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Abstract

The aim of the project is to study and investigate the buckling behaviour of unbranched
open cold-formed steel sections. First the advantages and disadvantages of cold-formed steel
when compared to hot-rolled steel are demonstrated. Thin-wall steel members have lower
stiffness which may lead to increased instability and buckling issues for this kind of member.
Buckling issues such as Euler buckling, buckling load factors, linear and non-linear analysis,
buckling modes (global, distortional and local buckling) and buckling analysis methods (finite
element method, finite strip method and generalized beam theory) are addressed. The literature
review is concerned with computer software applications, theoretical analyses and experimental
tests which can predict buckling loads and related mode shapes for light gauge steel sections.
The study focuses on the Generalized Beam Theory (GBT) using the Finite Difference method
for solution with a view to developing models using MATLAB to predict buckling loads,
buckling mode shapes and non-linear yielding loads of members subjected to axial load for
different boundary conditions. Some applications (beam subjected to concentrated load), linear
analysis of buckling problems (Eigen value problems) and non-linear analysis (Imperfect
Problems) have been addressed. Also, the finite element method (ANSYS) was used to predict
the linear eigen-buckling loads and related mode shapes, and the non-linear material and
geometric analyses with the post-buckling and initial imperfection effects were addressed.
Finally, for validation purposes, a set of 36 cold-formed steel samples (lipped C-section and
Zed-section) members with different boundary conditions (pinned and fixed end conditions)
were tested in the laboratory to obtain the actual failure loads and failure shape and compare
them with the two analytical methods. Good agreement between the analytical methods and the
experimental data was evident, and recommendations for development of the GBT analysis are

made.
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CHAPTER ONE

INTRODUCTION

1.1 General

There are two types of steel members in production, namely hot rolled steel members that
are rolled in specialised factories with high temperatures and cold formed steel members that
are formed at normal atmospheric temperatures. Hot rolled sections are thicker gauge, provide
increased strength and stiffness over cold rolled steel, and are used in general domestic and
commercial building construction. Light gauge steel tends to be used for building projects that
require less weight to be supported i.e. small portal frames and storage racking. The use of light
gauge cold formed steel is increasing rapidly due to its structural characteristics and economy.
This type of steel has been used widely in residential, industrial and commercial buildings,
bridges, storage racks, grain bins, car bodies, railway coaches, highway products, transmission

towers, transmission poles and drainage facilities.
1.2 Manufacturing methods of cold-formed steel

There are two methods used in the manufacture of cold formed steel sections:
1.2.1 Cold roll forming machines

The cold-forming process consists of feeding continuous steel strips through a series of
opposing rolls to deform the steel sections plastically and form the desired shapes. The process
involved in cold forming C-sections is illustrated in Figure (1-1). A sample section may be
produced by as few as six pairs of rollers but a complex section may require as many as 15 sets
of rollers,W.-W. Yu (2000).
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Figure (1-1) Cold-formed C-section sequences (www.custompartnet.com 27", March 2014)
1.2.2 Press braking

The equipment used in press breaking operations essentially consists of a moving top
beam (punch) and a stationary bottom bed (die) that produce one complete fold at a time along
the full length of the beam, figure (1-2).

WORKPIECE

BACK GAUGE

Efj

Figure (1-2) Press braking C-section sequences (news.thomasnet.com, 27" March 2014)

The press-braking operation is normally used to produce small quantities of various

shaped sections. The initial cost of cold roll forming is higher than the press-breaking method,;
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however, it is economical to mass produce one particular shape of section. Figure 1.3 shows a

range of typical sections which are commonly used for light gauge steel members.

Lol UL
Leox Ol
UL LT
IR

Figure (1-3) Typical cold-formed steel members (Yu, 2000)

Most of the recent research demonstrates that cold formed steel sections are more
economical than hot-rolled steel sections; light gauge cold-formed steel sections have the

following advantages:

- Ease of manufacturing and mass production.

- Uniformity and high quality control.

- Low self-weight.

- Ease and economy of transportation and handling.

- Fast and simple erection or installation.

- Improved technology of manufacture and corrosion protection.

- Non-shrinking and non-creeping at ambient temperature.

Improved production of complex shapes (since modern rolling lines are computer

controlled, highly complex sections can be produced).

The issues with cold-formed members are that the stiffness tends to be less when
compared to hot rolled members, so there may be more displacement in the member and also
at the connections. Increased displacements tend to mean that elastic instability is more of an
issue with cold-formed members. Light gauge cold-formed steel sheets have thicknesses
ranging from 0.4 to 6.4 mm, Yu (2000). Referring to figure (1-4), the nominal yield strength of
available cold-formed steel ranges from 250 to 550 N/mm?, Yu (2000). The yield strength of

3
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cold-formed steel is determined based on 0.2% proof stress and he modulus of elasticity is

determined from the slope of the graph (approximately 200,000 N/mm?), Yu (2000).

Stress

£y - '/.,«-"""__
a1
/>

[ B\

0.2% proof stress line

¥

[a T4 . .
0.2%% Sirain

Figure (1-4) Stress strain curve of cold-formed steel (Yu, 2000)

1.3 Buckling terminology

To address the buckling phenomena in light gauge cold formed steel sections the

following terms require clarification.

The radius of gyration, r, is the units of length that describes the way in which the area

of a cross section is distributed around its centroidal axis.

Where | and A are the area moment of inertia, and area of the cross section respectively.

Slenderness is a geometric concept of a two-dimensional area that is quantified by the

length of a particular member divided by its ratio of the radius of gyration, A = LTE

Stiffness is a structural property, which is proportional to the elastic modulus E (Young’s

modulus) and the section geometry in the equation:
EA
Axial Stif fness = T 1-2)

Where: A is the cross section area of the section and L is the length of the member.
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1.3.1 Euler buckling

Slender or thin walled components under compressive stress are susceptible to buckling.
Most people have observed what is called Euler buckling where a long slender member subject
to a compressive force moves laterally to the direction of that force, as illustrated in Figure (1-
5). Euler buckling is a purely theoretical instability problem and tends to provide an upper
bound to real physical buckling which accounts for plasticity/nonlinearity in the material. The
force, F, necessary to cause such a buckling motion will vary by a factor depending only on
how the two ends are restrained. (i.e. for a pin ended member), as summarised in Megson
(2005).

1.3.2 Buckling load factor

The buckling load factor (BLF) is an indicator of the factor of safety against theoretical

buckling or the ratio of the buckling loads to the currently applied loads.

Table (1-1) ‘Interpretation of the Buckling Load Factor (BLF)’ illustrates the
interpretation of possible BLF values.

F F/A tnelastic
Stabifity!
Limit |y

_ =
{Strangth Limi)

Euler's Formula
{Elastic Stability Limit)

g |
B
B
) §os e
Long oS 13
Compression F 0
Member Buckling L

Figure (1-5) Failure of long columns due to instability, (Akin, 2009)
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Table (1-1) Interpretation of the buckling load factor (BLF) (Akin (2009)

BLF Value Buckling Status Remarks
) _ The applied loads are less than the estimated
>1 Buckling not predicted .
critical loads.
The applied loads are exactly equal to the
=1 Buckling predicted critical loads.
Buckling is expected.
The applied loads exceed the estimated
<1 Buckling predicted . ) .
critical loads. Buckling will occur.
_ _ Buckling is predicted if you reverse the load
-1<BLF<0 Buckling possible o
directions.
Buckling is expected if you reverse the load
-1 Buckling possible .
directions.
The applied loads are less than the estimated
<-1 Buckling not predicted critical loads, even if you reverse their

directions.

1.4 Buckling analysis

Buckling analysis is a technique used to determine theoretical buckling loads (critical

loads) at which a structure becomes unstable and buckled mode shapes, i.e. the characteristic

shapes associated with a structure's buckled response.

1.4.1 Linear buckling analysis (eigenvalue problem)

The solution of second order differential buckling equations leads to a series of

eigenvalues which represent critical loads, and eigenvectors which represent the associated

buckled mode shape. Referring to figure (1-6) for instance, an eigenvalue buckling analysis of

a pin ended column will match the classical Euler solution (eq. (1-3). However, imperfections

and nonlinearities in both material and section geometry prevent most real-world structures

6
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from achieving their theoretical elastic buckling strength. Thus, the eigenvalue buckling
analysis tends to envelope the failure load, and is usually modified accounting for nonlinearities

to provide design load capacities.

Bifurcating point
F A <f_

Limit load (from

nonlinear buckling)

v
c

Figure (1-6) Linear (eigenvalue) buckling curve (Kurowski, 2011)

Linear eigen-buckling analyses provide theoretical buckling load magnitudes and
associated buckling modes. FEA programs provide calculations of a large number of buckling
modes and the associated buckling load factors (BLF) through eigenvalue calculations,
Kurowski (2011).

The BLF is expressed as a number by which the applied load must be multiplied (or

divided depending on the particular FEA package) to obtain the buckling load magnitude.

The buckling mode illustrates the shape the structure assumes when it buckles in a
particular mode, but does not represent numerical values of the displacements or stresses mainly
because the analysis is not one which is loaded. The numerical values can be displayed, but are
merely relative. Also in the linear (Eigenvalue) buckling, the member may be shown to have
buckled in the opposite direction to that predicted. This is not an error; merely the linear

buckling analysis only predicts the buckled shape (mode) and not the direction of buckling.

Linear buckling critical load analysis overestimates the real buckling load and provides
non-conservative results when compared to actual physical critical loads due to the effects of
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initial imperfections. BLFs are also overestimated because of modelling uncertainty. FE models

should represent the actual geometry of the beam.
The well-known buckling load for a pin-ended column is:

n?mn?EIl
P =—0 (1-3)

Wheren=1, 2,3, .....

Figure (1-7) shows the higher values of buckling load correspond to more complex
buckling mode shapes which can be formed by introducing intermediate restraints along the

member length (at the points of contraflexure).

]
L
3
L ¥
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L — 3
L %
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Y s gl

Figure (1-7) Pin-ended column buckling modes, (Megson (2005)

For use in design the Perry-Robertson formula is used which accounts for material
nonlinearity and geometric tolerances. This provides design values of axial failure load which
account for buckling in long slender beams and is the basis for the design adopted in, Code

(2007). The formula in question can be expressed in the following form:

1 2
am=§(fy+ae(1+0)—\/(fy+ae(1+0)) ~ 4f, 0, (1-4)

with
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W,1C
6= =
i

Where:

e Tm is the average longitudinal stress in the beam's cross-section.

. fy is the material's elastic limit.

o ¢ isthe average tension measured in the cross section which corresponds to the beam's
Euler load.

o Wolthe amplitude of the initial geometrical imperfection.

e C is the distance from the cross section's centroid to the section's most stressed fibre.

« 1 the section's radius of gyration.
1.4.2 Nonlinear analysis

Nonlinear analysis incorporating both material and geometric nonlinearity provides more
realistic behaviour and is therefore recommended for design or evaluation of actual structures.
This technique employs a nonlinear static analysis with gradually increasing loads to seek the

load level at which the structure becomes unstable.

Using the nonlinear approach, the model can include features such as initial
imperfections, plastic behaviour, gaps, and large deflection response. In addition, using
deflection-controlled loading, it can track the post-buckled performance of the structure (which
can be useful in cases where the structure continues to carry load past the theoretical critical

load i.e. local and distortional buckling modes).
1.5 Buckling analysis methods

A number of researchers have conducted both numerical and experimental analyses, and
have recommended analysis methods for light gauge steel members to predict the buckling
loads, modes, and to predict how these structures will perform when subject to axial or flexural
loads. Consequently, various alternative methods of analysis have been introduced and here are

some of them.

- Generalized Beam Theory (GBT).
- Finite Element Method (FEM).
- Finite Strip Method (FSM).


https://en.wikipedia.org/wiki/Centroid
https://en.wikipedia.org/wiki/Radius_of_gyration
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1.6 Aims and objectives

The above methods (which will be described in detail in the following chapters) have
already been written into computer codes to predict the theoretical buckling modes and

capacities of various light gauge steel open sections.

So far GBT has been implemented using the finite difference solution technique P Leach
and Davies (1996), and the finite element method (Bebiano et al. (2008)). The aim will be to
extend the GBT method (currently only employed for providing linear buckling loading and
modes solved using FD methods) to incorporate nonlinear geometry effects and provide a

prediction of real behaviour up to the onset of material yield.

This will be achieved by reproducing the GBT code in MATLAB, firstly verified against
the other available codes, then extending this to nonlinear finite element analyses. The results
will be supported by findings from experimental axial tests on a number of light gauge steel

sections

In addition, this will also inform the efficiency and suitability of sections, including

boundary conditions for various structural usage.

In order to reach these goals, the research will be divided into four steps, namely a

literature study, modelling, applications and verification.

Firstly, a literature review will be performed regarding the concept of modelling cold
formed steel sections in order to collect important information as well as documenting the

development of modelling methods from their beginnings until the present date.

Later, conduct comparative studies of the buckling behaviour of light gauge cold-formed
steel compression members with respect to pin-ended and fixed-ended conditions, using the
finite strip method (CUFSM) software and generalized beam theory (GBTUL) software.

To develop finite element models capable of simulating the elastic buckling and nonlinear
ultimate strength behaviour of light gauge cold-formed steel compression members using the

finite element program (ANSY'S) and validate them using experimental results.

To develop non-linear finite difference modelling of generalized beam theory for the thin-
walled open cross section (initial imperfection effects) using (MATLAB) routines. The
acquired results were then compared to those of a commercial FE-software (ANSYYS) in order

to verify the validity of the application.

10
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To study the effects of initial imperfection on the actual buckling loads (initial

imperfection-actual buckling load relation) with different boundary conditions.

Finally, develop suitable experimental tests including evaluation of material properties,
test sections, end support conditions, and loading rig set-up. The buckling tests for light gauge
cold-formed steel compression members will validate the results of the numerical models

including buckling behaviour and capacities for global, local and distortional buckling modes.
1.7 Contents of the thesis

The prediction of actual buckling loads and its mode shapes of cold-formed steel beams
was investigated based on generalized beam theory, experimental tests and extensive finite
element analyses have been developed in this thesis. This thesis contains eight chapters and the

contents of each chapter (except this one) are briefly described as follows:

- Chapter Two, literature review, provides the background concerning research on
column buckling behaviour as applied to light gauge steel sections and some of the
analysis methods employed to understand it.

- Chapter Three, formulation of the generalized beam theory, describes the behaviour
of an open section beam under applied load with several corresponding modes of
behaviour according to specific warping displacement functions.

- Chapter Four, applications of the generalized beam theory, presents the
applications of the first and second order generalized beam theory using the Matlab
code in both linear and non-linear analysis to find the theoretical buckling and
failure loads of open-section cold-form steel sections.

- Chapter Five, the finite element analysis, presents the linear eigenbuckling and non-
linear material and geometric analyses

- Chapter Six, the experimental investigations of cold-formed steel members
subjected to axial loads, presents the experimental testing of 36 cold-formed steel
(lipped C-section and Zed-section) columns with different boundary conditions. The
tests comprised lipped channel & Zed sections full-scale cold-formed steel columns
of nine different lengths (two specimens for each length) subjected to axial loading
for both pinned and fixed end conditions.

- Chapter Seven, results and the discussion, the results of experimental tests present
the actual buckling loads, mode shapes and load-displacement history with the lab

representations of boundary conditions for both pinned and fixed end conditions.

11
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These results were compared with both finite element analysis method (ANSY'S)
and the Generalized Beam Theory (GBT) using nonlinear analysis with the effects
of initial imperfections and post-buckling effects to verify the best numerical
analysis method, and also to discuss the features of each analysis method.

Chapter Eight, general conclusions and the further work.

12
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CHAPTER TWO

LITERATURE REVIEW

Many researchers have studied the buckling behaviour of cold-form steel sections and
most of them have examined channel and Zed cross sections, but there appears to be a lack of
research, carried out regarding the actual behaviour of these sections under axial and/or flexural
loading. This literature review provides the background concerning research on column
buckling behaviour as applied to light gauge steel sections and some of the analysis methods
employed to understand it.

2.1 Buckling modes

Unfortunately, the behaviour of light gauge cold-form steel sections subjected to axial
compression loading is still not fully understood. The behaviour of these sections exhibits
different types of buckling, i.e. local buckling, distortional bucking and global buckling; for
example, most lipped C-section short columns subjected to concentric compression loads fail
because of a combination of local buckling of thin plate elements and distortional buckling of
the edge stiffeners. However, there is a lack of research, which addresses how and where these

modes happen and the interaction between them.
2.1.1 Local buckling

Local buckling is the buckling of individual plate elements which are under compression
without changing the fold lines of the cross-section as shown in Figure (2-1). In the case of
beams, local buckling may occur in the compression flange or part of the web which is under
compression. Local buckling is characterised by short half wavelengths compared to the other
buckling modes. Further, the half-wave length of local buckling is in the order of the width of
the individual plate elements.

Earlier researchers, such as Timoshenko and Gere (1961), Bleich (1952), Bulson (1970)
and Bulson and Allen (1980), extensively investigated and summarised the elastic critical
stresses for local buckling, Hancock and Rogers (1998). The elastic critical stress for local
buckling of plate elements in compression, bending or shear is presented by Hancock and
Rogers (1998).

13
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2

kn?E t
fo = 3= o) @=D

Where Kk is called the plate local buckling coefficient which depends on the support
conditions, and (b/t) is the plate aspect ratio in which b is the plate width and t is the plate
thickness.

A plate element is said to be slender if the elastic critical local buckling stress (fer)
calculated using the above equation is less than the material yield strength. Therefore, if a
particular section is slender, local buckling takes place prior to the stresses reaching the yield
strength. This leads to a large reduction of section moment capacity of beams because local
buckling and the material yielding are the two failure criteria that govern the section moment
capacity. If the elastic critical buckling stress (fcr) exceeds the yield stress, the plate element
under compression buckles in the inelastic range (Yu, 2000).

If the beam carries increasing load after the local buckling failure, the beam is said to
have post-local buckling capacity. Therefore, even if the local buckling occurs in a plate
element prior to yielding it does not necessarily mean that the failure of the section has
occurred. Normally the post-buckling reserve is allowed for in the design to achieve an
economic solution (Hancock and Rogers 1998).

Figure (2-1) Typical local buckling mode.
2.1.2 Distortional buckling

Distortional buckling is the phrase used to describe the state when a flange rotates at the
intersection point of flange and web in members provided with edge stiffeners, and for
members which are intermediately stiffened. It occurs when the intermediate stiffener has a
displacement normal to the plane of the member, as shown in Figure (2-2).

This type of buckling may occur in thin sections in compression or bending at stresses
significantly below the yield stress, especially for high strength steels (Hancock and Rogers
1998). The half wavelength of distortional buckling is generally in between that of local
buckling and lateral torsional buckling and typically several times larger than the largest

characteristic dimension of the section.

14
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If the sections are composed of high-strength steel, then there may be a significant post-
buckling reserve of strength beyond the elastic distortional buckling stress in a similar manner
to that which normally occurs for local buckling (Kwon and Hancock, 1992). Distortional
buckling has less post-buckling capacity than local buckling modes, according to Schafer and
Pekdz (1999). This is also observed experimentally by Hancock et al. (1994). Distortional
buckling failures occur even when local buckling occurs at a lower critical elastic moment than
distortional buckling because of reduced post-buckling strength in the distortional failure mode
(Schafer and Pekdz, 1999).

i

Figure (2-2) Distortional buckling mode.

2.1.3 Lateral distortional buckling

Lateral distortional buckling involves transverse bending of the vertical web and is most
likely to occur if the tension flange is restrained, figure (2-3). This type of buckling often occurs
in hollow flange beams because the tubular flanges of hollow flange beams are very stiff
torsional while their webs are comparatively slender and easily undergo web distortion. Even
though, when the tension flange is not restrained laterally and flanges are not torsional stiff,
cold-formed C-section beams may still fail by lateral distortional buckling if the web is

particularly slender ( Pi et al. 1998).

||

Figure (2-3) Lateral distortional buckling mode.
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2.1.4 Lateral torsional buckling

Lateral torsional buckling failure is the most complex failure criterion of steel beams.
This type of failure is identified by the simultaneous bending and twisting of the entire cross-
section without cross-sectional deformation, figure (2-4). If a beam is not restrained laterally,
it tends to fail by lateral torsional buckling in cases where lateral stiffness and torsional stiffness
are low. It occurs generally if the beam has a higher bending stiffness in the vertical plane
compared to the horizontal plane. Because of the geometry of the open cross-section, which
gives great flexural rigidity about one axis at the expense of low torsional rigidity and low
flexural rigidity about a perpendicular axis, cold-formed steel members are particularly
susceptible to lateral-torsional buckling according to Chu et al. (2004). The parameters
affecting lateral torsional buckling resistance are the length between lateral restraints, the type
and the positions of load, the geometry of cross-sections, the type of end supports, the presence
or absence of stiffening devices that restrain warping at critical locations, the material
properties, the magnitude and distribution of residual stresses, initial imperfections of geometry
and loading, and cross-sectional distortion (Galambos, 1998).

Lateral torsional buckling behaviour is related to buckling resistance and slenderness.
There are three different ranges of behaviour namely, elastic buckling, inelastic buckling and
plastic behaviour. Elastic lateral torsional buckling occurs in slender beams with low resistance
to lateral bending and twisting. As the slenderness decreases, the resistance of a beam to elastic
buckling increases and the beam may vyield before its elastic buckling moment is reached.
Yielding reduces the effective out-of-plane rigidities, and hence, lateral torsional buckling
occurs before reaching the elastic buckling moment. This type of buckling of beams having
intermediate slenderness is called “inelastic lateral torsional buckling’. If the beam is fully or
adequately restrained laterally so that the slenderness is low, it achieves the full plastic moment
capacity.

The elastic critical buckling moment for lateral torsional buckling of an I-beam subjected

to pure bending is given in equation (2-2), (Hill, 1954).

n2EL, w?EI,
M., = Iz GJ] + Iz 2-2)

In Equation 2.2, Ely, GJ and Elw are the minor axis flexural rigidity, torsional rigidity and

warping rigidity, respectively.
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~

Figure (2-4) Lateral torsional buckling mode.

2.1.5 Lateral (global) buckling

Global buckling describes the state when the cross section of a column remains
unchanged while the column itself has either lateral or lateral torsional displacement, figure (2-

5) BSI (2014).
T

1]

Figure (2-5) Lateral (global) buckling mode.
2.2 Experimental investigations

Celebi et al. (1972) conducted tests on two unlipped cold-formed C-section beams loaded
eccentrically through the web. Put et al. (1999) conducted approximately 160 tests on lipped
and unlipped simply supported cold-formed steel beams loaded above the top flange, either
through the web or centroid at the mid-span. The test results showed that the strengths of the
beams loaded through the centroid were significantly lower than those loaded through the web.
Kavanagh and Ellifritt (1994) reported ten tests of discretely braced cold-formed steel C-
section beams loaded at the web centerline and these tests indicated that the strengths generally
increased as the amount of bracing increased. Ellifrit et al. (1991) and Winter et al. (1949) have
observed the same in their tests conducted on C-section beams.
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Young and Rasmussen (1997) conducted an experimental investigation into the
behaviour of cold-formed plain and lipped channel columns axially loaded with different
boundary conditions such as fixed and pinned ends. It was shown experimentally that local
buckling does not occur as a result of overall bending in the case of fixed-ended singly
symmetric columns, as it does for pin-ended singly symmetric columns. They found that local
buckling has a fundamentally different effect on the behaviour of pin-ended and fixed-ended
singly symmetric columns, so a series of tests was performed on plain and lipped channels,
brake-pressed from high strength structural steel sheets to examine this fundamentally different
effect caused by local buckling, as shown in figure (2-6). Four different cross-section
geometries were tested over a range of lengths which involved pure local buckling, distortional
buckling as well as overall flexural buckling and flexural-torsional buckling. They also
discovered that local buckling influenced the strength of short and intermediate plain channel
columns, while for short and intermediate lipped channel columns with fixed-ends distortional
buckling was more likely to influence their capacity. Although the local buckling mode does
not affect long lengths or some intermediate column lengths significantly, its effects appear to

be clearly obvious in short length columns during ultimate loading.
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Figure (2-6) Buckling load factor vs length for channel section (Young and Rasmussen, 1997).

Put et al. (1999) performed bending and torsion tests on unbraced simply supported cold-
formed steel channel beams loaded eccentrically at the mid-span. The test results showed that
the beam strengths decrease as the load eccentricity increases and that the strength is higher
when the load acts on the centroid side of the shear centre than when it acts on the side away
from the shear centre. They developed simple interaction equations that can be used in the
design of eccentrically loaded cold-formed channel beams.
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Kesti and Davies (1999) stated that the distortional mode is a critical buckling mode for
columns made from cold-formed steel, which depends on the end boundary conditions and the

length of the column as well as the effective area of the cross section.

Gotluru et al. (2000) investigated the behaviour of cold-formed steel beams subjected to
torsion and bending because the transverse load was not applied at the shear centre. They
performed simple geometric nonlinear analyses, finite element analyses and finite strip
analyses and compared their results with experimental results. The influence of typical support
conditions was studied and they were found to produce partial warping restraints at the ends.
Yu (2000) provides numerical methods for calculating torsional properties of thin-walled
sections.

Rondal (2000) stated that the distortional buckling mode is a relatively new mode to be
considered, also there is a lack of research which compares local and global buckling. However,
due to the continual evolution of steels with higher strength formed in thinner sections,
distortional buckling could sometimes be considered as a more critical factor than other modes

of buckling in more modern structures.

Schafer (2002) found that the distortional buckling stresses in lipped sections are higher
than other sections, especially in sections that have lips which are nearly equal in length to the

flange width, so these types of sections are better at resisting distortional buckling.

Yu (2000) stated that torsional buckling did not occur in closed sections because of their
large torsional rigidity, whereas for open thin-walled sections, flexural buckling and flexural-
torsional buckling are both possible. The doubly symmetric sections may fail by pure bending
(flexural buckling) and the single symmetric sections may fail either by bending about the weak
axis (flexural buckling) or by bending about one axis and twisting about the shear centre
(flexural-torsional buckling) depending on factors related to the cross-section properties and

the effective length of the column.

Schafer (2002) stated that sections with too wide or too narrow flanges were not good in
terms of distortional buckling. He also highlighted another issue, which is the size of the
stiffener required to keep the flange in place. In terms of the web’s influence on distortional
buckling, Schafer (2002) revealed that sections with deeper webs have lower distortional
buckling stresses where webs are more flexible when they are deeper, leading to less rotational
stiffness at the intersection point of web and flange, which controls the distortional buckling

influence on the section.
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Hancock (2003) examined the behaviour of members undergoing distortional buckling
and the interaction of this mode with other buckling modes. Most of his research looked at

simple lipped channel sections.

Narayanan and Mahendran (2003), described the distortional buckling behaviour of a
series of innovative cold-formed steel columns. More than 15 laboratory experiments were
undertaken on these innovative steel columns of an intermediate length under axial
compression. All of these columns failed by distortional buckling with very little post-buckling
strength. The section and buckling properties of the columns were determined using the finite
strip analysis. The distortional buckling and nonlinear ultimate strength behaviour of the
columns was investigated in detail using finite element analyses (ABAQUS). The finite
element analyses included relevant geometric imperfections and residual stresses. The
deflection and strain results from the experiments compared well with those from the analyses.
The ultimate design load capacities were evaluated using the provisions of Australian Cold-
formed Steel Structures Standard AS/NZS 4600-1996 and were compared with those from
experiments and finite element analyses. A series of parametric studies was also carried out by

varying the yield strength, thickness and column length.

de Barros Chodraui et al. (2006) were of the same opinion with the later conclusions of
Schafer (2002) about wide flanges. He also studied the behaviour of wide flanges provided
with edge stiffeners in cold forms steel sections such as rack, top hat Z, and lipped channels
where there are usually wide flanges and lips at the edges. He concluded that these sections are

most sensitive to distortional buckling modes rather than others.

Ungermann and Kalameya (2006). conducted fourteen experimental tests on thin-walled
channel sections in major axis bending. They had varied parameters such as loading,
slenderness ratio, b/t of the local buckling plates (for flanges and the web), global lateral-
torsional buckling slenderness ratio of the beams and the type of production process. Five types
of channel sections were tested including four welded sections (Grade S355) and one cold-
formed section (Grade S235). Beams were tested with simply supported boundary conditions
and warping about the minor axis was prevented. The test results showed that the load-carrying
behaviour of the specimens depends strongly on the direction of the global lateral imperfections
and displacements of the member. According the test results, lateral-imperfections and
displacements in the direction of the web (negative y-direction) led to a sudden collapse of the
beam with a significant decrease in the load while global imperfections and the increasing
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displacements due to lateral-torsional buckling in the direction of the open part of the section
led to a ductile failure with no abrupt decline of the load carried. Higher failure moments were
observed if the beams failed in the positive direction as compared to those beams with negative

imperfections.

Brune and Ungermann (2008) carried out numerical investigations of channel beams
subject to coupled instabilities. Numerical models were validated using the test results of
Ungermann and Dortmund (2006). They found out that the DSM and EC 3 Part 1.3

overestimate the ultimate loads for thin-walled slender channels in bending.

Kwon et al. (2009) tested a series of cold-formed lipped channels in compression both
with and without intermediate stiffeners with fixed ends. The channels were fabricated from
0.6 and 0.8 mm thicknesses of high strength steel plate where the nominal yield stress was 560
N/mm?. The aim of their research was to study the ultimate strength of columns with
intermediate lengths. They discovered that for sections with local buckling as the critical
buckling mode, the interaction between the local and distortional buckling modes was observed
only in stub columns and an interaction between the local and global buckling modes was the
final failure mode in the intermediate and long length columns. However, for sections with
distortional buckling as the critical buckling mode, stub and intermediate length columns
experienced critical failure mode induced from the interaction between local and distortional
buckling modes, and the interaction of local, distortional and global buckling modes occurred
in some of the columns’ lengths. Finally, it can be said that the existence of the buckling mode
interaction within column behaviour in compression depends highly on the cross-section

properties and the boundary conditions of the column.

Casafont et al. (2011) examined the interaction of the distortional and the global buckling
modes for various lengths of rack columns containing perforations. The range of lengths used
was such that the behaviour was between where global buckling was dominant and the length
used for columns to examine local buckling strength. They found that the failure mode due to
this interaction could be observed in a range of columns’ lengths utilised in practice, although
they found that the interaction between the distortional and global buckling modes did not

affect the column strength significantly, as showed figures (2-7) & (2-8).
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Figure (2-7) (A) Test arrangement (B) specimen tested with pinned ends (torsionally
restrained) (Casafont et al., 2011).

Figure (2-8) Failure of pinned specimens: (A) 800 mm, (B) 1000 mm, (C) 1500 mm and (D)
1800 mm (Casafont et al., 2011).

dos Santos et al. (2012), Silvestre et al. (2012) and Dinis et al. (2007) stated that most
open cross section members formed from cold-formed steel have high local and global
slenderness, and this makes them oversensitive to geometrical instability phenomena such as
local, distortional and global (flexural or flexural-torsional) buckling. Many factors affect the
failure mode such as the length, shape and dimensions of cross section and the end support
conditions of the member.
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dos Santos et al. (2012) proved that there is a triple interaction between local, distortional
and global buckling in lipped channel column sections. They also identified its influence on
their 12 lipped channel test samples, and concluded that the failure mode of the columns was a

combination of symmetric distortional and flexural-torsional buckling modes, figure (2-9).
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Figure (2-9) Schematic test set-up representation: test specimen, view of the column end
support condition (dos Santos et al. (2012).

Godat et al. (2012) investigated in their research the behaviour of the local buckling of
tubular polygon columns formed from thin-walled steel, they tested three different cross
sections, hexagonal (sixteen-sided), dodecagonal (twelve sided) and octagonal (eight-sided).
They concluded that for various thin-walled tubular polygon columns with equal cross section
area, it might become advantageous to minimise the plate slenderness ratio (plate width to

thickness) due to the increase in local buckling capacity.
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Ananthi et al. (2015), presented both the analytical and theoretical investigations on
ultimate load carrying capacity and behaviour of CFS unlipped channels with their ends fixed
and subjected to axial compression. The numerical studies were carried out in the elastic as
well as in the plastic ranges of loading. The slenderness ratio of the channels chosen was 40,
80,100 and 120. Three different web depths (shallow, medium and deep) with five thicknesses
were also chosen. In addition to the numerical studies, the comparison was made with the
design strengths predicted by using North American Standards for CFS structures. It was
observed that the design strength predicted by the specifications were conservative for axially
loaded columns. In the present investigation, an attempt is made to study the ultimate load
carrying capacity and the mode of failure. Load versus axial shortening behaviour has been

studied for various slenderness ratios for a few specimens.

Hansapinyo (2015), presented experimental investigation and finite element analysis on
buckling behaviour of irregular section cold-formed steel columns under axially concentric
loading. For the experimental study, four different sections of columns were tested to
investigate the effect of stiffening and width-to-thickness ratio on buckling behaviour. For each
of the sections, three lengths of 230, 950 and 1900 mm were studied representing short,
intermediate length and long columns, respectively. Then, nonlinear finite element analyses of
the tested columns were performed. The comparisons in terms of load-deformation response
and buckling mode show good agreement and hence the FEM models were validated.
Parametric study of the stiffening elements and thicknesses of 1.0, 1.15, 1.2, 1.5, 1.6 and 2.0
mm. were analysed. The test results showed that the stiffening effect forms a large contribution
to preventing distortional modes of buckling. The increase in wall thickness enhanced buckling
stress beyond the yielding strength in short and intermediate columns, but not for the long

columns, figure (2-10).
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Figure (2-10) 1) Finite element mode. 2) column sections (unit: mm) (Hansapinyo, 2015).

McCann et al. (2016) addressed the Numerical analysis of the local buckling behaviour

and ultimate cross-sectional strength of tubular elliptical profiles in compression. After

validating the model against previous experimental results, a parametric study comprising a

total of 270 elliptical sections was conducted in order to examine the influence of cross-section

aspect ratio, geometric imperfections and local slenderness. The obtained ultimate capacities,

load—deformation responses and failure modes are discussed in the paper. It was found that for

lower cross-section aspect ratios the behaviour of the elliptical hollow sections (EHS) was

similar to that of cylindrical shells across a number of metrics; as the aspect ratio increased,

more plate-like stable post-buckling behaviour was observed. A design method was proposed

for Class 4 EHS members that reflect the reduction in capacity due to local buckling with

increasing slenderness, but also recognises the improved post-buckling stability with

increasing aspect ratio.
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Valarinho et al. (2016), presented results of analytical, experimental and numerical
studies on the lateral-torsional buckling (LTB) behaviour of long-span laminated glass beams.
The analytical study was mainly focused (1) on the assessment of existing expressions for the
determination of the effective flexural and torsional stiffness of 3-layer laminated glass beams
and (2) on the determination of the buckling resistance and post-buckling behaviour of long-
span laminated glass beams taking into account the influence of changes in the thickness of the
glass panes and of the viscoelastic properties of the interlayers. The experimental study
comprised a flexural test of a simply supported and unbraced 8.20 m long PVB 3-layer
laminated glass fin. Finally, three-dimensional numerical models were also developed in order
to simulate the experiments and validate the analytical results. The results obtained showed
that the analytical formulae and the numerical tools available are able to accurately predict the
LTB behaviour of long-span 3-layer laminated beams. The results also draw attention to the
importance of adequately considering the influence of possible thickness reductions on the
glass panes and of temperature and loading time effects on the shear behaviour of PVB

interlayers.

Craveiro et al. (2016), presented an experimental investigation of the buckling behaviour
of compressed single and built-up cold-formed steel columns. Four types of cross-sections were
tested, namely, one single, one open built-up and two closed built-up, considering two end
support conditions, i.e. pin-ended and fix-ended. The obtained results were compared with the
design predictions of EN1993-1-3:2004 and AISI S100-07. For pin-ended lipped channel
columns the design predictions were in good agreement with the experimental results, however,
for the fixed ended columns, the predictions appeared to be conservative. For built-up columns,
it was found that increasing number of different sections may lead to unsafe design predictions,
figures (2-11), (2-12) & (2-13).

Figure (2-11) Concrete footing schematic view (Craveiro et al. 2016).
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i1
Figure (2-13) End-support devices. (a) general views of the end-support devices. (b) adjustable

system adopted to fix each one of tested cross-sections. (c) pin-ended support. (d) fix-ended
support (Craveiro et al. 2016).

2.3 Theoretical investigations

A number of researchers have conducted both numerical and theoretical analyses, and
have recommended analysis methods for light gauge steel members to predict the buckling

loads, modes, and to predict how these structures will behave when subject to axial or flexural
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loads. Consequently, various alternative methods of analysis have been introduced and the

following section presents these.
2.3.1 Generalized beam theory (GBT)

GBT was first presented in the 1960’s by a German professor named Richard Schardt.
The theory could be interpreted as a combination of the folded plate theory and the Vlasov’s
theory for thin-walled beams (Simao, 2007).

During the eighties and nineties, several more works on stability analysis using GBT
came to light. The first GBT article written in English, contains a brief presentation of GBT for
stability analysis and mentions the need to consider a constant shear flow model for closed
sections. During the conference where this paper was presented, GBT was introduced to
Professor Davies at the University of Salford, (and later of the University of Manchester) —
who, by that time, had already realized a vast and very important research work on lightweight
steel construction, namely on stressed skin design (Davies and Bryan 1982). Later he would
develop several important research avenues regarding the use of GBT, exploring the large
potential of this theory to enable a better understanding of the stability behaviour of thin-walled
members. So, since the late eighties and under the supervision of Davies, several research
works were carried out at Salford and Manchester universities. The first contributions of Davies
are associated with Leach (1989) whose PhD thesis contains a detailed description of the GBT
procedure for open non-branched sections and an application of GBT to the linear analysis and
stability analysis of these sections The finite difference method was used to solve the
differential equilibrium equations, exploring to some extent the interaction between the modes
of deformation, which correspond to the buckling modes, and benchmarking GBT with other
methodologies. As a result of the initial work by Davies and Leach, several strands of research
were produced, namely on the first order analysis and stability analysis of open sections
submitted to compression and/or bending, exploring the modal interaction between the modes
of deformation, containing also some benchmark examples comparing the GBT results with
experimental analysis, Leach and Davies (1996). This research ensured that GBT was then
spread worldwide. Later, with the collaboration of Jiang, Davies continued applying GBT to
study the behaviour of thin-walled members. Jiang (1994) GBT was applied to the stability
analysis of purlins. Subsequently, Davies and Jiang continued to apply GBT to explore the
distortional behaviour of open sections Davies and Jiang (1996a, 1996b) and the modal
interaction of cold-formed members under compression and/or bending Davies and Jiang
(1998). More recently, Davies (2000) applied GBT to the study of flange- and web-stiffened
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compression members and, in particular, web-perforated sections. Finally, a recent article of
(Davies, 2000) is concerned the analysis of thin-walled members with stiffened compression

flanges.
2.3.1.1 GBTUL program

Bebiano (2008) GBTUL (an acronym for ‘GBT at the University of Lisbon’) is a
freeware program that performs elastic buckling (bifurcation) and vibration analyses of
prismatic thin-walled members. It implements the latest formulations of GBT that (i) accounts
for local deformation and (ii) provides an advantageous representation of the deformation

field, as a combination of structurally meaningful cross-section deformation modes.

