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We present, to the best of our knowledge, the first exact dark spatial solitons of a
nonlinear Helmholtz equation with a self-defocusing saturable refractive-index model.
These solutions capture oblique (arbitrary-angle) propagation in both the forward and
backward directions, and they can also exhibit a bistability characteristic. A detailed
derivation is presented, obtained by combining coordinate transformations and direct-
integration methods, and the corresponding solutions of paraxial theory are recovered
asymptotically as a subset. Simulations examine the robustness of the new Helmholtz
solitons, with stationary states emerging from a range of perturbed input beams.
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1. Introduction

Saturation is a universal phenomenon appearing throughout all of nonlinear sci-

ence. Intuitively, one expects that no growth process in Nature can continue in-

definitely: ultimately, a (system dependent) choking effect must always come into

play to moderate the dynamics and so prevent unphysical ‘run-away’ (divergent)

behaviour. In photonics, one is often concerned with potential saturation of the

light-induced dielectric response of a particular optical material (either its refractive

or absorptive properties).1,2 Well-known materials that exhibit saturation include

some semiconductor-doped glasses (e.g., CdSSe and Schott OG 550 glass),3,4, ion-

doped crystals (e.g., GdAlO3:Cr3+),5 bio-optical media,6 π-conjugated polymers,7

and various photorefractive crystals (e.g., LiNbO3 and SBN).8,9 The detailed mech-

anism underlying optical saturation is intricate, but at an atomic level it may be

described phenomenologically in terms of the bleaching of excited states under

high-intensity illumination.1,2

Many research groups have investigated optical phenomena connected to a sat-

urable refractive index, and so a detailed survey of the literature is prohibitive here.

However, one may readily identify key themes of investigation that are most closely

allied to the problem of spatial soliton propagation: paraxial10–13 and ultranar-

row14–16 nonlinear beams, and (because of the structure of their governing equa-

1



June 12, 2017 21:5 WSPC/INSTRUCTION FILE
JMChristian˙JNOPM˙REVISED

2 J. M. Christian & M. J. Lundie

tions) conventional pulse propagation models.17–19 Other related photonics-based

contexts where saturation effects can become important include cavity, multi-hump,

photorefractive and incoherent solitons, soliton clusters and vortices, spontaneous

pattern formation, and quantum-optical squeezing.

Here, we are concerned with dark spatial optical solitons propagating in two-

dimensional (2D) uniform planar waveguides.20,21 The core material is assumed to

have a self-defocusing saturable refractive index of the form22–24

nNL(I) = −n2Isat
2

[
1− 1

(1 + I/Isat)
2

]
, (1.1)

where n2 is taken to be a positive parameter throughout (it can be interpreted

as the effective Kerr coefficient for sufficiently low-level illumination), I denotes

intensity and Isat is a constant. In the limit that I/Isat � O(1), it follows that

nNL(I) ' −n2I [1− (3/2)(I/Isat)] (i.e., self-defocusing Kerr-type with a small cor-

rection) while nNL flattens out to the fixed value −n2Isat/2 when I/Isat � O(1).

While the use of an apparently complicated form may seem undesirable initially,

it turns out that propagation equations with that type of nonlinearity may be in-

tegrated exactly to yield implicit soliton solutions.22,23 In contrast, much simpler

algebraic models such as nNL(I) = ±n2I/ (1 + I/Isat) tend not to support exact

solutions rendering analyses of those systems and their stationary states predomi-

nantly numerical.17–19 Generic models of saturation are important because, while

one may be able to capture leading-order effects through competing-polynomial

nonlinearities, any finite power series expansion in I/Isat will eventually fail for

sufficiently strong illumination.

The layout of this paper is as follows. Section 2 considers some of the more

recent developments in optical-soliton literature, while in Sec. 3 we address the

Helmholtz propagation problem and highlight important distinctions between our

approach and those found in other works. The governing equation is proposed and

its plane wave solutions are explored in detail. In Sec. 4, exact dark solitons are

sought by integrating the coupled intensity-phase quadrature equations. The spa-

tial asymptotics of these solitons are mapped onto a plane-wave field using similar

techniques to those established in Ref. 25, and geometrical transformations26 are

deployed to obtain more general off-axis solutions. A bistability characteristic is also

discussed.17–19,22,23,27 Further analysis in Sec. 5 demonstrates that Helmholtz Kerr

dark solitons28 emerge from the new solutions in the limit that saturation effects are

negligible (such an asymptotic result is a physical and mathematical requirement).

Moreover, in an appropriate multiple limit corresponding to the slowly-varying en-

velope approximation (SVEA), the classic paraxial dark soliton23 is recovered. Sim-

ulations test the stability of Helmholtz saturable dark solitons in Sec. 6, where their

role as potentially robust attractors is investigated. We conclude, in Sec. 7, with

some remarks about the power and wider applicability of theoretical formulations

based on Helmholtz diffraction.
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2. Recent Developments for Optical Solitons

Soliton-type excitations underpin many aspects of nonlinear optics, where the in-

terplay between intense laser light and increasingly-sophisticated material response

functions give rise to novel emergent phenomena. With models bound by the SVEA,

ensuing Schrödinger classes of governing equation lend themselves well to the devel-

opment of new solution methods (aided by symbolic-algebra software).29 The tra-

ditional nonlinearities which admit exact solutions—cubic, power-law, dual power-

law, parabolic, and logarithmic—continue to drive modern research innovations.

