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Abstract	

Fatigue	in	the	days	post	rugby	union	match	play	is	expected,	yet	accurate	assessment	of	fatigue	
needs	to	be	quantified	via	specific	performance	testing,	to	better	advise	practitioners	regarding	
likely	position-specific	time-course	of	recovery.		Results	from	this	thesis	support	the	notion	that	
countermovement	jump	(CMJ)	provides	sensitive	and	reliable	data	for	jump	performance	
monitoring	in	elite	rugby	union	settings,	with	a	change	in	jump	height	of	≥	1.7%	noted	as	
meaningful.		Additional	findings	from	this	thesis	support	the	use	of	a	single	CMJ	(measuring	
jump	height)	using	an	OptoJump,	as	a	reliable	measure	(CV	<	10%)	for	assessing	post-match	
levels	of	jump	performance	when	a	force	plate	is	not	readily	available.		The	analysis	of	nine	
positional	groups	within	this	thesis	added	to	the	current	knowledge	base	of	match	demands	
research,	with	differences	identified	both	between	backs	and	forwards	and	also	within	these	
two	positional	groups.		When	assessing	time-course	of	recovery	post-match	play,	CMJ	
performance	was	reduced	at	60	hours	post-match,	90	hours	post-match	and	170	hours	(seven	
days),	yet	well-being	score	was	reduced	to	a	greater	extent	(-9%)	and	for	a	longer	time-course	
than	CMJ	(-6%).		Unlike	hypothesised,	it	is	recommend	that	practitioners	be	advised	to	consider	
backs	as	having	a	longer	time-course	of	recovery,	compared	to	forwards,	with	the	decrement	in	
performance	for	up	to	7	days	post-match	within	both	positional	groups	having	implications	for	
training	prescription	between	matches.		Lastly,	as	hypothesised,	collisions	accounted	for	a	
higher	percentage	of	the	higher	magnitude	impacts	than	other	match	demands	such	as	
accelerations,	decelerations	and	changes	of	direction.		The	differences	in	activities	which	
account	for	the	impact	classification	is	an	important	consideration	for	future	global	positioning	
systems	(GPS)	application	in	elite	rugby	union	settings	when	assessing	likely	fatigue	created	by	
match	play,	with	the	use	of	both	video	analysis	alongside	GPS	data	recommended.	 	



1 Introduction	

1.1 Match	demands	in	rugby	union	

Rugby	union	like	with	many	other	team	sports	is	a	sport	of	intermittent	activities	of	both	high	
intensity	and	low	intensity	periods,	with	many	gait	changes	performed	during	game	phases	
(Austin,	Gabbett,	&	Jenkins,	2011a;	Quarrie,	Hopkins,	Anthony,	&	Gill,	2013).		The	ability	to	
identify	and	understand	the	specific	demands	placed	upon	sports	performers	during	match-play	
and	training	situations	has	long	since	been	recognised	as	a	crucial	factor	in	developing	
appropriate	training	and	recovery	programmes	which	may	elicit	improved	performance	
(Coughlan,	Green,	Pook,	Toolan,	&	O'Connor,	2011;	Quarrie	et	al.,	2013;	Roberts,	Trewartha,	
Higgitt,	El-Abd,	&	Stokes,	2008).		Important	aspects	for	successful	performance	within	rugby	
union	match	play	include	strength,	power,	speed	and	both	aerobic	and	anaerobic	capacity	
(Argus,	Gill,	Keogh,	Hopkins,	&	Beaven,	2010;	Cunniffe,	Proctor,	Baker,	&	Davies,	2009),	with	
increases	in	size	and	strength	amongst	players	noted	to	correlate	with	on	field	performance	
(Argus	et	al.,	2010).	

Increased	commercial	interest	in	rugby	union	since	it	became	professional	in	1995	has	led	to	
players	receiving	better	analysis	and	management	of	training	to	optimise	performance	in	
matches,	resulting	in	the	game	reported	to	becoming	faster,	containing	more	phases	and	
involving	bigger,	faster	and	more	physical	players	(Lombard,	Durandt,	Masimla,	Green,	&	
Lambert,	2015;	Quarrie	et	al.,	2013).		A	typical	professional	rugby	season	in	the	northern	
hemisphere	contains	over	30	games	(Quarrie	et	al.,	2016),	and	involves	blunt	force	trauma	and	
high	running	volumes	in	training	and	matches.		Recent	investigations	into	the	training	and	
match	load	that	players	encounter	was	noted	as	a	concern	(Quarrie	et	al.,	2016),	with	the	
management	of	load	recognised	as	an	important	element	in	enabling	professional	players	to	
perform	regularly	in	an	optimal	state.		Distances	covered	in	games	have	been	reported	to	vary	
from	5000-7000	m	across	positional	groups	(Cahill,	Lamb,	Worsfold,	Headey,	&	Murray,	2013;	
Roberts	et	al.,	2008),	with	backs	generally	completing	more	distance	than	forwards	and	
international	players	covering	a	greater	distance	than	club	professionals	over	the	same	game	
duration.		The	distance	covered	within	match	situations	consist	of	a	range	of	sprints,	changes	of	
direction,	jumps	and	contacts	(with	both	opposition	players	and	the	playing	surface),	therefore	
creating	fatigue	and	muscle	damage.	

1.2 Restoration	of	performance	post	rugby	match	play	

The	intense	exercise	associated	with	rugby	union	match	play	has	been	shown	to	cause	
temporal	impairments	in	immune	function	with	disturbances	in	immunity	lasting	up	to	38	
hours	post-recovery	(Cunniffe	et	al.,	2010).		Time	periods	for	a	reduction	in	performance	
post-rugby	match	have	also	been	reported	by	West	et	al.	(2014)	who	noted	CMJ	[peak	power	
output	(PPO)]	decreased	below	baseline	at	12	hours	(baseline	6100	±	565	W	vs.	12	h	5680	±	
589	W;	p	=	0.004)	and	36	hours	(5761	±	639	W;	p	<	0.001),	but	had	recovered	at	60	hours	
(5950	±	505	W;	p	=	0.151).		The	volume	and	intensity	of	work,	including	associated	trauma	
from	contact	situations	completed	in	a	rugby	union	match	play	can	result	in	illness	and	injury	
potential	and	increased	exercise	recovery	time,	meaning	post-competition	recovery	periods	
are	an	integral	component	in	the	management	of	the	players	(Cunniffe	et	al.,	2010).		The	need	
to	restore	performance	as	soon	as	possible	is	of	importance	within	elite	rugby	union	where	
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games	are	weekly	and	often	the	number	of	days	between	games	is	as	low	as	five	within	many	
professional	rugby	competitions.		Players	therefore	need	to	restore	performance	to	enable	
completion	of	meaningful	training	between	games,	which	will	increase	the	chance	of	optimal	
performance,	and	success	in	subsequent	games	despite	the	associated	fatigue	and	trauma	
created	by	prior	match	demands. 

1.3 The	effect	of	rugby	match	play	upon	recovery	

A	competitive	game	of	rugby	union	lasts	for	approximately	90	minutes	and	involves	high	
intensity	activities	including	moments	of	blunt	force	impact	and	sprinting	(Austin	et	al.,	2011a).		
Data	from	a	recent	study	in	the	English	Premiership	rugby	union	league,	reported	match	
distances	averaged	across	a	season	as	being	5850	±	1101	m	for	forwards	and	6545	±	1055	m	for	
backs	per	game	(Cahill	et	al.,	2013),	with	high	intensity	bouts	and	high	impact	forces	being	a	
major	source	of	cumulative	fatigue	throughout	a	game.		Cunniffe	et	al.	(2009)	revealed	that	the	
average	number	of	impacts	was	over	1000	per	game.		Correlations	between	the	total	number	of	
impacts	experienced	within	elite	rugby	league	match	play	and	compromised	neuromuscular	
function	assessed	via	jump	performance	in	the	48	hours	post-match	have	been	reported	
(McLellan	&	Lovell,	2012).		Takarada	(2003)	concluded	that	direct	impacts	of	tackles	on	the	
body	were	the	major	cause	of	muscle	damage,	but	that	repeated	intermittent	sprinting	was	also	
a	major	contributor.		Both	the	trauma	caused	from	contact	and	eccentric	actions	(often	
experienced	during	deceleration	phases	of	a	change	of	direction	movement)	reduces	the	
capacity	of	the	damaged	muscle	to	generate	force.		McLellan	and	Lovell	(2012)	researched	
fatigue	in	rugby	league	and	reported	that	homeostasis	only	returned	48	hours	post-match	and	
that	blunt	force	trauma	and	energy	system	depletion	should	be	further	investigated	to	optimise	
subsequent	performance.		Within	the	research	by	McLellan	and	Lovell	(2012)	it	is	important	to	
note	that	the	assessment	of	homeostasis	concerned	rate	of	force	development	(RFD)	during	
jumping	tasks	and	that	biochemical	markers	of	homeostasis	took	longer	to	recover	(120	hours).		
In	another	rugby	league	study	examining	changes	in	neuromuscular	fatigue,	perceptual	and	
hormonal	measures	post-match	play	(McLean,	Coutts,	Kelly,	McGuigan,	&	Cormack,	2010)	CMJ	
(flight	time	and	relative	power),	perception	of	fatigue	and	overall	well-being	were	also	
significantly	reduced	for	up	to	48	hours	post-match.	

Neuromuscular	fatigue	(NMF)	is	a	recently	examined	area	of	recovery	and	fatigue	assessment	in	
rugby	union	research	(Marrier	et	al.,	2016;	West	et	al.,	2014).		NMF	is	considered	a	complex	
area	of	performance,	involving	both	acute	and	chronic	aspects,	some	of	which	relate	to	aspects	
of	muscle	damage	and	some	which	relate	to	energy	systems.		Despite	NMF	being	multifaceted	
and	complex	in	nature,	this	research	will	focus	upon	chronic	fatigue	that	is	experienced	post-
match	and	not	acute	fatigue	that	is	more	commonly	experienced	during	rugby	union	games,	but	
dissipates	with	a	period	of	rest	in	between	match	involvements.		Many	of	the	other	factors	
involved	within	fatigue	research	are	examined	in	more	detail	within	Chapter	2.		It	is	important	
for	practitioners	to	acknowledge	that	each	fatigue	factor	detailed	below	may	require	a	different	
approach	to	optimise	recovery.		A	greater	understanding	of	player	global	fatigue,	player	well-
being	and	the	relationship	with	readiness	to	train	after	match	play	is	key	for	improved	recovery	
and	effective	management	of	subsequent	training	weeks.		The	importance	of	such	research	is	
further	emphasised	when	considering	that	a	link	exists	between	subsequent	performance	and	
injury	risk	as	a	result	of	sub-optimal	recovery	post-match	in	rugby	league	(Murray,	Gabbett,	&	
Chamari,	2014).		The	assessment	of	recovery	and	restoration	of	performance	in	the	days	post-
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match	via	monitoring	tools	outlined	below	should	enable	coaches	in	elite	rugby	to	make	
informed	decisions	upon	timing,	frequency	and	intensity	of	training	in	the	days	post-match	and	
is	likely	to	result	in	optimal	recovery,	reduced	injury	risk	and	improved	chance	of	successful	
subsequent	match	performances.	

The	aim	of	this	thesis	was	to	better	understand	time-course	of	recovery	post	rugby	union	match	
play,	while	also	identifying	monitoring	tools	that	can	enable	practitioners	to	make	informed	
decisions	upon	future	training	prescription	in	the	days	post-match.			Another	major	objective	of	
this	research	was	to	determine	if	this	time-course	differs	across	positional	groups.		This	thesis	
will	add	to	the	knowledge	of	performance	measures	that	can	detect	meaningful	change	in	NMF	
as	a	result	of	specific	match	characteristics	in	rugby	union.		Elite	rugby	union	players	were	
assessed	via	examination	of	both	game	data	taken	from	global	positioning	systems	(GPS)	and	
video	footage	assessing	movement	requirements	and	the	match	load	involvement	for	nine	
positional	groups.		This	innovative	methodology	provides	the	sequences	of	individual	position-
specific	movement	patterns	and	the	resultant	affect	this	may	have	upon	fatigue	levels,	therefore	
further	enabling	more	informed	decisions	to	be	made	in	the	days	post-match	play	across	
multiple	positional	groups.	
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2 Literature	Review	

The	subsequent	literature	review	covers	a	broad	overview	of	match	demands	in	rugby	union	
and	assesses	the	physiological	attributes	elite	players	require	for	optimal	performance,	while	
considering	the	specific	training	methods	commonly	utilised	for	preparing	rugby	players	for	
match	play.		Research	reviewed	upon	match	demands	and	physiological	cost	of	game	play	will	
provide	a	background	against	which	to	compare	subsequent	time-course	of	recovery	
investigations,	with	specific	training	methods	examined	due	to	their	likely	influence	upon	time-
course	of	recovery.		Performance	tests,	fatigue	science	specifically	and	methods	of	assessing	
fatigue	were	reviewed	to	develop	an	understanding	of	measuring	restoration	of	performance	
post	rugby	union	match	play,	and	better	guide	future	investigations	assessing	time-course	of	
recovery.		Lastly,	commonly	used	strategies	for	enhancing	restoration	of	performance	post-
exercise	are	reviewed	to	provide	clarity	upon	the	influence	of	modern	sports	science	practices	
upon	time-course	of	recovery	and	the	importance	of	these	methods	within	elite	rugby	settings.	 	
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2.1 Demands	of	rugby	union	

Professional	rugby	union	players	require	well-developed	aerobic	and	anaerobic	fitness	for	
competition	(Cunniffe	et	al.,	2009).		Rugby	union	is	played	in	two	40	minute	halves	(Green,	
Blake,	&	Caulfield,	2011)	with	the	ball	on	average	in	play	for	30	minutes;	injury	time,	
conversions,	penalty	shots	or	the	ball	being	out	of	play	makes	up	the	remainder	of	the	match	
time	(Green	et	al.,	2011).		Each	team	consists	of	eight	forwards	and	seven	backs	(Duthie,	Pyne,	
Marsh,	&	Hooper,	2006),	each	having	a	designated	position	and	role,	requiring	different	force-
generating	and	neuromuscular	abilities	(Table	2.1).		All	players	to	a	degree	are	involved	in	ball	
carrying,	whilst	also	competing	and	maintaining	possession	of	the	ball	requiring	physical	
attributes	such	as	speed,	agility,	power	and	strength	(Crewther,	Lowe,	Weatherby,	Gill,	&	Keogh,	
2009;	Green	et	al.,	2011).	

Table	2.1:	Player	positions	and	roles	within	the	game	adapted	from	Duthie	et	al.	(2003)	

Positional	
Group	

Player	position	 Physical	attributes	 Reasoning	

	 Fo
rw
ar
ds
	(1
-8
)	

Front	row	(1-3)	 Strength	and	power.	 Gain	ball	possession,	
close	opposition	contact,	
limited	ball	running.		

Second	row	(4-5)	 Tall,	large	body	mass	and	power.	 Jump	height	during	
lineouts,	close	
opposition	contact.			

Loose	forwards	(6-8)	 Strength	power,	speed	and	
endurance.	

Gain	and	retain	
possession.		

	 Ba
ck
s	
(9
-1
5)
	

Half	backs	(9-10)	 Speed,	endurance.	 Control	ball	possession	
and	evade	opposition.	

Midfield	backs	(12-13)	 Strength	speed	and	power.		 High	contact	incidence	
with	opposition.	

Outside	backs	(11,14-15)	 Speed		 Evade	opposition,	large	
amounts	of	chasing,	
defensive	and	support	
work.		

	

Roberts	et	al.	(2008)	found	players	to	cover	distances	of	5408-6190	m	on	average	depending	
upon	their	positional	role,	with	backs	generally	covering	the	greater	distances	(consisting	of	
multiple	high	intensity	activities	including	sprinting,	jumping	and	change	of	direction	at	various	
velocities).		These	demands	(distance,	accelerations	and	change	of	direction)	mean	that	players	
need	to	exhibit	good	lower	limb	control	during	high	velocity	movements	in	order	to	perform	
effectively	and	minimise	the	risk	of	injury.		Forwards	perform	high-intensity	static	exertion	for	
longer	periods	than	backs,	spending	eight	minutes	in	intense	scrummaging	(each	lasting	5-20	s)	
and	five	minutes	in	rucks	and	mauls;	contributing	to	15%	of	total	game	time;	compared	to	four	
minutes	of	high-intensity	static	exertion	by	the	backs	(Docherty,	Wenger,	&	Neary,	1988;	
Duthie,	Pyne,	&	Hooper,	2003a;	Roberts	et	al.,	2008).		Recent	research	by	Schoeman,	Coetzee,	
and	Schall	(2015)	assessing	differences	between	playing	position	and	collision	rates	within	
professional	rugby	union,	noted	significant	differences	between	forwards	and	backs	regarding	
collision	rates	(p	≤	0.05)	therefore	emphasising	the	varying	demands	of	rugby	union	match	play.		
Similarly,	using	a	rolling	average	approach	Delaney	et	al.	(2016)	noted	small	to	moderate	
increases	in	relative	distance	and	average	accelerations	between	half	backs	and	loose	forwards	
compared	to	tight	five	forwards	in	international	rugby	union	match	play	(ES	=	0.27-1.00).	

During	the	course	of	a	game,	players	are	required	to	use	a	range	of	energy	systems,	combining	
low-intensity	activity	with	bouts	of	various	anaerobic	high-intensity	movements	and	power-
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based	tasks	in	offensive	and	defensive	phases	of	play.		Rugby	union	is	intermittent	in	nature	
containing	highly	explosive	sprints	and	high	intensity	running	with	periods	of	inactivity,	thus	
recognising	the	importance	for	all	players	to	obtain	good	acceleration	and	lower-limb	explosive	
power.		Mean	sprint	distances	during	games	were	reported	by	Duthie	et	al.	(2006)	to	range	
between	11-20	m.		Studies	using	time-motion	analysis	found	sprinting	(>	6.7	m.s-1)	occurred	on	
average	16	±	15	and	23	±	19	times	for	forwards	and	backs	respectively,	lasting	on	average	1.2	±	
0.2	s	(Roberts	et	al.,	2008),	with	sprinting	being	found	to	contribute	10-15%	of	total	“ball	in	
play”	game	time	(Austin	et	al.,	2011a).		High	intensity	runs	are	performed	41	±	16	and	59	±	28	
times	for	forwards	and	backs	respectively	lasting	on	average	1.3-1.5	s	(Roberts	et	al.,	2008).		
Coughlan	et	al.	(2011)	reported	that	players	completed	75%	of	their	match	activities	at	low	
intensity,	with	backs	entering	high	intensity	zones	more	frequently,	while	the	forward	was	
exposed	to	a	higher	number	of	impacts	and	total	body	load	measured	via	an	accelerometer.		
Tables	2.2,	2.3	and	2.4	summarise	research	that	illustrate	the	match	demands	of	distance,	
intensity	and	sprinting	variables	in	rugby	union,	with	the	limitations	of	each	study	recognised.	

Table	2.2:	Research	showing	limitations	of	match	distance	data	in	rugby	union	

Metric	 Reported	data	 Limitations	of	research	and	additional	
information	

Distances	 • (Roberts	et	al.,	2008)	5408-6190	m	on	average		
• (Cahill	et	al.,	2013)	5850	±	1101	m	for	forwards	and	6545	±	
1055	m	for	backs	per	game	

• (Coughlan	et	al.,	2011)	average	distance	of	6715	m	
• (Quarrie	et	al.,	2013)	mean	distance	covered	per	match	
ranged	from	5400	to	6300	m	

• (Cunniffe	et	al.,	2009)	6953	m	during	play	
• (Jones,	West,	Crewther,	Cook,	&	Kilduff,	2015)	significant	
differences	between	positional	groups	for	total	absolute	
difference	covered	(p	<	0.05)	(Tight	forwards	4757	±	885	m;	
Loose	forwards	5244	±	866	m;	Half	backs	5693	±	823	m;	
Inside	backs	5907	±	709	m;	Outside	backs	6272	m	±	1065)	

• (Reid,	Cowman,	Green,	&	Coughlan,	2013)		6369	m	for	
forwards	and	6842	m	for	backs	per	game	

• Data	taken	from	players	playing	80	
minutes	only	

• Distances	covered	dependent	upon	
positional	role	

• Roberts	et	al.	(2008)	data	captured	
by	five	distributed	video	cameras	

• Cahill	et	al.	(2013)	data	taken	across	
a	season	with	backs	travelling	
greater	(p	<	0.05)	absolute	and	
relative	distances	than	the	forwards	

• Coughlan	et	al.	(2011)	GPS	sampling	
frequency	of	5	Hz		

• Cahill	et	al.	(2013)	GPS	sampling	
frequency	of	5	Hz	

• Cunniffe	et	al.	(2009)	GPS	sampling	
frequency	of	1	Hz	
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Table	2.3:	Research	showing	limitations	of	match	intensity	data	in	rugby	union	

Metric	 Reported	data	 Limitations	of	research	and	
additional	information	

Intensity	 • (Coughlan	et	al.,	2011)	players	completed	75%	of	their	match	
activities	at	low	intensity,	with	backs	entering	high	intensity	zones	
more	frequently,	while	the	forward	was	exposed	to	higher	number	of	
impact	and	total	body	load	

• (Quarrie	et	al.,	2013)	distance	at	speeds	>6	m.s-1	(252	m	for	forwards	
and	450	m	for	backs)	

• (Roberts	et	al.,	2008)	high	intensity	runs	are	performed	41	±	16	and	
59	±	28	times	for	forwards	and	backs	respectively	lasting	on	average	
1.3-1.5	s	

• (Cunniffe	et	al.,	2009)	forward	entered	the	lower	speed	zone	(6-12	
km/h	on	a	greater	number	of	occasions	than	the	back	(315	vs.	229)	
but	spent	less	time	standing	and	walking	(66.5	vs.	77.8%)	

• (Jones	et	al.,	2015)	significant	differences	between	absolute	distances	
covered	walking,	striding,	high-	intensity	running,	low-speed	running	
and	high-speed	running	(p	<	0.05)	(Tight	forwards	0.8	±	0.6;	Loose	
forwards	1.9	±	1.2;	Half	backs	2.7	±	1.3;	Inside	backs	4.2	±	1.7;	Outside	
backs	4.3	±	1.6)	

• (Reid	et	al.,	2013)	that	the	loose	head	prop	recorded	the	highest	
number	of	entries	in	both	standing	and	non-purposeful	movement	
(1040	m)	and	walking	zones	(1737	m),	with	the	centre	(732	m)	and	
fullback	(1230	m)	the	lowest	values	in	this	range	(0-1.7	m.s)	

• Data	taken	from	players	
playing	80	minutes	only	

• Coughlan	et	al.	(2011)	data	
collected	during	an	
international	Rugby	Union	
game,	yet	involved	only	
two	players	(one	back	and	
one	forward)	

• Coughlan	et	al.	(2011)	
noted	differences	in	total	
impacts	(838	forwards;	
backs	573)	

• Quarrie	et	al.	(2013)	Data	
taken	763	players	from	
video	recordings	of	90	
international	matches,	with	
distance	covered	by	
players	at	speeds	(in	
excess	of	>5	m.s)	reported	
to	be	higher	during	
international	matches	than	
when	competing	at	lower	
levels	of	the	professional	
game	

 

Table	2.4:	Research	showing	match	sprinting	data	in	rugby	union	

Metric	 Reported	data	 Limitations	of	research	and	
additional	information	

Sprinting	 • (Duthie	et	al.,	2006)	mean	sprint	distances	ranging	between	11-20	m	
during	games	

• (Roberts	et	al.,	2008)	sprinting	occurred	on	average	16	±	15	and	23	±	
19	times	for	forwards	and	backs	respectively,	lasting	on	average	1.2	±	
0.2	s	

• (Austin	et	al.,	2011a)	sprinting	being	found	to	contribute	10-15%	of	
total	“ball	in	play”	game	time	

• (Cahill	et	al.,	2013)	sprinting	(Backs	50	±	76	m)	(Forwards	37	±	64	m)	
• (Cunniffe	et	al.,	2009)	backs	performed	a	greater	number	of	sprints	
(>20	km/h)	than	the	forwards	(34	vs.	19)	

• (Jones	et	al.,	2015)	inside	and	outside	backs	performed	a	significantly	
greater	number	of	sprints	(20,	SD	=	7	and	20,	SD	=	6)	compared	to	
loose	forwards	(10,	SD	=	6)	and	half	backs	(12,	SD	=	5;	p	<	0.05),	while	
tight	forwards	completed	the	least	number	of	sprints	compared	to	all	
other	positional	groups	(4,	SD	=	3;	p	<	0.05)	

• Data	taken	from	players	
playing	80	minutes	only	

• Back	row	forwards	
covered	the	greatest	
distances	at	sprinting	
(95%	Vmax)	speeds,	
particularly	the	number	8	
position	(77	m)	

 

Despite	forwards	completing	the	majority	of	their	activities	at	a	low	speed	intensity,	heart	rate	
is	still	within	high	intensity	ranges,	as	during	periods	of	low	speed	intensity	forwards	could	be	
recovering	from	high	intensity	bouts	of	activity,	or	involved	in	static	movements	such	as	rucks	
and	mauls,	that	despite	being	conducted	at	low	speeds	are	known	to	involve	high	exertion	
(Duthie	et	al.,	2003a;	Roberts	et	al.,	2008).		Backs,	in	contrast,	were	reported	by	Quarrie	et	al.	
(2013)	to	move	greater	distances	at	speeds	>	6	m.s-1	compared	to	forwards.		This	greater	
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distance	at	speeds	>	6	m.s-1	(252	m	for	forwards	and	450	m	for	backs)	was	due	to	backs	
covering	a	greater	average	sprint	distance	than	forwards	when	conducting	their	movement	
demands	during	games.		Recent	development	in	GPS	technology	has	attempted	to	account	for	
these	static	exertions,	with	dynamic	stress	load	(DSL)	being	one	such	metric	that	has	been	
utilised	recently	(StatSports,	Northern	Ireland),	with	claims	that	DSL	can	account	for	the	aspects	
of	fatigue	that	are	not	measured	via	the	accelerometer.		DSL	is,	however,	unproven	in	its	
reliability	and	applicability	to	rugby	union	settings.		In	addition,	recent	research	assessing	
metabolic	power	as	a	measure	of	external	load	(Highton,	Mullen,	Norris,	Oxendale,	&	Twist,	
2016)	has	illustrated	that	this	metric	underestimates	the	energy	expenditure	during	
intermittent	collision	based	sports	and	therefore	should	be	used	with	caution.		Due	to	the	
complexity	of	assessing	static	exertions	and	the	resultant	effect	they	have	upon	fatigue,	this	
research	will	only	assess	the	dynamic	involvements	of	match	play	and	impacts	classified	from	
GPS.		Incorporation	of	indices	developed	by	software	companies,	such	as	the	DSL	associated	
with	StatSports,	has	not	been	included	within	past	research.		Instead	the	relationship	between	
dynamic	movements	and	restoration	and	recovery	rates	post-match	play	were	assessed.	

Due	to	the	difference	in	movement	patterns	and	activities	undertaken	by	positional	groups,	the	
exertion	and	effect	upon	heart	rates	during	rugby	union	match	play	is	expected	to	differ,	yet	few	
studies	have	been	published	in	this	area	(as	is	noted	within	Table	2.5).		This	difference	in	
cardiovascular	response	to	match	play	between	positional	groups	needs	further	investigation.	
However,	it	has	been	reported	that	high	demands	are	placed	on	a	player’s	cardiovascular	
capacity	and	is	reflected	in	heart	rates	averaging	172	beats	per	minute	(bpm)	which	equates	to	
80	to	85%	VO2max	during	the	course	of	a	match	(Cunniffe	et	al.,	2009).		Deutsch,	Maw,	Jenkins,	
and	Reaburn	(1998)	collected	heart	rates	during	competition	and	concluded	that	forwards	
experienced	a	higher	mean	level	of	exertion	than	backs,	with	forwards	spending	72%	within	
high	exertion	HR	zone.		Backs	in	contrast	were	reported	to	spend	the	majority	(37%)	of	their	
match	exertion	in	a	moderate	HR	zone.	

Table	2.5:	Research	showing	limitations	of	match	heart	rate	data	in	rugby	union	

Metric	 Reported	data	 Limitations	of	research	and	
additional	information	

Heart	rate	exertion	 • Cunniffe	et	al.	(2009)	reported	that	heart	rates	
averaging	172	beats	per	minute	(bpm)	and	players	
exerting	80	to	85%	VO2max	during	the	course	of	a	game	

• Cunniffe	et	al.	(2009)	
only	involved	two	
players	(one	forward	
and	one	back)	using	a	1	
Hz	GPS	unit	

	 • Deutsch	et	al.	(1998)	reported	that	forwards	spending	
72%	within	high	exertion	HR	zone,	with	backs	in	
contrast	reported	to	spend	the	majority	(37%)	of	their	
match	exertion	in	a	moderate	HR	zone	

• Deutsch	et	al.	(1998)	
data	taken	from	elite	
under	19	players	upon	
twenty	four	players	
across	six	games	

	

The	difference	in	match	demands	within	positional	groups	appears	to	be	vast,	with	the	nature	of	
repeated	high	intensity	effort	(RHIE)	efforts	being	specific	to	position	and	the	resultant	effect	
this	has	upon	time-course	of	recovery	post-match	also	differing	(Cahill	et	al.,	2013;	Quarrie	et	
al.,	2013;	Smart,	Hopkins,	Quarrie,	&	Gill,	2014).		When	considering	the	differing	movement	
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patterns	and	load	experienced	by	elite	rugby	union	players,	it	is	interesting	to	note	that	Quarrie	
et	al.	(2013)	recommend	that	practitioners	provide	forwards	with	more	time	to	recover	post-
match	than	backs,	given	the	greater	contact	loads	they	sustain	and	subsequent	longer	
restoration	of	performance	time	periods.		In	recent	research	by	Murray	et	al.	(2014)	
investigating	the	effect	of	different	between-match	recovery	times	on	the	activity	profiles	and	
injury	rates	of	national	rugby	league	players,	position-specific	recovery	strategies	were	
recommended.		However,	in	consideration	that	the	research	by	Murray	et	al.	(2014)	is	based	on	
rugby	league	and	much	of	the	RHIE	research	also	being	from	rugby	league	(Austin,	Gabbett,	&	
Jenkins,	2011b;	Johnston	&	Gabbett,	2011),	rugby	union	specific	data	needs	examined.	

Despite	previous	research	in	elite	rugby	union,	presenting	data	upon	player	match	demands,	
prior	research	has	not	included	match	characteristics	for	players	that	have	played	less	than	the	
entire	game	(<	80	minutes).		Future	data	collection	assessing	match	demands	needs	to	focus	
upon	all	participants	within	the	match	to	ascertain	a	greater	understanding	of	the	required	
demands,	regardless	of	whether	they	played	the	entire	game	or	not.		It	is	unrealistic	to	view	a	
player	that	has	played	for	40	minutes	as	likely	to	complete	half	the	match	demands	of	a	player	
that	has	played	for	80	minutes.		Instead,	as	is	commonly	accepted	within	modern	ruby	union,	
players	are	asked	to	play	for	less	than	80	minutes	and	are	substituted	with	a	player	of	the	same	
position,	which	increases	the	match	demands	expected	as	players	know	they	are	not	being	
asked	to	perform	for	the	duration	of	the	match	(Quarrie	&	Hopkins,	2007).		This	suggests	that	
match	demand	assessment	should	follow	this	format.		Another	area	of	focus	for	this	research	is	
the	use	of	10	Hz	GPS	units	within	match	characteristics	data,	as	previous	research	has	collected	
data	at	different	sampling	frequencies	(Cahill	et	al.,	2013;	Coughlan	et	al.,	2011;	Cunniffe	et	al.,	
2009).		When	considering	that	recent	research	by	Rampinini	et	al.	(2015)	shows	the	improved	
accuracy	of	10	Hz	GPS	in	assessing	distance	covered	and	high	speed	running	metrics,	it	is	
further	emphasised	that	the	use	of	enhanced	sampling	frequencies	is	a	future	area	of	focus	
within	match	characteristics	knowledge.		Match	characteristics	data	that	encompasses	10	Hz	
GPS	analysis	is	needed	across	a	variety	of	playing	time	durations	in	northern	hemisphere	rugby	
union.		This	use	of	a	higher	sampling	frequency	along	with	an	analytical	approach	that	aims	to	
develop	a	greater	understanding	of	positional	match	demands	within	elite	rugby	union	will	
likely	identify	differences	between	both	forwards	and	backs	and	the	smaller	positional	groups	
outlined	in	Table	2.1.	

2.1.1 Physical	characteristics	and	performance	capabilities	of	a	rugby	union	player	
Physical	characteristics	and	performance	values	for	professional	rugby	players	are	not	well	
documented,	perhaps	due	to	the	sensitive	nature	of	the	data	and	the	competition	for	marginal	
gains	that	exist	between	professional	teams.		The	following	sections	detail	the	difference	in	
physical	characteristics	and	performance	capabilities	between	playing	levels,	while	also	
providing	data	upon	which	elements	distinguish	an	elite	level	rugby	union	player	from	a	non-	
elite	level	player.	

2.1.1.1 Playing	levels	and	physical	characteristics	
Physical	capabilities	of	elite	rugby	players	differ	from	amateur	players	with	the	differences	in	
strength	and	power	between	playing	levels	being	likely	due	to	maturation,	training	age	and	
body	mass	(Argus,	Gill,	&	Keogh,	2012).		Both	lower	body	(5-15%)	and	upper	body	(3-5%)	
maximal	strength	increases	were	reported	between	2004	and	2007	in	elite	rugby	players,	with	
these	increases	in	size	and	strength	noted	to	correlate	with	on-field	performance	(Argus	et	al.,	
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2010).		Significant	differences	were	also	noted	between	anthropometric	and	physical	
performance	across	playing	levels,	with	players	at	higher	levels	generally	being	taller	and	
heavier	and	capable	of	improved	performance	based	on	physical	performance	tests	(Argus,	Gill,	
&	Keogh,	2012).		Research	by	Lombard	et	al.	(2015)	supports	the	view	that	under	20	players	are	
smaller	than	senior	players	and	that	age	grade	players	present	lower	strength	and	sprint	values,	
despite	having	developed	physically	over	time	as	represented	in	Tables	2.6	and	2.8.		Physical	
performance	tests	commonly	utilised	in	rugby	union	are	examined	in	more	detail	in	Chapter	2.3,	
with	the	effect	of	fatigue	on	performance	measures	also	critiqued	in	Chapter	2.3.	

2.1.1.2 Positional	physical	characteristics	of	an	elite	level	rugby	union	player	
Some	of	the	first	data	published	upon	physical	characteristics	of	rugby	union	players	in	the	
professional	era	were	presented	by	Quarrie	et	al.	(1995)	who	noted	significant	differences	
between	forwards	and	backs	on	anthropometric	and	physical	performance	variables.		Further	
research	by	Quarrie,	Handcock,	Toomey,	and	Waller	(1996)	showed	significant	positional	
differences	between	positional	groups,	with	front	row	forwards	typically	being	endo-
mesomorphic	somatotypes,	while	locks	and	loose	forwards	were	taller	than	the	front	row	
forwards.		It	is	therefore	evident	that	the	physical	characteristics	of	elite	level	rugby	union	
players	are	position-specific	and	ever	evolving	as	the	game	becomes	more	professional.		More	
recently,	Wood,	Coughlan,	and	Delahunt	(2016)	presented	data	from	Irish	professional	rugby	
union	players,	showing	that	forwards	(1.85	±	0.06	m	and	96.88	±	9.00	kg)	were	significantly	(p	
<	0.05)	taller	and	heavier	than	backs	(1.79	±	0.05	m	and	81.97	±	7.09	kg).		The	research	by	
Wood	et	al.	(2016)	did,	however,	show	that	forwards	displayed	significantly	lower	(p	<	0.05)	
physical	performance	for	a	number	of	tests	in	comparison	to	backs	(CMJ,	Forwards	38.37	±	4.00	
cm,	Backs	41.31	±	4.44	cm;	10	m	sprint	time	Forwards	1.85	±	0.07	s,	Backs	1.77	±	0.06	s;	150	m	
shuttle	test,	Forwards	675.90	±	82.46	m,	Backs	711.71	±	27.46	m)	(Tables	2.6	–	2.11).	

Physical	performance	(speed,	power	and	aerobic	ability)	differs	between	forwards	and	backs,	
yet	fewer	positional	differences	were	noted	between	the	smaller	positional	groups	such	as	
props	and	loose	forwards	amongst	the	forwards	and	halfbacks	and	outside	backs	amongst	the	
backs.		Much	of	the	physical	performance	data	noted	by	Quarrie,	Handcock,	et	al.	(1996)	is	
detailed	in	Chapter	2.1.1,	yet	the	sub-elite	level	of	the	players	within	this	research	makes	its	
worth	limited.		Duthie	et	al.	(2003a)	reported	forwards	to	have	superior	absolute	aerobic	and	
anaerobic	power	and	muscular	strength,	however,	when	considering	body	mass,	results	favour	
backs.		More	recent	research	by	Bell,	Evans,	Cobner,	and	Eston	(2005)	noted	that	rugby	union	
backs	(84.5%)	had	a	significantly	lower	lean	tissue	mass	than	forwards	(75.8%),	and	that	
forwards	(20.6%)	had	a	greater	fat	mass	than	backs	(11.1%).		Game	related	fatigue	has	also	
been	noted	to	differ	between	forwards	and	backs	in	professional	rugby,	with	Tee,	Lambert,	and	
Coopoo	(2016)	noting	that	forwards	experienced	progressively	greater	performance	
decrements	during	match	play	than	backs,	who	were	found	to	maintain	performance	intensity,	
despite	the	match	demands	encountered.	

Positional	trends	were	noted	within	a	ballistic	bench	throw	in	semi-professional	rugby	union	
players	(McMaster,	2015),	with	forwards	producing	a	greater	maximal	peak	power	(PP)	during	
a	counter	movement	bench	throw	(785	±	129	W)	as	well	as	concentric	only	bench	throw	(736	±	
194	W),	compared	to	backs	(718	±	105	W;	683	±	92	W)	respectively.		Additional	support	for	
differences	in	maximal	strength	has	been	noted	by	McMaster	(2015),	with	forwards	generally	
demonstrating	greater	strength	level	than	backs	(Table	2.6).		Backs	are	significantly	lighter	than	
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forwards	(Duthie	et	al.,	2003a)	due	to	their	requirement	for	increased	mobility	around	the	field	
and	reduced	involvement	in	scrums	and	rucks.		This	reduction	in	the	number	of	contact	
situations	has	led	to	backs	requiring	lower	maximal	strength	levels.		This	is	illustrated	in	Table	
2.6,	showing	reduced	one	repetition	maximum	(1RM)	performances	in	all	tested	measures	
(Smart,	Hopkins,	&	Gill,	2013)	compared	to	forwards.		Smart	et	al.	(2013)	noted	that	loose	
forwards	are	the	lightest	of	the	forward	group	with	a	mean	body	mass	of	101.6	±	7.9kg.		This	
reduction	in	body	mass	could	be	the	reason	behind	reduced	maximal	upper	body	strength	in	
both	bench	press	and	chin	ups	compared	to	all	other	forward	positions.		As	loose	forwards	have	
a	smaller	involvement	in	scrums,	rucks	and	mauls	(Lindsay,	Draper,	Lewis,	Gieseg,	&	Gill,	2015),	
the	need	for	this	positional	bodyweight	is	therefore	emphasised.	

Findings	in	maximum	speed	research	are	different	from	the	positional	trends	in	maximal	
strength,	as	backs	are	faster	than	forwards	(Smart	et	al.,	2013)	showing	that	maximal	strength	
is	not	as	important	for	maximal	speed	as	relative	strength	is	when	bodyweight	is	taken	into	
account	(Turner,	Tobin,	&	Delahunt,	2015).		Sprint	characteristics	of	rugby	union	players	(Table	
2.8)	show	that	forwards	are	generally	slower	than	backs	and	from	a	positional	aspect	outside	
backs	are	the	fastest	and	props	are	the	slowest	over	all	distances.		This	could	be	explained	by	
decreased	body	mass	between	the	positions,	with	props	being	the	heaviest	and	backs	being	the	
lightest,	therefore	illustrating	that	despite	bodyweight	having	an	influence	upon	maximal	speed,	
relative	power	is	a	determining	factor	for	speed.		Strong	correlations	between	strength	and	
speed	have	been	noted	in	both	rugby	union	(Cunningham	et	al.,	2013)	and	rugby	league	
(Kirkpatrick	&	Comfort,	2013)	and	are	examined	in	more	detail	within	Chapter	2.1.1.2.2.	

2.1.1.2.1 Strength	and	power	of	elite	rugby	union	players	
Normative	strength	values	for	professional	players	in	the	premier	southern	hemisphere	rugby	
competition	were	noted	by	Appleby,	Newton,	and	Cormie	(2012).		When	assessing	twenty	
players	over	a	two	year	period	Appleby	et	al.	(2012)	noted	1RM	for	bench	press	ranging	from	
132.5	±	14.0	kg	to	146.8	±	11.5	kg	and	squat	1RM	ranging	from	164.6	±	31.5	kg	to	179.1	±	26.7	
kg.		Another	study	of	interest	for	practitioners	presenting	data	from	elite	rugby	union	is	that	by	
Argus,	Gill,	Keogh,	Hopkins,	and	Beaven	(2009)	where	1RM	bench	press	(141	±	22.5	kg),	1RM	
box	squat	(194	±	32.9	kg)	bench	throw	peak	power	(1150	W)	and	jump	squat	peak	power	
(5190	W)	were	reported	amongst	thirty	two	professional	rugby	union	players	from	a	Super	14	
team.		Recently	reported	research	assessing	strength	and	power	of	elite	rugby	union	players	is	
presented	in	Tables	2.6	and	2.7.	

2.1.1.2.2 Speed	capabilities	of	elite	rugby	union	players	
In	a	study	assessing	neuromuscular	performance	and	relationships	with	salivary	hormones	by	
Crewther	et	al.	(2009),	thirty-four	professional	male	rugby	players	were	assessed	for	running	
speed,	with	10	m	(Forwards	=	1.85	s	Backs	=	1.73	s)	and	20	m	(Forwards	=	3.16	s;	Backs	=	2.96	
s)	sprint	times	being	significantly	different	between	forwards	and	backs.		Similarly,	Quarrie,	
Handcock,	et	al.	(1996)	reported	30	m	sprint	values	for	forwards	ranging	from	3.9-4.1	s,	and	
backs	ranging	from	3.7-3.28	s.		Superior	sprinting	speed	in	backs	compared	to	forwards	was	
noted	within	other	research	(Duthie	et	al.,	2006),	yet	the	influence	of	the	combination	of	speed	
and	body	mass,	leading	to	greater	momentum	within	forwards	is	a	point	for	consideration.		As	
noted	by	Crewther	et	al.	(2009)	momentum	has	a	definitive	advantage	in	rugby	especially	
during	body	contact	situations.	
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Recent	research	within	professional	rugby	union	by	Cunningham	et	al.	(2013)	highlighted	the	
importance	of	relative	strength	and	power	upon	speed	components	(acceleration	and	maximum	
velocity).		Relative	power	in	rugby	union	players	is	also	a	determining	factor	in	acceleration,	
with	athletes	that	have	a	greater	power	clean,	broad	jump	and	triple	broad	jump	producing	
quicker	10	m	sprint	times.		This	increased	power	can	be	explained	by	their	ability	to	produce	
force	quickly,	therefore	reducing	foot	contact	time	with	the	ground,	as	is	required	for	maximal	
acceleration	(Barr,	Sheppard,	Agar-Newman,	&	Newton,	2014).		The	relative	peak	power	during	
a	hexagonal	barbell	jump	squat	has	also	shown	a	significant	relationship	between	CMJ	height	
and	10	m	and	20	m	sprint	times	in	professional	rugby	union	athletes	playing	in	the	Pro12	
competition	(Turner	et	al.,	2015).		Perhaps	the	most	interesting	recent	research	assessing	speed	
qualities	in	international	rugby	union	players	was	that	by	Cross,	Brughelli,	et	al.	(2015)	showing	
10	m	(Forwards	2.04	±	0.12	s;	Backs	1.95	±	0.04	s)	20	m	(Forwards	3.33	±	0.15	s;	Backs	3.19	±	
0.06	s)	and	30	m	(Backs	4.32	±	0.09	s)	times,	with	these	values	being	quicker	than	international	
rugby	league	players	within	the	same	study.	