Taking advantage of the GBT model features, the program provides information and
visualisation of the member deformation modes. Moreover, it contains tools that make it
possible to select the deformation modes to include in the analysis, thus allowing for an in-
depth insight into the mechanics of the problem being solved. It is possible to analyse members
(i) made of one or several isotropic or orthotropic materials, and (ii) exhibiting various common
support conditions (e.g., simple supports, fixed supports or free ends). In the buckling analyses,
the user is able to specify any combination of arbitrary axial force, bending moment and bi-

moment (longitudinal) diagrams, see Figure (2-14).

Davies and Jiang (1996a), introduced the basic principles of GBT and showed how this
theory may be used to analyse cold-form sections in which distortion of the cross-section is

significant. The calculation is illustrated by detailed numerical examples.
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Figure (2-14) GBTUL program views (Bebiano et al, 2008).
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Davies and Jiang (1996b) introduced the second order terms associated with geometric
non-linearity into the basic equations for the load to cause buckling in individual modes under
either axial load or uniform bending moment. Then they showed how the explicit procedure
can be extended to consider the interaction between local, distortional and global buckling
modes.

The generalized beam theory is applicable to prismatic structural members to take into
account the in-plane flexural and distortional cross section deformations and can be used to
examine the three generic buckling modes and their interaction (Silvestre, 2007). The second
order GBT was developed and introduced as an appropriate method for coupled stability
problems by Schardt (1994), and then the GBT method was extensively used for investigating
the elastic behaviour for open cross sections fabricated from cold-formed steel (Toma and
Wittemann, 1994). The early formulations of this theory were limited to isotropic thin-walled
members to analyse the elastic buckling of unbranched open cross sections. New formulations
of GBT were developed by Silvestre and Camotim (2003) to make the theory applicable to
open branched and closed cross sections. This was followed by another formulation of the GBT
developed by Gongalves et al. (2009) and this new formulation was more general and capable
of dealing with closed and open branched sections, with the applications’ domain of the GBT

being extended to deal with the curved-wall members by Silvestre (2007).

Silvestre and Camotim (2006) presented GBT formulation for analysing the vibrational
behaviour of loaded composite thin-walled members, which accounts for the effects of (i)
cross-section in-plane deformation, (ii) shear deformation, (iii) geometric and material
coupling, (iv) primary, secondary and non-linear warping, and (v) rotary inertia. Then they
used the results to investigate the local and global vibration behaviour of lipped channel
columns and beams displaying cross-ply orthotropic. They focused on issues dealing with the
variation of the fundamental frequency and the vibration mode in relation to the member length
and applied stress level. For validation purposes, they used some GBT-based results to compare
with values obtained by means of 4-node shell model constructed using finite element analyses
(ABAQUS).

Silva et al. (2008), presented the formulation and illustrated the application of a novel
GBT implementation able to handle the influence of localised effects on the buckling behaviour
of prismatic thin-walled members (e.g., cold-formed steel profiles). For instance, the
formulation accounted for effects stemming from (i) the position of transverse loads (with

respect to cross-section shear centres) or (ii) the occurrence of web buckling phenomena (e.g.,
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the web crippling). In order to achieve this goal, the GBT formulation traditionally employed
in buckling analyses was enhanced by including specifically: (i) non-linear terms and (ii)
transverse extension modes. They stated that the GBT formulation/implementation is a very
advantageous alternative to shell finite element analyses, the only available method to capture
the localised effects rigorously. They presented and discussed numerical results concerning the
buckling behaviour of (i) hat and I-section cantilevers acted upon by transverse tip point loads
applied at various cross-section points, and (ii) I-section simply supported beams under top-
flange distributed and point loads. One also assesses how end support transverse web stiffeners
improve the beam buckling behaviour to illustrate the application and capabilities of the
proposed GBT formulation-implementation. For validation, the GBT results were compared
with previous values reported by ABAQUS shell finite element analyses.

Silvestre et al. (2013) addressed the development and illustrated the application of GBT
formulation intended to perform first-order elastic-plastic analyses of thin-walled members
comprised of isotropic nonlinear materials exhibiting strain-hardening. Its application is
illustrated through the analysis of (i) simply supported Z-section beams and (ii) fixed-ended
lipped channel beams. In both cases, a bilinear elastic-plastic material model is adopted. The
results presented and discussed consist of equilibrium paths, modal participation diagrams,
beam deformed configurations and stress diagrams and contours. For validation purposes, most
of the GBT results were compared with values obtained from shell finite element analyses with
a few relatively minor exceptions, a very good correlation was found as shown in figure (2-
15).
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Figure (2-15) Von Mises stress (Onmises, N/Mmm?) contours at equilibrium state: column sides

under (a) compression and (b) tension, ( Silvestre et al., 2013)

Abambres et al. (2014), presented a formulation of GBT intended to perform first-order
elastic—plastic analyses of thin-walled members experiencing arbitrary deformations and made
of non-linear materials exhibiting isotropic hardening. After presenting the GBT fundamental
assumptions and kinematic relationships, the member nonlinear equilibrium equations are
derived and a non-linear one-dimensional (beam) finite element is formulated. The arc-length
control technique is adopted in the numerical solution of the non-linear equations and J2-flow
theory is used to model plasticity in conjunction with the Backward Euler return mapping
algorithm. In order to show the capabilities and potential of the implemented formulation, a set
of numerical illustrative examples are presented and discussed. For validation purposes, most
of the GBT results obtained (equilibrium paths, modal participation diagrams, displacement
profiles, stress distributions and deformed configurations) are compared with values yielded
by ABAQUS shell finite element analyses, figure as shown in (2-16).
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Figure (2-16) Beam deformed shape in both GBT & ABAQUS (Abambres,
Camotim and Silvestre, 2013).

Taig and Ranzi (2014), presented an extension to GBT approach to describe the response
of prismatic thin-walled members stiffened by means of generic plate arrangements at different
cross-sections along their length. Two numerical procedures were implemented to account for
the presence of the stiffeners. One approach identified different sets of deformation modes for
the unstiffened and stiffened sections, which were then combined for the member analysis. The
second procedure relied on the use of constraint equations at the stiffened locations to be
included in the member analysis. Two numerical examples were provided to highlight the ease
of use of the method of analysis considering open and partially-closed sections, and their results

were validated against those obtained with the commercial finite element software ABAQUS.

Abambres et al. (2014), presented the main concepts and procedures involved in the
development of a geometrically and materially non-linear GBT formulation and numerical
implementation (code), intended to analyse the behaviour and collapse of thin-walled members
made of materials with a highly non-linear stress—strain curve (e.g., stainless steel or

aluminium). The second objective was to validate and illustrate the application of the proposed
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GBT formulation, by comparing its results (equilibrium paths, ultimate loads, deformed
configurations, displacement profiles and stress distributions) with those provided by shell
finite element analyses of two square hollow section (SHS) columns previously investigated,
both experimentally and numerically. The stainless steel material behaviour was modelled as
non-linear isotropic and the GBT analysis included initial geometrical imperfections, but
neglected corner strength enhancements and membrane residual stresses. It is also shown that
the GBT unique modal nature makes it possible to acquire in-depth knowledge concerning the
mechanics of the column behaviour, by providing ‘structural x-rays’ of the (elastic or elastic—
plastic) equilibrium configurations: modal participation diagrams showing the quantitative

contributions of the global, local, warping shear and transverse extension deformation modes.

Moreover, this feature makes it possible to exclude from future similar GBT analyses,
those deformation modes found to play a negligible role in the mechanics of the behaviour
under scrutiny, thus further reducing the number of degrees of freedom involved in a GBT

analysis, i.e., increasing its computational efficiency.

Basaglia et al. (2015) reported the results of an investigation on the use of GBT to assess
the buckling and vibration behaviours of thin-walled members and frames built from cold-
formed steel circular hollow section (CHS) profiles. Initially, the concepts and procedures
involved in performing GBT buckling and vibration analyses are presented, paying particular
attention to the derivation of the mass tensors that account for the influence of the inertia forces.
Then, the formulation, numerical implementation and validation of a GBT-based beam finite
element for isolated members are described. Next, the determination of the frame linear
stiffness, geometric stiffness and mass matrices, which incorporate the influence of the frame
joints, is addressed. Finally, in order to illustrate the application and capabilities of the proposed
GBT finite element formulation, numerical results are presented and discussed, they concern

the buckling and vibration behaviours of an "L-shaped" frame.
2.3.2 Finite element method (FEM)

The Finite Element Method is one of the numerical methods which is used to solve the
differential equations for a structure or structural component through computer software. It is
also considered a powerful method of analysis since it can deal with multiphase problems, by
utilising the appropriate FEM techniques. Applied loads can be positioned on any required
member and in any direction. It can provide a huge amount of data concerning the solved

structure for a given load such as stresses, strains, deformations and reactions. Non-linear
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stress-strain curve relationships can be incorporated into the analysis, as well as non-linear
geometry. It can be used to model the contact between connected elements by using links,
point-contact elements and compression or tension only members. Complex boundary
conditions and perforations can be examined and included within the model for a structure. It
is difficult to use FEM for practical design, because of the cost and the time consumed in data
preparation, so it is generally used as a primary method for research purposes. It should be
noted that great care is needed in setting up the required boundary conditions for accurate
results meaning that this process may take a significant amount of time and require experienced

personnel to use the software.

A series of elastic buckling and nonlinear finite element analyses was carried out using
the developed finite element model of simply supported cold-formed steel lipped channel
beams subjected to lateral-torsional buckling. Elastic lateral-torsional buckling moments (Mo)
and ultimate moment capacities (My) were obtained from these analyses. Lateral-torsional
buckling of mono-symmetric lipped channel beams is likely to depend on a range of parameters
such as beam span, initial geometric imperfections, residual stresses, yield stress, modulus of

elasticity, steel thickness, web depth to flange width (d/b) ratio, etc.

At present, finite element analysis programs are extensively used and have greater
importance in the field of research. This trend is increasing as the use of finite element analysis
programs is relatively inexpensive and time efficient compared with a large number of full-
scale tests. The finite element analysis program ANSYS is a very important tool that is widely
used in engineering applications. It can be used to solve problems ranging from relatively
simple linear analyses to complex nonlinear analyses. Finite element analysis using ANSY'S
usually consists of three major stages: pre-processing, analysis, and post-processing. In the pre-
processing stage, the model of the physical problem is created which includes creating a
suitable finite element mesh, assigning appropriate material properties and applying relevant
boundary conditions in the form of restraints or loads. In the analysis phase, the numerical
problem defined in the model is solved. Once the analysis is completed, results are evaluated

in the post-processing stage.
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Pi and Trahair (1995) theoretically investigated the lateral buckling strengths of cold-
formed steel rectangular hollow sections. Finite element models were developed which used
realistic stress-strain curves, residual stresses and initial imperfections. They found that the
cross-section shape has a significant effect on the lateral buckling strengths. The comparison
of results obtained for RHS beam and I-section beam showed that the capacities of I-section
beams are lower than for RHS beams, figure (2-17). The use of a strain-hardening stress-strain
curve instead of a trilinear curve for the corners of the RHS was found to be less effect on
ultimate moment capacity in the high slenderness region while there is moderate effect at low
slenderness. The effects of initial twist were found to be very important while the effects of
initial crookedness were less important than for hot-rolled I-sections. A different design

equation to that used for hot-rolled I-sections was developed for RHS beams

| — S

b

T ARV WA, ; R
Pt

Full plasticity

Linear elastic buckling

g_ D_S I o TS L irin v W D e b 4 T i 8§ et .
=

§ 0.6 E
0.af s 3 : gy sy
—

| —SA(1990) - _ | K
i + Sharp-comered RHS -‘

= Equivalent [-section
P Basic model

o 0.2 0.4 0.6 (AN ] 1 1.2 1.4 1.6 1.4 2

Modified Slendemess A
Figure (2-17) Comparison of lateral-torsional buckling strengths of RHS
and I-section beams (Pi and Trahair, 1995).

Davies and Jiang (1996b), presented non-linear finite element analysis of cold-formed
steel using ABAQUS version 5.4, In this study, the eigenvectors from linear Eigen solutions
were introduced as the imperfections in non-linear finite element analyses. However, in the
opinion of the authors, this may not have been sufficiently accurate because the patterns of

linear buckling and nonlinear buckling could be different due to nonlinear behaviour.

Bailey et al. (1996) conducted finite element analysis of restrained and unrestrained
simply supported beams subjected to loading at the shear centre of the cross-section under

uniform elevated temperature conditions. The finite element software they used was based on
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a non-linear spread-of-yield, the program was originally written by (El-Zanaty and Murray
(1983) to study the two-dimensional behaviour of steel frames at ambient temperature. This
software was later modified, firstly by Saab and Nethercot (1991) to include elevated
temperature effects and more recently extensively reformulated by Najjar (1994) and Najjar
and Burgess (1996) to analyse three-dimensional frame behaviour including warping behaviour
in fire conditions. This program used two noded one-dimensional line elements with eight
degrees of freedom in local coordinates. In the finite element analysis facilities have been
provided to incorporate geometric non-linearity together with variation in cross-sectional
properties. This software was further modified by Bailey et al.(1996) to include flexural shear
stresses to enhance the accurate prediction of lateral torsional buckling effects for loads placed
at any level on a cross-section. The ability of software to predict lateral torsional buckling has
been checked at ambient temperature with theoretical bifurcation solutions in the elastic range
and with experimental and computational results in the inelastic range. They used the results
of full-scale tests carried out by Kitipornchai andTrahair (1975) to validate the model for

inelastic lateral torsional buckling.

A FEM for stainless steel compressed columns of lipped channel cross sections with short
to medium lengths was verified by Macdonald and Rhodes (2005) with experimental results.
The finite element analysis showed a good agreement with the experimental results of the load

capacity.

Young and Yan (2000), presented a numerical investigation into the behaviour and
strengths of cold-formed plain and lipped channel columns using FEA. A non-linear finite
element model was developed and verified against the fixed-ended channel column tests
conducted by Young and Rasmussen (1998a, 1998b and 1998c). Geometric and material non-
linearity were included in the finite element model. It was demonstrated that the finite element
model closely predicted the ultimate loads and the behaviour of the tested cold-formed channel
columns. Hence, the model was then used for an extensive parametric study of cross-section
geometries. Furthermore, the results of the numerical investigation were compared with the
design column strengths calculated using the Australian and New Zealand Standard (1996),
Amercan (Schafer (1998)) and European (Yu (2000)) specifications for cold-formed steel
structures. It was shown that the design column strength (Mahaarachchi and Mahendran, 2005)
calculated from the three specifications are generally conservative for plain and lipped channels

having a maximum plate thickness of 6.0 mm.
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Mahaarachchi and Mahendran (2005), developed a finite element model to investigate
the lateral distortional buckling behaviour of Light Steel Beam (LSB) sections. The model
accounted for all significant behavioural effects including material inelasticity, local buckling
and lateral distortional buckling deformations, member instability, web distortion, residual
stresses, and geometric imperfections. They modelled half of the beam taking advantage of
symmetry. The S4R5 elements which are thin, shear flexible, isoperimetric quadrilateral shell
with four nodes and five degrees of freedom per node. The analysis utilised reduced integration

and bilinear interpolation schemes.

Lecce and Rasmussen (2006) made an assessment for the distortional buckling rules in
current design guidelines for lipped channels formed from stainless steel undergoing
compression loading. The effect of intermediate stiffeners was discussed in this study. They
tested two groups of channels: with and without intermediate stiffeners, using experimental
data and a simulation using the finite element analysis model. The tests showed that the
distortional buckling mode was the critical failure mode for most samples, and an interaction

of local and distortional buckling was observed in one shorter length channel.

Yu and Schafer (2006), developed a nonlinear finite element (FE) model to simulate two
series of flexural tests, previously conducted by the authors, on industry standard C and Z-
section cold-formed steel members. The first test series focused on local buckling failures and
the second on distortional buckling failures, see figure (2-18). The objectives of this paper were
to (i) validate the developed FE model, (ii) apply this model in a parametric study outside the
bounds of the original tests with a particular focus on yield stress, and (iii) study the influence
of moment gradient on distortional buckling failures. The predicted ultimate strengths from the
developed FE model showed good agreement with the test data. Extension of the tested sections
to cover yield stresses from 33.0 to 73.4 ksi (228 to 506 Mpa) indicated that the Direct Strength
Method (DSM) is applicable over this full range of yield stresses. The FE model was also
applied to analyse the effect of moment gradient on distortional buckling. It was proposed and
verified that the moment gradient effect on distortional buckling failures could be
conservatively accounted for in the DSM by using an elastic buckling moment that properly
reflects the increased elastic distortional buckling moment due to the presence of moment
gradient. An empirical equation, appropriate for use in design, to predict the increase in the

elastic distortional buckling moment due to moment gradient, was provided.
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{b) Simulation of local buckling test
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Figure (2-18) General comparison of test and FE models (Yu and Schafer, 2006)

Ben Young and Ellobody (2007), investigated the behaviour and design of unequal angle
cold-formed steel columns by using a nonlinear finite element analysis. Sivakumaran and
Abdel-Rahman (1998), developed a finite element analysis model to investigate the local and
post-local buckling behaviour as well as the capacity of axially compressed members of
channel cross-section fabricated from cold-formed steel.

Ali et al. (2011), presented a study on the structural performance of column-base and
beam-column connections of cold-formed steel with the use of single-lipped C-sections with
bolted moment connections. Experiments were done on two specimens; a column base
connection and a beam-column connection and the results showed that section failure caused
by flexural buckling was always critical. Managing to attain moment resistances which were
close to the results of connected sections, it was proven that the proposed connections were
structurally efficient. Finite element models were established with the use of shell elements to
model the sections while bar elements were used to model the bolted fastenings for the purpose
of examining the structural behaviour of both the column base and the beam-column
connections. Incorporation of material non-linearity and comparison between the experimental

and numerical results were presented. The proposed analysis method for predicting the
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structural behaviour of column-base and beam-column connections with similar connection

configuration proved to be adequate.

Thombare et al. (2016), addressed the numerical linear and nonlinear buckling analysis
of 2-D cold-formed steel simple cross-aisle storage rack frames. The main focus of the study
was to ascertain the stability of 2-D frames of a pallet racking system. With this objective, a
pallet racking system with cold-formed steel sections is simulated by three-dimensional models
using shell elements in ABAQUS. Linear and nonlinear buckling analyses were carried out on
these frames. Results were obtained from finite element analysis of frames with 12 types of
column sections. Spacer bars and channel stiffeners were used to improve the torsional strength
of original open cross sections. Results show that spacer bars and channel stiffeners are very
effective in enhancing the strength of cold-formed steel pallet rack structures, figures (2-19) &
(2-20).

G At Top (loading end)
' Ux=Usz=0

Load applied at
top edge

MO

At Bottom
Ux=Uy=Uz=0

Figure (2-19) Torsional strengthened MW/HW upright section with channel

stiffener and its boundary condition rack system (Thombare et al., 2016).
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Figure (2-20) Eigen buckling analysis modes for frame MWB2-1.6 mm thickness
(Thombare et al., 2016).

2.3.3 Finite strip method

The finite strip method is seen as a semi-numerical, semi-analytical approach. Compared
with the finite element method for forming and solving the structural equations, it has the
advantage in that it requires less time to build a model and also solves in a shorter time. The
finite strip method is considered to be an efficient tool in analysing members with geometrical
properties assumed to be constant along the longitudinal axis of the member. It assumes simply
pinned end boundary conditions. End conditions other than pinned are difficult to model with
this method.

2.3.3.1 CUFSM program

CUFSM is a finite strip analysis program developed by Cornell University researchers,
(Schafer, 2006). It provides a convenient and efficient way to determine the elastic buckling
stresses and corresponding buckling modes (local, distortional and lateral torsional) of thin-
walled structures. However, this analysis can only be performed for simply supported thin-

walled members. CUFSM program depicts buckling as a plot of load factor versus half
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wavelength of the buckled shape, it also shows the range of half-wave lengths for different
buckling modes. The minima points of the curve can be considered to represent the critical
buckling loads and buckling modes for a member. The load factor, in the case of bending, is
defined as the ratio of elastic buckling moment to the yield moment. The CUFSM program can

also be used to calculate the section properties of thin-walled cross-sections, figure (2-21).

Buckling load

Distortional Lateral

bUCk"ng bUCk“ng 7]
Th
] ] ] ] ] [ B | ] ] ] ] L1
Length of Member
Figure (2-21) Buckling modes vs member length.
k | adequate edge

stiffeners and concluded that for a plane channel, the buckling strength is greatly increased by
providing edge stiffeners, and showed that the edge stiffened channels experience a significant
amount of post-buckling capacity when they are axially loaded. He was one of the first

researchers to use the finite strip method.

Schafer (2002) stated that North American design specifications do not take into account
the interaction of the local buckling of cold-formed steel columns; furthermore, there is no
explicit check for distortional buckling. The predictions of the three buckling modes were
discussed for zed and lipped channels in his study and he considered the interaction of global
buckling with local and the distortional buckling modes by the direct strength method that he
proposed for column design. Separate strength curves for local and distortional modes are
included in this method. This method appears to be easy to apply and provides accurate results
for sections examined by Schafer (zed and lipped channel), but for racking columns members
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which have perforations and complicated details concerning the restraint conditions, the finite

element method may be more accurate.

Key and Hancock (1988) studied large deflection elastic-plastic analysis to calculate the
non-linear local buckling behaviour of thin-walled and cold-form steel sections in compression
using the finite strip method of structural analysis. The analysis accounts for plate geometric
imperfections, the variation of yield stress around a section, the stress-strain characteristics of
the material forming the section and complex patterns of residual stress produced by the cold-
forming process. Besides that, they made a comparison between the results of plates with a

rounded stress-strain curve typical of cold-formed steel and aluminium.

de Barros Chodraui et al. (2006) state that the probability of local buckling is greater than
distortional buckling for a member without edge stiffeners. But this is not necessarily the case
of racking upright sections as confirmed by (Hancock et al., 1994) where their research was
aimed at finding the capacity of unlipped rack upright sections undergoing distortional

buckling by using the finite strip method.
2.3.3.2 Direct strength method (DSM)

The Direct Strength Method (DSM) is a relatively new design method for CFS members
validated for members using the finite strip method results to predict the ultimate strength of a
general CFS column or beam with the elastic buckling properties of the member cross section

(e.g., plate buckling) and the Euler buckling load (e.g., flexural buckling).

Dawe (2002) stated that Cheung published the first finite strip method paper in 1968 for
two opposite simply supported rectangular plates. Since then, thin curved plate finite strips
have been used in the analysis of shell structures by a number of researchers. Lau and Hancock
(1986) employed this method to study the buckling of flat plate structures with direct and shear
stress effects. An elastic finite strip method was developed for plate assemblies by Lengyel and
Cusens (1983) to study post-buckling behaviour. Hancock et al. (1994) developed a
geometrically non-linear analysis of flat plate structures by utilising this method. Hancock and
other well-known researchers such as Pekoz and Rhodes have since prepared computer
software programs for this method.

Young et al. (2012), investigated the ultimate strength and design of fixed-ended lipped

channel columns experiencing local-distortional buckling mode interaction. First, they reported
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the results of an experimental investigation involving a set of 26 columns with several cross-
section dimensions and yield stresses that were tested to determine their failure loads and also
to provide experimental evidence of the occurrence of local-distortional mode interaction.
These results consist of the column geometries, material properties, initial geometric
imperfections, nonlinear equilibrium paths, and ultimate strength values. Then, after comparing
the experimental column ultimate loads with the estimates provided by the current direct
strength method (DSM) design curves against local and distortional failures. However; in the
opinion of the authors, it clearly shows that they lead to inaccurate and often very unsafe
ultimate strength estimates, the paper presents and assesses the quality of DSM-based design
procedures based on approaches providing nominal strengths against local-distortional and
distortional-local interactive failures. Next, an in-depth comparison is made between all the
experimental ultimate strength results available in the literature and their estimates provided
by the preceding DSM design procedures. Finally, the results were close with design
considerations and recommendations, motivated by the conclusions drawn from this
investigation.

Cava et al. (2016), presented the results of a numerical investigation concerning the
relevance and Direct Strength Method (DSM) prediction of the ultimate strength erosion
caused by local-distortional-global (LDG) interaction in cold-formed steel fixed-ended lipped
channel columns. The geometries of the columns analysed (cross-section dimensions and
lengths) were carefully selected to ensure that the three competing critical buckling loads were
not more than 20% apart, thus guaranteeing a fairly high level of LDG coupling. In order to
cover a wide slenderness range, several yield stresses were considered, falling below, in-
between and above the lowest and highest critical buckling stresses. After providing a brief
description of the column selection procedure, which is based on buckling analyses performed
with (GBT), the methodology adopted to identify the most detrimental initial geometrical
imperfection shape (in the sense it minimises the column strength) is addressed. Then, columns
containing those initial geometrical imperfections were axially loaded up to failure, by means
of ABAQUS shell finite element analyses (SFEA), making it possible to acquire in-depth
knowledge of the behaviour of lipped channel columns undergoing LDG interaction and gather
considerable failure load data. Finally, they predict failure loads and use the obtained data to
assess whether the available design approaches are able to handle adequately the ultimate
strength erosion caused by the triple interaction phenomenon under investigation.
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2.4 Literature review summary

In this chapter, an extensive literature review was presented, gathering information in the

following areas, showing that:

The use of cold-formed steel in various constructions is increasing because its light
weight makes construction easier and more economical compared to hot-rolled steel.
Several researchers have found that the cold-forming process, particularly by cold-
rolled forming, can alter the mechanical properties of cold-formed steel sections due to
strain hardening and strain ageing. The design standards allow the use of increased yield
strength resulting from cold-working.

Cold-formed steel flexural members may be subject to complex stability problems
because of the thinness of the plate elements. Generally, cold-formed steel beams may
undergo four types of buckling modes: local buckling, distortional buckling, lateral
distortional buckling and lateral torsional buckling.

Previous research on cold-formed steel beams regarding experimental investigations of
real buckling failures, demonstrate the expected failure bucking mode and simulation
of the intended boundary conditions.

Previous research on cold-formed steel using first and second order Generalized Beam
Theory was successfully employed to solve buckling problems.

Previous research on cold-formed steel using Finite Element Analysis Method,
regarding the element type’s effects, material properties representations, mesh size
effects, perforations effects and boundary conditions was stated. Earlier researchers
have used finite element analysis methods to investigate the flexural behaviour of steel
beams. They had shown that the behaviour of cold-formed steel flexural members can
be accurately studied using finite element analyses provided that the end support and
loading conditions, residual stresses, geometric imperfections and mechanical
properties are included in the finite element model accurately. Suitable element size
and type must be used and the model has to be validated with sufficient experimental
results.

Geometric imperfections in cold-formed steel flexural members cause considerable
reduction of the ultimate strength. Therefore, considerations of the geometric
imperfections in design capacity calculations and also in finite element analysis are

important.
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Previous research on cold-formed steel using the Finite Strip Analysis Method, namely

the CUFSM program with its applications and code design method of Direct Strength

Method (DSM) was studied.
It appears that there is a lack of research that has been conducted to date, to study the

actual buckling loads of cold-formed steel beams with their effect of geometric imperfections
by using both the GBT and FE Analysis Methods, and how to represent the right pinned and

fixed end conditions in both the analytical methods and experimental tests.
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FORMULATION OF THE GENERALIZED BEAM
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3.1 Introduction

In general, the GBT describes the behaviour of an open section member under applied
load with several corresponding modes of behaviour according to specific warping
displacement functions; GBT can be divided into two main groups of modes i.e., rigid body
beam modes (first four modes) and higher order distortional and local modes. The first four
modes correspond to the axial extension, major and minor axis bending and torsion; these
modes exactly match the conventional theories (rod-theory, Euler-Bernoulli beam theory and

non-uniform torsion or Vlasov torsion theory).
3.2 Rigid body modes

The conventional theories describe the deformation and stress distribution in a beam
assuming that the shape of cross section is maintained. In the other words, the theory allows

only rigid body displacement.

To provide a full understanding of rigid body movements of any cross section, four

independent and orthogonal displacements and their derivatives are required.
In conventional theories, these displacements are illustrated in figure (3-1)
u - displacement in the z-direction (rod-theory).
v - displacement in the y-direction (Euler-Bernoulli beam theory).
w - displacement in the x-direction (Euler-Bernoulli beam theory).
O - displacement in the x-direction (VIasov torsion theory).

Displacements in any of these directions are results of a warping strain throughout the

section, which can be alternatively described by a warping function. So the independent and
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orthogonal four warping functions can provide a full description of any rigid body displacement

modes of a cross section.

A method of defining these warping functions in a folded plate structure is to define the
values of the functions at each of the (n) nodes and assume a warping function distribution
between the nodes. For a rigid body, this warping function would be a simple linear distribution
between nodes. The rigid body displacement of any folded plate member with (n) nodes can
therefore be uniquely described by four warping functions which would each be a column

vector with (n) components.

Figure (3-1) shows rigid body warping modes and its warping functions for the 13 nodded
cross-section. Each of these modes can be related to rigid body modes using conventional beam

theories.

3.3 Higher order distortional and local modes

If a folded plate is described by (n) nodes, however, this plate must have (n) degrees of
freedom. There must therefore exist (n) independent orthogonal warping functions to fully
describe the displaced state of a folded plate member. It has been shown previously that four
of these functions can describe rigid body movements, so the remaining (n-4) functions must
describe cross section distortion. The complete behaviour of the member is then described by
(n) independent, orthogonal warping vectors, each containing (n) elements. Figure (3-2) shows

the additional warping vector which describes the cross section distortion and local modes.
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Figure (3-1) Warping function and displacement mode shape rigid body
modes (Bebiano et al, 2008).
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Figure (3-2) Warping function and displacement mode shape of higher order

distortional and local modes (Bebiano et al, 2008.
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3.4 First order generalized beam theory

First order GBT was addressed by Schardt (1966), to describe the displacement of open
thin-walled sections as a folded plate using a warping function vector. He assumed that the
shear deformations of the middle surface of the plate were negligible. In this work the warping
functions were orthogonalized in such a way that each of first four functions described rigid
body displacement, and the remaining (n-4) warping functions described cross-section

distortional modes.

The first form of Schardt (1966) equation is:

(C—AB)V =0 3-1)

C is the elements of a matrix representing the internal virtual work of the axial stress in

the member.

B is the elements of matrix representing the internal virtual work of the transverse

bending moment in each plate.
The eigenvector V is the warping function related to each mode.
The eigenvalue 4 is the ratio of transverse bending stiffness and warping stiffness.

Solution of this equation gives (n) eigenvalues, the first four of which are zero. The non-
zero eigenvalues produce (n-4) eigenvectors which are the warping functions of (n-4) cross
section distortional modes. The other four eigenvectors are related to rigid body displacement
modes. The significance of a zero eigenvalue is that the work of the transverse bending

moments is zero in the rigid body modes.

In order to obtain the warping function related to the four rigid body modes, (which could
alternatively be obtained by conventional methods), additional eigenvalue problems must be
solved, the first of these problems is:

(C—AD)V =0 (3-2)

C is the elements of a matrix represent the internal virtual work of the axial stress in the

member as before, except that it has now been orthogonalized to separate the first four body
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modes from the other distortional modes, so only the first (4 x 4) elements of C are inserted in

the (n x n) matrix, the remaining elements being left as zero.

D is the elements of a matrix representing the internal virtual work of the torsional stresses,
similarly orthogonalized and with only the first (4 x 4) elements used in the (n x n) matrix of
C. For the solution of this given (n) eigenvalue problem, all of the matrix elements related to
rigid body modes will be zero except the eigenvalue of the column related to torsional stresses
(twisting about the Z-axis).

The three remaining warping functions are obtained from the following eigenvalue

problems:

(CcC-A2X)v=0 3-3)
C now is the first further orthogonalized matrix representing the virtual work of the axial

and bending stresses.

X is the elements of the matrix representing the work done by the second order

longitudinal membrane stresses.

Again only the first (3 x 3) matrix elements will be used rather than the higher order modes in
matrixes C & X related to three rigid body modes remaining.

Mode 1: displacement along the Z-axis (axial mode).

Mode 2: displacement along the X-axis (major bending mode).

Mode 3: displacement along the Y-axis (manor bending mode).

Having calculated (n) warping functions for matrix C, B & D, the original definition of these

matrices in generalized beam theory related to conventional theory is shown in table (3-1).

Table (3-1) Original definition of section properties.

Deformation Conventional Theory Generalized Beam Theory
Modes
1 A - - Ic - -
2 Ix - - e - -
3 ly - - 5C - -
4 r J - ‘C ‘D -
5 - - - kC 5D kB
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From table (3-1) because the D and B matrixes are zero in most of the rigid body modes,
it can be seen that the C matrix represents the stiffness with regard to direct stress, the D matrix
represents the stiffness with regard to torsional stress and the B matrix represents the stiffness

with regard to transverse bending stress.

3.4.1 Displacement functions

Y,V
(n-1)
[n-1]
XU (n)
Z.W
YAY

Figure (3-3), Global and local coordinations (Schardt, 1966)
Figure (3-3):

X,Y &Z : Cartesian global coordinate system for member.
X,y &z :Cartesian local coordinate system for each plate.
U,V & W : Displacements in X, Y & Z directions respectively.
u,v&w : Displacements in x, y & z directions respectively.
o™, &M, Membrane stress & strain in z-direction.

O™, & : Membrane stress & strain in x-direction.

Tm, gm : Membrane shear stress & strain.

0%, &, :Bending stress & strain in z-direction.

0%, & :Bending stress & strain in x-direction.

E . 'Youngs Modulus.

G : Shear Modulus.
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v : Poissons ratio.
Di : Rotation of node (i).
Oi : Rotation of plate (i).

The displacement of any node is uniquely defined by nodal values of the vectors wi, ui
normal to plate (i) and ui-1 normal to plate (i-1).

Because of compatibility at each node there is a geometrical relationship between these

three vectors that must be maintained.

Birman (2011) The basic assumptions of bending theory which were presented by Navier

are:

1- The material of the structure is perfectly elastic.

2- Small deflection theory is adopted.

3- The member retains its cross sectional shape while undergoing all deformations during
loading.

4- Plane sections remain plane over the entire cross section while undergoing all
deformations during loading.

5- The shear deformations of the middle surface can be neglected.
3.4.1.1 Relationship between nodal displacements w; and u;

From assumption (5), the membrane shear strain must be zero so:

ou (SW_O 3_4
5z  Sx ( )

Assuming a warping function that is linear between nodes and considering plate (i) this

can be rewritten as:

du_ W1 —wi)
0z Hi
Hi : the width of plate (i)

(3-5)
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3.4.1.2 Relationship between nodal displacements v; and ui

Figure (3-4) Displacement of node, (Schardt, 1966)

From Figure (3-4) the displacement of node (i) to position (i) is:

U;—q cos Sa(i) + v ;—qysinda(i) = y;
U;—q sinda(i) — v -1y cos da(i) = —v

Where the double subscript of (v) refers to the plate.

Both these equations must be satisfied for compatibility, so:

D = Ui—1 n U;
(Gi=1) tanda(i)  sinda(i)
Do = — Ui-1 n U;
D) sinda(i)  tanda(i)

Differentiating with respect to (z) and substitution to equation (3-4), we obtain:

Wl 1
% = [AGi-n  A@)  AGi+)] * for(2 <i<n-1) (3-06)
Z(i'l) WL+1
Sv Wl 1
57 = [bi-1i-1) ba-1p ba-1i+1)] for2 <i<n-1)@3-7)
(Li-1) Wl+1
Where:
v is strain at node (i) normal to plate (i-1).
8z(j,i-1)
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& is strain at node (i) normal to plate (i).
8z (i)
1
Aii-1) = —m
1 1
Hin = H; tan Sa(i) + Hi_1y sin a(i)
1
Aii+1) = —m
Driq:i oy = — 1
(i=1i-1) H;_; tan Sa(i)
bi_1pn = ! + !
=10 ™ g, tan 8a(i) H;y sin Sa(i)
1

b P e —
(=1i+1) H; sin da(i)

Looking at the other end of plate (i), the strain at node (i+1) normal to plate (i) is given by:

Wi
6 .
5—2 =1[bay bai+n b)) * (Wit for1 <i<n-2) (3-9)
(i+1,0) Wito

3.4.2 Derivation of plate displacements Py and v
uPi) & VP : Displacements in x & y of centre of plate (i) respectively.

g—z, : Rigid body rotational stain.
2

Using the relationships derived before, the following equations are obtained:
SuP _ (Wa-1 = wi)

3—-9

0z H; ( )
SvP 1 Sv N ov (3-10)
0z 2 6zG41,) 0z,

Wi_1
1 w; )
% =-laGi-n bap taan buivn tauivy  bairal * Wi-ll-l for(l =i=

Wi_2
) (3-11)
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Wi_1

W.
6; = Hiila(i,i—l) ban —aqui bai+vy — Auivy)  Pairz)l * WHl-l for(l =i <

Wi—2
n—2) (3-12)
3.4.3 Derivation of plate displacements w7, and ¥
Assuming a warping function that is linear between nodes:
w] = w; + [w; —wiq ] * B (3-13)
Where f is a dimensionless coordinate defined by g = =~
p v
Ul- ='QO *E +Hi[.01*0i+!22 *(pi+n3*(pl’+1] (3_14‘)
@0

Where:

®; is the nodal rotation at node (i).
0; is the rigid body rotation of plate (i).