For instance, they have played key roles in generalizing analyses to regimes involv-

ing pulse propagation in metamaterial contexts. Kerr-law systems with a suite of

higher-order derivative terms are now known support additional exotic solutions

such as cosh-Gaussian and sech-tanh stationary states obtained through a semi-

inverse variational principle.30 These same fundamental nonlinearities are also per-

tinent to the design of novel twin- and multi-core nonlinear directional couplers,

where the G′/G-expansion method has been used for seeking dark solitons.31

Consideration of pulse trains in bimodal optical fibre systems with longitudi-

nally patterned cores have led to the discovery of coupled cnoidal waves (periodic

solutions described by Jacobi elliptic functions) and self-compression effects in some

parameter regimes of generalized Manakov-type systems.32 Nonlinear Schrödinger

(NLS) equations accounting for a slowly-varying (in time) component of the third-

order polarization and a delayed Raman response predict the self-steepening and

self-frequency shifting, respectively, of travelling waves. When third-order dispersion

is negligible, exact solitons may exhibit either super- or sub-luminal propagation

characteristics and chirality.33

In the spatial domain, similarity-reduction techniques34 have recently found

that a cubic-quintic NLS model with variable coefficients may support families

of bright and dark similaritons (localized waveforms that expand on propagation

but nevertheless preserve their shape with respect to a particular scaling law) in

waveguides with a transversely- (graded) and longitudinally- (tapered) modulated

refractive-index profile. New types of single- and two-component electro-optic gray

solitons in two-photon photorefractive materials, where the valence and conduc-

tion bands are typically separated by an intermediate energy level, have also been

calculated numerically.35

Finally, liquid crystals provide another arena in which to generate and manipu-

late nonlinear-optical waves through their molecular reorientational properties and

the nonlocal nature of the nematic phase. Observed excitations include (bright and

dark) solitons and nematicons,36 along with wider classes of distributed solutions

(shock, snoidal, and singular waves) recently derived with the extended trial equa-

tion method.37 Discrete nematic liquid-crystal waveguides have also been shown to

support a diverse range of phenomena, including dispersive shockwaves and oscil-

latory structures (e.g., shelf-like breathers), that are dependent upon the strength

of intersite coupling (that is, on nonlocality).38
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3. Helmholtz Diffraction

3.1. Nonlinear Helmholtz equations

Formulations of traditional beam-propagation problems based on Helmholtz equa-

tions differ fundamentally from those of their paraxial (NLS-type) counterparts.39

While the experimental geometry of scalar wave optics may be a common feature

of both approaches—typically a transverse electric (TE-polarized) field operating

in the continuous-wave (cw) regime, and where beam waists are much longer than

the wavelength—the former does not assume slowly-varying envelopes. This dis-

tinction makes the Helmholtz level of description elliptical in nature, and thus fully

second-order-symmetric in the spatial coordinates. In contrast, paraxial diffraction

equations tend to be parabolic and thus easier to solve mathematically and com-

putationally. More subtly, the symmetric nature of nonlinear Helmholtz equations

can often rule out the existence of exact solutions that are analogues of those com-

monly found in paraxial theory (where standard solution methods can start to break

down28,40). Spatial symmetry, then, has to be built into any analytical approach

from the outset (e.g., solution decomposition and reduced equations).

Previously, we have considered bright spatial solitons of a Helmholtz equation

with the focusing version of model (1.1).41 By deploying such a nonparaxial frame-

work, the angular limitations of paraxial diffraction—rooted in the SVEA—may

be lifted completely. Helmholtz soliton theory then provides a compact and ele-

gant mathematical formalism for modelling oblique-evolution properties of scalar

beams at arbitrary angles (in the laboratory frame) with respect to the longitudi-

nal reference direction.26 Indeed, off-axis considerations are elementary for even

the simplest configurations: (i) interacting beams40 and (ii) reflection / refraction

of bright42,43 and dark44,45 solitons at interfaces between dissimilar materials. The

Helmholtz angular type of nonparaxiality thus underpins, in principle, almost every

conceivable optical device design and architecture.

Here we analyze the dark spatial soliton counterparts to the bright solutions

reported in Ref. 41. Despite satisfying a more complicated governing equation

than their simpler (paraxial) variants, they retain the same physical structure

(namely a plane wave background field across which an obliquely-propagating sta-

tionary gray ‘dip’ may travel).20,21 The dark solitons studied here are non-trivial

spatially-symmetric generalizations of the classic solutions derived by Krolikowski

and Luther-Davies.23 We have thus derived convenient nonlinear basis functions

for analyzing dark beams in a wide range of arbitrary-angle scenarios, and where

the description of a material’s optical response goes beyond the traditional cubic28

and cubic-quintic25 power-series idealizations.

3.2. Field and envelope equations

We are interested in the off-axis properties of broad optical beams where the waist

w0 is much greater than the free-space carrier wavelength λ. Since the inequality
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ε ≡ λ/w0 � O(1) is always fully respected, ultranarrow-beam corrections (ob-

tained from ε-type order-of-magnitude analyses of Maxwell’s equations) are unnec-

essary.46,47 Hence, the polarization-scrambling term ∇(∇ · E) can be safely ne-

glected14–16,48,49 and attention is paid exclusively to scalar diffraction.26,41 We

consider a TE-polarized cw beam, as represented by

Ẽ(x, z, t) = E(x, z) exp(−iωt) + E∗(x, z) exp(+iωt). (3.1)

The laboratory space and time coordinates are denoted by (x, z) and t, respectively,

and ω is the optical frequency. If the transverse spatial variations of the beam are

sufficiently slow on the scalelength of the underlying carrier wavelength, the field

E(x, z) satisfies the 2D Helmholtz equation26,50–52(
∂2

∂z2
+

∂2

∂x2

)
E(x, z) +

ω2n2

c2
E(x, z) = 0, (3.2)

where c is the vacuum speed of light. Spatial symmetry appears in Eq. (3.2) through

the equivalent status of the x and z derivatives in the in-plane Laplacian ∂zz +

∂xx (where ∂x ≡ ∂/∂x, etc.) so that diffraction occurs in both these dimensions.

Nonlinearity enters the propagation problem through the refractive index n ≡ n0 +

nNL(I), where n0 is the linear index at frequency ω and I(x, z) ≡ |E(x, z)|2 is the

(local) light intensity. For a weak nonlinear response, where |nNL| � n0, one has

that n2(I) ' n20 + 2n0nNL(I) to an excellent approximation.