Along	with	straight	line	speed,	rugby	is	a	team	sport	which	requires	effective	changing	of	
direction	(agility)	qualities	to	be	a	successful	rugby	union	player	(Green	et	al.,	2011).		Research	
into	change	of	direction	ability	of	rugby	union	athletes	is	well	documented	(Darrall-Jones,	Jones,	
&	Till,	2015;	Green	et	al.,	2011;	Pienaar	&	Coetzee,	2013)	with	studies	using	a	number	of	
different	tests	with	different	cutting	and	change	of	direction	tests	implemented	(Table	2.9).		
Similar	to	rugby	union,	rugby	league	players	are	required	to	have	high	levels	of	agility	(Gabbett,	
Kelly,	&	Sheppard,	2008).		Despite	the	results	being	from	rugby	league,	Gabbett	et	al.	(2008)	
found	interesting	information	for	practitioners	that	shows	that	there	is	a	small	yet	not	
significant	(p	>	0.05,	ES	=	0.28	to	0.32),	difference	in	change	of	direction	ability	between	
performance	levels	(higher	and	lower	skilled),	with	higher	skilled	players	performing	change	of	
direction	tasks	quicker	than	lower	skilled	players.		Additionally,	it	is	of	note	that	players	with	
faster	sprint	times	over	5,	10	and	20	m	were	also	shown	to	have	a	greater	change	of	direction	
ability	(Gabbett	et	al.,	2008).		Recently	reported	research	assessing	speed	of	elite	rugby	union	
players	is	presented	in	Table	2.8. 

2.1.1.2.3 Aerobic	and	anaerobic	ability	of	elite	rugby	union	players	
Maximal	oxygen	uptake	(VO2max)	has	been	proposed	as	an	indicator	of	aerobic	fitness	in	rugby	
players	(Duthie	et	al.,	2003a)	with	findings	that	the	VO2max	of	international	rugby	forwards	(51.1	
±	1.4	ml/kg/min)	(Warrington,	Ryan,	Murray,	Duffy,	&	Kirwan,	2001)	being	lower	than	players	
from	more	running-based	sports	such	as	soccer	(57.8	±	6.5	ml/kg/min)	and	field	hockey	(61.8	
±	1.8	ml/kg/min)	(Duthie	et	al.,	2003a).		VO2max	values	are	commonly	expressed	absolutely	as	
litres	per	minute	(l/min),	or	when	examined	in	a	relative	format	(where	body	mass	is	
considered)	is	compared	to	body	mass	per	minute	(ml/kg/min).		Forwards	have	been	noted	to	
have	superior	absolute	VO2max	values	compared	with	backs	(Jardine,	Wiggins,	Myburgh,	&	
Noakes,	1988),	yet	considering	that	backs	typically	carry	less	body	mass	than	forwards,	backs	
relative	VO2max	values	are	greater	than	forwards.	

VO2max	values	are	not	commonly	reported	in	elite	level	rugby	union,	perhaps	due	to	the	
cumbersome	nature	of	laboratory	testing	and	the	limited	opportunities	that	exist	to	implement	
such	testing	within	a	competitive	playing	season.		Research	by	Quarrie,	Handcock,	et	al.	(1996)	
on	aerobic	performance	in	elite	players,	has	used	VO2max	testing	via	a	multi-stage	shuttle	run.		
Quarrie,	Handcock,	et	al.	(1996)	reported	that	backs	typically	possess	greater	levels	of	
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endurance	fitness	than	forwards,	when	assessed	via	a	multi	stage	shuttle	run	to	predict	VO2max.		
From	this	research	by	Quarrie,	Handcock,	et	al.	(1996),	hookers	were	noted	as	having	the	
highest	score	(58.7	±	15.2	ml/kg/min),	followed	by	the	locks	(55.1	±	15.2	ml/kg/	min),	loose	
forwards	(55.1	±	15.2	ml/kg/min)	and	props	(50.8	±	15.2	ml/kg/min)	within	the	forwards	
group.		For	the	backs,	the	inside	backs	(62.5	±	16.9	ml/kg/min)	produced	the	highest	indication	
of	VO2max,	compared	with	the	midfield	backs	(59.8	±	16.9	ml/kg/min)	and	the	outside	backs	
(57.6	±	16.9	ml/kg/min).		It	is,	however,	important	for	practitioners	to	note	that	laboratory	
based	testing	methodology	is	perhaps	warranted	in	order	to	assess	precise	VO2max	values,	as	the	
shuttle	run	test	is	only	a	prediction	of	VO2max	rather	than	a	direct	measurement.		It	is	therefore	
apparent	that	this	component	is	one	of	several	requirements	of	the	overall	fitness	profile	of	a	
rugby	player	and	that	anaerobic	capabilities	are	therefore	just	as	important	within	game	
demands	required	for	all	positions.		Considering	that	rugby	players	are	required	to	execute	
tackles,	scrummaging	and	rucking	involving	accelerations	and	decelerations	during	game	play,	
players	need	the	ability	to	work	in	intermittent	movements	that	are	primarily	anaerobic	in	
nature.		Recently	reported	research	assessing	aerobic	and	anaerobic	qualities	of	rugby	union	
players	is	presented	in	Table	2.10	
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Table	2.6:	Research	showing	assessment	of	upper	body	and	lower	body	strength	characteristics	
of	different	rugby	union	playing	levels	

Author	 Subjects	 Playing	standard	 Results	

Lombard	et	
al.	(2015)	

453	subjects	who	represented	
the	junior	national	South	African	
National	Team	between	1998	
and	2010	

Under	20	
internationals	

Bench	Press	increased	40%	over	a	13	year	
period	(1998,	89	±	18;	2010,	135	±	22	kg)	

McMaster	
(2015)	

20	subjects	(age	=	21.2	±	3.0	
years;	mass	=	94.9)	

Semi-professional	
players	

1RM	bench	press	133.9	±	9.6	kg	for	
forwards	and	110.9	±	23.9	kg	for	backs	
(1.30	kg/BM	forwards;	1.24	kg/BM	backs)	

Darrall-
Jones,	Jones,	
and	Till	
(2015)	

	

67	players	(under	16s,	n	=	29;	
under	18s,	n	=	23;	under	21s,	n	=	
15)	

Academy	U21	players	

	

1RM	bench	press	for	108.2	±	14.1	kg	(1.11	
kg/BM)	

1RM	front	squat	for	academy	U21	players	
118.2	±	17.8	kg	(1.24	kg/BM)	

Smart	et	al.	
(2013)	

	

1161	New	Zealand	rugby	union	
players	from	2004	to	2007	

Amateur	and	
professional	players	

	

Forwards	had	small	(7.7%;	99%	
confidence	limits	±	8.2%	for	back	squat	
1RM)	to	moderate	(13.3%;	64.8%	for	
bench	press	1RM)		

	

Cunningham	
et	al.	(2013)	

20	players		(age,	26.5	±	4.6	years;	
height,	180.0	±	10.0	cm;	mass,	
105.5	±	11.9	kg)	

Professional	players	 Squat	strength	186.2	kg	±	22.6	

Appleby	et	
al.	(2012)	

20	players	(12	forwards;	8	
backs)	with	resistance	training	
experience	of	10.5	±	3.3	years	

Professional	players	 1RM	bench	press	ranging	from	132.5	±	
14.0	kg	to	146.8	±	11.5	kg	and	squat	1RM	
ranging	from	164.6	±	31.5	kg	to	179.1	±	
26.7	kg	

Argus	et	al.	
(2009)	

	

32	players	(age,	24.4	±	2.7	years;	
height,	184.7	±	6.2	cm;	mass,	
104.0	±	11.2	kg)	

Professional	players	

	

1RM	bench	press	(141	kg),	1RM	box	squat	
(194	kg)	

Kilduff	et	al.	
(2007)	

33	players	(13	senior	
international	players)	(age,	24.0	
±	3.4	years;	height,	185.0	±	8.0	
cm;	mass,	97.4	±	13.4	kg)	

Professional	players	 1RM	for	bench	press	of	124	±	16	kg	to	153	
±	23	kg	and	squat	1RM	
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Table	2.7:	Research	showing	assessment	of	upper	body	and	lower	body	power	measurement	
characteristics	of	different	rugby	union	playing	levels	

Author	 Subjects	 Playing	standard	 Results	

Wood	et	al.	
(2016)	

89	male	players		(age,	18.6	±	0.5	
years;	height,	Forwards	185.0	±	
6.0	cm,	Backs	179.0	±	5.0	cm;	
mass,	Forwards	96.8	±	9.0	kg,	
Backs	81.9	±	7.0	kg)	

International	under	18	
and	under	19	players	

CMJ	height	Forwards	38.37	±	4.00	cm,	
Backs	41.31	±	4.44	cm	

Tobin	and	
Delahunt	
(2014)	

20	players		(age,	22.4	±	3.4	years;	
height,	184.0	±	7.0	cm;	mass,	
101.2	±	11.9	kg)	

Professional	rugby	
union	players	

CMJ	height	to	be	43.95		±	5.43	cm	

Cunningham	
et	al.	(2013)	

20	players		(age,	26.5	±	4.6	years;	
height,	180.0	±	10.0	cm;	mass,	
105.5	±	11.9	kg)	

Professional	rugby	
players	

Lower	body	power	CMJ	being	5476.1	±	
616.4	W	

Argus	et	al.	
(2009)	

	

32	players	(age,	24.4	±	2.7	years;	
height,	184.7	±	6.2	cm;	mass	
104.0	±	11.2	kg)	

Professional	players	

	

Bench	throw	peak	power	(1150	W)	and	
jump	squat	peak	power	(5190	W)	
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Table	2.8:	Research	showing	assessment	of	short	sprint	characteristics	of	different	rugby	union	
playing	levels	

Author	 Subjects	 Playing	standard	 Results	

Wood	et	al.	(2016)	 89	male	players		(age,	18.6	±	
0.5	years;	height,	Forwards	
185.0	±	6.0	cm,	Backs	179.0	±	
5.0	cm;	mass,	Forwards	96.8	±	
9.0	kg,	Backs	81.9	±	7.0	kg)	

International	under	
18	and	under	19	
players	

10	m	sprint	time	(Forwards	
1.85	±	0.07	s,	Backs	1.77	±	
0.06	s)	

Lombard	et	al.,	(2015)	 453	subjects	who	represented	
the	junior	national	South	
African	National	Team	
between	1998	and	2010	

Under	20	
internationals	

10	m	sprint	times	range	
(1998,	1.86	±	0.10;	2010,	1.73	
±	0.10	s)	

Darrall-Jones,	Jones,	and	
Till	(2015)	

67	players	(under	16s,	n	=	29;	
under	18s,	n	=	23;	under	21s,	
n	=	15)	

U21	Academy	players	 Darrall-Jones,	Jones,	and	Till	
(2015)	within	research	of	U21	
Academy	players	noted	505	
left	2.41	±	0.10	s;	505	right	
2.37	±	0.15	s	

Cross,	Brughelli,	et	al.	
(2015)	

15	players	(Age;	Forwards	28	
±	5;	Backs	24	±	3)	(Height;	
Forwards	1.90	±	0.1;	Backs	
1.82	±	0.1)	(mass;	Forwards	
114.55	±	6.3;	Backs	92.6	4±	
4.9)	

New	Zealand	
internationals	

Cross,	Brughelli,	et	al.	(2015)	
noted	10	m	(Forwards	2.04	±	
0.12	s;	Backs	1.95	±	0.04	s)	20	
m	(Forwards	3.33	±	0.15	s;	
Backs	3.19	±	0.06	s)	30	m	
(Backs	4.32	±	0.09	s)	

Smart	et	al.	(2013)	

	

1161	New	Zealand	rugby	
union	players	from	2004	to	
2007	

Both	professional	and	
international	players	

	

10	m	sprint	(Props	1.85	±	4.7	
s;	Hookers	1.81	±	4.1	s;	Locks	
1.79	±	4.7	s;	Loose	forwards	
1.76	±	4.5	s;	Inside	backs	1.72	
±	4.0	s;	Centres	1.70	±	4.0	s;	
Outside	backs	1.68	±	4.4	s);	
20m	sprint	(Props	3.21	±	4.4	
s;	Hookers	3.14	±	3.7	s;	Locks	
3.13	±	4.2	s;	Loose	forwards	
3.06	±	4.4	s;	Inside	backs	2.96	
±	3.5	s;	Centres	2.95	±	4.6	s;	
Outside	backs	2.89	±	3.3	s)	

Smart	et	al.	(2013)	showed	
backs	had	small	(1.9	±	1.5%	
for	30	m	sprint)	to	moderate	
(4.5%;	±	1.7%	for	20	m	
sprint)	differences	in	all	speed	
measures	between	amateur	
and	professional	players	

Small	difference	in	20	m	
sprint	(1.9%;	62.1%	for	
forwards	and	2.2%;	62.2%	for	
backs)	between	professional	
and	international	players	

West	et	al.	(2013)	

	

20	players	(age,	25.1	±	3.2	
years;	height,	185.0	±	7.0	cm;	
mass,	90.9	±	10.6	kg)	

Professional	rugby	
union	players	

	

10	m	sprint	time	1.74	±	0.07	s	
and	30	m	sprint	time	4.19	±	
0.19	s	in	professional	rugby	
union	players	
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Table	2.9:	Research	showing	assessment	of	agility	characteristics	of	different	rugby	union	
playing	levels	

Author	 Subjects	 Playing	standard	 Results	

Green	et	al.	
(2011)	

	

23	players	(Starters	age,	21.0	±	
1.65	years;	height,	181.0	±	5.9	
cm;	mass,	88.9	±	11.3	kg)	(Non	
starters	age,	18.1	±	1.22	years;	
height,	176.8	±	5.4	cm;	mass,	
81.2	±	10.1	kg)	

Semi-professional	
players	

	

Green	et	al.	(2011)	semi-
professional	players	noted	
anticipated	45°	cut	2.09	±	0.11	s;	
unanticipated	45°	cut	2.35	±	0.22	s	

	

Pienaar	and	
Coetzee	(2013)	

	

40	players	(age,	18.9	±	0.4	
years)	

Collegiate	players	

	

Pienaar	and	Coetzee	(2013)	noted	
T-Test	values	of	10.28	±	0.57	s	
within	collegiate	players	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 18	

Table	2.10:	Research	showing	assessment	of	aerobic	and	anaerobic	characteristics	of	different	
rugby	union	playing	levels	

Author	 Subjects	 Playing	standard	 Results	

Wood	et	al.	(2016)	 89	male	players		(age,	18.6	±	0.5	
years;	height,	Forwards	185.0	±	
6.0	cm,	Backs	179.0	±	5.0	cm;	
mass,	Forwards	96.8	±	9.0	kg,	
Backs	81.9	±	7.0	kg)	

International	under	18	
and	under	19	players	

150	m	shuttle	test,	Forwards	
675.90	±	82.46	m,	Backs	
711.71	±	27.46	m)	

Lombard	et	al.,	(2015)	 453	subjects	who	represented	
the	junior	national	South	
African	national	team	between	
1998	and	2010	

Under	20	
internationals	

Backs	assessed	via	multistage	
shuttle	run	test	(1998,	101	±	
13;	2010,	102	±	12	shuttles)	

Sparks	and	Coetzee	
(2013)	

21	players	(weight	97.6	±	12.9	
kg,	height	182.3	±	7.1	cm,	age	
22.2	±	1.2	years)	

University	rugby	union	
players	

Blood	lactate	of	42.7	±	6.8	
mmol.l	during	incremental	
V02max	test	to	the	point	of	
exhaustion	in	university	
rugby	union	players	

O'Gorman,	Hunter,	
McDonnacha,	and	
Kirwan	(2000)	

	

7	players	(weight	93.8	±	3.7	kg,	
height	187.0	±	2.2	cm,	age	22.3	
±	0.3	years)	

International	level	
rugby	players	

	

Blood	lactate	levels	of	18.8	±	
0.3	determined	from	indirect	
calorimetry	using	an	
incremental	protocol	

Deutsch	et	al.	(1998)	 24	players	(weight	88.7	±	9.9	
kg,	height	185.0	±	7.0	cm,	age	
18.4	±	0.5	years)	

Elite	under-19	rugby	
union	players	

Mean	blood	lactate	
concentration	did	not	differ	
significantly	between	groups	
(range:	4.67	mmol.l	for	
outside	backs	to	7.22	mmol.l	
for	back	row	forwards;	p	<	
0.05)	during	competitive	
matches	

Quarrie,	Handcock,	et	al.	
(1996)	

	

94	players	(Props;	weight	102.8	
kg,	height	182.0	cm,	age	25.0	
years)	(Hookers;	weight	89.7	kg,	
height	178.8	cm,	age	23.0	years)	
(Locks;	weight	101.9	kg,	height	
191.8	cm,	age	22.4	years)	(Loose	
forwards;	weight	96.3	kg,	height	
186.3	cm,	age	21.1	years)	(Inside	
backs;	weight	75.0	kg,	height	172.7	
cm,	age	21.7	years)	(Midfield	
backs;	weight	85.9	kg,	height	179.7	
cm,	age	21.4	years)	(Outside	backs;	
weight	83.4	kg,	height	179.4	cm,	
age	22.5	years)	

Senior	“A”	male	rugby	
players	

Anaerobic	capacity	(six	
repeated	high	intensity	
shuttles)	over	70	m	showing	
forwards	ranging	from	54.3	to	
67.4	s,	and	backs	ranging	from	
39.8-57.8	s	on	a	fatigue	index	
measurement	

	

	

	

	

	



Table	2.11:	Research	showing	physical	characteristics	of	rugby	union	players	

Author	 Subjects	 Physical	characteristics	(Height	
and	weight)	

Additional	information	

Quarrie	et	al.	(1995)	
Quarrie,	Handcock,	et	
al.	(1996)	

94	senior	level	rugby	players (Age	-	
Forwards	22.7;	Backs	21.9)	

Height	-	Forwards	186.0	cm;	Backs	
177.8	cm;	Mass	-	Forwards	98.5	kg;	
Backs	81.8	kg	

Positional	categories	within	the	forwards	differed	significantly	with	respect	to	
height,	body	mass,	mesomorphy	and	ectomorphy,	while	positional	categories	of	the	
backs	differed	significantly	in	terms	of	height,	body	mass,	and	performance	on	the	
aerobic	shuttle	test.	

Duthie	et	al.	(2003a)	 A meta-analysis reporting much of the studies above.  Forwards are typically heavier, taller, and have a greater proportion of body fat than backs.  Training should focus on 
repeated brief high-intensity efforts with short rest intervals to condition players to the demands of the game. Training for the forwards should emphasize the higher work rates 
of the game, while extended rest periods can be provided to the backs. 

Bell	et	al.	(2005)	

	

Data taken from 30 young adult 
Rugby Union players not professional 
players (15 forwards and 15 backs)	

Forwards	exhibited	larger	absolute	
(kg)	of	fat	mass	and	lean	soft	tissue	
mass	than	backs	

Backs	had	a	significantly	larger	lean	soft	tissue	mass	(%)	than	forwards	at	the	arms	
(84.4	vs.	76.5%),	legs	(80.0	vs.	71.9%)	and	trunk	(89.2	vs.	79.0%),	whereas	
forwards	had	a	greater	fat	mass	(%)	than	backs	at	the	arms	(18.7	vs.	10.6%),	legs	
(23.1	vs.	14.7%),	and	trunk	(18.4	vs.	8.0%)	

Quarrie	and	Hopkins	
(2007)	

	

Age	-	Forwards	22.7;	Backs	21.9	

Player	sample	size	unspecified	and	
data	taken	from	Bledisloe	Cup	
matches	between	1972	and	2004	

Height	-	Forwards	190.1	cm;	Backs	
182.9	cm;	Mass	-	Forwards	111.1	kg;	
Backs	95.7	kg	

Marked	differences	in	match	participation	times	and	player	size	with	the	
introduction	of	professionalism	associated	with	large	increases	in	passes,	tackles,	
rucks,	tries,	ball-in-	play	time,	and	body	mass.	

Modifications	to	laws	and	the	application	of	existing	laws	has	had	an	impact	upon	
match	characteristics.	

Argus	et	al.	(2010)	 33	elite	rugby	union	players	from	a	
Super	14	professional	rugby	team	
[Age	24.8	±2.4	(All	positions)]	

Height	-	186.1	±	0.06	cm	(All	
positions);	Mass	-	102.3	±	10.3	kg	(All	
positions) 

Data	taken	from	a	short-term	pre-season	training	programme	assessing	the	
effectiveness	of	a	training	programme	on	the	body	composition	and	anaerobic	
performance	

Zemski,	Slater,	and	
Broad	(2015)	

37	international	Australian	rugby	
players	

Height	-	Forwards	191.0	cm	(187.7	to	
194.3	cm);	Backs	182.6	cm	(180.0	to	
185.3	cm);	Mass	-	Forwards	111.7	kg	
(108.1	to	115.2	kg);	Backs	91.7	kg	
(89.1	to	94.3	kg)	

Significant	differences	were	also	seen	between	Caucasian	and	Polynesian	forwards	
in	leg	lean	mass	(31.4	kg	vs.	35.9	kg,	p	=	0.014,	d	=	2.4)	and	periphery	lean	mass	
(43.8	kg	vs.	49.6	kg,	p	=	0.022,	d	=	2.4)	

(Wood	et	al.,	2016)	 89	male	International	under	18	and	
under	19	players		(age,	18.6	±	0.5	
years)	

(Height	-	Forwards	185.0	±	6.0	cm,	
Backs	179.0	±	5.0	cm;	Mass	-	
Forwards	96.8	±	9.0	kg,	Backs	81.9	±	
7.0	kg)	

Forwards	(1.85	±	0.06	m	and	96.88	±	9.00	kg)	(Backs	1.79	±	0.05	m	and	81.97	±	
7.09	kg)	



	

2.1.1.2.4 Body	mass	and	composition	of	elite	rugby	union	players	
In	a	study	assessing	rugby	union	players’	physical	characteristics	in	the	southern	hemisphere,	
players	were	reported	to	have	become	heavier	and	backs	reported	to	be	taller	between	the	
period	1972	and	2004	(Quarrie	&	Hopkins,	2007).		The	advent	of	professionalism	in	1995	and	
the	associated	advances	in	training	led	to	an	increase	in	passes,	tackles,	rucks	and	ball	in	play	
duration.		Mean	participation	time	by	players	is	also	considered	a	large	determinant	of	the	
increased	physical	size	of	players,	whereby	players	are	often	not	required	to	complete	the	
duration	of	a	game	and	are	therefore	conditioned	accordingly,	including	an	increased	body	
mass.		Law	changes	such	as	the	introduction	of	the	lineout	gap	in	1972,	the	increase	of	points	
awarded	for	a	try	in	1992,	the	application	of	increased	number	of	reserves	permitted	to	be	
allowed	on	the	field	in	1997	and	the	introduction	of	yellow	cards	in	2002,	have	also	added	to	
the	increased	speed	of	the	game	and	subsequent	modified	physical	characteristics	of	a	modern	
day	rugby	union	player	(Quarrie	&	Hopkins,	2007).		Quarrie	and	Hopkins	(2007)	noted	that	the	
rapid	increase	of	body	mass	can	be	attributed	to	pressure	exerted	upon	players	to	compete	at	
an	increased	size	that	suited	the	revised	laws	of	the	game.		The	entitlement	to	play	for	less	than	
the	whole	match	duration,	due	to	substitutions,	meant	that	relative	aerobic	requirements	of	
players	were	reduced	in	favour	of	increased	anaerobic	ability,	to	match	the	amended	physical	
characteristics	of	a	rugby	union	player	in	early	2000’s.		The	increasing	size	of	players	is	
illustrated	in	Table	2.11	and	can	also	be	attributed	to	greater	focus	and	knowledge	of	resistance	
training	and	nutritional	interventions	that	help	add	lean	body	mass	to	players’	physiques.		This	
increased	stature	of	rugby	union	players	is	perhaps	most	notable	in	backs	where	their	
physiques	are	now	closely	matched	to	loose	forwards	of	the	mid’	1990’s,	in	the	hope	of	helping	
backs	within	their	increased	role	of	ruck	and	tackle	involvements	in	the	modern	game	of	the	
late	2000’s	(Noakes	&	Du	Plessis,	1996).		Data	from	the	aforementioned	research	by	Appleby	et	
al.	(2012)	showed	sum	of	skinfolds	ranging	from	71.1	±	16.9	mm	to	65.7	±	16.1	mm	across	
twenty	players	between	2007	and	2009,	with	body	mass	ranging	from	103.8	±	7.6	kg	to	106.0	±	
8.4	kg.	

2.1.1.3 Which	physical	elements	enhance	the	likelihood	of	success	of	an	elite	level	rugby	union	
player?	

As	reported	in	Chapter	2.1.1,	the	physical	elements	that	distinguish	an	elite	player	from	a	sub-
elite	player	are	apparent.		The	elements	that	distinguish	a	successful	rugby	union	player	from	
an	unsuccessful	rugby	player	are	however	less	clear.		A	rugby	union	player	that	has	the	ability	
to	produce	elite	level	attributes	will	add	to	the	teams’	chances	of	success	in	games.		Other	field	
sports	such	as	football,	rugby	league	and	Australian	rules	football	have	presented	data	upon	
which	player	characteristics	relate	to	game	success,	thus	providing	practitioners	with	“gold	
standard”	values	to	compare	their	playing	roster	against.		Recent	research	by	Smart	et	al.	
(2014)	assessing	the	relationship	between	physical	fitness	and	game	behaviours	in	rugby	union	
players	showed	that	sprint	times	over	10,	20	and	30	m	had	moderate	to	small	negative	
correlations	with	line	breaks	(r	=	-0.26),	metres	advanced	(r	=	0.22),	tackle	breaks	(r	=	0.16)	and	
tries	scored	(r	=	0.15).		Smart	et	al.	(2014)	also	showed	that	the	average	time	of	twelve	repeated	
sprints	and	percentage	body	fat	in	the	forwards,	along	with	repeated	sprint	fatigue	in	the	backs	
had	moderate	to	small	correlations	with	a	measure	of	activity	rate	on	and	around	the	ball	(r	=	-
0.38,	r	=	-0.17	and	r	=	-0.17,	respectively).	
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Considering	the	previous	reported	data	that	physical	capabilities	of	elite	rugby	players	differ	
from	amateur	players,	with	the	differences	in	strength	and	power	between	levels	of	playing	
being	likely	due	to	maturation,	training	age	and	body	mass	(Argus,	Gill,	&	Keogh,	2012),	the	role	
of	body	composition	within	successful	performance	is	emphasised.		Recent	research	in	rugby	
union	by	Speranza,	Gabbett,	Johnston,	and	Sheppard	(2015)	demonstrated	that	the	
enhancement	of	lower	body	muscular	strength	and	power	contributed	towards	improvements	
in	tackling	ability,	further	showing	the	influence	of	physical	capabilities	upon	match	
performance.		Speranza	et	al.	(2015)	noted	a	correlation	between	improvements	in	3RM	squat	
and	tackling	ability	(p	=	0.04;	ES	>	0.85)	and	a	small	non-significant	difference	in	tackling	ability	
and	lower	body	power	(p	=	0.20;	ES	>	0.56)	in	the	responders	and	non-responders	from	the	
research	group	in	question.		Similarly,	in	a	longitudinal	retrospective	assessment	of	junior	
players	Fontana,	Colosio,	Da	Lozzo,	and	Pogliaghi	(2016)	noted	that	a	lower	percentage	body	fat	
and	higher	sprint	speed	over	15	m	were	the	most	important	predictors	of	likely	career	success.		
In	respect	of	successful	match	activities,	recent	research	in	rugby	union	(Tierney,	Tobin,	Blake,	
&	Delahunt,	2016)	assessed	the	running	demands	of	successful	and	unsuccessful	teams,	and	
reported	that	when	forwards	achieved	greater	high	speed	running	(HSR)	intensity	during	
attacking	22	entries	an	increased	likelihood	of	success	occurred.		The	differences	in	player	
intensities	seen	in	the	study	by	Tierney	et	al.	(2016),	showing	successful	attacking	22	entries	
(3.6	m/min-1	),	compared	to	unsuccessful	attacking	22	entries,	illustrate	the	physical	demands	
required	for	success,	and	therefore	supports	the	view	that	players	with	higher	performance	
measures	(speed,	strength,	power,	repeated	sprint	ability	and	body	composition)	are	able	to	
perform	to	a	higher	level	in	game	situations.	

2.1.2 The	use	of	GPS	data	for	optimal	performance	
The	development	of	GPS	technology	is	providing	sports	science	practitioners	with	detailed	data	
relating	to	specific	movement	demands	of	players,	while	also	optimising	sport	specific	training.		
A	critical	appraisal	of	GPS	monitoring	in	team	sports	was	conducted	by	Cummins,	Orr,	
O'Connor,	and	West	(2013)	with	six	studies	detailed	across	varying	playing	levels	in	rugby	
union,	confirming	the	physical	demands	placed	upon	players	and	the	specific	metrics	involved.		
GPS	data	is	collected	throughout	rugby	players’	training	weeks	(microcycles)	and	longitudinally	
over	an	entire	playing	season	with	many	studies	published	recently	on	game	data	(Austin	et	al.,	
2011a;	Cahill	et	al.,	2013;	Coughlan	et	al.,	2011;	Quarrie	et	al.,	2013).		Despite	GPS	not	being	a	
testing	tool	regularly	used	in	the	field	for	assessing	NMF	or	readiness,	GPS	does	help	guide	
practitioners	upon	the	volume	of	training	undertaken,	which	can	be	invaluable	information	for	
readiness	assessment,	when	combined	with	many	of	the	monitoring	tools	discussed	below	
(Chapter	2.4).		The	need	to	analyse	GPS	data	and	the	associated	training	volume	(distances,	
speeds	and	dynamic	stress	load	for	example)	has	been	utilised	in	a	number	of	rugby	union	
studies	(Austin	et	al.,	2011a;	Cahill	et	al.,	2013;	Coughlan	et	al.,	2011)	and	is	considered	to	be	an	
essential	tool	of	many	elite	sport	team	practitioners,	giving	detailed	information	on	both	
external	load	(i.e.	distance)	and	internal	load	(i.e.	HR),	thus	providing	a	more	global	assessment	
of	exercise	intensity.	

Limitations	of	GPS	technology	exist,	as	represented	in	a	review	of	GPS	reliability	(Buchheit	et	al.,	
2014)	showing	substantial	differences	between	different	models,	with	variations	ranging	from	
1%	variation	in	maximal	speed	assessments	and	56%	difference	on	decelerations	between	GPS	
models.		These	large	variations	therefore	question	the	usefulness	of	acceleration	and	
deceleration	measures,	with	Buchheit	et	al.	(2014)	strongly	advising	practitioners	to	apply	care	
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when	comparing	data	collected	with	different	models.		Similarly,	research	collected	by	Coutts	
and	Duffield	(2010)	advised	that	different	devices	should	not	be	used	interchangeably,	yet	an	
acceptable	level	of	accuracy	and	reliability	was	noted	for	total	distance	and	peak	speeds	in	team	
sport	settings.		This	same	research,	however,	did	find	poor	reliability	for	higher	intensity	
activities	(high	intensity	running	>	14.4	km/h)	and	noted	better	accuracy	over	linear	
movements	than	non-linear	movements.		It	seems,	from	the	data	presented	by	Coutts	and	
Duffield	(2010),	that	GPS	devices	are	more	reliable	at	measuring	movements	over	a	low	speed	
and	a	linear	form,	compared	to	rapid	accelerations	across	multiple	planes	that	may	be	difficult	
for	the	GPS	device	to	distinguish	between.		It	is,	however,	important	to	note	that	the	
technological	advances	in	GPS	technology	have	been	vast	since	the	research	by	Coutts	and	
Duffield	(2010),	meaning	that	discrepancies	between	high	intensity	activities	and	non-linear	
movements	are	likely	to	have	been	resolved,	with	further	evidence	supporting	the	assessment	
of	maximum	velocity	using	10	Hz	GPS	units	(Roe	et	al.,	2016).		The	sampling	frequencies	of	the	
studies	in	question	are	detailed	in	Table	2.2	and	may	explain	some	of	the	variation	in	data	
collected.		Recent	research	(Scott,	Scott,	&	Kelly,	2016)	assessing	the	importance	of	sampling	
frequency	for	improving	GPS	accuracy	,	noted	that	1	Hz	and	5	Hz	GPS	units	were	not	as	practical	
for	use	in	team	sports,	compared	to	10	Hz	and	15	Hz	units	for	team	sport	simulated	running	
movements.	

2.1.3 Training	week	structure	and	RPE	
As	reported	by	Twist	and	Highton	(2013)	games	in	rugby	league	are	supported	by	periodised	
training	weeks,	which	are	manipulated	depending	upon	the	number	of	days	between	games.		
Practitioners	have	used	many	methods	to	evaluate	training	load	(TL)	using	both	internal	and	
external	measurements	(Killen,	Gabbett,	&	Jenkins,	2010;	Lovell,	Sirotic,	Impellizzeri,	&	Coutts,	
2013).		Often	the	most	frequently	used	form	of	evaluating	internal	training	load	of	team	sport	
athletes	is	calculated	via	heart	rate	(Coutts,	Rampinini,	Marcora,	Castagna,	&	Impellizzeri,	2009;	
Elloumi,	Maso,	Michaux,	Robert,	&	Lac,	2003),	yet	the	most	commonly	used	practice	within	team	
sports	that	assess	external	load	utilises	rate	of	perceived	exertion	(RPE)	on	a	scale	measuring	
from	one	to	ten	(Foster	et	al.,	1995)	and	has	been	used	in	many	studies	(Comyns	&	Flanagan,	
2013;	Impellizzeri,	Rampinini,	Coutts,	Sassi,	&	Marcora,	2004;	Lovell	et	al.,	2013;	Wallace,	
Coutts,	Bell,	Simpson,	&	Slattery,	2008),	with	the	intensity	score	multiplied	by	the	duration	of	
the	training	session,	providing	a	single	number	representing	the	magnitude	of	that	training	
session.		Monitoring	training	load	using	numbers	calculated	to	represent	training	volume	can	be	
compared	against	other	performance	parameters	in	order	to	gauge	the	effect	of	the	training	
week	and	perhaps	explain	changes	in	performance	(Halson,	2014).		As	illustrated	in	recent	
research	by	Thornton	et	al.	(2015)	in	elite	rugby	league,	the	effectiveness	of	self-report	data	
when	utilising	TL	and	WB	data	for	predicting	illness	is	evident	(weekly-TL	>	2786;	WB	<	7.25).		
Practitioners	can	use	training	load	data	to	examine	load-performance	relationships	and	plan	
future	training	load	prescription,	thus	reducing	the	risk	of	injury	illness	and	NFOR.	

Previous	research	in	both	team	sports	(Coutts	et	al.,	2009;	Impellizzeri	et	al.,	2004;	Lovell	et	al.,	
2013)	and	individual	sports	(Rodri	́Guez-Marroyo,	Villa,	Garci	́A-Lopez,	&	Foster,	2012)	has	
presented	strong	correlations	between	HR	and	session	RPE.		Lovell	et	al.	(2013)	also	reported	
large	correlations	between	session	RPE	and	GPS	derived	measures	of	distance	and	high	speed	
running.		In	contrast,	body	load	measurements	taken	from	GPS	have	shown	contrasting	
correlations	to	session	RPE,	with	Gomez-Piriz,	Jimenez-Reyes,	and	Ruiz-Ruiz	(2011)	showing	
low	correlating	values	in	soccer	while	Lovell	et	al.	(2013)	showed	high	correlations.			As	would	
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be	expected	on	training	weeks	in	team	sport	settings	where	days	between	games	are	reduced,	
lower	training	loads	have	been	prescribed	in	rugby	union	and	the	session	RPE	method	utilised	
(Elloumi,	Maso,	Michaux,	et	al.,	2003).		On	weeks	with	five	days	between	games,	compared	to	
weeks	that	have	more	days	between	games	(Killen	et	al.,	2010;	McLean	et	al.,	2010;	McLellan,	
Lovell,	&	Gass,	2011b;	Twist,	Waldron,	Highton,	Burt,	&	Daniels,	2012),	lower	weekly	training	
load	is	to	be	expected.		Typically,	a	training	week	between	games	entails	two	resistance	sessions	
focusing	upon	strength	and	power,	and	three	field	sessions	with	focus	upon	rugby	skills	and	
game	plans.		Inappropriate	training	loads	have	been	shown	to	have	a	negative	impact	upon	
player	readiness	(McLean	et	al.,	2010).		Results	from	McLean	et	al.	(2010)	showed	that	
placement	and	scale	of	load	within	each	training	microcycle	between	games	is	important	for	
recovery,	and	that	it	is	possible	to	recover	both	neuromuscular	and	perceptual	measures	within	
four	days	after	a	rugby	league	match.		Additionally,	it	is	important	to	consider	all	training	load	
measures	when	assessing	the	intensity	and	subsequent	physical	and	mental	cost	of	a	training	
session	or	game	upon	an	individual.		For	example,	in	rugby,	many	training	sessions	involve	a	
high	wrestling	and	contact	element	and	are	therefore	physically	difficult	to	undertake,	yet	may	
not	display	high	HR	exertion	values	or	metres	per	minute	as	seen	in	“on	feet”	rugby	or	
conditioning	sessions.		Recent	research	illustrating	poor	management	of	the	days	between	
games	in	team	sports	was	presented	by	Malone	et	al.	(2015),	where	only	the	day	before	a	game	
presented	consistent	periodised	training	load.		This	poor	management	of	training	load	is	a	
major	concern	for	practitioners	and	one	that	will	result	in	sub-optimal	performance	and	
therefore	warrants	further	investigation	in	rugby	union. 

2.1.4 Summary	
From	the	research	above	it	is	clear	that	match	demands	differ	across	playing	levels	and	
positional	groups,	with	the	intermittent	nature	of	rugby	union	meaning	low-intensity	activity	is	
mixed	with	bouts	of	anaerobic	high-intensity	movements	and	power-based	tasks	during	match	
play.		Given	the	greater	contact	loads	experienced	by	elite	rugby	union	forwards	sustained	
during	match	play	the	load	during	match	play	compared	to	backs,	prior	research	(Cahill	et	al.,	
2013;	Quarrie	et	al.,	2013;	Smart	et	al.,	2014)	recommended	practitioners	provide	forwards	
with	more	time	to	recover	post-match	than	backs.		Investigations	assessing	match	demands	
using	the	most	recent	advancements	in	GPS	technology	and	video	footage	would	provide	a	
greater	understanding	to	the	physiological	cost	expected	from	match	play	and	the	resultant	
response	this	has	upon	positional	groups	in	the	immediate	days	post-match.		As	seen	in	many	
elite	settings	the	use	of	GPS,	session	RPE	and	individual	training	prescription	aids	in	managing	
the	training	weeks	of	team	sports	players	and	enables	the	likelihood	of	optimal	performance	
between	games,	via	more	objective	training	prescription.	
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2.2 Methods	of	strength	and	power	training	and	assessment	in	
rugby	

2.2.1 Resistance	training	methods	
Both	field	based	rugby-specific	training	and	gym	based	resistance	training	completed	in	the	
days	between	matches	is	likely	to	have	an	influence	upon	player	fatigue.		One	of	the	most	
commonly	used	modern	rugby	resistance	training	methods	include	contrast	and	complex-
training	(Argus,	Gill,	Keogh,	McGuigan,	&	Hopkins,	2012;	Comyns,	Harrison,	Hennessy,	&	Jensen,	
2007),	with	lifts	prescribed	at	a	percentage	of	the	maximal	possible	for	one	repetition	(1RM)	
and	the	load-velocity	relationship	considered	accurate	for	load	prescription	(Jidovtseff,	Harris,	
Crielaard,	&	Cronin,	2011).		Contrast	and	complex-training	are	similar	methods	of	resistance	
training,	with	compound	training	involving	heavy	resistance	days	alternated	with	lighter	
resistance	days	and	complex-training	involving	sets	of	heavy	resistance	exercise	immediately	
followed	by	sets	of	lighter	resistance	exercise.  Despite	evidence	to	support	enhanced	
performance	as	a	result	of	either	complex	or	contrast-training	within	rugby	union	competition	
phases	being	limited;	a	vast	body	of	evidence	exists	surrounding	the	effectiveness	of	strength	
training	(Argus	et	al.,	2010;	Baker,	1998,	2001b),	with	their	influence	upon	acute	fatigue	also	
differing	(Bevan,	Owen,	Cunningham,	Kingsley,	&	Kilduff,	2009).	

Many	practitioners	use	contrast	or	complex-training	as	it	is	considered	a	time	efficient	method	
for	training	large	groups	of	team	sport	athletes	within	busy	training	days,	where	the	main	focus	
of	the	day	may	be	the	on	field	sport	specific	session	and	not	the	resistance	training	session.		
Considering	the	research	by	Baker	(2001b)	has	shown	that	levels	of	strength	are	often	
increased	or	maintained	throughout	a	competition	period	of	a	season,	yet	in-season	maximal	
power	was	reported	within	the	same	study	to	decrease,	the	need	for	a	mix	of	resistance	
methods	is	further	emphasised.		In	addition,	Appleby	et	al.	(2012)	confirmed	previous	views	
that	as	a	players	training	age	increases,	diminishing	return	in	strength	become	apparent,	
meaning	a	mixed	focus	to	resistance	training	is	again	recommended.		A	mixed	focus	approach	is	
sometimes	known	as	a	mixed	method	and	involves	a	variety	of	exercises	with	loads	of	30-70%	
1RM	to	develop	power,	and	loads	of	75%	and	greater	used	for	absolute	strength	development	
(Haff	&	Nimphius,	2012).		Despite	reported	success	of	mixed	methods	approach	(Cormie,	
McGuigan,	&	Newton,	2010b;	Schmidtbleicher,	1992);	difficulty	exists	for	practitioners	to	
determine	the	best	approach	for	developing	maximal	strength	and	power	in	team	sport	settings.		
Mixed	methods	approach	is,	however,	often	used	within	team	sport	settings	to	ensure	
development	of	both	rate	of	force	development	and	power	output,	which	are	physical	elements	
of	movement	and	explosiveness	needed	for	sports	such	as	rugby	union	(Haff,	Whitley,	&	
Potteiger,	2001).		Scientific	support	for	the	use	of	combined	training	methods	on	relations	
among	force,	velocity,	and	power	development	is	noted	by	Toji,	Suei,	and	Kaneko	(1997)	with	
further	support	from	Haff	and	Nimphius	(2012,	p.	7)	in	a	review	of	training	principles	of	power	
noting	that	“the	use	of	a	mixed	methods	approach	to	optimize	power-generating	capacity	allows	
for	a	superior	increase	in	maximal	power	output	and	a	greater	transfer	of	training	effect	
because	of	a	more	well-rounded	development	of	the	force-velocity	relationship”.	

2.2.2 Strength	and	power	training	specifically	
The	reported	increased	strength	and	power	of	rugby	players	developed	over	the	past	fifteen	
years	has	increased	attacking	and	defensive	capabilities,	increasing	the	team’s	chances	of	
winning	and	improving	the	game	for	audiences	(Argus	et	al.,	2010).		This	increased	need	for	
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developing	strength	and	power	in	rugby	players	has	resulted	in	time	being	devoted	to	strength	
and	conditioning	training	with	specific	attention	applied	to	resistance	training.		Varying	
resistance	training	modalities	such	as	isokinetic,	isometric	and	plyometric	exist	and	have	been	
utilised	within	rugby	(Beaven,	Cook,	&	Gill,	2008;	Harris,	Cronin,	Hopkins,	&	Hansen,	2008;	
Kilduff	et	al.,	2007;	Tobin	&	Delahunt,	2014)	with	concurrent	training	often	prescribed	due	to	
scheduling	constraints	for	optimal	adaptation	in	the	many	physical	aspects	rugby	players	are	
required	to	perform.		Evidence	supporting	the	relevance	of	power	movements	upon	game	
performance	was	presented	by	Hori	et	al.	(2008),	who	noted	a	correlation	between	hang	power	
clean	performance	and	jumping	(r	=	0.41,	p	<	0.05)	and	20	m	sprint	time	(r	=	-0.058,	p	<	0.01).		
When	considering	the	research	above	by	Argus,	Gill,	Keogh,	and	Hopkins	(2011)	and	the	
influence	of	power	upon	performance	noted	by	Hori	et	al.	(2008),	it	is	clear	that	a	rugby	players	
ability	to	produce	high	power	outputs	is	dependent	upon	the	individuals	overall	strength	and	
power	output.	