Qo =1

0, =3p%*+2pB3
0, =B —2p%+p°
93:_ﬁz+ﬁ3

3.5 Basic equation of first order generalized beam theory

In order to demonstrate the principles upon which the generalized beam theory is based,
the fundamental equations are initially developed according to first order theory. The following

simplifications are made:

1- Poisson’s ratio is zero (see section 3.13.2)

2- The work done by plate bending terms in the longitudinal direction is neglected.

The three basic deformations of any plate are the functions u, v, w, these deformations

are all functions of both the longitudinal (z) and circumferential (y) coordinates.

u=u(x,z)
v=v(x,2)
w = w(x,z)

Also it can be rewritten parametrically as:
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u(x,z) =ulx) *V'(z2)
v(x, z) = v(x) *V(z)
w(x,z) =w(x) *V(2)
Where V(z) is a dimensionless shape function that represents the amplitude of each function

along the member length.

From the above relations, the displacement of any section with (n) nodes is uniquely defined

by (n) warping ordinates. Hence any section with (n) nodes has (n) degrees of freedom.

It follows that any displacement can be uniquely defined by combining (n) orthogonal warping

vectors.

Therefore:

u(x,z) = i w () Vi (2) (3 - 15)
=t

v(x,2) = zn: 1 () Vi (2) (3 - 16)
=t

w(x,z) = Zn_ wi (X) Vi, (2) 3-17)

Where (k) is denoted by the mode of each displacement.
3.5.1 Strain displacement relationships

In general, there are three strain components, &, & and ¢x.. These basic components can
be further subdivided into:

1- Membrane Components (denoted by superscript (m)).
2- Bending Components (denoted by superscript (b)).
Therefore, there are six components that define the complete strain conditions of any plate,

Table (3-2). Table (3-2) Strain conditions.
Membrane Bending
gm €
e€n €
om Y,
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From conventional theory assumptions in (3.3.1) and (3.4), gives:
Em =0

o =0
Small deflection plate theory gives the following strain displacement relationship:

€l = —yp (3-18)
el = —yv” (3-19)
L = —2yv’ (3-20)

Also by definition:

e =w' (3—-21)
zZ

3.5.2 Stress-strain relationships

From Hook’s Law:

=Ee* = Ew' (3-22)
= Eey = Eyv (3—23)
= Ee? = Eyv"” (3-24)
12, = GDL, = 2Gyv’ (3 —25)

3.6 Virtual work of transverse bending moments

The virtual work of the transverse bending stress of the complete section is given by:

VW, = jﬂ.a,?6e,’§dydzdx

yzZx

Using equations (4-15) & (4-25)

n
= Z —E yvi Vi
k=1
Seb = Z —t5(v; V)

j=1

k=1j=1yzx

Hence:

Integrating with respect to (y) between the limits (£t/2), and rewriting 6 (v Vy) as Vi, 8Vy:
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Et3
YW, = Z z ff(vk V)V, dz dx
Et3

Donating fo(vk v;) dx = Bkj , Where K = 7

n

n
VW, = Z Z j By;Vi 8V; dz (3 — 26)

k=1 j=1 V4

3.7 Virtual work of longitudinal membrane stresses

The virtual work of the longitudinal membrane (warping) stresses of the complete section is

given by:
VW, = fff méer dy dz dx
yZXx

Using equations (4-15) & (4-25):

n
= Z Ew, V/
k=1
n
se = ) swy’
=1

Hence:
n n

VW, = zz fﬂE(wk w) Vi 8 V" dy dz dx

k=1j=1yzx

Integrating with respect to (y) between the limits (xd/2), and denoting:

f(wj wy) dx = C,%j

We obtain:

n
_ Z Z Ef CL V"8V, dz (3 -27)
Z

k=1 j=1

3.8 Formulation of the eigenvector problem

If no external load is applied, the virtual work expressions must be constant.

VW, + VW, = Constant
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Differentiating this expression with respect to (z) gives the following equation of static

equivalence:

VW] + VW, =0
Substituting equations (3-26) & (3-27) gives:

n
Z Z(Ec,gj V"' + BijVi)8V; = 0 (3 —28)

k=1 j=1

To continue we now require that equation (4-25) can be split into (n) components and that

each component equation holds true for some model value of the vector wg, hence:

n
j=1

This is no restriction on the generality of the solution since the vector must, by definition, have

(n) degrees of freedom.

Equation (3-27) can be rewritten as

n
Z(Ec,ij — ABy)wy, =0 (3-30)
j=1

Where A= Vi

T
Vi

Solving the modal equation (3-28) gives (n) independent orthogonal warping vectors. Because
of their orthogonality, model values of the section properties By; and Cl; recalculated using

these vectors are zero unless j=k.

In addition, the solution of equation (3-28) filters out the vectors associated with a zero value
of the property Bu. In effect, the solution of (3-28) divides the modal vectors wi into two

categories.

The first category is that in which transverse bending moments occur, giving rise to finite
values of Bi. The second category is that in which transverse bending does not occur, leading

to zero values of Bi.
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These two categories have distinct physical meanings. If the value of B is zero, the
displacement vectors must be describing rigid body motion, whereas if Bk is hon-zero, the

cross section must be distorting.

The solution of equation (3-28), therefore, produces four rigid body components and (n-4)
distortion components. It has therefore divided the problem into precisely the two categories
that are required, so that distortional modes can be considered in isolation from rigid body

modes and their significance can be assessed.

Rigid body components are recognizable by the fact that the eigenvalue solutions to equation
(3-28) are all zero. At this stage the first four modes are therefore mixed together. In order to
be of practical use, there is a need to sort these first four modes into the four rigid body

displacement modes, which are show in table (3-3).

Table (3-3) Section properties for rigid body modes.

Modes GBT property | Conventional property
1 Axial Cli A
2 Minor axis bending Cly ly
3 Major axis bending Clas Ix
4 Torsion Clas J

There are two alternative methods for doing this:

1- Use simple engineering theory to obtain the centroid, principal axes and shear centre of
the section, and from these the warping ordinates can be obtained for each mode.

2- Use the Generalized theory to organize the first four modes. To do this some
modification to equation (3-28) are required such that the solution to modes (1-4)
becomes meaningful. This must mean the replacement of By for these modes, since

Bw=0 for rigid body displacement.
3.9 Equilibrium of externally applied loads

The representation of external loads in generalized theory can be resolved as equivalent

nodal loads which can then be resolved into forces acting in the planes of plates from which
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the section is composed. These forces can be denoted by a vector which has (n) components g:

to gn. using a similar method to that relating By and C;.

n
7= a (3-31)
k=1
Consider the energy of the plate under the influence of these loads:

VW1+VW2_J-q6d2=O
zZ

Where: 6 is unit displacement.

Differentiating and substituting from equations (3-23), (3-24) & (3-27) gives:

n n n
ZEC}%kV;é”"}‘ZBkak—qué\k:O (3—32)
k=1 k=1 k=1

Sx=unit displacement in mode k, i.e. 1.
Hence for each mode:

ECiVi" (2) + BiVie(2) = qi(2) (3 —33)

3.10 Equivalent axial loading

Any external loading must be resolved into axial plate forces such that the axial forces
are in equilibrium with the sum of the applied loads and the moments caused by the applied

loads on the unsupported cross-section.
Note:

1- The effect of leaving the section unsupported is to introduce a pin support
(translationally restrained but rotationally free) at nodes (2) and (n-1) that simulate
the restraint given to the section by the first and last plate.

2- The sum of axial loads must be equal to the sum of applied loads.

3- Evenifthe load is applied to a node in the cross section, if it causes a bending moment

through the section it must be treated as described above.

By using virtual work methods, the axial load can be resolved into components as:
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n
Qe = Z qi u'
i=1

Where q' is the axial load in plate (i)
3.11 Individual plate torsional stiffness (distortional stiffness)

When a section is displaced, generally the individual plates undergo, in general, differing
rates of twist. This leads to a shear strain through the thickness of the plate denoted by ®2,

.The effect of this shear strain must be included in the equation (3-33).

VW; = f f f @b 51L, dy dz dx (3—-34)

yzXx

Using equations (3-16), (3-20) & (3-25)
n
@b, = z =2y v,V
k=1

n
819, = Z —2Gyv, 8V,

j=1
Hence
n
VIW; = Z fff 4Gt? vy vV 8V/ dy dz dx
k=1j=1yzx

Integrating with respect to (y) between the limits 1% , will produce:

4GS
VW; = Z Z 5 ff(v,’cvj’)V,é’M/j dz dx

E
2(1+p)’

From engineering bending theory, G = but according to the assumptions before u = 0.

Take:

Dji = J-K(v;v,’() dx

X

K = Et3
12
Therefore;
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n
VW, = Z Z 2 f D, V' 6V,dz (3 - 35)
j z

This component of work is equivalent to that done by a twisting moment applied to each
plate. It therefore enters the equilibrium equation (3-33) in the same sense as the applied load.

So equation (3-33) will be rewritten as:

ECiqVi"' (2) + BiyVi(2) = qi(2) + VW3 (3 —36)
Differentiating equation (4-33), and substituting it in equation (4-34), we obtain:

n n n n
Z ECie Vi'"' — 2 Z D Vi’ + Z BV = Z dk 3-137)
k=1 k=1 k=1 k=1

Hence for each mode:

ECix V" — 2D V' + B Vie = aic (3—138)

This is the basic equilibrium equation of GBT

3.12 First order GBT section properties evaluation

3.12.1 Evaluation of (Cx)

Ciie = [ t(wjwy)dx (3-139)

The function (w) is linear between nodes and discontinues at each node, so the integral
(3-39) can be divided into (n-1) parts (one for each plate), and the simplified non-linear
dimensional function g can be used in place of (x), where:

_s—=s()

F="10

Where: H is plate width.

Than the equation (3-39) can be rewritten as:

n-1 1
Gle= Y HOE [y we () B (3-40)
i=1 0

The term (wj (Dwy (i)) must be evaluated for each mode, but the term (w(i)) is a column vector

with (n-1) components, therefore; this term will become:

65



Chapter Three Formulation of the Generalized Beam Theory

(W]ka)
The single function will result from the evaluation of this term related to each plate (i) in each

mode (jk). When j # k, the mixed mode has no physical significance, so the value of lek will

be zero for each j # k. It can be said that:
Cip =0 if j#+k
Cip #0 if j=k

The general form of the function (w) according to equation (4-15) is:

platel [1—-p B 0 0 w(l)

plate 2 0 1-p B 0 w(2)

plate 3 0 0 1-p pB w(3)
platen — 2 0 0 1-p B w(n—1)
platen — 1| 0 0 0 1-p pIL w(n)

Now the evaluation of terms w;j(i) & wi(i) can be done, and lek can be calculated by

integrating these functions and summing over all (i) plates.
3.12.2 Evaluation of (Bjk)

From (section 3.5):

Bj, = fK(vk v;) dx (3 —-141)

Dividing the integration above into each plate (i) as before in evaluation of (Cljx) in terms of

non-dimensions () gives:

n—1 1
By = z KOHQ) f (vvi) dB (3 - 42)
i=1 0
Equation (3-12)
» Jv
vp =0p ¥ ==~ FH[0Q %0 + 0 x Py + 03 % Dyy4]
aZ(i,i)

Each element of term (Bjk) is then evaluated in a similar fashion to (Clj).
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3.12.3 Evaluation of (D%x)

From (section 3-10):

L v dv
D = f’“—xﬁ ) dx

Djj = Z K(@i)H () f G ax (3—-43)
3.13 Basic equation of second order generalized beam theory

It is possible to introduce the generalized beam theory with no simplification; this is
termed second order generalized beam theory. So, the basic equation will be developed with

inclusion of the effect of Poisson’s ratio and the secondary effects of plate bending terms.

3.13.1 Strain displacement relationships

3.13.1.1 Membrane strains

From figure (3-5):

=VA-w)?+ @)+ @) -1 G -4

Expanding equation (4-44), the following approximation is obtained:

1
ef=w'+ > [(W)? + (v)?] (3 —45)

Figure. (3-5) Membrane strain , (Schardt, 1966)
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3.13.1.2 Bending strains

For bending strains, equations (3-18), (3-19) & (3-20) will be:

. 0%v
&x="V33 (3 —46)
. 0%v
S (3 —47)
ob =y 0V (3 — 48)
2= Y 52z
3.13.2 Stress-strain relationship in presence of poisson’s ratio
ch’=1_ﬂ2 (€2 + uep) (3-49)
oy = 12 (€2 + uep) (3-50)
E(l - .u)q)}c?z
b _ Gd)b — 3—-51
o = E(el* + pell)
But €;* = 0; So:
ot = Ee}! (3-52)

Substituting equations (3-46), (3-47) & (3-48) in equations (3-49), (3-50), (3-51) & (3-52)

gives;

,  —Et 62v+ 0’v 2 e
T2\ 922 " P ox2 ( )
,  —Et 62v+ v N~
% 12\ ox2 T Ho2 ( )
,  —Et B v B

m_ g ow 1[/ou\’ [ov\’ 3_ce
“ =Pl ra|\ex) "\ax) | S

Rewriting the equations (3-53), (3-54), (3-55) & (3-56) using equations (3-15), (3-16) & (3-
17) get:
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—Et "
o == Z(a 7 Vit vV (3-57)
Et ~ i
— v
O'b = Z v V”+ — 1 3—-58
z 1_“2;(:1( e thga k) ( )
Et = Ov
b =———(1- Z — W 3 —59
Txz 1+#2( H)k_l(axk ) ( )
n E n n
ot = Ez wyi V' +Ez Z(u]uk + Vv )V Ve

This equation could be rewritten in terms of the warping resultant W, using the stress

relationship of first order theory, so:

m Wiewy

o, = — 1
=1 kk
To obtain the complete stress components, the extra second order term must be added, giving
n n n

m Wka E R

o, =— Cl —EZZUUVl V] (3_60)
kk ; ;

Where: vij = (uiuj + Ui'Uj)

3.13.3 Virtual work of transverse bending moment

The equation of virtual work for transverse bending moment is:

VW, = jﬂ.a,?6e,’§dydzdx

yzZx

It can be rewritten using equation (4-57) gives:

Et?
= z .Ufl— 2 axZ Vi + uv;V;" ) v 6V dy dz dx

J=lyzx

Integrating with respect to (y) between the limits (+ % ), will give:

2
YW, = Zﬂ[x(a > v + UK (v )V 18Vedz dx
J=lzx
Et3

WhereK=m foru+0
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But:

Bj = fK(vjvk) dx

(axz ) (3—61)

]kV + ﬂ ”)5de2 (3 - 62)

Defining:

Z

3.13.4 Virtual work of longjtudinal membrane stress

%

Virtual work of longitudinal membrane stress is:

VW, = fff M Seg dy dzdx

VZx

From equation (3-60) and section (4-2):

n
Sl = wy S,V + Z v/ v,

Evaluating the work integral gives:

n n
E
VW, = — jﬂ. WkaV”(SV ZZ 1 vk] 6Vk—EZZkaUV sV,

yZXx i= 1] =1

n n
+EZZUU v Vi V'V 8V

i=1j=1

Ignoring higher order terms, rearranging, and using the substitutions:

]k = J:]- wiw; dy dx

(VVi)sVy = =(V;V))' 8V,
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n n
VW, = ZIW 5dez+fZZ(Wk Ukv) 5V, dz
Z

i=1y i=1 j=1

n
E
-G [ )] Z Xi (VIVL" Vdz (3-63)

V4 i=1 j=1

The warping moment W, can be replaced by using the definition:

W, = jfazmwkdxdy

Substituting for o} :

n n
Wi = —ECL V! ——CkaZ X1V,
=1 =1

Hence:

n n
r nr E ! IANZ)
Wi' = —ECuaVk —Eclikzzxijk(vivj)

i=1 j=1

Substituting in equation (3-63):

VW, = f ECLVY"8Vdz + = C,%k f ZXU,( AN
VA

z i=1j=1
n n n
+fZZ(Wk XijiVy)' 6Vidz —_Ckkf ZXijk Viv)'8Vidz
z i=1j=1 i=1j=1
Hence:
n n
YW, = f ECLV"8Vidz + f ZZXijk(WkV,é)'5dez (3 - 64)
zZ z i=1j=1

The second term represents the work done by the longitudinal membrane stresses.
3.13.5 Virtual work of longitudinal bending stress

If the second order terms are included in the theory, the virtual work of the longitudinal
bending moments must be included in both the initial eigenvector problem and in the

equilibrium equation.

For displacement mode (k):
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VW, = fffazb5e§dydzdx (3 —65)

VZzZx

By using equations (3-16), (3-19) & (3-58), it can be rewritten equation (3-65) as:

VW, = Z T jﬂ.(v] v V)kaV,é’ dy dz dx (3 —66)

yzZx

Integrating with respect to (y) and substituting for the plate stiffness K:

0%
VW4—Z || vy v+ us 7 veV]'Ve) dy s d (3-67)

=1 yzx

Define second order longitudinal stiffness C; as:

Ch = Kfvj v dx
X

Equation (4- 67) can be rewritten as:

YW, = Z f (CZV,"" 8V + uDLV;"8V,) dz (3 - 68)

Jj=1z

3.13.6 Virtual work of shear stain

Equation (3-36) in absence of Poisson’s Ratio:

n n
_ ZszD;j Vi 8Vidz
z

k=1 j=1

In presence of Poisson’s Ratio, it becomes:

n n

W, = Z Z 201 — ) f D, V! 8V,dz (3 — 69)

k=1j=1

3.13.7 Virtual work of membrane shear strain

Due to membrane shear strains in the plates, an additional work term arises given by:

VWs = fff Tk @™ dy dz dx

yzXx

From equation (3-60)
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From the relationship between bending moment and shear force:

Tt = f(a;")’ dx
X

This equation can be integrated to give the following expression:

n W’ E n n
Ckk 2 : :
k=1 i=1j=1
Where
ﬂk = j- th dx
x
Hlj = f tvij dx

Using Figure (3-6), the membrane shear deformation is shown to be:

o = 8175 v 6u6 ou 8u5 ou 6176 ov
Y (ax) 0z (Ox) 0x (62) 0x (az

Figure (3-6) Membrane shear deformation , (Schardt, 1966)
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This can be expressed in model form as:

5d>m——n dv + du V'8V, + dv +du V.6V,
P = ;[(vi%k uiﬁk)i k (%ivk Eiuk)i e

Denoting:
B dv N du
Ya =v; dx, U dx,
dv du

Yb;, = ai Vi + ﬁi Uy

So it can be rewritten as:

Be®™ = = > (e Vi Vi + PhyViV) 3-71)
So:
n n n n
W, W,
VW, = fffzz o by VI8V, dy dz dx + fffzz o b, VI8V, dy dz dx
YyZXx j=1i=1 yzx J= 1i=1

+ ---Higher order terms

The second term can be rearranged by integrating by parts:

. dyby all;
[i.e. by = I; ——= = by — ——Pbik ]
- 17 Wk
Ckk 1 I
(Xuk + Xuk)VVi 1/}-5Vk dz

i=1j=1

The first term is zero, so the total virtual work expression becomes:
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n n n n n
4 z

7z i=1j=1 i=1 j=1 i=1 j=1
n
j quk VoV, G -72)
z =1j=1
Substituting (W;'V;)6Vy, = —(W/'V;) 8V, this gives:
n n
VWs = fzz Gk WiV + X5 (WiV)' + X (W V) 16V, dz (3-73)

VA =1 :

This final work term can be expanded if required to become:

n

n
s = fz Z G (W Vi + W'V + WIV)) + Xy W'V, + W/V))]6V

z i=1j=

3.14 Virtual work of membrane shear strain

=

Equation (3-26) is now modified by the addition an extra term in the first part of equation,

the equations then become:

Z((Ec,ij + CEOVE" + Byj)6V, =0
j=1

Let

Cix = (ECyj + CZ))

The equation will be:

(Cik V" + Byj)oVy, = 0 (3-74)

n
j=1

The solution of this equation gives (n-4) model vectors that allow for the second order plate

bending effects introduced by C,f]-.

75



Chaptfer Three Formulation of the Generalized Beam Theory

3.15 Virtual work of the external loads

Figure (4-7) Resolution of applied load parallel and normal to a

section, (Schardt, 1966)
Any applied load (q) can be written parametrically as:

q = qx0Q;
Furthermore, from Figure (4-7), it can be separated into two orthogonal components.

qy = q cos(B)
qx = qsin(p)
The component (q,) performs work on the displacement vy,.

The virtual work of the external loads can be written as:

W, = f f (0, ()v + 4 ()6 Q, Viedx dz

This can be rewritten as

W, = f ar 0,6V, dz 3 -75)
VA

Where:

G = f @y OV + G (D
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3.16 Second order equation of equilibrium

The equilibrium condition is the equality of the virtual work of applied loads to the
internal work term. Taking into account the necessary sign differences, the equation for each

mode will be:

n n
Z(Bjkvk + MDI%jVIé’) + [ECI%kVIém Z Z l]k(WV ) Z( V;é”’ + y ,é'
j=1 i=1 =1

n n n
- Zz(l_l‘)(DﬁcVIy ZZ l]k(VVlV]) +Xuk( V]) +Xuk( V])
j=1 i=1j=1

= qQy
This can be rewritten:

n
Z EC]kV,‘i”’ kV,;’ + B Vi + ZXl]k(WV)” + Xl]k (W” + 2w/ V )]
j=1 i=1
= qQ (3-76)
Where:

Cir = ECji + Cf
Djx = 2(1 — WD}, — u(Df, + Di))

This equation can be applied to all first and second order problems in order to calculate
the stress distribution in a section subject to an arbitrary load, or in order to calculate the

bifurcation load of a section when subject to any load (or series of loads).

Appendix A presents the calculations of the GBT section properties as coded with Matlab.
For the next steps, the first order GBT is used to solve the flexural and torsional problems for
beams subjected to different applied loads. The second order GBT is then used to solve the
buckling problems of open-section beam-columns for both linear and non-linear analysis to
find the theoretical and actual bucking loads of members with different cross-sections and

different boundary conditions.
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CHAPTER FOUR

APPLICATIONS OF GENERALIZED BEAM THEORY

4.1 Introduction

This chapter presents applications of first and second order generalized beam theory
using the Matlab code in both linear and non-linear analysis to find eigenvalue buckling and
yield loads of open-section cold-form steel section. To implement this the author used the finite
difference method to solve the fourth order generalized beam theory differential equation to
find the value of (V) displacement function in each mode (k). All theoretical buckling results
were compared and verified with examples using the finite strip methods CUFSM and GBT

finite element method using GBTUL.

The finite difference is a method of solution which is easier to code than finite elements

method. This will be verified in the following sections.

Liner analysis results are verified at this stage with the results of GBTUL & CUFSM.
Non-linear analysis results are also addressed and presented and will be verified with

experimental and finite element analysis (ANSYS).
4.2 Finite difference analysis of generalized beam theory

The principle of finite difference methods is related to the numerical schemes used to
solve ordinary differential equations. It approximates the differential operator by replacing the
derivatives in the equation using differential quotients. The domain is partitioned in space and
in time and approximations of the solution are computed at space or time points. The error
between the numerical solution and the exact solution is determined by the error that is
committed by going from a differential operator to a difference operator. This error is called
the discretization error or truncation error. The term truncation error reflects the fact that a

finite part of a Taylor series is used in the approximation.
In general, the first order GBT equation is:

ECy V" — GDp Vi’ + BjVie = qQy 4-1

78



Chapfter Four Applications of Generalized Beam Theory

In the finite difference form the second and fourth order derivatives of V are:

Vieg = 2Vi+ Vi

VII —
dx?

Vieg = 4Vi1 + 6V — 4V 1+Vipo

VIIII —
dx*

So the GBT equation for mode (k) will be:

EC Viep = 4Vi_1 + 6V, — 4V 1 +Viy c Vieg = 2Vi+ Vi
J dx* -k dx?
= qQk (4-2)

)+ Bj, Vi

If the length of the beam was divided into (n) nodes.

The GBT equation would become:

'm -4 1 0 0 0 0 07 —2 1 0 0 0 0 0 0
-4 6 -4 1 0 0 0 0 1 -2 1 0 0 0 0 0
1 -4 6 —4 1 0 0 0 0 1 -2 1 0 0 0 0
0 1 -4 6 -4 1 0 0 0 0 1 -2 1 0 0 O0
EGilo 0 1 -4 6 —4 1 ol %P*lo o0 0o 1 -2 1 0 o0
Lo 0 0 0 0 1 -4 ml Lo 0 0 0O O 0 1 -2
1 0 0 0 0 0 0 01 i1 11
0 1. 0 0 0 0 O O Vs q
0 01 0 0 0 0 O Vs qs
0 001 0 0 0 O Vol |94 B
tBilo 0 0 0 1 0 o oll*|ve|T|as|% (4=3)
0 0000 0 0 1 v n

m is factor depends on boundary condition type.

m=5  for fixed end condition.

m =7 for pinned end condition.

79



Chapter Four

Applications of Generalized Beam Theory

4.2.1 Boundary conditions

As the finite difference equations are formed, at some point the boundary conditions of

the structure need to be applied. Any conditions can be applied. At this stage, just two

alternatives, pinned and fixed ends will be considered.

Pin end (at node i):

yi=0
Yi-1 = - Vil
Yi-2 = - Vi+2
Vi-2 Yi1

Fixed end (at node i)
yi=0
Yi-1 = Yi+1

Yi-2 = VYi+2

Yi

Figure (4-1) Pinned end

Vi

Figure (4-2) Fixed end
80
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4.3 Linear problem using the generalized beam theory (beam

subjected to axial load)

The first order basic equation of equilibrium of any member, in GBT notation, is:
ECy V" — GDj V' + Bj Vi = qQx (4—-1)

The first four modes (rigid body modes) should be in sequence, the axial, bending about two

principle axes and torsion modes in conventional theory.

Table (4-1) Differential equation for rigid body modes.

Mode Conventional Theory Generalized Beam Theory
1 EAu" = —N EC,V{"" —GD,V{' + B,V; = qQ,
2 ElL,y"" = 4y ECV,"" — GD,V;' + B,V, = qQ;
3 EL,x"" = qy EC3V3'"" — GD3V3' + B3Vs = qQ5
4 ETo"" —GJp" =m EC4V{" — GDV)' + BV, = qQ,

Table (4-2) Compatibility equation for rigid body modes.

Mode Conventional Theory Generalized Beam Theory
1 N = EAu' W, = —EC,V{
2 My = —EL.y" W, = —EGV;'
3 My = —ElL,yx" W3 = —EC3V5
4 B = —ET¢" w, = —-EC,V,’

Table (4-3) Normal stress for rigid body modes.

Mode Conventional Theory Generalized Beam Theory
1 _N 5 =
g = A 1 C1
2 0, = My o =@
8 Ixx 2 CZ
M, x Wiw
3 0, = =2 oy = 323
Lyy C3
4 _ Bw o, = Wyw,
% =T T,
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4 3.1 Equivalent axial loading

To resolve the applied loads at each node into equivalent axial plate forces the loads are
applied at a cross-section node in a direction parallel to the web plate and with no component

in the direction of any adjoining plates.

The equivalent axial loading for the applied load (P) is shown in figure (4-3).

Load case 1, figure (4-3a)

lL” P

;=00 0

31

¥ [2] 2)
]

(1)

(6)
[ 511

L

(a)

(3)

Load case 2, figure (4-3b)

P .f{ 2] 2)
[1]

(1)
137
f6)
(AN | EI
4) [4] f5)

(b)

—P 0 0]
Plate No. | Load
1 0
2 0
3 -P
4 0
5) 0
-P 0 P 0]
Plate No. | Load
1 0
2 -P
3 0
4 P
5 0

Figure (4-3) Equivalent axial loading.
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The equivalent axial loads g, is:

G =) ax Ow @) (4-4
i=1

Appendix B presents the Matlab code used to perform the GBT linear problem solution.
4.3.2 Example
Consider a simply supported beam with the top hat section as shown below in Figure (4-4):

Top hat section properties:

Young’s Modulus, E= 21000 kN/cm?; Poisson’s Ratio, v =0.3 t=0.17 cm
P=2kN a=200cm b =400cm
»
Plate Mo Length (cm) inclination (deg) [3

1 2 ] 3 (L]

2 12 90 2 4

3 o Q

4 12 -90 [yl L sy

s 2 0 1 2 5 6}

19
s b S S
Figure (4-4) Top hat-section

Table (4-4), Figure (4-5) and Figure (4-6) show the relevant GBT section properties in the
Matlab code, GBTUL and CUFSM respectively:

The GBT section properties of the first four modes (rigid body modes) from the Matlab
coding program matched those in the (GBTUL), figure (4-5) and (CUFSM), figure (4-6) which
represent cross-section area, moment of inertia about major axis and moment of inertia about
manor axis for C1, C> & Cz in table (4-4) and torsional moment of inertia and torsional constant
for C4 & D4 in table (4-4).

Table (4-5) shows the displacements of each mode separately through the length of the beam.
node No0.66 in table (4-5) represents the maximum displacement in mode No.2 which is
matched to the maximum bending deflection in the conventional bending theory, equation (4-
5). Likewise, the displacement in node No0.80 in table (4-5) is matched with the deflection under

the point load in the conventional bending theory, equation (4-6).
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Table (4-6) demonstrates the stress resultants for each mode individually through the length of
the beam. It was noted that the stress resultant of mode No.2 at node No.69 in table (4-6) was
matched with the maximum bending moment in the conventional bending theory, equation (4-
7).

Table (4-4) GBT section properties in matlab.

Mode Cogliﬁiznal GBT Section properties
Cx Dy B
1 Al | | 68 0 0
2 Ik | _ | _ | 12876 0 0
3 L, | | _ | 59.88 0 0
4 r J| ] 72538 0.091 0
5 | | _ | 0291 | 0.00021 | 0.0115
6 ~ | _ | _ ] 0318 | 0.00021 | 0.0159

File  Help
Cross-Section Analysis | Mode Selection | Member Analysis | Results

Deformation Mode Characteristics GBT Deformation Modes
hMode 1
Mode Number: 1
eae Humber = Axial extension
Total number of modes: 18

Displacemerts Plate Forces Plate Strains Strain Energies
@ In-Plane ) N« O ex M 3 4
O Warping O Ns Does OcF

) Nxs O exs O BM

) Mx ) ¥x O BF

O Mms O Xs O DM

() Mxs [ O DF

1 2 5 &

Mode Selection
(®) Convertional Modes () User Selection: Flot Gptions
(7) Conventional+Shear Modes % \I\'IVnaTle;egmarm
O Conventional+Extension Modes M| Cerioid | Undate Flot
- pdate
O Al Modes [ Shear Center
Cross-Section Geometrical Properties

A= 68

1= 1288 2= 59.88

r= 7251 J= 0.08067
Xeca= 0 Yog= 6.353
Xsc= 0 Ysc= 17.559
B1= 234 B2= -1.667E-05

Mext

Figure (4-5) GBTUL section properties (Bebiano et al, 2008).
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CUFSM v4.05 -- Properties of cross section - O
Calculated Section Properties
A=68 J = 0.080667
z
xcg=0 zcg = 6.3529
2 +H
boc = 128.7529 lzz = 59.8667 5
bez=0 8=0 |
11 =128.7528 [22 = 59 8667 3
* e B o 1 X
Open Section Properties
Xs=0 Zs =17.559 3
Cw = 7227581 3
2
Bl =-23.4075 ; @ scale =
Basic Plot v 1 o
Z
2=
e warping text out

Figure (4-6) CUFSM section properties (Schafer, 2006).

Finite differences can, however, be used to actually find the displacement functions in
each mode for any boundary condition. Considering the above problem and dividing the beam

into 120 elements, each 50 mm long, a 119 x 119 matrix is created for each GBT mode.

A summary of the results (for selected nodes) is shown in the tables (4-5), (4-6) & (4-7).

85



Chapfter Four Applications of Generalized Beam Theory
Table (4-5) Modal displacement.
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Unit cm cm cm red red red

60 0 -2.82 0 -0.543 0.001 0.000
61 0 -2.84 0 -0.547 0.000 0.000
62 0 -2.85 0 -0.550 0.000 0.000
63 0 -2.85 0 -0.554 -0.001 0.000
64 0 -2.86 0 -0.557 -0.002 0.000
65 0 -2.86 0 -0.559 -0.004 -0.001
66 0 -2.86 0 -0.561 -0.005 -0.001
67 0 -2.86 0 -0.564 -0.007 -0.001
68 0 -2.86 0 -0.565 -0.009 -0.002
69 0 -2.86 0 -0.566 -0.012 -0.003
70 0 -2.85 0 -0.567 -0.015 -0.003
71 0 -2.84 0 -0.567 -0.018 -0.004
72 0 -2.83 0 -0.567 -0.022 -0.005
73 0 -2.82 0 0.566 -0.026 -0.006
74 0 -2.80 0 -0.565 -0.030 -0.008
75 0 -2.78 0 -0.563 -0.034 -0.009
76 0 -2.76 0 -0.561 -0.039 -0.010
77 0 -2.74 0 -0.558 -0.043 -0.011
78 0 -2.72 0 -0.554 -0.047 -0.012
79 0 -2.69 0 -0.551 0.050 -0.013
80 0 -2.66 0 -0.546 -0.052 -0.014
81 0 -2.63 0 -0.541 -0.053 -0.014
82 0 -2.60 0 -0.535 -0.052 -0.014
83 0 -2.56 0 -0.528 0.050 -0.013
84 0 -2.52 0 -0.521 -0.047 -0.012
85 0 -2.48 0 -0.513 -0.043 -0.011
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Table (4-6) Stress resultants.
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Node Axial load mlii:edr:? ?)n mlzer):edr:;1 ?)n Torsion Syrnmet_rical unsy_mme.trica
major axis | minor axis distortion | distortion

nit kN kN.cm kN.cm kN.cm kN.cm kN.cm

60 0 -196.67 0 -192.62 0.035 0.009
61 0 -200.00 0 -199.65 0.041 0.011
62 0 203.33 0 -206.91 0.048 0.014
63 0 -206.67 0 -214.42 0.055 0.016
64 0 -210.00 0 -222.19 0.062 0.019
65 0 -213.33 0 -230.22 0.069 0.021
66 0 -216.67 0 -238.53 0.076 0.024
67 0 -220.00 0 -247.13 0.081 0.026
68 0 -223.33 0 -256.03 0.085 0.028
69 0 -226.67 0 -265.23 0.087 0.029
70 0 -230.00 0 -274.75 0.086 0.029
71 0 -233.33 0 -284.61 0.081 0.028
72 0 -236.67 0 -294.80 0.071 0.026
73 0 -240.00 0 -305.35 0.056 0.022
74 0 -243.33 0 -316.26 0.034 0.015
75 0 -246.67 0 -327.56 0.003 0.005
76 0 -250.00 0 -339.25 -0.037 -0.008
77 0 -253.33 0 -351.35 -0.088 -0.025
78 0 -256.67 0 -363.87 -0.153 -0.047
79 0 -260.00 0 -376.82 -0.232 -0.074
80 0 -263.33 0 -390.23 -0.327 -0.107
81 0 -266.67 0 -404.11 -0.438 -0.146
82 0 -260.00 0 -388.48 -0.327 -0.107
83 0 -253.33 0 -373.31 -0.232 -0.074
84 0 -246.67 0 -358.59 -0.153 -0.047
85 0 -240.00 0 -344.30 -0.088 -0.025
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Table (4-7) Nodal stress.

Node Cross section nodal stress kN/cm?
thruogh
length 1 2 3 4 5 6
60 5.61 14.81 13.04 4.20 4.54 14.04
61 5.63 15.16 13.34 4.18 4.51 14.39
62 5.66 15.51 13.66 4.16 4.48 14.74
63 5.67 15.87 13.97 4.13 4.44 15.10
64 5.68 16.24 14.29 4.10 4.39 15.47
65 5.69 16.61 14.62 4.06 4.33 15.84
66 5.69 16.99 14.96 4.02 4.27 16.21
67 5.68 17.38 15.30 3.97 4.20 16.59
68 5.65 17.78 15.65 3.91 4.13 16.97
69 5.62 18.19 16.00 3.84 4.04 17.34
70 5.57 18.61 16.37 3.77 3.95 17.71
71 5.51 19.04 16.74 3.69 3.86 18.07
72 5.43 19.48 17.13 3.60 3.76 18.42
73 5.32 19.94 17.52 3.51 3.66 18.74
74 5.20 20.41 17.92 3.41 3.55 19.05
75 5.04 20.90 18.34 3.29 3.44 19.32
76 4.85 21.40 18.77 3.17 3.32 19.56
77 4.63 21.93 19.22 3.05 3.21 19.76
78 4.37 22.47 19.67 2.91 3.09 19.91
79 4.07 23.04 20.15 2.76 2.98 20.00
80 3.72 23.63 20.64 2.60 2.86 20.03
81 3.32 24.24 21.15 2.44 2.75 19.99
82 3.60 23.42 20.45 2.50 2.74 19.82
83 3.82 22.62 19.78 2.55 2.74 19.59
84 3.99 21.84 19.11 2.59 2.74 19.30
85 4.13 21.08 18.47 2.62 2.74 18.95

From the conventional bending theory, the maximum moment and deflection on the y-axis are:

3 3
Pa(l?—a?)Z 2 x 200(6002 — 200%)2
max = = =29cm (4-5)
9V3IEL,  9v3 x 600 x 21000 x 128.76
5 _Pa’h?_ 2x200°x4000 e
at pointload = 3p1 1= 35751000 x 128.76 x 600 <™ (4-6)
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Pab  2x400 x 200

; 500 = 266.7 kN.cm 4-7)

Mpax =

4.4 Buckling problems using generalized beam theory

The basic equation of equilibrium of any member, in GBT notation, is:

n n n
Z[Eckkv,;"’ — GD V' + BVie + Z z Xijk WiV + X5 (W{'V; + 2W; V)]
k=1 j=1i=1
= 4Qx (4-8)

Where:

V is the (unknown) displacement function in each mode. Finite differences can, however,

be used to actually find the displacement functions in each mode for any boundary condition.
E, G, are material properties.
C, D, B, x, and x* are GBT section properties.
W is the resultant function of the section (another section property).
o are the applied loads in each mode.
1],k are the different possible (coupled) displacement modes.