The reference direction is chosen to be z by representing E through the decom-

position E(x, z) = E0u(x, z) exp(ikz), where the real constant E0 scales the field

strength, u(x, z) is the dimensionless envelope, and k ≡ (ω/c)n0 = (2π/λ)n0. The

following governing equation for u, incorporating optical nonlinearity (1.1), can now

be derived without further approximation:

κ
∂2u

∂ζ2
+ i

∂u

∂ζ
+

1

2

∂2u

∂ξ2
− 1

2

2 + γ|u|2

(1 + γ|u|2)
2 |u|

2u = 0. (3.3)

The normalized spatial coordinates are ζ = z/LD and ξ = 21/2x/w0, where

LD = kw2
0/2 is the diffraction length of a reference (paraxial) Gaussian beam with

waist w0. The inverse beam width is quantified by κ ≡ 1/(kw0)2 = ε2/4π2n20 �
O(1). The units of electric field amplitude are determined by the choice of scaling

E2
0n2kLD/n0 ≡ 1, while γ−1 ≡ Isat/E

2
0 is the normalized saturation intensity. We

stress that full spatial symmetry is preserved when transforming between models

(3.2) and (3.3) because the assumption of a slowly-varying envelope, that is to say

κ|∂ζζu| � |∂ζu|, has not been made.

3.3. Plane waves

The plane waves of Eq. (3.3) can be obtained by seeking solutions of the form

u(ξ, ζ) = ρ
1/2
0 exp [i(kξξ + kζζ)] exp

(
−i ζ

2κ

)
, (3.4a)
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Fig. 1. Schematic representation of plane waves in scaled units. (a) Forward (FWD) and (b)
backward (BWD) solutions described by kζ > 0 and kζ < 0, respectively, according to Eq. (3.4d).
A more convenient representation, with wavevector k ≡ (kξ, kζ) given by Eq. (3.6), introduces a
transverse velocity parameter V , which is connected to angle Θ through V = tan Θ. Panes (c)
and (d) consider FWD and BWD waves, respectively, when V > 0.

where ρ0 ≡ |u|2 is the (uniform) light intensity and k ≡ (kξ, kζ) is the wavevector.

Substitution of Eq. (3.4a) into Eq. (3.3) then yields the elliptic dispersion relation

κk2ζ −
1

4κ
+
k2ξ
2

= β, (3.4b)

where the full significance of the parameter

β ≡ −
(ρ0

2

) 2 + γρ0

(1 + γρ0)
2 (3.4c)

will become clear in Sec. 4. One can obtain kζ from Eq. (3.4b), recognizing that

there must always be two distinct solution branches due to the fully-quadratic (in

both x and z) nature of scalar Helmholtz diffraction:

kζ = ± 1

2κ

[
1 + 4κ

(
β −

k2ξ
2

)]1/2
. (3.4d)

For fixed transverse spatial frequency kξ, there exist waves that travel in both

forward (in our convention, always the upper sign) and backward (lower sign) lon-

gitudinal senses (see Figs. 1(a) and 1(b)).

For propagating waves (i.e., those solutions that are non-evanescent in ζ), there

clearly exists an upper limit on the value of |kξ|, since

(k2ξ)max =
1

2κ

[
1−

(
2κ

γ

)
2 + γρ0

(1 + γρ0)
2 γρ0

]
(3.5a)

cannot be negative. The maximum value of |kξ| corresponds to regimes where kζ =

0, and hence describes waves travelling perpendicularly to the reference direction

(i.e., in the ξ direction). An equivalent interpretation is that Eq. (3.5a) determines

a boundary in Fourier space between forward and backward propagation.53,54

Equation (3.5a) yields two interesting results related to the quantity 2κγ−1,

which quantifies the interplay between beam nonparaxiality (through the parameter

κ) and saturation (as determined by γ−1). When γ−1 ≤ 1/2κ, the intensity ρ0 can
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assume (in principle) any value without violating geometrical constraints. Similarly,

γ−1 > 1/2κ requires a cut-off such that

ρ0 < γ−1

[√
2κγ−1

2κγ−1 − 1
− 1

]
. (3.5b)

Since κ� O(1) and intensities should retain moderate values (in order to ensure the

validity of scalar modelling), inequality (3.5b) can be safely discarded. We note, in

passing, that κ-dependent inequalities determining plane-wave characteristics have

also been reported for cubic28 and cubic-quintic25 Helmholtz equations.

An alternative and often more convenient approach is to associate a conven-

tional transverse velocity parameter V with kξ.
25 In that representation, one may

construct k as

k ≡ (kξ, kζ) = ±
√

1 + 4κβ

1 + 2κV 2

(
−V, 1

2κ

)
, (3.6)

so that switching between the ± sign in Eq. (3.6) simply reverses the entire wave

vector (i.e., k → −k) rather than just its longitudinal projection. Hence, one may

now appreciate that there is no physical distinction between forward and backward

waves (the pair of solutions are connected by a 180◦ rotation of the observer’s

coordinate axes or, equivalently, a reversal of k) (see Figs. 1(c) and 1(d)). The

propagation angle Θ with respect to the ζ axis is now given by tan Θ ≡ V .

The difference between propagation problems described within scaled and un-

scaled units is perhaps most powerfully demonstrated through angular considera-

tions, where the connection between propagation angle θ in (x, z) coordinates and

transverse velocity V in (ξ, ζ) coordinates is given by26

tan θ =
√

2κV. (3.7)

Equation (3.7) plays a fundamental role in Helmholtz soliton theory and throughout

the subsequent analysis here. It shows that even when κ� O(1) (as is the case for

broad scalar beams), the geometrical factor 2κV 2 correcting paraxial theory can

become arbitrarily large as |θ| → 90◦.

3.4. Modulational stability

By deploying the technique developed in Ref. 53, one can analyze the stability of

plane waves against small-amplitude modulations. Without loss of generality, we

consider an on-axis wave and seek perturbed solutions to Eq. (3.3) of the form

u(ξ, ζ) = ρ
1/2
0 [1 + µa(ξ, ζ)] exp(ikζζ) exp

(
−i ζ

2κ

)
. (3.8a)

Here, a is a complex perturbation of O(1) magnitude that describes disturbances

to both amplitude and phase of the underlying wave, while µ is a formal expansion

parameter satisfying µ� O(1). By substituting Eq. (3.8a) into Eq. (3.3), cancelling
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the plane wave background (using dispersion relation (3.4b)) and isolating terms

at O(µ), one can show that a satisfies the linearized Helmholtz equation

κ
∂2a

∂ζ2
± i
√

1 + 4κβ
∂a

∂ζ
+

1

2

∂2a

∂ξ2
− ρ0

(1 + γρ0)
3 (a+ a∗) = 0. (3.8b)

Equation (3.8b) admits single Fourier mode solutions of the form

a(ξ, ζ) = a1 exp [i(Kξξ +Kζζ)] + a∗2 exp[−i(Kξξ +K∗ζ ζ)], (3.8c)

where a1 and a2 are complex constants. The perturbation has a transverse spatial

frequency Kξ (and hence a pattern scalelength of 2π/Kξ) and propagation constant

Kζ (which must be purely real in order to avoid the longitudinal growth of a).