Recent	research	(Cormie,	McGuigan,	&	Newton,	2010a;	Cormie	et	al.,	2010b;	Haff	&	Stone,	2015)	
supported	the	notion	of	developing	high	levels	of	strength	before	targeting	power	developing	
activities,	when	attempting	to	improve	power	outputs	generated	and	warned	against	the	
implementation	of	ballistic	strength	training	alone	as	decreases	in	muscular	strength	have	been	
reported.		Instead	research	by	McMaster,	Gill,	Cronin,	and	McGuigan	(2013)	recommended	the	
use	of	two	heavy	loaded	strength	training	(75-85%	1RM)	sessions	per	week	to	counteract	
declines	in	strength	for	rugby	players	in-season.		Within	rugby	union	the	ability	to	produce	high	
levels	of	power	are	paramount	for	successful	performance,	with	a	high	level	of	maximal	
strength	being	the	prerequisite	to	produce	these	powerful	actions	(Argus,	Gill,	&	Keogh,	2012).		
Despite	improvements	in	power	as	a	result	of	strength	training	being	well	documented	(Argus	
et	al.,	2011;	Baker,	2001a;	Cormie	et	al.,	2010a),	the	relevance	of	strength	training	for	additional	
physical	adaptations	are	questioned	(Cormie	et	al.,	2010b).		The	findings	by	Baker	(2001b),	
however,	emphasise	the	need	for	more	focus	on	power	solely,	rather	than	complex	or	contrast-
training,	when	assessing	elite	rugby	players.		It	is,	however,	important	to	note	that	the	research	
by	Baker	(2001b)	incorporated	subjects	from	both	professional	and	amateur	settings	and	is	
therefore	limited	in	relevance	to	elite	rugby	union. 

2.2.2.1 Effect	of	strength	and	power	training	on	subsequent	performance	
Unlike	other	sports,	rugby	players	are	required	to	train	in	the	days	between	weekly	games	and	
do	not	typically	have	an	extended	period	of	rest	post-match	to	prepare	tactically	for	the	next	
opposition	and	to	create	athletic	developments	prior	to	the	next	game.		Instead,	in	the	days	
between	rugby	union	games,	elite	players	typically	perform	one	or	two	gym-based	sessions	per	
week	with	the	aim	of	maintaining	athletic	ability	and	addressing	individual	anatomical	issues	in	
order	to	maintain	their	availability	for	selection.		These	gym	sessions	can	create	both	fatigued	
skeletal	muscle	and	muscle	that	can	be	considered	potentiated,	with	the	resultant	current	
performance	ability	of	the	muscle	depending	upon	the	balance	between	these	two	factors.		The	
focus,	volume	and	intensity	of	these	gym	based	sessions	is	therefore	a	careful	consideration	for	
rugby	strength	and	conditioning	practitioners	in	elite	settings,	where	the	aim	is	to	try	and	
improve	athletic	ability	of	the	players	throughout	their	playing	career,	while	working	within	the	
constraints	of	a	nine-month	playing	season	where	games	appear	on	a	weekly	basis.	

All	forms	of	resistance	training	are	likely	to	create	NMF	if	the	loads	moved	and	the	volumes	
prescribed	are	large	enough	to	initiate	adaptation.		It	could,	however,	be	argued	that	power	
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training	(typically	2-5	reps)	would	not	create	as	much	NMF	as	strength	or	hypertrophy	training,	
which,	as	noted	above,	involves	movements	comprising	higher	loads	(%1RM)	and	more	overall	
volume.		Instead,	power	training	involves	high	intensity	movements,	which	due	to	the	load	
prescribed	often	creates	less	fatigue	than	strength	or	hypertrophy	focused	gym	sessions.		
Strength	sessions	which	contain	heavy	loaded	(%1RM)	squat	movements	are	likely	to	create	
more	eccentric	muscle	damage	than	power	focused	squat	movements,	thereby	having	a	greater	
influence	upon	subsequent	performance	in	the	immediate	hours	and	days	following	this	gym	
session.		There	is,	therefore,	a	careful	balance	needed	when	practitioners	prescribe	appropriate	
training	modalities	(strength,	power	or	hypertrophy)	in	the	days	between	games.	

Improvements	in	both	strength	and	power	abilities	of	rugby	players	as	a	result	of	a	pre-
determined	training	program	are	common	(Harrison	&	Bourke,	2009).		The	benefits	of	
resistance	training	for	speed	development	in	male	rugby	players	were	reported	by	Harrison	and	
Bourke	(2009),	who	noted	significant	decreases	(p	=	0.02)	in	5	m	and	30	m	sprint	times	for	a	
group	that	had	performed	resistance	training,	in	comparison	to	a	group	that	had	not.		Further	
evidence	for	the	benefits	of	strength	training	exist	from	research	in	rugby	union	players	with	
Comyns	et	al.	(2007),	recommending	the	implementation	of	heavy	lifting	to	encourage	fast	
stretch	shortening	cycle	activity	and	therefore	subsequently	improve	performance.		Most	
significantly	perhaps	is	the	research	by	Argus,	Gill,	Keogh,	et	al.	(2012)	who	noted	the	
importance	of	in-season	training	upon	subsequent	performance	in	rugby	union	players,	
whereby	recommendations	were	made	for	players	to	perform	higher	volume	contrast-training	
in	comparison	to	the	use	of	power	training	alone	during	competition	phases.		Results	by	Argus,	
Gill,	Keogh,	et	al.	(2012)	indicate	that	CMJ	performance	was	improved	to	a	greater	level	as	a	
result	of	the	strength-power	program	(50kg	CMJ	11.7%	±	6.5)	compared	to	the	speed	power	
program	(50kg	CMJ	3.1%	±	4.8).		This	further	emphasises	the	importance	of	concurrent	training	
during	competition	phases	of	playing	sessions	with	the	potential	effect	it	could	have	upon	
subsequent	performance.	

It	is,	however,	important	for	practitioners	to	consider	that,	as	previously	mentioned,	evidence	
by	Argus	et	al.	(2009)	noted	that	more	than	two	resistance	training	sessions	per	week	were	
needed	in	order	to	initiate	change	in	elite	level	rugby	union	players.		Additionally,	research	of	
interest	is	that	by	Harris	et	al.	(2008)	who	noted	that	combination	training	(strength	and	power	
development)	increased	back	squat	(11.6%)	and	decreased	30m	sprint	time	(1.4%)	in	
comparison	to	that	of	strength	or	power	training	alone.		However,	the	ability	for	practitioners	to	
implement	more	than	two	resistance-training	sessions	per	week	is	difficult	during	competition	
phases	in	elite	rugby	union	settings,	where	players	are	asked	to	perform	many	field	and	gym	
based	sessions	per	week.		Combination-training	alongside	the	other	elements	of	strength	
development	are	therefore	recommended,	yet	the	importance	of	incorporating	strength	
elements	into	these	sessions	is	key,	considering	the	evidence	outlined	by	McMaster	et	al.	
(2013).		This	evidence,	therefore,	further	emphasises	the	need	for	implementation	of	gym	based	
sessions	in-season	in	order	to	attempt	to	maintain	athletic	ability.		Additionally,	it	emphasises	
the	need	to	choose	appropriate	exercise	selection	and	session	focus	within	gym	sessions,	
considering	the	limited	windows	of	opportunity	that	exist.	

2.2.3 Implications	for	practitioners	
From	the	research	above,	that	reports	increased	player	size	and	physical	capabilities	of	players,	
it	is	evident	that	the	game	of	rugby	union	has	developed	greatly	due	to	the	advent	of	
professionalism.		As	discussed	above,	advances	in	training	practices	(both	on	the	training	field	
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and	in	the	gym)	have	resulted	in	increases	in	strength	and	power,	leading	to	enhanced	or	
improved	match	performance.		Differing	volumes	and	intensities	of	training	prescribed	in	the	
days	between	matches	will	result	in	varying	time-course	of	recovery,	with	this	having	major	
implications	for	practitioners’	training	selection	in	the	days	post	match.		Additionally,	when	
considering	the	anthropometric	and	physical	performance	differences	noted	between	positional	
groups	and	playing	levels	(Bell	et	al.,	2005;	Quarrie,	Feehan,	et	al.,	1996;	Quarrie,	Handcock,	et	
al.,	1996;	Quarrie	et	al.,	1995;	Quarrie	&	Hopkins,	2007),	the	need	to	select	appropriate	training	
methods	when	considering	the	goals	of	each	individual	within	a	playing	squad	is	key.	

2.2.4 Summary	
From	the	evidence	above	it	is	clear	that	strength	and	power	training	is	commonly	used	within	
rugby	to	enhance	rugby	performance,	yet	contrasting	results	are	presented	surrounding	the	
effectiveness	of	strength	training	modalities.		Despite	conflicting	evidence	for	the	most	
beneficial	methods	of	performance	enhancement	within	rugby	union	existing,	the	ability	to	
produce	high	levels	of	power	is	paramount	for	successful	performance,	with	a	high	level	of	
maximal	strength	being	the	prerequisite	to	produce	these	powerful	actions	and	therefore	
recommended	for	implementation.		Practitioners,	however,	need	to	be	sure	that	they	are	
providing	the	correct	focus	of	training	and	appropriate	training	dose	in	the	days	between	
games,	to	enable	continued	athletic	performance	maintenance,	without	adding	fatigue	and	
subsequently	slowing	restoration	of	performance	post-match.	
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2.3 Performance	Tests,	Fatigue	and	Associated	Recovery	

2.3.1 Tests	of	Performance	
Methods	of	measuring	performance	are	vast	in	quantity	and	in	applicability	to	the	sport	setting	
in	question,	with	measures	of	neuromuscular	function,	hormonal	markers,	heart	rate	derived	
measures	and	sub-maximal	testing	all	being	utilised.		Monitoring	of	specific	performance	
measures	and	the	associated	weekly	training	volume	common	within	team	sport	scenarios	is	a	
recent	area	of	research.		Research	that	has	used	modern	tools	such	as:	GPS;	player	monitoring	
[well-being	questionnaires	(WB)];	biochemical	markers	[creatine	kinase	(CK),	cortisol	(C),	
testosterone	(T)];	and	performance	tests	(ergometer	and	jumps),	that	can	all	report	accurate	
data,	help	to	aid	scientific	support	for	correctly	diagnosing	performance	(McLellan	et	al.,	2011b;	
Waldron,	Twist,	Highton,	Worsfold,	&	Daniels,	2011).		Other	measures	of	neuromuscular	
function	(performance)	include:	varying	forms	of	running	tests;	plyometric	push-ups;	sprint	
performances;	and	isokinetic	dynamometry	(Duffield,	Murphy,	Snape,	Minett,	&	Skein,	2012;	
Johnston	et	al.,	2013;	Twist	&	Sykes,	2011).		The	most	common	maximal	performance	measures	
used	in	past	research	within	team	sports	are	maximal	strength	assessments	(Argus	et	al.,	2009;	
Beaven,	Cook,	et	al.,	2008;	Comyns,	Harrison,	&	Hennessy,	2010;	Harris	et	al.,	2008).		In	
addition,	modern	practices	have	included	heart	rate	derived	measures	to	aid	practitioners	
attempting	to	quantify	load	and	assess	performance	(Bosquet,	Merkari,	Arvisais,	&	Aubert,	
2008).		Many	of	the	above-mentioned	performance	tests	are	used	to	assess	fatigue	within	elite	
sport	settings,	where	long	seasons	and	multiple	training	sessions	often	present	players	in	
fatigued	states.		A	fatigued	state	is	noted	as	“exhaustion	or	loss	of	strength	and/or	endurance	
following	a	strenuous	activity”	(Medical	Dictionary	Online,	2015).		Methods	of	assessing	fatigue	
and	restoration	are	examined	in	more	detail	in	Chapter	2.4,	with	their	relevance	to	performance	
and	specific	tests	commonly	utilised	critiqued.	

2.3.2 Fatigue	science	
One	negative	consequence	of	physical	activity	is	fatigue,	with	exercise-induced	fatigue	assessed	
by	measuring	a	decrease	in	muscle	force-generating	capacity.		Fatigue	is	commonly	known	as	
any	reduction	in	physical	or	mental	performance	(Knicker,	Renshaw,	Oldham,	&	Cairns,	2011)	
with	the	mechanisms	for	fatigue	being	task	specific	and	its	origin	spanning	from	the	cerebral	
cortex	to	muscle	cross	bridge	cycling,	as	is	displayed	in	figure	2.2.		Sensations	of	fatigue	are	
markedly	different	depending	upon	the	length	and	intensity	of	the	exhaustive	exercise	being	
conducted.		The	most	commonly	reported	causes	of	fatigue	include:	energy	system	depletion;	
the	accumulation	of	metabolites;	nervous	system	control;	and	the	failure	of	the	muscle	fibres	
contractile	mechanism	(Costill,	Gollnick,	Jansson,	Saltin,	&	Stein,	1973).		The	causes	of	fatigue	
and	their	relationship	to	elite	rugby	are	examined	in	more	detail	below,	yet	an	important	
consideration	for	practitioners	is	that	none	of	these	causes	and	sites	of	fatigue	can	explain	all	
aspects	of	fatigue	created.	

Current	literature	is	lacking	in	its	knowledge	of	the	physiological,	biochemical	and	psychological	
factors	that	determine	fatigue	post-physical	exertion.		As	reported	by	Abbiss	and	Laursen	
(2005),	when	discussing	models	of	fatigue,	sports	scientists	from	varying	fields	will	view	fatigue	
in	a	way	that	best	suits	their	individual	disciplines.		A	psychologist,	for	example,	may	view	
fatigue	as	a	mental	tiredness	sensation,	while	a	physiologist	may	view	fatigue	as	the	failure	of	a	
specific	physiological	system	to	perform	at	its	usual	level.		Physiological	models	created	to	
understand	exercise	fatigue	are	common,	yet	their	relevance	has	been	critiqued	by	Noakes	
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(2000)	who,	when	assessing	adaptation	and	enhancement	of	athletic	performance,	questioned	
why	models	are	unable	to	explain	voluntary	exercise	termination.		As	critiqued	in	Chapter	2.3.2,	
the	majority	of	research	into	fatigue	during	exercise	has	focused	upon	the	ability	of	the	
cardiovascular	system	to	provide	enough	blood,	nutrients	and	oxygen	to	the	working	muscles,	
or	the	ability	of	the	energy	systems	to	re-phosphorylate	ATP	inside	the	muscle	(Noakes,	2000).		
Post-exercise	the	fatigue	experienced	by	athletes	can	be	neural,	mechanical	and	metabolic	in	
nature	and	is	not	simply	being	tired;	it	is	a	combination	of	factors	that	include	bodily	processes	
such	as	the	nervous	system,	the	autonomic	system,	hormonal	system,	and	the	muscles	
themselves.		Recent	research	(Abbiss	&	Laursen,	2005)	has	discussed	models	that	explain	
fatigue,	with	the	proposed	non-linear	models	such	as	the	Cardiovascular/Anaerobic	model,	
Energy	Supply/Energy	Depletion	Model	and	the	Neuromuscular	Fatigue	Model	being	detailed	in	
Chapter	2.3.3.2	and	in	Figures	1.1	and	2.1.		Despite	significant	research	into	exercise	fatigue	
models,	contrasting	views	exist	and	are	represented	in	reviews	assessing	well	documented	
fatigue	models	(Abbiss	&	Laursen,	2005;	Noakes,	2000)	and	more	recently	assessing	exercise	
regulation	and	the	influence	of	central	control	(Noakes,	2012;	Noakes,	Peltonen,	&	Rusko,	
2001).		As	discussed	in	more	detail	below,	Noakes	et	al.	(2001)	suggested	that	central	skeletal	
muscle	activation	is	controlled	along	the	neuromuscular	pathway	in	order	to	protect	vital	
organs	from	injury	and	damage.	

Most	importantly,	when	assessing	models	of	fatigue,	practitioners	must	understand	the	
differences	between	acute	fatigue	(hydrogen	ion	accumulation	or	glycogen	depletion)	(Jardine	
et	al.,	1988)	compared	to	chronic	fatigue,	which	may	still	include	substrate	depletion	but	is	
more	likely	to	relate	to	muscle	damage	(Alaphilippe	et	al.,	2012).		Both	chronic	and	acute	fatigue	
are	the	focus	of	this	research,	with	acute	fatigue	being	more	associated	with	restoration	of	
performance	on	a	short	term	basis	during	games	(Lacome,	Piscione,	Hager,	&	Carling,	2015)	(as	
represented	by	reduced	running	performance	within	rugby	union	match	play)	and	chronic	
fatigue	symbolising	reduced	readiness	of	a	rugby	player	to	perform	to	their	optimal	potential	
over	a	longitudinal	period	(Alaphilippe	et	al.,	2012).		Symptoms	of	acute	fatigue	include,	firstly,	
physical	factors	such	as	an	accumulation	of	waste	products	due	to	muscle	contractions	(Deutsch	
et	al.,	1998;	Docherty	et	al.,	1988);	and,	secondly,	mental	stress	or	boredom	(Noakes,	2012).		
Acute	fatigue	typically	recovers	following	a	short	period	of	rest	(days)	and	energy	source	
restoration.		Recent	research	with	elite	snowboard	athletes	(Gathercole,	Stellingwerff,	&	Sporer,	
2015)	illustrates	CMJ	as	a	suitable	tool	for	monitoring	both	acute	fatigue	and	training	
adaptation.		In	contrast,	symptoms	of	chronic	fatigue	include	general	fatigue	that	is	
disproportionate	to	the	intensity	of	the	effort	undertaken	(Shephard,	2001).		Chronic	fatigue	has	
been	reported	to	last	for	up	to	six	months,	with	a	negative	energy	balance	being	the	resultant	
effect.		In	an	athletic	population	chronic	fatigue	is	common,	but	difficult	to	diagnose.		The	acute	
fatigue	resulting	from	a	single	training	session	is	expected,	yet	can	accumulate	over	a	longer	
period	to	time	to	create	chronic	fatigue.		This	though	is	normal	during	periods	of	high-volume	
training.		Practitioners,	however,	need	to	be	able	to	differentiate	between	this	physiological	
fatigue	and	more	prolonged	severe	fatigue,	which	may	be	due	to	a	pathological	condition.		This	
clinical	approach	was	researched	by	Derman	et	al.	(1997).	

Common	forms	of	assessing	fatigue	include	electromyography	(EMG)	and	observations	of	
contractile	function	with	electrical	(nerve)	and	magnetic	stimulation	(cortex),	where	the	
environment	within	which	the	athlete	is	experiencing	fatigue	plays	a	role	in	the	depletion	of	
energy	sources	or	accumulation	of	metabolites	(Rahnama,	Reilly,	Lees,	&	Graham-Smith,	2003).		
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Many	of	the	first	studies	assessing	fatigue	were	laboratory	based	which,	as	reported	by	
Gandevia	(2001),	included	attempts	by	Mosso	(1904,	cited	in	Gandevia,	2001)	to	compare	
fatigue	in	voluntary	and	electrically	induced	contractions.		Further	technical	advances	in	fatigue	
research	were	implemented	by	Merton	(1954,	cited	in	Gandevia,	2001),	where	development	of	
superimposed	twitch	interpolation	was	key	in	advancing	knowledge	in	the	area.		Using	an	
ectograph,	Mosso	(1904,	cited	in	Gandevia	2001)	assessed	the	distance	moved	by	the	middle	
finger	when	lifting	a	3	kg	weight	every	two	seconds	before	and	after	instruction.		Similar	
research	by	Reid	(1928,	cited	in	Gandevia,	2001)	compared	maximal	voluntary	contraction	of	
finger	flexion	and	force	produced	by	stimulation	of	the	median	nerve	at	the	elbow	under	
isometric	conditions,	with	Reid	(1928,	cited	in	Gandevia,	2001)	concluding	that	large	weights	
could	be	lifted	by	artificial	electrical	stimulation	and	not	volition,	therefore	questioning	the	role	
of	fatigue	in	termination	of	exertion	tasks.		Evidence	for	the	involvement	that	fatigue	has	upon	
maximal	efforts	during	team	sport	match	play	was	noted	by	Nagahara,	Morin,	and	Koido	(2016),	
who	showed	high	speed	running	(as	is	common	in	many	team	sports	periods	of	play)	induced	
impairment	of	the	maximal	velocity	capabilities	of	players	(as	measured	via	speed	tests	before	
and	after	each	half)	as	a	soccer	game	progresses.		This	research,	therefore,	supports	the	view	
that	fatigue	accumulates	over	the	period	of	match	play	and	that	this	response	has	an	effect	upon	
the	maximal	effort	tasks	required	during	team	sport	play. 

Despite	the	aforementioned	limitations	of	laboratory	based	fatigue	research,	fatigue	assessment	
via	simulated	exercise	is	one	area	of	recent	focus	within	team	sport	research.		Due	to	the	
difficulty	of	investigating	muscle	activity	throughout	team	sport	match	play,	laboratory	based	
protocols,	with	surface	EMG	used	to	compare	electromyographic	activity	during	simulated	
match	events	(Rahnama,	Lees,	&	Reilly,	2006;	Thorlund,	Michalsik,	Madsen,	&	Aagaard,	2008).		
As	was	noted	in	Chapter	2,	rugby	union	match	demands	involve	movements	at	varying	
intensities	and	across	multiple	planes	meaning	that	a	variety	of	muscle	activities	and	associated	
fatigue	responses	are	created.		Recent	research	in	rugby	union	by	Morel,	Rouffet,	Bishop,	Rota,	
and	Hautier	(2015)	has	shown	that	EMG	level	decreases	after	simulated	scrums	and	mauls	
(respectively	20.8	±	3.2	%	and	12.6	±	2.5	%;	p	<	0.0001),	concluding	that	a	greater	level	of	
fatigue	was	evident	when	compared	to	sprints	and	that	a	larger	metabolic	activity	(Blood	lactate	
accumulation)	also	existed	(Scrums=7.8	±	0.6	mmol.L-1;	Mauls=7.2	±	0.6	mmol.L-1;	p	=	0.0086;	
Sprints	7.1	±	0.5	mmol.L-1;	p	=	0.001).		Other	research	in	team	settings	was	presented	by	
Thorlund	et	al.	(2008)	whereby	quadriceps	and	hamstring	maximal	voluntary	contraction	
(28%,	p	<	0.05)	and	peak	rate	of	force	development	(-30%,	p	<	0.05)	were	affected	
concurrently,	with	marked	reductions	in	muscle	EMG	following	simulated	handball	match	play.		
It	is,	however,	important	for	practitioners	to	note	that	limitations	exist	surrounding	the	fatigue	
created	during	a	simulated	situation	(e.g.	stimulation	of	isolated	muscles)	or	laboratory	exercise	
models,	and	do	not	relate	directly	to	what	happens	in	sport	competition,	as	noted	by	Knicker	et	
al.	(2011).	

Although	laboratory	based	methods	are	precise	and	controllable,	such	monitoring	is	not	feasible	
in	the	“real	world”	team	sport	environment,	which	is	why	assessment	of	isometric	force	
production	via	modern	technology	(dynamometers)	and	jump	performance	(force	plate	and	
optical	measurement)	have	been	used	more	recently	in	elite	settings.		Additionally,	it	is	
important	to	consider	that	isolated	muscle	examination	via	EMG	does	not	assess	performance	
as	a	whole	and	only	describes	the	state	of	that	specific	muscle,	therefore	not	presenting	
information	upon	the	athlete’s	ability	to	perform	a	task,	and	whether	this	change	in	ability	to	



	 31	

perform	a	task	has	an	effect	upon	subsequent	game	performance.		Recent	research	assessing	
monitoring	tools	to	understand	fatigue	has	used	both	external	load	quantifying	and	monitoring	
tools	(such	as	power	output	measuring	devices,	time-motion	analysis)	and	internal	load	unit	
measures	(including	perception	of	effort,	heart	rate,	blood	lactate,	and	training	impulse)	
(Halson,	2014).		Methods	for	assessing	fatigue	are	examined	in	more	detail	in	Chapter	2.4,	with	
isometric	force	production	and	jump	performance	examined	in	more	detail	in	Chapters	2.4.1.1	
and	2.4.1.2	respectively. 

	

	

	

Figure	2.1:	Schematic	of	fatigue	models	

Fatigue	experienced	during	exercise	is	reversible	with	rest	(both	short	and	long	term	recovery),	
with	athletes	able	to	maintain	lower	intensity	exercise	despite	experiencing	fatigue.		Identifying	
the	site	of	fatigue	is	a	complex	process,	yet	one	that	can	provide	practitioners	with	a	large	
amount	of	detail	on	the	specific	condition	of	individual	athletes.		As	previously	mentioned,	
common	sites	of	fatigue	include	glycogen	depletion	and	environmental	factors	that	alter	an	
athlete’s	physiology,	such	as	heat	and	humidity	(Costill	et	al.,	1973).		Environmental	issues,	such	
as	these,	affect	individual	hydration	levels	thereby	contributing	to	a	disturbance	of	homeostasis.		
Fatigue	during	exercise	was	noted	to	be	influenced	by	a	complex	interaction	between	two	
commonly	reported	themes	of	fatigue;	peripheral	and	central,	with	a	recent	study	in	semi-
professional	soccer	(Thomas,	Dent,	Howatson,	&	Goodall,	2017)	noting	that	while	central	
processes	contributed	towards	the	fatigue	experienced	in	the	days	post-match,	peripheral	
fatigue	was	the	primary	contributor	towards	the	neuromuscular	fatigue	experienced.		Central	
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and	peripheral	fatigue	is	examined	in	more	detail	below	in	Chapters	2.3.2.1	and	2.3.2.2	and	
presented	in	Figure	2.1. 

Much	of	the	fatigue	research	to	date	within	team	sports	has	incorporated	the	assessment	of	
muscular	fatigue,	presented	as	a	result	of	matches,	with	evidence	from	soccer	being	common	
(Greig,	2008;	Rahnama	et	al.,	2003;	Thomas	et	al.,	2017),	and	research	from	rugby	not	so	
prevalent	(Duffield	et	al.,	2012;	Ronglan,	Raastad,	&	Borgesen,	2006).		The	fatigue	produced	
within	a	team	sport	setting	has	commonly	been	assessed	by	comparing	the	force	of	maximal	
voluntary	contraction	before	and	after	exercise	(Duffield	et	al.,	2012;	Ronglan	et	al.,	2006).		The	
original	model	of	fatigue	by	Hill	(1914)	proposed	that	performance	during	exercise	of	high	
intensity	was	limited	by	skeletal	muscle	anaerobiosis,	resulting	in	lactic	acid	accumulation.		
However,	the	proposed	theory	of	Hill	(1914)	has	been	critiqued	and	developed	and	has	led	to	
the	‘‘catastrophe	theory’’	(Edwards,	1983),	which	proposed	that	“exercise	terminates	when	the	
physiological	and	biochemical	limits	of	the	body	are	exceeded,	causing	a	catastrophic	failure	of	
intracellular	homeostasis”	(Noakes	and	Gibson,	2004,	p.	648).		More	recent	criticism	of	
“catastrophe”	models	of	fatigue	has	been	noted,	with	little	published	evidence	supporting	this	
theory	that	fatigue	occurs	only	after	physiological	homeostasis	fails.		Instead	an	anticipatory	
response	coordinated	in	the	subconscious	brain	is	considered	to	be	a	major	contributor	to	
fatigue	(Noakes	&	Gibson,	2004;	Noakes,	Gibson,	&	Lambert,	2005).		A	recent	area	of	focus	in	
fatigue	research	includes	the	serotonin	hypothesis	theory	by	Meeusen,	Watson,	Hasegawa,	
Roelands,	and	Piacentini	(2006).		This	suggests	that	an	increase	in	ratio	of	serotonin	to	
dopamine	accelerates	the	onset	of	fatigue,	whereas	a	low	ratio	favours	improved	performance	
through	the	maintenance	of	motivation	and	arousal. 

	

Figure	2.2:	Schematic	of	muscle	fatigue	mechanisms	adapted	from	Abbiss	and	Laursen	(2005)	
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2.3.2.1 Central	fatigue	
Central	fatigue	is	a	progressive	reduction	in	voluntary	activation	of	muscle	during	exercise,	
resulting	in	neural	inhibition,	meaning	that	greater	voluntary	effort	is	required	to	drive	any	
motor	unit.		Central	fatigue	has	been	known	to	manifest	itself	in	several	ways	including	central	
nervous	system	fatigue,	motivation	and	other	psychological	factors.		Inability	to	continue	
exercise	experienced	by	both	recreational	and	elite	athletes	often	occurs	despite	fatigue	being	
present	within	the	muscles	themselves,	with	pain	from	central	fatigue	affecting	central	drive	to	
continue.		However,	restoration	of	force	as	a	result	of	external	stimulation	of	muscle	fibres	
indicates	a	central	fatigue	response,	as	the	muscle	is	able	to	continue	activity	despite	fatigue	
being	present.		Reduced	motor	unit	firing	rate	has	been	reported	during	central	fatigue,	
suggesting	lowered	central	drive,	yet	conflicting	evidence	of	“muscle	wisdom”	has	been	
reported	by	Garland	and	Gossen	(2002),	where	improvement	in	performance	under	severe	
fatigue	has	been	noted.	

Psychological	fatigue	is	also	a	consideration	for	practitioners	assessing	fatigue	during	sporting	
activities,	as	athletes	have	been	known	to	learn	to	minimise	the	influence	of	sensory	efforts,	
thus	enabling	them	to	approach	performance	limits	within	their	selected	sport.		If	an	athlete	
reports	as	fatigued,	it	is	most	likely	that	this	fatigue	experienced	is	from	some	sensory	
manifestation	of	the	neural	regulatory	mechanisms,	rather	than	being	a	consequence	of	a	
physiological	issue.		A	notion	of	the	influence	of	inhibitory	control	and	an	ability	to	resist	mental	
fatigue	was	noted	within	a	recent	study	in	professional	cycling	(Rattray,	Argus,	Martin,	Northey,	
&	Driller,	2015),	as	measured	via	Stroop	test	and	a	time	trial	on	a	cycle	ergometer.		The	effect	of	
psychology	within	central	fatigue	was	further	emphasised	by	the	Stechnov	phenomenon,	which	
showed	faster	recovery	of	strength	measures	when	implementing	distraction	or	“active	pause”	
strategies	during	recovery	from	exhaustive	tasks.		Within	the	research	by	Stechnov	work	output	
appeared	to	be	significantly	greater	after	an	active	pause	implemented	between	exercise	bouts,	
rather	than	after	a	passive	pause.	

2.3.2.2 Peripheral	fatigue	
Potential	physiological	outcomes	of	fatigue	include	reduced	muscle	force,	reduced	muscle	
velocity	and	power,	a	need	for	prolonged	relaxation	time	after	fatigue	and	increased	EMG	as	the	
muscle	looks	to	recruit	more	motor	units	(Kent-Braun,	1999).		These	mechanisms	are	
considered	to	be	peripheral	fatigue,	which,	in	contrast	to	central	fatigue,	concerns	the	
peripheral	nervous	system,	with	factors	affecting	peripheral	fatigue	including:	alterations	
within	the	excitation-contraction	coupling	(ECC)	process;	energy	supply	changes;	and	reduction	
in	force	generating	capacity.		Evidence	for	peripheral	fatigue	includes	that	by	Petrofsky	and	Lind	
(1980)	showing	large	increases	in	EMG	signal	with	no	increase	in	force	present.		Petrofsky	and	
Lind	(1980)	investigated	EMG	signal	in	a	rectus	femoris	muscle	during	graded	cycle	exercise.		
This	research	illustrates	that,	at	higher	work	rates,	the	EMG	signal	increased	disproportionately	
as	fatigue	developed,	with	the	motor	units	of	the	rectus	femoris	recruiting	additional	muscle	
fibres	as	the	work	output	of	fatiguing	muscles	declined.		Additional	evidence	for	peripheral	
fatigue	was	noted	by	Kent-Braun,	Miller,	and	Weiner	(1993)	when	assessing	the	metabolic	
phases	that	occur	during	progressive	exercise	to	fatigue.		Kent-Braun	et	al.	(1993)	used	a	4	s	
MVC	followed	by	a	6	s	relaxation	of	the	tibialis	anterior	muscle,	in	eight	healthy	humans	to	
demonstrate	that	three	distinct	phases	of	metabolism	occur	during	progressive	exercise,	all	
related	to	the	peripheral	fatigue	response	created.		The	phases	included	a	highly	oxidative	
phase;	an	intermediate	phase;	and	a	highly	glycolytic	phase,	where,	as	noted	by	Kent-Braun	et	
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al.	(1993)	fatigue	becomes	noteworthy	during	these	phases.	

Two	theories	exist	to	explain	peripheral	fatigue;	firstly,	depletion	of	energy	substrates	and	
secondly,	accumulation	of	metabolic	by	products	(Abbiss	&	Laursen,	2005;	Kent-Braun,	1999).		
Depletion	of	energy	substrates	involves	the	exhaustion	of	biochemical	products	such	as	
adrenosine	triphosphate	(ATP),	creatine	phosphate	(CP)	and	glycogen.		The	most	common	form	
of	metabolic	depletion	is	phosphagen	depletion,	whereby	ATP	and	CP	deplete	rapidly,	with	CP	
depletion	resulting	in	task	failure	during	high	intensity	exercise	and	ATP	depletion	preserved	as	
fatigue	develops.		Due	to	the	rapid	decrease	of	CP,	it	is	now	common	for	CP	supplementation	
within	many	elite	sport	settings,	with	metabolic	depletion	discussed	further	in	Chapter	2.5.1.7.		
Glycogen	depletion,	as	represented	by	carbohydrate	(CHO)	within	muscle,	is	another	area	of	
interest	for	practitioners,	especially	within	prolonged	submaximal	sport	settings	that	last	longer	
than	one	hour	(Noakes,	2002).		Within	team	sport	settings	like	rugby	union,	intermittent	
activities	are	performed	throughout	game	play	at	varying	exercise	intensities	(VO2max),	meaning	
that	glycogen	depletion	may	occur	more	quickly	than	during	sub-maximal	settings	such	as	
marathon	running.	

Due	to	glycogen	depletion,	an	athlete’s	ability	to	generate	ATP	is	impaired,	with	task	failure	
common	at	moderate	intensity	activities.		CHO	and	the	effect	of	glycogen	depletion	and	potential	
supplementation	used	to	delay	the	fatigue	response	are	discussed	in	more	detail	in	Chapter	
2.5.1.7.		Accumulation	of	metabolic	by	products	includes	hydrogen	ion	(H+),	calcium	
calcification	(CA++)	and	phosphates	(Pi),	where	the	fatigue	created	is	likely	to	be	a	combination	
of	the	biochemical	products,	along	with	the	specific	conditions	of	the	activity	performed.		Pi	
intracellular	accumulation	involves	ATP	developing	into	ADP,	during	which,	when	the	cell	
buffering	capacity	is	eventually	exceeded,	acidosis	develops.		As	noted	by	Robergs,	Ghiasvand,	
and	Parker	(2004),	in	a	review	of	the	biochemistry	of	exercise-induced	metabolic	acidosis,	
lactate	production	is	considered	to	be	a	consequence	rather	than	a	cause	of	the	cellular	
conditions	that	cause	acidosis.		When	lactate	production	is	greater	than	lactate	clearance,	
accumulation	develops	and	where,	similarly	to	Pi	accumulation,	inhibition	of	
phosphofructokinase	(PFK),	decreased	force	production	and	nausea	are	perhaps	the	most	
commonly	seen	responses. 

2.3.2.3 Biochemistry	of	fatigue	

2.3.2.3.1 Depletion	and	fatigue	
Perhaps	the	most	researched	area	examining	causes	of	fatigue	is	that	of	energy	systems	(Kent-
Braun	et	al.,	1993;	Nicholas,	Tsintzas,	Boobis,	&	Williams,	1999),	although	the	evidence	for	
energy	system	fatigue	within	rugby	union	specifically	is	lacking.		Muscle	glycogen	depletion	is	
the	most	important	substrate	for	energy	production	in	team	sport	settings	(Nedelec	et	al.,	2012)	
and	is	a	major	area	of	focus	for	practitioners	(Ortenblad,	Westerblad,	&	Nielsen,	2013).	
Breakdown	of	muscle	glycogen	is	commonly	reported	towards	the	end	of	soccer	games	
(Krustrup	et	al.,	2006;	Mohr,	Krustrup,	&	Bangsbo,	2003),	which	involve	both	aerobic	and	
anaerobic	exercise.		Muscle	glycogen	depletion,	assessed	over	a	three	game	period,	was	noted	
by	Krustrup	et	al.	(2006),	whereby	muscle	fibres	(mean	±	SEM	73	±	6%)	which	were	full	prior	
to	a	soccer	game,	were	recorded	as	being	lower	(p	<	0.05)	in	glycogen	post-match	(mean	±	SEM	
19	±	4%).		It	is	also	of	note	within	soccer	research	assessing	glycogen	depletion	that,	as	
reported	by	Jacobs,	Westlin,	Karlsson,	Rasmusson,	and	Houghton	(1982),	muscle	glycogen	
concentration	within	eight	Swedish	top-level	players	was	about	50%	of	the	pre-match	value	
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two	days	after	a	match.		This	illustrates	the	prolonged	affect	that	glycogen	depletion	can	have	
upon	subsequent	performance.		Recent	research	in	rugby	league	(Bradley	et	al.,	2016)	has,	
however,	noted	that	professional	players	utilise	40%	of	their	muscle	glycogen	stores	during	
match	play,	regardless	of	the	amount	of	carbohydrates	consumed	in	the	previous	36	hours.		This	
notion	would	therefore	support	the	view	that	muscle	glycogen	depletion	does	not	have	an	
influence	upon	fatigue	presented.		Nutritional	intervention	and	the	influence	upon	fatigue	in	the	
days	post-match	are	researched	further	in	Chapter	2.5.1.7	below.	

Phosphocreatine	(PCr)	depletion	has	been	a	recent	area	of	investigation	within	team	sport	
settings	(Bangsbo,	Iaia,	&	Krustrup,	2007;	Spencer,	Bishop,	Dawson,	&	Goodman,	2005).		At	
exhaustion,	ATP	levels,	which	are	rebuilt	by	the	use	of	PCr,	may	be	depleted,	with	athletes	
learning	through	experience	to	judge	the	optimal	pace	that	ensures	the	most	efficient	use	of	PCr	
and	ATP.		Muscle	glycogen	is	the	primary	source	for	ATP	synthesis	during	team	sport	activities,	
and	the	experiences	of	fatigue,	lack	of	energy	or	“emptiness”	may	be	attributed	to	muscle	
glycogen	depletion.		In	field	based	team	sport	settings,	evidence	for	the	contribution	of	PCr	was	
noted	by	Gaitanos,	Williams,	Boobis,	and	Brooks	(1993),	who	found	that	during	ten	6	s	sprints	
PCr	contributed	50%	of	the	ATP	production	in	the	first	sprint	and	80%	during	the	tenth	sprint,	
despite	a	significant	decline	in	PPO	by	the	fifth	sprint.		Evidence	from	the	research	by	Gaitanos	
et	al.	(1993)	shows	that	the	majority	of	PCr	re-synthesis	is	not	complete	within	short	recovery	
periods,	similar	to	those	associated	with	the	intermittent	nature	of	rugby	union	match	play	
where	passive	rest	periods	are	often	not	long	enough	to	fully	re-synthesise	PCr.	

The	influence	of	glycogen	depletion	within	team	sport	settings	was	further	emphasised	by	
Nicholas	et	al.	(1999),	where	trained	games	players	ingested	a	carbohydrate-electrolyte	drink	
during	fifteen	minutes	of	intermittent	running,	with	a	22%	reduction	in	muscle	glycogen	
utilisation	recorded,	thereby	improving	performance.		During	nutrient-related	fatigue	both	slow	
twitch	and	fast	twitch	muscle	fibres	are	influenced	by	glycogen	depletion,	and	the	individual	
muscle	fibres	most	frequently	recruited	during	that	exertion	are	the	ones	that	will	become	
depleted	of	glycogen	most	rapidly.		Typically	during	football	based	sports	(soccer	and	rugby),	
fast	twitch	and	slow	twitch	muscle	fibres	are	used,	yet	the	fast	twitch	fibres	are	recruited	more	
frequently	during	high	intensity	efforts	and	therefore	deplete	more	rapidly	than	slow	twitch	
fibres.		Fast	twitch	fibres	are	also	noted	to	have	a	greater	reliance	upon	glycogen	(Wilmore	&	
Costill,	1999).		Due	to	the	above	mentioned	depletion	mechanisms,	the	fatigue	sensations	
experienced	may	reflect	muscle	fibres’	inability	to	respond	to	the	exercise	demands.		Refuelling	
and	the	role	of	glycogen	within	short	and	long-term	recovery	are	examined	in	more	detail	in	
Chapter	2.5.1.7,	and	where	the	influence	and	relationship	of	recovery	from	fatigue	are	critiqued.	

2.3.2.3.2 Metabolic	by-products	and	fatigue	
The	most	common	by-product	of	fatigue	is	lactic	acid,	with	its	occurrence	often	appearing	
during	high	intensity	muscular	efforts,	as	often	seen	in	rugby	match	situations.		In	research	by	
Deutsch	et	al.	(1998)	forwards	were	noted	to	experience	higher	mean	blood	lactate	
concentrations	than	backs	(6.6	vs.	5.1	mmol.l;	p	=	0.063).		These	values	are	similar	to	those	
reported	in	other	team	sports	(Coutts	et	al.,	2009)	(5.59	±	1.78	mmol.l),	with	the	greater	
resultant	by-products	created	during	team	sport	match	play	emphasised,	when	comparing	
these	values	against	those	taken	during	periods	of	rest.		At	rest,	a	normal	range	for	blood	lactate	
was	reported	by	Gollnick,	Bayly,	and	Hodgson	(1986)	to	be	0.5	±	2.2	mmol.l	,	with	similar	rest	
values	presented	by	Mazzeo,	Brooks,	Schoeller,	and	Budinger	(1986)	(0.33	±	0.01	mmol.l).		It	is	
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important,	however,	for	practitioners	to	note	that	the	presence	of	lactic	acid	should	not	be	
blamed	for	the	feelings	of	fatigue	(Mann,	2007).		Instead	the	process	involves	lactate	
accumulation,	resulting	in	a	condition	called	acidosis,	due	to	a	reduced	capacity	to	buffer	
hydrogen	ions.		Acidosis,	however,	does	not	always	mean	that	exercise	is	volitionally	
terminated,	as	athletes	have	been	noted	to	exercise	at	a	lactate	level	eight	times	greater	than	the	
resting	value	during	semi-professional	rugby	league	match	play	(Coutts,	Reaburn,	&	Abt,	2003)	
(7.2	±	2.5	mmol.l). 

2.3.2.3.3 Neural	fatigue	and	the	excitation-contraction-relaxation	processes	
Another	commonly	reported	factor	that	may	be	responsible	for	fatigue	is	the	role	of	an	athlete’s	
inability	to	activate	muscle	fibres.		This	is	perhaps	the	most	common	mechanism	responsible	for	
fatigue	in	the	days	after	a	rugby	match,	and	lies	within	the	excitation-contraction-relaxation	
(ECR)	processes.		The	excitation–contraction–relaxation	cycle	within	muscles	involves	action	
along	the	sarcolemma	of	the	tubular	system,	with	repetitive	excitation	of	the	muscle	fibres,	
causing	a	progressive	decrease	in	the	trans-sarcolemmal	gradients	within	the	tubular	system,	
which	may	result	in	a	less	negative	resting	membrane	potential	and	decreased	fibre	excitability	
(Stephenson,	Lamb,	&	Stephenson,	1998).		There	are	many	steps	within	the	complex	ECR	cycle	
that	can	be	seen	as	potential	sites	for	muscle	fatigue	and	are	therefore	of	interest	to	sports	
science	practitioners	when	assessing	post	exercise	recovery	rates.		As	noted	within	research	by	
Stephenson	et	al.	(1998)	it	is	important	to	consider	that	the	ECR	cycle	is	less	likely	to	be	
compromised	during	repeated	contractions	of	slow-twitch	muscle	fibres	and	instead	it	is	more	
likely	that	fast-twitch	muscle	fibres	would	reach	a	state	of	rigor	first.		The	notion	of	low	
frequency	fatigue	(LFF)	response	created	by	game	involvement	associated	with	the	ECR	cycle,	
was	first	discussed	by	Edwards,	Hill,	Jones,	and	Merton	(1977)	and	subsequently	noted	in	
recent	research	by	McLean	et	al.	(2010)	to	be	a	main	contributor	to	fatigue	in	the	days	post-
exercise.		Both	LFF	and	high	frequency	fatigue	(HFF)	result	in	reduced	force	production	with	
LFF	lasting	for	multiple	days	and	HFF	usually	dissipating	within	two	hours	of	the	end	of	exercise	
(Raastad	&	Hallen,	2000).		It	is	believed	that	these	LFF	responses	are	represented	by	perceived	
feelings	such	as	“heavy	legs”	(Taylor,	2012),	with	SSC	exercises	such	as	vertical	jumping	being	
used	to	monitor	long	lasting	low	frequency	fatigue.		The	role	of	the	ECR	cycle	and	the	related	
neuromuscular	fatigue	research	are	examined	in	more	detail	in	Chapter	2.3.3.	