In the case of open sections, the shear effect is trivial, the term x* is a second order term

related to shear that can usually be ignored.
In the case of buckling problems,

1- The applied load qq is zero.

2- The axial load will be represented as a resultant function of mode one; (k=1), axial load

subjected to beam =W, . The axial load is constant along the beam so:
W =w/"=0

The GBT equation becomes:
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Z[Eckkvlém — GD Vi’ + B Vi = — Z X1jk(W1Vj") 4-9
k=1 k=1j=1

4.4.1 Linear analysis of buckling problems (eigen value problems)

4.4.1.1 Buckling in a single mode

Considering a single mode individually, the governing equation is:

EC V" — GDi V' + B Vie = = X1 W1 V) (4—10)

Finite differences can be used to create an eigenvalue problem where the lowest eigenvalue is

the critical load factor and the eigenvector is the buckled mode shape related to this value.

If the length of the beam was divided into (n) nodes. The equation (4-10) will be:

m -4 1 0 0 0 0 07
-4 6 -4 1 0 0 0 0
1 -4 6 -4 1 0 0 0
0 1 -4 6 -4 1 0 0
ECe 0 0 1 -4 6 —4 1 0
0 0 0 0 0 1 -4 m
—2 1 0 0 0 0 0 O0- 1 0 0 0 0 0 0 Of
1 -2 1 0 0 0 0 0 0 1.0 0 0 0 0 O
0 1 -2 1 0 0 0 0 0 01 0 0 0 0 0
0 0 1 -2 1 0 0 0 0 0 01 0 0 0 O
GD""ooo1—2100+B"’<oooo1ooo*
Lo 0 0 0 0 0 1 =2 Lo 0 0 0 0 0 0 1
128 —2 1 0 0 0 0 0 07 ("
v, 1 -2 1 0 0 0 0 0 Vv,
Vs 0 1 -2 1 0 0 0 o0 Vs
Val _ _ 0 0 1 -2 1 0 0 0] |V
| Wil 0 0 1 201 0 o l*|w
[V, Lo 0 0 o0 o0 o 1 =211y

The above equation will be:
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(A—2AB)V =0 (4 —11)
Where:
m -4 1 0 0 0 0 0
-4 6 -4 1 0 0 0 0
1 -4 6 -4 1 0 0 0
_ 0 1 -4 6 —-4 1 0 0
A= ECi 0 0 1 -4 6 -4 1 0

o
o
o
o
o
_
IS
3

—2 1 0 0 0 0 0 0
1 -2 1. 0 0 0 0 0
0 1 -2 1 0 0 0 0
0 0 1 -2 1 0 0 0
“G@Dw|l g 9 0 1 -2 1 0 o0
o o0 O o0 0 0 1 =2
‘1 0 0 0 0 0 0 O
0 1. 0 0 0 0 0 O
0 01 0 0 0 O O
0 0 01 0 0 0 O
+B""o 0 0 01 0 0 0
0 0 0 00 0 0 1
—2 1 0 0 0 0 0 O
1 -2 1 0 0 0 0 0
0 1 -2 1 0 0 0 0
_ 0 0 1 -2 1 0 0 0
B = =XiaWy 0 0 0 1 =21 0 0
Lo 0 0 0O 0 0 1 -2

After applying boundary conditions, the problem will be an (n-1) x (n-1) eigenvalue

problem.

Appendix C presents the Matlab code used to perform the GBT linear analysis of buckling in

single mode.

For verification purposes, mode 2 and 3 are the bending modes about two principal axes which

must match the Euler buckling about the same axes.
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Euler buckling load is:

m2EIl
cr = 2 (4-12)

4.4.1.1.1 Example

Consider the column subjected to an axial load, with the section as shown in Figure (4-7):
The properties of the section are:

Young’s Modulus, E=20,000 kN/cm?; Poisson’s Ratio, v =0.3 t =0.167 cm

Nodes X y
1 | 455 | 10 L=/@ o Y (9)—(20)
2 -
2 325 | 10 ‘
(4 Q) & (8) (7)
3 325 | 6.8
4 —
4 5 | 68
2 —
5 5 |0 (5) A ®)
6 5 0 5 0 5
7 5 6.8
8 325 | 68
9 325 | 10
10 | 455 | 10

Figure (4-7) Rack column section.

Table (4-12) and figure (4-8) demonstrate the matching between GBT second and third
modes with Euler buckling loads in same axes along the length of the beam with different

boundary conditions. Figure (4-8) at this scale, the results are indistinguishable.

Figures (4-9), (4-10) & (4-11) show the linear buckling load along the length of the

member for each mode individually with different boundary conditions.
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Table (4-8) GBT & Euler buckling loads (kN)

Pinned-Pinned Pinned-Fixed Fixed-Fixed

length (cm) Mode 2 Mode 3 Mode 2 Mode 3 Mode 2 Mode 3

GBT Euler GBT Euler GBT Euler GBT Euler GBT Euler GBT Euler

10 194917.91 | 195081.63 | 153911.94 | 154050.29 | 398706.38 | 390163.27 | 314828.28 | 308100.57 | 779483.09 | 780326.53 | 615498.85 | 616201.14

20 48729.48 | 48770.41 | 38477.98 | 38512.57 | 99676.60 | 97540.82 | 78707.07 | 77025.14 | 194870.77 | 195081.63 | 153874.71 | 154050.29

30 21657.55 | 21675.74 | 17101.33 | 17116.70 | 44300.71 | 43351.47 | 34980.92 | 34233.40 | 86609.23 | 86702.95 | 68388.76 | 68466.79

40 12182.37 | 12192.60 | 9619.50 9628.14 | 24919.15 | 24385.20 | 19676.77 | 19256.29 | 48717.69 | 48770.41 | 38468.68 | 38512.57

50 7796.72 7803.27 6156.48 6162.01 15948.26 | 15606.53 | 12593.13 | 12324.02 | 31179.32 | 31213.06 | 24619.95 | 24648.05
60 5414.39 5418.93 4275.33 4279.17 11075.18 | 10837.87 | 8745.23 8558.35 21652.31 | 21675.74 | 17097.19 | 17116.70
70 3977.92 3981.26 3141.06 3143.88 8136.86 7962.52 6425.07 6287.77 15907.82 | 15925.03 | 12561.20 | 12575.53
80 3045.59 3048.15 2404.87 2407.04 6229.79 6096.30 4919.19 4814.07 12179.42 | 12192.60 | 9617.17 9628.14
90 2406.39 2408.42 1900.15 1901.86 4922.30 4816.83 3886.77 3803.71 9623.25 9633.66 7598.75 7607.42

100 1949.18 1950.82 1539.12 1540.50 3987.06 3901.63 3148.28 3081.01 7794.83 7803.27 6154.99 6162.01

125 1247.47 1248.52 985.04 985.92 2551.72 2497.04 2014.90 1971.84 4988.69 4994.09 3939.19 3943.69

150 866.30 867.03 684.05 684.67 1772.03 1734.06 1399.24 1369.34 3464.37 3468.12 2735.55 2738.67
175 636.47 637.00 502.57 503.02 1301.90 1274.00 1028.01 1006.04 2545.25 2548.00 2009.79 2012.09
200 487.29 487.70 384.78 385.13 996.77 975.41 787.07 770.25 1948.71 1950.82 1538.75 1540.50
250 311.87 312.13 246.26 246.48 637.93 624.26 503.73 492.96 1247.17 1248.52 984.80 985.92
300 216.58 216.76 171.01 171.17 443.01 433.51 349.81 342.33 866.09 867.03 683.89 684.67
350 159.12 159:25 125.64 125.76 325.47 318.50 257.00 25151 636.31 637.00 502.45 503.02
400 121.82 121.93 96.19 96.28 249.19 243.85 196.77 192.56 487.18 487.70 384.69 385.13
450 96.26 96.34 76.01 76.07 196.89 192.67 155.47 152.15 384.93 385.35 303.95 304.30
500 77.97 78.03 61.56 61.62 159.48 156.07 125.93 12324 311.79 312.13 246.20 246.48
550 64.44 64.49 50.88 50.93 131.80 128.98 104.08 101.85 257.68 257.96 203.47 203.70
600 54.14 54.19 42.75 42.79 110.75 108.38 87.45 85.58 216.52 216.76 170.97 17117
650 46.13 46.17 36.43 36.46 94.37 92.35 7452 72.92 184.49 184.69 145.68 145.85
700 39.78 39.81 3141 31.44 81.37 79.63 64.25 62.88 159.08 159.25 125.61 125.76
750 34.65 34.68 27.36 27.39 70.88 69.36 55.97 54.77 138.57 138.72 109.42 109.55
800 30.46 30.48 24.05 24.07 62.30 60.96 49.19 48.14 121.79 121.93 96.17 96.28

850 26.98 27.00 21.30 21.32 55.18 54.00 43.57 42.64 107.89 108.00 85.19 85.29

900 24.06 24.08 19.00 19.02 49.22 48.17 38.87 38.04 96.23 96.34 75.99 76.07

950 21.60 21.62 17.05 17.07 44.18 43.23 34.88 34.14 86.37 86.46 68.20 68.28

1000 19.49 19.51 15.39 15.41 39.87 39.02 31.48 30.81 77.95 78.03 61.55 61.62
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——Pinned-Pinned Moda 2 Euler

——Pinned-Pinned Mode 3 GBT

Pinned-Pinned Mode 3 Euler

——Pinned-Fixed Mode 2 GBT
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Figure (4-8) GBT & Euler buckling loads.
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Figure (4-9) Buckling load vs length of column for each mode

individually for pinned-pinned ends conditions.
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Figure (4-10) Buckling load vs length of column for each mode
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4.4.1.2 Buckling in combined modes

For combined modes, the governing equation is:

n n

n
ECuVi" — GD Vi’ + By Vi = — z z X1 (W V") (4-6)
k=1 k=1j=1

The final buckling problem to consider is that of coupled buckling. The method of

solution is again by finite differences.

The eigenvalue problem will be:

(C—AD)V =0 (4 —13)
Where:
A, 0 0 0 0 07
0 A4, 0 0 0 O
c_|0 0 4 0 0 0

o
(=)
o
(=)
o
=

X,y O 0 0 0 0 7

0 X4 0 0 0 O
R A S

L0 0 0 0 0 Xyl

—2 1 0 0 0 0 0 O

1 =21 0 0 0 0 0

o 1 -2 1 0 0 0 0

Jo o 1 -2 1 00 o0

o 0 0 1 -2 1 0 0

Lo 0 0 0 0 0 1 -2

A is the same in single mode eigenvalue problem.

After applying boundary conditions, the problem will be (n x k-1) x (n x k-1) eigenvalue

problem.
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Appendix D presents the Matlab code for GBT linear analysis of buckling in combined modes.
The results could be compared with GBTUL and CUFSM for verification purposes.

The figure (4-12) flow chart illustrates procedures to calculate critical buckling loads in both

single and combined modes.

Figure (4-12) Flow chart illustrates procedures to calculate critical buckling
loads in both single and combined modes.
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4.4.1.2.1 Example

For the cross-section showed in figure (4-7), Figures (4-13) to (4-24) demonstrate the
theoretical buckling load through the column length derived from the linear analysis finite
difference Matlab code, finite element (GBTUL) and finite strip method (CUFSM) respectively
with different boundary conditions.

200

150

100

Buckling load (kN)

50

0 : : T S S S R A : :
10° 10

Column length (cm)
Figure (4-13) Buckling load vs length of column with combined modes in
matlab program for pinned-pinned boundary conditions.
X
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Figure (4-14) Buckling load vs length of column with combined modes in

GBTUL for pinned-pinned boundary conditions (Bebiano et al, 2008).
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CUFSM v4.05 - Finite Strip Post-Processor - g
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Figure (4-15) Buckling load vs length of column with combined modes in
CUFSM for pinned-pinned boundary conditions (Schafer, 2006).
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Figure (4-16) Buckling load vs length of column with combined modes for all

programs for pinned-pinned boundary conditions.
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Figure (4-17) Buckling load vs length of column with combined modes in
matlab program for pinned-fixed boundary conditions
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Figure (4-18) Buckling load vs length of column with combined modes in
GBTUL for pinned-fixed boundary conditions, (Bebiano et al, 2008)
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CUFSM v4.05 -- Finite Strip Post-Processor
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Figure (4-19) Buckling load vs length of column with combined modes in

CUFSM for pinned-fixed boundary conditions, (Schafer,

2006)

SIS A ! ! p——

B00F 2\ o IRRE

GBT FDM
CUFSM

250

k2

=

o
T

Buckling Load (kN)

00 4 NN

e S N

Column Length (cm)

Figure (4-20) Buckling load vs length of column with combined modes in

all programs for pinned-fixed boundary conditions
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Figure (4-21) Buckling load vs length of column with combined modes in
matlab program for fixed-fixed boundary conditions
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Figure (4-22) Buckling load vs length of column with combined modes
in GBTUL for fixed-fixed boundary conditions, (Bebiano et al, 2008)
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in all programs for fixed-fixed boundary conditions
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4.4.2 Non-linear analysis of imperfect members

In the real case of buckling failure, there will always be initial imperfections which
affect the load at which material yield occurs as the member bends sideways under the effects
of axial and /or transverse loading. The load needs to be applied incrementally to update the
effects of P-delta until material yield can be identified. Beyond this, conventional theory will

break down as the effects of plasticity occur.

This problem considers combined buckling of a member containing initial imperfections. The

method of solution is again by finite differences.

The governing equation will be:
n n n

ECk V" — GD V' + By Vi = — z z X1jk(W1Vy") (4—14)
k=1 k=1j=1
Where: 1/, is an initial imperfection of member.
After evaluating equation above with finite differences it will become:
CxV=DxV, (4 —15)
Where:

C and D are as stated in (4.4.1).

This series of equations can then be solved by applying a small increment of load (I#/;) for axial
load in presence of initial imperfection 1/, and solving for V. This gives a revised set of V,
values for the right hand side in the next load increment. The load is incremented and the

equations solved again for these revised values of V.

The procedure can then be repeated until the load is such that the value of V does not converge,
or until the stress in the section (calculated from the displacements) exceeds the yield stress of
the section. For now, the onset of plasticity will be used as a marker for termination of the

analysis. The flow chart in figure (4-25) illustrates the iterative operation of this equation.

Appendix E presents the Matlab code of the GBT non-linear analysis.
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Figure (4-25) Flow chart of non-linear analysis of yielding load of

column subjected to an axial load with initial imperfection
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4.4.2.1 Example

For the cross-section showed in figure (4-7), fy = 275 MPa. Figures (4-26) to (4-28)
demonstrate the non-linear buckling load compared with linear buckling load in the finite

difference Matlab code program with different boundary conditions.

200 : : e |

180 : : : o ™ Linear GBT Buckling FEM
: : S Non-Linear GBT FDM ]

1A0L e NN N
100k oo NG NG
80
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60

40

20

10 107 10°
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Figure (4-26) Non-linear load vs length of column with pinned-pinned

boundary conditions.
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Figure (4-27) Non-linear load vs length of column with pinned-fixed ends

boundary conditions
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Figure (4-28) Non-linear load vs length of column with fixed-fixed ends

boundary conditions
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Figures (4-26), (4-27) and (4-28) show that the non-linear load was less than the linear buckling

load through the length of the column due to the effect of initial imperfections.

This chapter has addressed the application of generalised beam theory to nonlinear ‘real’
buckling scenarios. The GBT formulation has been re-coded in Matlab and successfully
validated by comparing with Euler buckling loads in second and third rigid body modes for
linear eigen-buckling and general beam behaviour for a number of typical section examples
which are in close agreement. To verify the nonlinear behaviour, further work through

experimentation and finite element analysis will be conducted.
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CHAPITER AIVE

FINITE ELEMENT ANALYSIS

A set of ANSYS modelling guidelines are presented in this chapter to provide a
methodology for the finite element studies conducted in this research. Finite element based
linear eigenbuckling and non-linear material and geometric analyses are valuable tools for
studying the buckling properties of thin-walled structures. The accuracy of these analyses is
influenced by decisions made while constructing the finite element models, including the
choice of finite element type, geometry, material properties and meshing. Studies are presented
here which compare finite element linear eigenbuckling predictions of plate instability
problems to known theoretical solutions, whereas nonlinear material and geometric problems
relate to actual buckling solutions. Both analyses are performed with the commercial finite
element program ANSYS. The accuracy of ANSY'S thin shell elements are evaluated, and finite
element convergence studies are offered to identify limits on element aspect ratio and meshing.
Rules for modelling rounded corners are also provided with both linear and nonlinear buckling
studies.

5.1 Element type

ANSYS offers a convenient way to build structural models from any element type, a
large library of element types is available for use in many types of analysis. These elements
are categorised according to many criteria such as element geometry (i.e. lines, shells/plates
and volumes) element characteristics, element degrees of freedom, and perhaps material
specific properties (i.e. the ability to crack). These classifications help users to choose the best
element type which will provide the most appropriate representation of the problem. The finite
element model may be characterised as being 2-D or 3-D, and as being collected of point
elements, line elements, area elements, or solid elements. However, the model can be formed
from different kinds of elements as necessary (taking care to uphold the appropriate
compatibility among degrees of freedom). For example, a stiffened shell structure may be
modelled using 3-D shell elements to signify the skin (shell surface) and 3-D beam elements
to represent the stiffening ribs. The choice of model dimensionality and element type will often
determine which method of model generation will be most practical for the problem at hand.

In order to represent a cold-form steel section in finite element analysis an area element has a
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triangular or quadrilateral shape and may be a 3-D shell element could choose to achieve the
actual behaviour of the thin-walled plate under application of axial loads. In this study, the four
node SHELL181 element type has been used to simulate the behaviour of these thin plates
because it is suitable for analysing thin to moderately-thick shell structures. It is a four-node
element with six degrees of freedom at each node: translations in the x, y, and z directions, and
rotations about the X, y, and z-axes. It is also well-suited for linear, large rotation, and/or large
strain nonlinear applications. Change in shell thickness is also accounted for in nonlinear
analyses. Figure (5-1) shows the geometry, node locations, and the element coordinate system
for this element. The element is defined by shell section information and by four nodes (I, J,
K, and L).

KL

J
Triznguizr Opfion
{not recommended)

Figure (5-1) Element geometry (Ansys, 2007).

5.2 Material properties

ANSYS allows the input of various material properties. The chosen material properties
depend on the type of analysis application, Material properties can be linear or nonlinear as

explained in the following sections.
5.2.1 Linear material properties

For elastic response, if the induced stresses are below the material’s yield strength, the
material can fully recover its original shape upon unloading. From a standpoint of metals this
behaviour is due to the stretching but not breaking of bonds between atoms. Because elasticity
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is due to this stretching of atomic bonds, it is fully recoverable. Moreover, these elastic strains
tend to be trivial. Elastic behaviour of metals is most commonly represented by the stress-strain
relationship of Hooke’s Law, where stress and strain are linearly related by Young’s modulus.
Linear material properties can be elastic constant or temperature-dependent, and isotropic
(having a physical property which has the same value when measured in different directions),
orthotropic (having three mutually perpendicular planes of elastic symmetry at each point) and
anisotropic (having a physical property which has a different value when measured in different
directions). In this study, because steel is a homogenous material, the linear material properties

have been taken as linear elastic isotropic with constant Young’s modulus and Poisson's ratio.

5.2.2 Nonlinear material properties

In the case of nonlinear material properties, if a ductile material experiences stress
beyond the elastic limit, it will yield, acquiring large permanent deformations. Materials that
fail with little plastic deformation are said to be brittle. The ductile response is safer in many
respects than is a brittle response, see figure (5-2). There are elastic, inelastic and viscoelastic
material properties. To further describe nonlinear material behaviour, it is necessary to review

some basics of plasticity by defining pertinent terminology.

Yield Strength o,

Unloading e—— ;"

Elastic Plastic &

Figure (5-2) Stress-strian curve (Ansys, 2007).

5.2.2.1 Rate-independent material

In this study, the structural behaviour of cold-form steel is not reliant on the rate of
loading or deformation, the material is said to be rate —independent. Most metals exhibit rate-
independent behaviour at low temperatures (< 1/4 or 1/3 melting temperature) and low strain

rates.
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5.2.2.2 Isotropic hardening plasticity

Isotropic hardening states that the yield surface expands uniformly during plastic flow.
The term ‘isotropic’ refers to the uniform dilatation of the yield surface and is different from

an ‘isotropic’ yield criterion (i.e., material orientation).
5.2.2.3 Von Mises yield criterion

Tensile testing on specimens provides uniaxial data, which can easily be plotted on one-
dimensional stress-strain curves, such as those presented earlier in this chapter, whereas, the
actual structure usually exhibits a multiaxial stress state. The yield criterion provides a scalar
invariant measure of the stress state of the material which can be compared with the uniaxial
case. The von Mises yield criterion predicts that yielding will occur whenever the distortion
energy in a unit volume equals the distortion energy in the same volume when uniaxial stressed
to the yield strength. When the von Mises equivalent stress exceeds the uniaxial material yield
strength, general yielding will occur. In this study, the nonlinear material properties have been
taken as inelastic-rate independent-isotropic hardening plasticity- Mises plasticity-bilinear for
the cold-formed steel with properties derived from the experimental coupon tests for tensile

strength.

5.3 Model geometry

Once the material properties have been defined, the next step in the numerical analysis
is to generate a finite element model —i.e. nodes and elements. Cold-form steel beam or column
sections have different sectional shapes according to their purpose and position in the frame of
a structure. To allow creation of these sections as 2D or 3D finite elements, the ANSY'S design

modeller has worthy flexible tools required for building any composite model.

When models are created in ANSY'S, two important points should be taken into account.
First, the model must simulate the actual shape of the sections using full capabilities of the
software design modeller. Second, the model must have constricted of element types which are

suitable for the analysis in question.

In ANSYS, there are two methods to create the finite element model, direct generation

and solid modelling.
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5.3.1 Direct generation

In this method, all nodes and elements are input manually. This can be done by defining
the location of each node and the connectivity of each element. Several convenient operations,
such as copying patterns of existing nodes and elements, symmetry reflection, etc. are

available. Figure (5-3) demonstrates how to create a simple model using direct generation

method.

Copying the nodes Creating the nodes

Creating the element lCopying the elements through
cross-section

Copying the elements through the length

Figure (5-3) Modelling with the direct generation method
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» The advantages of direct generation are:

- Expedient for small or simple models.

- Provides the user with complete control over the geometry and numbering of every
node and every element.
» The disadvantages of direct generation are:

- Usually too time-consuming for all but the simplest models; the volume of data the
user must work with can become overwhelming.

- Cannot be used with adaptive meshing.

- Can be difficult to modify the mesh (tools such as area mesh refinement, Smart
Sizing, etc. cannot be used).

- Itis generally more problematical for modelling rounded corners and fillets.
5.3.2 Solid modelling

For the solid modelling method, the input of shape geometry is produced by creating
keypoints, lines, areas and volumes. Subsequently operations like copy, add, subtract, intersect,
glue, divide, overlap, extrude, etc. can be employed to produce the final desired geometry to
simulate the actual shape. The elements chosen to represent the model will dictate the geometry

to be created.

» The solid modelling method has the following advantages:

- More appropriate for large or complex models, especially 3-D models of solid
volumes.

- Allows to work with a relatively small number of data items.

- Allows geometric operations (such as dragging and rotations) that cannot be done
with nodes and elements.

- Supports the use of "primitive" areas and volumes (such as polygonal areas and
cylindrical volumes) and Boolean operations (intersections, subtractions, etc.) for
"top down™ construction of your model.

- Supports adaptive meshing. In order to do area, mesh refinement after loads have
been applied (solid model loads are also required).

- Readily allows modifications to geometry.

- Facilitates changes to element distribution; you are not bound to one analysis model.

- Improved modelling of rounded corners and fillets.
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» The disadvantages of solid modelling are:

- May require a large amounts of time in both modelling and solution.

- Can (for small, simple models) sometimes be more cumbersome, requiring more data
entries than direct generation.

- Can sometimes fail (the program will not be able to generate the finite element mesh)
under certain circumstances.

Figure (5-4) shows how to create complex model using the solid modelling method.
5.3.3 Meshing tools

Meshing is an integral part of the computeraided engineering simulation process. The
mesh influences the accuracy, convergence and swiftness of the solution. Furthermore, the time
it takes to create and mesh a model is often a weighty portion of the time it takes to obtain
results from the solution. Therefore, the better programmed the meshing tools, the faster the

solution,

The default mesh controls that ANSYS uses may produce a mesh that is satisfactory for
the analysis model. In this case, it is not necessary to specify any mesh controls. Mesh controls
allow the user to establish such factors such as the element shape, midsize node placement, and
element size to be used in meshing the solid model. This step is one of the most important of
the entire analysis, all decisions made at this stage in the modelling process can affect the

accuracy and economy of the analysis.

Once the best model is found, meshing technologies from ANSY'S provide the flexibility
to produce meshes that range in complexity from pure hexagon to highly detailed hybrid; a
user can put the right mesh in the right place and ensure that a simulation will accurately
validate the physical model. The mesh is usually refined in areas of high stress gradient, or
possibly to aid output of results in particular locations. Mesh sensitivity studies are necessary

to ensure convergence of results and production of a satisfactory model

For cold-form steel, shell modelling and meshing solutions from ANSYS offer several
approaches in providing meshes that best meet the physics. In general, this consists of two

approaches that use common tools:

1- 2-D axisymmetric or planar models can be used to simplify 3-D physics in a 2-D
fashion. 2-D models can mesh with quad meshes, quaddominant meshes or all-

triangle meshes.
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Use ANSYS operations to get the Creating the shapes
specific shape

Keep use ANSYS operations to Use ANSYS operations to get the
get the specific shape specific shape

Extrude the final cross section to create the
final shape length

Figure (5-4) Modelling with the solid modelling method.
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2-

Shell models can be used to simplify 3-D models to a set of laminae with a defined
thickness exhibiting bending and membrane action. This is particularly useful for
modelling sheet metal or thin structural parts. Shell parts can also mesh with quad
meshes, quad-dominant meshes or all-triangle meshes. Rectangular element shapes
are preferable to triangular element shapes as the element formulation for triangular
element become less accurate. Also the aspect ratio of the element can affect the

accuracy of the result obtained. Figure (5-5) shows the types of meshing that can be

achieved.

Meshing quad with free

Meshing triangle with free Meshing triangle with mapped

Figure (5-5) Meshing types.
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5.3.3.1 Merging of nodes

If two separate entities have the same location, then merging these entities together into
a single entity is possible. For example, if two regions that have already been meshed are to be
joined it may be desirable to have all the nodes move together in all degrees of freedom.
ANSYS has a facility to merge and renumber the nodes according to a set tolerance, the higher
numbered node will be deleted and will be replaced with the lower numbered coincident node.
Two merged nodes will thus be replaced by a single node. Figure (5-6) demonstrates how to

merge nodes.

a) Before merge

c) After merge

Figure (5-6) Merging in ANSYS FE model.

118



Chapfter Five Finite Flement Analysis

5.3.3.2 Coupling of nodes

Coupling is a way to ensure a set of nodes have the same DOF’s, i.e. producing
compatibility between nodes. For example: If nodes 1 and 2 are coupled in the UX direction,
the solver will calculate UX for node 1 and simply assign the same UX value to node 2. The
solver will calculate the copulated displacements based upon the coupled stiffness of the

coupled nodes, figure (5-7).

If pin joints are to be created, coupling can be used to simulate pin joints such as hinges
and universal joints. This is done by means of a moment release: coupling translational DOF

at a joint and leaving the rotational DOF uncoupled will produce this effect.

Before coupling

After coupling the

displacement in X-direction

Figure (5-7) Nodes coupling.
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5.4 Loads and supports

The structural loads and end supports are the application of a force and/or constraint.

In ANSYS, loads can be applied on either the solid model (on keypoints, lines, and areas)
or on the finite element model (on nodes and elements). For example, a load can be specified
at a keypoint or a node, but these must then be transferred to the FE model. Similarly, surface
loads and pressure can have specified on lines and areas to be subsequently transferred to the
finite element model or on nodes and element faces directly. No matter how you specify
the loads, the solver expects all loads to be applied to the finite element model. Therefore, for
any loads specified on the solid model, the program automatically transfers them to the nodes

and elements at the beginning of a solution.

The solid-model loads are independent of the finite element mesh. This means that the
element mesh can be altered without the need to alter the position of the applied loads. This
allows mesh reforms and mesh sensitivity studies without needing to reapply loads each time.
In addition, this usually includes fewer entities than the finite element model. Therefore,
selecting solid model entities and applying loads on them is much easier, specifically with
graphical picking. Nonetheless, Elements created by meshing commands are in the currently
active element coordinate system. Nodes generated by meshing commands use the global
Cartesian coordinate system by default. Therefore, the solid model and the finite element model
may have different coordinate systems and loading directions. Also the application of keypoint
constraints can be tricky, especially when the constraint expansion option is used. The
expansion option allows the expansion of a constraint specification to all nodes between two

keypoints that are connected by a line.

If loads are applied directly to the FE model, there is no need for concern regarding
constraint expansion. All desired nodes can be selected and the applicable constraints specified
but any change of the finite element mesh invalidates the loads, requiring deletion of the
previous loads and re-application of them on to the new mesh. Also, the application of loads by
graphical picking can be problematic, unless only a few nodes or elements are involved or

perhaps subsets or entities can be selected.
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— Structural Supports: These are restraints that prevent movement on certain regions on the

FE model for specific degrees of freedom.
In general, there are three types of end supports.

1. Pinned end support: a hinge represents a pin joining to a structural assembly and
it does not allow translational movements. It is assumed to be frictionless and to
allow rotation of a member with respect to the others.

2. Roller end support: a roller represents a support that permits the attached
structural part to rotate freely with respect to the foundation and to translate freely
in the direction parallel to the foundation surface. No translational movement in
any other direction is allowed.

3. Fixed end support: a fixed support does not allow rotation or translation in any
direction.

In this study, the correct simulation of boundary conditions can be complex to represent
in all analytical, numerical and practical conditions in cold-formed steel structures. Elastic
instability problems are prevalent in these types of members because the stiffness of cold-
formed steel tends to be less. So buckling phenomena are the main problem in the behavioural
response. Based on this expected behaviour, each of the usual buckling modes (global,
torsional, distortional and local) requires explicit boundary conditions to provide the
appropriate restraint. Producing the desired conditions are more problematic with pinned end
supports as comparing with the others, as it is very difficult to produce a frictionless rotational
joint (i.e. there will be some degree of rotational stiffness in practice).

5.4.1 Pinned end support

For this support type, there are three sub-supports which must be applied to restrain the
different types of buckling modes which are possible. First, the global single end support at the
section centroid is required to restraint the translations in the three directions (UX, UY and UZ)
and let the rotations (ROTX, ROTY and ROTZ) be free. Second, the torsional end support to
restrain the rotation in longitudinal Z-direction (ROTZ) to prevent rigid body motion. Finally,
on the periphery of the section the local end support to restrain the translations (UX, UY) by
friction, constrain the translation (UZ) and let the rotations (ROTX, ROTY and ROTZ) free in
each of the local plates of the section. A better way to apply these constraints in to use a suitable

rigid steel plate connected at the ends of the member as shown in figure (4-8). This
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representation will also provide the closest simulation to the end conditions provided in the

experimental tests.

To simulate axial buckling problems and the pinned end support system, the load is
applied as a concentrated axial load (P) applied on one of the ends at the centroid of the cross
section as shown in figure (5-8). In this case, stresses will concentrate on one node, so the rigid
steel plate provided at the end allows for a reduced and more even distribution of these stresses

to the end of the member.

Local end

supports

Global & distortional end

supports at the centroid

of the section

Profuse and rigid

steel plate

Figure (5-8) Pinned end support modelling.

5.4.2 Fixed end support

A fixed end support is much easier to model than the pinned end support for numerical
models but it is more complicated to produce in laboratory tests (see chapter 6). For these
supports, all the translations in the three directions (UX, UY and UZ) and the rotations (ROTX,

122



Chapfter Five Finite Flement Analysis

ROTY and ROTZ) must be restrained. To produce this effect a suitable length of member
beyond the ends is provided and this is restrained in all DOF’s as shown in figure (5-9).

When the axial load is applied, it is distributed around the periphery of the cross section
along support length to prevent stress concentration, as shown in figure (5-9).

"
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Figure (5-9) Fixed end support
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5.5 Buckling analysis

When the applied loading reaches the critical load capacity for the member, structures
become elastically unstable. Each load has a related buckled mode shape and this is the shape
that the structure assumes in a particular buckled state. Elastic critical loads are theoretically
derived instability loads which can be obtained from an eigenvalue extraction. Real failure
loads resulting from buckling account for initial imperfections in structure geometry and
applied load trajectory, and this coupled with material yield will lead to a realistic prediction
of a failure load. Hence there are two primary means to perform a buckling analysis which are

addressed in the following two sections.

5.5.1 Linear buckling analysis (eigenvalue buckling)

Eigenvalue buckling analysis calculates the theoretical buckling strength of an ideal
elastic structure. It calculates the structural eigenvalues for the given system loading type and
restraints. This is generally known as classical Euler buckling analysis. Buckling loads for
several common configurations are readily available from closed form solutions. However, in
real-life, structural imperfections and nonlinearities prevent most real world structures from
reaching their eigenvalue predicted buckling strength. So this analysis over-predicts the
expected failure loads. This method is not recommended for design purpose buckling
prediction analysis, but is required for use in the calculations of real failure loads using methods
such as the Perry-Robertson formula.

Referring to the numerical analysis, before the eigen value extraction can be performed,
a restressed static analysis must be performed to obtain the stress stiffened stiffness matrix.
Stress stiffening effects are prevalent for thin members where the bending stiffness is usually
much less than the in-plane stiffness, hence the axial stiffness and bending stiffness have a
significant interaction (hence bending and axial effects are coupled in the matrix). This is

analogous to activating nonlinear geometry effects within the stiffness matrix.

A static structural analysis determines the displacements, stresses, strains, and forces in
structures or components caused by loads that do not induce significant inertia and damping
effects. Steady loading and response conditions are assumed; that is, the loads and the structural

response are assumed to vary slowly with respect to time.

The results calculated by the linear buckling analysis are buckling load factors that scale
the loads applied in the model. Thus for example if a 5 KN compressive load is applied to a
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structure in the pre-stressed static model and the linear buckling analysis subsequently
performed calculates a load factor of 150, then the predicted buckling load is 150 x 5 = 750
kN. Because of this, it is typical to apply unit loads in the static analysis that precedes the
buckling analysis. These factors are applied to all the loads used in the static analysis. Each
load factor is related with a different instability mode. Normally, the lowest load factor is of

concern, as this will present itself at the lowest applied load in the real physical structure.

Also non-zero displacements can be applied to one or more supports in the static analysis.
The load factors calculated in the buckling analysis should also be applied to the associated
nonzero reaction values. However, the buckled mode shape associated with this load will show

the restraint to have a zero value.

It should be noted that the buckled mode shape provides the engineer with a good
understanding of how a part or an assembly deforms when becoming unstable, but does not
provide real displacements.

In the analysis results, it is only buckling load factors and corresponding buckling mode
shapes that are obtained. The stress and strain results can be extracted from the results file but
note that stress results only show the simulated distribution of stress in the structure and are

not real stress values.
5.5.2 Nonlinear buckling analysis

Nonlinear buckling analysis is more realistic than eigenvalue analysis because it employs
non-linear, large-deflection, static analysis to predict buckling loads. Its mode of operation is
very simple: it gradually increases the applied load until a load level is found whereby the
structure becomes unstable (i.e. suddenly a very small increase in the load will cause very large
deflections), coupled with material yield and eventual failure. The true non-linear nature of this
analysis thus permits the modelling of geometric imperfections, load perterbations, material
nonlinearities and gaps. For this type of analysis, note that small off-axis loads are necessary
to initiate the desired buckling mode. This can be achieved by either introducing small
eccentricities on loads or small imperfections in the model geometry to produce a level of
antisymmetric. Post-buckled strength which is typically exhibited by structures that present

local buckling modes can also be simulated via this analysis.
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The implementation of the nonlinear buckling analysis is akin to most other nonlinear

analyses with the following additional points:

A small geometric imperfection is often required to begin buckling. For example, the
buckled mode shape from an eigenvalue buckling analysis can be used to produce an
initial geometric imperfection. However, the magnitude of the initial imperfection
will affect the results of the nonlinear buckling analysis. Therefore, the amplitude of
the imperfection (or imperfection generated by the perturbation) should be small
relative to the overall dimensions of the structure. In cold-formed steel members, the
manufacturing tolerances can be used to estimate the magnitude of the
perturbation/imperfection, or using self-weight deflections.

The applied load should be set to a value somewhat higher (10 to 20%) than the
critical load expected by the eigenvalue buckling analysis.

The analysis must be run with geometric nonlinearities activated.

Write out results for an appropriate number of intermediate sub-steps so that the

load-deflection curve can be reviewed.

To start nonlinear buckling analysis in ANSYS, element type and material properties are

selected carefully with nonlinear characteristics (i.e. nonlinear stress-strain curves) see figure

(5-10). From the ANSYS results it is possible to predict when buckling begins but the solution

may continue to converge if the structure can still carry the load.

Before the solution phase for the nonlinear buckling can be started several solution

parameters need to be set, see figure (5-11):

» In the basic solution options tab:
Allow large static displacements to be invoked (this will include the effects of large
deflection in the results, i.e. nonlinear geometry).
Confirm the automatic time stepping is on. An automatic time stepping lets ANSYS
determine suitable sizes for the load steps to achieve convergence. Reducing the step
size usually ensures better accuracy, however, this is time-consuming. The automatic
time step feature will determine an appropriate balance and uses bisection to adjust
load steps as the solution proceeds to ensure convergence.
If n is the number of sub-steps, then the initial sub-step is set to 1/n™" of the total load.
If the maximum number of sub-steps is m this will stop the program if the solution
does not converge after m steps.