After some algebra, it can be shown that the perturbation dispersion relation

connecting Kξ and Kζ is given by the quartic equation

κ2K4
ζ −

[
1 + 4κβ − 2κ

K2
ξ

2
− 2κρ0

(1 + γρ0)
3

]
K2
ζ +

K2
ξ

2

[
K2
ξ

2
+

2ρ0

(1 + γρ0)
3

]
= 0.

(3.8d)

Equation (3.8d) can be solved exactly for Kζ , whereupon one finds four roots.

Crucially, there is no long-wave instability since on all four solution branches,

=m(Kζ) = 0 in small-Kξ regimes. Hence, linear analysis predicts that the plane

waves of Eq. (3.3) are robust against small-amplitude fluctuations (a key ingre-

dient for establishing the potential stability of dark solitons). That prediction is

fully supported by numerical computations, which have uncovered no evidence of

long-wavelength spontaneous modulational instability.

4. Helmholtz Dark Solitons

4.1. Solution decomposition & quadrature equations

To proceed with finding exact analytical solitons, one can split u into its intensity

and phase quadratures, denoted by ρ(ξ, ζ) and Ψ(ξ, ζ), respectively, according to

u(ξ, ζ) = ρ1/2(ξ, ζ) exp [iΨ(ξ, ζ)] exp

(
−i ζ

2κ

)
. (4.1a)

By substituting desired solution (4.1a) into Eq. (3.3), a quite general pair of coupled

quadrature equations can be obtained which ρ and Ψ must satisfy. The real part of

Eq. (3.3) leads to

2

ρ

(
∂2ρ

∂ξ2
+ 2κ

∂2ρ

∂ζ2

)
− 1

ρ2

[(
∂ρ

∂ξ

)2

+ 2κ

(
∂ρ

∂ζ

)2
]

− 4

[(
∂Ψ

∂ξ

)2

+ 2κ

(
∂Ψ

∂ζ

)2
]

= 8

[(ρ
2

) 2 + γρ

(1 + γρ0)
2 −

1

4κ

]
(4.1b)
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Fig. 2. Schematic representation of dark spatial soliton geometry in the (x, z) laboratory frame.
(a) Forward and (b) backward solutions comprising an on-axis plane wave and an off-axis gray
dip travelling at angle θ0 relative to the plane wave background. Most general (c) forward and
(d) backward solutions. The background field travels off-axis at angle θ, while relative angle θ0
remains unchanged. The dip thus makes angle θ − θ0 with respect to the longitudinal direction.

while the imaginary part yields

ρ

(
∂2Ψ

∂ξ2
+ 2κ

∂2Ψ

∂ζ2

)
+
∂ρ

∂ξ

∂Ψ

∂ξ
+ 2κ

∂ρ

∂ζ

∂Ψ

∂ζ
= 0. (4.1c)

By factoring out the rapidly-varying carrier-wave phase factor exp(−iζ/2κ) ≡
exp(−ikz) in decomposition (4.1a), explicit spatial symmetry has been restored

to quadrature equations (4.1b) and (4.1c), which are much more complicated than

their counterparts in paraxial theory. However, they can still be integrated to find

exact analytical dark solitons if one exploits the physical structure of such solutions

(i.e., a uniform background modulated by a phase-topological gray ‘dip’).

4.2. Mapping onto plane waves

We begin by considering a particular case: where the uniform background wave is

propagating on-axis (i.e., with zero transverse velocity), while the gray dip travels

obliquely to the ζ axis with intrinsic velocity V0 (see Figs. 2(a) and 2(b)). Such a

solution is prescribed by Ψ(ξ, ζ) = Ψsol(ξ, ζ) + kζζ, where Ψsol(ξ, ζ) is the soliton

phase distribution and kζ is the plane wave propagation constant (obtained from

Eq. (3.6) by setting V = 0). Since ∂ξΨ = ∂ξΨsol, ∂ξξΨ = ∂ξξΨsol, ∂ζΨ = ∂ζΨsol+kζ ,

and ∂ζζΨ = ∂ζζΨsol, it follows that Eqs. (4.1b) and (4.1c) become

2

ρ

(
∂2ρ

∂ξ2
+ 2κ

∂2ρ

∂ζ2

)
− 1

ρ2

[(
∂ρ

∂ξ

)2

+ 2κ

(
∂ρ

∂ζ

)2
]
− 4

[(
∂Ψsol

∂ξ

)2

+ 2κ

(
∂Ψsol

∂ζ

)2
]

= 8

[(ρ
2

) 2 + γρ0

(1 + γρ0)
2 + 2κkζ

∂Ψsol

∂ζ
+

(
κk2ζ −

1

4κ

)]
(4.2a)

and

ρ

(
∂2Ψsol

∂ξ2
+ 2κ

∂2Ψsol

∂ζ2

)
+
∂ρ

∂ξ

∂Ψsol

∂ξ
+ 2κ

∂ρ

∂ζ

∂Ψsol

∂ζ
+ 2κkζ

∂ρ

∂ζ
= 0, (4.2b)

respectively. By noting that the soliton intensity and phase distributions move along
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the characteristic ξ − V0ζ = 0, it is instructive to define a new variable,

s ≡ ξ − V0ζ√
1 + 2κV 2

0

, (4.3a)

which represents the coordinate perpendicular to the propagation direction. Under

transformation (4.3a), the operators ∂ξ and ∂ζ may be replaced according to

∂

∂ξ
=

1√
1 + 2κV 2

0

d

ds
and

∂

∂ζ
= − V0√

1 + 2κV 2
0

d

ds
. (4.3b)

Equation (4.2b) can be recast into the more compact form

d

ds

[
ρ
dΨsol

ds
∓ V0

(
1 + 4κβ

1 + 2κV 2
0

)1/2

ρ

]
= 0, (4.4a)

which, after a single integration with respect to s, yields

dΨsol

ds
=
c1
ρ
± V0

(
1 + 4κβ

1 + 2κV 2
0

)1/2

, (4.4b)

where c1 is a constant to be determined. By applying the same coordinate change

to Eq. (4.2a) and eliminating the phase derivative dsΨsol by deploying Eq. (4.4b),

it can be shown that ρ must satisfy

d

dρ

[
1

ρ

(
dρ

ds

)2
]

= 8
(ρ

2

) 2 + γρ

(1 + γρ)
2 + 4

c21
ρ2

+ 8χ. (4.5a)

The constant χ appearing in Eq. (4.5a), defined as

χ ≡
κk2ζ

1 + 2κV 2
0

− 1

4κ
, (4.5b)

wraps up all the information about off-axis propagation into a single parameter.