In	a	study	by	Kent-Braun	(1999),	assessing	contributions	to	muscle	fatigue	in	humans	during	
sustained	maximal	effort	(four	minute	maximum	voluntary	isometric	contraction),	it	was	noted	
that	approximately	20%	of	muscle	fatigue	was	attributed	to	central	fatigue	and	that	the	
remainder	was	associated	with	intramuscular	factors.		These	intramuscular	factors	include	
metabolic	responses	from	exercise,	which	are	commonly	seen	in	prolonged	low	intensity	
exercise	situations,	where	failure	of	ECC	is	a	reason	for	muscle	failure.		High	intensity	exercise,	
in	contrast,	involves	accumulation	of	intramuscular	metabolites	as	discussed	in	the	peripheral	
fatigue	section	(Chapter	2.3.2.2).		The	contribution	of	central	and	peripheral	fatigue	can	be	
estimated	using	electrical	stimulated	force	measures,	EMG	and	magnetic	resonance	
spectroscopy	(MRS).	

2.3.3 Neuromuscular	fatigue	

2.3.3.1 Mechanisms	of	neuromuscular	fatigue	
Muscle	fatigue	concerns	the	decrease	in	performance	capacity	of	muscles;	usually	evidenced	by	
a	failure	to	maintain	or	develop	a	certain	expected	force	or	power	(Enoka	&	Duchateau,	2008).		



	 37	

As	presented	in	Chapter	2.3.2,	muscle	fatigue	can	occur	in	two	basic	mechanisms:	central	and	
peripheral	fatigue.		Much	of	the	recent	research	in	NMF	concerns	peripheral	fatigue,	whereby	
local	changes	in	the	internal	conditions	of	the	muscle	affect	neuromuscular	status.		NMF	has	
been	described	by	McLellan	et	al.	(2011b,	p.	1030)	as	“any	exercise	induced	reduction	in	the	
maximal	voluntary	force	or	power	produced	by	a	muscle,	with	the	type	of	muscle	contraction,	
intensity	and	duration	of	exercise	being	determining	factors”.		Models	of	NMF	often	refer	to	a	
reduction	in	the	force	or	power	production	of	a	muscle,	with	few	studies	examining	the	
relationship	between	neuromuscular	function	and	rugby.		As	noted	by	Cairns,	Knicker,	
Thompson,	and	Sjogaard	(2005)	the	choice	of	model	utilised	depends	upon	the	sport	in	
question,	with	sometimes	more	than	one	model	being	needed	to	evaluate	fatigue	responses	
post-exercise.		Two	main	theories	exist	around	NMF	including	the	central	activation	theory	and	
the	neuromuscular	propagation	failure	theory	(Allman	&	Rice,	2002),	yet	no	ideal	model	that	
studies	NMF	exists	(Cairns	et	al.,	2005).		As	reported	by	Abbiss	and	Laursen	(2005),	central	
activation	failure	theory	involves	a	reduction	in	neural	drive,	whereas	the	neuromuscular	
propagation	failure	theory	sees	fatigue	as	a	result	of	reduced	responsiveness	and	concerns	
peripheral	mechanisms.		This	reduced	responsiveness	involves	the	ability	of	the	muscle	to	
produce	force	and	is	limited	by	the	response	of	the	muscle	to	an	electrical	stimulus.  It	is,	
however,	important	to	note	that	the	information	presented	on	NMF	by	Abbiss	and	Laursen	
(2005)	focused	on	cycling	and	not	on	an	intermittent	contact	sport	such	as	rugby,	where	
eccentric	muscle	actions	and	blunt	muscle	trauma	are	the	likely	contributors	to	NMF.		An	
important	consideration	for	practitioners	is	that	the	central	fatigue	created	by	exercise	could	be	
a	response	to	afferent	input	from	peripheral	organs,	with	the	aim	of	preventing	injury	or	death	
and	resulting	in	a	reduction	or	termination	of	exercise.		Central	fatigue	and	the	related	central	
governance	theory	are	discussed	below	when	considering	the	mental	response	of	fatigue	
created	in	team	sport	settings.	

Many	studies	(McLean	et	al.,	2010;	McLellan	&	Lovell,	2012;	Mooney,	Cormack,	O'Brien,	Morgan,	
&	McGuigan,	2013;	Twist	et	al.,	2012)	have	followed	the	common	trend	of	analysing	NMF	
through	Stretch	Shortening	Cycle	(SSC)	exercises,	as	opposed	isometric,	eccentric	and	
concentric	movement	patterns	(Hoffman,	Ratamess,	&	Kang,	2011;	McLellan	et	al.,	2011b).		
Strojnik	and	Komi	(1998)	noted	that	NMF	mechanisms	would	vary	between	sub-maximal	and	
maximal	exercises,	meaning	that	sport	specific	tests	should	be	administered	to	assess	NMF.		The	
main	difference	between	sub-maximal	and	maximal	testing	involves	the	intensity	of	the	
exercises	prescribed;	meaning	that	sub-maximal	is	often	preferred	within	training	settings	as	no	
further	fatigue	is	added	through	the	testing	protocol.		NMF	fatigue	and	associated	exhaustion	
experienced	during	or	post	maximal,	or	near-maximal,	isometric	contractions	is	unlikely	to	be	a	
result	of	general	depletion	of	the	energy.		Instead	the	likely	cause	of	NMF,	from	a	physiological	
standpoint,	may	be	the	high-energy	phosphates,	especially	CP.		During	high	intensity	exercise	
the	reduced	rate	of	energy	transfer	from	the	stores	to	the	ATP	and	CP	cause	an	increase	in	
muscle	lactic	acid.		In	research	assessing	muscle	fatigue	in	sport	by	Asmussen	(1979),	it	was	
reported	that	lactic	acid	production	was	termed	as	"fatigue	substance”.		This	is	therefore	an	
additional	area	of	consideration	for	practitioners	utilising	maximal	NMF	assessment	within	high	
intensity	sporting	activities.	

2.3.3.2 Models	of	fatigue	
Numerous	linear	models	have	been	developed	to	explain	fatigue,	with	a	comprehensive	model	
of	the	physiological	responses	to	training	stimuli	being	the	fitness-fatigue	theory	(Figure	2.2).		
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This	theory	involves	different	training	stresses	resulting	in	different	physiological	responses	
(Banister,	1991).		Early	fitness	and	fatigue	theory	was	developed	by	Banister	(1975),	who	
hypothesised	that	each	training	bout	produced	both	a	fatigue	and	a	fitness	impulse	(Calvert,	
Banister,	Savage,	&	Bach,	1976).		Calvert	et	al.	(1976)	noted	that	fatigue	decays	three	times	
faster	than	fitness,	hence	the	need	for	positive	training	adaptation	to	enhance	performance.		The	
fitness	or	fatigue	created	can	positively	or	negatively	influence	performance,	resulting	in	a	
change	following	the	stimulus	and	being	dependant	on	the	relative	levels	of	both	variables	(Chiu	
&	Barnes,	2003).		Research	(Hellard	et	al.,	2006)	has,	however,	proposed	that	the	Banister	
model	is	inappropriate	for	use	in	monitoring	the	training	process	in	elite	swimmers,	as	the	5%	
Confidence	Intervals	(CI)	values	(the	most	useful	parameters	for	monitoring	training)	were	
reported	to	be	too	wide.		This	view,	which	questions	the	irrelevance	of	the	Banister	model,	is	
therefore	a	further	consideration	for	practitioners,	who	need	to	be	sure	of	its	accuracy	in	order	
to	make	informed	training	prescription	decisions.	

In	addition	to	the	models	of	fatigue	displayed	in	Figure	2.1,	models	of	fatigue	are	examined	in	
more	detail	in	Table	2.12.		It	is,	however,	important	to	note	that	Table	2.12	includes	many	
models	to	explain	fatigue,	but	does	not	explain	fatigue	created	as	result	of	muscle	damage	from	
match	demands.		As	noted	within	Chapter	2.1,	the	match	demands	for	rugby	union	players	
involves	many	contact	situations	where	muscle	trauma	damage	is	created	alongside	the	muscle	
damage	accumulated	due	to	eccentric	and	concentric	contractions	(micro	trauma).		One	could,	
therefore,	argue	that	a	muscle	damage	model	should	be	proposed	when	assessing	the	possible	
fatigue	causes	associated	with	rugby	union.		Inhibition,	due	to	the	swelling	that	could	occur	with	
muscle	damage	created	by	moments	of	physical	contact	from	training	and	games,	will	affect	
neuromuscular	stimulation	and	therefore	subsequent	performance	test	results,	despite	players	
perhaps	not	presenting	as	being	fatigued	in	other	performance	measures	(Smith,	Kruger,	Smith,	
&	Myburgh,	2008).		In	the	review	of	models	of	fatigue	by	Abbiss	and	Laursen	(2005),	which	
focused	upon	the	sport	of	cycling,	they	correctly	identified	Types	1,	2	and	3	muscle	damage	
categories,	with	Type	1	muscle	damage	encompassing	swelling	as	a	result	of	exercise.		This	Type	
1	muscle	damage,	proposed	within	the	research	by	Abbiss	and	Laursen	(2005),	does,	however,	
not	involve	trauma	experienced	by	body	contacts	associated	with	many	team	spots	such	as	
rugby.		Despite	some	research	showing	the	effect	of	deliberate	muscle	damage	imposed	on	
animals	in	the	laboratory	settings	(Bunn	et	al.,	2004;	Rushton,	Davies,	Horan,	Mahon,	&	
Williams,	1997),	to	the	author’s	knowledge	there	are	no	studies	that	have	been	published	in	
rugby	union	illustrating	the	effect	of	muscle	damage	from	trauma,	on	general	fatigue.		This,	
though,	is	unsurprising	considering	the	ethical	issues	that	surround	all	research	in	humans.	
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Table	2.12:	Exercise	fatigue	models	and	the	theories	associated	with	them	

Model	 Theory	 Additional	points	

The	
cardiovascular/anaerobic	
model			

	

• Performance	is	determined	by	
capacity	of	the	heart	with	training	
increasing	cardiovascular	fitness	

• The	heart	has	a	limiting	maximum	
cardiac	output	that	is	reached	at	the	
onset	of	a	‘‘plateau	phenomenon’’	

• Instead	when	the	oxygen	supply	
becomes	inadequate,	it	is	probable	
that	the	heart	by	human	design	
includes	controls	to	protect	the	
heart	from	ever	entering	dangerous	
situations	

• The	capacity	of	the	heart	does	not	
limit	oxygen	utilisation	by	the	
exercising	skeletal	muscle,	therefore	
this	theory	is	limited	

• Instead	the	heart	reaches	the	limit	
of	its	powers	earlier	than	the	
skeletal	muscles,	and	determines	
capability	for	exertion	

• A	“governor”	exists	in	the	central	
nervous	system,	whose	function	is	
likely	to	prevent	the	development	of	
myocardial	ischemia	

The	energy	supply	model		 • Fatigue	during	high	intensity	
exercise	results	from	the	inability	to	
supply	ATP	at	rates	sufficiently	fast	
to	sustain	exercise	

• Superior	performance	occurs	when	a	
greater	capacity	to	generate	ATP	in	
the	specific	metabolic	pathway(s)	is	
developed	

• Exercise	is	terminated	by	a	central	
governor	responding	to	factors	
other	than	skeletal	muscle	pH	

• ATP	concentrations	are	‘‘defended’’	
in	order	to	prevent	the	
development	of	skeletal	muscle	
rigor	

• Evidence	suggests	that	cell	ATP	
rarely	falls	below	70%	of	the	pre-
exercise	level,	even	in	cases	of	
exercise	fatigue	

• Peripherally	located	inhibition	of	
muscular	contraction	is	key	to	
exercise	cessation	

The	energy	depletion	model			

	

• The	energy	depletion	model	of	
exercise	performance	is	specific	for	
exercise	lasting	more	than	2-3	hours	

• The	human	body	has	a	limited	
capacity	to	store	carbohydrates	

• Fatigue	during	prolonged	exercise	is	
associated	with	depletion	of	muscle	
glycogen	stores	

• The	influence	of	central	(neural)	
fatigue	limiting	prolonged	exercise	
when	muscle	glycogen	
concentrations	are	low	is	unclear	

• Delaying	the	onset	of	terminal	
muscle	glycogen	depletion	will	aid	
performance	

The	muscle	recruitment	
(central	fatigue)/muscle	
power	model			

	

• The	processes	involved	in	skeletal	
muscle	recruitment,	excitation	and	
contraction	is	the	limiting	factor	

• Reduced	central	neural	drive	to	
muscle	after	fatiguing	muscle	
contractions	

• The	brain	concentration	of	
serotonin	(and	perhaps	other	
neurotransmitters,	including	
dopamine)	alters	the	density	of	the	
neural	impulses	reaching	the	
exercising	muscles,	thereby	
influencing	fatigue	rate	

The	biomechanical	model			

	

• The	greater	the	muscle’s	capacity	to	
act	as	a	spring,	the	less	torque	it	
must	produce	and	hence	the	more	
efficient	it	is	

• The	more	economical	the	athlete,	
the	faster	they	will	be	able	to	run	
before	reaching	a	limit	

• Reduced	tolerance	to	muscle	
stretch	and	a	delayed	transfer	from	
muscle	stretch	to	muscle	
shortening	in	the	
stretch/shortening	cycle	

The	
psychological/motivational	
model	

• The	ability	to	sustain	exercise	
performance	results	from	a	
conscious	effort	and	is	often	
included	as	a	component	of	central	
fatigue		
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2.3.4 Factors	affected	by	fatigue	which	are	important	for	performance	
An	athlete’s	current	training	status	has	a	large	effect	upon	the	mechanism	of	fatigue	
experienced	during	match	play,	yet	interaction	between	mechanisms	is	often	seen	as	a	major	
contributor,	as	was	reviewed	in	research	by	Knicker	et	al.	(2011).		Data	from	rugby	league	
(Kempton,	Sirotic,	Cameron,	&	Coutts,	2013)	assessing	match-related	fatigue	during	elite	rugby	
league	match-play,	noted	reductions	in	physical	performance	towards	the	end	of	matches,	
following	brief	periods	of	intense	exercise.		Kempton	et	al.	(2013)	also	noted	that	match-related	
fatigue	during	elite	rugby	league	match	play,	showed	significant	reductions	in	skill	rating	and	
the	number	of	involvements	observed	in	the	final	stages	of	matches,	which	may	be	attributable	
to	match-related	fatigue.		Within	soccer,	recent	research	by	Krustrup,	Zeris,	Jensen,	and	Mohr	
(2010)	reported	that	decrements	in	distance	covered	by	sprinting	and	high-speed	running	
toward	the	end	of	elite	female	soccer	games	are	caused	by	fatigue.		Development	of	fatigue	
during	soccer	match	was	also	examined	by	Mohr	et	al.	(2003),	with	fatigue	reported	as	
occurring	towards	the	end	of	matches,	as	well	as	temporarily	during	the	game.		Additionally,	
within	the	research	by	Mohr	et	al.	(2003)	the	top-class	players	were	noted	to	perform	better	
(11%;	p	<	0.05;	2.26	±	0.08	km)	on	the	Yo-Yo	intermittent	recovery	test	than	the	moderate	
players	(2.04	±	0.06	km),	despite	the	top-class	players	performed	28%	and	58%	more	(p	<	0.05)	
high-intensity	running	and	sprinting.		Lastly,	within	soccer,	evidence	for	the	effect	of	fatigue	
upon	game	performance	was	also	noted	by	Greig	(2008),	when	assessing	isometric	torque	of	
the	knee	flexors	and	extensors,	with	peak	eccentric	knee	flexor	torques	at	the	end	of	the	game	
(127	±	25	N.m)	compared	to	the	first	fifteen	minutes	(161	±	35	N.m,	p	=	0.02).	

2.3.5 Assessing	fatigue	
When	monitoring	fatigue,	it	is	important	to	consider	that	fatigue	occurs	in	the	nervous	system	
and	muscle	at	varying	levels,	and	the	rates	at	which	fatigue	develops	depends	on	the	activity	
and	intensity	of	the	sport	completed.		Neuromuscular	function	tests	are	perhaps	the	most	
commonly	used	forms	of	assessing	player	fatigue	in	team	sport	settings	and	include:	varying	
forms	of	jump	tests;	plyometric	push-ups;	sprint	performances;	sub-maximal	(such	as	heart	rate	
recovery	tests)	and	maximal	performances;	and	isokinetic	dynamometry	(Duffield	et	al.,	2012;	
Johnston	et	al.,	2013;	Twist	&	Sykes,	2011).		In	this	review	of	best	practice	for	assessing	fatigue,	
Taylor	(2012)	observed	that	91%	of	high	performance	programs	reported	using	some	form	of	
monitoring,	with	the	predominant	usages	being	injury	prevention	(29%),	monitoring	
effectiveness	of	the	training	program	(27%),	maintaining	performance	(22%)	and	preventing	
overtraining	(22%).		Considering	the	research	above,	which	illustrates	the	accumulation	of	
fatigue	and	incomplete	recovery	commonly	seen	in	rugby,	the	importance	of	further	emphasis	
on	optimising	post-match	recovery	periods	is	noted,	in	order	to	avoid	additional	cumulative	
adverse	effects	on	games	and	training.	

Few	studies	have	used	monitoring	methods	that	prescribe	future	training,	instead	previous	
research	has	focused	on	adaptation	to	training	load	(Aubert,	Seps,	&	Beckers,	2003;	Hartwig,	
Naughton,	&	Searl,	2009)	and	on	the	existence	of	overtraining	(Halson	&	Jeukendrup,	2004).		
One	study	that	has	implemented	measures	to	assess	deliberate	overreaching	in	Rugby	League	
players	over	a	six	week	progressive	overload	period	(Coutts,	Reaburn,	Piva,	&	Rowsell,	2007),	
noted	that	no	single	reliable	biochemical	marker	was	present	and	also	that	the	Multistage	
Fatigue	Test	(MSFT)	test	may	be	a	useful	measure	for	monitoring	responses	in	team	sport	
athletes.		Coutts,	Reaburn,	Piva,	and	Murphy	(2007)	concluded	that	muscular	strength;	power	
and	endurance	were	reduced	following	the	overload	training	period,	indicating	a	state	of	
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overreaching.		Resting	measure	of	plasma	testosterone	to	cortisol	ratio,	plasma	glutamate,	
plasma	glutamine	to	glutamate	ratio	and	plasma	CK	activity	demonstrated	significant	changes	at	
the	end	of	the	overload	training	period	(p	<	0.05).		The	decreased	performance	in	tests	such	as	
the	MSFT	and	3RM	exercises,	were	most	likely	a	result	of	increased	muscle	damage	caused	from	
a	decrease	in	the	anabolic-catabolic	balance.		Laboratory	methods	for	assessing	NMF	are	more	
complex,	more	time	consuming	and	more	invasive	than	measures	typically	used	within	elite	
sport	settings.		A	direct	summary	of	the	athlete’s	neuromuscular	status	has	been	the	aim	of	
practitioners	for	many	years,	with	reaction	tests	and	jump	tests	being	some	of	the	most	used	
protocols	(Waldron	et	al.,	2011).	

A	recent	area	of	interest	for	practitioners	has	been	the	use	of	subjective	indicators	of	well-being	
and	electronic	devices	to	assess	overall	readiness,	which,	when	combined	with	more	traditional	
measures	of	NMF	have	presented	added	value	(Flatt	&	Esco,	2013,	2015;	Tian	et	al.,	2013).		
Readiness,	assessed	by	bio-electrical	current	which	is	painless	and	simple	to	administer	is	
becoming	an	appropriate	alternative	for	practitioners,	with	direct	electronic	assessments	of	
NMF	via	devices	such	as	Check,	ithlete	and	Omegawave	being	readily	used.		Subjective	indicators	
and	profile	of	mood	states	(POMS)	questionnaires	have	been	used	in	recent	research	(Filaire,	
Bernain,	Sagnol,	&	Lac,	2001;	Halson	et	al.,	2002).		Despite	being	sensitive	for	daily	use	when	
combined	with	more	traditional	measures	to	assess	NMF	(Schmikli,	Brink,	de	Vries,	&	Backx,	
2011),	their	accuracy	has	been	questioned	(Grove	&	Prapavessis,	1992).		Modern	practices	
designed	consistently	to	produce	valid	neuromuscular	status	utilising	NMF	testing	via	recent	
technological	advances,	are	key	areas	of	future	development.		Despite	the	fact	that	the	use	of	
well-being	and	electronic	devices	that	assess	overall	readiness	do	not	actually	assess	NMF,	the	
functional	state	assessment	that	these	modern	practices	investigate	is	still	of	interest	to	
practitioners.		In	contrast	to	performance	tests,	which	are	more	objective	in	nature,	such	
functional	state	assessments	do	not	involve	any	potential	influence	of	athlete	compliance	and	
therefore	participants	cannot	manipulate	data	produced.		Removing	any	objective	discrepancies	
that	can	be	associated	with	common	NMF	testing	practices,	such	as	lack	of	motivation	from	
athletes,	is	key,	when	considering	the	effect	compliance	issues	of	players	could	have	upon	
results.	

In	a	critical	appraisal	of	monitoring	tools	to	assess	recovery,	Twist	and	Highton	(2013)	noted	
that	match	demands	of	rugby	league	lead	to	immediate	and	prolonged	post-match	fatigue,	due	
to	a	combination	of	muscle	damage	and	substrate	depletion.		When	assessing	perceptual	
measures,	biochemical	markers	and	muscular	function,	Twist	and	Highton	(2013)	noted	a	
simple	measure	of	muscle	function	such	as	jump	testing	to	be	the	most	practical	and	
appropriate	method	of	determining	the	extent	of	fatigue	experienced	by	rugby	league	players.		
Reduced	performance	during	peak	knee	extension	torque	testing	was	reported	to	be	prolonged	
by	Twist	and	Sykes	(2011)	for	up	to	48	hours	post	simulated	rugby	league	game;	with	West	et	
al.	(2014)	also	reporting	prolonged	performance	reduction	when	assessing	peak	power	output	
from	CMJ	for	up	to	60	hours	post	rugby	union	game.		Despite	the	fact	that	the	research	by	Twist	
and	Sykes	(2011)	incorporated	many	measures	of	performance	(perceived	muscle	soreness,	
Creatine	Kinase	[CK]	activity,	isokinetic	strength	and	jump	height)	the	Rugby	League	Match	
Simulation	Protocol	(RLMSP)	involved	within	this	study	along	with	the	low	playing	level	of	the	
participants,	make	this	research	limited	in	value	to	other	elite	rugby	union	researchers.		The	
research	by	West	et	al.	(2014),	by	contrast,	incorporated	assessment	of	professional	rugby	
union	players	post	real	match	situations	and	involved	the	use	of	saliva	and	force	plate	testing	
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(lower	body	peak	power	output).		Results	showed,	reduced	NMF	and	hormonal	disruption	at	36	
hours	post	match,	before	recovering	at	60	hours	post-match,	while	self-perceived	reduction	in	
mood	was	noted	to	have	recovered	by	36	hours	post-match.		It	is,	however,	important	to	note	
that	the	differing	time	point	assessments	and	methodological	involvement	mentioned	above,	
within	these	two	studies,	could	perhaps	explain	the	differences	revealed.		Regardless	of	the	
method	used	to	assess	NMF,	it	is	important	to	note	that	heavy	training	of	the	lower	body	has	
been	advised	to	be	avoided	in	the	48	hours	after	a	rugby	league	game	(McLellan	et	al.,	2011b).		
The	reliability	of	NMF	testing	is	difficult	to	ascertain,	as	no	study	has	compared	methods	across	
research,	meaning	that	comparisons	between	research	and	results	are	limited.	

2.3.6 Fatigue	and	rugby	
Research	on	player	fatigue	levels	in	rugby	is	commonly	reported	(Alaphilippe	et	al.,	2012;	
Kempton	et	al.,	2013)	and	the	associated	phenomenon	of	burnout	is	a	concern	within	the	
modern	game	(Cresswell	&	Eklund,	2006).		Within	rugby	union,	the	myriad	of	factors	that	can	
effect	fitness	or	fatigue	(minutes	played,	injury,	weather	and	playing	style)	created	by	training	
and	games,	means	that	the	Banister	model	is	unlikely	to	be	accurate	and	potentially	difficult	for	
practitioners	to	control.		Fatigue	is	often	represented	by	the	inability	to	maintain	force	or	power	
output	at	the	required	level	and	as	noted	by	Halson	(2014),	fatigue	is	multifaceted	in	nature	and	
can	be	influenced	by	the	type	of	stimulus,	contraction,	duration,	frequency	and	intensity	of	the	
exercise.		Due	to	these	activities	and	the	large	volumes	of	activity	from	both	training	and	games	
over	the	course	of	a	playing	season,	rugby	players	become	fatigued	(Argus,	Gill,	Keogh,	et	al.,	
2012;	Cresswell	&	Eklund,	2006;	Fuller,	Brooks,	Cancea,	Hall,	&	Kemp,	2007).		The	most	
commonly	used	fatigue	models	and	the	theories	that	surround	them	are	reviewed	in	Table	2.12,	
with	notes	taken	from	Noakes	(2000).		When	considering	the	models	above,	it	is	clear	that	all	
the	models	contribute	to	the	fatigue	response	developed	from	exercise	and	that,	within	rugby,	a	
fatigue	response	is	likely	to	be	created	by	a	combination	of	all	models	critiqued	above.	

Uncertainty	exists	around	the	influence	of	rugby	specific	impacts	and	muscle	damage	on	acute	
NMF	and	associated	recovery	post-match	play	in	rugby	union.		To	date,	the	majority	of	research	
in	rugby	union	and	players	readiness	has	focused	upon	movement	patterns	during	games	
(Cahill	et	al.,	2013),	training	workload	(Casamichana,	Castellano,	Calleja-Gonzalez,	San	Roman,	
&	Castagna,	2013)	and	performance	fatigue	markers	(Coutts,	Reaburn,	Piva,	&	Rowsell,	2007;	
Coutts,	Slattery,	&	Wallace,	2007)	all	of	which	would	better	prescribe	future	training.		As	seen	in	
the	study	by	McLellan,	Lovell,	and	Gass	(2011a),	PRFD	on	average	was	12653	N.s-1	across	rugby	
league	players	24	hours	pre-game	and	on	average	9379	N.s-1	24	hours	post-match.		Similarly,	
McLellan	and	Lovell	(2012)	noted	reductions	in	peak	power	of	-10%	for	up	to	24	hours	post	
rugby	league	game,	before	recovering	at	72	hours.		Additionally,	in	another	study	assessing	
rugby	league	players	(McLean	et	al.,	2010),	CMJ	flight	time	and	relative	power	were	significantly	
reduced	in	the	48	hours	following	the	match.		McLean	(2010)	reported	that	CMJ	variables	
returned	to	near	baseline	values	four	days	after	matches,	while	West	et	al.	(2014)	noted	peak	
power	measured	via	CMJ	recovered	no	sooner	than	60	hours	(-7%	for	36	hours).		McLean	et	al.	
(2010)	noted	that	day	one	CMJ	flight	time	measures	were	significantly	lower	than	day	four	(p	<	
0.01,	d	=	−1.06)	and	the	day	before	the	match	at	the	end	of	the	training	microcycle	(p	<	0.05,	d	=	
1.06),	with	West	et	al.	(2014)	noting	NMF	assessed	by	CMJ	outlasting	mood	disturbances	post	
rugby	union	match.		McLean	et	al.	(2010)	noted	that	CMJ	values	have	been	shown	to	be	reliable	
and	useful	in	detecting	LFF	in	team	sport	athletes,	with	this	notion	supported	by	many	other	
researchers	(Cormack,	Newton,	McGuigan,	&	Cormie,	2008;	Cormack,	Newton,	McGuigan,	&	
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Doyle,	2008).		It	is,	however,	important	to	note	that	the	load	prescribed	for	CMJ	needs	to	
carefully	selected,	as	under	a	load	LFF	is	less	influenced	due	to	the	relationship	that	exists	
between	load	lifted	and	RFD	(McLellan,	Lovell,	&	Gass,	2011d).	

Research	by	Fowles	(2006)	showed	CMJ	flight	time	to	be	sensitive	to	acute	fatigue	and	CMJ	
relative	power	to	be	more	sensitive	to	accumulated	fatigue.		This	notion	was	also	supported	by	
Johnston	et	al.	(2013),	who	noted	increased	Type	2	muscle	fibre	disruption	and	the	resultant	
changes	in	the	force-velocity	relationship.		Contrasting	results	do,	however,	exist	showing	a	lack	
of	sensitivity	of	jump	height	to	fatigue	(Cormack,	Newton,	&	McGuigan,	2008;	Coutts,	Reaburn,	
Piva,	&	Rowsell,	2007).		It	is	important	for	practitioners	to	note	that	movement	with	minimal	
loading	on	the	muscles,	such	as	a	CMJ	performed	at	bodyweight,	may	be	impaired	to	a	lesser	
extent	than	those	that	involve	maximal	loads,	such	as	isometric	strength	tests,	which	rely	on	
maximal	force	production	instead,	as	reported	by	Twist	and	Sykes	(2011).		Prescription	of	CMJ	
as	a	testing	measure	does,	however,	have	limitations,	including	technique	and	apparatus	used	
(Glatthorn	et	al.,	2011;	Markovic,	Dizdar,	Jukic,	&	Cardinale,	2004).		However,	this	notion	that	
CMJ	testing	is	an	unreliable	measure	for	fatigue	testing	was	disputed	by	Twist	and	Sykes	(2011)	
and	supported	by	other	research	(Hamilton,	2009;	McLellan	&	Lovell,	2012),	which	showed	
jumping	activities	to	be	reliable	and	accurate	in	determining	neuromuscular	fatigue	post-match	
situations	and	in	aiding	the	fatigue-recovery	cycle	time	line.		Jump	testing	is	critiqued	in	more	
detail	within	Chapter	2.4.1.2,	showing	its	relevance	as	a	performance	test	and	as	a	measure	of	
fatigue.	

Accumulation	of	fatigue	and	incomplete	recovery	post	rugby	game	has	been	reported	by	many	
authors	(McLean	et	al.,	2010;	McLellan	&	Lovell,	2012;	West	et	al.,	2014),	with	neuromuscular	
function,	biochemical,	endocrine	and	perceptual	measures	used	as	markers	of	fatigue.		Despite	a	
vast	amount	of	research	upon	fatigue	post-match,	few	studies	have	researched	the	efficiency	of	
methods	for	monitoring	restoration	of	performance	and	overall	recovery	between	games	in	
elite	rugby	settings,	where	players	are	competing	on	a	weekly	basis	(Taylor,	2012;	Twist	&	
Highton,	2013).		Both	McLellan	and	Lovell	(2012)	and	McLean	et	al.	(2010)	utilised	CMJ	as	a	test	
of	NMF,	reporting	compromised	values	(flight	time,	peak	power,	peak	rate	of	force	development	
and	peak	force)	for	up	to	48	hours	post-match.		Similarly,	West	et	al.	(2014)	noted	reduced	NMF	
in	conjunction	with	hormonal	disruption,	for	up	to	36	hours	post-match.		Cumulative	fatigue	
over	a	season	has	also	been	reported	by	Gill,	Beaven,	and	Cook	(2006)	and	was	illustrated	by	
the	elevated	CK	levels	pre-match.		Although	varying	degrees	of	muscle	damage	can	alter	CK	
levels,	residual	fatigue	carried	over	from	the	previous	match	and	the	training	schedule	that	
followed	that	match	can	also	have	an	effect	upon	the	muscle	damage	present	and	the	associated	
CK	levels	reported.		Often	throughout	training	weeks	(microcycles)	in	team	sports,	players	are	
required	to	return	to	training	in	the	immediate	days	post-match,	as	the	preparation	for	the	next	
match	needs	to	commence,	yet	the	consequence	of	these	training	sessions	are	an	important	
consideration	for	practitioners.		Training	stress	cannot	be	underestimated,	considering	the	
evidence	that	a	typically	used	strength	and	power	session	resulted	in	reduced	NMF	for	48	hours	
post	exercise	(Gee	et	al.,	2011),	represented	by	reduced	CMJ	height	(3-10%)	and	increases	in	CK	
levels	(2	hours:210	±	57	U/L,	24	hours:	413	±	205	U/L,	48	hours:	205	±	50	U/L)	compared	to	
baseline	levels	baseline	(145	±	54	U/L).	

Significant	correlations	have	been	reported	between	the	total	number	of	severe	impacts	(>	10.1	
G)	that	rugby	players	are	exposed	to,	their	peak	rate	of	force	development	(PRFD)	and	their	
peak	power	(PP)	values	post-match	(McLellan	&	Lovell,	2012),	with	Twist	and	Sykes	(2011)	
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showing	evidence	of	exercise	induced	muscle	damage	(EIMD)	for	up	to	48	hours	post	simulated	
rugby	league	game.		McLellan	and	Lovell	(2012)	assessed	twenty-two	elite	male	rugby	league	
players,	over	eight	games,	using	GPS	technology	(pre	and	post-game),	in	order	to	compare	
changes	in	variables	when	assessing	neuromuscular	responses	to	impact	and	collisions	during	
match	play.		Data	from	the	study	by	McLellan	and	Lovell	(2012),	demonstrated	that	
neuromuscular	function	is	compromised	for	up	to	48	hours	post-match,	indicating	that	at	least	
two	days	of	modified	activity	is	required	to	achieve	full	neuromuscular	recovery	after	elite	
rugby	league	match	play.		Similarly,	research	within	rugby	league	by	Johnston	et	al.	(2013)	
reported	that	cumulative	fatigue	from	rugby	league	matches	results	in	compromised	high	speed	
running,	accelerations	and	tackling,	thus	illustrating	the	intensity	of	games.		The	research	by	
Twist	and	Sykes	(2011),	in	contrast	to	both	McLellan	and	Lovell	(2012)	and	Johnston	et	al.	
(2013),	assessed	muscle	damage	post	simulated	match	situation	using	differing	measures	of	
neuromuscular	function	(CK	values	and	knee	extensor	torque).		They	perceived	soreness	
measures,	and	suggested	recommendations	for	adapted	training	in	the	48	hours	following	a	
game.		Results	from	a	similar	study	in	rugby	union,	assessing	neuromuscular	function	
throughout	a	season,	showed	an	increase	in	CK	levels	during	the	first	three	to	five	weeks	of	the	
season,	followed	by	a	stabilisation	(Alaphilippe	et	al.,	2012).		Within	another	rugby	union	study,	
assessing	changes	in	strength	and	power	throughout	the	competitive	phase	of	a	season	(Argus	
et	al.,	2009),	it	was	noted	that	decreases	in	power	were	due	to	compromised	physical	
development	caused	by	fatigue	from	weekly	competition	and	training	stress.	

Data	from	Alaphilippe	et	al.	(2012)	and	Argus	et	al.	(2009)	demonstrate	the	need	for	regular	
monitoring	of	both	biochemical	and	neuromuscular	markers,	in	order	to	enable	effective	
management	of	fatigue	throughout	a	competitive	season.		The	difference	between	physical,	
biochemical	and	endocrine	time-course	of	recovery	post	rugby	game,	have	been	illustrated	by	
research	presented	by	McLellan	et	al.	(2011b),	which	noted	that	the	biochemical	markers	do	not	
reflect	the	changes	in	performance	over	the	same	time	period.		In	addition,	positional	effect	
upon	restoration	time-course,	was	noted	in	a	study	assessing	physical	demands	of	rugby	union	
and	the	associated	fatigue	(Mashiko,	Umeda,	Nakaji,	&	Sugawara,	2004b),	where	it	was	noted	
that	both	physical	(biochemical	markers)	and	mental	(Profile	of	Mood	States	POMS)	measures	
differed	post-match	and	across	playing	positions.		This	research	by	Mashiko,	Umeda,	Nakaji,	and	
Sugawara	(2004a),	however,	only	involved	thirty-seven	university	standard	players,	post	a	
single	game,	therefore	limiting	its	relevance	and	comparability	to	elite	rugby	union.	

Considering	the	aforementioned	positional	demands	involved	in	rugby	(backs	and	forwards)	
and	the	differences	in	fatigue	response	(EIMD,	reduced	functional	performance	measures),	post-
match	are	of	no	surprise.		As	reported	by	Mashiko	et	al.	(2004b),	rugby	union	backs	display	
movement	patterns	that	are	more	focused	on	high	speed	running	and	tackling,	compared	to	
rugby	union	forwards	who	take	part	in	running,	tackling	and	an	element	of	mauling	and	
scrummaging	involving	physical	contact.		Although	data	taken	from	rugby	league	cannot	be	
directly	compared	to	rugby	union,	it	is	of	interest	to	note	that	Twist	et	al.	(2012)	reported	that	
forwards	showed	greater	perception	of	muscle	soreness	in	the	immediate	two	days	post-match	
which	could	be	explained	by	the	greater	number	of	contacts	experienced	by	forwards.		
Similarly,	as	reported	by	Mashiko	et	al.	(2004b),	the	blunt	trauma	associated	with	forward	play	
may	produce	longer	lasting	muscle	damage	than	that	experienced	from	eccentric	actions,	which	
backs	would	be	more	likely	to	encounter,	due	to	their	greater	number	of	decelerations	and	
accelerations	completed	within	game	situations	compared	to	forwards	(Twist	et	al.,	2012).		
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When	considering	the	fact	that	forwards	play	less	time	and	cover	less	distance	than	backs	(yet	
experience	longer	muscle	damage),	the	damaging	effect	of	the	blunt	force	trauma	that	forwards	
experience	is	further	emphasised.		Recent	data	from	rugby	union	(Jones	et	al.,	2014),	supports	
the	view	that	the	number	of	impacts	encountered	during	a	match	relate	specifically	to	the	levels	
of	muscle	damage	(CK)	experienced.		Additionally,	Jones	et	al.	(2014)	reported	that	high	speed	
running	was	a	predictor	of	muscle	damage	for	backs,	with	tailored	individual	recovery	
strategies,	based	upon	impacts	and	high	speed	running	data	derived	from	GPS,	being	of	interest.	

The	research	assessing	muscle	damage	post	rugby	involvement	(Mashiko	et	al.,	2004b;	
Takarada,	2003;	Twist	et	al.,	2012)	is	of	significant	relevance	to	practitioners	and	it	could	be	
argued	that	tailored	recovery	strategies,	based	upon	positional	demands	(utilising	GPS	data),	
would	provide	a	better	understanding	of	fatigue	post-match.		It	is	also	of	note,	in	the	study	by	
Twist	et	al.	(2012)	in	professional	rugby	league,	that	backs	presented	greater	decrement	in	
performance	compared	to	forwards,	when	assessing	changes	in	CK,	perceptual	and	
neuromuscular	fatigue	for	up	to	48	hours	post-match.		Data	from	previous	research	(Cunniffe	et	
al.,	2010;	Smart,	Gill,	Beaven,	Cook,	&	Blazevich,	2008;	Takarada,	2003),	also	reported	positive	
correlations	between	the	number	of	tackle	involvements	during	a	rugby	union	match	and	CK,	
suggesting	that	tissue	damage	is	proportional	to	the	number	of	body	contacts	a	player	
experiences	and	therefore	related	to	position	played.		Further	evidence	of	match	contacts	
experienced	and	resultant	fatigue	was	noted	by	Twist	et	al.	(2012),	where	total	contacts	for	
forwards	was	reported	to	correlate	with	all	markers	of	post-match	fatigue	(p	<	0.05)	(r	=	muscle	
soreness	0.62;	perceived	fatigue	0.69;	CK	0.74;	jump	flight	time	-0.55),	but	only	flight	time	was	
correlated	with	offensive	contacts	in	backs	(p	<0.05)	(r	=	0.54).	

Decrement	in	performance	measures	(CMJ	flight	time)	for	backs	compared	to	forwards	could	be	
associated	with	the	muscle	damage	common	from	eccentric	lengthening	actions	and	the	effect	
this	has	upon	the	stretch-shortening	cycle	utilised	in	jump	testing	protocol.		A	LFF	
measurement,	has	been	noted	as	an	important	variable	in	measuring	NMF	(Fowles,	2006),	with	
the	causes	of	LFF	being	different	to	that	of	HFF.		LFF	is	commonly	seen	post	heavy	training	
periods	and	involves	impairment	in	excitation	contraction	coupling,	due	to	microscopic	muscle	
damage	from	eccentric	muscle	action,	as	opposed	to	HFF,	which	involves	impaired	action	
potential	propagation	over	the	sarcolemma	(Jones,	1996).		When	associated	within	a	game	
context,	LFF	is	typically	illustrated	by	reduced	jump	performance	in	backs	and	may	be	due	to	
the	increased	number	of	accelerations	and	decelerations	involved	in	backs’	play,	compared	to	
forwards.		However,	Twist	et	al.	(2012)	argued	that	more	decelerations	could	be	seen	in	
forwards	during	games	as	they	approach	contact	situations,	compared	to	backs,	who	would	
experience	less	contact	situations.		Despite	the	quantification	of	decelerations	into	contact	not	
being	categorised	within	the	methodology	proposed	by	Twist	et	al.	(2012),	this	is	an	area	that	
warrants	further	investigation.		The	significantly	greater	(p	<	0.05)	number	of	contacts	for	
forwards	compared	to	backs	(38.2	±	18.7;	25.2	±	8.0),	could	have	been	attributed	to	increased	
muscle	damage	and	perception	of	fatigue.		The	research	presented	above	highlights	the	
importance	of	looking	at	the	relationships	between	high	level	impacts	≥	7	G	rather	than	total	
impacts,	as	the	muscle	damage	response	created	from	impacts	are	likely	to	be	predominately	as	
a	result	of	high	level	impacts.		Impacts,	therefore,	above	a	certain	level	could	act	as	
measurement	tool	for	future	research.		However,	the	reliability	and	protocol	involved	in	
utilising	GPS	impacts	as	a	monitoring	tool,	used	to	guide	training	prescription	in	post-match	
situations,	also	needs	further	examination.	
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2.3.7 Restoration	of	Performance	
Research	showing	incomplete	restoration	between	bouts	of	exercise	is	vast,	with	Ronglan	et	al.	
(2006)	observing	reduced	20	m	sprint	time	and	CMJ	performance	during	a	handball	tournament	
and	Kraemer	et	al.	(2001)	noting	insufficient	restoration	of	maximal	strength	throughout	a	
wrestling	tournament.		Planned	periodisation,	without	consideration	for	restoration	of	
performance	and	testing	of	time-course	of	recovery	is	likely	to	put	players	at	risk	of	sub-optimal	
performance,	or	more	seriously	injury.		Rugby	union	has	been	reported	to	involve	both	intense	
anaerobic	exercise,	interspersed	with	lower	intensity	bouts	of	aerobic	exercise	(Cahill	et	al.,	
2013).		Due	to	these	activities	and	the	large	volumes	of	activity	from	both	training	and	games	
over	the	course	of	a	playing	season,	rugby	players	become	fatigued	(Argus,	Gill,	Keogh,	et	al.,	
2012;	Cresswell	&	Eklund,	2006;	Fuller	et	al.,	2007).	

In	research	by	Gill	et	al.	(2006),	assessing	the	effectiveness	of	four	recovery	interventions	upon	
the	rate	and	magnitude	of	muscle	damage	recovery	of	twenty	three	elite	rugby	players,	it	was	
noted	that	muscle	damage	was	carried	over	from	previous	games	and/or	training,	as	
represented	by	CK	levels,	with	increased	levels	of	fatigue	present	as	the	rugby	season	
progresses.		As	also	noted	by	Gill	et	al.	(2006),	the	greatest	physical	stimuli	of	a	rugby	players	
week	is	frequently	the	match,	although	high	training	loads	combined	with	match	exertions	and	
insufficient	recovery	in	rugby	have	been	reported	which	often	push	players	into	states	of	
overreaching	(Coutts,	Reaburn,	Piva,	&	Murphy,	2007).		The	need	to	recover	between	games	and	
to	restore	performance	prior	to	subsequent	training	sessions	in	the	intervening	periods	is	of	
major	importance	within	professional	team	sports.		The	risk	of	injury	or	sub-optimal	
performance,	resulting	from	insufficient	recovery	are	points	to	consider	for	practitioners,	while	
also	considering	the	accumulation	of	training	and/or	non-training	stress.		As	noted	by	Kreider	
et	al.	(1998),	overreaching	(OR)	is	an	accumulation	of	training	and/or	non-training	stress,	
resulting	in	a	short	term	decrement	in	performance	capacity,	in	which	restoration	of	
performance	capacity	may	take	from	several	days	to	several	weeks.		An	accumulation	of	training	
stress,	if	managed	properly,	will	have	a	positive	effect	upon	the	athlete.		However,	if	managed	
poorly	and	insufficient	recovery	occurs,	overreaching	can	develop	into	the	more	severe	training	
response	phenomenon	of	overtraining.	