The minimum number of sub-steps is 1.
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- All solution items are written to a results file. This can result in a large results file

size if the model is large so it is possible to write out only selected results of interest

if required.

- Write every sub-step frequency to save all sub-step results.

5IG

.15

075 125 175
EF3

Figure (5-10) Nonlinear stress-strain curves ANSYS modelling.
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Automatic time stepping  |On - |
& Number of substeps Frequency:

o Time increment |Write every substep -
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Cancel Help

Figure (5-11) Solution control.
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» In the Non-linear Tab
- Ensure Line Search is 'On'. This option is used to help the Newton-Raphson solver
converge.
- Ensure 'Maximum Number of Iterations' is set to the same number as the 'Maximum
Number of sub-steps’, Figure (5-12).
A

Basic ] Transient ]Sol'nOptions‘ Nonlinear ]AdvancedNL

Nonlinear Options Cutback Control
Line search |On j Limits on physical values to
) perform bisection:
DOF solution|Prog Chosen -
predictor | ! Equiv. Plastic strain 015
VT Speedup |Ofr j Explicit Creep ratio 01
Implicit Creep ratio 0
Equilibrium fterations Incremental displacement |10000000
Maximum Points per cycle 13

number of |1000 » Cutback according to predicted

iterations number of iterations
i ~ Always iterate to 25 equilibrium
Creep Option iterations

I Include strain rate effect

Set convergence criteria ...

QK ‘ Cancel | Help

Figure (5-12) Solution control, nonlinear options.

5.6 Finite element modelling of cold-formed cladding section

Plate thickness: 1.6 mm 15

Modulus of Elasticity: 210000 N/mm?

Poisson's ratio: 0.3 JLE —
¥
Yield stress: 415 N/mm? 50

(g

Steel density: 7850 Kg/m? !

140

e

- All units in (mm)

Figure (5-13) Cladding section.
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5.6.1 Pinned end support

Buckling load (kN)

10

80

40

Figure (5-14) Pinned end support (ANSYS model).

—— Linear FE Analysis

—a Nonlinear FE Analysis

Member length (m)
Figure (5-15) Linear and non-linear buckling load versus column length for

pinned end support.
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Non-linear mode shape Linear mode shape

Figure (5-16) Linear and non-linear buckling mode shapes for

pinned end conditions at a length of 1.0 metre.

H
012548

Non-linear mode shape Linear mode shape

Figure (5-17) Linear and non-linear buckling mode shapes for pinned

end condition for a length of 2.0 meters
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0 866029 1.73218 2.59827 3.46436 0 026727 .053453 08018 106306
433045 1.29813 216522 3.03131 3.8974 013363 04008 066816 083543 .12027

Non-linear mode shape Linear mode shape

Figure (5-18) Linear and non-linear buckling mode shapes for pinned end
conditions for a length of 3.0 metres
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Non-linear mode shape Linear mode shape

Figure (5-19) Linear and non-linear buckling mode shapes for pinned

end condition for a length of 4.0 metres.
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Figure (5-20) Non-linear buckling load versus displacements of max. displacement
point for pinned end conditions for a length of 1.0 metre.
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Figure (5-21) Non-linear buckling load versus displacements of max.

displacement point for pinned end conditions for a length of 2.0 metres.
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Figure (5-22) Non-linear buckling load versus displacements of max.
displacement point for pinned end conditions for a length of 3.0 metres
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Figure (5-23) Non-linear buckling load versus displacements of max.
displacement point for pinned end conditions for a length of 4.0 metres
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5.6.2 Fixed end support

Figure (5-24) Penned end ANSYS modelling
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Figure (5-25) Linear and non-linear buckling load versus column length for

fixed end support
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Figure (5-26) Linear and non-linear buckling mode shapes for fixed
end conditions for a length of 1.0 metre
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Figure (5-27) Linear and non-linear buckling mode shapes for fixed end

condition for a length of 2.0 metres
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Figure (5-28) Linear and non-linear buckling mode shapes for fixed

end conditions for a length of 3.0 metres
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Figure (5-29) Linear and non-linear buckling mode shapes for fixed

end conditions for a length of 4.0 metres
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Figure (5-30) Non-linear buckling load versus displacements of max.

displacement point for fixed end conditions for a length of 1.0 metre
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Figure (5-31) Non-linear buckling load versus displacements of max.

displacement point for fixed end conditions for a length of 2.0 metres
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Figure (5-32) Non-linear buckling load versus displacements of max.

displacement point for fixed end conditions for a length of 3.0 metres
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Figure (5-33) Non-linear buckling load versus displacements of max.

displacement point for fixed end conditions for a length of 4.0 metres

138



Chapfter Five Finite Flement Analysis

From the FE modelling summarised in figures (5-10) to (5-33), it can be seen that the
finite element modelling in ANSYS gives a good simulation of boundary condition
representations for both pinned and fixed end supports. For pinned end supports at the global
boundary conditions, it is clear to see that the plate at the end is free to rotate in both X-axis
and Y-axis with constraint of rotation in the Z-axis to prevent the rigid body twisting motion,
and that the same rigid end plate has been supported against translational displacement in the
X-axes, Y-axis and Z-axis at the centroid of section. Also, to ensure that the section plate
elements are able to rotate locally, the common nodes between the bearing plate and section
elements are coupled in translational degrees of freedom only. The axial load, was applied at
the centroid of the section to avoid any effects on axial displacement constraints. While for the
fixed end condition the load was applied as a distributed axial load surrounding the cross-
section, also the displacements and rotations in all directions were constrained surrounding the

cross-section with enough distance beyond the member ends.

From these analysis results, it is obvious that the buckling load decreases with the length
of the column in both linear and non-linear analysis, see figures (5-15) & (5-25), but this
decrease is not at the same rate as it depends on the type of buckling witnessed. For short length
studs, the buckling load has less of a rate of decrease due to local distortional buckling mode
shape effects. For medium to long lengths, the buckling load drops rapidly as global buckling
dominates the mode shape.

Figures (5-15) & (5-25) demonstrate that linear analysis predicts a smaller load than non-
linear analysis due to the fact that it does not take into account post-buckling effects and initial
imperfections when calculating the eigenvalue buckling load. For the non-linear static buckling
analysis, the effects of post-buckling and initial imperfection increase and decrease the
buckling loads through column length depending on mode shape zones respectively. Also
nonlinear (yielding) material properties are incorporated into the nonlinear analysis. For local
and distortional mode shapes (occurring in the shorter stud lengths), the effects of post-
buckling strength mean that the failure loads are higher than the linear (eigenvalue) buckling
loads. In comparison, the global and distortional buckling modes which occur in the longer
column, the effects of the initial imperfection, serve to decrease the failure loads below linear
(eigenvalue) buckling loads. So in general, the non-linear analysis is more representative of the
physical behaviour (in terms of buckling and failure) which would occur, than the linear
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buckling (eigenvalue) analysis which gives a theoretical estimate of the occurrence of
instability in a perfect structure but cannot predict how the structure would actually behave pre
or post buckling. Hence the nonlinear analysis (which is path dependent upon the applied loads)

is more valuable and verifiable to experimental tests

For mode shape expectations, figures from (5-16) to (5-19) for pinned end condition and
(5-26) to (5-29) for fixed end condition illustrate the mode shapes finite element prediction in
both linear (eigenvalue) and non-linear analysis for different lengths and different mode shape
zones. Likewise, the eigenvalue analysis looks to give poorer predictions in mode shapes as
compared to the nonlinear analysis. Figures from (5-20) to (5-23) for pinned end condition and
(5-30) to (5-33) for fixed end condition show the nonlinear time-history of out of plane
displacements with applied load. These figures give good indications of how the column will
buckle during load application, so it will help to predict failure mode shape and compare it with

experimental test or other empirical, analytical or numerical analysis solutions.

In general, both linear (eigenvalue) and nonlinear buckling analyses using (ANSYS)
have appropriate features to predict the eigen-buckling load or nonlinear failure load and its
mode shapes, it also gives a good representation of modelling of boundary conditions in both
pinned and fixed end conditions. But, it is time consuming in modelling and solving of each
specific case. There are many factors which have an effect on the accuracy of results and the
efficiency of solve operations such as element type, element size, element number and element

degrees of freedom.
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CHAPIER SIX

EXPERIMENTAL INVESTIGATIONS

6.1 Introduction

The elastic buckling modes discussed in Chapter 2 and their influence on the load-
deformation response of cold-formed steel columns can be readily observed and quantified
with experimental testing. This chapter presents the experimental testing of 36 cold-formed
steel (lipped C-section and Zed-section) columns with different boundary conditions. The tests
comprised Lipped Channel & Zed sections full-scale cold-formed steel columns of nine
different lengths (two specimens for each length) subjected to axial loading for both pinned
and fixed end conditions. The column lengths and cross-section dimensions were specifically
chosen to explore local, distortional, and global buckling behaviour, ultimate strength, and the
resulting failure mechanisms. The actual buckling behaviour was evaluated for each specimen
using both a finite element nonlinear analysis and nonlinear generalized beam theory, taking
care to accurately simulate the tested boundary conditions and measured specimen dimensions.
The physical buckling observed through the experimental tests are used to provide a means of
understanding the varied deformation response under load. The columns were tested with
friction-bearing boundary conditions where the ends of each specimen are milled flat and
parallel and bear directly against steel plates. Recommendations are made to advise other
researchers on the viability of the friction-bearing boundary conditions when testing short and
intermediate length columns. As well as the results of the testing, this chapter presents also, the
rig details, material properties tests, boundary conditions simulation, applying load method and

measuring device details of this experimental study.
6.2 Section geometry and specimen sizes and lengths

Mono-symmetric lipped channel and non-symmetric Zed sections were selected for the
beam tests to provide the desired range of possible buckling mode shapes, see Figure (6-1).
Elastic linear eigen-buckling analyses were first carried out on both sections using the well-
known generalized beam theory analysis program (GBTUL) with both pinned and fixed end
conditions to inform a selection of suitable cross-section sizes and beam spans (this also

provides an understanding of buckling loads and mode shapes along the length of the beam.
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Figures (6-3) & (6-4) show the results of the generalized beam theory analysis program
(GBTUL) using thin-walled sections in a buckling plot format. From these figures, it can be
seen at what member lengths the mode shape changes over from local buckling to distortional
buckling and to lateral-torsional buckling. At these changeover points, the buckling loads can
either increase or decrease depending on the mode shape type. So these ranges of beam lengths
require more experimental and validated numerical analysis investigation to understand the

behaviour more thoroughly.

The selection of beam spans was made based on the results shown in Figures (6-3) &
(6-4) therefore most of the buckling mode shapes would be expected to occur during the tests.
The beam span was varied from 1000 mm to 5000 mm for pinned end conditions and from

1000 mm to 4000 mm for fixed end conditions in order to produce a range of beam

Zed section

Epran ()
Thicks )
Lip (numl

Flange (mm)
Web (mny)
Section Shape

Figure (6-1) Test sections.

Lipped channel section dimensions of 200 mm web depth, 60 mm flange width, 14 mm
lip and 1.775 mm thickness and Zed section dimensions of 200 mm web depth, (64&54) mm
flange widths, (18&15) mm lips and 2.005 mm thickness were selected. Table (6-1) & Table
(6-2) shows the test program for lipped channel and Zed sections beams. All the test specimens
were labelled as follows to indicate their cross-section shapes, cross-section dimensions,

thickness, and span lengths.
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Figure (6-3) (GBTUL) eigen-buckling analysis.
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Table (6-1) Lipped C-sections details.

Lipped C-Section

Pinned end condition Fixed end condition
Spelt:l:)men Designation Grade ?ngraT]r;Speli:l:)men Designation Grade (Snera%r;
1 C-200-60-14-1.77 G450 1000/ 10 C-200-60-14-1.77 G450 1000
2 C-200-60-14-1.77 G450 |1300| 11 C-200-60-14-1.77 G450 (1300
3 C-200-60-14-1.77 G450 |1700] 12 C-200-60-14-1.77 G450 1700
4 C-200-60-14-1.77 G450 |2000 13 C-200-60-14-1.77 G450 2000
5 C-200-60-14-1.77 G450 |2300| 14 C-200-60-14-1.77 G450 (2300
6 C-200-60-14-1.77 G450 |2700] 15 C-200-60-14-1.77 G450 |2700
7 C-200-60-14-1.77 G450 13000 16 C-200-60-14-1.77 G450 3000
8 C-200-60-14-1.77 G450 |4000| 17 C-200-60-14-1.77 G450 (3500
9 C-200-60-14-1.77 G450 |5000 18 C-200-60-14-1.77 G450 4000
Table (6-1) Z-sections details
Zed Section
Pinned end condition Fixed end condition
Spelfl:)men Designation Grade (Sngrann) Spelfl:)men Designation Grade (Sngrann)
19 | Z-200-(64-54)-(18-15)-2 | G450 |1000| 28 | £7200-(64-54)-(18-15)-2 | G450 |1000
20 | Z-200-(64-54)-(18-15)-2 |Gasp |1300] 29 | Z-200-(64-54)-(18-15)2 | Gas0 |1300
21 Z-200-(64-54)-(18-15)-2 | G450 [1700 30 Z-200-(64-54)-(18-15)-2 | G450 |1700
29 Z-200-(64-54)-(18-15)-2 | 450 2000 31 Z-200-(64-54)-(18-15)-2 | G450 |2000
93 | Z-200-(64-54)-(18-15)-2 | G450 [2300| 32 | Z-200-(64-54)-(18-15)-2 | Gas (2300
o4 | Z-200-(64-54)-(18-15)-2 | 450 [2700| 33 | Z-200-(64-54)-(18-15)-2 | a5 (2700
o5 | Z-200-(64-54)-(18-15)2 |Gasg |3000 34 | Z-200-(64-54)-(18-15)2 | as0 3000
26 Z-200-(64-54)-(18-15)-2 | G450 4000 35 Z-200-(64-54)-(18-15)-2 | 450 3500
27 Z-200-(64-54)-(18-15)-2 | G450 5000 36 Z-200-(64-54)-(18-15)-2 | G450 |4000
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All the cross-section dimensions were measured using a Vernier calliper. The uncoated
thickness of each beam was measured using a Micrometre Screw Gauge and MikroTest, see
figure (6-4). MikroTest is an extremely robust coating thickness gauge, which measures the
thickness of non-magnetic coatings on steel substrates on the magnetic attraction principle. The
base metal thickness of each steel sample was taken as the average of measured base metal
thicknesses (t) given in tables (6-1) & (6-2). The centre line dimensions of the cross-section

were calculated based on the measured external dimensions are in tables (6-1) & (6-2).

Figure (6-4) Micrometre screw gauge and Mikrotest

6.3 Experimental buckling test rig

For this study, a purpose built test rig was constructed to conduct axial buckling tests of
the light gauge steel beams (LSB) with different boundary conditions and different section sizes
and shapes. The test rig included a specially designed support and loading system that
facilitated application of the axial load through the centroid of the section. The schematic and

overall views of the test setup are shown in figure (6-5).

The test rig included the main frame which comprised two main beams and two supported
sub-beams. The two main beams (Universal Columns 150mm x 30.0kg/m x 6000mm length)
shown in figure (6-6) were placed parallel to each other to support the two sub-beam sections
of (200 x 100 x 6 RHS) with 1000 mm length which carry the test specimens at both the loading
and measuring ends. The sub-beams were positioned horizontally at set locations along the

main beams to cover all required lengths of specimens. A support system was provided to prop
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the sub-beams at the middle with one end facilitating a hydraulic jack, and the other end

facilitating a series of load cells for the measurement of the applied axial load.

Main beams

Sub-beams

Loading system

Test specimen

Measuring system

Figure (6-5) Overview of the test set-up
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6-6) Test rig sections.
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6.4 Loading system

The cold-form steel test specimen was loaded axially. The loading system employed
ensured that the test specimen was loaded through the centroid of the section. It was designed
to eliminate the effects of load eccentricity and torsional loading effects. The arrangement of

the loading system is shown in Figure (6-7) and (6-8) and is described in the following section.

Jack support structure

\

Supporting plate Hydraulic jack

Sub-beam

Figure (6-7) Schematic of loading system

The loading system included a hydraulic jack fixed rigidly to one of the sub-beams with no
rotations or translational movements to ensure the load was applied axially on the specimens;
therefore, this system was able to apply the loads to the test specimen without any restraint to
their longitudinal displacements or rotations at the loading points in any direction. The
hydraulic jack was operated under load-displacement control using a single hydraulic jack to
apply rated loads on the test specimen. The loads were applied horizontally on the sub-beam.
The hydraulic jacks were supported on a rail system which had the capability of moving in a
parallel direction to the specimen span. Therefore, all the six degrees of freedoms at the loading

position of the test beam can be considered as unrestrained.
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a) Hydraulic pump b) Hydraulic jack
Figure (6-8) Loading system.

6.5 Measuring system

In each test the applied loads and the deformations were measured until failure. The
EDCAR (Experimental Data Collection and Recorder) system was used to record all the

measurements automatically.
6.5.1 Loading measuring system

The test specimen was loaded axially using a hydraulic jack, with a 300 kN capacity. To
measure the applied loads, three 100 kN capacity load cells were attached to the measuring
plate, with the three load cells arranged as an equilateral triangle as shown in Figures (6-9) and
(6-10). To prevent any side movements and rotations of the measuring end (in addition to
providing accuracy of measurement, all the load cells were linked to a computer-controlled
system in which the load and displacement data was graphically displayed, Figure (6-13). All
the data was saved automatically for recall at a later time. The three load cells shown in figure
(6-10) read different loadings due to eccentricity of the sample, and the end plate was designed

to have a large enough stiffness to minimise any effects due to plate bending.
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Supporter

Sub-beam
Specimen end
Support system

Load cells

Figure (6-9) Schematic of measuring system.

™ \‘1 i (=R
Figure (6-10) Measuring system.

6.5.2 Displacement measuring system

The displacements were measured using linear variable displacement transducers
(LVDT’s), the LVDT is a type of electrical transformer used for measuring linear displacement
positions. The LVDT converts a position or linear displacement from a mechanical reference
(zero, or null position) into a proportional electrical signal containing phase (for direction) and
amplitude (for distance) information, Figure (6-11). As well as load cells, the LVDT’s were
linked to a computer-controlled system in which the load and displacement data can be

graphically displayed.
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6.5.2.1 Vertical displacement measuring system

The vertical displacement was measured using LVDT’s positioned at the mid-point of
the web of the specimen. This was implemented at three positions along specimen length as
shown in figure (6-12), one point in the mid length of the specimen and the other two points at
quarter length of the specimen. The LVDT plunger was placed directly on the test specimen,
so if the specimen buckled during testing (with a combination of different modes) the
movement could possibly cause the LVDT needle to slip from its contact position. To avoid
this scenario, the vertical measuring system was connected using tension wires. Overhead
stands and tension wires were arranged as shown in figure (6-12) to obtain a more accurate

measurement.

The measuring points were arranged to examine a range of possible buckling mode
shapes and to log the load-displacement history during the test to enable comparison with the
nonlinear finite element and generalized beam theory analyses load-displacement histories for

verification purposes.

Figure (6-11) Linear variable displacement transducer (LVDT).
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LVDT H

|
I| Tension wire

LVDT overhead

stand

Figure (6-12) Vertical displacement measuring system.

Figure (6-13) Data logger measuring system.

151



Chaptfer Six Experimental Investigations

6.5.2.2 Horizontal displacement measuring system

The horizontal displacement measuring system was of a similar arrangement to the
vertical displacement measuring system. The the same LVDT and data logger measuring system
were used to measure the horizontal displacement at the same positions of vertical
displacements along the specimen length, see figure (6-15). It was recognized that there was a
geometric dependence between the horizontal and vertical displacements. Figure (6-14) shows
how these displacements are related, and how the horizontal movement effects the measured
vertical displacement. The relationship is simply of triangular form requiring trigonometry to
solve. In the experiment the horizontal LVDT was placed as far away from the sample as
possible to decrease the effects of vertical movement on the recorded horizontal movement.
The trigonometry used to then calculate the actual displacements is presented in the following

equations:

Figure (6-14) Related effect of vertical movement on horizontal movement.

y = the vertical distance between a measuring point and the LVDT.
x = the horizontal distance between a measuring point and the LVDT.

r = the inclination distance between a measuring point and the LVDT.
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dy = the vertical movement during the test.

dx = the horizontal movement related to vertical movement during the test.
r2 = x2 + y?

r? = (x—dx)*+ (y + dy)?

x? +y% = (x—dx)® + (y + dy)?

¥2+ 92 =%2— 2xdx + dx* +5=+ 2ydy + dy?

dx? — 2xdx + 2ydy + dy?) =0

_ 2x ++/4x? — 4(2ydy + dy?)

. (6-1)

dx

Figure (6-15) Horizontal displacement measuring system.
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6.5.2.3 Torsional rotation measuring system

In addition to measuring the lateral displacement, it is also important to measure the
rotation about the longitudinal axis to understand how the thin-walled cold-form member

behaves under axial loads in torsional, distortional and lateral torsional modes.

The tilting device shown in figure (6-16) was used to measure small inclinations. The
sensor was called (Seika), (www.seika.net, 16" August 2017) it is simply placed on the top of

test specimens and fixed by means of adhesive glue. All its details are in appendix H.

All data measured by the inclinometer devices were collected using a computerised data
logging system with a capability to collect data from 16 channels figure (6-13). For the testing
only 10 channels were required, namely 3 channels for horizontal LVDTs, 3 channels for

vertical LVDTs, 1 channel for the tilting device and 3 channels for the load cells.

The computer acquisition software used to collect the data from the data loggers was
called DEWESoft, (Manual, 2002).

Figure (6-16) Tilting device.
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6.6 Material tests for mechanical properties

6.6.1 Uniaxial tensile testing

Uniaxial tensile test is carried out to acquire material parameters such as ultimate
strength, yield strength, % elongation, % area reduction and Young's modulus. These important
parameters obtained from standard tensile testing are useful for the selection of engineering
materials for any application required. These parameters will therefore inform and provide

essential information for use in the FE and GBT analyses.

Tensile testing is carried out by applying the longitudinal or axial load at a specific extension
rate to a standard tensile specimen with known dimensions (gauge length and cross-sectional
area perpendicular to the load direction) until failure. The applied tensile load and extension
are recorded during the test for the calculation of the stress and strain relationship for the

material.

For cold-form steel, the standard specimen is cut out from a rectangular section plate
along the gauge length as shown in figures (6-17), (6-18), in accordance with the requirements
of standard. Both ends of the specimens should have sufficient length and a surface condition
such that they are firmly gripped during testing in a standard tensile testing machine. The initial
gauge length L, is standardised (in several countries) and varies with the cross-sectional area

(Ao) of the specimen as (LO/AO =565) . The reason for this is that if the gauge length is too

long, the % elongation might be underestimated. Any heat treatments should be applied to the
specimen prior to machining to produce the final specimen. This is usually done to prevent
surface oxide scales that might act as stress concentration and subsequently affect the final
tensile properties, possibly causing premature failure. There are some exceptions, for example,
surface hardening or surface coating on the materials. These processes should be employed
after specimen machining in order to obtain the tensile property results which include the actual

specimen surface conditions.

The equipment used for tensile testing ranges from simple devices to complicated
controlled systems. So-called universal tensile and compression testing machines are
commonly used, which are driven by hydraulic systems. Figure (6-22a) shows a hydraulic
testing machine using the pressure of oil in a piston for load supply. These types of machines

can be used not only for tension but also for compression, bending and torsion tests. A more
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modernised closed-loop servo-hydraulic machine provides variations of load, strain, or testing
machine motion using a combination of the actuator rod and piston. Most of the machines used
nowadays are linked to a computer-controlled system in which the load and extension data can
be graphically displayed together with the calculations of stress and strain whilst the testing is

taking place Figure (6-22b).

General techniques utilised for measuring loads and displacements employ sensors
providing electrical signals. Load cells are used for measuring the load applied while strain
gauges are used for strain measurement. A change in a linear dimension is proportional to the

change in electrical voltage of the strain gauge attached to the specimen.

ES

Figure (6-17) Tensile test sheet specimens.
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Figure (6-18) Preparing of tensile sheet specimens.

6.6.2 Stress and strain relationship

When a specimen is subjected to an external tensile loading, the metal will undergo
elastic and plastic deformation. Initially, the metal will elastically deform giving a linear
relationship between load and extension. These two parameters are then used for the calculation
of the engineering stress and engineering strain to give the relationship illustrated in figure (6-
19) using equations (6-2) and (6-3) as follows:

gL 6—2)
Ao
g=LfL‘OL°=ﬁ—f (6-3)

Where

o is the engineering stress

e is the engineering strain

P is the external axial tensile load
Ao is the original cross-sectional area of the specimen

Lo is the original length of the specimen
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Lt is the final length of the specimen

6.6.3 Young's modulus, £

During elastic deformation, the engineering stress-strain relationship follows the rules of

Hook's Law and the slope of the curve indicates Young's modulus (E)

E= (6 —4)

o
€
Young's modulus is of importance where the stiffness and deflection of materials is critical for
the required engineering application. For example: deflection in structural beams is considered
to be crucial for the design of engineering components or structures such as bridges, building,
ships, etc. For products such as a tennis racket or a golf club also require specific values of

spring constants or Young's modulus values.

' ﬁl"
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Figure (6-19) Stress-strain relationship under uniaxial tensile loading (Hakim et al., 2015).

6.6.4 Yield strength, o,

By considering the stress-strain curve beyond the elastic region, if the tensile loading
continues, yielding occurs at the beginning of plastic deformation. The yield stress, gy, can be
obtained by dividing the load at yielding (Py) by the original cross-sectional area of the

specimen (Ao) as shown in equation (6-4).
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(6-5)

:r>|‘<~u

o

The yield point can be observed directly from the load-extension curve of metals such as
iron and steel, and especially low carbon steels. At the yield point elongation, the specimen
continues to extend without a significant change in the stress level. As the load is incremented

higher this is accompanied by an increasing strain

Cold-formed steel does not show the definite yield point in comparison to those of low
carbon steel but shows a smooth engineering stress-strain curve. The yield strength, therefore,
has to be calculated from the load at 0.2% strain divided by the original cross-sectional area.

Po 29
0

The determination of the yield strength of 0.2% offset or 0.2% strain can be carried out
by drawing a straight line parallel to the slope of the stress-strain curve in the linear portion,
having an intersection on the x-axis at a strain equal to 0.002. An intersection between the 0.2%
offset line and the stress-strain curve represents the yield strength at 0.2% offset or 0.2% strain.

However, offset at different values can also be made depending on specific uses.
6.6.5 Tensile ductility
Tensile ductility of the specimen can be represented as % elongation as expressed in the

equation (6-7).

AL
% Elongation = X 100 6-7)

o

The fracture strain of the specimen can be obtained by drawing a straight line starting at
the fracture point of the stress-strain curve parallel to the slope in the linear portion. The
interception of the parallel line at the x-axis indicates the fracture strain of the specimen being
tested.

159



Chaptfer Six Experimental Investigations

6.6.6 Experimental procedure

In this study, three cold-form sections were used, (C-200-60-14-1.770) and (Z-200-(64-
54)-(18-15)-2.0) for buckling tests and (C-170-60-14-1.431) for the examination of fixed end
boundary condition (this will be explained later in this chapter). Five tensile coupons were
tested for each section, so a total of 15 coupons were tested as in figure (6-22c). The coupons
were measured and the dimensions recorded in a test sheet. In order to obtain the actual

uncoated steel thickness, the Micrometre Screw Gauge and MikroTest, were used, see figure
(6-21).

For the strain measurement, an extensometer was used. The extensometer is a device that

is used to measure changes in the length of an object. It is useful for stress-strain measurements

and tensile tests, see figure (6-20a).
b) The extension measuri'ng\

a) The extenso

-"- 7 =
.

W R

Figure (6-20) The extensometer.
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Before mounting the tensile specimen in the universal testing machine, marking the location
of the gauge length along the parallel length of each specimen for subsequent observation of
necking and strain measurement was done, figures (6-20b). The load and extension for the
stress-strain curve was recorded for each tested specimen. From this the Young's modulus was
calculated, together with the yield strength, ultimate tensile strength, fracture strain, and %
elongation of each specimen. This data is presented in table (6-3). Figures (6-23), (6-24) and

(6-25) illustrate the stress-strain relationship of the cold-formed test sections.

vdraulic test machine

Figure (6-22) The tensile test.
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Figure (6-21) Measuring of the tensile sheet coupon.
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Table (6-3) Tensile test Sheets for provided cold-formed steel
sections.

A B C D | E| F 6 Hl 1 g k] L] M]N 0

Gauge
. Width Qross Coating Thickness (mm) Qore Area | GBUGE Yield | Yield |Ultimate |Ultimate| length Elongation
Specimen o) Thickness Thickness mmz) Length | Load | Stress | Load | Stress | after o9

(mm) Sie1 | Side? | Total (mm) (mm) | (kN) | (MPa) | (kN) | (MPa) |failure

(mm)
C-170-60-14-1.431(1) 1245 | 1473 | 0035 | 0017 | 0052 | 1421 |17.691| 50 | 8532 |482.267| 9623 |543.935| 5543 | 0.1086
C-170-60-14-1431(2) | 1245 | 1483 | 0028 | 0.013 | 0.041 | 1442 |17953| 50 | 8469 |471.734| 9573 |533.229| 56.34 | 0.1268
C-170-60-14-1.431(3) 1245 | 1480 | 0036 | 0012 | 0048 | 1432 |17.828| 50 | 8513 |477.497| 9784 |548.787| 5542 | 0.1084
C-170-60-14-1.431(4) 1245 | 1475 | 0031 | 0011 | 0042 | 1433 |17.841| 50 | 8438 |472.960| 9659 |541.398| 56.18 | 0.1236
C-170-60-14-1.431(5) 1245 | 1474 | 0034 | 0017 | 0045 | 1429 |17.791| 50 | 8386 |471.361| 9482 |532.965| 56.51 | 0.1302
C-200-60-14-1.770(1) | 1245 | 1811 | 0.030 | 0.020 | 0.047 | 1764 21962 | 50 | 9257 |421.505| 14382 |654.864 | 58.64 | 0.1728
C-200-60-14-1.770(2) | 1245 | 1817 [ 0.026 | 0.018 | 0.046 | 1770 |22049| 50 | 9354 |424.238| 14464 [655.995| 58.23 | 0.1646
C-200-60-14-1770(3) | 1245 | 1818 | 0023 | 0020 | 0.041 | L777 |22124| 50 | 9420 |425.789| 14763 |667.295| 57.83 | 0.1566
C-200-60-14-1770(4) | 1245 | 1810 | 0028 | 0.021 | 0.048 | 1762 |21.937| 50 | 9295 (423.715| 14683 |669.329| 57.26 | 0.1452
C-200-60-14-1.770 (5) | 1245 | 1820 | 0.023 | 0.024 | 0.044 | 1776 |22111| 50 | 9327 |421.822| 14365 |649.671 | 5845 | 0.169
Z-200-(64-54)-(18-15)-20 (1) | 1245 | 2051 | 0.029 | 0.027 | 0.053 | 1.998 |[24875| 50 | 12583 |505.847| 16458 |661.625( 57.93 | 0.1586
Z-200-(64-54)-(18-15)-2.0(2) | 1245 | 2.052 | 0.024 | 0.024 | 0.051 | 2001 |24912 | 50 | 12638 |507.297| 16249 |652.244 | 5843 | 0.1686
Z-200-(64-54)-(18-15)-2.0(3) | 1245 | 2.050 | 0.026 | 0.024 | 0.050 | 2000 |24.900 | 50 | 12693 |509.759| 16396 |658.474| 57.34 | 0.1468
Z-200-(64-54)-(18-15)-2.0 (4) | 1245 | 2052 | 0.028 | 0.026 | 0.052 | 2000 |[24.900 | 50 | 12539 |503574| 16173 |649.518 | 58.17 | 0.1634
Z-200-(64-54)-(18-15)-2.0 (5) | 1245 | 2052 | 0.023 | 0.025 | 0.049 | 2003 |24.937 | 50 | 12684 |508.635| 16298 (653558 | 58.43 | 0.1686
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6.7 Support system

A compression member with its length considerably larger than its cross-sectional
dimension may be defined as a strut. Strut have varying conditions of end restraint, ranging
from fixed end conditions to pinned end conditions. Under both types of end conditions, no
linear translation of the end of the column occurs relative to the point of load application. The
difference between the two extremes of pinned and fixed end conditions is concerned with the
provision of restraint against angular rotation. For the fixed-end strut, there is complete restraint
against angular rotation at the end of the column. As a result, the slope of the transvers
displacement profile of the member at the fixed end is zero. On the other hand, under pinned

end conditions, no restraint exists and the column end is free to rotate.

In reality, supports for structures (boundary conditions) have some degree of stiffness
associated with them. Pinned and fixed ends are a theoretical construct to represent zero and
infinite stiffness respectively. So for this study, in an attempt to produce pinned and fixed
support systems the rotational stiffness provided at the supports was maximised and minimised
in the two extremes to ensure as close as possible representation was achieved (to within an
acceptable uncertainty). In this way, the effects of the boundary conditions with regards

instability could be experimentally investigated.
6.7.1 Pinned end support design

A pinned support can resist both vertical, horizontal and axial forces but not a moment.
It allows the structural member to rotate, but not to translate in any direction. Practically, many
connections are assumed to be pinned connections even though they might resist a small
amount of moment. It is also true that a pinned connection could allow rotation in only one
directional axis, providing resistance to rotation in any other orthogonal axis direction. The
knee can be idealised as a connection which allows rotation in only one direction and provides
resistance to lateral movement. The design of a pinned connection is a good example of the
idealisation of a real system. The presence of a pinned connection in a structure may mean that
the structure needs additional support to ensure stability. To maintain stability in the axially
loaded test, rotation about the axial direction at one support at least must be resisted to prevent
rigid body motion (i.e. spinning). The representation of a pinned support includes both

horizontal and vertical translational.
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The pinned-end support test is an important step in the study of column behaviour.
Through a knowledge of its behaviour, a basic concept of the strength of columns as affected
by such factors as end conditions, residual stresses, initial out-of-straightness, eccentricities of

load, and transverse loads may be formulated.

Although the pinned end support is an idealised column not existing in actual structures,
an extensive study of its behaviour is relevant to the problem of column design. The pinned
end column must be regarded as the basic column since all column specifications throughout
the world are defined in terms of such boundary conditions. Until methods for the design of
structures as a whole come into use, the design of columns will continue to be based on the

strength of the simple pinned-end column.

The analysis of its behaviour represents the most fundamental column instability
problem. Each of the factors influencing column strength may be studied separately in the light

of their effect on the column strength and structural behaviour.

To attain the ideal pinned condition at the ends, a specially detailed fixture is necessary
to provide, first, free rotation of the ends of the column, and second, no relative linear

translation between the column ends and the applied load.

The experimental tests on the columns should be able to provide an amount of data which
can be used for comparison and validation with the numerical analyses. An evaluation of the
results can be made by comparing the experimental value of the maximum load with the
theoretical prediction from analysis such as finite element analysis or GBT analysis. The

occurrence of local buckling or any other phenomena during the test was noted also.

For this study, a pinned end support was designed in the laboratory to simulate the real
end support in practice. A 50 mm diameter hardened steel ball, as shown in figure (6-26) with
two 25 mm thick parallel bearing plates was used at both the loading and measuring ends to
provide the necessary degrees of freedom. To provide the global pinned joint effect, the ball
allows rotation in any direction but at the same time the friction between the top of the ball and
the bearing plate (due to high axial load) is enough to prevent any displacements in the X, Y &
Z directions. For local plate element rotation at the ends of the member the friction between
the test specimen and the bearing plate provided resistance to displacement in the X, Y & Z

directions and allows free rotation for each plate element of the test specimen individually. The
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hardened ball bearing at both ends is coincident (concentric) to the centroid of the test

specimen.

Before commencing the test, both ends required temporary supports because there is no
axial load to provide a pre-stressed support, so there is not enough frictional force to support
the specimen. During the test, when the axial load is applied, the temporary supports were
removed to allow the boundary supports to act as pinned ends. Also, at least one of the supports
was required to be moment resisting in the longtudinal direction to prevent rigid body spinning
as explain before, figures (6-26) & (6-27).

Bearing plates

Global boundary

Local boundary

condition

(@50 mm)
hardened steel ba

Figure (6-26) Schematic of the pinned end support condition.

.‘

a) Loading end b) Measuring end
Figure (6-27) Pinned ends conditions.
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6.7.2 Fixed end support

Fixed supports can resist vertical, horizontal and axial forces as well as a moment. Since
they restrain both rotation and translation, they are also known as rigid supports. This means
that a structure only needs one fixed support in order to be stable. All three equations of
equilibrium can be satisfied. The representation of fixed supports always includes three

translation forces (horizontal, vertical and axial) and three orthogonal moments.

As discussed for the pinned end support, the fixed-end support is an idealised column
which cannot be fully achieved in real structures. In the laboratory, the physical test methods
attempt to create a support which is close to a zero-rotation support. All of the observations
resulting from the tests which employ these physical boundary conditions were compared with

theoretical or numerical analysis methods for verification purposes.

In this study, three experimental methods were examined to choose a nearly zero-rotation
for use in the buckling tests, namely concrete blocks, welded plates and bolted/clamped ends
were tested with three one-metre length specimens of (C-170-60-14-1.431) cold-formed steel
section. A universal hydraulic compression/tension machine was used to test the specimens.
The testing machine was provided with an inbuilt computer-controlled system enable plotting

the load and displacement data live as it was acquired, figure (6-28).

Various
boundary

conditions

The univers

Figure (6-28) Universal hydraulic machine.
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All of these methods were compared with nonlinear finite element analysis (ANSYS) to
select the fixty method, which best-matched one in both nonlinear buckling load and mode
shape.

6.7.2.1 Concrete block fixed end support

In this method, concrete blocks were cast at both ends of specimens with 100mm
embedment length. The concrete was mixed with (1:1.5:3) ratio of cement, sand and gravel
respectively using a mixer, and then the 400 mm diameter blocks were cast at both ends and
kept 28 days in wet curing conditions. Next, all the block surfaces were smoothed using epoxy
glue to ensure an even bearing surface for the applied load.