Hence, when written in terms of s, the Helmholtz and paraxial quadrature equations

are seen to be formally identical to each other (a physical requirement).

4.3. Boundary conditions

Before further analysis, the asymptotic behaviour of the quadratures ρ(s) and

Ψsol(s) needs to be considered. For dark soliton solutions, one tends to place re-

strictions on ρ according to

lim
s→±∞

ρ(s) ≡ ρ0 and lim
s→0

ρ(s) ≡ ρ1, (4.6a)

where ρ1 is the intensity at the beam centre, ρ0 is the intensity of the plane wave

background field, and 0 < ρ1 ≤ ρ0. Derivatives of ρ and Ψsol must also vanish at

spatial infinity (where u becomes a plane wave):

lim
s→±∞

d

ds
ρ(s) = 0 and lim

s→±∞

d

ds
Ψsol(s) = 0. (4.6b)
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Applying boundary conditions (4.6a) and (4.6b) to Eq. (4.4b) shows that the con-

stant c1 and the intrinsic velocity V0 are connected thus:

c1
ρ0

= ∓V0
(

1 + 4κβ

1 + 2κV 2
0

)1/2

, (4.6c)

capturing both forward- and backward-travelling configurations. Moreover, the sign

of c1 depends upon the interplay between the sign of V0 and also the longitudinal

sense of propagation (a fact that turns out to be crucial for determining the soliton

phase distribution). For instance, the forward solution with a positive V0 corre-

sponds to the configuration shown in Fig. 2(a) and hence c1 must be negative.

4.4. Intensity & phase quadratures

To proceed with finding the intensity distribution, we perform a direct integration

of Eq. (4.5a) to yield(
dρ

ds

)2

= 8χρ2 +
4

γ2

(
γρ+

1

1 + γρ

)
ρ− 4c21 + c2ρ, (4.7a)

where c2 is another constant. In expediting the second integration, it is instructive

to express Eq. (4.7a) in the factorized form(
dρ

ds

)2

= 4D
(ρ− ρ1)(ρ0 − ρ)2

(1 + γρ)
, (4.7b)

noting that ρ0 is a double root, ρ1 is a single root, and D is a constant to be

determined. After some algebraic manipulations comparing Eqs. (4.7b) and (4.7a),

it can be shown that c1, c2 and χ are obtained from

c21
ρ20

= Dρ1, (4.7c)

c2
4

=
[
ρ20 (1 + γρ1) + 2ρ0ρ1

]
D − 1

γ2
, (4.7d)

χ =
1

2γ
(D − 1). (4.7e)

All three constants and parametrized by D ≡ (1 + γρ1)
−1

(1 + γρ0)
−2

.

Equation (4.7b) can now be separated and integrated, remembering that dark

solutions satisfy dρ/ds > 0 in the domain 0 < s < +∞. That procedure leads to an

implicit equation for the intensity distribution ρ(s) which, in the representation of

Krolikowski and Luther-Davies,23 is(
ρ0 + γ−1

ρ0 − ρ1

)1/2

tanh−1

[(
ρ0 + γ−1

ρ0 − ρ1

)1/2

η

]
− tanh−1(η) =

γ−1/2s

(1 + γρ0) (1 + γρ1)
1/2

.

(4.8a)
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Here, the (non-negative) functional η[ρ] is defined as

η[ρ] ≡
(
ρ− ρ1
ρ+ γ−1

)1/2

, (4.8b)

so that η(s) ≡ η[ρ(s)]. An explicit integral representation for Ψsol can be obtained

by combining Eq. (4.4b) with relation (4.6c) so that

dΨsol

ds
=

(
c1
ρ0

)(
ρ0 − ρ
ρ

)
. (4.9a)

After a straightforward transformation, Eq. (4.9a) can be integrated with respect

to ρ (rather than s), such that in the domain s > 0, we have that

Ψsol[ρ] = ∓1

2
F (γρ0)

1/2
∫
dρ

ρ

(
ρ+ γ−1

ρ− ρ1

)1/2

. (4.9b)

For convenience, the standard contrast parameter, F 2 ≡ ρ1/ρ0, has been introduced

and where 0 < F 2 ≤ 1 captures grayness of the solution. Evaluating the integral in

Eq. (4.9b) yields the exact expression

Ψsol[ρ] = ∓

{
tan−1

[
η(ρ)

F (γρ0)
1/2

]
+ F (γρ0)

1/2
tanh−1 [η(ρ)]

}
, (4.9c)

which determines the soliton phase Ψsol(s) ≡ Ψsol[ρ(s)] as a functional of the in-

tensity ρ ≡ ρ(s). The phase shift across the transverse extent of the beam, denoted

by ∆Ψsol ≡ Ψsol(+∞)−Ψsol(−∞), is given by

∆Ψsol = −π + 2 tan−1
[(

F

A

)
(1 + γρ0)

1/2

]
− 2F (γρ0)

1/2
tanh−1

[
A (γρ0)

1/2
(1 + γρ0)

−1/2
]
. (4.10)

The particular case of F = 0 corresponds to a black soliton, where there is a phase

shift of −π radians while the phase is undefined at the beam centre. For some

regimes of γ, one finds that |∆Ψsol| can exceed π (in which case the corresponding

solutions have been termed darker than black 55).

4.5. Intrinsic velocity

By combining Eqs. (4.6c) and (4.7c), it can be shown that

V 2
0 =

Dρ1
1 + 4κ (β −Dρ1/2)

(4.11a)

while, from Eq. (4.5b), one must have

V 2
0 = 2

β − χ
1 + 4κχ

. (4.11b)
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Fig. 3. Dark soliton intrinsic velocity V0 as a function of grayness F for increasing levels of
saturation when the plane-wave background has intensity ρ0 = 1.0 and nonparaxial parameter is
set to κ = 1.0× 10−3.