Long-term	decrement	in	performance	capacity	is	the	result	of	imbalance	between	training	and	
recovery;	this	is	known	as	overtraining	(OT).		OT	lies	at	the	end	of	the	training	stress	
continuum,	and	occurs	if	training	is	not	prescribed	according	to	the	recovery	requirements	of	
athletes	(Halson,	Lancaster	Jeukendrup	and	Glesson,	2002).		Stress	on	athletes’	bodies	in	team	
sports	is	often	more	frequently	accumulated	by	game	situations	where	players	are	asked	to	
compete	on	a	weekly	basis.		As	hypothesised	by	Twist	et	al.	(2012),	from	their	post-match	
fatigue	research	in	rugby	league;	team	sport	practitioners	should	pay	specific	attention	to	the	
24	hours	post-match,	as	this	is	the	most	challenging	period	in	terms	of	training	prescription	
between	games.		OT	and	overreaching	has	been	recognised	as	a	significant	problem	in	many	
sports,	including	rugby	union	and	has	been	regularly	researched	(Coutts,	Reaburn,	Piva,	&	
Murphy,	2007;	Coutts,	Reaburn,	Piva,	&	Rowsell,	2007;	Halson	&	Jeukendrup,	2004;	Wallace,	
Slattery,	&	Coutts,	2009).		Applying	the	appropriate	training	volume	presents	a	major	problem	
for	many	coaches	aiming	to	achieve	optimal	sporting	performance	with	their	athletes.		More	
recent	discussion	of	OT	(Lewis,	Collins,	Pedlar,	&	Rogers,	2015),	has	raised	the	notion	of	
unexplained	underperformance	syndrome,	yet	no	research	to	support	their	views	currently	
exists.		The	term	unexplained	underperformance	syndrome,	related	to	a	period	of	unexplained	
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underperformance,	whereby	fatigue	is	persistent	and	maladaptation	to	the	training	
programmes	implemented	likely	to	have	occurred.		It	could	be	argued	that	it	is	perhaps	unlikely	
that	this	notion	of	unexplained	underperformance	syndrome	would	be	explained	in	the	near	
future,	as	despite	its	relevance	to	the	more	commonly	researched	phenomenon	of	OT,	the	exact	
nature	of	this	syndrome	is	unknown.		Unexplained	underperformance	syndrome	is	expected	to	
involve	many	of	the	mechanisms	and	likely	causes	associated	with	OT,	yet	the	multifactorial	
nature	of	the	construct	to	which	unexplained	underperformance	syndrome	involves	means	that	
it	cannot	be	explained	by	an	imbalance	between	training	and	recovery.	

When	assessing	activities	to	be	performed	in	the	days	post	rugby	match,	Twist	and	Sykes	
(2011)	discussed	that	activities	performed	should	be	selected	carefully.		Twist	and	Sykes	(2011)	
noted	that	resistance	training,	involving	maximal	strength	emphasis,	should	be	avoided	in	the	
48	hours	post-match,	as	this	has	been	reported	to	increase	chances	of	injury.		McLellan	et	al.	
(2011b)	did,	however,	note	in	their	study	of	rugby	league	players	that	PRFD	values	were	
accelerated	post-match,	when	resistance	training	was	implemented	in	the	days	post-
performance.		PRFD	is	commonly	used	as	measure	of	explosive	strength.		When	testing	fatigue	
following	a	game	of	rugby	that	involves	many	activities	of	an	explosive	nature,	PRFD	is	
therefore	considered	an	appropriate	measure	to	monitor	fatigue	in	rugby	specifically.		A	
reduction	in	PRFD	post-match	situations	in	team	sports	has	also	been	reported	in	soccer	
(Thorlund,	Aagaard,	&	Madsen,	2009),	yet	not	in	a	study	by	Hoffman	et	al.	(2011)	involving	
American	football	players.		McLellan	et	al.	(2011b)	noted	that	these	contrasting	PRFD	values,	
noted	by	Hoffman	et	al.	(2011),	may	be	explained	by	the	reduced	total	number	of	contacts	and	
the	protective	padding	worn	in	American	Football.		In	rugby	league,	significant	NMF	has	been	
reported	to	be	highly	dependent	upon	the	number	of	heavy	collisions	>	7.1	G	(McLellan	&	
Lovell,	2012).	

2.3.8 Recovering	from	team	sport	activities	
Fatigue	can	be	both	short	term	(recovering	within	hours	or	days	of	exertion)	or	longer-term,	
where	longer	term	fatigue	is	considered	abnormal.		Distinct	durational	phases	of	fatigue	have	
been	noted	by	many	authors	(Halson	&	Jeukendrup,	2004;	Meeusen	et	al.,	2013;	Schmikli	et	al.,	
2011;	Tian	et	al.,	2013),	with	various	theories	discussed,	including	functional	overreaching	
(FOR),	non-functional	overreaching	(NFOR)	and	OT.		FOR	can	be	considered	a	required	practice	
for	inducing	adaptation	within	the	athlete	(planned	and	managed	by	the	coach)	and	is	
commonplace	in	many	elite	sport	settings.		NFOR,	by	contrast,	involves	poor	management	of	
fatigue	levels	and	when	occurring	needs	an	alteration	of	training	load	and	training	plan	so	as	
not	to	induce	any	further	negative	adaptation.		OTS	develops	when	long-term	decrement	in	
performance	capacity	exists	as	a	result	of	imbalance	between	training	and	recovery	and	is	a	
consequence	of	not	reacting	to	NFOR	signals.		Due	the	multifaceted	nature	of	fatigue,	its	
monitoring	or	measuring	is	complex,	meaning	that	providing	accurate	reasons	for	changes	in	
performance	or	assessing	athlete	readiness	are	difficult.		Many	coaches	monitor	load	
retrospectively,	not	only	in	order	to	assess	the	load-performance	relationship,	but	also	to	enable	
future	planning	and	thereby	reduce	the	risk	of	injury	and	NFOR.	

Recovery	post-exercise	covers	many	facets	of	performance	and	is	a	broad	term	referring	to	
restoration	of	performance	capacity,	often	with	both	short-term	and	long	term	processes	post-
exercise	referred	to	as	recovery.		After	a	workout	one	is	fatigued	and	performance	capacity	is	
reduced,	and	in	the	hours	and	days	after	the	workout	one	“recovers”	with	performance	capacity	
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returning	to	normal	within	this	short-term	time-course.		The	time-course	of	recovery	associated	
with	a	training	session	depends	on	many	factors,	including	how	hard	the	workout	was,	with,	
intensity,	duration,	player	capacity	and	environmental	factors,	such	as	altitude	and	heat,	playing	
major	roles	in	the	speed	at	which	players	return	to	pre-performance	values.		Acute	or	rapid	
recovery	post-exercise	is	different	from	long-term	adaptation	and	associated	fitness	fatigue	
models,	with	long-term	adaptation	referring	to	the	improvements	in	the	muscle	and	
cardiovascular	system	that	will	ultimately	result	in	improvements	in	performance.		Often	
research	discussing	recovery	refers	to	rapid	recovery	in	the	hours	after	exercise	and	sometimes	
refers	to	the	longer-term	effects.		Both	short	and	long	term	recovery	are	linked,	but	they	are	not	
the	same.		Short-term	recovery	typically	lasts	for	2-3	mins,	involving	rapid	decline	of	VO2max	and	
being	more	related	to	intensity	of	exercise	rather	than	duration.		During	short-term	recovery	an	
elevated	metabolic	rate	is	present:	to	reduce	core	body	temperature;	provide	O2	for	energy	cost;	
replenish	glycogen	and	remove	lactate.		This	research	investigates	the	longer-term	period	of	
recovery	in	team	sport	athletes	between	games	and	across	playing	seasons,	thereby	examining	
restoration	of	performance	time-course	and	performance	markers	that	can	be	used	to	assess	
this	longer	term	recovery	period.	

Within	team	sport	settings,	perhaps	the	most	important	aspect	of	athlete	preparation	during	a	
competitive	season	is	recovery	between	weekly	games,	with	the	extent	of	the	recovery	required	
being	determined	by	the	volume	and	mechanisms	experienced.		The	mechanisms	of	EIMD	can	
be	mechanical,	metabolic	or	oxidative,	with	all	of	these	mechanisms	evident	within	a	contact	
sport	like	rugby	and	due	to	blunt	force	trauma,	distances	covered	and	acceleration	and	
decelerations	encountered	(Alaphilippe	et	al.,	2012;	Johnston	et	al.,	2013;	McLean	et	al.,	2010;	
McLellan	&	Lovell,	2012;	McLellan,	Lovell,	&	Gass,	2010;	McLellan	et	al.,	2011a,	2011b;	Twist	&	
Sykes,	2011;	West	et	al.,	2014).		The	metabolic	and	mechanical	costs	created	by	EIMD,	mean	
that	muscular	function	is	impaired	for	up	to	48	hours,	yet	the	stress	exerted	upon	muscles	is	
considered	to	be	an	important	trigger	required	for	adaptation	to	occur	(Twist	&	Eston,	2009).		
Recent	research	by	Minett	and	Duffield	(2014),	assessing	the	role	of	both	central	and	peripheral	
factors	affecting	recovery,	suggested	that	the	potential	for	other	drivers	of	recovery	outside	of	
peripheral	factors	(muscle	damage	or	metabolic)	could	be	of	similar	importance.		Despite	the	
role	of	the	brain	as	a	contributor	to	neuromuscular	recovery	(as	required	following	competition	
and	training)	remaining	unclear,	the	elements	associated	with	central	fatigue	are	obvious	when	
considering	the	influence	of	CNS	in	motor	unit	recruitment	during	exercise.		It	is	agreed	that	
much	of	the	reduction	of	peripheral	fatigue	from	recovery	strategies	is	attributed	to	recovery	of	
the	brain	(Gandevia,	2001),	with	a	psychobiological	model	discussed	by	Smirmaul,	Bertucci,	and	
Teixeira	(2013),	when	assessing	the	paucity	of	VO2max	testing	being	maximal.		Practitioners	are	
advised	to	consider	recovery	to	be	a	multifaceted	process	(De	Pauw	et	al.,	2013).		However,	
current	methods	of	assessing	neurophysiological	measures	[computed	tomography	(CT),	
magnetic	resonance	imaging	scan	(MRIS)	and	electroencephalography	(EEG)]	limit	its	appeal	
for	practitioners	in	the	elite	field,	due	to	logistical	and	budget	restrictions.		Developing	an	
understanding	that	post-exercise	recovery	practices	should	not	solely	focus	upon	peripheral	
mechanisms	of	fatigue	is	key.		Further	research	in	the	area	of	recovery	strategies	that	impact	the	
brain	are	needed	to	understand	better	current	methods	that	would	minimise	brain	fatigue	and	
ultimately	improve	performance	(Minett	&	Duffield,	2014).	

Kellmann	(2002)	described	recovery	as	the	compensation	of	fatigue	and/or	decrease	in	
performance	that	is	a	tendency	to	stabilise	in	the	internal	environment	of	the	athlete.		Recovery	
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is	a	term	used	to	describe	both	positive	and	negative	adaptations	to	the	workloads	that	athletes	
are	exposed	to	from	training	and	competition.		Positive	adaptation	involves	restoration	and	
regeneration	of	both	physical	and	psychological	capabilities,	whereas	negative	adaptation	
involves	a	failure	to	recover	from	training	and	competition.		Practitioners,	in	both	the	elite	and	
amateur	fields,	need	to	help	athletes	create	a	healthy	balance	between	training	hard	and	
recovering	well	in	order	to	ensure	optimal	performance.		The	principle	of	recovery	(from	a	
single	session)	as	displayed	in	Figure	2.2	is	considered	one	of	the	basics	of	training,	yet	is	one	
that	is	often	ignored	by	athletes	and	coaches	(Rushall	&	Pyke,	1990).		Recovery	and	adaptation	
from	exercise	are	essential	for	optimising	performance,	with	adaptation	considered	to	be	the	
process	of	adjustment	to	a	specific	stimulus.		Repeated	stimuli	are	implemented	within	a	team	
sport	athlete’s	season	and	periodisation	is	a	method	for	employing	sequential	or	phasic	
alterations	in	the	workload,	training	focus,	and	training	tasks	contained	within	the	microcycle,	
mesocycle,	and	annual	training	plan	(Baker,	1998).		As	reported	by	Baker	(2007),	a	periodised	
training	plan	within	team	sports	encompasses	a	properly	designed	framework	for	appropriate	
training,	so	that	training	tasks,	content,	and	workloads	are	varied	at	a	multitude	of	levels	and	in	
a	logical,	phasic	pattern	in	order	to	ensure	the	development	of	specific	physiological	and	
performance	outcomes	at	predetermined	time-points.	

	

Figure	2.3:	Training	adaptation	theory	adapted	from	Bompa	and	Haff	(2009)	

The	ability	of	athletes	to	recover	from	weekly	competition	in	team	sport	enables	them	to	be	able	
to	train	sooner	and	with	better	quality,	therefore	improving	the	chances	of	success	in	the	next	
competitive	match.		The	goal	of	many	practitioners	working	within	team	sports	is	to	restore	
players	to	pre-game	levels	and	in	the	shortest	possible	time,	therefore	minimising	the	
aforementioned	sources	of	fatigue	created	by	game	play	and	training	sessions.		Training	
stimulus	responsiveness	is	an	area	that	practitioners	should	pay	attention	to	within	their	rugby	
players,	as	inappropriate	loads	can	result	in	players	being	ill	prepared	and	in	a	sub-optimal	
state	to	perform	pre-game.		When	considering	that	the	individual	variation	in	both	physiological	
and	psychological	responses	from	training	and	games	are	varied	across	playing	populations	
(Elloumi,	Maso,	Michaux,	et	al.,	2003;	Hartwig	et	al.,	2009),	the	need	to	manage	the	individual	
training	dose	is	emphasised.		The	dose	of	training	given	to	players	is	only	effective	if	the	
individual	responsiveness	to	the	load	applied	is	considered	and	acted	upon,	in	future	sessions,	if	
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need	be,	in	order	to	enable	optimal	performance.		With	this	individual	variation	in	mind,	it	is	
important	for	practitioners	to	prescribe	the	appropriate	training	session	at	the	correct	point	in	
the	training	week,	as	both	field	based	sessions	and	gym	based	sessions	(as	explained	in	Chapter	
2.2.2.1)	impose	varying	responses	upon	athlete	fatigue	levels	and	therefore	subsequent	varied	
restoration	of	performance	post-match.			
	
Evidence	above	in	Chapter	2.2	illustrates	the	commonality	of	gym-based	sessions	within	rugby	
teams	weekly	training	schedules	and	the	benefit	such	sessions	have	for	improving	subsequent	
performance	are	well	documented	(Argus	et	al.,	2009;	Baker,	2001b,	2001c;	Beaven,	Cook,	et	al.,	
2008;	Comfort,	Haigh,	&	Matthews,	2012;	Pienaar	&	Coetzee,	2013).		The	resultant	effect	of	
training	sessions	(both	field	and	gym)	in	the	days	between	games	has	produced	a	large	amount	
of	research	to	date	(Coutts,	Reaburn,	Piva,	&	Murphy,	2007;	Crewther	et	al.,	2013;	Cross,	
Williams,	Trewartha,	Kemp,	&	Stokes,	2015;	Edmonds,	Sinclair,	&	Leicht,	2013;	Elloumi,	Maso,	
Robert,	Michaux,	&	Lac,	2003;	Gaviglio	&	Cook,	2014;	Twist	&	Highton,	2013),	with	the	
physiological	and	psychological	response	created	as	result	of	these	training	sessions	being	
apparent.		Due	to	the	extensive	length	and	intensity	of	a	professional	rugby	playing	season,	
alongside	the	aforementioned	individual	fatigue	response	created	by	training,	the	practitioners’	
knowledge	of	the	effect	of	specific	training	sessions	upon	players	fatigue	levels	is	key.		Research	
by	Howatson,	Brandon,	and	Hunter	(2016)	illustrated	the	influence	of	specific	resistance	
training	sessions	upon	recovery	in	elite	track	and	field	athletes,	where,	in	the	immediate	hours	
post-match,	increased	lactate	values	post	strength	training	in	comparison	to	power	sessions	
were	noted.		Additionally,	impairment	in	maximal	strength	on	the	day	post	strength	training	
was	noted,	therefore	illustrating	the	neuromuscular	and	endocrine	response	associated	with	
varying	training	stimuli.	
	
Recent	research	by	Cook,	Kilduff,	Crewther,	Beaven,	and	West	(2014)	illustrated	the	influence	of	
varying	training	sessions	upon	subsequent	performance,	showing	a	decrease	in	salivary	
testosterone	concentrations	in	the	afternoon,	following	a	morning	speed	session	(-6.2	±	7.1	pg	
ml-1),	in	contrast	to	a	weights	session	(-1.2	±	5.5	pg	ml-1).		Further	research	demonstrating	the	
effect	of	specific	loading	upon	acute	neuromuscular	and	endocrine	response	was	presented	by	
Schumann	et	al.	(2013),	which	although	not	involving	rugby	players	and	combining	training	
modalities	that	would	not	typically	be	seen	in	elite	rugby	settings,	provides	further	knowledge	
to	the	area	of	training	session	recovery.		The	research	by	Schumann	et	al.	(2013),	which	
compared	the	effect	of	combined	strength	and	endurance	training	sessions	with	strength	and	
endurance	training	sessions	prescribed	individually,	noted	that	that	endocrine	function	
(decreased	concentrations	of	serum	testosterone),	remained	elevated	after	48	hours	of	recovery	
post	the	combined	strength	and	endurance	sessions.		These	findings	therefore	illustrate	the	
differing	responses	created	by	specific	training	sessions.	
	
Other	research	of	interest	for	practitioners	in	the	elite	setting,	is	that	by	Beaven,	Gill,	and	Cook	
(2008),	who	demonstrated	the	influence	of	gym	based	sessions	upon	resultant	fatigue	and	
identified	large	individual	differences	in	testosterone	responses	to	four	differing	resistance	
exercise	protocols.		Their	recommendation	was	the	monitoring	of	hormonal	responses	to	gym	
based	exercise	stimuli.		When	considering	the	evidence	outlined	above,	which	illustrates	the	
effect	of	specific	training	sessions	upon	rates	of	recovery,	one	could	therefore	argue	that	the	
likely	restoration	of	performance	rates,	following	a	combination	of	field	and	gym	sessions,	
would	result	in	a	lengthened	recovery	period	post-session	in	comparison	to	a	gym	based	
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session	alone.		Additionally,	when	considering	the	view	of	Cook,	Kilduff,	Crewther,	et	al.	(2014)	
that	resistance	training	sessions	provide	a	welcome	distraction	for	players	from	rugby	training,	
the	role	of	such	gym	based	sessions	alongside	field	sessions,	are	further	supported.		When	
combining	these	views	of	Cook,	Kilduff,	Crewther,	et	al.	(2014),	with	research	showing	
increased	testosterone	levels	as	a	result	of	gym	based	sessions	(Kraemer	&	Ratamess,	2005),	
the	need	for	careful	session	prescription	is	evident.		Another	interesting	potential	area	of	future	
investigation,	would	be	a	recommendation	for	the	use	of	midweek	measurement	of	testosterone	
and	cortisol	ratio	as	a	predictor	of	readiness	leading	into	completion	as	presented	by	Gaviglio	
and	Cook	(2014),	who	noted	that	the	pertaining	testosterone	and	cortisol	ratio	was	significantly	
lower	(p	<	0.01)	before	a	win	than	a	loss.		More	recent	support	for	the	use	of	cortisol	
measurement	in	the	days	preceding	rugby	union	matches	was	illustrated	by	(Crewther,	Potts,	
Kilduff,	Drawer,	&	Cook,	2017),	who	noted	a	large	midweek	rise	in	cortisol	prior	to	matches	
which	were	won,	whereas	cortisol	decreased	before	matches	that	were	lost.		However,	when	
considering	the	limitations	associated	with	hormonal	testing	outlined	in	Chapter	2.4.4.2	the	
reliability	and	applicability	of	such	measures	into	elite	settings	is	questionable.	
	
Additional	important	aspects	to	consider	within	the	recovery	adaptation	process	of	rugby	
players	post-match	and	training	is	firstly	that	fitter	athletes	are	expected	to	recover	more	
quickly,	as	reported	by	Johnston,	Gabbett,	Jenkins,	and	Hulin	(2015)	when	assessing	Yo-Yo	
intermittent	recovery	test	(level	1)	(Yo-Yo	IR1),	3RM	back	squat	and	3RM	bench	press.		When	
assessing	the	influence	of	physical	qualities	on	post-match	fatigue	in	rugby	players	Johnston	et	
al.	(2015)	noted	that	stronger,	fitter	players	recovered	more	quickly	than	weaker	players	even	if	
physical	match	loads	were	greater.		Johnston	et	al.	(2015)	concluded	that	post-match	fatigue	
was	reduced	in	players	with	well-developed	high	intensity	running	ability	and	lower	body	
strength.		Results	showed	larger	reductions	in	CMJ	power	in	the	low	Yo-Yo	group	at	both	24	(ES	
=	-1.83),	and	48	hours	post-match	(ES	=	-1.33).		This	notion	that	fitter	athletes	recover	more	
quickly	in	team	sport	settings	is	supported	by	Hunkin,	Fahrner,	and	Gastin	(2014),	who	noted	
smaller	disturbances	in	CK	values	prior	to	Australian	rules	football	games	along	with	smaller	
metabolic	disturbances	following	high	intensity	activity.		In	a	review	of	neuromuscular	function	
post-EIMD,	muscular	strength	has	also	been	noted	to	influence	the	fatigue	response	of	players	
post	team	sport	involvement,	with	greater	strength	augmenting	the	SSC,	thereby	placing	less	
stress	on	the	contractile	properties	of	the	muscle	(Byrne,	Twist,	&	Eston,	2004).		Although	
collision	situations	in	team	sports	such	as	rugby	are	the	main	contributor	to	muscle	damage	
(Johnston,	Gabbett,	Seibold,	&	Jenkins,	2014;	Twist	et	al.,	2012),	enhancing	the	ability	of	muscles	
to	manage	SSC	activities	may	moderate	the	effects	of	this	muscle	damage	and	therefore	hasten	
the	recovery	process.	

2.3.9 What	is	readiness?	
Throughout	this	thesis	the	term	‘readiness’	is	used	to	describe	athlete	preparedness	and	overall	
state	of	fatigue,	which	may	affect	their	ability	to	perform	a	task.		Within	this	research	the	
concept	of	readiness	concerns	a	more	holistic	view	of	rugby	players’	preparedness	to	complete	
training	tasks	and	optimal	game	day	performance,	with	the	aforementioned	fatigue,	restoration	
of	performance	and	NMF,	being	important	aspects	in	assessing	overall	readiness.		A	definition	of	
readiness	is	“the	willingness	or	a	state	of	being	prepared	for	something”	(Cambridge	Dictionary	
Online,	2015)	and	the	term	“readiness	to	train”	has	been	used	in	recent	research	(Cook,	Kilduff,	
Crewther,	et	al.,	2014;	Mann,	Lamberts,	&	Lambert,	2014;	Taylor,	Cronin,	Gill,	Chapman,	&	
Sheppard,	2010)	when	discussing	a	variety	of	sports	science	and	strength	and	conditioning	
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topics.		Readiness	in	pursuit	of	optimal	athletic	performance	should	also	concern	the	state	of	
being	prepared,	yet	in	sport	it	concerns	the	ability	to	complete	the	athletic	task	in	question.		The	
importance	of	player	readiness	within	both	preparation	(pre-season)	and	competition	(in-
season)	periods	is	paramount.		In-season	assessment	of	rugby	players’	readiness	concerns	their	
potential	to	perform	their	role	within	game	situations	to	their	optimal	ability,	while	in	pre-
season	periods	assessing	player	readiness	is	key	to	enabling	optimal	athletic	development	
during	these	periods	of	intense	training.		The	link	between	readiness	and	fatigue	is	evident	
when	considering	the	research	in	Chapter	2.3.		The	factors	that	affect	fatigue	and	subsequent	
performance	in	relation	to	readiness	are	critiqued	in	more	detail	below.	

2.3.10 Summary	
Fatigue	is	more	likely	when	playing	exposure	accumulates	without	sufficient	rest	(minutes	and	
number	of	games	played	and	training	volume)	and	as	games	cannot	be	rescheduled	due	to	the	
presence	of	fatigue	the	training	load	needs	to	be	managed.		As	is	evident	from	the	research	
reviewed	above,	many	tests	of	performance	exist	in	the	elite	field,	yet	the	applicability	of	the	
measures	for	the	sport	in	question	is	a	key	consideration	when	aiming	to	maximise	
performance.		Much	of	recent	performance	testing	has	focused	upon	attempting	to	quantify	
fatigue	and	the	resultant	readiness	for	competition.		The	need	for	such	testing	within	team	sport	
settings	such	as	elite	rugby	union	is	paramount	when	considering	the	match	demands	outlined	
in	previous	chapters	in	addition	to	the	large	number	of	games	played	on	a	weekly	basis	over	a	
nine-month	period.		Fatigue	is	expected	post	rugby	union	match	play	and	the	ability	for	
practitioners	to	make	informed	decisions	based	upon	fatigue	testing	using	performance	
measures	is	therefore	the	goal.		As	noted	above,	the	mechanisms	of	fatigue	are	wide	ranging	and	
the	specific	tests	that	examine	all	levels	of	fatigue	(chronic	and	acute)	that	may	be	experienced	
post	rugby	union	match	play	need	to	be	quantified	within	the	performance	tests	administered.		
If	meaningful	levels	of	fatigue	are	detected,	practitioners	need	to	be	careful	in	selecting	
prescribed	training	sessions	between	games,	as	the	evidence	above	illustrates	the	affect	that	
some	forms	of	training	may	have	upon	subsequent	rates	of	recovery,	due	to	the	potential	fatigue	
created.		Reliable	and	applicable	monitoring	tools,	which	assess	rugby	player	readiness	
throughout	a	playing	season,	combined	with	appropriate	training	prescription	will	aid	in	
enhancing	the	likelihood	of	optimal	performance.	
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2.4 Methods	of	Assessing	Fatigue,	Recovery	and	Readiness	

Readiness	and	its	importance	within	exercise	prescription	in	the	days	post-competition	is	
discussed	in	more	detail	later	(Chapter	2.6),	yet	the	understanding	of	the	term	readiness	needs	
clarity	by	evaluating	many	of	the	methods	of	assessing	recovery	and	restoration	detailed	below.		
Within	this	research	readiness	is	considered	to	be	the	ability	to	perform	without	impaired	
performance,	and	not	simply	full	recovery	from	muscle	damage,	with	the	terms	readiness,	
recovery	and	restoration	of	performance	used	interchangeably.		In	their	review	of	current	
methods	for	monitoring	fatigue	in	high	performance	sport	Taylor,	Chapman,	Cronin,	Newton,	
and	Gill	(2012)	noted	that	61%	of	the	respondents	in	their	research	reported	using	jump	tests,	
submaximal	tests	or	sport	specific	tests	to	assess	readiness,	varying	in	frequency	from	weekly,	
to	monthly	or	daily.		Practitioners	in	the	elite	team	sport	settings	are	commonly	presented	with	
the	question	of	how	fatigued	their	athletes	are	and	how	they	can	accurately	quantify	fatigue	
(Chiu	&	Barnes,	2003;	Twist	&	Highton,	2013).		Many	of	the	performance	measures	used	to	
diagnose	fatigue	to	date	have	used	“time	to	fatigue”	tests,	with	exercise	performed	at	a	fixed	
intensity	being	used	as	a	tool	against	which	to	compare	substrate	kinetics	and	hormonal	
response.		However,	as	critiqued	below,	many	of	time	to	fatigue	tests	involve	maximal	efforts,	
using	performance	tests	that	are	not	sport	specific,	therefore	creating	unwanted	additional	
fatigue	and	questionable	results.	

Due	to	the	limitations	associated	with	maximal	testing	mentioned	above;	requirement	for	non-
invasive	monitoring	tools	for	assessing	recovery	status	(restoration	of	NMF)	in	athletes	are	
needed,	with	recovery	markers	advised	to	be	sensitive	to	daily	variability	in	training	load	
(Meeusen,	Duclos,	et	al.,	2006).		The	monitoring	tools	and	practices	chosen	will	often	be	
dependent	upon	the	sport	in	question,	with	many	monitoring	tools	being	utilised	within	rugby	
alongside	each	other	to	represent	best	the	fatigue	and	readiness	of	players.		The	following	
sections	detail	the	methods	commonly	used	for	monitoring	fatigue	and	readiness	within	high	
performance	training	environments,	many	of	which	are	represented	in	Table	2.13.		A	major	
point	of	consideration	for	practitioners	is	that	of	reliability	where	it	is	seen	to	vary	across	
testing	method	used.		In	addition,	there	are	some	testing	methods,	such	as	perceptual	methods	
of	fatigue	assessment,	whose	reliability	is	difficult	to	test.		Hopkins	(2000)	noted	the	reliability	
of	performance	measurement,	such	as	jump	testing,	occurred	when	there	is	neither	marked	
systematic	nor	random	variation	in	data	across	different	testing	apparatus.		The	reliability	of	
performance	tests	would	therefore	be	more	apparent	if	the	reproducibility	of	the	measure	of	
performance	was	consistent	when	administered	on	several	occasions.	
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Table	2.13:	An	overview	of	performance	measures	utilised	in	rugby	

Tool	
	

Areas	measured	
	

Reliability	
(ICC/SDD/SWC)	
	

Advantages	
	

Disadvantages	
	

Minimum	
recommendation	
for	use	

Questionnaire	
(McLean,	2010;	
Johnston,	2013;	
West	2014)	
	

Muscle	soreness	
Fatigue	
Mood	
Appetite	
Sleep	

Unknown	
Perceived	
measures	
validity	
questioned	
	

Cheap	and	easy	
to	administer	
Reported	to	be	
sensitive	to	
changes	in	
performance	in	
team	sports	

Subjective	and	
can	be	
manipulated	by	
player	
performance	
	

Record	daily	as	
variation	may	be	
small	
	

Blood	markers	
(Elloumi,	2003;	
Maso,	2004;	
Mashiko,	2004;	
Crewther,	2009	
Cunniffe,	2010;	
Johnston,	2013;	
West	2014)	

Creatine	kinase	
Testosterone:Cortisol	
	

Varied	
(West,	2014;	CV	
<10%)	(Elloumi,	
2003;	CV	
<10.9%)	(Maso,	
2004;	CV	
<10.5%)		
(Crewther,	2009;	
CV	<10.5%)	

Helps	develop	an	
understanding	of	
the	physical	
fatigue	
mechanism	via	
the	vast	number	
of	markers	
	

Costly	and	
invasive	meaning	
difficult	to	
implement	into	
training	
programs	
	

Unrealistic	to	
implement	
daily/weekly	so	
investigation	
When	other	
parameters	show	
reductions	often	
the	best	option	

Neuromuscular	
performance	
(McLellan,	2012:	
McLean,	2010;	
Duffield	2012;	
Johnston,	2013;	
Cadore,	2013;	
West	2014)	

CMJ	
MVC	Single	Joint	–	
Knee	Extensor	
Peak	power	
	

Good	
(Johnston,	2013;	
ICC	0.98	PP,	0.97	
PF)	
(Cadore,	2013;	
ICC	0.94	RFD)	

An	indirect	
marker	of	fatigue	
which	can	be	
implemented	
into	training	
program	
	

Difficult	to	
identify	match	
specific	fatigue	
	

Record	weekly	on	
the	same	day	post-
match	applying	
intervention	when	
dropping	below	
baseline	values	
	

Performance	
tests	
(Coutts,	2007a;	
Lovell,	2013)	
	

Running	velocity	
RPE	&	training	loads	
	

Good	
(Coutts,	2007a;	
ICC	0.93	MSFT)	
	

Helps	assess	
match	fatigue	
and	provides	
more	subjective	
measures	
	

Time	consuming	
and	often	adds	
more	fatigue	
	

Often	best	used	
during	pre-season	
periods	or	when	
returning	from	
injury	–	limited	
data	on	this	
method	

Functional	
state		
(Edmonds,	
2013;	Morales,	
2014;	Buchheit,	
2010)	
	

Heart	rate	
HRV	
	

Unknown	
(Morales,	2014;	
ICC	>0.81	HRV)	
(Buchheit,	2010;	
CV	<10.5%)	
	

Provides	
information	on	
functional	state	
without	fatigue	
	

Expensive	to	
implement	and	
few	studies	
confirming	
reliability	
	

Three	
assessments	a	
week	have	been	
recommended	–	
implementing	this	
to	a	whole	team	
sport	playing	
squad	is	
unrealistic	(Plews,	
2014)	

	

2.4.1 Maximal	and	sub-maximal	performance	tests	
Sub-maximal	tests	reported	to	be	used	by	practitioners	include;	the	heart	rate	interval	
monitoring	system	(HIMS),	heart	rate	recovery	(HRR)	testing	and	Yo-Yo	IR,	with	sub-maximal	
tests	noted	by	Taylor	et	al.	(2012)	to	account	for	14%	of	performance	tests	utilised.		Maximal	
tests	in	contrast	to	sub-maximal	tests	include;	Wingate	cycling	tests,	maximal	strength	testing	
and	jump	testing.		Such	maximal	tests	include	any	activity	where	the	participant	is	asked	to	
engage	in	maximal	effort.		While	the	design	of	sub-maximal	and	maximal	performances	tests	
specific	to	the	sport	in	question	have	been	developed,	the	specificity	of	the	movements	involved	
can	be	questioned	(Coutts,	Reaburn,	Piva,	&	Murphy,	2007;	Coutts,	Reaburn,	Piva,	&	Rowsell,	
2007;	Rowsell,	Coutts,	Reaburn,	&	Hill-Haas,	2009).		Considering	fatigue,	which	was	described	
in	Chapter	2.3.2,	as	being	the	inability	to	maintain	force	or	power	output	at	the	required	level,	
maximal	performance	tests	are	perhaps	the	most	appropriate	measure	of	in	this	case.	
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Maximal	performance	tests	have	been	shown	to	be	a	definitive	marker	for	NFOR	in	team	sport	
athletes	(Coutts,	Reaburn,	Piva,	&	Rowsell,	2007;	Krustrup	et	al.,	2010).		Additional	support	for	
maximal	decrement	tests	is	present	in	the	findings	of	Coutts,	Reaburn,	Piva,	and	Rowsell	(2007)	
where	MSFT	performance	and	VO2max	testing	decreased	following	six	weeks	of	intensive	
training	in	rugby	league	players.		Further	support	for	maximal	performance	tests	was	noted	by	
Krustrup	et	al.	(2010)	within	female	soccer	research,	which	showed	significant	inverse	
correlations	between	Yo-Yo	IE2	test	performance	and	fatigue	index	during	the	repeated	sprint	
test	both	at	rest	(r	=	0.76,	p	<	0.05)	and	after	the	game	(r	=	0.66,	p	<	0.05).		However,	maximal	
performance	testing	should	be	administered	with	caution	as	it	can	create	additional	fatigue	
within	the	athlete.	

Limitations	exist	for	sport	specific	running	tests.		Firstly,	fatigue	as	a	result	of	the	testing	needs	
to	be	considered	and	secondly,	a	lack	of	opportunity	to	add	testing	to	weekly	scheduled	training	
programs	may	hamper	implementation.		Additional	lack	of	support	for	maximal	testing,	
outlined	by	Darrall-Jones,	Jones,	Till,	and	Roe	(2015),	demonstrated	that	sprint	tests	in	elite	
rugby	players	over	10	m,	20	m	and	30	m	were	incapable	of	detecting	smallest	worthwhile	
change	in	performance.		Despite	a	sub-maximal	cycling	tests	(using	HIMS	or	HRR)	not	being	as	
specific	to	a	team	sport	setting	such	as	rugby	as	a	running	based	test	would	be,	it	can	be	argued	
that	it	is	more	suitable	to	the	competition	and	training	environment	that	exists	within	teams	
playing	on	a	weekly	basis.		Considering	the	multifaceted	nature	of	fatigue	research	and	the	
many	consequences	of	fatigue,	maximal	performance	tests	are	perhaps	the	most	likely	to	
replicate	the	athletes	event,	yet	the	logistical	issues	and	added	fatigue	surrounding	maximal	
testing	within	competition	periods	make	this	form	of	testing	limited	in	value.		Similarly,	when	
testing	within	a	sport	such	as	rugby,	where	running	movements	are	required,	running	specific	
maximal	testing	would	likely	be	the	tool	of	choice	for	many	practitioners	to	assess	fatigue	in	
rugby.		However,	running	specific	maximal	testing	are	perhaps	not	the	most	logistically	viable	
testing	option	due	to	the	additional	fatigue	these	tests	can	add	and	the	time	needed	to	conduct	
them.	

As	a	result	of	maximal	performance	tests	producing	data	that	represents	a	more	comprehensive	
description	of	NMF,	performance	tests	incorporating	maximal	testing	are	perhaps	the	most	
valid	for	use	in	elite	settings.		Questionable	validity,	however,	exists	within	sub-maximal	
performance	tests	(Artero	et	al.,	2012;	Murphy	&	Wilson,	1996;	Noonan	&	Dean,	2000),	with	
future	research	recommended	for	use	in	elite	sport	settings	(Rampinini	et	al.,	2007).		Due	to	the	
questionable	validity	associated	with	maximal	tests	and	the	added	fatigue	that	maximal	tests	
can	create,	the	use	of	Wingate	cycling	tests	and	maximal	strength	testing	were	excluded	from	
use	in	future	discussion	within	this	research.		Maximal	jump	tests	were,	however,	considered	a	
practical	tool	for	use	within	the	elite	rugby	setting	in	question,	as	they	can	be	easily	
implemented	into	training	programs	and	add	no	additional	unwanted	fatigue.		The	most	
commonly	used	forms	of	sub-maximal	and	maximal	performance	tests	are	reviewed	below,	to	
help	explain	their	inclusion	or	exclusion	within	future	discussion	within	this	research.		It	is,	
however,	important	for	practitioners	to	note	that	maximal	jump	testing	and	maximal	running	
testing,	for	example,	are	both	very	different	in	response	to	the	physical	dose	applied.		Whereas	a	
maximal	jump	test	may	involve	high	muscular	exertion,	other	maximal	test	varieties	may	
involve	high	aerobic	or	anaerobic	exertions,	which	will	result	in	a	differing	physiological	cost	
following	their	implementation.	
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2.4.1.1 Maximal	strength	testing	
The	most	common	maximal	performance	measures	used	in	past	research	within	team	sports	
are	maximal	strength	assessments.		Many	maximal	strength	assessments	have	been	used	to	
monitor	progress	throughout	training	cycles	(Argus	et	al.,	2009;	Beaven,	Cook,	et	al.,	2008;	
Comyns	et	al.,	2010;	Harris	et	al.,	2008),	yet	few	have	focused	upon	maximal	strength	testing	to	
measure	fatigue	(Haff	et	al.,	1997).		Much	of	the	modern	research	using	strength	training	to	
assess	performance	has	rarely	used	standard	measures	of	strength	training,	which,	utilise	
percentage	of	one-rep	maximum	calculations	(%1RM)	and	has	instead	used	maximal	isometric	
voluntary	contraction	(MVIC).		The	reason	MVIC	has	been	preferred	to	%1RM	testing	is	that	it	
determines	the	volitional	force-generating	capacity	of	a	muscle	under	relatively	standard	
conditions,	whereas	strength	training	does	not.		Recent	support	for	the	use	of	MVC	for	assessing	
EIMD	was	presented	by	Damas,	Nosaka,	Libardi,	Chen,	and	Ugrinowitsch	(2016)	who	noted	
MVC	to	be	the	best	EIMD	indirect	marker,	when	researching	retrospectively	across	286	athletes.		
Additionally,	traditional	strength	testing	is	fatiguing	in	nature	while	other	maximal	testing	such	
as	CMJ	and	MVIC	are	not	and	are	therefore	considered	to	be	more	applicable	for	use	in	elite	
team	sport	settings.		MVIC	assessment	enables	generation	of	a	force-time	curve,	which	can	
identify	multiple	markers	of	neuromuscular	performance;	yet	contrasting	support	for	the	use	of	
maximal	strength	assessment	exists.		Cairns	et	al.	(2005)	noted	maximal	strength	as	an	invalid	
assessment	for	fatigue,	due	to	the	extent	to	which	they	replicate	the	nature	of	sports	activities	in	
question.		Research	by	Verdijk,	van	Loon,	Meijer,	and	Savelberg	(2009),	however,	noted	that	
1RM	strength	tests	represents	a	valid	means	to	assess	leg	strength	in	humans,	with	
recommendations	for	using	1RM	testing	to	assess	changes	in	strength	following	an	exercise	
intervention.		The	relevance	of	assessments	of	strength	is	that	they	could	be	applied	to	the	
fatigue	testing	proposed	in	this	research.	

As	previously	discussed,	reliability	of	performance	tests	are	of	paramount	importance	for	
practitioners	in	order	to	ensure	that	the	data	collected	is	accurate	and	valid.		Data	within	
maximal	strength	testing	have	presented	contrasting	reliability,	which	was	further	supported	
by	Soares-Caldeira	et	al.	(2009)	when	assessing	1RM	tests	in	adult	women.		Comfort,	Jones,	
McMahon,	and	Newton	(2015),	by	contrast,	noted	high	test/retest	reliability	during	the	
isometric	mid-thigh	pull	(IMTP),	with	>1.3%	change	in	peak	isometric	force,	>	10.3%	in	mRFD,	
>	5.3%	in	impulse	at	100	ms,	>	4.4%	in	impulse	at	200	ms,	and	>	7.1%	in	impulse	at	300	ms	
being	considered	meaningful,	irrespective	of	posture	adopted.		Further	support	for	the	
reliability	(ICC	>	0.90)	of	using	isometric	testing	was	noted	by	Bazyler,	Beckham,	and	Sato	
(2015)	with	isometric	squat	noted	as	providing	a	strong	indication	of	changes	in	strength	and	
explosiveness	during	training.		Recent	research	by	Haff,	Ruben,	Lider,	Twine,	and	Cormie	(2015)	
presents	an	important	consideration	for	practitioners,	as	the	method	used	to	asses	RFD	during	
an	isometric	mid-thigh	clean	pull	(IMTCP)	impacts	on	the	reliability	of	the	measure.		Haff	et	al.	
(2015)	did,	however,	acknowledge	the	reliability	of	the	IMTCP	(ICC	0.95,	CV	<	4%),	thereby	
further	supporting	the	use	of	isometric	testing.		Lastly	an	isometric	posterior	lower	limb	muscle	
test	was	reported	by	McCall	et	al.	(2015)	to	be	a	reliable	and	sensitive	measure	to	track	match-
induced	fatigue	in	professional	soccer	players.		This	three	second	isometric	contraction	of	the	
lower	limb	showed	high	reliability	for	dominant	leg	at	90°	(CV	=	4.3%,	ICC	=	0.95,	ES	=	0.15),	
non-dominant	leg	at	90°	(CV	=	5.4%,	ICC	=	0.95,	ES	=	0.14)	and	was	sensitive	enough	to	detect	
reductions	in	force	for	dominant	leg	at	90°	(p	=	0.0006,	ES	>	1)	that	could	present	valuable	
insights	for	future	recovery	practices	in	elite	soccer.	
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Limited	research	exists	regarding	the	magnitude	of	change	of	strength	measures	that	signify	
fatigue,	and	as	discussed	previously,	maximal	strength	testing	is	likely	to	induce	fatigue	and	
therefore	should	not	regularly	be	implemented	into	elite	settings.		Recent	research	by	Comfort	
and	McMahon	(2015)	does,	however,	demonstrate	high	reliability	for	maximal	strength	
implementation	of	the	back	squat	(ICC	=	0.994)	and	power	clean	(ICC	=	0.997)	performance	in	
experienced	lifters.		From	the	research	by	Comfort	and	McMahon	(2015)	practitioners	were	
advised	to	look	for	a	change	of	>	5%	in	order	to	identify	meaningful	change	in	maximal	strength	
back	squat	and	power	clean.		Additional	support	for	resistance	training	to	measure	readiness	
was,	however,	presented	by	Crewther	et	al.	(2013)	when	assessing	salivary	testosterone	and	
cortisol	responses	to	resistance	training	workouts.		They	claimed	that	free	testosterone	
responses	to	a	midweek	workout	might	provide	an	early	sign	of	team	readiness	to	compete.		
Despite	support	for	the	reliability	of	maximal	strength	testing	to	assess	fatigue	in	rugby	league	
players,	contrasting	evidence	exists	in	research	by	Coutts,	Reaburn,	Piva,	and	Murphy	(2007),	
who	report	minimal	reductions	in	3RM	bench	press	and	squat	assessment	during	overreaching	
periods.		This	minimal	change	during	overreaching	periods,	therefore,	demonstrates	a	likely	
lack	of	support	for	the	use	of	strength	testing	for	assessing	fatigue.		Many	of	the	other	methods	
of	performance	testing	critiqued	within	Chapter	2.4.1.2	and	2.4.4	(jump	testing	and	biochemical	
testing)	provide	more	detail	and	specific	values	that	signify	meaningful	change,	with	rate	of	
force	development	and	variability	in	hormonal	profile	of	rugby	players	in	the	days	post-match	
providing	more	objective	values	than	those	reported	for	maximal	strength.	