Figure (6-29) Concrete block fixed end support
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To aid the load distribution a special adhesive glue layer was poured on the top and

bottom blocks as shown in figure (6-29c).

The compression testing was carried out on three specimens with an applied load rate of

2 mm/min until a buckling failure occurred. The load-axial displacement relationship was

plotted, figure (6-29c).

Figure (6-30) Concrete block fixed end testing.
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Figure (6-31) Load- axial displacement relationship of specimens with fixed ends

represented by concrete blocks.

For the fixed end support represented by concrete blocks, Figures (6-30) & (6-31), it can
be observed that:

- It required considerable time to prepare the samples up to the point where they were
ready to test (mould preparation, material mixing, concrete pouring and curing time).

- The concrete is not a homogenised material so it is difficult to distribute a uniformly
applied load onto its surface.

- The bond between the concrete and steel section plate elements is not enough to
prevent end slippage and rotation.

- The concrete can fail before the steel section, and in this case the supports become
more representative of pinned-pinned end supports and this results a lower failure
load.
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6.7.2.2 Welded fixed end support

In this method 300 x 200 x 8 mm bearing plate was welded to the end of specimen as
shown in figure (6-32). The intention of the weld was to provide sufficient stiffness to minimise
end displacement and rotation. The amount of fixity provided depends on the weld thickness.
Before welding, the galvanised coating was removed to ensure that the two sides of steel plate

and the specimen will accept the weld.

To ensure that the load was applied uniformly on the end plate, a slice of Medium-density

fibreboard (MDF) was used to distribute the load as shown in figure (6-32).

a) Before test

1

Zwick Roell

b) After test carry on

Figure (6-32) Welded fixed end testing.

172



Chaptfer Six Experimental Investigations

a) Specimen No.1 b) Specimen No.2

Figure (6-33) Welded fixed end testing.
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Figure (6-34) Load-axial displacement relationship of welded fixed end support.

From figures (6-33) & (6-34), it can be seen that:

- The weld does not perform as expected as too much rotation occurred at the end
support, figure (6-32b).

- Specimen No.1 started in load from 14 mm displacement, which means the MDF was
displaced before the specimen was loaded. The interaction between the load-
displacement curve of MDF and the steel section specimen means that the
displacement would have to be measured from the sample ends rather than the load

machine platens.
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6.7.2.3 Clamped fixed end support

For this method, the fixed end support was represented with the section plate elements
gripped between vice jaws. The jaws are stiff enough to prevent displacement and rotation in
the test specimen. The jaws apply the axial load uniformly on the end of the section plate
elements through friction between the section element walls and jaws. This friction is sufficient

to transfer the axial load from the jaws to the specimen walls, figure (6-35) & (6-36).
Bearing plates

Jaws

Tension control
bolt

Figure (6-36) Clamped fixed end testing.
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To develop an adequate friction between the specimen end and the jaws, tension control
bolts (TCBs) were used. The tension control bolts Cosgrove (2004) (TCBs) are a type of high-
grade bolt that can be preloaded by torque application that is carried out entirely at the threaded
end (i.e. at the nut or spline end) of the bolt. TCBs are usually distinguished by their round

head rather than hexagonal head or splines, figure (6-37).

TCB fasteners are high-strength, high-ductility (14%) friction grip bolts for use in
structural steelwork connections. Their primary advantage over another type of friction grip
bolts is ease of preloading. Preloading is carried out by an electric shear wrench at the threaded
end of the bolt (spline end), figure (6-38). When the bolt reaches the required torque, the end

spline shears (as the thread and spline counter-rotate). All TCB details are in Appendix F.

Washer Mut

N :

i

Figure (6-37) Tension control bolts (Cosgrove, 2004).

/ Head

pline

TCB

L

Figure (6-38) Electric shear wrench.
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Figure (6-39) Clamped fixed end testing.

177



Chaptfer Six Experimental Investigations

120
-

= Specimen 1
100 . = = . Specimen 2

Specimen 3

Axial load (kN)

| ] 4

b = 10

20 Axial displacement (mm)
Figure (6-40) Load- axial displacement relationship of clamped fixed end support.

From Figures (6-39) & (6-40), it can be seen that:

- The three specimens appear to buckle in the same mode (local-distortional mode).

- The three specimens appear to buckle symmetrically.

- The rotations at both supports look to be extremely small. This indicates that the jaws
are working as expected to prevent any rotation at the support.

- There is no slip between the jaws and specimen wall elements, so the applied load is

transferred from the jaws to specimen wall elements uniformly and in the correct
manner.
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6.7.2.4 Finite element modelling of the fixed end support

Finite element analysis was used to confirm and validate the behaviour of the support.
Nine one-metre length specimens of (C-170-60-14-1.431) cold-formed steel section column
tests were conducted for a typical lipped channel beam with three different fixed end support
methods (concrete blocked, welded and clamped) as previously discussed. All the test beams
failed by local-distortional buckling mode. The ultimate axial load capacities and axial load
versus axial displacement relationships were obtained from these tests. For comparison finite

element modelling (ANSYS) was verified against the experimental tests.
6.7.2.4.1 Element type

Referring to Chapter 5, the geometry of the cross-section was modelled using the centre
line dimensions of the lipped channel beam. A wide range of elements are available in the
ANSYS element library, which can be used to solve different types of structural problems. Shell
elements have been successfully used in studies related to buckling of thin-walled steel beams.

In this instance, four noded shell elements were used in the analysis.
6.7.2.4.2 Finite element mesh

The accuracy of finite element analysis results also depends on the mesh size. Use of as
many elements as possible increases accuracy. However, to obtain an accurate solution in a
reasonable computer runtime, shell elements of 10mm square with an aspect ratio of 1:1 was

used to mesh the section wall elements, figure (6-41).

Figure (6-41) Finite element mesh of (10 mm) square shape shell

element with aspect ratio constant at 1:1.

179



Chaptfer Six Experimental Investigations

6.7.2.4.3 Fixed end support and applied load modelling

Referring to Chapter 5, the ideal model for a fixed end support was developed with
restraint at all nodes in both translational displacements and rotation directions over a distance
of 50 mm at the ends of the beam. At the end where the axial load was applied the longitudinal

displacement restraint was not present.

The axial load was applied as uniform nodal loads of 500 N creating a total load of 115.5

kN, figure (6-42). From figure (6-25), the yield stress is 480 Mpa.

Applied load

Node restraint

Figure (6-42) Fixed end support and applied load modelling.

6.7.2.4.4 Geometrical initial imperfection

To create the ideal finite element model for lateral-torsional buckling, the fabrication
tolerance of L/1000, as recommended by AS4100 (SA, 1998) for flexural members, was used

as the overall member imperfection about both section axes.

In this study, the specimen was a short column and the predicted eigenvalue buckling
mode shape is the local mode, so the initial imperfection was introduced in the non-linear
analysis by solving the model under self-weight only (in the transverse direction. The elastic
deformation profile was then used to update the nodal coordinates as a geometric initial
imperfection for non-linear analysis. With the shape of the imperfection defined in this way,

the magnitude of imperfection to be used was then decided. The largest magnitude of the
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imperfection was assigned to the node that has the maximum deformation obtained from the

elastic analysis.
6.7.2.4.5 Nonlinear analysis solution and results

Two types of analysis were employed by using the developed finite element model in
(ANSYS), elastic linear and nonlinear static analyses. The elastic linear analysis gives the
elastic linear curve. The elastic linear curve obtained from the elastic linear analysis was used
to input the geometric imperfections in the nonlinear analysis. Non-linear analysis gave the

ultimate failure load and simulated the behaviour of lipped channel beams until failure.

In the non-linear analysis, the maximum number of load increments used was 200 with

an initial increment size of 0.05 and the automatic increment control was enabled.

The solution terminated at 0.91 times the applied load of 115.5 kN, hence the nonlinear
failure load was 0.91 x 115.5 = 105.105 kN.

From figure (6-45), it can be seen that there is significant post buckling capacity (past
the theoretical critical load of around 35kN) up to 105kN, as indicated by a decrease in the

gradient of the graph.

I
0 1.32184 2.684371 3.98557 5.28742
.660928 1.98278 3.30464 4.62649 5.94835

Figure (6-43) Finite element failure mode shape.
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Figure (6-44) Nonlinear failure stress distribution.
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Figure (6-45) Buckling load-axial displacement relationship of nonlinear finite element

analysis (ANSYS).
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6.7.2.5 Results and discussion

Section 6.7.2 described the experimental tests and finite element model developed for
the investigation of appropriate fixed end support conditions for cold-formed steel lipped
channel columns subject to local buckling and yielding. A separate finite element model was
developed to compare with the three methods investigated in the experimental tests for
simulation of a fixed support this was in order to verify and select the best method for a fixed
end support to use in the main specimen tests of this study. All the methods were based on
one-metre span beams, the finite element model included the following features: shell element,

isotropic stress hardening material model, geometric imperfections and non-linear analysis.

The results obtained from the different methods used were compared with the finite
element model to propose the best approach to simulate an appropriate and reasonable method

of fixed end support, it can be seen that:

» For the concrete block support, Figures (6-30), (6-31), (6-44) & (6-46):

e Show that there are many irregularities in the load-displacement relationship which
means that bond to the concrete may have failed during the test - so the end will work
as pinned end condition or one with partial stiffness.

e The failure mode shape did not appear symmetrical or consistent between the three
specimens. Also the same mode predicted by the finite element analysis was not
obtained, meaning that at least one of supports does not work to restraint both
displacement and rotation.

e The difference in behaviour between the specimens themselves which have the same
conditions when casting, indicates that the concrete is too brittle to prevent both
displacement and rotation in the support.

e Show that the failare load is much smaller when compared with the finite element
yield load, so this method does not work properly as a fixed end support.

» Welded end support, Figures (6-33), (6-34), (6-43) & (6-45):

e Show that there is a clear rotation between the section wall elements and the bearing
plate, so the weld cannot stop the rotation at the support.

e There is a large difference in axial displacement between the specimens due to MDF

displacement.

183



Chaptfer Six Experimental Investigations

e The load-displacement curve does not compare well with the finite element analysis
load-displacement curve in both behaviour and prediction of the failure load, Again
the support is acting with partial (and variable) rotational stiffness.

» Clamped end support, Figures (6-39), (6-40), (6-43) & (6-45):

e The clamped end support appears rigid and is able to carry loads and stop
displacements and rotations at the support.

e Shows a good match in both failure load and failure mode shape with the nonlinear
finite element analysis.

e The load-displacement curve is smooth and consistent between all the tested
specimens.

e The failure mode shape in all specimens appears symmetrical and matches with the

nonlinear finite element analysis.

From the above notes, it can be concluded that the clamped end support is the best method
to represent the fixed end support in experimental tests. This method will provide rapid

installation and removal of samples as well as providing acceptable support conditions.

To employ this method of fixity, modification was required to ensure it to worked with

both lipped channel sections and Zed-sections as showen in figure (6-46).

- EIQ'l.lall'

e

Lipped channel-section Zed-section

Figure (6-46) Modification of clamped end to work with lipped
channel and zed-section.
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6.7.2.6 Modification of load system in fixed end support tests

For the pinned end support tests, a two hinge support system was used to support the
hydraulic jack end, figure (6-47a). The support was free to rotate in any direction, so small
eccentricities in both section directions which are borne from the extension of the hydraulic
jack during the test loading, do not affect the support behaviour and actual buckling load

results.

For the fixed end support tests, the load system which was used previously for the pinned
end support needed modification to apply the axial load on the centroid of the section without
any eccentricities in both of the section directions. Hence three locations of rotational
articulation (pins) support system was used to support the hydraulic jack end, figure (6-47Db).

This system keeps the hydraulic jack extension in a straight line during the test loading.

b) Three pins loading system

. - . -

Figure (6-47) Two and three pins loading systems.
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6.8 Test procedure

The cross-section dimensions and thickness of each specimen were measured using a Vernier
calliper and a Micrometre Screw Gauge, respectively. In the case of a pinned end support, the
lengths of specimens are presented in tables (6-1) & (6-2). Deflection and rotation measuring
points were marked at the mid-span and quarters points of the specimen. Small screw bolts of
5.0 mm diameter were drilled into the specimen at the required points to attach the tension
wires for the displacement transducers (WDTs). The specimen was attached directly to the
bearing plate. MDF was placed between the specimen and bearing plate to increase the friction
during loading. All loads, displacements and rotations were logged throughout the testing

regime.

For the fixed end supports, the test beam length was 50 mm longer than the intended beam span
to allow for the connections at each support. Three 10 mm diameter holes were punched (one

hole for each section plate element) to accommodate the support assembly, figure (6-48).

Figure (6-48) Punching of section plate elements.

The acquired results were used for verification of the FE and GBT analyses to confirm
the application of these numerical methods to predict the actual buckling load and behaviour

of cold-formed steel commercial sections under axial load.
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CHAPTER SEVEN

RESULTS AND DISCUSSION

Linear buckling analysis methods are usually used to predict buckling loads and
associated mode shapes or display the buckling mode shape associated with particular column
length ranges. Also the linear results can be used in empirical formula to calculate the actual
failure loads and mode shapes. In this chapter, both linear analysis implemented in the finite
element analysis method (ANSYS) and GBT were illustrated, together with discussions of

advantages and disadvantages of each of the analysis methods.

The results of experiments are presented with regards buckling loads, mode shapes and
load-displacement histories with the laboratory representations of boundary conditions for both
pinned and fixed end conditions. These results are compared with both FEA and GBT using
nonlinear analysis with the effects of initial imperfections and post-buckling effects to verify

the best numerical analysis method. The features of each analysis method are also discussed.

7.1 linear buckling behaviour of Cold-Formed Z and C sections

7.1.1 Generalized beam theory (GBT)

The cross-sections were divided into natural nodes and intermediate nodes, plate
intersection nodes were defined as the natural nodes and the mid-plate nodes were defined as
the intermediate nodes, figure (7-1). The generalized beam theory section properties were
calculated using the purpose written Matlab Program in Appendix A, as showen in tables (7-
1) & (7-2). The program GBTUL was used to obtain the generalized beam theory mode shapes,
figures (7-2) & (7-3).
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C-section Z-section
Figure (7-1) Cross-section GBT nodes distribution
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Table (7-1) GBT section properties for c-section

Mode Ck D« Bk
1 615.96 0 0
2 3733514 0 0
3 291616 0 0
4 2.3E+09 643.3 0
5) 18.53 9E-04 4E-06
6 19.38 8E-04 1E-05
7 43.35 0.064 0.0017
8 62.02 0.726 0.0592
9 40.63 0.675 0.0662

Table (7-2) GBT section properties for z-section

Mode Ck D« Bk
1 702 0 0
2 4518050 0 0
3 232693 0 0
4 3.5E+09 936 0
5} 15.85 6E-04 2E-06
6 13.37 7E-04 8E-06
7 62.53 0.093 0.0025
8 50.57 0.594 0.0452
9 43.75 0.745 0.0769
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Figure (7-2) GBT C-Section Buckling Modes, (Bebiano et al, 2008), 25th, November 2016

IR | 1
— ]

Mace 1 ) Maode 2 made 3 wode 4 hode 5
Axial extension Major axis bending Minar axis bending Tarsion Distortional
,1 s

hode & hode 7 E‘;GCSIE_ Blate Lacal-plate

Distartional Local-plate P

Figure (7-3) GBT Z-section buckling modes, (Bebiano et al, 2008), 25th, November 2016
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Considering the GBT buckling analysis for a single mode, this was calculated using the
purpose written Matlab Program in Appendix B. The buckling load curves are shown in figures
(7-4) & (7-5) for C-sections in pinned and fixed end conditions respectively and figures (7-6)
& (7-7) for Z-section in pinned and fixed end conditions respectively using a logarithmic scale

for the column length axis.

It is clear that the GBT buckling analysis for a single mode gives a good indication of
how the column will buckle in each mode individually. These separate buckled models help to
understand the behaviour of any open column section of any length. Figures (7-4) for C-section
and (7-6) for Z-section of the pinned end condition show that the column at lengths between
15-340 cm for C-section and 15-245 cm for Z-section buckled in mode No.7, which was a local
plate buckling mode with approximately the same buckling loads of 53 kN for C-section and
77 kN for Z-section along the entirety of the load buckling zone., The lengths between 340-
1000 cm for the C-section and 245-1000 cm for the Z-section buckled in mode No.3 which
was minor axis bending (global) buckling mode with a decrease in buckling load as the length
increases. Figure (7-5) for C-section and (7-7) for Z-section with fixed end conditions shows
that the column at lengths between 15-680 cm for C-section and 15-485 cm for Z-section
buckled in mode No.7 which was a local plate buckling mode with approximately the same
buckling loads of 56 kN for C-section and 81 kN for Z-section along the entirety of the load
buckling zone, Lengths between 680-1000 cm for C-section and 485-1000 cm for Z-section
buckled in mode No.3 which was minor axis bending (global) buckling mode with a decrease

in buckling load as the length increases.

The lengths of less than 15 cm for both sections for both boundary conditions have high

buckling loads and are expected to fail by direct axial yielding before buckling occurs.

It can be observed that the boundary conditions have a slight effect on the buckling load,
but the zone of local plate buckling for the fixed end condition is much longer than the zone
for the pinned end condition. This means that the column will bear more buckling load with an
extended local plate buckling zone due to the boundary conditions changing from pinned to

fixed end.
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7.1.2 Finite Element Analysis (ANSYS)

The linear Eigen-buckling analysis implemented through the finite element method
which yields critical loads provides a good indication which mode the column will buckle in,
however it would be tedious to separate the effects of each mode individually, and this aspect
is clear in the generalized beam theory analysis. The FE analysis has more flexibility in the
representation of boundary conditions for both pinned and fixed end conditions. It is
straightforward to split the global boundary conditions and local boundary conditions when
compared to the generalized beam theory which requires the representation of the boundary

conditions for each mode independently.

The linear buckling analysis of the generalized beam theory (eigenvalue buckling
analysis) was implemented using the purpose written Matlab programs in the Appendix B and
C.

The first analysis carried out was an eigenvalue linear analysis for determination of the
critical buckling load and associated buckling modes. Figures (7-8), (7-11), (7-14) and (7-17)
demonstrate the linear buckling behaviour for a range of lengths of the column as predicted by
both the linear finite element analysis (ANSYYS), the linear finite difference analysis used to
solve the GBT and Eurocde design practice (Appendix G), BSI (2014). In these analyses, the
load is acting in an ideal state (at the centroid of the cross-sections). The linear FE results are
similar to the GBT eigenvalue linear analysis in terms of the critical buckling load. The
buckling behaviour for the linear model shows that the column cannot increase its strength
beyond bifurcation point because it has zero stiffness after buckling has occurred. Eurocode
gives more safety in the case of local and distortional buckling zones, but it matches with both

FE and GBT linear analyses in the case of the global buckling zone.

The buckling behaviour of the column can be classified into three main zones, i.e. the
local buckling zone which contains all the high-order local buckling modes, the distortional
buckling zone which contains the two symmetrical and unsymmetrical distortional buckling
modes, and the global buckling zone contains the lateral and torsional buckling modes.
Through the local buckling zone, the buckling load was observed to be stable (with only a small
decrease or increase as the length increased in both singly symmetrical C-section and
unsymmetrical Z-section for both pinned and fixed end conditions. The local web-plate
buckling mode (Mode No.7 in GBT) dominated on this zone length. On the global zone, the
buckling load dramatically decreased through the length range and the lateral buckling mode
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shapes (Modes No.2 & 3 in GBT) were dominated by this zone length. These figures also show
that there were not any distortional buckling modes through the length as they were not critical.

There was no combination between the buckling mode shape zones.

It can be observed that the local mode shape buckling zone was unchanged in both
buckling loads and buckling mode shape type through the length range in each of the cross-
section types as compared to the global mode shape zone which is much more sensitive to
initial imperfection effects. Hence it is better to use fixed end conditions rather than pinned end
conditions to extend the local mode shape buckling zone and provide a long and stable column
length. Also, it was observed that the fixed end boundary conditions increased the buckling

load through the length range overall.

Figures (7-9), (7-10), (7-12), (7-13), (7-15), (7-16), (7-18) and (7-19) show the
eigenvalue buckling mode shapes for both the finite element method and the linear finite
difference analysis of GBT for each C & Z-section with different boundary conditions of
pinned and fixed ends, the eigen-displacements do not represent the actual displacement.
Therefore, these displacement values were ignored and only the buckling mode shapes were

taken into account to investigate which mode shape will occur for each length.

It can be seen that the number of half sine waves of local plate buckling mode shape in
the local zone for both cross-section shapes with different boundary condition types was
exactly the same for both linear analysis methods of the finite element analysis (ANSYS) and
the finite difference analysis of GBT, this provided good evidence that both linear analysis

methods can predict the correct eigen-buckling mode shape.

For the local buckling zone, both linear analysis methods predicted one-half sine wave
in each cross-section shape with different boundary condition types which matched the Euler

buckling mode shape.

It can be concluded that the results of either buckling loads or buckling mode shapes have
a high degree of similarity in each of the finite element analysis and the GBT. The finite
element method (ANSYS) was a much slower process than the GBT due to the extent of
modelling and the solution of each length separately. So the GBT provides a quicker analysis
method to predict linear buckling loads and mode shapes of thin-walled steel sections

considering the relative accuracy of results.
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Max initial imperfection (mm)

7.2 Non-linear analysis and experimental results

7.2.1 Non-linear load results

For non-linear buckling analysis, the effects of initial imperfection and post-buckling
effects should be taken into account when examining the failure loads through the length range
of the column. Initial imperfections affect the change of cross-section and the length of the
column. This was classified into two patterns of local initial imperfection which are an effect
of cross-section change and global initial imperfection which is an effect with length change
(geometrical non-linearity). The post-buckling affect is incorporated with the cross-section

shape and the material non-linear properties.

In this study, the C-section & Z-section cross-sections were measured in the laboratory
using calibrated measuring devices (see Chapter 6), and it was found that the differences in
the cross-section thickness of these sections were tolerable. So only global initial imperfection
was taken into account with length change with the section acting under self-weight, figure (7-
20).

The non-linear analysis of the generalized beam theory was implemented the purpose

written Matlab Programs in Appendix E.
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Figure (7-20) Maximum initial imperfection vs length.
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For the case with pinned end boundary condition, figures (7-21) & (7-23), when the
lengths exceed 300 cm (global buckling zone), it was recognisable that the non-linear failure
load decreases as the amount of global initial imperfection increases. This can be seen in both
numerical analyses because the global initial imperfection generates extra bending moment
aside from axial load which means the column yields at a lower axial load. In this zone, the
results demonstrate that the predicted ultimate strength of the C and Z-sections by the non-
linear generalized beam theory is in good agreement with the results obtained from the non-
linear finite element analysis and experimental test results. For short lengths of less than 100
cm, (local buckling zone), and medium lengths between 100 cm and 300 cm (combination
buckling zone), the non-linear finite element analysis can model the effects of post-buckling,
whereas the non-linear GBT analysis would require modification to do so. The post-buckling
zone clearly shows the difference in failure load between the non-linear finite element analysis
and the non-linear generalized beam theory. Therefore, it is clear that for the analysed C and
Z-sections, the non-linear finite element analysis provides a higher failure load than can
currently be predicted by the non-linear GBT analysis. The experimental test results also show
the post buckling effects in these zones, though generally they are enveloped by the FE results
to a degree. So in general terms, the post-buckling effect serves to increase the failure load and

provides more stability, especially for short columns.

For the fixed end boundary conditions, figures (7-22) & (7-24) show that the post-
buckling zone extended to overlap a portion of the global buckling zone in addition to local
and distortional buckling zones (which was obviously not the case for pinned end conditions).
Also it can be noted from figures (7-21), (7-22), (7-23) & (7-24) that there was no significant
differences in the failure loads for both local and distortional buckling zones when comparing
between the pinned and fixed end boundary conditions. These zones extend at the expense of
the global buckling zone for fixed end boundary conditions, and the failure loads were
approximately twice those observed for pin ended boundary conditions in the global buckling

Zone.

For the experimental test results, it is clear that these are in good agreement with both the
non-linear finite element and the non-linear generalized beam theory analyses in the global
buckling zone for both pinned and fixed end boundary conditions. But in the local and global
buckling zones, the experimental test results are enveloped by the non-linear finite element
analysis, due to a combination of the representation of the finite element model boundary

conditions as ‘perfect’, and the presence of further imperfections in the member and axial load
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paths in the experimental tests. This clearly demonstrates the effect of tolerances and safety

factors which must be considered if any prediction of failure is to be based on the output from

FE analyses.
120 | !
../"-/. I ' Non-linear GBT
AN |
100 |}/ /2 : :
EAES | L e Non-linear FEM (ANSYS)
/- £ i
AV :
20 ,’ _/' : !.},_ "y _ I = = = Experimental tests
—_ S / b - 7“._/.--/|._..
Z N Y SRR SN
< / Po,sﬁ-puc Img zone/ , ?
= B A e I Ay B
S 60 / [ K / 4
o AN A
> AV S AR
c Y A / '(: S .7'-
= / ( N | N /'. A / 1% - / '..
i~ 40 2a + = .
g — I =3 @) I S~ e ™ ®
0 o S = )
o | = &4 . =
~ 2 = S i NN
o o | «« [=3 d o o N
20 g g ¢ N g H (-DD c ~
% | Sz ! 2 N
=: 2 | B
Q! . «Q
0 Y \
0 100 300 400 500 600 700
Length of column (cm)
Figure (7-21) Non-linear and experimental buckling load for the
length range of the C-section for pinned ends conditions.
140 | !
h ot : | Non-linear GBT
RIS : : .
190 LA, 1 / ! B ol Non-linear FEM (ANSYS)
/ - VAT L e
= . R A PRy A S .
Z VAR A At pil i — — — Experimental tests
<o |V /7 5, L T ETN S
/ ./: ./.' /'\A
-c.g A A VA s VArAS
= s |V 75 Ly g Y {( ANA A
= Loy 0 S Postsbueklipg A/ S/
= AT Y AN VAR A SE R S A
= Sy S ey IS
o 60 ./ B / / /l K ZQne} |- . ./ = A
S PR R A R R A A A R E
a) VAR - N A A A L A A
L AR N = A ) R .’8/ —
40 o | g 7 | N 2
= : o O ° =
®* 2 I z 3! 3 £
20 5 i 3 S | =
Q ! SR S
| ' F
0 A 4 v
0 100 200 300 400 500 600 700

Lenath of column (cm)
Figure (7-22) Non-linear and experimental buckling load for the

length range of the c-section for fixed ends conditions.
203



Chapter Seven Results and Discussion
140 | |
/. Non-linear GBT
/.' '.y.’ I |
120 1 /7 /"/"'a | O Non-linear FEM (ANSYS)
VA |
/ / ./ V' " | |
~100 ! \' " | = = = Experimental tests
< Po§t buckllng zbr)e A
= . |
= J ; L/ .,
3 80 A z W A !
> S ../ ; /|\/ ,/ Ve
é Nn AN |/\/ /\ "._Ii
5 00 |
8 — W
8 2 g N«
40 o | L @ | )
o o = o "%
2 S | a 2 | S
= 8 3
=2 Q o,
20 3 | & = | RS ST
>
v v T
0
100 200 3 400 500 600 700
Lengqg of column (cm)
Figure (7-23) Non-linear and experimental buckling load for the
length range of the Z-section for pinned ends conditions.
! ! Non-linear GBT
200 : :
. ! S e B B e R R Non-linear FEM (ANSYS)
2
AR [
—~ VAN AR AL RS constos = = = Experimental Tests
= e LT ] P
50 S A A S A T
= SN AN
S S AN L
2 / { eSSk,
=2 i Post,buéklng zore % ! / A N
= /ol ! AV S { ;I
=100 i e e Sar ST I
&) ;o _I Dyl Loy /1o,
BV TER IR
s B o=yl o g % o R
N R A= WA= ,I/J,g_,g//,
S o ~ O : =5
50 25— 8 3 ! z
zZ 8 = i &
> .
il !
v v
0
100 200 300 400 500 600 700

Length of column (cm)

Figure (7-24) Non-linear and experimental buckling load for the
length range of the Z-section for fixed ends conditions.

204



Chapter Seven Results and Discussion

7.2.2 Non-linear mode shape results

From the investigations of the mode shapes obtained from the experimental tests, three
lengths of 1.0, 2.3 & 4.0 m were selected to represent the three buckling zones of local,
distortional and global buckling. The finite element analysis results of mode shape, transverse
load-displacement relation in the two orthogonal section axes, and rotation about the
longitudinal axis were compared with the experimental results for verification purposes of the
numerical analysis methods for the uniaxial symmetrical C-section and unsymmetrical Z-

section cold-formed steel members with both pinned and fixed end boundary conditions.

The results obtained from the different methods were compared with a view to proposing
an approach which can provide an appropriate and reasonable method of predicting the actual
columns behaviour under axial compression. From figures (7-25) to (7-48), it can be observed
that:

= For the uniaxial symmetrical C-section:

- For short lengths of 1.0 m with pinned end boundary conditions, figure (7-25), it can be
seen there were local-distortional failure mode shapes in both the finite element and
experimental tests with good agreement between them. From figure (7-26), when the
compressive load was high (for this particular length as compared with other lengths of
the same cross-section), a small uncontrolled movement of the applied load occurred,
moving away from the centroid of section during the test. This movement was likely to
have influenced the resulting failure load of 68.44 kN being less than the finite element
failure load of 77.33 kN. The failure longitudinal displacements in X and Y-axes (in
mm) and rotation about the Z-axis (in degrees) are 0.004, -4.16 and 0.014 respectively
in the finite element analysis. These were 0.175, -5.21 and 0.032 respectively in the
experimental test, so it can be noted that there was a good agreement in both
displacements and rotation between the experimental tests results and nonlinear finite

element analysis.

- For the medium length of 2.3 m with pinned end conditions, figure (7-27), it can be
seen that distortional-lateral failure mode shapes presented in both the finite element
analysis and the experimental tests with predominance of the lateral mode rather than

the distortional mode. Therefore, it can be said that the distortional buckling zone (1.0-
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2.3m) was much narrower for this type of boundary condition. From figure (7-28), it
can be seen that the finite element and the experimental failure loads were 78.36 kN
and 45.13 kN respectively. This relative difference between the experimental and finite
element failure load is as a result of the lack of friction between the C-section and the
bearing plate during the test. The longitudinal displacements at failure in X and Y
directions (in mm) and rotation about Z direction (in degree) are 0.002, -14.37 and 0.033
respectively as predicted by the finite element analysis, whereas for the experiment the
displacement were 3.4, -16.13 and 1.02 respectively. These results also showed good
agreement between experimental and the numerical method in this length which has

acted as a means of verification,

- For the longer length of 4.0 m with pinned end conditions, figure (7-29), it can be
observed their lateral failure mode shapes presented in the finite element analysis. For
the experimental tests, also a small participation from torsional failure modes was
observed. Due to the effect of global initial imperfection and imperfections in the cross-
section shape. From figure (7-30), the finite element and the experimental failure loads
were 32.08 kN and 31.84 kN respectively, so a very good agreement of failure load was
obtained for the longer lengths due to a more appropriate representation of pinned end
conditions in practice. The failure longitudinal displacements in X and Y directions (in
mm) and rotation about Z direction (in degrees) were -0.04, -63.57 and 0.065
respectively for the finite element (ANSYS) and for the experiment they were -1.03, -
34.72 and 6.45 respectively. From these results it was noted that the manufacturing

imperfections had more of an effect due to the longer lengths.

- For the short lengths of 1.0 m with fixed end conditions, figure (7-31), due to the high
compressive axial load, the fixed end was poorly represented, hence this provides
reasoning as to the observed differences between the finite element and experimental
mode shape. The local-distortional mode is present in both the experimental and FE
analysis. From figure (7-32), the finite element and the experimental failure loads were
128.45 kN and 120.96 kN respectively, so it was clear to see there was a good match in
failure load in both cases. The longitudinal displacements at failure in X and Y
directions (in mm) and rotation about Z direction (in degrees) were -0.06, 6.34 and
0.052 respectively for the finite element and 1.3, 5.36 and -0.2 respectively for the
experimental test. The results compare well between the finite element analysis and

experimental tests.
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For the medium lengths of 2.3 m with fixed end conditions, figure (7-33), the similarity
between the experimental and FE can be seen. This is an equal amount of local and
distortional buckling presented in both. From figure (7-34), the finite element and the
experimental failure loads were 111.36 kN and 105.17 kN respectively as before, there
is good agreement at this length with a good representation of fixed end boundary
conditions. The failure longitudinal displacements in the X and Y directions (in mm)
and rotation about Z direction (in degree) are 0.05, 5.52 and 0.063 respectively for the
finite element analysis and 3.4, 7.23 and 2.07 respectively for the experimental tests. In
this series of tests and analyses the results show confidence in the representation of the

boundary condition.

For the longer lengths of 4.0 m with fixed end conditions, figure (7-35), it can be seen
that the column buckled laterally upward in both cases. It can be concluded that the
nonlinear finite element analysis has the ability to predict the buckling direction
whereas the linear finite element or the linear generalized beam theory analyses cannot.
From figure (7-36), the finite element and the experimental failure loads were 81.25 kN
and 62.79 kN respectively, this difference in failure load between comes from the global
initial imperfection which has a greater effect in longer lengths of columns. The failure
longitudinal displacements in section X and Y direction (in mm) and rotation about the
longitudinal Z direction (in degrees) are 0.03, 14.23 and 0.071 respectively for the finite
element analysis and 4.1, 23.41 and 2.7 respectively for the experimental test, Small
differences in displacements and rotations between the two cases may give an indication

that the C-section had less imperfections in the cross-section.

= For the unsymmetrical Z-section:

For the short lengths of 1.0 m with pinned end conditions, figure (7-37), shows the
comparison between the FE analysis and the experimental test. For the C-section tests
with the same length of 1.0 m, movement at the pinned end occurred due to lack of
friction between the C-section and the bearing plate. To prevent this for the Z-section
tests, a high friction aluminium plate was placed between the bearing surfaces to
increase the friction. This resulted in a satisfactory match in the failure mode shapes
between the finite element analysis and experimental test. Figure (7-38) shows that the
finite element and the experimental failure loads were 116.13 kN and 116.84 kN
respectively, so there was excellent agreement in between the two. The longitudinal
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displacements in X and Y directions (in mm) and rotation about Z direction (in degree)
at failure were 0.73, 3.97 and 0.065 respectively for the finite element analysis and 1.97,
5.76 and -1.82 respectively for the experimental test. This shows were good agreement
in the displacement and rotation here.

- For the medium lengths of 2.3 m with pinned end conditions, figure (7-39) shows that
the lateral-distortional failure mode shape occurred in both the FE and the experiment,
but it was unsymmetrical in the experimental test due to imperfections in the
manufacture of the sections. From figure (7-40), the finite element analysis and the
experimental failure loads were 72.24 kN and 61.01 kN respectively. The difference
between the two results is due to the same cause as previously mentioned, i.e.
imperfections of the section. The displacements in the X and Y directions (in mm) and
rotation about Z direction (in degree) in failure were 7.1, 27.4 and 0.074 respectively
for the finite element analysis and 8.4, 30.75 and 0.23 respectively for the experimental

test. These displacements were also in good agreement.

- For the longer lengths of 4.0 m with pinned end conditions, figure (7-41), the mode
shape was a pure lateral failure mode shape for both the FE analysis and the experiment.
From figure (7-42), the finite element and the experimental failure loads were 30.54 kN
and 19.82 kN respectively and the failure longitudinal displacements in the X and Y
directions (in mm) and rotation about Z direction (in degree) were 8.5, 26.7 and 0.067
respectively for the finite element analysis and 6.9, 62.4 and 1.96 respectively for the
experimental test. This showed a significant difference in failure loads and lateral (Y
direction) displacements at these lengths due to the effects of imperfection created
whilst mobilizing the samples into position (handling imperfection). This would be

presented wherever section an installed in practice.

- For the short lengths of 1.0 m with fixed end conditions, figure (7-43) and figure (7-
44), the finite element analysis and the experimental failure loads were 181.6 kN and
157.96 kN respectively. The yield longitudinal displacements in the X and Y directions
(in mm) and rotation about Z direction (in degrees) were -0.054, -3.5 and 0.072
respectively for the finite element analysis and -3.76, -3.4 and 1.08 respectively for the
experimental test. A reasonable comparison was obtained between each case with the
local-distortional failure mode shape presenting in the experimental test, enhanced by
the effect of cross-section imperfections.

208



Chapter Seven

Resulfs and Discussion

In

For the medium lengths of 2.3 m with fixed end conditions, Figure (7-45) and figure
(7-46), the finite element and the experimental yield loads were 168.17 kN and 127.61
KN respectively. The failure longitudinal displacements in the X and Y directions (in
mm) and rotation about Z direction (in degrees) were -0.075, 4.4 and 0.055 respectively
for the finite element analysis and 5.5, 11.3 and 6.3 respectively for the experimental
test. So it is clear to note that the local-distortional failure mode shape was prevalent in

the medium lengths with an acceptable comparison for the displacements and rotations.