Self-consistency in the solution subsequently demands that Eqs. (4.11a) and (4.11b)

produce the same result for V0, namely

V0 =
ρ
1/2
0 F

(1 + γρ0) (1 + F 2γρ0)
1/2

[
1− 2κρ0

(1 + γρ0)
2

(
2 + γρ0 +

F 2

1 + F 2γρ0

)]−1/2
.

(4.11c)

Equation (4.11c) is a key result and it completes the particular solution for which

we are looking (note that the sign of F controls the partiy of the soliton and also

the sign of V0). The effect of increasing saturation intensity on V0 is shown in Fig. 3.

4.6. General off-axis solution

A more general off-axis beam can be generated by applying a coordinate rotation to

the on-axis soliton.26 The new solution so derived comprises a plane wave travelling

at angle θ = tan−1(
√

2κV ) with respect to the z axis, and an intensity dip evolving

at angle θ0 = tan−1(
√

2κV0) relative to that background wave. The dip, therefore,

makes an angle θ− θ0 = tan−1(
√

2κW ) to the z axis (see Figs. 2(c) and 2(d)). The

formal solution u can be written as

u(ξ, ζ) = ρ1/2(ξ, ζ) exp

[
∓ i

{
tan−1

(
η(ξ, ζ)

F (γρ0)
1/2

)
+ F (γρ0)

1/2
tanh−1 [η(ξ, ζ)]

}]

× exp

[
±i
√

1 + 4κβ

1 + 2κV 2

(
−V ξ +

ζ

2κ

)]
exp

(
−i ζ

2κ

)
, (4.12a)

where the rotated soliton intensity distribution ρ(ξ, ζ) is obtained by solving the

implicit equation
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Fig. 4. (a) Changes in the intensity profile for on-axis black solitons (described by V = 0 and
F = 0 = V0, respectively) as the level of saturation increases, obtained from solution (4.12b).
(b) Angular beam broadening for gray solitons with F 2 = 0.4 and fixed saturation parameter
γ = 0.25. Other parameters: ρ0 = 1.0 and κ = 1.0× 10−3.

1

(γρ0)1/2
(1 + γρ0)1/2

A
tanh−1

[
1

(γρ0)1/2
(1 + γρ0)1/2

A
η(ξ, ζ)

]
− tanh−1 [η(ξ, ζ)]

=
γ−1/2

(1 + γρ0) [1 + (1−A2)γρ0]
1/2

(
ξ +Wζ√
1 + 2κW 2

)
(4.12b)

(note the intensity is a symmetric function of ξ + Wζ, while the phase is an anti-

symmetric function). The net velocity W of the gray dip with respect to the ζ axis

is determined by way of the geometrical result25,28

W =
V − V0

1 + 2κV V0
, (4.12c)

where the intrinsic velocity V0 of the dip relative to the plane-wave background

is obtained from Eq. (4.11c). It is also straightforward to eliminate the intrinsic,

transverse, and net velocities (V , V0 and W , respectively) from solution (21), so

that the soliton may be expressed in terms of propagation angles (θ0 and θ) in the

laboratory frame.25

Typical black soliton profiles are shown in Fig. 4(a), where an increasing level

of saturation typically leads to a wider solution as might be expected on physical

grounds. For fixed ρ0, the self-defocusing effect decreases as γ increases (i.e., as the

saturation intensity drops) and hence the nonlinearity-diffraction balance necessary

for supporting stationary states requires weaker diffraction (i.e., a broader beam).

The geometrical (off-axis) broadening effect, as shown for gray solutions in Fig. 4(b),

is a generic Helmholtz-type correction to paraxial theory which may exceed 100%

even at moderate angles.25,28

4.7. Bistability properties

By looking at the continuum of Eqs. (4.12a) and (4.12b), it is possible to identify

pairs of solutions that have the same full-width-half-maximum (FWHM), but whose
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Fig. 5. Non-degenerate bistability curves for saturable dark solitons. (a) Black (A = 1) and (b)
gray (with ν = 1.0) variants as predicted by solution (4.12a)−(4.12b). Lower branches with γ → 0
correspond to weak saturation, in which case the plane-wave intensity tends to ρ0 ' 1/ν2A2.

plane-wave backgrounds have different intensities (see Fig. 4). These non-degenerate

soliton pairs can be obtained from the condition23 ρ(s1/2) = (ρ0 + ρ1)/2, where

s1/2 ≡ ν∆ and ν measures the (normalized) solution half-width in units of ∆ ≡
sech−1(2−1/2) ≈ 0.8814. The implicit equation describing bistability is thus

1

(γρ0)
1/2

(1 + γρ0)
1/2

A
tanh−1

 1

(γρ0)
1/2

(
1 + γρ0

2−A2 + 2 (γρ0)
−1

)1/2


− tanh−1

(
A2

2−A2 + 2 (γρ0)
−1

)1/2

=
γ−1/2ν∆

(1 + γρ0) [1 + (1−A2)γρ0]
1/2

.

(4.13)

As γρ0 → 0, Eq. (4.13) shows that ρ0 → 1/ν2A2. Unlike its cubic-quintic coun-

terpart,25 the saturable bistability condition does not appear to involve cut-off

features. It is also interesting to note that Eq. (4.13) is independent of κ (and,

hence, of propagation angles) since the FWHM is defined within a frame of refer-

ence where the localized dip is on-axis. Hence, paraxial and Helmholtz bistability

conditions are formally identical (as one would expect on physical grounds). Bista-

bility curves for black solitons with various values of ν, and for gray solitons with

ν = 1, are shown in Fig. 5.

5. Solution Asymptotics

We now consider the asymptotic properties of the new Helmholtz dark solitons. Two

particular physical contexts are of fundamental physical importance here: firstly,

the Kerr limit (which corresponds to the negligible-saturation regime of model

(1.1)) and, secondly, the paraxial limit, (wherein the generic Helmholtz-type cor-

rections can be expected to play a negligible role simultaneously). Solutions in both

these regimes must necessarily be subsets of the more general predictions made by
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Eq. (3.3)—the latter corresponds to neglecting the term at κ∂ζζu, while the former

is equivalent to discarding finite-γ considerations.