In	a	review	of	models	used	to	evaluate	NMF,	Cairns	et	al.	(2005)	discussed	the	use	of	mechanical	
fatigue	measures	using	MVIC,	such	as	isokinetic	dynamometer	exercises	and	dynamic	knee	
extension,	with	research	in	rugby	specifically	conducted	by	Crewther	et	al.	(2009)	illustrating	
significant	relationships	between	neuromuscular	performance	and	hormone	secretion	patterns	
in	elite	rugby	union.		Within	the	research	by	Crewther	et	al.	(2009)	concentric	mean	and	peak	
power	during	a	70-kg	squat	jump	mean	power	(r	=	0.41,	p	<	0.05),	50-kg	bench	press	throw	PP	
(r	=	0.41,	p	=	0.05),	and	estimated	%1RM	strength	for	a	box	squat	and	bench	press	were	
positively	correlated	with	salivary	testosterone	and	cortisol	concentrations.		Another	study	
using	strength	testing	(3RM	bench	press	and	squat)	to	measure	performance	and	readiness	was	
that	of	Cook,	Kilduff,	Crewther,	et	al.	(2014)	who	noted	testosterone	concentrations	to	be	offset	
by	morning	training,	thereby	recommending	morning	based	strength	testing	to	improve	
afternoon	performance	in	rugby	union.		Additionally,	Johnston	et	al.	(2013)	supported	the	
notion	that	upper	body	power	is	also	a	good	indicator	of	NMF	post	rugby	match	and	that	upper	
body	PP	appears	to	be	a	suitable	measure	for	the	specific	force	related	exertion	involved	in	
tackling.		It	is,	however,	important	to	note	that	time-course	and	mechanisms	of	fatigue	of	the	
upper	body	differ	to	that	of	velocity	based	lower	body	power	movements.	

From	the	research	within	this	section	it	is	clear	that	questionable	validity	and	reliability	exist	
within	both	maximal	strength	testing	and	MVIC	testing.		Due	to	these	validity	and	reliability	
issues,	along	with	the	lack	of	access	to	facilities	and	manpower	needed	on	a	regular	basis	for	
both	maximal	strength	and	MVIC	testing,	these	performance	measures	are	excluded	from	future	
use	within	this	research.		Additionally,	the	equipment	required	for	testing	isometric	
contractions	(isokinetic	dynamometers)	are	large	in	size	and	therefore	cumbersome	and	
expensive	to	use.		Added	to	the	fact	that	additional	fatigue	can	be	created	as	a	result	of	both	
these	forms	of	performance	testing	it	is	clear	rationale	to	exclude	their	use	within	this	research.	
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2.4.1.2 Maximal	Jump	testing	

2.4.1.2.1 Common	uses	of	jump	testing	
An	individual’s	ability	to	generate	force	quickly	is	a	key	performance	measurement	for	athletes	
competing	in	many	team	sports,	hence	jump	tests	have	often	been	utilised	to	monitor	power	
(Markovic	et	al.,	2004).		With	the	goal	of	assessing	lower	limb	power,	many	jump	tests	including	
vertical	jump	have	been	developed.		The	vertical	jump	has,	however,	been	reported	to	represent	
an	inaccurate	measure	of	explosive	lower	limb	power	due	to	the	more	complex	nature	of	
leg/arm	coordination	(Leard	et	al.,	2007;	Markovic	et	al.,	2004;	Young,	MacDonald,	Heggen,	&	
Fitzpatrick,	1997).		Jump	tests	commonly	used	in	the	applied	setting	include	CMJ	and	squat	
jump	(SJ).		CMJ	involves	the	use	of	the	stretch	shortening	cycle,	whereby	subjects	perform	a	
downward	movement	from	an	erect	standing	position	until	they	feel	comfortable	and	then	jump	
for	height	in	an	upward	motion.		SJ	is	a	pure	measurement	of	concentric	power,	whereby	the	
subject	is	instructed	to	squat	to	90°,	then	hold	for	three	seconds	at	the	bottom	of	squat	and	
jump	on	a	command.	

The	jump	modalities	mentioned	above	have	come	under	scrutiny	because	of	the	technique	
many	subjects	used	along	with	inconsistent	testing	protocol	(Markovic	et	al.,	2004).		Testing	
irregularities	such	as	the	subject’s	ability	to	swing	their	arms	for	greater	height	and	the	effect	of	
pre-stretching	meant	that	recent	jump	testing	has	focused	solely	on	the	SJ	and	CMJ.		Lees,	
Vanrenterghem,	and	De	Clercq	(2006)	concluded	that	arm	swing	contributes	to	jump	
performance	by	aiding	the	storing	and	release	of	energy	from	muscles	and	tendons	around	the	
ankle,	knee	and	hip	and	by	initiating	a	pull	force	at	the	shoulder	joint,	thus	increasing	jump	
height	by	10%	or	more	(Lees,	Vanrenterghem,	&	De	Clercq,	2004).		Additionally,	this	use	of	
arms	in	vertical	jump	performance	has	been	reported	to	provide	10%	mean	increase	in	take-off	
velocity	(Carlock	et	al.,	2004;	Harman,	Rosenstein,	Frykman,	&	Rosenstein,	1990).		Therefore	
the	use	or	exclusion	of	arm	movement	needs	to	be	standardised	during	such	assessments	in	
order	to	ensure	that	they	are	comparable.		Due	to	the	above	inaccuracies	detailed	regarding	
vertical	jumps,	they	have	been	excluded	as	a	reliable	test	for	jump	performance	from	more	
recent	research	(Acero,	Sanchez,	&	Fernandez-del-Olmo,	2012)	.	

2.4.1.2.2 Jump	testing	tools	
In	addition	to	jump	testing	protocols	being	scrutinised	for	inaccuracies,	specific	jump	and	
power	testing	tools	have	also	come	under	criticism.		Numerous	instruments	measuring	jump	
height	and	contact	time,	utilising	different	technologies	and	calculations,	have	provided	varying	
results	(Markovic	et	al.,	2004).		Force	plates	have	been	considered	to	be	the	“gold	standard”	for	
the	measurement	of	jump	tests,	having	been	reported	to	provide	excellent	measurement	
accuracy	for	estimation	of	power	via	forward	dynamics,	calculated	by	the	force	applied	to	the	
jumping	surface	(Walsh,	Ford,	Bangen,	Myer,	&	Hewett,	2006).		Jump	instruments	such	as	
optical	measuring	systems,	that	solely	assess	flight	time	and	do	not	determine	jump	height	from	
the	impulse-momentum	relationship,	as	used	by	Domire	and	Challis	(2007)	are	at	risk	of	
inaccuracy,	as	subjects	can	alter	jump	technique,	such	as	a	flexed	foot	on	landing	to	increase	
flight	time.		By	contrast,	when	using	force	plate	assessment	maximal	vertical	velocity	of	the	
centre	of	mass	at	take-off	provides	a	more	accurate	measure	of	jump	height,	by	using	a	forward	
dynamics	approach.		Cormack,	Newton,	McGuigan,	and	Cormie	(2008)	highlighted	the	
importance	of	analysing	the	flight	time	to	contraction	time	ratio	as	a	measure	sensitive	to	
fatigue,	with	the	time	from	initiation	of	the	counter	movement	until	the	subject	leaves	the	
jumping	surface	being	key.		It	is,	however,	important	for	practitioners	to	note	that	despite	the	
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research	by	Cormack,	Newton,	McGuigan,	and	Cormie	(2008)	reporting	flight	time	to	
contraction	time	as	the	measure	of	jump	performance,	the	methodology	used	actually	assesses	
only	the	initial	movement	when	utilising	velocity	of	the	centre	of	mass	jump	testing	protocol.		
Movement	may	have	also	have	occurred	in	the	upper	body	prior	to	contraction	of	the	lower	
body	during	velocity	of	centre	of	mass	assessment	using	the	protocol	by	Cormack,	Newton,	
McGuigan,	and	Cormie	(2008),	and	one	cannot	therefore	assume	that	the	initial	movement	
reported	is	contraction	time.		Also	of	note	for	practitioners	is	that,	despite	the	research	by	
Cormack,	Newton,	McGuigan,	and	Cormie	(2008)	not	stating	the	sampling	frequency	used	for	
the	force	plate	assessment;	typical	Ballistic	Measurement	Systems	use	a	frequency	of	40	ms.		As	a		
result,	it	could	be	argued	that	this	default	sampling	frequency	option	may	prove	inaccurate,	
when	compared	against	research	which	involved	a	different	sampling	frequency.		Practitioners	
are	therefore	advised	to	note	both	the	thresholds	set	for	the	onset	of	movement	and	the	
calculation	used	for	flight	time,	as	this	may	have	an	effect	upon	the	resultant	measurement	
variables	collected.	

Force	plates	have	been	shown	to	possess	excellent	reliability	as	performance	measures	for	both	
jumping	and	landing	tasks	and	strength	assessment	(Cormack,	Newton,	McGuigan,	&	Doyle,	
2008;	Cormie,	McBride,	&	McCaulley,	2007;	Walsh	et	al.,	2006),	while	use	of	saliva	to	assess	
hormonal	response	post	rugby	match	is	commonplace	(Beaven,	Cook,	et	al.,	2008;	Crewther	et	
al.,	2013;	Elloumi,	Maso,	Michaux,	et	al.,	2003;	Elloumi,	Maso,	Robert,	et	al.,	2003;	Maso,	Lac,	
Filaire,	Michaux,	&	Robert,	2004;	West	et	al.,	2014).		Force	plates	use	the	impulse-momentum	
relationship	to	determine	velocity,	which	calculates	power	through	the	forward	dynamics	
approach	(Cormie	et	al.,	2007).		Previous	research	has	utilised	the	flight	time	calculation	via	the	
height	of	rise	of	centre	of	mass	(French	et	al.,	2004;	McBride,	Triplett-McBride,	Davie,	&	Newton,	
1999,	2002).		The	vertical	take-off	velocity	of	the	centre	of	mass	is	calculated,	whereby	
acceleration	(a)	is	determined	by	dividing	vertical	ground	reaction	forces	(F)	by	the	mass	of	the	
system	(SM)	at	each	time	point:	

! = !/!"	

With	jump	height	from	velocity	of	centre	of	mass	calculated	via	the	following	equation:		

!" = (!^2)/(2 ! 9.81)	

v	=	displacement/time	

This	method	of	forward	dynamics	calculation	has	been	regularly	used	to	assess	bodyweight	
jumps	in	previous	research	(French	et	al.,	2004).		However,	the	main	disadvantages	associated	
with	force	plates	are	that	they	are	expensive	to	use	and	often	impractical	in	field-testing	
scenarios	(Casamichana	et	al.,	2013).		Additionally,	methods	of	assessing	power	output	via	
kinetic	methods	such	as	the	force	plate	have	been	questioned	(Cormie	et	al.,	2007),	with	force	
plate	methodology	typically	used	to	compare	performance	of	bodyweight	jumps,	rather	than	to	
measure	the	influence	of	loads	upon	power	output.		During	Olympic	lifting	movements,	for	
example,	the	barbell	moves	at	a	differing	rate	to	that	of	the	participants	centre	of	mass	(COM),	
as	the	barbell	starts	below	the	lifter’s	COM	and	finishes	above	their	COM	meaning	the	power	
applied	will	differ.		On	summary	the	advantages	of	force	plates	outweigh	the	disadvantages	
mainly	due	to	the	vast	amount	of	data	that	force	plates	can	collect	including	such	parameters	as	
PRFD	and	impulse	(McLellan	&	Lovell,	2012;	McLellan	et	al.,	2011a,	2011b;	McLellan,	Lovell,	&	
Gass,	2011c;	McLellan	et	al.,	2011d).	



	 60	

Recently,	contact	mats	and	optical	measuring	systems	have	become	commonplace	for	field	
based	assessments	(Bosquet,	Berryman,	&	Dupuy,	2009).		CMJ	and	SJ	performed	on	a	contact	
mat	were	deemed	reliable	at	estimating	anaerobic	power	in	a	study	by	Moir,	Button,	Glaister,	
and	Stone	(2004).		Contact	mats	were	also	considered	practical	for	use	in	laboratory	and	field	
settings,	for	squat	jump	and	CMJ	(Markovic	et	al.,	2004).		This	was	mainly	due	to	the	nature	of	
the	testing	protocol	in	the	field	and	the	ability	for	data	to	be	produced	relating	not	just	to	jump	
height,	but	also	to	various	other	parameters	to	assess	power	(Casartelli,	Muller,	&	Maffiuletti,	
2010).		Bosco,	Luhtanen,	and	Komi	(1983)	were	the	first	to	derive	jump	height	from	flight	time	
via	a	contact	mat,	with	infrared	optical	device	now	replacing	contact	mats	to	measure	flight	
time.		However,	due	to	error	in	time	keeping	by	subjects	taking	off	and	landing	in	different	
locations,	this	method	of	calculating	jump	height	has	been	questioned	(Garcia-Lopez	et	al.,	
2005).		The	main	criticism,	that	contact	mats	cause	inaccuracies,	has	been	based	on	the	fact	that	
the	subject’s	feet	are	not	directly	in	contact	with	the	specific	sport	surface	in	question,	with	the	
result	that	athlete	surface	interaction	varies	(Markovic	et	al.,	2004).		Although	this	inability	to	
test	on	specific	surface	is	also	seen	in	force	plates,	the	advantages	of	force	plates	outlined	above	
mean	that	this	is	not	considered	a	major	concern.	

If	methodological	protocol	is	standardised	throughout	jump	testing,	the	effect	of	differing	
surfaces	and	other	dependent	variables	such	as	technique	used	will	be	minimised.		Accuracy	of	
data	collected	on	contact	mats	was	researched	and	evidence	for	its	use	questioned	by	Klavora	
(2000),	who	found	that	subjects	recorded	higher	jump	scores	with	a	contact	mat	than	a	jump	
and	reach	style	test	as	used	in	NFL	combine	testing	(Kuzmits	&	Adams,	2008).		In	recent	
research	(McMahon,	Jones,	&	Comfort,	2015)	a	commonly	used	contact	mat	(JustJump)	was	
compared	against	a	force	plate,	with	suggested	use	of	a	corrective	equation	when	using	a	
JustJump	system,	despite	ICC	demonstrating	excellent	within-session	reliability	of		CMJ	height	
(ICC	=	0.96,	p	<	0.001).		Jump	and	reach	tests	have	also	come	under	scrutiny	as	the	techniques	
used	by	participants,	as	a	subject-performing	jump	and	reach	tests	can	use	the	wall	as	an	aid	to	
extend	jump	height.		Harman	(1990)	reported	that	jumping	and	touching	a	wall	during	a	
vertical	jump	is	more	restrictive	than	jumping	straight	up	and	down,	hence	their	study	found	
jump	height	to	be	5.3	cm	greater	when	using	a	total	body	centre	of	mass	displacement,	
compared	to	the	jump	and	reach	test.		Additionally,	it	is	assumed	that	participants	on	a	jump	
and	reach	test	will	mark	the	wall	or	displace	a	marking	vane	at	the	peak	of	their	jump.		As	
reported	by	Klavora	(2000)	this	is	often	not	the	case,	therefore	influencing	results	collected.	

Early	research,	assessing	the	validity	and	reliability	of	methods	for	testing	vertical	jump	
performance	are	being	questioned	due	to	methodological	considerations	(Hatze,	1998).		In	the	
research	by	Hatze	(1998)	the	methodological	limitations	noted	include;	invalid	assumptions	
regarding	performance	calculations	and	the	jumping	technique	utilised.		This	is	despite	the	use	
of	force	plate	methods	supported	by	research	(Walsh	et	al.,	2006).		Jump	mats,	for	example,	use	
flight	time	as	the	calculation	of	performance,	yet	this	calculation	is	an	approximation,	as	flight	
time	is	no	direct	measurement	of	force.		By	contrast,	force	plates	give	direct	measurement	of	
force	based	upon	the	forward	dynamics	discussed	earlier.		If	the	calculations	used	to	assess	
performance	incorporate	displacement	time	data	involving	direct	measure	of	velocity,	it	is	
important	for	practitioners	to	acknowledge	that	this	measure	is	an	approximation	of	force,	
therefore	its	accuracy	should	be	questioned.		This	view	was	supported	by	Hatze	(1998)	who	
noted	that	the	validity	and	reliability	of	the	jumping	ergometer	method	for	evaluating	certain	
aspects	of	athletic	performance	are	highly	questionable,	due	to	the	methods	of	calculation	
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identified	above.		More	recent	research	has,	however,	shown	jump	testing	that	uses	modern	
methods	as	reliable	(Markovic	et	al.,	2004).		Technological	development	of	contact	platforms	
and	mobile	devices	(My	Jump)	has	been	reported	to	produce	reliable	intra	and	inter-session	
data	during	drop	jump,	CMJ	and	SJ	movements	(Gallardo-Fuentes	et	al.,	2016).	

2.4.1.2.3 Jump	testing	–	kinetic	and	outcome	based	measures	
When	considering	that	PRFD	is	noted	by	McLellan	et	al.	(2011d)	to	be	a	primary	contributor	to	
jump	performance	during	CMJ,	the	need	for	validity	of	this	measure	for	testing	performance	is	
needed.		Despite	data	showing	a	relationship	between	RFD	and	CMJ	height	being	limited,	
eccentric	movement	is	generally	considered	to	be	a	fundamental	component	of	the	SSC	and	is,	
therefore,	important	for	consideration	when	assessing	CMJ	performance	of	team	sport	athletes	
such	as	rugby	players.		Similarly,	the	ability	to	develop	force	rapidly	is	a	prerequisite	for	
explosive	strength,	yet	a	scarcity	of	knowledge	regarding	RFD	correlations	to	vertical	jump	
exists.		RFD	relates	to	short	components	of	the	SSC	and	are	characterised	by	small	angular	
displacement	(100	to	250	ms)	of	the	ankle,	knee	and	hip	joints	during	CMJ.		The	eccentric	phase	
consists	of	the	point	in	the	downward	movement,	where	the	force	being	exerted	into	the	force	
plate	exceeds	body	weight	until	the	point	of	zero	velocity	at	the	lowest	point	of	the	
countermovement.		Eccentric	RFD	concerns	the	peak	power	exerted	during	the	eccentric	phase	
of	the	CMJ	and	is	measured	in	N.s-1,	with	the	ability	to	handle	the	maximal	eccentric	force	in	the	
minimal	time	possible	being	a	typical	indicator	of	explosive	strength.		Research	showing	
relationships	between	eccentric	RFD	and	CMJ	performance	are	contrasting,	with	McLellan	et	al.	
(2011d)	assessing	the	RFD	on	vertical	jump	performance	on	a	force	plate	and	noting	poor	retest	
reliability	(CV	16.3%)	in	twenty-three	physically	active	men.		McLellan	et	al.	(2011d)	did,	
however,	note	that	significant	correlations	between	maximum	RFD	and	jump	height	could	only	
explain	46%	of	the	variance	noted	in	jump	height	and	that	the	other	variance	is	likely	to	be	due	
to	inexperience	of	the	subjects	in	question.		Research	by	Ebben,	Flanagan,	and	Jensen	(2007)	
noted	no	correlation	between	RFD	and	CMJ	(r	=	0.19,	p	=	0.22)	and	therefore	questioned	the	
usefulness	of	RFD	for	assessing	CMJ	performance.		As	was	argued	by	Ebben	et	al.	(2007)	and	
noted	within	previous	research	(Haff	et	al.,	1997),	the	use	of	RFD	may	be	more	suited	to	high	
load	activities	such	as	mid-thigh	clean	pulls.	

The	availability	of	reliability	statistics	for	eccentric	RFD	is	limited,	with	Moir,	Garcia,	and	Dwyer	
(2009)	reporting	RFD	values	(CV	17-21%),	yet	it	must	be	noted	that	the	values	presented	by	
Moir	et	al.	(2009)	are	from	non-elite	men	and	women.		Within	the	research	by	McLellan	et	al.	
(2011d)	a	significant	relationship	existed	between	vertical	jump	displacement	(VJD)	and	PRFD	
for	the	CMJ	(r	=	0.68;	p	=	0.001).		In	contrast,	a	non-significant	relationship	(r	=	0.65	-	0.74)	
between	RFD	and	vertical	jump	performance	was	noted	by	Hopkins,	Schabort,	and	Hawley	
(2012),	yet	the	lack	of	statistical	significance	within	that	research	is	likely	to	be	explained	by	the	
poor	statistical	power	(n	=	8).		Additionally,	the	research	of	McLellan	et	al.	(2011d)	showed	that	
eccentric	RFD	displayed	low	reliability,	however,	an	important	point	for	consideration	when	
comparing	the	results	of	McLellan	et	al.	(2011d)	to	other	research	is	the	differing	testing	
apparatus	used.		Within	the	research	by	McLellan	et	al.	(2011d)	a	sampling	frequency	of	1000	
Hz	and	a	cut	off	frequency	of	17	Hz	was	used,	with	this	methodology	likely	to	differ	across	
studies.	

Perhaps	most	interesting	within	future	kinetic	measures	research,	is	the	findings	of	Gathercole,	
Sporer,	Stellingwerff,	and	Sleivert	(2015a),	who,	when	assessing	the	reliability	of	CMJ,	noted	
that	the	variables	with	a	CV	>	5%	related	to	the	eccentric	phase	of	the	CMJ,	while	variables	with	
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CV	<	5%	included	those	that	relate	to	the	concentric	outcome	of	the	jump	performance.		
Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	therefore	argued	that	assessment	of	CMJ	
performance	should	include	both	variables	that	assess	changes	in	outcome	and	variables	that	
determine	the	jump	strategy	employed	by	the	subject,	for	there	to	be	a	more	informed	
consideration	of	the	movement	behaviour.		In	an	analysis	of	male	college-level	team-sport	
athletes,	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	noted	that	most	kinetic	variables	take	
longer	to	return	towards	baseline	values	at	72	hours	post-exercise,	when	compared	to	CMJ	
output	(typically	concentric	focused	variables),	with	these	views	supported	by	Kennedy	and	
Drake	(2017b)	in	rugby	players,	comparing	isometric	strength	and	CMJ	output	variables.		
Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	therefore	recommended	that	practitioners	
consider	NMF	by	assessing	changes	in	both	output	and/or	movement	economy.		The	research	
proposed	below	will	assess	players’	ability	to	jump	as	high	as	possible,	yet	the	kinetic	measures	
that	are	often	used	within	jump	performance	assessment	need	also	to	be	considered.		It	could,	
however,	be	argued	that	in	terms	of	restoring	performance	post	rugby	union	match	play,	
assessment	of	jump	height	is	the	most	essential	measure	of	performance,	as	this	relates	
specifically	to	the	players’	ability	to	out	jump	their	opponents	and	will	therefore	result	in	
improved	likelyhood	of	team	success.		However,	the	role	that	kinetic	measures	play	in	the	
assessment	of	jump	performance	cannot	be	discounted	and	is	therefore	examined	further	in	the	
experimental	Chapter	5	below.	

2.4.1.2.4 Jump	performance	to	assess	fatigue	
In	addition	to	using	jump	tests	that	measure	power,	velocity,	force,	contact	time	and	rate	of	
force	development;	recent	research	(Hamilton,	2009;	Kennedy	&	Drake,	2017a;	Kennedy	&	
Drake,	2017b;	Mooney	et	al.,	2013;	Roe	et	al.,	2015;	Taylor,	2012)	has	focused	on	utilising	
vertical	jumps	to	assess	neuromuscular	fatigue,	with	effectiveness	of	CMJ	confirmed	by	
Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a).		Reliability	of	CMJ	analysis	to	quantify	acute	
NMF	using	a	force	plate	was	also	confirmed	by	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a).		
CMJ	variables	exhibiting	intraday	(n	=	20)	and	interday	(n	=	21)	CVs	of	<	10%	where	reported	
when	assessed	at	zero,	24	and	84	hours	following	a	fatiguing	high-intensity	intermittent-
exercise	running	protocol.		Additionally,	effect	sizes	were	reported	to	range	from	trivial	to	
moderate	in	eighteen	CMJ	variables	at	zero	hours	immediately	post	exercise	fatigue,	further	
confirming	CMJ	as	a	reliable	measure	for	NMF.		Follow-on	research	by	Gathercole,	Sporer,	
Stellingwerff,	et	al.	(2015a)	showed	high	repeatability	and	immediate	and	prolonged	fatigue-
induced	changes	detected	by	CMJ	(CV	=	3.0%),	when	compared	to	other	jump	measures	(SJ	=	CV	
3.5%	and	DJ	=	CV	4.8%)	and	20	m	sprint	times.		Research	by	Markovic	et	al.	(2004)	also	
confirmed	reliability	of	CMJ	with	intraclass	correlation	coefficients	(ICC)	being	0.98,	while	
within-subject	CV	in	CMJ	was	2.8%,	which	was	reported	as	low	compared	to	other	vertical	
jumps	such	as	SJ	and	horizontal	jumps	(standing	long	jump	and	standing	triple	jump).			

Other	recent	research	of	interest	includes	that	by	Roe	et	al.	(2015)	which	suggests	that	CMJ	
mean	power,	peak	force	or	mean	force	can	be	used	for	assessing	lower	body	neuromuscular	
function,	due	to	both	their	acceptable	reliability	and	(CV	<	5%)	and	good	sensitivity	(CV	<	SWC).		
The	meta-analysis	of	CMJ	and	its	use	for	measuring	NMF	presented	by	Claudino	et	al.	(2016)	
noted	that	the	majority	of	studies	have	incorporated	highest	CMJ	performance	values	in	
contrast	to	the	use	of	average	values.		However,	Claudino	et	al.	(2016)	reported	that	the	average	
jump	performance	was	more	sensitive	than	highest	jump	performance	when	assessing	fatigue	
and	recommended	its	application	in	applied	settings,	as,	statistically,	researchers	have	a	higher	
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probability	(10-1)	of	finding	the	true	jump	performance	when	the	average	value	is	used	instead	
of	the	highest	value.		Despite	these	recommendations	for	use	of	average	jump	measures,	the	
high	reliability	within	and	between-session	reported	and	the	recent	success	using	CMJ	for	
assessing	NMF,	it	can	be	concluded	that	CMJ	tests	appear	to	be	a	suitable	athlete-monitoring	
method	for	NMF	detection.		Specifically	in	relation	to	rugby,	further	support	for	jump	testing	to	
measure	fatigue	was	presented	by	Twist	et	al.	(2012),	who	reported	that	jump	tests	provide	the	
most	appropriate	indirect	marker	of	tissue	damage	and	reduction	in	muscle	force	generating	
capacity.		Recent	research	in	elite	soccer	settings	by	Russell	et	al.	(2015)	also	reported	that	
creatine	kinase	(34.3%)	demonstrated	greater	between-match	variability	than	jump	testing	
measuring	peak	power	output	(9.9%).	

Jump	tests	are	considered	excellent	indicators	of	neuromuscular	function	for	athletes,	due	to	the	
stretch-reflex	involving	both	eccentric	and	concentric	actions,	as	seen	in	jumping	and	hopping	
actions	within	rugby.		Jump	tests	have	commonly	been	used,	as	jumps	are	a	convenient	exercise	
for	assessing	NMF	that	is	easy	to	implement	into	a	high	performance	sport	setting,	while	
providing	great	ecological	validity.		Eccentric	muscle	damage,	as	seen	in	rugby	union	match	
play,	has	been	noted,	with	Harrison	and	Gaffney	(2004)	showing	reductions	in	many	jump	
testing	movements	post-match	exposure.		Recent	studies	within	elite	rugby	league	found	that	
CMJ	performance	was	impaired	for	up	to	24	hours	post-match,	along	with	reports	of	26%	
reduction	in	PRFD	24	hours	post-match	(McLellan	et	al.,	2011b;	Twist	et	al.,	2012).	

2.4.1.2.5 The	relevance	of	jump	testing	in	elite	performance	settings	
Twist	et	al.	(2012)	reported	an	inverse	relationship	between	contacts	and	impaired	CMJ	flight	
time,	indicating	that	players	that	are	involved	in	more	contacts	experience	more	loading	on	the	
lower	limbs	musculature.		This	damage	to	lower	limb	muscles	from	contact	situations	can	be	
attributed	not	only	to	the	number	of	contacts,	but	also	the	to	the	large	accelerations	and	
decelerations	leading	into	the	contact	situation.		While	most	studies	assessing	neuromuscular	
recovery	have	utilised	one	CMJ	repetition,	Cormack,	Newton,	McGuigan,	and	Cormie	(2008)	
used	five	continuous	CMJ	measuring	flight	time.		Singular	CMJ	flight	time	has	been	seen	to	show	
more	substantial	reductions	in	performance	compared	to	five	repeated	CMJ,	suggesting	that	it	is	
less	able	to	distinguish	between	levels	of	neuromuscular	function,	despite	its	reactive	nature	
and	SSC	involvement.		Additionally,	in	research	assessing	muscle	damage	on	SSC	function	
(Harrison	&	Gaffney,	2004),	CMJ	was	seen	to	show	reduced	levels	of	decrement	compared	to	SJ.		
The	findings	by	Johnston	et	al.	(2013)	suggest	that	maximal	strength	assessments	are	less	
affected	than	peak	power	outputs,	meaning	CMJ	flight	time	is	perhaps	more	appropriate	for	
measurement	of	muscle	damage	than	isometric	measurements	such	as	isolated	leg	press.		
Johnston	et	al.	(2013)	also	reported	that	CMJ	height	correlates	with	sprint	performance	over	5	
m,	10	m	and	30	m.		Hamilton	(2009)	noted	a	significant	decline	(p	≥	0.05)	in	drop	jump	reactive	
strength	index	(DJ-RSI)	for	youth	soccer	players	following	match	play.		Despite	CMJ	assessing	
flight	time	receiving	praise	as	a	modality	to	assess	NMF	(Cormack,	Newton,	McGuigan,	&	
Cormie,	2008;	Cormack,	Newton,	McGuigan,	&	Doyle,	2008),	Hamilton	(2009)	noted	DJ-RSI	as	
being	an	appropriate	test	for	use	in	team	sport	settings.	

In	spite	of	CMJ	being	the	most	commonly	used	jump	modality,	criticism	surrounding	CMJ	exists	
and	in	some	research	has	been	replaced	by	other	forms	of	jumps	(drop	jumps	and	squat	jumps)	
(Hamilton,	2009;	Kamandulis	et	al.,	2011).		Criticism	of	jump	testing	as	a	performance	measure	
for	measuring	fatigue	has	been	illustrated	by	Krustrup	et	al.	(2010),	who	noted	that	jump	tests	
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had	no	impact	upon	the	type	of	fatigue	post	female	soccer	game.		However,	it	should	be	noted	
that	there	are	noticeable	differences	between	female	soccer	players	and	male	rugby	union	
players	in	terms	of	the	number	of	impacts	encountered	in	match	situations	and	the	associated	
trauma	and	muscle	damage.		Considering	the	findings	by	Gathercole,	Sporer,	Stellingwerff,	et	al.	
(2015a),	that	mean	power,	peak	velocity,	flight	time,	force	at	zero	velocity	and	area	under	the	
force	velocity	trace	showed	changes	greater	than	the	CV	in	most	individuals,	CMJ	use	is	further	
questioned.		Impaired	neuromuscular	function,	due	to	utilisation	of	the	more	specific	SSC	nature	
of	drop	jumps	(DJ)	and	the	relatively	short	contraction	times	involved	in	the	movement,	lead	to	
more	sensitive	measures.		The	increased	sensitivity	associated	with	DJ	(reactive	strength	index)	
is	in	part	due	to	DJ’s	using	both	contact	and	flight	time	measures,	which	as	Hamilton	(2009,	p.	4)	
concludes	“any	technical	alterations	that	develop	to	facilitate	improved	force	capabilities”	that	
can	be	associated	with	other	jump	modalities.		The	high	speed	and	power	qualities	associated	
with	rugby	union	match	play	perhaps	deem	DJ	to	be	a	more	accurate	measure	of	an	athlete’s	
current	functional	state,	compared	to	data	from	bilateral	jumps	such	as	CMJ.	

CMJ	has	however	previously	been	reported	to	measure	fatigue	accurately	(Duffield	et	al.,	2012),	
with	reduced	values	of	CMJ	and	maximal	velocity	contraction	of	the	knee	in	an	isometric	test	
shown	to	correlate	match	playing	time	undertaken	by	players	in	rugby	league.		Additionally,	
CMJ	assessing	NMF	has	previously	been	reported	to	be	reliable	and	valid	using	the	FT:CT	
calculation	(Argus,	Gill,	Keogh,	et	al.,	2012;	Argus	et	al.,	2009;	Baker,	2001c;	Cormack,	Newton,	
McGuigan,	&	Cormie,	2008;	Cormack,	Newton,	McGuigan,	&	Doyle,	2008;	Mooney	et	al.,	2013).		
McLean	et	al.	(2010)	recommended	weekly	CMJ	testing	to	analyse	the	results,	along	with	
psychometric	values	to	assess	neuromuscular	readiness.		Findings	such	as	those	from	Duffield	
et	al.	(2012)	illustrate	that	intermittent-sprint	team	sports	such	as	rugby	union	result	in	post-
match	suppression	of	skeletal	muscle	force.		In	a	study	by	Johnston	et	al.	(2013),	assessing	
cumulative	fatigue	throughout	a	period	of	three	games,	decrements	in	defensive	performance	
seen	in	game	three	correlate	with	reduced	CMJ	values,	suggesting	that	lower	body	power	is	a	
prerequisite	for	tackling	ability.		Similarly,	in	a	recent	study	assessing	an	intensified	fixture	
schedule	in	professional	rugby	league,	cumulative	NMF	(Match	1	vs.	Match	2	-2.3%;	-Match	3	-
6.9%;	Match	4	-2.9%)	was	noted	(Twist,	Highton,	Daniels,	Mill,	&	Close,	2017).		Lastly,	as	
previously	stated,	decrement	in	jump	performance	post-match	situations	has	been	reported	in	
many	studies	(McLellan	et	al.,	2011b;	Twist	&	Sykes,	2011;	Waldron	et	al.,	2011),	with	
decreased	performance	reported	in	a	period	of	up	to	24	hours.		Importantly	though,	prolonged	
increase	in	muscle	soreness	has	been	reported	to	last	for	longer	than	jump	performance	
decrement,	lasting	up	to	48	hours	in	some	studies	(McLellan	et	al.,	2011b;	Twist	&	Sykes,	2011).		
It	is	believed	that	this	perceived	soreness	has	an	impact	upon	players’	sense	of	effort	during	
training,	in	the	immediate	days	post-match,	thereby	having	implications	upon	the	quality	of	
training	that	can	be	performed	during	this	period.		Potentially,	however,	jump	performance	
values	could	still	be	collated	in	order	to	assess	player	readiness.	

From	the	research	above	it	is	evident	that	jump	testing	is	a	performance	test	that	warrants	
consideration	for	use	within	future	studies	in	this	thesis.		Jump	testing	is	a	relatively	easy	and	
inexpensive	performance	test	to	implement	in	elite	settings,	with	the	research	above	illustrating	
its	reliability	and	validity	for	measuring	performance	and	fatigue,	especially	when	a	
standardised	testing	protocol	is	administered.	
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2.4.1.3 Maximal	ergometer	testing	
Another	form	of	maximal	testing	uses	ergometers	to	assess	readiness	with	one	of	the	most	
widely	used	anaerobic	tests	being	the	Anaerobic	Cycling	Wingate	Test,	where	participants	pedal	
maximally	against	a	constant	resistance	proportionate	to	body	mass.		Wingate	tests	have	been	
shown	to	provide	reliable	measures	of	peak	power,	mean	power	and	fatigue	(Bar-Or,	Dotan,	&	
Inbar,	1977)	and	when	one	considers	that	maximal	cycling	tests	are	not	solely	lower	body	
power	assessments,	support	for	maximal	cycling	tests	is	unsurprising.		Baker	et	al.	(2002)	
concluded	that	a	large	contribution	to	the	peak	power	output	is	made	by	the	muscular	skeletal	
components	of	the	upper	body,	suggesting	that	a	cycling	ergometer	test	might	be	a	whole	body	
exercise.		The	anaerobic	nature	of	Wingate	tests	and	the	research	previously	referred	to,	further	
support	the	use	of	maximal	tests	as	a	means	for	assessing	rugby	players.		Anaerobic	fatigue	is	a	
topic	that	has	received	a	considerable	amount	of	attention,	with	anaerobic	and	repeated	sprint	
performance	tests	providing	an	index	of	anaerobic	endurance.		The	percentage	decline	in	
power,	relative	to	the	peak	value,	represents	the	maximal	capacity	for	ATP	production	via	a	
combination	of	intramuscular	phosphagen	breakdown	and	glycolysis	(McArdle,	Katch,	&	Katch,	
2005).	

Maximal	cycling	efforts	have	been	administered	in	rugby	league	to	assess	overreaching,	with	a	
decline	in	peak	power	during	a	ten	second	sprint	after	six	weeks	of	intensive	training	reported	
(Coutts,	Reaburn,	Piva,	&	Murphy,	2007;	Coutts,	Reaburn,	Piva,	&	Rowsell,	2007).		This	
decreased	performance	was	attributed	to	increased	levels	of	muscle	damage.		An	“off	feet”	test	
that	does	not	involve	“on	feet”	running	mechanics	is	often	deliberately	chosen	as	a	fatigue	test,	
post-game	in	rugby	union	players,	using	the	reliability	of	WattBike	testing	(Driller	et	al.,	2014;	
Driller,	Argus,	&	Shing,	2012).		Currently	unpublished	data	(Grainger,	Ripley	&	Comfort,	In	
Review),	utilising	6”	peak	power	testing	on	a	WattBike	in	elite	rugby	union	players,	has	
recommended	its	use	for	assessing	restoration	of	performance	post-match	situations.		“Off	feet”	
tests	are	considered	to	be	a	more	sensitive	and	practical	test	to	administer	on	rugby	players	
post-match.		The	aforementioned	blunt	force	trauma	and	high	running	volumes	associated	with	
rugby,	along	with	the	large	body	mass	of	players,	mean	that	running	in	the	days	post-match	
would	present	the	players	at	an	increased	injury	risk.		This	increased	injury	risk	would	be	
accentuated	by	the	nature	of	the	maximal	running	tests;	meaning	that	an	“off	feet”	test	would	be	
more	applicable.		It	could	also	be	argued	that	an	indoor	test	on	a	stationary	bike	would	be	more	
reproducible	than	a	running	test	performed	outside,	which	could	be	affected	by	weather	and	
ground	conditions,	thereby	creating	inaccuracies.	

2.4.2 Running	specific	performance	tests	for	football	codes	
A	reliable	and	robust	measure	of	the	performance	of	a	rugby	player	for	use	as	a	tool	for	
adjusting	training	schedules	has	long	been	required.		Performance	measures	in	most	football	
code	settings	(soccer,	rugby	union	and	rugby	league)	seeking	to	replicate	the	movements	of	the	
sport	generally,	involve	running	specific	activity	which	is	challenging	to	implement	and	perhaps	
impossible	to	make	accurate	judgements	upon.		Typically	maximal	running	tests	have	been	used	
in	rugby	league	(Coutts,	Reaburn,	Piva,	&	Murphy,	2007;	Coutts,	Reaburn,	Piva,	&	Rowsell,	2007)	
with	overreaching	athletes	identified	via	a	MSFT	following	an	intensified	training	period.		
Despite	Coutts,	Reaburn,	Piva,	and	Murphy	(2007)	reporting	on	the	state	of	overreaching,	they	
noted	that	the	most	likely	explanation	for	the	decreased	performance	is	increased	muscle	
damage,	via	a	decrease	in	the	anabolic-catabolic	balance,	in	addition	to	poor	management	of	the	
training	adaptation	process.		In	another	study	examining	performance	tests	for	rugby	(Austin,	
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Gabbett,	&	Jenkins,	2013)	it	was	noted	that	repeated	sprint	ability	tests	alone	may	
underestimate	the	repeated	high	intensity	efforts	seen	in	rugby	match	play	and	also	the	
associated	fatigue	that	this	creates	(Johnston	&	Gabbett,	2011).		However,	Austin	et	al.	(2013)	
concluded	that	the	findings	from	their	repeated	high	intensity	exercise	performance	test	were	
adequately	sensitive	to	detect	training	induced	changes	in	rugby	league	and	rugby	union.		
Within	the	rugby	league	and	rugby	union	research	by	Austin	et	al.	(2013)	varying	reliability	was	
noted,	with	ICC	for	total	sprint	time	being	moderate	to	high	(0.82,	0.97,	and	0.94)	and	CV	low	
(4.2,	1.4,	and	0.6%)	for	the	backs,	rugby	league	forwards,	and	rugby	union	forwards	tests,	
respectively.		Additionally,	the	reliability	of	running	specific	performance	measures	was	
questioned,	when	considering	that	sprint	performance	decrement	scores	were	low,	with	ICC	
and	CV	of	0.78,	0.86,	and	0.88	and	49.5,	48.2,	and	35.8%	for	rugby	league	and	rugby	union	
backs,	rugby	league	forwards,	and	rugby	union	forwards,	respectively. 

One	could	argue	that	these	running	specific	performance	tests	and	their	associated	training	
induced	changes	could	present	greater	understanding	as	regards	data	upon	which	to	assess	
player	fatigue	and	overall	readiness.		Within	“real	world”	elite	rugby	settings	it	is	unrealistic	to	
ask	players	to	complete	rugby	specific	testing	measures.		At	times	multiple	players	may	be	
required	to	perform	a	contact	situation	drill	that	replicates	elements	of	the	game	(to	make	the	
performance	measurements	as	specific	to	the	rugby	tasks	in	question	as	possible),	yet	the	drill	
is	for	the	sole	purpose	of	assessing	one	player’s	fatigue	or	readiness.		This	further	highlights	the	
unrealistic	expectations	of	such	rugby	specific	performance	tests	“on	feet”.		Added	to	the	
impracticality	of	using	specific	rugby	tests,	the	extra	fatigue	that	these	testing	practices	would	
induce	make	testing	for	readiness	using	rugby	specific	measures	less	appropriate	for	use	in	elite	
settings,	where	the	days	between	games	are	short	and	an	already	busy	training	schedule	makes	
the	elite	players	compliance	to	such	testing	unlikely.		Due	to	the	impracticality	of	using	rugby	
specific	performance	measures	for	assessing	readiness,	the	monitoring	of	current	functional	
capacity	has	focused	upon	indirect	markers	of	performance	such	as	alternative	forms	of	
maximal	and	submaximal	testing	and	other	relevant	physiological	and	psychological	
assessments. 