For the longer lengths of 4.0 m with fixed end conditions, figures (7-47) and figure (7-
48), the finite element analysis and the experimental failure loads were 99.43 kN and
58.88 kN respectively, and the failure longitudinal displacements in the X and Y
directions (in mm) and rotation about Z direction (in degrees) were 7.3, 26.2 and 0.041
respectively for the finite element analysis and 7.7, 37.9 and 1.5 respectively for the
experimental test. The lateral failure mode shape was prevalent at these lengths with
significant differences in the failure load and the displacement in lateral Y direction due
to the sensitivity in the global initial imperfections.

general, it can be seen that there is good agreement between the results of the finite

element analysis and experimental results for the short and medium length samples with

regards failure loads and mode shapes. The differences become significant at the longer

lengths, mainly due to the manufacturing imperfections and handling imperfections as shown

in table (7-3).
Table (7-3) Experimental and FEA Buckling loads comparison.
Buckling load (kN)
C-section Z-section
Length Pinned Fixed Pinned Fixed
(m) Experi- FEA Egror Experi- FEA Egror Experi- FEA Egror Experi- FEA Egror
mental (%) mental (%) mental (%) mental (%)
1.0 68.44 | 77.33 | 11.49 | 120.96 | 128.45 | 5.83 116.84 | 116.13 | 0.61 157.96 | 181.60 | 13.02
2.3 45.13 78.36 | 42.40 | 105.17 | 111.36 | 5.56 61.01 72.24 1555 | 127.61 | 168.17 | 24.12
4.0 31.84 32.08 0.75 62.79 81.25 | 22.72 19.82 30.54 35.10 58.88 99.43 | 40.78
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Overall, it can be said that a good representations of the desired boundary conditions was
achieved in the laboratory work for both the pinned and fixed end cases. Modifications were
made as the experiments progressed, and these have worked well considering the comparisons
of the results of the finite element analysis. All experimental results are contianed in Appendix

G.
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Figure (7-25) FEM and experimental buckling mode shape of 1.0 m length of C-section with pinned

end conditions.
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Figure (7-26) FEM and experimental load-deformation relations for 1.0 m length at the mid web of

0.5L of the C-section with pinned end.
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Figure (7-27) FEM and experimental buckling mode shape of 2.3 m length of C-section with pinned

end conditions.
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Figure (7-28) FEM and experimental load-deformation relations for 2.3 m length at the mid web

of 0.5L of the C-section with pinned end conditions.
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Figure (7-29) FEM and experimental buckling mode shape of 4.0 m length of C-section with pinned
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Figure (7-30) FEM and experimental load-deformation relations for 4.0 m length at the mid web of

0.5L of the C-section with pinned end conditions.
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Figure (7-31) FEM and experimental buckling mode shape of 1.0 m length of C-section with fixed
end conditions.
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Figure (7-32) FEM and experimental load-deformation relations for 1.0 m length at the mid web of
0.5L of the C-section with fixed end conditions.
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Figure (7-33) FEM and experimental buckling mode shape of 2.3 m length of C-section with fixed
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Figure (7-35) FEM and experimental buckling mode shape of 4.0 m length of C-section with fixed
end conditions.
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Figure (7-36) FEM and experimental load-deformation relations for 4.0 m length at the mid web of

0.5L of the C-section with fixed end conditions.
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Figure (7-37) FEM and experimental buckling mode shape of 1.0 m length of Z-section with pinned
end conditions.
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Figure (7-38) FEM and experimental load-deformation relations for 1.0 m length at the mid web of
0.5L of the Z-section with pinned end conditions.
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Figure (7-39) FEM and experimental buckling mode shape of 2.3 m length of Z-section with
pinned end conditions.
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Figure (7-41) FEM and experimental buckling mode shape of 4.0 m length of Z-section with
pinned end conditions.
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Figure (7-42) FEM and experimental load-deformation relations for 4.0 m length at the mid

web of 0.5L of the Z-section with pinned end conditions.
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Figure (7-43) FEM and experimental buckling mode shape of 1.0 m length of Z-section with fixed

end conditions.
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Figure (7-44) FEM and experimental load-deformation relations for 1.0 m length at the mid web of

0.5L of the Z-section with fixed ends conditions.
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Figure (7-47) FEM and experimental buckling mode shape of 4.0 m length of Z-section

with fixed end conditions.
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Figure (7-48) FEM and experimental load-deformation relations for 4.0 m length at the mid web of

0.5L of the Z-section with fixed end conditions.
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8.1 Summary

This thesis has presented a detailed investigation into the buckling behaviour of cold-
formed steel lipped C and Z sections subject to axial load using the finite element method and
the generalized beam theory. Models which examined both linear critical buckling analyses
and non-linear geometric and material analysis with the effects of boundary conditions (pinned
and fixed end conditions) were produced. These results were verified by experimental tests

comprising two types of cross-sections (lipped C & Z sections).

In the first chapter, an introductory review of cold-formed steel processing methods was
presented. Chapter two presented a literature review of current research into the analysis of
buckling, including experimental testing of cold-formed steel members. Chapter three
addresses the derivation of Schardt’s GBT and establishes a unified energy formulation for it
(applicable to open non-branched cross sections only, since it follows Schardt’s basic
assumptions. Chapter four presented further applications of GBT theory where the generation
of eigen-buckling loads were obtained using the finite difference method to solve the
differential equations. This was achieved through a computer code written in Matlab. The
Matlab code was then extended to address nonlinear geometry incorporating an initial
imperfection and a load stepping procedure. Linear problems (member subjected to axial load),
linear analysis of buckling problems (Eigenvalue problem) in both single and combined modes
and non-linear geometric analysis problems were solved for different types of boundary
conditions (pinned-pinned, pinned-fixed and fixed-fixed boundary conditions). All of these

analyses were verified through illustrative examples.

For the second phase of this research, Chapter five presents the evaluation of buckling
behaviour using the finite element method (ANSYS). Linear and nonlinear analyses were
carried out, examining the effects of the element type, element size, element aspect ratio and
the local and global boundary conditions. Also, these analyses were explained by the

demonstrative examples of cold-formed cladding section with pinned and fixed end conditions.
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In the third phase of this research, Chapter six, the experimental test program was
presented. All of the samples were subject to axial loading and these were used to verify the
results from the numerical analysis methods (incorporating different cross-sections of cold-
formed steel and variable lengths and boundary condition types). Preparation of the loading
rig, the applied load, instrumentation, and an extensive investigation of the representation of
the boundary conditions was presented. The representation of the boundary conditions as either
pinned or fixed was carefully examined in the laboratory using three different arrangements,
followed by the selection of the appropriate one for use in the main load testing program. In
addition to the load tests, appropriate coupon tests provided material properties for use in the

numerical analyses.
8.2 Conclusions

The most significant conclusions and developments obtained from this research are as follows:

- Improved knowledge and understanding of the GBT and the development of a new
Matlab code program to calculate the GBT section properties of thin-walled open
sections. This program was able to calculate the section properties with the higher
order modes (local buckling) in the presence of intermediate nodes or without them.
Intermediate nodes would only be required should higher order modes be necessary
for extraction.

- Significantly improved knowledge and understanding of the buckling behaviour of
cold-formed steel sections subjected to an axial load using the GBT by taking the
advantage of its separation of mode failures. The new Matlab code was extended to
calculate the linear buckling load in both cases of single and combined modes.

- The most significant development in the Matlab code was to extend it further to
predict the failure load of cold-formed steel sections subject to axial load with the
effects of the initial imperfection, using the unique characteristics of GBT. This
development was only extended as far as attempting to predict failure initiated by
global buckling modes (classical Euler type buckling).

- The use of GBT is easier to program than the conventional theories (rod-theory,
Euler-Bernoulli beam theory and non-uniform torsion of Vlasov torsion theory)
because it uses one general equation rather than many equations with different

parameters as for conventional theories.
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- The GBT analysis provides a clearer understanding of higher order modes local
buckling of general beam behaviour (5" and more) which is difficult to visualise in
conventional theories.

- The use of first order GBT equations to solve linear problems (beam subjected to
axial load) gives a more useful illustration of the effect of each mode individually,
i.e. it can deal with each mode’s characteristic behaviour (deflection, stresses etc.)
individually for design purposes.

- In buckling analysis, GBT provides information as to the mode shapes along the
length of the beam; therefore, it will be easy to examine each mode in the design
process.

- In general buckling analysis, the distortional buckling modes occur in lengths which
are among the more commonly used lengths in the design of cold-form steel
structures. So distortional buckling modes may be critical modes from the design
point of view.

- The linear buckling loads obtained from GBT and the finite element analyses provide
a good comparison, thereby providing confidence in the use GBT for design
purposes.

- It was seen that the number of half sine waves associated with local plate buckling
mode shapes in the local zone for both cross-section shapes with different boundary
condition types was exactly the same for both linear analysis methods of the finite
element analysis (ANSYS) and the finite difference analysis of GBT. Again this
provided substantiation that both linear analysis methods are predicting the correct
eigen-buckling mode shape. Also both linear analysis methods predicted one-half
sine wave for each of the cross-section shapes with different boundary condition
types, comparable to the Euler buckling mode shapes (lateral and torsional buckling
mode shapes).

- It can be concluded that the results of both the buckling loads and buckling mode
shapes show a good comparison in each of the linear analyses of the finite element
and GBT. The finite element method (ANSYS) requires a longer time to process and
develop than GBT. This is true for both the modelling and the solution processes of
each separate length. So GBT was the ideal analysis method to get a quick prediction
of linear buckling loads and mode shapes of thin-walled steel structures due to the

relative accuracy of results and time saved.
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- For the GBT non-linear failure analysis, the non-linear buckling loads always less
than the linear buckling loads which is as expected because of the geometrical effect
of the initial imperfection. However, the non-linear GBT analysis could not produce
the effects of post-buckling which appears clearly in the short and medium lengths,
because it does not take into account the material non-linearity and cross sectional
geometry effects. So, future development of GBT to predict post buckling effects for
members exhibiting local buckling will need to addressed this.

- For the finite element method, post-buckling effects are evident as ANSYS will
capture the 3D geometric local behaviour of the plates which form the member, and
also the material nonlinearity. Hence the failure load was significantly larger than the
linear eigen-buckling load for both the local and distortional mode shape zones,
solely due to post-buckling effects. On the other hand, the non-linear load was less
than the linear buckling load due to the effects of initial imperfection for the global
buckling modes.

- The experimental test results corroborated both the non-linear finite element
(ANSYS) and the non-linear GBT analyses in the global buckling zone for both the
pinned and fixed end boundary conditions. In the local and distortional buckling
zones, the experimental test results were enveloped by the non-linear finite element
analysis (ANSYS). This is expected as the non-linear finite element analysis models
the boundaries as perfect restraints i.e. pinned or fixed end conditions. In the
laboratory simulations, it is impossible to achieve these end conditions. The extent to
which the boundary conditions can be represented accurately is much more uncertain
with shorter members and higher axial loading.

- It can be observed that the effect of boundary conditions is small on the buckling load
but the zones of local and distortional mode shape for the fixed end condition were
much wider than the zones for pinned end condition. This means the member will
carry more buckling load by extending the local plate buckling zone (due to the
boundary condition change from pinned end conditions to fixed end conditions).

8.3 Further work

Evidently, there is much to be investigated with regards the structural stability of thin-

walled prismatic members. Several of the tasks presented below are recommended to be
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addressed by future work hopefully providing a broader application of the GBT theory and
finite element method, to the behaviour of thin-walled members in general. There is much to
be done to develop GBT to address other cross section shapes, other load cases, and examine
various supporting conditions such as introducing rotational and translational stiffness. Some

further suggestions are listed below.

- Improve and develop new (and existing) software programs to calculate the GBT
section properties of closed sections of thin-walled structures by adding the shear
terms for the second order generalized beam theory formulation and evaluate its
effects on the buckling behaviour for both the buckling load and the buckling mode
shape types.

- Improve and develop a new software programs to calculate the GBT section
properties of branched sections of thin-walled structures and take the bifurcation
effects into consideration.

- Improve and develop the GBT analysis methods to carry out the effects of post-
buckling in the cold-formed steel sections which was more sensitive especially for
shorter column lengths.

- Continue the research to predict the effects of the manufactural cross-section
imperfections on buckling load and its mode shape by using the unique advantages
of mode separation for the GBT and the finite analysis method. The Matlab program
developed in this research was able to evaluate these manufacturing cross-sectional
imperfections for different member cross-sections and end conditions, but this was
outside the scope of work intended to be presented in this thesis.

- Use the unique characterises of GBT to evaluate the actual behaviour of cold-formed
steel sections subjected to concentrated or uniform bending moment, including
torque, accounting for the effects of both the global and cross-section initial
imperfections which more commonly occur in the intermediate (bending moment)
and edge (torsion) purlins of structures.

- Develop GBT to be more user friendly (output the cross sectional displacements on
a plot).

- Formulate an automatic procedure for ANSYS which will allow a scripted file to
undertake instant pre-processing. In fact, all of the solution could then be batched and

left to run for a range of sections.
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- FEA can obviously deal with post buckling effects, so simpler plate member models
can be developed (closed sections, branched sections) to examine the range of
uncertainty in post-buckling prediction.

- More laboratory tests should be undertaken to examine the effects of different
boundary conditions in the cases of axial, bending and torsion individually and

interaction effects.
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Appendix A

Appendix A : GBT section properties

% Routine to calculate the GBT section properties
clear all

E=205; % kN/mm2
Nu=0.3;

% Nodal Co-ordinates (mm)

x(1)=14; y(1)=60;
x(2)=0; y(2)=60;
x(3)=0; y(3)=30;
x(4)=0; y(4)=0;
x(5)=100; y(5)=0;
x(6)=200; y(6)=0;
x(7)=200; y(7)=30;
x(8)=200; y(8)=60;
x(9)=186; y(9)=60;

Nnode=length(x);

% Thickness (mm)
t=1.77;
G=E/(2*(1+Nu));

for 1=1:Nnode-1
Length(i)= ((xX(i+1)-x(i))"2 + (y(i+1)-y(i))"2)"0.5;
Alpha(i)=acos((x(i+1)-x(1))/(y(i+1)-y(i)));
it (y(i+1)-y(i))>=0;
Alpha(i)=acos((x(i+1)-x(i))/Length(i));
else
Alpha(i)=-acos((x(i+1)-x(i))/Length(1));
end
end

for i=1:Nnode-2;
dAlpha(i+1)=Alpha(i)-Alpha(i+l);

end

dAlpha(Nnode)=0;

% ldentify Intermediate Nodes

MainNode=ones(1,Nnode);

for 1=2:Nnode-1;

it (dAlpha(i))==0;
MainNode(i)=0;

else end

end

% Map Main Nodes to all Nodes

MainNodeNum(1,1)=1;
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MainNodeNum(1,2)=1;

for 1=2:Nnode;

MainNodeNum(i,1)=i;

MainNodeNum(i ,2)=MainNodeNum(i-1,2)+MainNode(i);
end

% Calculate flat plate lengths - Mlength
SumMainNodes=MainNodeNum(Nnode, 2) ;
MLength=zeros(1,SumMainNodes-1);

for j=1:SumMainNodes-1;
for i=1:Nnode-1;
if MainNodeNum(i,2)==j
MLength(j)=MLength(j)+Length(i);
end
end
end

% Recalcculate dAlpha for main nodes only MdAlpha

MdAlpha=zeros(1,SumMainNodes);

1=2;
for i1=2:Nnode
if MainNode(i)==1;
MdAlIpha(j)=dAlpha(i);
J=i+1;
end
end

% Create matrices Ai and Bi for main nodes
SNodes=SumMainNodes;

Ai=zeros(SNodes-1,SNodes);
Bi=zeros(SNodes-1,SNodes) ;

for i1=2:SNodes-1
Al (i, i-1)=-1/(MLength(i-1)*sin(MdAlpha(i)));
Ai(1,i1)=1/(MLength(i)*tan(MdAlpha(i)))+1/(MLength(i-1)*sin(MdAlpha(i)));
Ai(i,i1+1)=-1/(MLength(i)*tan(MdAlpha(i)));

Bi(i-1,i-1)=-1/(MLength(i-1)*tan(MdAlpha(i)));
Bi(i-1,i1)=1/(MLength(i-
D*tan(MdAlpha(i)))+1/(MLength(i)*sin(MdAlpha(i)));
Bi(i-1,i+1)=-1/(MLength(i)*sin(MdAlpha(i)));
end

% Expand the matrices to original size

for i=1:Nnode
for j=1:Nnode-1
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AAT (MainNodeNum(j , 1) ,MainNodeNum(i,1))=Ai (MainNodeNum(j ,2) ,MainNodeNum(i,b?2)
)

BBi (MainNodeNum(j ,1) ,MainNodeNum(i,1))=Bi(MainNodeNum(j,2) ,MainNodeNum(i,b?2)
)

end
end

%lnsert blank columns where required
for i=1:Nnode
for j=1:Nnode-1
if MainNode(i)<1l
AAI(J,1)=0;
BBi(j,i)=0;
end
end
end

%lnsert blank rows where require

for i=1:Nnode
for j=1:Nnode-1
if MainNode(j)<1
AAI(J,1)=0;
end
if MainNode(j+1)<1
BBi(j,i1)=0;
end
end
end

%lnsert unity of leading diagonal

for i=1:Nnode
for j=1:Nnode-1
if MainNode(jJ)<1
AAT( L )=1;
end
if MainNode(J+1)<1
BBi(j,j+1)=1;
end
end
end

% Flexibility Matrix

for i=1:Nnode-1
E1(1)=E*t"3/(12*(1-Nu"2));
end

% Create an identity matrix

f=eye(Nnode);

% populate internal nodes
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for 1=4:Nnode-3

if Nnode>6

f(i,i-1)=Length(i-1)/(6*EI(i-1)) ;
f(i,i)=Length(i-1)/(3*El1(i-1)) + Length(i)/(3*E1(i));
f(i,i+1)=Length(i)/(6*E1(1)) ;

end

end

% End Nodes

£(3,3)=Length(3)/(3*EI(3)) + Length(2)/(3*E1(2));
£(3,4)=Length(3)/(6*EI1(3));

f(Nnode-2,Nnode-2)=Length(Nnode-2)/(3*EI (Nnode-2)) + Length(Nnode-
3)/(3*El1 (Nnode-3));
Ff(Nnode-2,Nnode-3)=Length(Nnode-3)/(6*El (Nnode-3));

% Stiffness Matrix
Stiff=inv(F);
% Plate Rotations

for 1=2:Nnode-2
for j=1:Nnode
Theta(i,j)=(BBi(i,j)-AAi(i,j))/Length(i);
end
end

Ang=zeros(Nnode,Nnode) ;
for 1=3:Nnode-2
for j=1:Nnode
Ang(i,j)=(Theta(i,j)-Theta(i-1,j));
end
end

% Calculate moment at each plate intersection using moment distribution
% (needed for boundary conditions of end plates)

Mom=Stiff*Ang;
for j=1:Nnode
Theta(l,j)=Theta(2,j)-Length(2)/(6*EI(3))*Mom(3,]);
Theta(Nnode-1, j)=Theta(Nnode-2, j)+Length(Nnode-2)/(6*El (Nnode-
2))*Mom(Nnode-2,j);
end
ThetaStart=Theta;
% Matrices relating node rotations to plate rotations
A=eye(Nnode);
for 1=3:Nnode-2
A(i,1-1)=2*El(i-1)/Length(i-1);
A(,1)=4*El(i-1)/Length(i-1)+4*El1(i)/Length(i);
A(i, 1+1)=2*El(i)/Length(i);

A-4



Appendix A

end

A;

B=zeros(Nnode ,Nnode-1);

B(1,1)=1;

B(2,1)=1;

B(Nnode-1,Nnode-1)=1;

B(Nnode,Nnode-1)=1;

for i=3:Nnode-2
B(i,i-1)=6*El(i-1)/Length(i-1);
B(i,1)=6*El1(i)/Length(i);

end

% Matrix relating plate and node rotations

C=inv(A)*B;

% Node Rotations

Phi=C*Theta;

PhiStart=Phi;

% Calculate Matrix Fij

w=eye(Nnode) ;

FfO(Nnode-1,Nnode)=0;

for j=1:Nnode

AAi(1,j)=BBi(1,j)-Theta(l,j)*Length(1);

end

% Calculate function F and derivatives

[FO, F1,F2,F3,FDO,FD1,FD2,FDDO,FDD1 ] = CalculateF(
AAi1 ,w,Nnode,Phi,Length,Theta );

% Calculate Matrix B using a function

[ JkB ] = CalculateB( Nnode,El,Length,FDDO,FDD1 );

% Calculate Matrix jJkC1l using a function

[ JKEC1,jkEC11, jkEC12 ] = CalculateEC( w,Nnode,MainNode,E,EIl,

t,FO,F1,F2,F3,Length );

% Calculate eigen vectors relating to higher modes 5-N. Each eigen vector
% has a non zero eigen value associated with it. These non zero eigen
% values can be used to identify the eigen vectors relating to modes 5-N.

[Eigenvecs,Eigenvalues]=(eig(JkB, JKEC1, "chol™));

for i1=1:Nnode
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Eigenvalsl(i)=abs(Eigenvalues(i,i));
end

w=Eigenvecs;

[ w ] = NormalizeAndSort( w,Nnode,Eigenvalsl,Nnode );

% Modes 5 - N complete. We now carry out a very similar process for mode 4,
% using the calculated values of w. At this stage modes 5 - N
% are ortohogonalized, but not modes 1-4.

Theta=ThetaStart*w;
Phi=PhiStart*w;

% recalculate F and derivatives using a function

[FO, F1,F2,F3,FDO,FD1,FD2,FDDO,FDD1 ] = CalculateF(
AAi1 ,w,Nnode,Phi,Length,Theta );

% Calculate Matrix jJkC2 using a function

[ JKEC2,jkEC21, jkEC22 ] = CalculateEC( w,Nnode,MainNode,E,EIl,
t,FO,F1,F2,F3,Length );

% Calculate Matrix jkD using a function

[ JkD,jkD1,jkD2] = CalculatejkD( w,Nu,Nnode,MainNode,E,EI,
t,FO,F1,F2,F3,FDO,FD1,FD2,FDDO,FDD1,Length );

% Zeroise collumns 5-N and rows 5-N in matrices EC and D
for i1i=1:Nnode;
for j=5:Nnode;
JKD(i, j)=0;
JKEC2(1,3)=0;
end
end
for i1=5:Nnode;
for j=1:Nnode;
JKD(i,j)=0;
JKEC2(1,3)=0;
end
end

JkD/71.4;
%[Eigenvecs2,Eigenvals]=convergent(eig(D,EC2));
%[Eigenvecs2]=(eig(D,EC2));
[Eigenvecs2,Eigenvalues]=(eig(kD, JKEC2, "chol "));
for i=1:4

Eigenvals2(i)=abs(Eigenvalues(i,i));

end

w2=w*Eigenvecs2;
w=w2;

% Normalize and sort the Eigenvectors using a function
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[ w2 1 = NormalizeAndSort( w2,Nnode,Eigenvals2,4);
% Add modes 5 - Nnode

for i1i=1:Nnode
for j=5:Nnode
w2(i,J)=w(i,j);
end
end

w=w2;

% Mode 4-N complete. We now carry out a very similar process for modes 1-3,
% using the calculated values of w.At this stage mode 4-N are
% orthognalized,but not modes 1-3.

Theta=ThetaStart*w;
Phi=PhiStart*w;

% recalculate F and derivatives using a function

[FO, F1,F2,F3,FDO,FD1,FD2,FDDO,FDD1 ] = CalculateF(
AAi1 ,w,Nnode,Phi,Length,Theta );

% Calculate Matrix jkCl using a function

[ JKEC3,jJKkEC31, jJKEC32 ] = CalculateEC( w,Nnode,MainNode,E,EIl,
t,FO,F1,F2,F3,Length );

% % Calculate FL- the displacement at the centre of the plate parallel to
the

% % plate

%

% % interpolate w between main nodes

%

% ww=w;

% for j=1:Nnode

% for i=2:Nnode-2

% if MainNode(i)==0;

% ww(i, J)=(w(i-1,)+w(i+1,§))/2;
% end

% end

% end

%

% FL=zeros(Nnode-1,Nnode);

% for i=1:Nnode-1

% FLCE, 2)=Cww(i+1, 2)-ww(i,:))/Length(i);
% end

% Calculate Matrix Kappal using a function

[ Kappa,FL ] = CalculateKappaijk( w,Nnode,MainNode,E,EI,
t,FO,F1,F2,F3,Length );

% Zeroise columns 4-N rows 4-N matrices EC and kappa
for i=1:Nnode
for j=4:Nnode
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Kappa(i,j)=0;
JKEC3(1,3)=0;
end
end
for 1=4:Nnode
for j=1:Nnode
Kappa(i,j)=0;
JKEC3(1,3)=0;
end
end

[Eigenvecs3,Eigenvalues]=(eig(Kappa, JKEC3));
for 1=1:3
Eigenvals3(i)=abs(Eigenvalues(i,i));

end

w3=w*Eigenvecs3;

w=w3;

% Normalize and sort the Eigenvectors using a function

[ w3 ] = NormalizeAndSort( w3,Nnode,Eigenvals3,3 );

% Add modes 5 - Nnode
for i1i=1:Nnode
for j=4:Nnode
w3(i,J)=w(i,j);
end
end
w=w3;
% recalculate Theta and Phi

Theta=ThetaStart*w;
Phi=PhiStart*w;

% Recalculate function F and derivatives

[FO, F1,F2,F3,FDO,FD1,FD2,FDDO,FDD1 ] = CalculateF(
AAi1 ,w,Nnode,Phi,Length,Theta );

% Write warping function to a file

%dlmwrite ("C:\Data Files\Temp.txt",w);

=S

% Warping function now calculated correctly for all modes.
4 Next step is to calculate section properties.
% for this, w must be modified in modes 1-4 for unit displacement

=S

% Mode 4 is torsion - so adjust w for a unit twist (theta)

Factor(4)=abs(Theta(l,4));
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% Calculate FL and FQ using a function

[ FL,FQ ] = CalculateFLFQ( w,Nnode,Length,F0,F1,F2,F3,Theta,MainNode);

% Calculate vertical and horizontal displacements of each plate

for 1=1:Nnode-1
for j=1:Nnode
Vert(i,j)=(FL(1,j)*sin(Alpha(i)))-(FQ(i,j)*cos(Alpha(i)));
Horiz(i,j)=(FL(i,j)*cos(Alpha(i)))+(FQ(i,J)*sin(Alpha(i)));
end
end

Factor(2)=(Horiz(1,2)"2+Vert(1,2)"2)"0.5;
Factor(3)=(Horiz(1,3)"2+Vert(1,3)"2)"0.5;
% Modify w in modes 2-4 for unit displacement
for i=1:Nnode

for j=2:4

w(i,J)=w(i,j)/Factor(j);

end

end

% recalculate Theta and Phi

Theta=ThetaStart*w;
Phi=PhiStart*w;

% Recalculate function F and derivatives

[FO, F1,F2,F3,FDO,FD1,FD2,FDDO,FDD1 ] = CalculateF(
AAi1 ,w,Nnode,Phi,Length,Theta );

% Recalculate FL and FQ using a function
[ FL,FQ ] = CalculateFLFQ( w,Nnode,Length,F0,F1,F2,F3,Theta,MainNode);

% Recalculate vertical and horizontal displacements of each plate

for i=1:Nnode-1
for j=1:Nnode
Vert(i,j)=(FL(1,§)*sin(Alpha(i)))-(FQ(i,j)*cos(Alpha(i)));
Horiz(i,j)=(FL(i,j)*cos(Alpha(i)))+(FQ(i,jJ)*sin(Alpha(i)));
end
end

% Calculate Matrix B using a function

[ JkB ] = CalculateB( Nnode,El,Length,FDDO,FDD1 );

for i

=1:Nnode
Bjk(i)=]

KB(i,i);
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end
B=Bjk";

% Calculate Matrix jkCl using a function

[ JKEC4,jkEC41, jkEC42 ] = CalculateEC( w,Nnode,MainNode,E,EIl,
t,FO,F1,F2,F3,Length );

for i1i=1:Nnode
Cjk(i)=jKECA(i,i1)/E;
end

C=Cjk-;

% Calculate Matrix jkD using a function

[ JkD,jkD1,jkD2] = CalculatejkD( w,Nu,Nnode,MainNode,E,EI,
t,FO,F1,F2,F3,FDO,FD1,FD2,FDD0O,FDD1,Length );

for i1i=1:Nnode
Djk(i)=jJkD(i,1)7/(G);
end

D=Djk";

% Calculate Matrix Kappal using a function

[ Kappa,FL ] = CalculateKappaijk( w,Nnode,MainNode,E,EI,
t,FO,F1,F2,F3,Length );

kappa=Kappa/jkeC4(1,1);

n_n=Nnode;

n_p=n_n-1;

Section="C:\Users\user\Documents\MATLAB\C Section\C-section Lab.xls";
xIswrite(Section,C,3,"Al")

xIswrite(Section,D,3,"B1")

xIswrite(Section,B,3,"C1")

A-10



Appendix A

A.1. Function file of C calculations

function [ EC,EC1, EC2 ] = CalculateEC( w,Nnode,MainNode,E,EI,
t,FO,F1,F2,F3,Length )

% Function to calculate EC

=S

4 Calculate Matrix jkCi

=S

% interpolate w between main nodes

WW=W ;
for j=1:Nnode
for 1=2:Nnode-2
if MainNode(i)==0;
ww(i, J)=(w(i-1, j)+w(i+1,§))/2;
end
end
end

% put w into a suitable "linear®™ form
syms s;

for 1=1:Nnode-1
for j=1:Nnode
wo(i, J)=ww(i,j);
wi(i, J)=ww(i+l,§)-ww(i,j);
end
end

ECl=zeros(Nnode,Nnode);
for j=1:Nnode
for k=1:Nnode
for i=1:Nnode-1
EC1(J,.k)=EC1( ,k)+(E*t*Length(i))*int((WO(i,J)+wl(i,j)*s)*(wo(i,k)+wl(i,k).

*s),s,0,1);
end
end
end

% Calculate Matrix EC2(j,k)

EC2=zeros(Nnode);
for j=1:Nnode
for k=1:Nnode
for i1i=1:Nnode-1
EC2(,K)=EC2(j ,K)+(EI())*Length(i)))*int((FO(i, J)+F1(i,J)*s+F2(i,J)*s"2+. ..
F3(i,J)*s"3)*(FO(i,kK)+F1(i,k)*s+F2(i,k)*s""2+F3(i,k)*s"3),s,0,1);
end
end
end
EC=EC1+EC2;

end
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A.2. Function file of D calculations

function [D,D1,D2] = CalculatejkD( w,Nu,Nnode,MainNode,E,EI,
t,FO,F1,F2,F3,FDO,FD1,FD2,FDDO,FDD1,Length )

%Calculate Matrix D1(j,k)
syms s;
Di1=zeros(Nnode);
for j=1:Nnode
for k=1:Nnode
for i=1:Nnode-1
D1(j,k)=D1( ,k)+(EI(i)*Length(i))*int((FDO(i,j)+FD1(i,j)*s+FD2(i,j)*s"2)*..

(FDO(i ,k)+FD1(i ,k)*s+FD2(i ,k)*s"2),s,0,1);
end
end
end
% Calculate Matrix D2(j.k)
D2=zeros(Nnode) ;
for j=1:Nnode;
for k=1:Nnode;
for i=1:Nnode-1;
D2(j ,k)=D2(j ,k)+(EI(i)*Length(i))*int((FO(i,j)+F1(i,J)*s+F2(i,j)*s"2+. ..
F3(i,j)*s"3)*(FbDO(i,k)+FDD1(i,k)*s),s,0,1);
end
end
end
%ERROR IN MATHCAD HERE - does not seem to affect section without
%intermediate nodes!!!
for 1=1:Nnode
for j=1:Nnode
D(i,3)=2*(1-Nu)*D1(i,J)-Nu*(D2(i,j)+D2(J,1));
end
end
end

A.3. Function file of B calculations

function [ jkB ] = CalculatejkB( Nnode,El,Length,FDDO,FDD1 )
% Calculate Matrix jkB
syms s;

JkB=zeros(Nnode,Nnode) ;
for j=1:Nnode
for k=1:Nnode
for i1=1:Nnode-1

JkB( ,K)=jkB(g ,K)+(E1(i)*Length(i))*int((FDDO(i,j)+FDD1(i,J)*s)*...
(FDDO(i ,k)+FDD1(i,k)*s),s,0,1);
end
end
end

end
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A.4. Function file of Kappa calculations

function [ Kappa,FL ] = CalculateKappaijk( w,Nnode,MainNode,E, EI,
t,FO,F1,F2,F3,Length )
% Calculate Matrix Kappal using a function

=4

t» Calculate FL- the displacement at the centre of the plate parallel to the
% plate

=4

4 interpolate w between main nodes

WW=W ;
for j=1:Nnode
for 1=2:Nnode-2
if MainNode(i)==0;
ww(i, §)=(w(i-1, j)+w(i+1,3))/2;
end
end
end

FL=zeros(Nnode-1,Nnode) ;
for i=1:Nnode-1

FLCE, 2)=Qww(i+1, 2)-ww(i, :))/Length(i);
end

syms s;

Kappa=zeros(Nnode);
for j=1:Nnode
for k=1:Nnode
for i=1:Nnode-1
Kappa(J ,k)=Kappa(( ,k)+(E*t*Length(i))*int((FO(i,k)+F1(i,k)*s+F2(i,k)*s™2+..

ﬁs(i,k)*sAs)*(FO(i,j)+F1(i,j)*s+F2(i,j)*sA2+F3(i,j)*sA3),s,0,1)+---
E*t*Length(i)*int((FL(i,j)*FL(i,k)),s,0,1);
end
end
end

end
A.5. Function file of FL-FQ calculations

function [ FL,FQ ] =CalculateFLFQ(w,Nnode,Length,F0,F1,F2,F3,Theta,MainNode

)
% Calculate FL and FQ

WW=W ;
for j=1:Nnode
for 1=2:Nnode-2
if MainNode(i)==0;
ww(i, J)=(w(i-1,j)+w(i+1,§))/2;
end
end
end
FL=zeros(Nnode-1,Nnode) ;
for i=1:Nnode-1
FLCE, 2)=Cww(i+1, :)-ww(i,:))/Length(i);
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end
for 1=1:Nnode-1
for j=1:Nnode
FF(1,J)=FO(i.j);
FP(i,j)=FO(i,J)+F1(i,J)+F2(i,5)+F3(i,]);
end
end

% For internal nodes
for 1=2:Nnode-2
for j=1:Nnode
FQ(i,3)=(FF(i,J)+FP(i1,J))/2;
end
end

% For external nodes
for j=1:Nnode
FQ(1,j)=FP(1,j)-Length(1)*Theta(l,j)/2;
end
for j=1:Nnode
FQ(Nnode-1, j)=FP(Nnode-1, j)+Length(Nnode-1)*Theta(Nnode-1,}j)/2;
end

end

A.6. Function file of F calculations

function [ FO,F1,F2,F3,FDO,FD1,FD2,FDDO,FDD1 ] = CalculateF(
AAi1 ,w,Nnode,Phi,Length,Theta )

% Function to calculate FO
FO=AAT*w;

for 1=1:Nnode-1
for j=1:Nnode
F1(i,j)=Length(i)*Phi(i,j);
F2(i,j)=Length(i)*(3*Theta(i,j)-2*Phi(i,j)-Phi(i+1,j));
F3(i,j)=Length(i)*(-2*Theta(i,j)+1*Phi(i,j)+Phi(i+1,j));
end
end

% Calculate derivatives of F

for i=1:Nnode-1
for j=1:Nnode
FDO(i,j)=F1(i,j)/Length(i);
FD1(i,j)=F2(i,j)*2/Length(i);
FD2(i,J)=F3(i,j)*3/Length(i);
FDDO(H, j)=F2(1,j)>*2/Length(i1)"2;
FDD1(i,j)=F3(i,j)*6/Length(i)"2;
end
end

fprintf("Function f completed®)
end
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A.7. Function file of normalize (w) calculations

function [ w ] = Normalize( w,Nnode )

% Function to normalize the eilgen vectors
Factor=max(abs(w));

for j=1:Nnode

for i1=1:Nnode

w(i,j)=w(i,j)/Factor(j);
end
end

end

A.8. Function file of normalize and sort calculations

function [ NewW ] = NormalizeAndSort( w,Nnode,Eval,Modes )
% Function to normalize and sort the eigen vectors

% Order vector

%
% value

Modes;

for i=1:Modes
if Eval(i)==0;
Eval (i)=i*1E-25;
end
end

for i1=1:Modes
OldPos(i)=i;
end

OldPos;
Eval ;

% Normalize
% Normalize the Eigenvectors
Factor=max(abs(w));

for j=1:Nnode
for i=1:Nnode

w(i,j)=w(i,j)/Factor(j);
end
end

W
% Order the Eigenvectors from column Start to column Finish

A-15
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NewOrder=(sort(Eval));
NewOrder;

% Find new position of Eval(i)

for i=1:Modes;

for j=1:Modes;

if Eval(i)==NewOrder(j);
NewPos(i1)=j;

end
end
end

OldPos;
NewPos;
Eval ;

for i1=1:Nnode
for j=1:1: Modes
NewW(i ,NewPos)=w(i,0ldPos);
end
end

NewW;

end
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Appendix B: GBT linear analysis

0/0 S S . . . . . . . . . . L . . L . L . L . L L L L o . ST

% s, ... . ., . T T T T T L T T L L T T L T T T L T T T T T T T T T T T T T T T T
% Divide lenght of beam to small lengths
dx=5;

L_B=300;

Py=-0.25;

Nodes_B=(L_B/dx)+1;

% Set up the load for the GBT equation

L _pos=200;

Nodes L=(L_pos/dx)+1;
Q=zeros(n_n,Nodes_B);
P_load=zeros(n_p,Nodes B);

% load case

P_load(4,Nodes L)=Py;

for j=1:Nodes B;

Q(:,J)=(P_load(:,j) "*FL)/dx;

end

% Finite Diffrence Analysis
Q=Q(:,2:Nodes_B-1);

for k=1:n_n
K1(k)=(6*E*C(k)/dx"4+2*G*D(k)/dx"2+B(k));
K2(k)=(-G*D(k)/dx"2-4*E*C(k)/dx"4);
K3(k)=(E*C(k)/dx"4);
KG=diag(K1l(k)*ones(Nodes B,1))+diag(K2(k)*ones(Nodes B-1,1),1)+...

diag(K2(k)*ones(Nodes B-1,1),-1)+diag(K3(k)*ones(Nodes_B-2,1),2)+...