5.1. Recovery of Kerr dark solitons

In the limit of infinite saturation intensity, the nonlinearity in the governing equa-

tion becomes the self-defocusing Kerr-type response. One thus expects the corre-

sponding Kerr dark soliton28 to emerge from solution (4.12a) when γρ0 → 0 (which

automatically ensures F 2γρ0 � O(1) is satisfied since 0 ≤ |F | ≤ 1).

Binomial expansion shows that the term at tanh−1(η) in Eq. (4.12b) is negligible

compared to the other two terms. Hence, we find that the Kerr limit corresponds

to an intensity distribution described by

1

ρ
1/2
0 A

tanh−1

{[
ρ− ρ0

(
1−A2

)]1/2
ρ
1/2
0 A

}
' ξ +Wζ√

1 + 2κW 2
. (5.1a)

Rearranging Eq. (5.1a) thus recovers the classic tanh-shaped dark soliton intensity

profile, namely

ρ(ξ, ζ) ' ρ0
[
1−A2sech2

(
ρ
1/2
0 A

ξ +Wζ√
1 + 2κW 2

)]
. (5.1b)

In phase distribution (4.9c), the term at tanh−1(η) also tends to vanish leaving only

the tan−1 contribution. Hence, we find that

Ψsol[ρ] ' ∓ tan−1

[
1

ρ
1/2
0 F

(
ρ− ρ0F 2

)1/2]
, (5.1c)

or equivalently,

Ψsol(ξ, ζ) ' ∓ tan−1
[
A

F
tanh

(
ρ
1/2
0 A

ξ +Wζ√
1 + 2κW 2

)]
. (5.1d)

Finally, by applying the limit γρ0 → 0 to the expression for the intrinsic velocity

(see Eq. (4.11c)), one recovers the approximate result

V0 '
ρ
1/2
0 F√

1− 2κρ0 (2 + F 2)
(5.1e)

and, from Eq. (3.4c), it follows that β ' −ρ0.28 An equivalent approach to analyzing

this type of limit is to set γρ0 → 0 in Eq. (4.7b). One then easily uncovers the

familiar quadrature equation (dρ/ds)2 ' 4(ρ−ρ1)(ρ0−ρ)2, which can be integrated

exactly to yield solution (5.1b).

5.2. The paraxial limit

When all contributions from the κ∂ζζ operator in Eq. (3.3) are negligible simulta-

neously, one should be able to recover the classic paraxial dark soliton for saturable
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nonlinearity model (1.1).23 In the limit that κ → 0 (broad beam), κβ → 0 (neg-

ligible nonlinear phase shift) and κV 2 → 0 (negligible propagation angle of the

background wave), solution (20a) may be expressed as

u(ξ, ζ) ' ρ1/2(ξ, ζ) exp

[
∓ i

{
tan−1

(
η(ξ, ζ)

F (γρ0)
1/2

)
+ F (γρ0)

1/2
tanh−1 [η(ξ, ζ)]

}]

× exp

[
∓iV ξ ± i

(
β − V 2

2

)
ζ

]
exp

[
−i(1∓ 1)

ζ

2κ

]
. (5.2a)

The forward solution maps directly onto its paraxial counterpart23 which satisfies

a nonlinear Schrödinger (NLS) equation (that is, Eq. (3.3) with the term κ∂ζζu

neglected). Moreover, the parameter β introduced in Eq. (3.4c) can be identified

with the propagation constant of the corresponding on-axis plane wave of that

simpler equation.

It is also instructive to recognize that Eqs. (4.8a) and (4.9c) are formally iden-

tical in structure to the corresponding equations of paraxial theory.23 The an-

gular distinction between Helmholtz and paraxial solutions lies in their geomet-

ric dependence on the spatial coordinates ξ and ζ. In the limit that κW 2 → 0

(negligible propagation angle of the gray dip with respect to z), one finds that

(1 + 2κW 2)−1/2 ' 1 − κW 2 so that the ξ and ζ coordinates appear on the right-

hand side of Eq. (4.12b) as simply ξ+Wζ. One can also show, from Eq. (4.12c), that

the net velocity is well-approximated by W ' V − V0 while the intrinsic velocity is

V0 '
ρ
1/2
0 F

(1 + γρ0) (1 + F 2γρ0)
1/2

. (5.2b)

As should be the case, one can apply the limit γρ0 → 0 to this (exact) paraxial

saturable solution and recover the Kerr dark soliton of the NLS model.20,21

The backward Helmholtz solution clearly retains a divergent O(κ−1) rapid-

phase factor, corresponding to exp(−i2kz), in unscaled units.26 Hence, there can

be no analogue of Helmholtz backward waves in paraxial theory (which describes

propagation in a single longitudinal sense only).

6. Dark Soliton Stability

6.1. Black solitons

The stability of Helmholtz black (i.e., F = 0 = V0) solitons may now be addressed

through a suitable perturbed initial-value problem. The oblique input beam u(ξ, 0)

is obtained from solution (4.12a)−(4.12b) but where the broadening factor (1 +

2κV 2)1/2 is omitted from the profile. So defined, one may interpret u(ξ, 0) as an

exact paraxial soliton being fed into Eq. (3.3) as an off-axis initial condition or,

conversely (when viewed from a frame of reference where the propagating beam

is on-axis), as a quasi-paraxial black soliton whose width has been reduced by

(1 + 2κV 2)1/2. The full width of the dark beam may then be expected to increase



June 12, 2017 21:5 WSPC/INSTRUCTION FILE
JMChristian˙JNOPM˙REVISED

18 J. M. Christian & M. J. Lundie

Fig. 6. Evolution of the bistable black soliton full width when the initial waveform resides on
the (a) lower branch (ρ0 = 2.383) and (b) upper branch (ρ0 = 6.167)—c.f. Fig. 5 with ν = 1.0.
System parameters: γ = 0.20 and κ = 1.0× 10−3. Blue circle: |θ| = 10◦. Green square: |θ| = 20◦.
Red triangle: |θ| = 30◦. Black diamond: |θ| = 40◦. Solid bars denote asymptotic predictions.

smoothly from its value Λ0 at ζ = 0 towards a limiting of Λ∞ ≡ (1 + 2κV 2)1/2Λ0

as ζ →∞.