Cormack,	Smith,	Mooney,	Young,	and	O'Brien	(2014)	assessed	load	per	minute	(LPM)	via	GPS	
data	collection	as	a	measure	of	exercise	intensity.		LPM	was	calculated	via	accumulated	
accelerations	measured	by	tri-axial	accelerometers,	with	Cormack,	Monney,	Morgan,	and	
McGuigan	(2013)	concluding	that,	when	considering	LPM	in	conjunction	with	NMF	data	
assessed	via	CMJ,	it	is	apparent	that	LPM	measures	are	acute	to	efficiency	of	movement	
performed,	due	to	reduced	neuromuscular	function	and	would	therefore	be	another	
performance	measure	upon	which	to	judge	player	readiness.		These	GPS	values	such	as	LPM	do,	
however,	need	to	be	validated	for	reliability,	despite	Mooney	et	al.	(2013)	showing	similar	GPS	
efficiency	when	assessing	CMJ	performance,	Yo-Yo	IR	testing	and	subjective	coaches’	voting.		
One	could	argue	that	jump	testing	could	measure	the	SSC	of	athletes	but	would	not	provide	a	
global	measure	of	player	fatigue	in	rugby	union.		It	was	argued	that	a	player	could	perform	a	
maximal	jump	despite	being	fatigued	and	therefore	show	no	signs	of	decrement	in	their	jump	
performance.		Whereas	a	maximal	effort	performance	measure	test;	such	as	MSFT	or	(Coutts,	
Reaburn,	Piva,	&	Rowsell,	2007)	Yo-Yo	Intermittent	Endurance	Level	2	Test	(Yo-Yo	IE2)	
(Krustrup	et	al.,	2010),	would	present	more	objective	data	upon	the	whole	athlete,	as	regards	
neuromuscular	function	and	cardiovascular	readiness,	it	has	been	shown	to	be	a	definitive	
performance	marker	for	NFOR	in	team	sport	athletes.		However,	many	running	specific	tests,	
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although	not	maximal	in	nature,	are	harder	to	implement	logistically	than	jump	testing,	for	
example,	and	can	add	to	the	training	volume	and	subsequent	fatigue	of	the	athlete,	meaning	that	
it	may	not	be	the	best	performance	measure	for	many	sporting	scenarios.	

Sub-maximal	running	tests	are	commonly	used	within	team	sport	settings	(Buchheit	et	al.,	
2013;	Cornforth,	Robinson,	Spence,	&	Jelinek,	2014),	with	heart	rate	derived	measures	used	to	
assess	readiness	and	general	fatigue.		Heart	rate	recovery	(HRR)	and	heart	rate	variability	
(HRV)	are	two	such	performance	measures	and	they	can	be	used	within	sub-maximal	exercise	
protocol	as	performance	measures	for	fatigue.		HRR	and	HRV	are	therefore	considered	for	use	
within	future	studies	within	this	research	and	are	critiqued	in	more	detail	within	Chapter	5.5.	

2.4.3 Perceptual	feelings	of	well-being	
Performance	tests	provide	a	good	indicator	of	an	athlete’s	physical	and	psychological	well-
being;	yet	as	mentioned	previously,	often	add	fatigue	to	participants	and	are	therefore	
impractical	for	daily	implementation.		The	goal	of	many	sport	practitioners	is	to	provide	a	
stimulus	that	improves	prospective	athletic	performance,	with	many	practitioners	applying	
well-being	(WB)	questionnaires	as	a	measure	of	finding	out	both	how	their	players	feel	and	how	
they	are	handling	the	training	volume	(Coutts,	Wallace,	&	Slattery,	2007;	Halson,	Lancaster,	
Jeukendrup,	&	Gleeson,	2003).		Support	for	the	use	of	monitoring	tools	such	as	WB	
questionnaires	is	vast	(Coutts,	Wallace,	et	al.,	2007;	Elloumi,	Maso,	Michaux,	et	al.,	2003;	
Johnston	et	al.,	2013;	Slattery,	Wallace,	Murphy,	&	Coutts,	2006),	with	coefficient	variant	for	
subjective	mood	state	being	9-12%	(Hooper	&	Mackinnon,	1995).		Despite	this,	research	into	
the	effect	of	team	success	upon	mood	is	still	unclear	(Gonzalez-Bono,	Salvador,	Serrano,	&	
Ricarte,	1999).		Mood	disturbances,	as	assessed	via	questionnaire,	have	been	reported	to	
increase	in	a	progressive	manner	as	training	load	increases	(Filaire	et	al.,	2001;	Saw,	Main,	&	
Gastin,	2016),	while	mood	was	noted	to	outlast	hormonal	responses	post	rugby	union	match	
(West	et	al.,	2014).		Subjective	markers	of	fatigue	include;	the	Profile	of	Mood	States	(POMS)	
questionnaire,	the	Total	Quality	Recovery	Scale,	the	Passive	and/or	Active	Recovery	Scale	and	
the	Daily	Analysis	of	Life	Demands	for	athletes’	questionnaire	have	been	utilised	in	team	sport	
studies	of	training	effect	and	readiness	(Filaire	et	al.,	2001;	Kentta	&	Hassinen,	1998;	Shearer	et	
al.,	2016).		Further	support	for	WB	questionnaires	comes	from	Killen	et	al.	(2010)	who	reported	
a	trend	towards	higher	injury	rates	and	noticeable	changes	in	psychological	well-being.		When	
considering	that	sensory	psychological	inhibition	post-exercise	is	perhaps	the	main	cause	of	
fatigue	during	periods	of	high	training	volume	(as	illustrated	in	Chapter	2.3.2)	further	evidence	
for	the	use	of	WB	measures,	that	can	assess	psychological	readiness	in	the	days	post	rugby	
game,	are	further	emphasised.	

As	mentioned,	support	for	the	use	of	monitoring	tools	such	as	well-being	questionnaires	comes	
from	Slattery	et	al.	(2006).		They	claimed	that	the	RESTQ-76	Sport	questionnaire	provided	a	
practical	tool	for	monitoring	overreaching	in	triathletes.		Recent	research	in	team	sport	settings	
has	also	supported	the	importance	of	frequent	monitoring	of	recovery	and	stress	parameters	to	
lower	the	risk	of	injuries	in	professional	football,	with	the	RESTQ-Sport	questionnaire	
predicting	injuries	in	the	month	after	the	assessment	(Laux,	Krumm,	Diers,	&	Flor,	2015).		Twist	
and	Highton	(2013)	studied	rugby	league	players’	functional	state	in	post-match	situations	and	
concluded	that	a	multidimensional	approach	should	be	administered	in	order	to	test	and	
manage	fatigue,	as	an	altered	sense	of	effort	was	present,	both	when	fatigued	and	during	
performing	testing.		When	an	impaired	psychological	state	or	mental	fatigue	is	apparent	
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participants	may	down	regulate	their	exercise	capacity.		This	is	therefore	a	point	to	consider	for	
any	future	performance	testing	under	a	state	of	fatigue	post-match.		This	notion	was	supported	
by	Johnston	et	al.	(2013)	who	noted	that	an	increase	in	perceived	muscle	soreness	might	
perhaps	increase	perceived	effort,	thereby	reducing	a	rugby	player’s	ability	to	perform	
optimally.	

Subjective	measures	have	been	used	to	monitor	fatigue	in	rugby,	with	previous	research	
including	self-report	well-being	questionnaires,	showing	reduced	perception	of	readiness	
across	a	longitudinal	period	(Cresswell	&	Eklund,	2006).		Evidence	for	the	use	of	well-being	
questionnaires	in	rugby	union	was	supported	by	Twist	and	Highton	(2013)	who	found	
alterations	in	perceived	fatigue	and	muscle	soreness	to	outlast	deductions	in	neuromuscular	
and	biochemical	markers.		Fatigue	and	diminished	performance	throughout	a	rugby	season	is	
common,	with	previous	research	in	rugby	union	(Argus,	Gill,	Keogh,	et	al.,	2012)	reporting	a	3%	
decrease	in	lower	body	peak	power	during	a	competitive	phase	in	rugby	union,	while	a	study	
assessing	in-season	strength	and	power	characteristics	in	rugby	league	showed	a	decrease	of	
1%	in	lower	body	mean	power	(Baker,	2001b).		Evidence	for	this	resultant	fatigue	and	reduced	
performance	capacity	have	been	represented	by	correlations	between	OT	scores	assessed	via	
questionnaire	and	altered	CK	values.		This	evidence	is	apparent	in	the	study	by	Alaphilippe	et	al.	
(2012)	assessing	biochemical	markers	over	a	longitudinal	period	in	rugby	union.		In	rugby	
specifically,	perceptual	fatigue	(assessed	via	questionnaire)	was	reported	to	last	up	to	four	days	
post-match	(Johnston	et	al.,	2013).		Twist	and	Highton	(2013)	reported	a	change	of	
approximately	1	to	2	on	a	scale	of	1	to	5	in	muscle	soreness,	fatigue	and	attitude	towards	
training	in	the	48	hours	post	rugby	league	game	when	assessing	via	a	Likert	scale.		Nicholls,	
Backhouse,	Polman,	and	McKenna	(2009)	noted	that	rugby	union	players	described	many	self-
report	stressors	as	being	“worse	than	normal”	the	day	after	a	match,	in	comparison	to	days	
preceding	and	including	match	day.	

Muscle	soreness	post-match	has	been	effectively	researched	in	previous	rugby	union	research	
(Gill	et	al.,	2006;	Takarada,	2003)	and	was	considered	an	appropriate	measure	upon	which	to	
assess	recovery.		When	an	impaired	psychological	state	or	mental	fatigue	is	apparent,	
participants	may	down	regulate	their	exercise	capacity.		As	was	discussed	in	recent	research	
(Marcora,	Bosio,	&	de	Morree,	2008;	Marcora,	Staiano,	&	Manning,	2009;	Twist	&	Eston,	2009),	
perceived	muscle	soreness	and	the	effect	this	has	upon	increased	perceived	exertion	are	
important	considerations	for	well-being	assessment.		It	has	been	reported	that	alterations	in	
perceived	fatigue	and	increased	muscle	soreness	are	known	to	outlast	reductions	in	
neuromuscular	performance	and	biochemical	markers	in	rugby	league	(Twist	&	Highton,	2013;	
Twist	et	al.,	2012).		This	prolonged,	lasting	alteration	in	perceived	fatigue	supports	the	
argument	for	the	use	of	well-being	questionnaires,	yet	also	illustrates	the	importance	of	
integrating	performance	measures	assessing	NMF	and	with	self-report	measures.		Recent	
research	in	elite	rugby	union	by	Shearer,	Kilduff,	et	al.	(2015)	further	emphasised	the	use	of	WB	
monitoring	as	a	measure	of	recovery,	via	The	Brief	Assessment	of	Mood	questionnaire	(BAM)	(a	
shortened	version	of	POMS),	although	it	did	recommended	its	use	alongside	endocrine	
measures	and	power	output.	

Despite	well-being	ratings	being	common	practice	in	the	elite	field	and	being	relatively	easy	to	
administer	at	minimal	cost,	caution	should	be	taken	when	interpreting	results.		Limited	
evidence	exists,	regarding	the	relationship	between	well-being	questionnaires	and	changes	in	
performance,	with	compliance	from	athletes	decreasing	if	data	collected	upon	the	training	dose-
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response	relationship	is	not	acted	upon.		Recent	research	by	Roe	et	al.	(2015)	presented	a	CV	of	
7.1%	for	WB	questionnaires	in	elite	youth	male	rugby	players,	which	despite	being	lower	than	
the	<10%	CV	recommended	by	Buchheit,	Lefebvre,	Laursen,	and	Ahmaidi	(2011),	shows	the	
difficulty	of	assessing	WB	scores	and	therefore	warrants	consideration	when	used	to	assess	
fatigue	post	rugby	union	match	play.		Practitioners	have	been	noted	to	gather	data	on	recovery	
via	custom-made	questionnaires	(Rowsell	et	al.,	2009)	and	it	is	believed	that	well-being	
questionnaires,	designed	applicable	to	the	sport	in	question,	provide	more	informative	data	on	
the	response	of	the	individual	than	a	generic	well-being	questionnaire.		One	could	therefore	
argue	that	the	use	of	well-being	questionnaires	in	team	sport	settings	are	especially	important,	
considering	that	each	individual	might	respond	in	a	different	manner,	as	a	result	of	the	training	
dose	administered	by	the	coaches,	as	was	found	in	the	study	by	Lovell	et	al.	(2013)	assessing	
factors	affecting	RPE	in	rugby	league.	

In	addition	to	designing	bespoke	questionnaires	for	athletes,	the	questionnaire	length	and	
frequency	of	administration	should	be	considered	as	supported	by	Halson	(2014)	in	order	to	
maximise	compliance.		Saw,	Main,	and	Gastin	(2015)	recommended	a	multi	factorial	and	multi-
level	approach	to	be	implanted	into	athlete	self-report	measures,	to	improve	efficacy.		In	
addition	to	the	aforementioned	considerations,	practitioners	should	be	aware	that	athletes	
could	manipulate	well-being	data,	based	upon	their	estimation	of	the	training	load	and	desire	to	
manipulate	any	future	training	planned.		Additionally,	an	athlete’s	sleep	is	often	rated	within	
fatigue	research,	yet	the	reliability	of	such	measures	is	often	questioned,	as	the	length	and	
quality	of	sleep,	for	example,	are	difficult	to	measure	via	perceptual	measures,	despite	the	
importance	of	a	measure	such	as	sleep	being	used	to	assess	an	athlete’s	readiness.		The	validity	
of	some	of	the	perceptual	measures	used	by	practitioners	(such	as	self-report	well-being	and	
rate	of	perceived	exertion)	in	the	research	outlined	in	Table	2.13	is	therefore	questioned.			

2.4.4 Biochemical	markers	
Assessing	fatigue	via	performance	tests	such	as	jump	tests,	submaximal	tests,	or	sport	specific	
tests	is	common	place	within	elite	settings,	yet,	as	concluded	by	Twist	and	Highton	(2013),	
performance	tests	should	only	be	used	when	other	markers	(biochemical	and	perceptual	
measures)	suggest	fatigue.		It	is,	however,	important	to	note	that	many	teams	cannot	afford	to	
implement	biochemical	testing	and	that	they	therefore	utilise	performance	testing	(sub-
maximal	or	maximal)	as	an	alternative	means	of	assessing	fatigue.		Hormonal	concentrations	
during	the	recovery	period	post-training	or	competition	provide	important	data	for	
practitioners	when	assessing	restoration	of	performance	and	associated	readiness.		
Neuroendocrine	response	to	exercise	is	well	documented	(Cunniffe	et	al.,	2010;	Lindsay,	Lewis,	
Scarrott,	Gill,	et	al.,	2015),	yet	the	findings	on	the	resultant	fatigue	state	are	contrasting	
(Cormack,	Newton,	&	McGuigan,	2008;	Filaire,	Legrand,	Lac,	&	Pequignot,	2004).	

Many	studies	have	reported	the	use	of	biochemical	and	endocrine	analysis	during	team	sports	
seasons	(Alaphilippe	et	al.,	2012;	Crewther	et	al.,	2009;	Cunniffe	et	al.,	2010;	Hoffman	et	al.,	
2002),	reflecting	the	stress	and	muscle	damage	that	occurs	post	many	team	sport	movements,	
with	a	review	of	the	potential	use	of	urine	and	saliva	tools	noted	as	“the	future”	in	a	recent	
review	of	non-invasive	biomarkers	(Lindsay	&	Costello,	2016,	p.	11).		Crewther	et	al.	(2009)	
analysed	neuromuscular	changes	and	associated	changes	in	biochemical	data	post-training	for	
thirty-four	professional	male	rugby	players.		Correlations	were	found	between	salivary	
testosterone	and	cortisol	values	and	speed	(10	m,	20	m	or	30	m	sprints;	r	=	0.65,	p	<	0.05);	
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power,	concentric	mean	(r	=	0.41,	p	<	0.05),	during	a	70	kg	SJ	and	50	kg	peak	power	bench	press	
throw	(r	=	0.41,	p	=	0.05);	and	strength	measures	(estimated	1RM)	strength	for	a	box	squat	(r	=	
0.39,	p	=	0.05)	and	bench	press	(r	=	-0.42,	p	<	0.05).		More	recent	research	in	rugby	union	(West	
et	al.,	2014)	has,	however,	noted	that	no	relationships	exist	between	changes	in	CMJ,	
biochemical	markers	(testosterone	and	cortisol)	and	mood.		These	findings	have	implications	
for	the	post-match	recovery	modalities	implemented	and	the	hormone	secretion	patterns	
expected.		It	is,	moreover,	important	to	note	that	practitioners	should	be	aware	that	the	possible	
reasons	for	the	contrasting	results	between	studies	that	assess	use	of	biochemical	markers	in	
rugby	might	be	based	upon	methodological	differences.		For	example,	the	study	by	West	et	al.	
(2014)	incorporates	data	post-match,	whereas	the	study	by	Crewther	et	al.	(2009)	assesses	
post-training	across	differing	time-points,	with	different	performance	measures	correlated	to	
biochemical	markers	being	evident	within	both	the	studies.	The	following	sub-chapters	
critically	assess	commonly	used	biochemical	markers	utilised	by	team	sport	practitioners	and	
their	practicality	for	use	within	elite	rugby	settings.	

2.4.4.1 Muscle	damage	and	biochemical	response	
Research	in	both	rugby	league	and	rugby	union	(Cunniffe	et	al.,	2010;	McLellan	et	al.,	2011b;	
Takarada,	2003)	has	shown	that	the	number	of	collisions/tackles	that	occur	during	matches	
correlates	with	muscle	damage	markers,	while	in	soccer	the	volume	of	high	intensity	efforts,	
many	of	which	include	eccentric	loads,	relates	specifically	to	fatigue	and	muscle	damage	
(Crewther	et	al.,	2009;	Proske	&	Morgan,	2001).		Takarada	(2003)	noted	that	the	degree	of	
muscle	damage	in	rugby	union	relates	directly	to	the	number	of	collisions	experienced,	with	
McLellan	et	al.	(2011b)	noting	a	25%	reduction	in	PRFD	and	20%	reduction	associated	with	a	
51%	increase	in	salivary	cortisol	concentrations,	in	elite	rugby	league	players.  McLellan	et	al.	
(2011b)	reported	that	CK	values	remained	elevated	for	up	to	five	days	post-match	and	that	
significant	correlations	were	seen	between	CK	values	and	PRFD	and	cortisol	and	peak	force	PF	
measured	via	CMJ.		It	is,	however,	important	for	practitioners	to	understand	that	there	are	
differences	in	the	methods	used	to	collect	and	analyse	the	biochemical	markers	mentioned	
above.		For	example,	blood	samples	were	used	to	assess	immune	endocrine	markers	post-match	
play	within	the	research	by	Takarada	(2003)	and	by	Cunniffe	et	al.	(2010),	yet	in	the	research	
by	McLellan	et	al.	(2011a)	they	incorporated	both	blood	and	saliva	measurements.		Despite	data	
taken	at	similar	time-points	across	all	the	above	research,	disparities	in	results	taken	from	both	
blood	and	saliva	are	expected,	therefore	emphasising	the	need	to	compare	only	data	across	
similar	methodological	protocols.		Reliability	of	both	saliva	measures	have	been	reported,	with	
Dabbs	(1990)	presenting	r	=	0.64	across	two	days	and	r	=	0.52	across	seven-eight	weeks	using	
saliva	testosterone	measurements.		The	important	consideration	here	for	practitioners	to	note	
is	the	methodology	used.		Caution	is	advised	when	comparing	research	where,	for	example,	
Coutts,	Reaburn,	Piva,	and	Murphy	(2007)	used	plasma	testosterone	to	cortisol	measures,	
whereas	West	et	al.	(2014)	used	salivary	measures	across	similar	elite	rugby	playing	
populations.	

Duffield	et	al.	(2012)	and	Twist	and	Highton	(2013)	discussed	studies	where	significant	post-
match	increases	in	muscle	damage	were	observed	through	CK	and	myoglobin	analysis.		Similar	
support	for	the	use	of	CK	analysis	in	rugby	union	has	been	reported	by	Alaphilippe	et	al.	(2012)	
and	in	many	rugby	league	studies	(Johnston	et	al.,	2013;	McLellan	et	al.,	2011b;	Twist	et	al.,	
2012),	with	increases	in	CK	values	following	six	weeks	of	deliberate	overreaching	in	rugby	
league	(Coutts,	Reaburn,	Piva,	&	Rowsell,	2007).		An	increase	in	CK	has	been	quantified	as	a	
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reliable	marker	of	tissue	damage	post-match	play	in	rugby	league	and	has	been	recommended	
as	a	marker	to	monitor	recovery	(McLellan	et	al.,	2011a),	as	well	as	training	prescription	
involving	hormone	monitoring	(Crewther	et	al.,	2009).		Some	research	has	reported	CK	
requiring	72	hours	to	return	to	baseline	values	post-rugby	(Minett,	Duffield,	&	Bird,	2010;	
Takarada,	2003).		Varying	results	have,	however,	been	reported	for	CK,	with	a	CV	of	26.1-27%	
reported	between	testing	days	(Roe	et	al.,	2015;	Twist	&	Highton,	2013;	Twist	et	al.,	2012).		
Twist	and	Sykes	(2011)	commented	that	myofibrillar	disruption	has	been	reported	in	some	
studies	(Cunniffe	et	al.,	2010;	Takarada,	2003),	yet	this	measure	of	muscle	damage	provides	no	
clear	indication	of	muscle	function	and	it	is	more	likely	that	force	generating	capacity	provides	
the	most	appropriate	indirect	marker	of	muscle	damage.	

Despite	a	large	amount	of	recent	research	incorporating	saliva	testing	that	assesses	time-course	
of	changes	in	immuneoendocrine	markers	in	team	sports	(Beaven,	Cook,	et	al.,	2008;	Beaven,	
Gill,	et	al.,	2008;	Cormack,	Newton,	&	McGuigan,	2008;	McLellan	et	al.,	2010),	varied	reliability	
and	validity	has	been	noted	(Coad,	McLellan,	Whitehouse,	&	Gray,	2015;	Dabbs,	1990).		This	
poor	reliability	and	subsequent	lack	of	meaningful	impact	of	saliva	testing	is,	therefore,	a	point	
to	consider	for	practitioners	in	the	elite	field,	when	making	decisions	about	which	testing	
measures	would	be	best	to	implement. 

2.4.4.2 Hormonal	response	
T	and	C	are	considered	reliable	markers	of	a	return	to	endocrine	homeostasis	post-competition,	
with	T	being	the	dominant	anabolic	marker	of	protein	signalling	and	C	being	an	important	
stress	hormone	that	works	against	T	(Cormack,	Newton,	McGuigan,	&	Cormie,	2008;	Elloumi,	
Maso,	Michaux,	et	al.,	2003).		A	rugby	match	is	known	to	alter	the	catabolic/anabolic-related	
hormonal	homeostasis	towards	a	predominant	catabolic	response	during	the	first	48	hours	of	
the	recovery	process	(McLellan	et	al.,	2010).		McLellan	et	al.	(2010)	also	reported	that	return	to	
normal	testosterone	to	cortisol	balance	(T:C)	is	expected	within	48	hours	of	rugby	league	match	
play.		Cunniffe	et	al.	(2010)	reported	T:C	levels	rising	above	pre-game	values	and	Elloumi,	Maso,	
Michaux,	et	al.	(2003)	noted	that	T:C	ratio	increased	above	basal	levels	for	up	to	five	days	post	
international	rugby	games.		Cormack,	Newton,	McGuigan,	and	Cormie	(2008)	discussed	the	
anabolic-catabolic	T:C	ratio	and	reported	a	ratio	decrease	of	30%	as	being	an	accurate	indicator	
of	overtraining	and	that	C	had	a	small	relationship	to	performance	when	assessed	alongside	CMJ	
flight	time.		Filaire	et	al.	(2001),	however,	did	note	that	caution	should	be	used	when	using	the	
T:C	ratio	for	NMF	assessment	as	their	results	did	not	relate	to	reduced	performance	or	
diagnosed	OT	when	using	prescribed	70-75%	of	VO2max		physical	training	sessions.		Conversely,	
some	research	(Alaphilippe	et	al.,	2012;	Coutts,	Reaburn,	Piva,	&	Murphy,	2007)	reported	that	
large	training	loads	with	insufficient	recovery	caused	reduction	in	T:C	ratio,	increased	CK	
activity	and	decreased	glutamine	to	glutamate	ratio. 

Buchheit	et	al.	(2013)	noted	that	training	load,	heart	rate	data	and	wellness	measures	via	
questionnaires	should	be	used	to	monitor	recovery	status,	but	not	the	salivary	cortisol	
measures	commonly	used	to	assess	hormonal	balance.		When	examining	the	usefulness	of	
selected	physiological	and	perceptual	measures	to	monitor	fitness,	fatigue	and	running	
performance	during	a	two	week	pre-season	training	camp	in	Australian	rules	footballers,	
Buchheit	et	al.	(2013)	noted	significant	(p	<	0.001	for	all)	day-to-day	variations	in	training	load	
(CV	=	66%),	wellness	measures	(6-18%),	HRex	(3.3%),	LnSD1	(19.0%)	when	utilising	a	Yo-Yo	
IR2	test	(pre-,	mid-	and	post-training	camp).		Buchheit	et	al.	(2013)	did	notice	that	salivary	
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cortisol	measures	did	not	show	practical	efficacy	(20.0%,	p	=	0.60),	further	signifying	the	need	
for	caution	when	implementing	hormonal	measures	to	assess	readiness.		In	addition	to	day-to-
day	variations	that	exist	within	salivary	cortisol,	Hayes,	Sculthorpe,	Young,	Baker,	and	Grace	
(2014)	reported	that	a	large	magnitude	of	change	for	salivary	cortisol	(90%)	and	salivary	
testosterone	(148%)	exists,	therefore	suggesting	a	biologically	significant	mean	change	is	
difficult	to	assess.		Filaire	et	al.	(2001)	similarly	reported	that	decreased	salivary	T:C	ratio	does	
not	lead	to	a	decrease	in	team	performance,	or	perceived	wellness,	of	the	players	assessed	via	
questionnaire	in	professional	soccer,	while	more	recent	research	(Shearer	et	al.,	2016)	has	
noted	variance	in	CK	correlation	with	BAM	scores	in	elite	under	21	academy	soccer	players	.		
This	is	in	contrast	to	previous	research	that	has	reported	significant	changes	in	C	post	team	
sport	games	(Cormack,	Newton,	McGuigan,	&	Cormie,	2008;	McLean	et	al.,	2010).		Data	from	
both	soccer	and	cycling	endurance	tests	(Filaire,	Lac,	&	Pequignot,	2003;	Gastmann,	Petersen,	
Bocker,	&	Lehmann,	1998)	would	suggest	that	instead	of	the	T:C	ratio	being	a	warning	sign	for	
OTS,	it	is	perhaps	only	an	indicator	of	short	term	physiological	stress	from	training	or	
competition.		The	aforementioned	research	by	Filaire	et	al.	(2001)	illustrates	the	inaccuracy	of	T	
and	C	assessment	when	using	the	T:C	ratio	for	NMF	assessment,	as	their	results	did	not	relate	to	
reduced	performance.		When	considering	the	time	consuming	nature	of	managing	biochemical	
essays,	alongside	the	inconclusive	accuracy	of	T	and	C	testing	alone,	the	rationale	for	testing	the	
T:C	ratio	is	further	questioned,	demonstrating,	perhaps,	that	identification	of	a	single	
biochemical	variable	would	be	more	realistic	for	use	in	team	sport	settings.		Biochemical	testing	
within	elite	rugby	environments	on	a	regular	basis	is	therefore	considered	impractical,	due	to	
the	time	commitment,	cost,	circadian	disturbances	and	lack	of	rapid	feedback	involved	within	
such	biochemical	testing	procedures.	

2.4.4.3 Metabolic	response	to	rugby	game	play	
Metabolic	cost	of	exercise	and	the	associated	EIMD	have	been	researched	(Tee,	Bosch,	&	
Lambert,	2007),	as	well	as	inflammatory	response	to	low	frequency	neuromuscular	fatigue	
(Twist	&	Eston,	2009).		Mashiko	et	al.	(2004b)	noted	that	rugby	union	forwards	accumulate	a	
catabolic	degeneration	of	muscle	tissue	due	to	contact	situations,	in	contrast	to	backs	where	
metabolism	and	energy	consumption	induces	fatigue.		McLellan	et	al.	(2011b)	reported	that	
immediate	reduction	in	neuromuscular	function	post-match,	when	assessing	jump	performance	
and	associated	SSC,	should	be	attributed	to	the	metabolic	accumulation	and	depletion	of	energy	
sources	during	performance.		Additionally,	secondary	reduction	in	NMF	was	noted	by	McLellan	
et	al.	(2011b)	to	be	more	likely	to	be	attributed	to	the	inflammatory	processes	accumulated	as	a	
result	of	SSC	exercises.		These	varying	forms	of	fatigue	have	been	reported	to	require	differing	
ingestion	of	recovery	energy	sources	post-match,	where	forwards	are	recommended	to	include	
an	increased	source	of	protein	in	order	to	accelerate	recovery	(Mashiko	et	al.,	2004b).		Ingestion	
of	energy	sources	(carbohydrates,	fats	and	proteins)	has	been	noted	to	speed	recovery	in	post-
match	situations,	aiding	in	the	replenishing	of	glycogen	stores	and	repair	of	muscle	damage	and	
therefore	speeding	restoration	of	performance	(Howarth,	Moreau,	Phillips,	&	Gibala,	2009;	
Minett	et	al.,	2010;	Moore	et	al.,	2009).		This	is	discussed	in	more	detail	in	Chapter	2.5.1.7.		Both	
substrate	depletion	and	muscle	damage	are	considered	to	be	major	inhibitors	of	hastened	
restoration	of	performance	and	general	feeling	of	recovery	post-rugby	(Casiero,	2013)	and	are	
therefore	an	area	of	importance	for	practitioners	working	with	teams	competing	on	a	weekly	
basis	where		the	need	to	hasten	recovery	and	improve	readiness	for	the	next	match	are	
essential.	



	 73	

It	has	previously	been	reported	by	Bangsbo,	Iaia,	and	Krustrup	(2008)	that	fatigue	towards	the	
end	of	soccer	match	play	is	muscle	glycogen	depletion	related.		It	could,	however,	be	argued	that	
this	glycogen	depletion	would	not	affect	jump	performance	immediately	post-match	and	that	
instead	it	is	more	likely	that	muscular	fatigue	from	movement	patterns	completed	within	game	
situations	would	affect	jump	performance.		The	exercise	duration	associated	with	rugby	union	
match	play	is	too	short	for	any	glycogenic	contribution	to	be	required	and	hence	jump-test	
markers	are	likely	to	be	affected	by	glycogen	depletion	fatigue	immediately	post-match,	
therefore	emphasising	to	practitioners	that	other	areas	of	fatigue	post-match,	such	as	muscle	
damage,	warrant	more	investigation	than	metabolic	responses.		Glutamine	to	glutamate	ratio	is	
one	biochemical	marker	that	has	been	considered	to	be	a	good	indicator	of	tolerance	to	training	
assessing	free	amino	acid	concentrations,	showing	a	reduction	in	glutamine/glutamate	ratio	
thus	representing	its	training	intolerance	in	rugby	league	(Coutts,	Reaburn,	Piva,	&	Rowsell,	
2007).		To	the	author’s	knowledge	no	data	has	been	reported	on	optimal	glutamine/glutamate	
ratios	in	team	sports	such	as	rugby,	although	Halson	et	al.	(2003)	have	observed	a	threshold	of	
<	3.58	as	being	indicative	of	overreaching	in	cycling.		It	is	of	importance	for	practitioners	to	note	
that	factors	such	as	nutritional	diet	and	deliberate	glutamine	supplementation	could	affect	
resultant	free	amino	acid	concentrations.		Therefore,	caution	should	be	advised	when	using	
glutamine/glutamate	ratios	to	assess	training	tolerance	in	team	sport	settings. 

2.4.4.4 Considerations	for	biochemical	testing	
Although	biochemical	markers	of	fatigue	provide	more	objective	measures	of	homeostatic	
disturbances,	the	expense	associated	with	hormonal	testing	and	the	expertise	needed	to	
perform	such	tests	make	them	unrealistic	for	assessment	in	many	club	rugby	union	teams.		One	
could	also	conclude	that	hormonal	markers	as	measures	for	assessment	in	rugby	union	are	not	
practical	in	a	team	environment,	where	daily	training	and	the	large	number	of	players	in	a	
playing	roster,	would	inhibit	hormonal	marker	testing	on	a	progressive	basis.		Another	
important	consideration	for	practitioners	is	standardisation	of	biochemical	testing	protocol.		
Common	issues	that	are	known	to	be	utilised	and	to	affect	the	reliability	of	biochemical	testing	
include;	ambient	temperature,	hydration	status,	diet,	glycogen	content,	previous	exercise	and	
sampling	procedures.		These	issues	are	summarised	by	Halson	(2014,	p.	143)	who	notes	“the	
use	of	biochemical,	hormonal	and/or	immunological	measures	as	indicators	of	internal	load	is	
currently	not	justified	based	on	the	limited	research	in	this	area”.		When	considering	the	low	
reliability	(Hoffman	et	al.,	2002)	and	large	intra-individual	differences	(Maso	et	al.,	2004)	
associated	with	biochemical	testing,	practitioners	should	instead	focus	upon	markers	from	
performance	tests,	which	are	specific	to	the	task	completed	and	are	more	practical	in	nature.	

Further	lack	of	support	for	biochemical	testing	arises	from	research	assessing	biochemical	and	
hormonal	responses	during	an	intercollegiate	American	football	season	(Hoffman,	Kang,	
Ratamess	&	Faigenbaum,	2005,	p.	1237),	where	players	were	noted	to	develop	‘‘contact	
adaptation’’	as	they	progress	through	the	competitive	season.		As	supported	by	Twist	and	
Highton	(2013),	due	to	the	inhibitive	and	expensive	nature	of	biochemical	testing	a	more	
rounded	appraisal	of	player	fatigue	and	subsequent	readiness	to	train	is	recommended	for	use	
in	many	sporting	environments.		Considering	that	it	is	not	uncommon	for	hormonal	and	
neuromuscular	factors	not	to	correlate	with	performance	tests	such	as	those	detailed	above,	
practitioners	should	perhaps	use	biochemical	testing	in	conjunction	with	movement	data	(GPS)	
and	heart	rate	data,	which	have	been	noted	to	have	high	validity	and	reliability	(Casamichana	et	
al.,	2013)	in	addition	to	perceptual	measures	(RPE)	which	would	therefore	aid	in	better	
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quantifying	global	fatigue. 

2.4.5 Heart	rate	derived	measures	
A	change	in	heart	rate	(HR)	due	to	autonomic	nervous	system	response	is	a	possible	indication	
of	adaptation	to	training	stress.		As	a	coach,	a	simple	and	effective	means	of	assessing	player	
readiness	is	paramount,	with	heart	rate	derived	measures	providing	recent	literature	to	aid	
practitioners	attempting	to	quantify	load	(Bosquet	et	al.,	2008).		Training	load	assessment	via	
heart	rate	measures	is	well-documented	and	validated	in	endurance	sports	(Plews,	Laursen,	
Kilding,	&	Buchheit,	2012;	Plews,	Laursen,	Stanley,	Kilding,	&	Buchheit,	2013),	yet	this	method	
of	assessment	has	only	been	researched	in	a	few	team	sport	scenarios	(Buchheit	et	al.,	2013;	
Coutts	et	al.,	2003).		Most	HR	data	from	rugby	concerns	match	situations,	where	data	has	been	
used	to	describe	the	intensity	and	energy	expenditure	of	players	throughout	games,	thereby	
helping	to	guide	practitioners	in	training	prescription.		Recently,	however,	many	practitioners	
have	used	heart	data	to	guide	recovery	and	restoration	post-performance	(Cornforth	et	al.,	
2014).	

2.4.5.1 Resting	heart	rate	
Perhaps	the	simplest	heart	rate	derived	measure	of	fatigue	is	that	utilising	resting	heart	rate	
(RHR),	with	overreaching	in	elite	athletes	noted	to	correlate	with	increased	RHR	(Kuipers	&	
Keizer,	1988)	when	reviewing	elite	athlete	case	studies.		Lack	of	support	for	the	use	of	resting	
heart	rate	comes	from	Bosquet	et	al.	(2008),	who	noted	trivial	increases	in	RHR	as	an	indicator	
of	overreaching,	when	conducting	a	meta-analysis	upon	the	effect	of	overload	training	on	RHR.		
Bosquet	et	al.	(2008)	did,	however,	observe	larger	increases	in	RHR	post	short-term	training	
loads,	therefore	representing	RHR	as	a	valid	indicator	of	short-term	fatigue.		Despite	RHR	being	
a	relatively	simple	practice	to	implement,	its	use	in	team	sport	settings	is	limited	and	requires	
future	research	to	confirm	validity.		Recent	research	by	Plews,	Laursen,	Kilding,	and	Buchheit	
(2013),	evaluating	training	adaptation	and	comparing	methodological	practices	from	heart-rate	
derived	measures,	recommend	the	practice	of	averaging	weekly	RHR	values	when	assessing	
adaptation	to	training.	

2.4.5.2 Heart	rate	variability	
One	of	the	most	increasingly	used	methods	of	assessing	cardiac	readiness	via	heart	rate	
measures	is	the	application	of	heart	rate	variability	(HRV)	assessment,	which	was	first	used	in	
clinical	practice	almost	forty	years	ago.		HRV	assessment	has	received	significant	praise	in	
recent	years	(Bosquet	et	al.,	2008;	Stanley,	Peake,	&	Buchheit,	2013)	and	has	been	applied	in	
many	elite	sporting	settings	(Buchheit	et	al.,	2013;	Plews,	Laursen,	Stanley,	et	al.,	2013;	Tian	et	
al.,	2013),	with	its	reliability	confirmed	in	a	study	by	Parrado	et	al.	(2010).		However,	the	meta-
analysis	provided	by	Bosquet	et	al.	(2008)	noted	day-to-day	variability	of	HRV	measures,	with	
contrasting	evidence	presented	for	its	accuracy	and	practicality	to	reflect	changes	in	
performance	in	elite	sport	settings	(Buchheit	et	al.,	2013;	Plews,	Laursen,	Stanley,	et	al.,	2013;	
Tian	et	al.,	2013).		Additionally,	in	a	more	recent	systematic	review	of	HRV	use	(Bellenger	et	al.,	
2016),	it	was	noted	that	alongside	post	exercise	HRV	assessment	demonstrating	positive	
adaptations	to	training,	increases	in	HRV	can	also	occur	in	response	to	overreaching.	

Modulation	of	the	heart	and	the	associated	change	in	interval	between	heartbeats	is	controlled	
by	the	autonomic	nervous	system	(ANS),	with	R-R	interval	used	as	an	index	of	autonomic	
nervous	system	responsiveness.		The	cardiovascular	system	can	be	viewed	as	a	well-structured	
function	designed	to	achieve	dynamic	stability	of	the	heart.		HRV	measures	fluctuations	in	HR,	
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with	a	high	variability	in	HR	signal	in	a	healthy	individual	suggesting	well-functioning	
autonomic	control	mechanisms	(Pumprla,	Howorka,	Groves,	Chester,	&	Nolan,	2002).		
Conversely,	a	lower	variability	of	the	heart	is	often	an	indicator	of	insufficient	adaptability	of	the	
autonomic	nervous	system,	therefore	potentially	implying	compromised	health	in	an	individual.		
Cardiovascular	stability	is	achieved	by	the	autonomic	system	controlling	HR	and	other	factors,	
by	reacting	to	events	such	as	ischemia	and	changes	in	physical	or	mental	activity.		In	the	case	of	
sport,	ischemia	is	present	due	to	a	restriction	of	blood	to	the	tissues	during	exertion	and	means	
that	heart	rate	has	to	adjust	accordingly.		Within	the	dynamic	stability	of	the	heart	mentioned	
above,	parasympathetic	activation	slows	down	the	heart,	while	sympathetic	activation	results	in	
an	increase	in	HR.		HRV	is	affected	by	the	balance	between	both	the	sympathetic	and	
parasympathetic	responses	and	the	effect	this	has	upon	the	nervous	systems.		HRV	represents	
the	continuous	oscillation	of	the	R-R	intervals	around	its	mean	value,	providing	non-invasive	
data	about	the	autonomic	regulation	of	the	heart	in	real	life	situations	and	is	most	commonly	
assessed	in	resting	states	(Task	Force	Of	The	European	Society	Of,	The	North,	Society	Of,	&	
Electrophysiology,	1996).		The	frequency	bands	associated	with	HRV	analyses	via	ECG	
correspond	to	differing	frequency	levels	with	low	frequency	(LF),	with	sympathetic	activity	
occurring	between	0.04-0.15	Hz	and	high	frequency	(HF)	parasympathetic	activity	occurring	
between	0.15-0.4	Hz.			

Contrasting	findings	have	been	reported	regarding	HRV	during	OT	periods	(Aubry	et	al.,	2015),	
with	both	increases	and	decreases	observed.		Many	authors	have	recommended	the	use	of	
weekly	and	rolling	averages	of	HRV	data,	when	assessing	autonomic	balance	and	associated	
player	readiness	(Daanen,	Lamberts,	Kallen,	Jin,	&	Van	Meeteren,	2012;	Halson	&	Jeukendrup,	
2004;	Plews	et	al.,	2012;	Plews,	Laursen,	Stanley,	et	al.,	2013).		Tian	et	al.	(2013)	reported	two	
distinct	HRV	fluctuation	patterns	when	assessed	against	the	training	load	prescribed,	in	their	
study	involving	overreaching	in	female	wrestlers.		Firstly,	they	noted	that	when	HRV	indices	
were	reduced,	the	LF:HF	ratio	was	significantly	increased,	representing	a	period	where	training	
load	was	too	high	and	recovery	time	too	small.		Using	time-domain	analysis,	SDNN	(standard	
deviation	of	the	normal	to	normal	intervals),	RMSSD	(the	square	root	of	the	mean	squared	
difference	between	adjacent	N-N	intervals)	and	HF	can	be	recorded	for	statistical	and	
geometrical	analysis	of	R-R	interval	data.		Secondly,	Tian	et	al.	(2013)	reported	that	when	HRV	
indices	increase,	the	wrestlers	were	reported	to	be	under	too	much	psycho-emotional	stress,	
demonstrating	that	both	physical	and	psychological	stimuli	need	to	be	considered	when	
assessing	athlete	readiness.		It	can	therefore	be	concluded	from	the	research	by	Tian	et	al.	
(2013)	that	NFOR	can	be	both	sympathetically	and	parasympathetically	driven,	giving	coaches	
greater	insight	into	athletes	physical	and	emotional	current	functional	state.		However,	limited	
research	illustrating	the	effectiveness	of	HRV	measures	that	assess	changes	in	performance	in	
team	sport	settings	exists.	

Many	team	sports	training	weeks	involve	workouts	that	do	incorporate	a	cardiovascular	
response	and	instead	focus	on	strength	and	power	elements,	many	of	which	are	based	in	the	
gymnasium.		Despite	HRV	measures	being	shown	to	reflect	acute	fatigue	(Mourot,	Bouhaddi,	
Tordi,	Rouillon,	&	Regnard,	2004),	the	lack	of	cardiovascular	response	and	associated	lack	of	
research	in	HRV	practices	in	team	sport	settings	means	that	HRV	use	in	rugby	is	limited.		Many	
team	sport	practitioners	have	relied	upon	the	aforementioned	neuromuscular	function	tests	
such	as	CMJ	and	training	load	monitoring,	instead	of	the	use	of	HRV,	or	other	HR	derived	
measures.		Some	HRV	research	in	rugby	union	does	exist.		For	example,	Edmonds	et	al.	(2013)	
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note	that	participants	in	their	rugby	league	study	who	exhibited	greater	cardiac	randomness	
might	be	able	to	train	to	a	higher	workload	in	future	training	weeks	compared	with	players	with	
reduced	cardiac	control.		It	could,	however,	be	argued	that	there	were	multiple	limitations	to	
the	study	by	Edmonds	et	al.	(2013),	as	the	sample	size	was	small	and	the	subjects	were	all	youth	
team	players	who	might	exhibit	different	HRV	responses	to	that	of	elite	full-time	professional	
rugby	players,	who	have	greater	training	age	and	associated	match	fatigue.		Additionally,	within	
the	study	by	Edmonds	et	al.	(2013)	the	monitoring	period	was	limited	to	4-5	days,	meaning	
exact	measures	of	HRV	data	cannot	be	compared	to	other	studies	that	would	incorporate	longer	
research	periods.	