diag(K3(k)*ones(Nodes_B-2,1),-2);
% Apply boundary condtions (pin ends)
KG(2,2)=KG(2,2)-K3(k);
KG(Nodes_B-1,Nodes_B-1)=KG(Nodes_B-1,Nodes B-1)-K3(k);
KG=KG(2:Nodes_B-1,2:Nodes_B-1);
Vt(k, 2)=inv(KG)*Q(k,:)";
end
V=zeros(n_n,Nodes B);
V(:,2:Nodes_B-1)=Vt;
% Calculate Stress Resultants
W=zeros(n_n,Nodes_B);
for i=1:n_n
for j=2:Nodes B-1
W(T, §)=E/dx"2*C(1)*(-V(1,J-1)+2*V(i,J)-V(i,j+1));
end
end
for i=1:n_n
V_max(i)=max(abs(V(i,:)));
W_max(i)=max(absW(i,:)));
end
% Calculate Nodal Stress
St=0;
for i=1:n_n
st=W(i, )" *w(:,i)"/C(i);
St=St+st;
end
% Calculate Plate Deflections (NPD & PPD)
NPD=0;
PPD=0;
for i=1:n_n
nPD=V(i,:)"*FQ(:,1)";
NPD=NPD+nPD;
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pPD=V(i, )" *FL(:,1)";
PPD=PPD+pPD;
end
Section="Z-Section3.xlIs";
xIswrite(Section,V(:,30:50),1,"A1")
xIswrite(Section,W(:,30:50),2,"A1")
xIswrite(Section,V_max,3,"Al")
xIswrite(Section,W_max,3,"A10%)
xlswrite(Section,St(30:50,:),4,A1")
xIswrite(Section,C,5,"Al1")
xIswrite(Section,D,5,"B1")
xIswrite(Section,B,5,"C1")
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Appendix C: GBT linear buckling analysis (single mode)

%Section="C:\Users\user\Documents\MATLAB\C Section\Zl-section Lab F.xlIs";
Nodes_B=100;
for k=1:n_n
r=1;
for L_B=10:10:10000
dx=L_B/(Nodes_B+1);
Sl=diag(6*ones(Nodes_B,1))+diag(-4*ones(Nodes B-1,1),1)+...
diag(-4*ones(Nodes_B-1,1),-1)+diag(1*ones(Nodes B-2,1),2)+...
diag(1*ones(Nodes_B-2,1),-2);
S2=diag(-2*ones(Nodes_B,1))+diag(1*ones(Nodes B-1,1),1)+...
diag(1*ones(Nodes B-1,1),-1);
S3=eye(Nodes_B,Nodes_B);
% applied Boundery Conditions
S1(1,1)=5;
S1(Nodes B,Nodes B)=5;
A=E*C(Kk)/dx"4*S1-G*D(K)/dx"2*S2+B(k)*S3;
Z=-kappa(k,k,1)*S2/dx"2;
[A1l,71]=(eig(A,2));
Z2=zeros(Nodes_B,1);
for 1=1:Nodes B

Z22(1)=21(i,i);
end
Z3(r)=min(abs(Z2));
L(r)=L_B;
r=r+l;
%Plot Critical Mode along beam length

if L_B==7500
it k==4
L1=zeros(Nodes_B,1);
t1=1;
t2=dx;
L _Bl=L_B-dx;
for i=dx:dx:L Bl
L1(tl)=t2;
t1=t1+1;
t2=t2+dx;
end
Al(Nodes_B+1,:)=72_.%;
Al=A1";
Al=sortrows(Al,Nodes B+1);
Al=A1";
Al1=A1(1:Nodes B,:);
L11=L1/10;
figure(2)
plot(L11,A1(:,1))
hold on
end
end
end
figure(1)
Lc=L/10;
plot(Lc,Z3)
hold on
end
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Appendix D: GBT linear buckling analysis (combined modes)

Nodes_B=59;

r=1;

for L_B=100:100:10000
dx=L_B/(Nodes_B+1);
yl=Nodes B*n_n;
Al=zeros(yl);
Zl=zeros(yl);

y2=1;
y3=Nodes_B;
for k=1:n_n

Sl=diag(6*ones(Nodes_B,1))+diag(-4*ones(Nodes B-1,1),1)+...
diag(-4*ones(Nodes_B-1,1),-1)+diag(1*ones(Nodes _B-2,1),2)+. ..
diag(1*ones(Nodes_B-2,1),-2);
S2=diag(-2*ones(Nodes_B,1))+diag(1*ones(Nodes B-1,1),1)+...
diag(1*ones(Nodes B-1,1),-1);
S3=eye(Nodes_B,Nodes_B);
% applied Boundery Conditions
S1(1,1)=7;
S1(Nodes B,Nodes B)=7;
%
A=E*C(Kk)/dx"4*S1-G*D(K)/dx"2*S2+B(k)*S3;
Al(y2:y3,y2:y3)=A;
Z=kappa(k,k,1)*S2/dx"2;
Z1(y2:y3,y2:y3)=7Z;
y2=y3+1;
y3=y3+Nodes_Bj;
end
[A2,22]=(eig(Al,Z1));
for i=1:n_n*Nodes B

Z3(1)=22(i,i);

end
ZA(r)=(min(abs(zZ3)));
Lc(r)=L_B;

r=r+l;

end

figure(1)

plot(Lc,Z4)

Section="C:\Users\user\Documents\MATLAB\C Section\Z-section Lab F.xls";
xIswrite(Section,Lc",2,"H1")
xIswrite(Section,z4",2,"11")
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Appendix E: GBT non-linear analysis

Nodes B=59;

xd=1

for L_B=50:50:10000
%if L_B==6000

Py=0.024*C(3)*E/(L_B"2);

dx=L_B/(Nodes_B-1);

% Set up the load for the GBT equation

Nodes_ L=Nodes B/2+0.5;

Q=zeros(n_n,Nodes_B);

P_load=zeros(n_p,Nodes B);

% load case

P_load(3,Nodes_L)=Py;

P_load(5,Nodes L)=-Py;

for j=1:Nodes B;

Q(:,3)=(P_load(:,j) "*FL)/dx;

end

% Finite Diffrence Analysis

%Q=Q(:,2:Nodes_B-1);

for k=1:n_n
Sl=diag(6*ones(Nodes_B,1))+diag(-4*ones(Nodes B-1,1),1)+...
diag(-4*ones(Nodes_B-1,1),-1)+diag(1*ones(Nodes _B-2,1),2)+. ..
diag(1*ones(Nodes_B-2,1),-2);
S2=diag(-2*ones(Nodes_B,1))+diag(l*ones(Nodes B-1,1),1)+...
diag(1*ones(Nodes B-1,1),-1);

S3=eye(Nodes_B,Nodes_B);

% applied Boundery Conditions

S1(1,1)=5;

S1(Nodes B,Nodes B)=5;
At=E*C(k)/dx"4*S1-G*D(K)/dx"2*S2+B(k)*S3;

Vt(k, )=inv(At)*Q(k,:)";

end

Px=0.1;

for n=1:1000000000

Vg=0;

for r=1:1000000000

for k=1:n_n
A1=E*C(k)/dx"4*S1-G*D(k)/dx"2*S2+B(k)*S3;
A2=(kappa(k,k,1)*Px*S2/dx"2);
A=A1+A2;
%Sdr=inv(A)
Z(k, :)=(kappa(k, k,1)*Px*S2*Vt(k, :) " /dx"2);
V(k, )=inv(A)*2(k,:)";

end

ert=2%;

Vd=abs(max(max(V)));

if (vd-Vg) <le-8,break,end

Vg=Vvd;

VE=Vt+V;
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end

% Calculate Stress Resultants

W=zeros(n_n,Nodes_B);

for i=1:n_n
for j=2:Nodes B-1
W(T, §)=E/dx"2*C(1)*(-V(1,J-1)+2*V(i,J)-V(i,j+1));
end

end

% Calculate Nodal Stress

St1=0;

for i=1:n_n
st=W(i, )" *w(:,i)"/C(i);
Stl=Stl+st;

end

St2=-ones(Nodes_B,n_n)*Px/C(1);

St=St1+St2;

if sum(sum(isnan(V)))==Nodes B,break,end

ifT abs(min(min(St)))> 430,break,end

it abs(max(max(St)))> 430,break,end

Pt(n)=Px;

vm(n)=V(7,30);

Px=Px+0.1;
end
Rx(xd)=L_B;
Ry (xd)=Px;
% Critical Buckling load

yl=Nodes B*n_n;
Acl=zeros(yl);
Zcl=zeros(yl);

y2=1;
y3=Nodes_Bj;
for k=1:n_n

Ac=E*C(Kk)/dx"4*S1-G*D(k)/dx"2*S2+B(k)*S3;

Acl(y2:y3,y2:y3)=Ac;
Zc=kappa(k,k,1)*S2/dx"2;
Zcl(y2:y3,y2:y3)=Zc;

y2=y3+1;

y3=y3+Nodes_B;

end

[Ac2,Zc2]=(eig(Acl,Zcl));

for i=1:n_n*Nodes_B

Zc3(i)=zZc2(i,i);

end

Pe(xd)=(min(abs(Zc3)));
xd=xd+1

end

Rx1=Rx/10;

figure(l)

plot(Rx1,Pe)

hold on

plot(Rx1,Ry)

hold off

%Figure(2)

%plot(Vm,Pt)
Section="C:\Users\user\Documents\MATLAB\C Section\C-section Lab.xlIs";
xIswrite(Section,Rx1",2,"Al")
xIswrite(Section,Pe",2,"B1")
xlswrite(Section,Ry*",2,°C1")
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Tension control bolt (7CB) details

Appendix F

Dimensions of standard HRC Bolts to EN 14399-10

All dimensions in millimetres

Thread d M12 M16 M20 M22 M24 M27 M30 M36
p 175 2 25 2.5 3 3 3.5 4
= 125mm 30 I8 46 50 54 60 BE 78
b > 125 <I00mm 44 52 56 &0 66 72 84
> 200mm 65 69 73 79 8BS a7
4 max 12.70 16.70 20.84 22.84 24.84 27.84 30.84 37.00
: min 11.30 15.30 19.16 21.16 23.16 26.16 29,16 35,00
d,, min 20 26 33 37 a1 45 50 3
d, min 21 27 34 38 43 48 52 6
. nom g 10 13 14 15 17 19 23
max 5.8 10.8 13.9 14.9 15.9 17.9 20.0 24.0
min 7.2 9.2 12.1 13.1 14.1 16.1 18.0 22.0
r min 1.2 1.2 15 15 15 20 2.0 2.0
R nom 18 20 22 23 a5 27 30 36
F1 min 11 13 15 15.5 16 19 21 25
F2 max 16 18 20 21 215 24 26 31
Spiine a/f o max .0 116 14.4 15.7 17.1 19.3 21.4 25.7
min 7.4 11.0 13.8 15.1 16.5 18.7 20.8 25.1
Spline a/c en min 8.36 12.43 15.60 17.06 18.65 21.13 23.50 28.50
Ua Incomplete thread u =2 p
¥
- h x
Mﬂﬂ ~ v
74 ) __\ R .
L
.....ul ,._n._l ..... ”M,T....."...‘._“ - ™
/ ]
__w TR
] - =
'y (&) Fi
- e

Y
A

F-1
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Dimensions of HRD MNuts to EN 14399-10

All dimensions in millimetres

Neminal diameter M12 M16 M20 M22 M24 m27 M30 M36
e 1.75 2 2.5 25 3 3 3.5 4
max =75 actual
d,
- min 20.1 24.9 20.5 33.3 38.0 42.8 46.6 559
& min 23.91 29.56 35.03 39.55 45.20 50.85 55.37 66,44
max 12.35 16.35 20.65 22.65 24.65 27.65 30.65 36.65
m min 11.65 15.65 19.35 21.35 23.35 26.35 29.35 35.35
max 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
. min 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
max 22 27 32 36 41 46 50 &0
s min 21.16 26.16 31 35 40 45 49 58.8
.m..._.rnr
-
L
. '- -l.. -
. e J 1 o
\S— Y
- -

I

|

F-2
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Bolt lengths and tolerances for standard TCBs to EN 14399-10

Length (1) M12 M16 M20 M22 M24 M27 M30 M36
I, I, I, I I Iy I T I, Iy I, I I, Iy I, I

mam R TTaE min TR T maox TN max mn ek min max i Tax L mox mn Max
30 28.75 3125 ] 11.25
35 33.75 3625 ] 11.25
a0 38.75 41.25 5] 11.25 B 14
a5 43.75 46.25 6.25 15 g2 14
50 48.75 51.25 11.25 20 g 14 10 17.5 11 18.5
55 53.50 56.5 16.25 25 g 14 10 17.5 11 18.5
&0 58.50 G615 21.25 o 12 22 10 17.5 11 18.5 12 21
65 6350 565 26.25 E ] 17 27 10 175 11 18.5 12 21
70 GE.50 71.5 31.25 40 22 EF 115 24 11 18.5 12 21
75 7350 765 36.25 45 27 ET 16.5 29 12.5 25 12 21
80 FE.50 515 41.25 50 32 42 215 34 17.5 30 12 21 135 225 15 25.5
/5 83.25 BE6. 75 46.25 55 7 47 26.5 EL] 22.5 35 16 31 135 225 15 25.5
a0 B8 25 9175 51.25 =] 42 52 315 a4 27.5 40 21 36 15 30 15 25.5
95 93.25 9675 56.25 65 a7 57 36.5 49 32.5 a5 26 41 20 35 15 25.5
100 | 958.25 | 101.75 | 61.25 0 52 62 41.5 541 E 50 31 46 25 40 15.5 34 18 30
105 | 103.25 | 106.75 57 &7 46.5 59 42.5 55 36 51 30 15 215 39 18 30
110 | 10825 | 111.75 B2 72 515 =] 47.5 60 41 56 a5 50 26.5 a4 18 30
115 | 113.25 | 116.75 67 77 56.5 B9 52.5 65 46 51 40 55 315 49 23 35
120 | 11825 | 121.75 T2 B2 615 74 57.5 70 51 &6 45 60 36.5 54 22 42
125 | 123.0 127.0 77 B7 66.5 T3 B2.5 75 56 71 50 65 41.5 59 27 a7
130 | 1280 132.0 76 Bb 65.5 T8 61.5 BO 55 70 49 54 40.5 58 26 a6
135 | 1320 137.0 21 91 TS 23 BE.5 BES B0 75 54 69 45.5 B3 31 51
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Appendix G

Appendix G: Eurocode Calculations

- This appendix presents capacity calculations for C and Z section presented in Chapter 7, an

accordauce with provisios of Eurocode for structural steelwork design:
- C-Section

1-Design Against Local and Distortional Buckling (EN1993-1-3)

Calculation of effective section properties for a cold-formed lipped channel section in
compression

Total height of web h="200 mm bpi

Total width of flange b= 60 mm _Lt__‘j
Total width of edge fold c= 20 mm ’ =
Internal radius r= 3 mm & 4

Nominal thickness thom= 177 mm o

Steel core thickness t= 1.43 mm

Yield strength fy= 430 N/mm? — S}
Modulus of elasticity E= 205000 N/mm? =
Poisson’s ratio v=0.3 Figure (G-1) C-section
Partial factor ym= 1

The dimensions of the section centre line are:

hp:h't hp: 198.23 mm
bp:b't bp: 58.23 mm
Cp=C-1/2 cp= 19.12 mm

Checking of geometrical proportions

b/t <60 b/t= 33.90 <60 OK
c/t<50 c/t= 11.30 <50 OK
h/t<500 h/it=" 112.99 <500 OK
0.2 <c/b <0.6 c/b= 0.33 OK
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The influence of rounding of corners is neglected if:

1.69
0.05

r/t=
r/bp:

/t<5
rfbp <0.1
Gross cross-section properties
Abr= t(2¢cp+2bpthp)

<5 OK
<01 OK
Ap= 504.68 mm?

Position of the natural axis with respect to the top flange is:

Zui= t [Cp(hp-Cp/2)+bp*hy+hp?/2+Co* 2]/ Avr

Zpi= 99.12 mm

The stress ratio =1 Uniform compression
Ke= 4 For internal compression element
€=\235/fy €= 0.739
hpo=bp/(28.4€1,/Ky) App=0.970 )
The reduction factor is : Qoawg Do
p1= (App-0.055(3+F))/App? pi= 0.797 : ] A ﬁ $ s
The effective width is:
Beft p=p1*bp Defrp= 46.42 mm R
De1,u=0.5*Deff,p Peru= 23.21 mm
Pe2,u= De1u be2u= 23.75 mm f'ez[ : xj_rJ o
- Effective width of edge fold (Cl. 3.7.3.2.2. eqn (3.47)) N Jb__>
The buckling factor is:
c/bp=  0.328  <0.35 — Ke= 0.5 Figure (G-1) Effective
D c=Cp/(28.4€1/K0) dpc= 0.9 area of C-section
The width reduction factor is:
p1= (hp,p-0.188)/Ap p? pi= 0.879
Ceff u=P1™Cp Ceffu= 16.80 mm
The effective area of edge stiffener is:
As,u= t*(De1,1+Cefr) As = 57.21 mm?

Use the initial cross section of the stiffener to determine the reduction factor,

allowing for effects of the continuous spring restraint

-The elastic critical buckling stress for the edge stiffener

0. = 2\/KEI,/A;
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For the upper edge stiffener ~ (CI. 3.7.3.1 eqn 3.44)

The spring stiffness is:

K=Et%/((4(1-v?)(b12*hp+0b13+0.5*b1 *b2*hy*K1))

bi=distance from the web to the centre of the effective area of stiffener (upper flange)

bo=distance from the web to the centre of the effective area of stiffener (lower flange)

D1=bp-(De1,u*t* (De1,u/2))/((De1,utCeftu)*t) bi= 51.50

b1=b> — b>= 51.50

Kr=As,ulAs,| kn= 1.0 For a member in axial compression
K= 0.178

For upper edge stiffener (Cl.3.7.3.1 eqn 2.44)
The effective second moment of area
Ilz;:bel,1*t3/l2+Ceff*t/12+be1,1*t[Ceff2/2(be1,1+Ceff)]2+Ceff*t[Ceff/2-[Ceff2/2(be1,1+Ceff)]2
lsu= 886.15 mm*
For upper edge :
ocru= 198.80 N/mm?

Thickness reduction factor g for the edge stiffener is:

if A <0.65 % =1.0
1f0.65 < g <1.38 xd =1.47-0.723 g
if g >1.38 %d=0.66/Ad

The relative slenderness

ﬁ =/ Ty/0ers M= 1471

%d=0.66/Ad = 0.449

Effective section properties of web

the stressratio:  ¥=1 (uniform compression)

The buckling factor k, = 4 for internal compression

element

The relative slenderness:

xp,b=hp/(28.4€{l."'k_gf App= 3.301

The width reduction factor is
p= (Ap-0.055(3+F))/App2 p= 0.283
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The effective width of web is:
heffzp*hp heti= 56.04 mm

he1=0.5*heff hei= 28.02 mm

The cross section is summitry in x-axis
heo= 28.88 mm

For bottom flange

bel,b: bel,u bel,b: 23.75 mm
bez,b: be2,u be2,b: 23.75 mm
Ceff b=Ceff,u Ceff b= 17.20 mm

Effective section properties of the flange and lip in compression
Aeti=t [bel,u+bel,b+he1+he2+(be2,u+be2,b+Ceff,u+Ceff,b)*Xd ]

Aei= 20055 mm?
Nedzfy/Ym*Aeff Ned= 86.24 kN

2-Design Against Global Buckling (EN1993-1-5)
- For stiffened plate ocr,c may be determined from the elastic critical column buckling

stress ocr,sl OF the stiffener closest to the panel edge with the highest compressive stress as
follows:
Ocrsl= 7'52E|sl,1/AsI,13-2

Ned=n?Els1/a

lsi= 291616E4 mm?
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- Z-Section

1-Design Against Local and Distortional Buckling (EN1993-1-3)

-Calculation of effective section properties for a cold-formed lipped channel section in

compression
Total height of web

Total width of flange

Total width of edge fold

Internal radius
Nominal thickness
Steel core thickness
Yield strength

Modulus of elasticity

Poisson’s ratio
Partial factor

The dimensions of the section centre line are:

hp:h't hp: 197.95
bp1=bs-t bpi= 61.95
bp2=ho-t bp2=52.00
Cp1=C1-t/2 cp1= 16.98
Cp2=Co-1/2 cp2= 14.00

Checking of geometrical proportions

b/t <60 bi/t=
bo/t=
c/t<50 cut=
Colt =
h/t<500 h/t=

mm
mm

mm

mm

mm

31.2
26.3
8.78
7.32
97.5

200
64

54

18

15

3

2.05
2.00
500
20700

<60
<60
<50
<50
<500

mm
mm
mm
mm
mm
mm
mm
mm
N/mm?

N/mm?

xa*t

% I rr.ff‘u
>

b b beJ.b

é‘“—pr—)
Figure (G-1) Effective
area of Z-section

.’IEZI l t
[

OK
OK
OK
OK
OK
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0.2 <c/b <0.6 ci/bi= 0.28 OK
Co/b= 0.28 OK

The influence of rounding of corners is neglected if:
/t<5 rit=1.46 <5 OK
r/bp < 0.1 r/bpi= 0.05 <0.1 OK

r/bp2= 0.06 <0.1 OK
Gross cross-section properties
Abr= t(Cp1+Cp2+bp1+bpa+hp) 685.75 mm?
Position of the natural axis with respect to the top flange is:
Zyi= t [Cp2(Np-Cpa/2)+bp2*hp+hp2/2+Cp12/2]/ A Zywi= 95.38 mm

The stress ratio Y=1 Uniform
compression

Ko= 4 For internal compression element
€=\235/f, €= 0.686
For upper flange stiffener:
Apb=bp1/(28.4€4/ko) App= 0.795
The reduction factor is :
p1= (Ap,p-0.055(3+¥))/App? pi=  0.909

The effective width is:

beff,pzpl*bp beff,p: 56.341 mm
bel,u:O.S*beff,p be]_,u: 28.170 mm
De2,u= be1,u be2uv=  28.170 mm

Effective width of edge fold (CI. 3.7.3.2.2. eqn(3.47))
The buckling factor is:

Cor/bp1= 0.274 <0.35 — Ke= 0.5
hpc1=Cp1/(28.4€1,/Ko) Apci= 0.616

The width reduction factor is:

p1= (Ap.c1-0.188)/Apc12 pi= 113 >1 —  p= 1.0
Ceff,u=pP1*Cp Ceffy= 16.98 mm
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The effective area of edge stiffener is:

As = t*(De1,1+Cef) Asu= 90.29 mm
2

Use the initial cross section of the stiffener to determine the reduction factor,
allowing for effects of the continuous spring restraint

The elastic critical buckling stress for the edge stiffener

0cr = 24/KEI/A;

For the upper edge stiffener  (Cl. 3.7.3.1 eqn 3.44)

The spring stiffness is:

K=Et3/((4(1-v?)(b1%*hp+b13+0.5*b1*b2*hy*k))

bi=distance from the web to the centre of the effective area of stiffener (upper flange)

b>=distance from the web to the centre of the effective area of stiffener (lower flange)

D1=bp1-(0e1,u™t* (De1,u/2))/ ((Der,u+Cetf,u) *1) bi= 53.16

bi=b> — bo= 53.16

K =Asu/As,) kf1= 1.0 For a member in axial compression
K= 0.460

For upper edge stiffener (Cl.3.7.3.1 eqn 2.44)

The effective second moment of area is:

lsu=0e1,1*t3/12+Cett*t/12+0e1 1 *t[Cefr?/ 2 (De1,1+ Cefr) |+ Cefr [ Cefr/ 2-[Cefr?/ 2 (e, 1+Cefr) ]
lw= 1350 mm?*

For upper egde :
ocru= 251.11  N/mm?

Thickness reduction factor g for the edge stiffener is:

if A <0.65 71 =1.0
1f0.65 < g <1.38 xd =1.47-0.723\q
if A >1.38 14 =0.66/Ag

The relative slenderness Ag

Ad=~/Ty/0cr s A= 1.411

xd =0.66/Ad xdu= 0.468

Effective section properties of web

G-7



Appendix G

the stress ratio : =1 (uniform compression)
The buckling factor k, = 4 for internal compression element

The relative slenderness:

Ap.o=hp/(28.4€1/K5) App= 2.542

The width reduction factor is

p= (Ap-0.055(3+F))/App2 p= 0.359

The effective width of web is:

het=p*hp hefr=  71.14 mm
he1=0.5*heff hei= 35.57 mm

The cross section is summitry in x-axis

he= 28.88 mm
For bottom flange stiffener:
hpb=bp2/(28.4€1/K) hpp=0.668
The reduction factor is :
p1= (Mpb-0.055(3+F))/Ap? p1i=  1.004 - p1=
The effective width is:
Deffp,o=p1*Dp2 Detrpp= 52.00 mm
De1,6=0.5*Deffp,u be1p= 26.00 mm
De2,b= De1b De2p=  26.00 mm

Effective width of edge fold (ClI. 3.7.3.2.2. eqn(3.47))
The buckling factor is:

Cp2/bp2= 0.269 <0.35 — Ko = 0.5
hp.c2=Cp2/(28.4€4/Ks) Apc2= 0.508

The width reduction factor is:

p1= (Ap,c2-0.188)/Ap c2 pi= 124 >1 — pi= 1.0
Ceff u=P1™Cp Ceffu= 14.0 mm

The effective area of edge stiffener is:

As,b: t*(be1,1+Ceﬁ) As,b: 80 mm2

Use the initial cross section of the stiffener to determine the reduction factor,
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allowing for effects of the continuous spring restraint

The elastic critical buckling stress for the edge stiffener

0, = 2./KEI,/A;

For the upper edge stiffener  (Cl. 3.7.3.1 eqn 3.44)

The spring stiffness is:

K=Et*/((4(1-v?)(b1?*hp+b13+0.5*b1*ba*hp*ks1))

bi=distance from the web to the centre of the effective area of stiffener (upper flange)

b>=distance from the web to the centre of the effective area of stiffener (lower flange)

D1=bp1-(0e1,u™t* (De1,u/2))/ ((Der,u+Cetf,u) *1) bi= 53.5

b1=D — b= 53.5

Kr=As,ulAs,| kf1= 1.0 For a member in axial compression
K= 0.454

For lower edge stiffener (Cl.3.7.3.1 eqn 2.44)

The effective second moment of area is:

lsu=be1,1*t3/12+Cet*t/12+De1 1*t[Cert?/ 2 (Der, 1+ Cetf) |2+ Cet* t[Ceref 2-[ Cerr/ 2 (Der 1+ Cetf) |
lw= 357.4 mm?*

For upper egde :
Ocr,u= 144.82 N/mm?

Thickness reduction factor yg for the edge stiffener is:

if A <0.65 7a=1.0
if0.65 < Aa <1.38 1a=1.47-0.723%
if A >1.38 %a=0.66/Ag

The relative slenderness Aq

)\.d :\."WO’CI’,S )\.d,b: 1.858
xd =0.66/)\q xd b= 0.355

Effective section properties of the flange and lip in compression
Acti= t [De1,utber b+herthea+(De2,u+0e2,b)yd,ut(Ceft ot Cettn)ydb |

Aeti= 307.9 mm?
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Nedzfy/Ym*Aeff Ned= 153.9 kN
1-Design Against Global Buckling (EN1993-1-5)
For stiffened plate ocr,c may be determined from the elastic critical column buckling

stress ocr,si Of the stiffener closest to the panel edge with the highest compressive stress as
follows:

Ocr,sl= 7'52E|sl,1/AsI,13-2

Ned=n?KEls,1/a

lsii= 232693E4 mm?*
For pinned end K= 1.0
For fixed end K= 4.0
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Appendix H: Experimental results

C-section / pinned end / 1.0 m length

Figure (H-1) Experimental buckling mode shape of 1.0 m length of C-section for pinned

ends conditions

80 80
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Figure (H-2) Experimental load-deformation relations of 1.0 m length at mid web of 0.5L of

C-section for pinned ends conditions
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C-section / pinned end / 1.3 m length

Figure (H-3) Experimental buckling mode shape of 1.3 m length of C-section for pinned

ends conditions

| = = = X-displacement Experimental
n

B0 1y
1 \ E
I | === Y-displacement Experimental
1

50 ¢ III

Buckling load (kN)

5 0 5 1 15 20 i 30
Displacement (mm)

Figure (H-4) Experimental load-deformation relations of 1.3 m length at mid web of 0.5L of C-
section for pinned ends conditions
H-2
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C-section / pinned end / 1.7 m length

Figure (H-5) Experimental buckling mode shape of 1.7 m length of C-section for pinned
ends conditions
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Figure (H-6) Experimental load-deformation relations of 1.7 m length at mid web of 0.5L of

C-section for pinned ends conditions
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C-section / pinned end / 2.0 m length
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Figure (H-8) Experimental load-deformation relations of 2.0 m length at mid web of 0.5L of

C-section for pinned ends conditions

H-4



Appendix H

C-section / pinned end / 2.3 m length
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Figure (H-9) Experimental buckling mode shape of 2.3 m length of C-section for pinned
ends conditions
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Figure (H-10) Experimental load-deformation relations of 2.3 m length at mid web of 0.5L of

C-section for pinned ends conditions
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C-section / pinned end / 2.7 m length

Figure (H-11) Experimental buckling mode shape of 2.7 m length of C-section for pinned

ends conditions
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Figure (H-12) Experimental load-deformation relations of 2.7 m length at mid web of 0.5L of
C-section for pinned ends conditions
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C-section / pinned end / 3.0 m length

Figure (H-13) Experimental buckling mode shape of 3.0 m length of C-section for pinned

ends conditions
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Figure (H-14) Experimental load-deformation relations of 3.0 m length at mid web of 0.5L of

C-section for pinned ends conditions
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C-section / pinned end / 4.0 m length

Figure (H-15) Experimental buckling mode shape of 4.0 m length of C-section for pinned

ends conditions
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Figure (H-16) Experimental load-deformation relations of 4.0 m length at mid web of 0.5L of

C-section for pinned ends conditions
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C-section / pinned end / 5.0 m length

Figure (H-17) Experimental buckling mode shape of 5.0 m length of C-section for pinned

ends conditions
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Figure (H-18) Experimental load-deformation relations of 5.0 m length at mid web of 0.5L of

C-section for pinned ends conditions
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Z-section / pinned end / 1.0 m length

il

Figure (H-19) Experimental buckling mode shape of 1.0 m length of Z-section for pinned
ends conditions
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Figure (H-20) Experimental load-deformation relations of 1.0 m length at mid web of 0.5L of

Z-section for pinned ends conditions
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Z-section / pinned end / 1.3 m length

Figure (H-21) Experimental buckling mode shape of 1.3 m length of Z-section for pinned

ends conditions
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Figure (H-22) Experimental load-deformation relations of 1.3 m length at mid web of 0.5L of

Z-section for pinned ends conditions
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Z-section / pinned end / 1.7 m length

Figure (H-23) Experimental buckling mode shape of 1.7 m length of Z-section for pinned
ends conditions
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Figure (H-24) Experimental load-deformation relations of 1.7 m length at mid web of 0.5L of

Z-section for pinned ends conditions
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Z-section / pinned end / 2.0 m length

Figure (H-25) Experimental buckling mode shape of 2.0 m length of Z-section for pinned

ends conditions
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Figure (H-26) Experimental load-deformation relations of 2.0 m length at mid web of 0.5L of Z-

section for pinned ends conditions
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Z-section / pinned end / 2.3 m length

Figure (H-27) Experimental buckling mode shape of 2.3 m length of Z-section for pinned

ends conditions
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Figure (H-28) Experimental load-deformation relations of 2.3 m length at mid web of 0.5L of

Z-section for pinned ends conditions
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Z-section / pinned end / 2.7 m length

Figure (H-29) Experimental buckling mode shape of 2.7 m length of Z-section for pinned

ends conditions
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Figure (H-30) Experimental load-deformation relations of 2.7 m length at mid web of 0.5L of Z-

section for pinned ends conditions

H-15



Appendix H

Z-section / pinned end / 3.0 m length

Figure (H-31) Experimental buckling mode shape of 3.0 m length of Z-section for pinned
ends conditions
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Figure (H-32) Experimental load-deformation relations of 3.0 m length at mid web of 0.5L of

Z-section for pinned ends conditions
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Z-section / pinned end / 4.0 m length

Figure (H-33) Experimental buckling mode shape of 4.0 m length of Z-section for pinned

ends conditions
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Figure (H-34) Experimental load-deformation relations of 4.0 m length at mid web of 0.5L of
Z-section for pinned ends conditions
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Z-section / pinned end / 5.0 m length

Buckling load (kN)

Figure (H-35) Experimental buckling mode shape of 5.0 m length of Z-section for pinned
ends conditions
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Figure (H-36) Experimental load-deformation relations of 5.0 m length at mid web of 0.5L of Z-
section for pinned ends conditions
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C-section / fixed end / 1.0 m length

Figure (H-37) Experimental buckling mode shape of 1.0 m length of C-section for fixed

ends conditions
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Figure (H-38) Experimental load-deformation relations of 1.0 m length at mid web of 0.5L of

C-section for fixed ends conditions
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Lin

Buckling Load (kN)

C-section / fixed end / 1.3 m length

Figure (H-39) Experimental buckling mode shape of 1.3 m length of C-section for fixed
ends conditions
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Figure (H-40) Experimental load-deformation relations of 1.3 m length at mid web of 0.5L of C-

section for fixed ends conditions

H-20



Appendix H

C-section / fixed end / 1.7 m length

Figure (H-41) Experimental buckling mode shape of 1.7 m length of C-section for fixed
ends conditions
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Figure (H-42) Experimental load-deformation relations of 1.7 m length at mid web of 0.5L of

C-section for fixed ends conditions
H-21



Appendix H

C-section / fixed end / 2.0 m length

Figure (H-43) Experimental buckling mode shape of 2.0 m length of C-section for fixed
ends conditions
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Figure (H-44) Experimental load-deformation relations of 2.0 m length at mid web of 0.5L of
C-section for fixed ends conditions
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C-section / fixed end / 2.3 m length

Figure (H-45) Experimental buckling mode shape of 2.3 m length of C-section for fixed
ends conditions
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Figure (H-46) Experimental load-deformation relations of 2.3 m length at mid web of 0.5L of

C-section for fixed ends conditions
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C-section / fixed end / 2.7 m length
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Figure (H-47) Experimental buckling mode shape of 2.7 m length of C-section for fixed

ends conditions
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Figure (H-48) Experimental load-deformation relations of 2.7 m length at mid web of 0.5L of

C-section for fixed ends conditions
H-24



Appendix H

C-section / fixed end / 3.0 m length
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Figure (H-49) Experimental buckling mode shape of 3.0 m length of C-section for fixed
ends conditions
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Figure (H-50) Experimental load-deformation relations of 3.0 m length at mid web of 0.5L of
C-section for fixed ends conditions
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C-section / fixed end / 3.5 m length

Figure (H-51) Experimental buckling mode shape of 3.5 m length of C-section for fixed

ends conditions

70 70
h = = = X-displacement Experimental
[
i === Y-displacement Experimental 60
ot
50
Z =
4
= < “
S kS
o 2
c
= =2 30
4
@ S
m
0 20
10 10
0 3
-0 ] 10 N w0 N N e W W % o3 2 -1 0 1 2 3
Displacement (mm) Rotation (Degree)

Figure (H-52) Experimental load-deformation relations of 3.5 m length at mid web of 0.5L of

C-section for fixed ends conditions
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C-section / fixed end / 4.0 m length

Figure (H-53) Experimental buckling mode shape of 4.0 m length of C-section for fixed

ends conditions
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Figure (H-54) Experimental load-deformation relations of 4.0 m length at mid web of 0.5L of
C-section for fixed ends conditions
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Z-section / fixed end / 1.0 m length

Figure (H-55) Experimental buckling mode shape of 1.0 m length of Z-section for fixed

ends conditions
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Figure (H-56) Experimental load-deformation relations of 1.0 m length at mid web of 0.5L of

Z-section for fixed ends conditions
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Z-section / fixed end / 1.3 m length
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Figure (H-57) Experimental buckling mode shape of 1.3 m length of Z-section for fixed

ends conditions
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Figure (H-58) Experimental load-deformation relations of 1.3 m length at mid web of 0.5L of

Z-section for fixed ends conditions
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Z-section / fixed end / 1.7 m length

Figure (H-59) Experimental buckling mode shape of 1.7 m length of Z-section for fixed

ends conditions
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Figure (H-60) Experimental load-deformation relations of 1.7 m length at mid web of 0.5L of Z-

section for fixed ends conditions
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Z-section / fixed end / 2.0 m length

Figure (H-61) Experimental buckling mode shape of 2.0 m length of Z-section for fixed
ends conditions
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Figure (H-62) Experimental load-deformation relations of 2.0 m length at mid web of 0.5L of

Z-section for fixed ends conditions
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Z-section / fixed end / 2.3 m length
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Figure (H-63) Experimental buckling mode shape of 2.3 m length of Z-section for fixed

ends conditions
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Figure (H-64) Experimental load-deformation relations of 2.3 m length at mid web of 0.5L of
Z-section for fixed ends conditions
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Z-section / fixed end / 2.7 m length
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Figure (H-65) Experimental buckling mode shape of 2.7 m length of Z-section for fixed
ends conditions
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Figure (H-66) Experimental load-deformation relations of 2.7 m length at mid web of 0.5L of

Z-section for fixed ends conditions
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Z-section / fixed end / 3.0 m length

Figure (H-67) Experimental buckling mode shape of 3.0 m length of Z-section for fixed
ends conditions
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Figure (H-68) Experimental load-deformation relations of 3.0 m length at mid web of 0.5L of
Z-section for fixed ends conditions
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Z-section / fixed end / 3.5 m length
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Figure (H-69) Experimental buckling mode shape of 3.5 m length of Z-section for fixed

ends conditions

0 70
4
ﬁ:' | 60
|
i
! |
V0 P
481 |
L
I i
{ o - .
—~ I =2
g | =
il z
Sl 2 3
=! 2
S =
8 : @ 0
| |
|| X-displacement
| w0 | Experimental 10
' I . Y-dlisplacement
1 | Experimental
il
f : f
-1 0 i il 10 af L i mi 5 | ) 0 ] 4 6

Displacement (mm) Rotation (Degree)

Figure (H-70) Experimental load-deformation relations of 3.5 m length at mid web of 0.5L of
Z-section for fixed ends conditions
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Z-section / fixed end / 4.0 m length

Figure (H-71) Experimental buckling mode shape of 4.0 m length of Z-section for fixed
ends conditions
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Figure (H-72) Experimental load-deformation relations of 4.0 m length at mid web of 0.5L of

Z-section for fixed ends conditions
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