0.77 27884.45 26208.48 26085.94 24474.60 24534.87 24526.57 

0.79 27715.16 26049.89 25961.88 24381.98 24389.17 24451.47 
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0.81 27546.27 25896.49 25834.50 24289.36 24245.53 24382.35 

0.83 27376.46 25743.14 25699.13 24208.89 24105.29 24314.64 

0.85 27206.55 25588.70 25481.07 24138.82 23969.09 24240.90 

0.87 27036.39 25438.46 25327.94 24066.87 23837.04 24151.64 

0.89 26864.60 25298.89 25217.64 24000.43 23712.22 24053.69 

0.91 26690.80 25172.14 25098.38 23873.90 23593.51 23952.74 

0.93 26515.32 25033.65 24962.86 23734.23 23482.00 23847.81 

0.95 26339.63 24889.79 24822.93 23586.80 23373.39 23738.18 

0.97 26165.63 24750.63 24685.76 23442.97 23271.15 23625.83 

0.99 25994.61 24614.52 24546.79 23323.71 23178.89 23513.69 

1.01 25825.08 24477.79 24404.31 23213.55 23095.83 23394.21 

1.03 25649.23 24327.50 24260.94 23090.57 23006.14 23244.70 

1.05 25471.95 24184.61 24117.54 22956.08 22843.19 23105.43 

1.07 25300.32 24049.39 23979.32 22823.82 22659.67 22995.50 

1.09 25132.21 23904.60 23846.99 22695.63 22520.20 22911.03 

1.11 24962.27 23745.42 23718.33 22576.42 22385.22 22839.72 

1.13 24789.54 23580.50 23591.48 22454.16 22236.35 22769.09 

1.15 24614.42 23420.78 23463.45 22320.59 22070.55 22691.76 

1.17 24438.19 23257.04 23330.20 22187.29 21894.32 22609.02 

1.19 24260.03 23103.68 23185.05 22059.29 21718.18 22525.48 

1.21 24082.20 22952.85 23023.41 21939.13 21547.09 22402.56 
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1.23 23905.44 22802.60 22867.65 21810.42 21386.76 22251.70 

1.25 23731.84 22658.35 22723.68 21689.84 21238.91 22106.69 

1.27 23561.17 22518.70 22596.47 21580.49 21097.86 21949.57 

1.29 23391.75 22376.15 22470.40 21465.03 20955.52 21809.92 

1.31 23227.94 22235.89 22324.92 21342.47 20808.13 21654.47 

1.33 23062.17 22101.22 22172.14 21198.34 20632.78 21485.53 

1.35 22891.29 21968.29 22019.84 21047.13 20448.46 21313.02 

1.37 22715.63 21835.20 21864.97 20878.90 20285.48 21130.80 

1.39 22535.57 21705.05 21707.51 20686.78 20151.28 20958.86 

1.41 22357.54 21579.06 21546.81 20506.00 20030.65 20800.35 

1.43 22183.96 21447.84 21388.93 20355.45 19912.98 20652.05 

1.45 22011.14 21297.93 21233.91 20226.16 19792.70 20511.94 

1.47 21837.86 21118.41 21077.97 20109.61 19672.78 20377.91 

1.49 21661.78 20926.95 20920.77 19931.45 19551.70 20252.90 

1.52 21484.95 20742.27 20769.67 19718.36 19435.27 20144.59 

1.54 21309.56 20578.45 20624.09 19549.86 19324.92 20057.68 

1.56 21135.24 20439.39 20479.61 19392.66 19222.59 19980.98 

1.58 20962.26 20298.79 20332.06 19225.20 19114.79 19891.38 

1.60 20791.13 20134.54 20178.88 19025.73 18973.96 19782.28 

1.62 20620.83 19948.30 20021.70 18862.29 18888.32 19659.61 

1.64 20451.23 19745.12 19868.06 18735.92 18829.99 19528.73 
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1.66 20281.83 19575.64 19720.58 18627.32 18779.84 19400.97 

1.68 20113.70 19431.67 19576.43 18513.60 18733.51 19277.62 

1.70 19944.87 19296.66 19430.72 18403.91 18688.11 19150.84 

1.72 19780.18 19158.93 19286.21 18300.60 18646.38 19017.96 

1.74 19615.48 19024.39 19145.43 18193.73 18439.08 18877.88 

1.76 19442.08 18896.99 19004.68 18085.23 18369.38 18742.09 

1.78 19248.99 18775.28 18862.34 17982.13 18363.49 18622.60 

1.80 19053.08 18654.58 18719.13 17854.84 18349.88 18517.33 

1.82 18860.04 18530.67 18576.66 17701.04 18332.93 18403.42 

1.84 18671.12 18402.31 18436.70 17649.75 18311.78 18282.82 

1.86 18486.69 18271.43 18295.58 17626.39 18286.47 18124.25 

1.88 18305.17 18140.94 18141.51 17611.75 18238.20 17947.86 

1.90 18125.31 18014.77 17978.12 17597.81 18120.00 17783.29 

1.92 17947.69 17894.91 17817.01 17577.76 17914.28 17634.47 

1.94 17765.49 17730.40 17664.91 17536.70 17736.53 17508.30 

1.96 17574.41 17534.02 17522.25 17461.03 17562.11 17401.77 

1.98 17398.31 17378.02 17382.77 17357.53 17395.01 17315.21 

2.00 17231.35 17227.78 17236.90 17236.01 17232.20 17220.62 
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8.4 Appendix -B:  