For definiteness, we present illustrative results for the case of γ = 0.2—note

that the drift instability uncovered by Kivshar and Afanasjev56 for Wood et al.’s

saturable nonlinearity model24 does not tend to appear for that parameter choice.

Equation (4.13) predicts bistability for solutions with ν = 1.0 and that the plane-

wave backgrounds must have lower- and upper-branch peak intensities of ρ0 ' 2.383

and ρ0 ' 6.167, respectively (see Fig. 5(a)). When the nonparaxial parameter is

set to κ = 1.0 × 10−3, launching angles of |θ| = 10◦, 20◦, 30◦, and 40◦ correspond

to transverse velocities of |V | ' 3.943, 8.139, 12.910, and 18.763. Figure 6 shows

the evolution of the beam full-width. Stationary black solitons emerge relatively

quickly, with the generally adiabatic evolution allowing one to fit the numerical

dataset to exact solution (4.12a)−(4.12b).

6.2. Gray solitons

The stability of gray solitons is often addressed through an integral criterion pro-

posed by Barashenkov57 and further developed by Pelinovsky et al.58 The renor-

malized momentum Mren of a gray-type solution is defined by

Mren ≡
i

2

∫ +∞

−∞
dξ

(
u
∂u∗

∂ξ
− u∗ ∂u

∂ξ

)(
1− ρ0
|u|2

)
(6.1a)

(the formally divergent contribution to the total momentum from the on-axis back-

ground plane wave of intensity ρ0 is subtracted, rendering Mren finite and generally

well-behaved). Stability against small perturbations may then be expected provided

d

dV0
Mren(V0) > 0, (6.1b)

and typical renormalized-momentum curves are shown in Fig. 7.



June 12, 2017 21:5 WSPC/INSTRUCTION FILE
JMChristian˙JNOPM˙REVISED

Helmholtz dark solitons for a self-defocusing saturable nonlinearity 19

Fig. 7. Renormalized dark soliton momentum when ρ0 = 2.0, computed for the contrast range
0 < F ≤ 1. The gradient dMren/dV0 is always positive for V0 > 0, so that stability criterion (6.1b)
is always satisfied. Here, Mren approaches a numerical value of −2π as V0 tends toward zero.

If the κ and κβ contributions from κ∂ζζu in Eq. (3.3) are both small, one may

reasonably expect criterion (6.1b) to hold well for these quasi-paraxial Helmholtz

gray solitons. That is, any meaningful prediction of stability must be effectively

insensitive to the propagation angle of the plane-wave background relative to the

reference (longitudinal) axis—one can always align the z axis with the background

wave’s direction of travel and, in so doing, physical stability properties must be left

unchanged.

The self-reshaping of perturbed gray solitons towards stationary states of

Eq. (3.3) is similar to that shown in Fig. 6 but on a larger longitudinal scalelength.

We also find that solution grayness is typically not preserved upon propagation.

Simulations have shown that the contrast parameter (i.e., the beam’s minimum

intensity measured as a fraction of ρ0) transforms according to F → F (ζ), where

F (0) is specified in the initial condition and F (ζ) is obtained by fitting the numer-

ical data to solution (4.12b). A typical example of evolving grayness is shown in

Fig. 8 for γ = 0.2 and γ = 0.1. As ζ → ∞, the perturbed solution tends to relax

back to a value of F that is close to its initial value, with the relaxation process

tending to take a greater distance for larger values of γ (i.e., for lower saturation

intensities).

7. Conclusions

We have reported the first Helmholtz dark spatial optical solitons for a sat-

urable self-defocusing nonlinearity, complementing the bright solitons previously

reported.41 In-depth analysis of these (bistable) solutions has shown that they pos-

sess the essential physical features (such as angular beam broadening) and asymp-

totic properties (reducing to their Kerr and paraxial counterparts in appropriate

multiple limits) required of Helmholtz solitons. Theoretical and computational in-

vestigations have predicted, and confirmed, that the new solutions are robust non-

linear waves surrounded by wide basins of attraction. Perturbed black beams tend

to shed low-amplitude radiation as they evolve smoothly towards stationary states
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Fig. 8. Evolution of the soliton grayness parameter for ρ0 = 2.0 when (a) γ = 0.2 and (b) γ = 0.1
(inset: expanding vertical scale so as the curves may be resolved) for nonparaxial parameter
κ = 1.0 × 10−3. Blue circle: |θ| = 10◦. Green square: |θ| = 20◦. Red triangle: |θ| = 30◦. Black
diamond: |θ| = 40◦.

of Eq. (3.3), and relatively quickly. Gray beams share similar properties but the

relaxation process is noticeably slower.

From a strictly mathematical perspective, it would be profitable to see if other

ways of seeking broad solution classes29—e.g., tanh, elliptic, and exponential ex-

pansion methods and their extensions, F - and G′/G-expansions, and homogeneous-

balance methods—can also be applied to Helmholtz-type governing equations. To

date, we have focused primarily on ‘blunt-instrument’ ansatz approach (where a

good guess at a trial solution can be made) and the more elegant direct-integration

technique (as deployed in this paper), both combined with geometrical transforma-

tions. These two methods have shown themselves to be powerful tools for identifying

solitary-type excitations in spatially-symmetric equations and where the nonlinear-

ity is homogeneous (e.g., does not contain derivatives).

The research presented here completes our analysis of exact scalar spatial soli-

tons for complementary saturable nonlinearities.41 Knowledge about the math-

ematical form and physical stability properties of these solutions opens up the

possibility of modelling oblique beam propagation in a wide range of device archi-

tectures. For instance, the refraction of bright42,43 and dark44,45 beams at a single

interface are problems of pivotal importance where non-trivial angular effects are

the rule rather than the exception. These research areas can now be extended be-

yond Kerr media to configurations involving both cubic-quintic25,59 and, crucially,

saturable-type materials. One can also revisit periodic (e.g., coupled-waveguide)

systems that have historically been analyzed only for paraxial diffraction. Head-

on60,61 and side-coupling62,63 geometries are both of interest in Helmholtz-angular

contexts.64
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