 

 

 

 

 

 

 

Pressure-drop data along simulated column for MNIT 
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Pipe length 

(mm) 

 

50000 Pa 

 

(0.5 bar) 

 

100000 Pa 

 

(1 bar) 

200000 

Pa 

 

(2 bar) 

300000 Pa 

 

(3 bar) 

400000 

Pa 

 

(4 bar) 

500000 

Pa 

 

(5 bar) 

0.00 31539.17 29293.50 26259.45 27306.89 26842.67 25739.58 

0.02 31341.46 29150.76 26008.30 27156.90 26741.18 25548.27 

0.04 31171.08 28919.36 25985.82 27093.58 26701.31 25517.71 

0.06 31079.37 28833.32 25884.72 27030.97 26664.15 25398.22 

0.08 30992.22 28804.23 25870.03 26978.80 26635.21 25375.77 

0.10 30906.38 28752.84 25825.93 26908.70 26620.44 25320.25 

0.12 30815.90 28708.40 25750.00 26910.51 26586.48 25244.07 

0.14 30732.70 28627.96 25722.47 26855.46 26510.01 25170.25 

0.16 30658.97 28543.02 25685.58 26785.70 26422.28 25102.15 

0.18 30581.57 28461.04 25612.81 26721.70 26351.38 25032.11 

0.20 30504.94 28396.96 25540.37 26662.30 26305.27 24972.48 

0.22 30430.72 28349.32 25470.94 26597.46 26247.07 24926.65 

0.24 30360.71 28277.49 25412.70 26531.63 26180.64 24875.76 

0.26 30284.95 28194.23 25366.72 26476.18 26118.67 24815.02 

0.28 30201.23 28113.01 25306.36 26428.41 26070.05 24742.07 

0.30 30114.63 28031.63 25240.79 26370.23 26024.66 24654.67 

0.32 30025.51 27948.46 25177.86 26287.17 25961.35 24572.11 

0.34 29935.70 27862.38 25116.56 26201.81 25872.48 24496.71 

0.36 29852.44 27775.00 25051.08 26124.79 25781.61 24421.54 
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0.38 29773.01 27688.49 24979.58 26050.99 25695.40 24342.84 

0.40 29693.40 27603.23 24905.02 25977.38 25614.19 24267.07 

0.42 29616.18 27518.79 24833.46 25902.30 25540.52 24198.67 

0.44 29543.71 27436.86 24770.64 25828.22 25474.74 24139.75 

0.46 29471.78 27360.07 24715.23 25758.40 25406.66 24092.06 

0.48 29392.54 27289.16 24663.32 25692.84 25331.50 24052.2 

0.51 29306.46 27220.93 24608.47 25627.21 25257.35 24007.57 

0.53 29218.42 27151.03 24543.40 25561.13 25187.94 23954.7 

0.55 29132.54 27078.43 24474.54 25496.95 25117.81 23902.63 

0.57 29040.62 27004.81 24411.06 25435.12 25041.72 23860.93 

0.59 28942.33 26930.74 24352.05 25382.37 24963.52 23832.04 

0.61 28847.91 26856.07 24295.02 25335.48 24887.36 23810.6 

0.63 28760.82 26781.49 24234.59 25280.63 24814.36 23786.7 

0.65 28662.06 26707.72 24171.20 25212.44 24742.29 23750.82 

0.67 28567.39 26635.04 24109.92 25134.95 24667.50 23694.69 

0.69 28480.14 26563.40 24052.75 25057.73 24592.79 23624.04 

0.71 28394.04 26491.81 23999.27 24985.10 24522.21 23550.96 

0.73 28299.12 26419.82 23946.92 24916.88 24454.60 23479.32 

0.75 28206.88 26348.40 23894.64 24852.95 24388.65 23409.66 

0.77 28117.90 26277.89 23842.38 24792.44 24324.11 23342.46 

0.79 28023.27 26207.27 23789.75 24734.00 24262.82 23277.85 
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0.81 27927.19 26135.87 23737.78 24676.72 24207.90 23215.46 

0.83 27823.95 26064.54 23687.13 24620.10 24159.22 23154.08 

0.85 27717.38 25993.15 23637.85 24564.51 24114.94 23096.09 

0.87 27615.23 25919.47 23589.64 24511.35 24073.32 23044.55 

0.89 27513.41 25843.58 23542.93 24461.10 24031.72 22997.83 

0.91 27409.77 25769.92 23493.72 24413.21 23985.10 22953.28 

0.93 27304.71 25702.38 23439.02 24367.69 23931.22 22912.12 

0.95 27199.21 25635.72 23388.13 24324.37 23874.87 22875.29 

0.97 27091.44 25564.76 23345.98 24283.31 23822.22 22842.27 

0.99 26981.75 25494.16 23312.96 24243.02 23776.48 22810.97 

1.01 26871.82 25426.42 23283.06 24203.87 23739.76 22780.2 

1.03 26765.83 25360.09 23247.82 24169.91 23711.71 22750 

1.05 26665.43 25293.55 23199.83 24142.11 23690.25 22720.71 

1.07 26567.65 25225.71 23138.39 24117.62 23671.59 22693.11 

1.09 26478.70 25154.54 23074.37 24092.58 23652.26 22667.76 

1.11 26404.60 25073.27 23010.83 24059.66 23624.40 22644.32 

1.13 26341.83 24976.74 22946.93 24008.78 23579.19 22622.32 

1.15 26271.52 24867.60 22882.32 23933.09 23519.68 22602.11 

1.17 26165.74 24754.51 22818.03 23847.69 23464.09 22584.1 

1.19 26047.96 24641.57 22753.53 23759.85 23415.57 22566.61 

1.21 25930.68 24532.69 22688.16 23668.85 23371.72 22545.84 
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1.23 25814.10 24429.18 22623.62 23579.13 23330.73 22519.64 

1.25 25696.98 24329.58 22561.97 23495.37 23292.58 22488.65 

1.27 25578.61 24231.38 22503.19 23417.42 23257.38 22455.55 

1.29 25459.24 24129.98 22446.78 23342.15 23224.90 22423.98 

1.31 25325.54 24021.40 22392.35 23267.23 23194.90 22395.18 

1.33 25184.54 23904.02 22340.64 23190.95 23165.98 22368.74 

1.35 25043.49 23779.15 22292.30 23106.60 23134.76 22344.04 

1.37 24891.06 23648.22 22244.33 23006.73 23095.85 22320.98 

1.39 24732.57 23510.83 22193.25 22894.51 23038.46 22299.98 

1.41 24579.85 23359.81 22136.81 22777.78 22957.56 22280.55 

1.43 24438.48 23229.88 22073.56 22663.09 22868.35 22262.76 

1.45 24303.73 23158.65 22002.83 22554.80 22785.73 22248.64 

1.47 24177.74 23113.99 21923.84 22453.09 22709.98 22239.27 

1.49 24055.04 23019.09 21835.90 22353.59 22637.52 22231.67 

1.52 23928.02 22822.10 21756.58 22265.57 22568.02 22220.39 

1.54 23799.33 22650.27 21703.19 22192.24 22497.54 22197.38 

1.56 23663.98 22531.68 21660.93 22134.67 22417.05 22151.17 

1.58 23531.91 22415.14 21620.61 22083.71 22364.12 22072.91 

1.60 23411.46 22309.94 21583.79 22041.27 22315.61 21994.12 

1.62 23264.42 22240.41 21536.80 21997.94 22234.08 21928.64 

1.64 23105.74 22196.27 21501.46 21944.88 22162.38 21867.43 
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1.66 22959.89 22160.71 21474.24 21874.14 22029.59 21796.88 

1.68 22814.87 22129.56 21449.93 21788.33 21933.55 21725.17 

1.70 22669.27 22102.28 21431.49 21693.43 21887.37 21677.42 

1.72 22524.54 22080.98 21416.31 21589.25 21782.21 21628.68 

1.74 22383.82 22054.85 21389.71 21484.98 21630.62 21562.66 

1.76 22248.94 22011.60 21342.88 21380.76 21506.06 21497.49 

1.78 22118.80 21938.23 21294.30 21274.46 21393.76 21437.81 

1.80 21989.38 21822.26 21250.50 21178.55 21307.61 21374.48 

1.82 21855.96 21684.46 21205.70 21094.06 21235.04 21326.67 

1.84 21714.88 21549.60 21157.96 21022.19 21173.60 21298.46 

1.86 21571.61 21420.32 21110.13 20968.52 21123.23 21259.56 

1.88 21435.61 21287.13 21059.89 20920.71 21099.81 21194.04 

1.90 21300.51 21151.85 20961.07 20874.52 21073.06 21118.26 

1.92 21161.07 21033.77 20920.25 20832.52 20870.29 21031.3 

1.94 21026.86 20927.99 20892.43 20799.13 20741.20 20935.35 

1.96 20903.11 20834.48 20855.20 20771.48 20643.68 20845.68 

1.98 20792.42 20760.58 20793.04 20745.09 20706.12 20769.61 

2.00 20684.00 20676.44 20684.00 20684.00 20684.00 20684 
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8.5 Appendix C:  
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