Bara-Filho	et	al.	(2013)	concluded	that	HRV	values	were	an	effective	means	of	assessing	
adaptation	to	a	training	schedule	with	a	stable	or	increasing	HRV	indicating	good	recovery	and	
maintenance	of	training	volume.		Buchheit	(2014)	recommends	that	a	consideration	and	
understanding	of	the	context	of	training	load	imposed	on	the	players	in	team	sport	scenarios	is	
important.		In	contrast	to	endurance	related	sports,	where	HR	derived	data	and	blood	lactate	
levels	are	commonplace	(Plews,	2014),	the	impact	of	training	load	on	HR	response	is	still	to	be	
examined.		In	team	sports,	“the	load	arises	from	a	myriads	of	biological	systems	stressed	
simultaneously”	(Buchheit,	2014,	p.	8),	therefore	emphasising	the	need	for	further	investigation.		
The	need	for	repeated	measures	analysis	of	HRV	data	in	contrast	to	isolated	measures	was	
emphasised	in	recent	research	(Le	Meur	et	al.,	2013;	Plews,	Laursen,	Kilding,	et	al.,	2013),	with	a	
minimum	of	three	HRV	assessments	per	week	recommended	for	accurate	assessment	of	
training	status.		Correlations	have	been	reported	in	endurance	athletes	between	HRV	indices,	
running	performance	and	athletes	identified	as	overreached	(Leti	&	Bricout,	2013).		Buchheit	
(2014)	also	recommended	only	considering	change	that	is	practically	meaningful	and	clearly	
greater	than	the	significant	worthwhile	change	(SWC).		The	calculation	of	magnitude	of	SWC	
associated	HR	measures	are	less	straightforward	than	other	performance	tests,	due	to	the	
individual	nature	of	HR	derived	data	and	the	associated	training	load	which	has	perhaps	
initiated	the	HR	change.		This	change	in	HR	indices	could	derive	from	isolated	training	sessions	
or	perhaps	be	in	response	to	a	whole	training	phase,	further	emphasising	the	individualised	
nature	of	HR	data.		Another	factor	that	may	influence	use	of	HRV	recordings	is	the	
recommendation	by	Plews	et	al.	(2014)	that	lesser	trained	individuals	require	more	frequent	
HRV	recordings	(>	5	days),	as	CV	was	shown	to	be	10.1	±	3.4%	for	recreational	runners	
compared	to	6.7	±	2.9%	for	triathletes.	

In	order	to	adapt	training	based	upon	measurements	requires	confidence	in	the	data,	meaning	
that	recent	research	has	focused	upon	day-to-day	variations	of	indices.		The	study	by	Edmonds	
et	al.	(2013)	using	rugby	league	players	is	believed	to	be	the	first	to	examine	the	influence	of	
daily	training	and	matches	on	day-to-day	variations	in	HRV	within	a	competitive	playing	season.		
This	study	by	Edmonds,	et	al.,	(2013,	p	3)	reported	that	during	a	normal	week	of	training,	
including	a	competitive	match,	participants	“exhibited	a	shift	in	cardiac	autonomic	balance	
towards	lower	HRV	on	game	day,	reduced	HRV	and	predominant	sympathetic	modulations	for	
1-2	days	post-match,	and	a	reduced	supine-to	standing	HRV	response	for	up	to	four	days	after	a	
game.”		This	research	shows	that	rugby	players	experience	HRV	fluctuations	throughout	a	
training	week	and	maintain	significant	cardiovascular	stress	for	up	to	four	days	after	a	match.		
HRV	data	presented	from	rugby	players	post-match	should	therefore	be	considered	for	
subsequent	planning	of	training	weeks,	as	HRV	responses	could	significantly	affect	future	game	
performance	throughout	a	competitive	season.		The	research	by	Edmonds	et	al.	(2013)	and	
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McLean	et	al.	(2010)	supported	suppressed	metabolic	and	cardiac	systems	respectively	for	at	
least	two	days	post	rugby	league	game.		As	mentioned	above,	Edmonds	et	al.	(2013)	concluded	
that	HRV	measures	from	supine	to	standing	remained	depressed	for	two	days	post-match	and	
that	this	orthostatic	analysis	may	provide	more	accurate	and	insightful	measures	of	cardiac	
autonomic	reactivity	and	recovery	compared	to	absolute	HRV	measures.	

A	recent	contact	sport	study	assessing	judo	athletes	(Morales	et	al.,	2014)	utilised	HRV	for	
monitoring	stress,	presenting	interesting	results.		Similarly	to	rugby	union	Morales	et	al.	(2014)	
noted	that,	in	judo,	difficulty	arises	when	attempting	to	quantify	training	load	because	of	the	
characteristics	of	the	sport.		The	same	difficulties	are	apparent	in	rugby	union,	where	
opponents,	weather,	volume	of	contact	training	completed	and	intensity	of	games	all	add	to	the	
questionable	quantification	of	the	training	load	completed.		Some	aspects	of	a	rugby	player’s	
training	week	are	easier	to	quantify,	such	as	strength	and	conditioning	sessions,	yet	these	
sessions	would	not	represent	the	whole	training	week	prescribed	to	the	player	with	the	
associated	effect	this	can	have	upon	HRV.		Morales	et	al.	(2014),	therefore,	recommend	further	
analysis	of	HRV	training	load	responses	in	sports	such	as	wrestling,	rugby	and	other	contact	
sports.	

Stanley	et	al.	(2013)	noted	that	individuals	with	greater	fitness	levels	show	more	cardiovascular	
resilience	to	training	stress,	with	periods	of	supercompensation	being	the	optimal	period	for	
greatest	performance	gain.		Stanley	et	al.	(2013)	also	noted	that	data	on	the	cardiac	
parasympathetic	response	following	strength/resistance	training	is	limited,	as	aspects	such	as	
muscle	soreness	cannot	be	tracked	by	cardiac	parasympathetic	activity.		It	was,	therefore,	
proposed	by	Stanley	et	al.	(2013)	that	the	level	of	perceived	neuromuscular	and	
musculoskeletal	strain	induced	by	the	training	session	should	be	included	within	the	recovery	
period.		Chen	et	al.	(2011),	however,	noted	that	parasympathetic	reactivation	occurred	at	a	
slower	rate	amongst	weightlifters	than	was	seen	for	endurance	training	(Iellamo,	Pigozzi,	
Spataro,	Lucini,	&	Pagani,	2004).		Chen	et	al.	(2011)	commented	that	this	discrepancy	is	
probably	due	to	weightlifting	being	a	sport	that	involves	more	muscle	trauma	than	endurance	
sport.		The	anaerobic	nature	of	weightlifting	means	that	neuromuscular	repair	after	training	can	
demand	more	energy	and	therefore	a	subsequently	longer	recovery	time.	

Rugby	union	could	be	considered	a	sport	that	involves	both	aerobic	and	anaerobic	aspects	from	
both	training	and	games	perspectives;	with	the	resultant	effect	this	has	upon	parasympathetic	
and	sympathetic	response	post-match	and	training	being	a	significant	area	of	interest	for	future	
research.		One	monitoring	tool	that	does	claim	to	include	HRV	analysis	alongside	CNS	and	
metabolic	reaction	index	(MRI)	(which	is	reported	to	be	influenced	by	muscle	damage)	is	the	
Omegawave.		If	the	claims	are	valid,	a	monitoring	tool	such	as	Omegawave	would	present	a	more	
holistic	view	of	a	rugby	player’s	readiness	(considering	the	associated	aerobic,	anaerobic	and	
blunt	trauma	aspects)	and	reflect	changes	in	performance,	then	its	practicality	and	usefulness	in	
elite	team	sport	settings	will	be	difficult	to	ignore.	

2.4.5.3 Heart	rate	recovery	
In	contrast	to	HRV,	which	provides	information	on	the	modulation	of	HR,	heart	rate	recovery	
(HRR)	is	considered	a	marker	of	parasympathetic	tone	with	Daanen	et	al.	(2012)	
recommending	it	as	a	training	monitoring	tool	to	access	changes	in	high	intensity	exercise	
performance	(Vernillo	et	al.,	2015),	thus	assessing	cardiac	parasympathetic	activity	in	the	
immediate	minutes	post-exercise.		However,	in	a	recent	investigation	of	the	minimal	exercise	
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intensity	required	for	HRR	assessment,	Le	Meur,	Buchheit,	Aubry,	Coutts,	and	Hausswirth	
(2016)	recommended	sub-maximal	intensity	for	monitoring	endurance	athletes’	responses	to	
training.		While	HR	during	exercise	measures	cardiac	load,	HRR	reflects	autonomic	nervous	
system	function,	indicating	the	body’s	capacity	to	respond	to	exercise.		HRR	measures	the	rate	
at	which	HR	declines	at	the	cessation	of	exercise,	with	Hedelin,	Kentta,	Wiklund,	Bjerle,	and	
Henriksson-Larsen	(2000)	noting	that	assessing	maximal	HR	during	an	incremental	run	test	is	
an	easy	way	to	determine	overtraining	related	variations	in	maximal	performance.		Support	for	
HRR	guided	training	programs	was	presented	by	Buchheit	et	al.	(2008)	who	noted	HRR	to	be	
more	sensitive	to	training	induced	changes	than	HRV	indices,	and	recommended	it	for	
combined	use	with	HRV	analysis	in	order	to	assess	post-exercise	recovery.		Despite	previous	
research,	assessing	HRR,	showing	conflicting	results	(Vicente-Campos,	Lopez,	Nunez,	&	
Chicharro,	2014),	Buchheit	and	Gindre	(2006)	proposed	an	8	±	5	bpm	difference	in	HRR	
recorded	over	the	60	second	period	post	exercise	to	be	meaningful	for	investigation.	

As	reported	in	previous	research	(Buchheit	et	al.,	2008)	the	most	common	way	of	assessing	
HRR	was	to	assess	the	absolute	difference	between	the	final	HR	at	exercise	completion	and	the	
HR	recorded	after	60s	of	recovery	(HRR60s).		Aubert	et	al.	(2003)	described	that,	during	
exercise,	heart	rate	increases	due	to	both	a	parasympathetic	withdrawal	and	an	augmented	
sympathetic	activity.		In	a	recent	review	of	HRR	and	changes	in	training	status	(Daanen	et	al.,	
2012),	it	was	proposed	that	although	HRR	improves	with	training	status,	it	remains	unchanged	
until	a	period	of	decreased	training	is	implemented.		In	a	study	by	Buchheit	et	al.	(2013)	
examining	selected	physiological	and	psychometric	measures	for	monitoring	fatigue,	a	
submaximal	five-minute	running	and	recovery	test	was	utilised	at	the	start	of	each	training	
session.		In	this	study,	involving	elite	soccer	players,	training	load	variations	were	seen	to	
correlate	with	heart	rate	exertion	(HRex)	and	vagal	related	HR	index	(LnSD1)	measures	and	
HRex	were	seen	to	decrease	as	the	players	progressed	through	the	pre-season	period,	
demonstrating	that	the	effectiveness	of	a	submaximal	performance	test	was	warranted.		It	is,	
however,	important	to	note	that	the	regular	implementation	of	a	five-minute	running	and	
recovery	test	would	be	impractical	in	many	team	sports	settings,	due	to	logistical	constraints.	

Previous	studies	in	team	sports	settings	utilising	HRR	have	produced	contrasting	results	
(Daanen	et	al.,	2012;	Lamberts,	Swart,	Capostagno,	Noakes,	&	Lambert,	2010;	Lamberts,	Swart,	
Noakes,	&	Lambert,	2009,	2011;	Vicente-Campos	et	al.,	2014),	mainly	due	to	the	wide	variation	
in	baseline	fitness	of	athletes	measured	and	exercise	protocols	used.		Methodologies	currently	
used	to	measure	HRR	include	measuring	the	number	of	beats	recovered	within	a	given	time	
period	(e.g.	60	s)	and	signal	modelling	via	linear	models.		Other	methodologies	using	HR	derived	
data	to	measure	fatigue	include	interval	running	tests	and	the	Zoladz	test	(Schmikli	et	al.,	2011),	
where	elevated	HR	and	performance	drop	were	indicators	of	overreaching.		Limitations	of	HRR	
use	and	the	variables	and	methodology	used	within	it,	include	signal	modelling	limitations	and	
the	need	for	software	that	is	often	unavailable	to	practitioners.		Monoexponential	modeling	has	
been	reported	to	capture	more	effectively	the	overall	HR	response,	with	correlations	noted	in	
endurance	performance	change	when	assessing	HRR	variables	(Daanen	et	al.,	2012).		By	
contrast,	team	sport	changes	in	HRR	have	not	correlated	with	performance	and	have	presented	
correlations	of	lower	magnitude	than	observed	in	HR	exertion	(Buchheit,	2014).		Further	
support	for	HRR	was	presented	by	Cornforth	et	al.	(2014)	where	HRR	showed	an	increase	in	
fitness	correlating	(p	=	0.016)	with	2km	time	trial	results	improving	in	elite	Australian	Rules	
football	players.		Reliability	of	post-exercise	HRV	measurements	was	noted	by	Buchheit	et	al.	
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(2008),	with	an	SEM	of	14.2	ms	for	post-exercise	rMSSD,	while	HRR	showed	a	SEM	of	12.6	ms	
(Buchheit,	Papelier,	Laursen,	&	Ahmaidi,	2007).		Cornforth	et	al.	(2014)	reported	that	HRR	was	
a	reliable	(r=0.92)	and	valid	for	the	assessment	of	training	load	with	low	intra-individual	
variation,	while	Lamberts	et	al.	(2010)	noted	a	CV	of	95%	when	assessing	HRR%.		Added	to	this	
Cornforth	et	al.	(2014)	noted	that	an	adapted	version	of	the	Heart	rate	Interval	Monitoring	
System	(HIMS)	test	has	sufficient	precision	to	detect	changes	in	fitness	and	training	load	status	
in	Australian	Rules	footballers.		This	research	by	Cornforth	et	al.	(2014)	supports	the	views	of	
previous	researchers	(Buchheit	&	Gindre,	2006;	Lamberts	et	al.,	2009)	that	training	load	
influences	HRR	and	that	aerobic	fitness	contributes	to	an	increase	in	HRR%.	

2.4.5.4 Considerations	for	heart	rate	derived	data	and	responses	to	exercise	
Despite	HR	derived	data	being	one	of	the	most	easily	accessible	physiological	measures	
available,	changes	in	HR	and	HRR	are	inaccurate	(Bagger,	Petersen,	&	Pedersen,	2003)	with	
daily	variation	in	HR	reported	to	be	up	to	6.5%	for	submaximal	HR	and	noted	to	be	affected	by	
factors	such	as	hydration,	caffeine	intake,	environment,	stress	and	medication	(Vukovich,	
Schoorman,	Heilman,	Jacob,	&	Benowitz,	2005).		Resultant	changes	in	HR	as	a	consequence	of	
exercise	can	represent	both	a	positive	and	negative	training	response,	thereby	supporting	the	
view	that	the	use	of	HR	for	assessing	readiness	and	possible	maladaptation	to	training,	yet	also	
emphasising	the	difficulty	for	interpretation.		Due	to	the	reluctance	of	many	practitioners	within	
team	sport	settings	to	administer	maximal	HR	measures	during	competition	phases	of	the	
season,	more	research	is	needed	into	what	constitutes	meaningful	change	in	sub-maximal	HR	
performance	tests.		From	the	research	above	it	is	evident	that	heart	rate	derived	measures	hold	
the	potential	to	assess	accurately	internal	load.		Heart	rate	derived	measures	were	therefore	
considered	for	future	use	within	this	research,	with	the	performance	measure	implemented	
likely	to	be	the	measure	that	is	most	applicable	to	the	elite	rugby	setting	in	question.	

2.4.6 Summary	
In	consideration	of	all	of	the	above	performance	tests,	methodological	and	logistical	
considerations	often	dictate	the	choice	of	assessment.		Despite	performance	tests	being	easy	to	
implement	in	order	to	assess	individual	training	response,	the	main	limitation	of	some	of	these	
tests	is	that	the	information	obtained	does	not	explain	the	reason	for	the	performance	
reduction.		In	light	of	the	performance	tests	reviewed	above,	jump	testing,	“off	feet”	maximal	
tests	on	a	cycling	ergometer	and	heart	rate	derived	measures	(HRR	and	HRV)	seem	the	most	
applicable	for	further	study	within	this	research.		Jump	testing,	for	example,	needs	further	
investigation	in	order	to	ascertain	which	parameters	are	most	informative	when	monitoring	
fatigue.		When	sport	specific	parameters	sensitive	to	fatigue	are	identified,	from	performance	
measures	such	as	jump	testing,	the	meaningful	change	and	expected	typical	error	will	further	
guide	practitioners	on	the	meaning	of	test	results.		In	contrast	to	jump	testing,	maximal	and	sub-
maximal	performance	tests	(“off	feet”	and	“on	feet”)	are	less	frequently	used	within	team	
settings	and	reliability	of	such	tests	are	therefore	lacking.		It	is,	however,	expected	that	as	future	
sport	specific	technological	advances	for	readiness	testing	are	developed,	the	focus	of	fatigue	
measures	post	game	will	continue	to	investigate	the	use	of	over	ground	“on	feet”	and	gym	based	
“off	feet”	performance	tests,	alongside	the	implementation	of	jump	testing.		Similarly,	the	use	of	
heart	rate	derived	measures,	will	likely	continue,	as	unlike	jump	testing	and	maximal	and	sub-
maximal	performance	tests,	heart	rate	derived	measures	present	a	true	representation	of	
internal	load	and	therefore	may	be	of	more	interest	to	practitioners.	



	 80	

2.5 Strategies	used	to	Enhance	Restoration	of	Performance	and	
Recovery	

Due	to	the	match	demands	outlined	above	and	the	need	to	attempt	to	restore	performance	as	
soon	as	possible	post-match,	a	necessity	exists	to	utilise	strategies	that	would	enhance	
restoration	of	performance	in	the	days	post-match.		As	examined	below,	many	short-term	
fatigue	management	strategies	exist	that	enhance	restoration	of	performance	in	the	days	post-
exercise,	where	the	relevance	and	effectiveness	of	each	modality	depends	upon	the	sport	in	
question,	the	practical	ability	of	the	practitioners	to	implement	such	strategies	within	the	
environment	and	the	compliance	of	the	athletes.	

2.5.1 Commonly	used	recovery	modalities	
Sports	scientists	and	physiologists	have	routinely	pushed	the	boundaries	of	science	in	elite	
sport	by	implementing	recovery	strategies	designed	to	improve	readiness	(Gill	et	al.,	2006).		A	
balance	between	training	or	competition	stress	and	recovery	needed	to	maximise	performance	
is	one	of	the	most	researched	areas	in	modern	sports	science,	with	contrasting	evidence	for	the	
use	of	varying	intervention	strategies	(Crystal,	Townson,	Cook,	&	LaRoche,	2013;	Dawson,	Gow,	
Modra,	Bishop,	&	Stewart,	2005;	Rowsell	et	al.,	2009).		Short	turnaround	times	between	games,	
the	multifaceted	nature	of	professional	team	sport	athletes’	training,	match	and	commercial	
requirements	all	mean	that	there	is	considerable	demand	on	players’	time.		Knowledge	of	
proven	and	time-efficient	recovery	strategies	and	protocols	are,	therefore,	paramount.		As	
mentioned	by	Cook,	Kilduff,	and	Jones	(2014),	during	competition	phases,	team	sport	athletes	
are	in	a	cyclic	state	of	adaptation	and	recovery	between	games	and	training.		Recovery	
modalities	have	subsequently	been	used	to	hasten	the	recovery	process	outlined	in	Figure	2.2,	
yet	as	explained	above,	considering	that	recovery	is	a	return	to	resting	function	and	physical	
performance,	this	is	sometimes	unrealistic.		

Although	recovery	is	considered	of	extreme	importance	within	team	sport	settings,	both	
practitioners	and	athletes	often	ignore	it.		The	high	level	of	impacts	and	the	metabolic	cost	
involved	in	a	sport	such	as	rugby,	are	some	of	the	likely	contributing	factors	to	the	physiological	
and	mechanical	stress	associated	with	EIMD.		Many	team	sports	conduct	recovery	sessions	the	
day	after	a	match,	yet	the	protocol	and	preferred	modality	for	a	sport	such	as	rugby	union	vary	
considerably.		Nedelec	et	al.	(2013)	concluded	that	scientific	evidence	to	support	the	use	of	
many	recovery	strategies	is	lacking.		Difficulties	in	determining	efficacy	of	recovery	strategies	
are	mainly	due	to	methodological	issues,	yet	research	by	Lindsay,	Lewis,	Gill,	Gieseg,	and	Draper	
(2015)	notes	that	immediate	post-game	recovery	intervention,	following	a	game	of	professional	
rugby	union,	may	be	the	most	important	aspect	of	psychophysiological	player	recovery.		Despite	
a	57%	increase	in	salivary	cortisol	(p	<	0.001),	noted	by	Lindsay,	Lewis,	Gill,	et	al.	(2015)	when	
assessing	the	effect	of	varied	recovery	interventions	on	markers	of	psychophysiological	stress	
in	professional	rugby	union	players,	no	difference	was	observed	in	the	inflammatory	response	
36	hours	post-match	between	different	protocols,	yet	the	effectiveness	of	immediate	post-match	
recovery	intervention	was	considered	key.		The	need	to	research	recovery	practices	in	rugby	
union	is	therefore	of	importance	to	practitioners	aiming	to	improve	player	readiness	between	
games,	where	supposed	altering	of	muscle	tissue	temperature	and	increased	blood	flow	aid	
recovery	from	EIMD	and	related	muscle	soreness.	
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2.5.1.1 Ice	baths	and	contrast	water	therapy	
The	use	of	water	therapy	to	aid	recovery	is	probably	the	most	commonly	used	recovery	
modality,	with	both	contrast	water	therapy	(CWT)	and	cold	water	immersion	(CWI)	used	by	
many	sports	teams	(Webb,	Harris,	Cronin,	&	Walker,	2013).		Exposure	of	athletes	to	cold	water	
aids	in	reducing	oedema	through	the	vasoconstriction	and	vasodilation	response	of	blood	
vessels	to	the	changes	in	temperature	experienced.		The	benefits	of	water	therapy	are	most	
likely	due	to	a	combination	of	the	water	temperature	and	hydrostatic	water	pressure.		In	an	
extensive	literature	review,	Nedelec	et	al.	(2013)	proposed	that	CWI	is	an	effective	recovery	
strategy	during	acute	periods	of	fixture	congestion	in	soccer.		Further	support	for	CWI	as	a	
modality	to	provide	beneficial	effects	on	performance	was	noted	by	Pournot,	Bieuzen,	Duffield,	
et	al.	(2011),	when	assessing	its	influence	on	blood	markers	(inflammatory	markers,	
haematological	profile	and	muscle	damage)	post	running	treadmill	exercise.		In	addition,	
perceptions	of	fatigue	and	leg	soreness	were	reported	as	reduced	with	the	use	of	ice	baths	
throughout	a	soccer	tournament	(Rowsell	et	al.,	2009),	when	assessed	via	questionnaire.		
Additionally,	research	by	Al	Haddad,	Parouty,	and	Buchheit	(2012)	reported	the	benefits	of	ice	
baths	upon	subsequent	sleep	following	intense	training	days	and	emphasised	that	CWI	was	not	
just	to	be	used	to	reduce	DOMS.		However,	the	small	sample	size	(n	=	8)	and	the	collection	of	
sleep	data	via	subjective	questionnaires	within	the	research	by	Al	Haddad	et	al.	(2012)	can	be	
questioned.	

Recent	literature	involving	two	studies	assessing	muscle	adaptation	as	a	result	of	CWI	has	
emerged	(Roberts,	Raastad,	Cameron-Smith,	Coombes,	&	Peake,	2014;	Yamane,	Ohnishi,	&	
Matsumoto,	2015).		These	studies	have	doubted	the	effects	of	ice	baths	or	CWI	on	long-term	
muscular	performance	and	attenuated	long-term	gains	in	both	muscle	mass	and	strength.		
Blunted	activation	of	key	proteins	and	satellite	cells	was	noted	in	skeletal	muscle	for	up	to	two	
days	after	strength	exercise,	highlighting	this	as	an	area	of	much	needed	future	research,	
especially	in	rugby	union	where	muscle	hypertrophy	is	key	to	maintaining	muscle	mass.		It	is,	
however,	important	to	note	that	these	studies	only	analysed	resistance	training	in	active,	but	
not	elite	subjects	and	therefore	more	research	is	necessary	before	conclusions	can	be	drawn	on	
the	relevance	of	CWI	in	elite	rugby	settings.		Within	a	recent	systematic	review	and	meta-
analysis	of	cold	applications	for	recovery	in	adolescent	athletes	by	Murray	and	Cardinale	
(2015),	it	was	proposed	that	positive	effects	of	CWI	to	reduce	DOMS	are	scarce,	with	more	work	
warranted	to	assess	effectiveness.		This	lack	of	support	for	CWI	was	also	noted	in	elite	
weightlifting	settings,	where	Schimpchen	et	al.	(2016)	displayed	no	significant	differences	in	a	
snatch	pull	movement,	blood	parameters	or	subjective	ratings	of	fatigue	when	using	a	
randomised	cross-over	study	design,	therefore	again	questioning	CWI	use	in	elite	settings.		
Schimpchen	et	al.	(2016)	did,	however,	note	that	inter-subject	differences	do	exist	as	a	result	of	
CWI,	and	that	its	application	should	be	considered	on	a	case-to-case	basis.	

In	a	critical	appraisal	of	three	different	recovery	strategies	post	rugby	league	game,	Webb	et	al.	
(2013)	reported	that	CWI	and	CWT	recovered	jump	height	performance,	reduced	muscle	
soreness	and	reduced	CK	levels	post-match,	when	compared	with	active	recovery.		Higgins,	
Heazlewood,	and	Climstein	(2011)	noted	the	benefit	of	CWT	for	enhancing	recovery	in	rugby	
union,	as	represented	by	subjective	well-being	reports.		Contrasting	views	upon	cold	water	
therapies	such	as	CWI	and	CWT	are	shown	by	the	research	of	Montgomery	et	al.	(2008)	who	
noted	CWI	as	superior	to	CWT,	whereas,	conversely,	Webb	et	al.	(2013)	noted	CWT	as	superior	
to	CWI.		In	a	meta-analysis	of	CWI	(Leeder,	Gissane,	van	Someren,	Gregson,	&	Howatson,	2012),	
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little	effect	was	shown	for	strength	exercises,	yet	a	positive	response	was	noted	for	exercises	
that	involved	stretch-shortening	movements.		Specifically	in	rugby	union,	ice	baths	prescribed	
as	cold	therapy	to	enhance	recovery	between	games	have	illustrated	contrasting	results	
(Bleakley	et	al.,	2012;	Higgins	et	al.,	2011;	Takeda	et	al.,	2014),	with	negative	effects	of	CWI	
reported	by	Higgins	et	al.	(2011)	and	the	positive	effects	of	CWT	reported	by	Gill	et	al.	(2006).		
Gill	et	al.	(2006)	reported	enhancement	of	CK	clearance	with	the	use	of	CWT	while	
recommendations	for	repeated	application	of	CWI	was	reported	by	Montgomery	et	al.	(2008)	as	
the	most	beneficial	response.		By	contrast,	Higgins	et	al.	(2011)	noted	a	detrimental		effect	of	ice	
baths	on	players	performance	when	recovering	from	training	and	competition.		These	results	
illustrate	the	conflicting	evidence	for	ice	baths	and	contrast	water	therapy.		However,	
considering	the	simplicity	and	low	cost	with	which	this	intervention	strategy	can	be	
implemented	this	modality	will,	likely,	continue	to	be	utilised	frequently	within	rugby.	

2.5.1.2 Whole	Body	Cryotherapy	(WBC)		
WBC	is	a	cold	exposure	recovery	strategy	that,	although	inexpensive	in	nature	and	difficult	to	
administer	is	being	used	by	many	athletes	throughout	the	elite	and	recreational	sports	world	
(Hausswirth	et	al.,	2011;	Pournot,	Bieuzen,	Louis,	et	al.,	2011).		WBC	was	proposed	over	thirty	
years	ago	for	use	as	treatment	for	many	inflammatory	diseases,	with	a	significant	volume	of	
recent	literature	detailing	the	topic	(Bleakley,	Bieuzen,	Davison,	&	Costello,	2014;	Costello	et	al.,	
2015;	White	&	Wells,	2013).		This	therapy	consisted	of	exposure	to extremely	cold	air	
maintained	at	-110°C	to	-140°C	in	special	temperature-controlled	cryochambers,	generally	for	
two	minutes	and	typically	initiated	within	24	hours	of	exercise	completion.		The	use	of	cold	
modalities	such	as	ice	packs	and	the	physiological	effects	of	such	practices	are	well	established	
(Costello,	Algar,	&	Donnelly,	2012).		In	elite	sport	the	use	of	WBC	has	gained	significant	praise	
(Galliera	et	al.,	2013)	as	a	method	to	improve	musculoskeletal	trauma	following	training	or	
match	play	scenarios.		Additional	recent	support	for	the	use	of	WBC	was	noted	by	Schaal	et	al.	
(2015)	where	ten	elite	swimmers	reported	reduced	signs	of	FOR,	such	as	reduced	sleep	quality	
and	increased	fatigue,	and	where	WBC	was	therefore	recommenced	during	periods	of	intense	
competition	preparation.	

The	positive	effects	of	WBC	have	been	reported	in	a	literature	review	by	Banfi,	Lombardi,	
Colombini,	and	Melegati	(2010)	and	WBC	is	therefore	considered	by	many	practitioners	to	be	a	
procedure	that	facilitates	athletes’	recovery	and	carries	no	known	negative	effects.		WBC	has	
been	reported	to	influence	hormonal	modifications,	where	the	body’s	adaptation	to	the	cold	
stress	applied	or	experienced,	shows	an	increase	in	noradrenaline	(norepinephrine)	(Banfi	et	
al.,	2010).		Physiological	changes	have	been	reported	in	immunology	(venous	blood	samples)	
and	anaerobic	capacity	(20	s	Wingate	test)	(Klimek,	Lubkowska,	Szygula,	Chudecka,	&	Fraczek,	
2010),	yet	these	forms	of	physiological	adaptation	require	a	sufficient	number	of	sessions	(at	
least	ten)	for	change	to	be	seen.		Additionally,	Schaal	et	al.	(2013)	reported	positive	effects	of	
WBC	upon	parasympathetic	reactivation	(measured	via	HRV),	which	suggests	systemic	
recovery	from	the	training	stress	imposed.		Few	studies	have,	however,	justified	the	
effectiveness	of	WBC	as	a	recovery	modality	that	positively	influences	athlete	readiness	to	train.		
Recent	research,	promoting	the	use	of	CWI	instead	of	the	application	of	WBC	when	assessing	its	
influence	upon	accelerating	recovery	kinetics	(Abaïdia	et	al.,	2016).		Bleakley	et	al.	(2014)	
concluded	that	despite	WBC	being	regarded	as	a	superior	mode	of	cooling,	due	to	the	extreme	
temperatures	involved,	there	is	no	evidence	to	suggest	that	WBC	has	any	advantages	over	other	
forms	of	cryotherapy.		Bleakley	et	al.	(2014)	noted	that	the	poor	thermal	conductivity	of	air	



	 83	

prevents	subcutaneous	and	core	body	cooling.		In	addition,	White	and	Wells	(2013)	noted	that	
the	effectiveness	of	WBC	remains	ambiguous,	as	the	methodology	used,	protocol	undertaken	
and	performance	measures	assessed	throughout	WBC	studies	are	so	varied	in	nature	that	no	
clear	agreement	can	be	concluded.	

2.5.1.3 Compression	garments	
Compression	garments	have	become	increasingly	prevalent	in	team	sport	settings,	with	the	aim	
of	enhancing	recovery	in	the	days	post-training	and	games	(Davies,	Thompson,	&	Cooper,	
2009).		These	compression	garments	are	often	tight	fitting	elastic	fabrics	that	are	expected	to	
enhance	muscle	recovery	by	exerting	pressure	on	limbs	covered	by	the	garments,	by	improving	
blood	flow	and	reducing	inflammation.		Despite	conflicting	results,	compression	garments	are	
used	to	limit	the	damage	created	by	exercise,	with	reduced	pain	relief	and	altered	inflammatory	
responses	being	the	focus	of	administration	(Davies	et	al.,	2009;	Jakeman,	Byrne,	&	Eston,	
2010).		Support	for	the	use	of	compression	garments	comes	from	Jakeman	et	al.	(2010),	with	
perceived	reduction	in	muscle	soreness	as	a	result	of	wearing	compression	garments	being	
claimed	to	be	a	significant	factor	when	recovering	from	EIMD	in	young,	active	females.	

In	contrast	to	the	positive	evidence	above,	Montgomery	et	al.	(2008)	noted	that	the	application	
of	compression	garments	had	little	advantage	in	enhancing	muscle	damage	in	the	days	post	
basketball	tournament.		Additionally,	no	performance	improvements	were	noted	within	recent	
research,	neither	upon	peak	power	output	(Duffield	et	al.,	2008)	following	intermittent	exercise	
nor	upon	CMJ	performance	(Davies	et	al.,	2009)	following	drop	jump	training.		However,	in	a	
systematic	review	and	meta-analysis	conducted	by	Hill,	Howatson,	van	Someren,	Leeder,	and	
Pedlar	(2014),	evaluating	the	efficacy	of	compression	garments	across	twelve	studies,	a	
moderate	effect	was	noted	on	measures	of	DOMS	(95%	CI	0.236	to	0.569,	p	<	0.001),	muscular	
strength	(95%	CI	0.221	to	0.703,	p	<	0.001),	muscular	power	(95%	CI	0.267	to	0.707,	p	<	0.001)	
and	CK	presence	(95%	CI	0.171	to	0.706,	p	<	0.001),	therefore	indicating	the	potential	
effectiveness	of	compression	garments	in	enhancing	recovery	from	muscle	damage.		In	a	more	
recent	systematic	review	and	meta-analysis	by	Marqués-Jiménez,	Calleja-González,	Arratibel,	
Delextrat,	and	Terrados	(2016)	it	was	noted	that	compression	garments	had	no	effect	upon	CK	
(standard	mean	difference	=	-0.98),	whereas	in	contrast,	blood	lactate	concentration	was	
improved	due	to	compression	garment	administration	(standard	mean	difference	=	-0.52),	
therefore	illustrating	the	need	for	further	research.	

In	rugby	union	specifically	enhanced	CK	clearance	was	reported	by	Gill	et	al.	(2006)	as	a	result	
of	players	wearing	full	leg	compression	garments	for	12	hours	post-match	in	contrast	to	using	
passive	recovery	methods.		It	is	also	of	importance	to	note	that	the	use	of	compression	garments	
alongside	electrostimulation	improved	perceived	recovery,	compared	to	wearing	compression	
garments	alone	(Beaven	et	al.,	2013).		Current	research	into	the	use	of	compression	garments	
shows	no	beneficial	effects	when	compared	to	active	recovery	and	contrast	water	therapy	(Gill	
et	al.,	2006),	yet	compression	garments	are	a	modality	that	provides	an	easy	to	administer	
strategy	in	team	sport	environments	where	recovery	takes	place	while	travelling	to	and	from	
games.		Considering	the	possible	placebo	effect	of	improved	perceptual	feeling	as	a	result	of	
wearing	compression	garments,	along	with	the	relative	small	cost	implications	of	implementing	
compression	garment	use	into	team	sport	settings,	this	is	a	recovery	modality	that	should	
potentially	be	included	within	a	rugby	player’s	recovery	strategy.		It	is,	however,	advised	that	
compression	garments	should	be	administered	alongside	other	recovery	strategies	and	
incorporated	when	appropriate	within	the	hours	and	days	post	exertion	(Hamlin	et	al.,	2012).	
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2.5.1.4 Active	recovery	

In	an	attempt	to	reduce	DOMS,	many	sporting	teams	commonly	complete	a	post-match	“active	
recovery”	session	incorporating	light	aerobic	activity	(Kinugasa	&	Kilding,	2009;	Nedelec	et	al.,	
2012,	2013).		These	sessions	often	include	light	stretching	and	movement	to	hasten	restoration	
of	performance	in	the	days	post-match	and	prior	to	the	preparation	for	the	next	match	
commencing.		The	incorporation	of	active	recovery	practices	is	considered	to	be	a	process	that	
accelerates	the	removal	of	metabolites	and	increases	blood	flow,	therefore	reducing	post-match	
recovery	time	(Calder,	2000).		The	most	commonly	used	activities	for	recovery	sessions	within	
team	sports	are;	low-intensity	swimming,	walking	and	cycling,	which	are	believed	to	increase	
the	removal	of	metabolic	waste	products	such	as	lactate,	hydrogen	ions	and	potassium	
produced	during	exercise	(Fairchild	et	al.,	2003).		However,	the	efficacy	of	active	recovery	for	
improving	subsequent	performance	was	questioned	by	Robson-Ansley,	Gleeson,	and	Ansley	
(2009)	in	their	review	of	fatigue	management	strategies,	due	to	the	notion	that	that	active	
recovery	protocol	would	slow	glycogen	resynthesis	post	exercise.		When	comparing	the	
effectiveness	of	recovery	strategies	in	rugby	union	(CWT	and	compression	garments)	twenty	
minute	low	intensity	recovery	sessions	were	noted	by	Gill	et	al.	(2006)	as	an	effective	measure	
to	reduce	inflammation	and	remove	metabolites.		More	recently,	Peake	et	al.	(2016)	
recommended	active	recovery	as	being	just	as	effective	at	reducing	inflammation	or	cellular	
stress	in	muscle	after	a	bout	of	resistance	exercise	as	CWI.		In	a	study	assessing	the	intensity	at	
which	blood	lactate	disappears	following	a	50	second	maximal	cycling	test,	moderate	intensity	
recovery	sessions	were	noted	as	more	effective	than	passive	recovery,	yet	a	combination	of	low	
and	high	intensity	recovery	practices	were	considered	to	have	no	more	effect	than	a	low	
intensity	session	that	involves	activities	less	than	35%V02max	(Dodd,	Powers,	Callender,	&	
Brooks,	1984).	

Lum,	Landers,	and	Peeling	(2010)	noted	the	positive	effects	of	swimming	based	recovery	
sessions	on	subsequent	running	performance,	while	Suzuki	et	al.	(2004)	reported	reductions	in	
post	rugby	match	psychological	stress	as	a	result	of	swim	recovery	methods.		However,	the	
study	by	Lum	et	al.	(2010)	used	triathletes	during	a	maximal	run	test	ten	hours	post	high	
intensity	running	to	measure	the	effectiveness	of	swim	recovery	and	this	is	therefore	limited	in	
relevance	to	rugby	union	where	maximal	testing	has	already	been	identified	above	as	
unrealistic	for	use	in	elite	ruby	settings.		Despite	the	study	by	Suzuki	et	al.	(2004)	involving	
university	level	rugby	players,	its	relevance	to	elite	rugby	union	is	evident.		Physiological	(blood	
biochemistry)	and	psychological	(POMS	scores)	were	used	to	assess	recovery	in	the	days	post-
match,	showing	no	adverse	physiological	effect	of	swim	recovery	implementation	and	an	
increased	psychological	recovery	due	to	enhanced	relaxation.		Hydrostatic	pressure	from	water	
pressing	against	muscle	tissue,	involved	within	swim	sessions	is	believed	to	restore	
performance	at	a	greater	rate	than	other	forms	of	active	recovery,	with	evidence	presented	by	
Lum	et	al.	(2010)	showing	that	levels	of	C-Reactive	Protein	in	blood	samples	decreased	as	a	
result	of	swim	based	recovery	sessions.		It	is,	however,	important	to	note	that	support	for	active	
recovery	methods	are	conflicting,	with	a	lack	of	support	presented	by	Choi,	Cole,	Goodpaster,	
Fink,	and	Costill	(1994).		Using	three,	1-min	exercise	bouts	at	approximately	130%	VO2max	
performed	interspersed	with	4-min	rest	periods	between	each	work	bout	of	varying	intensity	to	
judge	the	effectiveness	of	passive	and	active	recovery	modalities,	they	reported	that	active	
recovery	may	delay	muscle	glycogen	replenishment	after	high-intensity	cycling	performance.		



	 85	

In	addition	to	the	value	of	low	intensity	activities	such	as	swimming	and	cycling	for	recovery,	
stretching	is	a	key	component	of	the	daily	training	plan	for	athletes	and	plays	an	important	role	
in	the	recovery	process	with	the	aim,	ultimately,	to	prepare	athletes	for	the	next	training	
session.		Stretching	increases	blood	flow	to	muscles,	stimulates	the	passage	of	amino	acids	into	
muscles,	accelerates	protein	synthesis	in	cells,	and	inhibits	protein	breakdown.		Stretching	as	
part	of	recovery	can	also	reduce	the	chance	of	injury	(Herman,	Barton,	Malliaras,	&	Morrissey,	
2012)	and	increase	the	chances	of	optimal	performance	(Turki	et	al.,	2011).		Caution	was	
recommended	for	stretching	after	eccentric	actions	(Lund,	Vestergaard-Poulsen,	Kanstrup,	&	
Sejrsen,	1998)	as	it	was	reported	to	lead	to	delayed	onset	of	muscle	soreness.		This	conclusion	
by	Lund	et	al.	(1998)	highlighted	the	greater	decrease	in	both	concentric	and	eccentric	
quadriceps	strength	following	the	use	of	eccentric	exercise	and	stretching,	in	comparison	to	
using	eccentric	exercise	alone.		This	is	an	important	consideration	for	practitioners	working	in	
rugby,	where	eccentric	actions	are	commonly	performed	and	resultant	muscle	soreness	
reported	(McLellan	&	Lovell,	2012).		Additionally,	when	utilising	active	recovery,	practitioners	
should	be	cautious	not	to	add	more	fatigue	to	the	athletes	in	the	hours	post-match,	by	
incorporating	recovery	sessions.		The	intensity	of	sessions	should	be	low	and	a	decision	upon	
whether	the	active	recovery	session	will	aid	restoration	and	recovery,	or	hinder	it,	needs	to	be	
made.		Athlete	compliance	in	the	hours	post-match	is	often	difficult	to	guarantee	as	they	are	
often	emotionally	and	physically	drained	from	performance,	meaning	that	perhaps	complete	
rest	is	the	better	option	for	beginning	fatigue	reversal. 

2.5.1.5 Sports	massage	
Massage	has	been	used	for	general	relaxation	of	the	muscular	skeletal	system,	with	sports	
massage	directed	into	local	areas	being	one	of	the	most	commonly	used	recovery	modalities	in	
team	sport	settings	(Hongsuwan,	Eungpinichpong,	Chatchawan,	&	Yamauchi,	2015;	Nedelec	et	
al.,	2013).		Sports	massage	is	possibly	the	oldest	method	of	treating	fatigued	muscles	and	is	
performed	on	athletes	to	aid	recovery	or	to	treat	pathology	where	type	and	duration	of	massage	
have	varied	considerably.		Both	positive	effects	of	sports	massage	(Micklewright,	Griffin,	
Gladwell,	&	Beneke,	2005)	and	negative	effects	(Jonhagen,	Ackermann,	Eriksson,	Saartok,	&	
Renstrom,	2004)	are	well	documented,	with	adaptation	and	recovery	from	DOMS	reported	
(Andersen	et	al.,	2013).		The	study	by	Micklewright	et	al.	(2005)	reported	enhanced	30	s	
Wingate	performance	as	a	result	of	massage,	yet	the	relevance	of	the	results	to	elite	rugby	are	
questionable.		In	a	recent	meta-analytical	review	of	massage	and	performance	involving	twenty-
two	studies,	Poppendieck	et	al.	(2016)	reported	that	limited	positive	effects	of	massage	exist	as	
a	recovery	intervention	for	competitive	athletes.		Results	from	the	research	by	Poppendieck	et	
al.	(2016)	showed	a	tendency	towards	more	positive	results	amongst	untrained	athletes	(ES	=	
0.23)	in	comparison	to	trained	athletes	(ES	=	0.17),	with	results	also	favouring	mixed	exercise	
application	(ES	=	0.61),	rather	than	strength	(ES	=	0.18)	or	endurance	(ES	=	0.12)	forms,	when	
assessed	by	effect	sizes	using	Hedges’	g	values.	

In	a	literature	review	of	sports	massage,	muscle	soreness	associated	with	DOMS	and	the	
potential	benefits	of	massage	were	noted	by	Moraska	(2005),	yet	the	affect	that	massage	has	
upon	force	recovery	was	concluded	as	unclear.		Change	in	performance	as	a	result	of	sports	
massage	is	also	less	well	reported	(Robertson,	Watt,	&	Galloway,	2004),	with	no	measurable	
physiological	effects	of	leg	massage	noted	compared	to	passive	recovery,	post	high	intensity	
exercise	(30	s	cycling).		Hemmings,	Smith,	Graydon,	and	Dyson	(2000)	reported	scientific	
support	for	the	use	of	massage	to	improve	psychological	state,	yet	also	raise	questions	about	the	
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benefit	of	massage	for	physiological	restoration	and	repeated	sports	performance.		By	contrast,	
Micklewright	et	al.	(2005)	noted	no	improvement	in	mood	state	following	massage,	but	did	note	
30	s	Wingate	performance	was	improved	following	massage	compared	to	rest.		Additionally,	it	
is	interesting	to	note	the	recent	research	by	Andersen	et	al.	(2013)	showing	that	the	positive	
effects	of	massage,	which	occur	during	the	first	20	minutes	after	treatment,	in	fact	diminish	
within	an	hour.		The	study	by	Andersen	et	al.	(2013)	illustrated	the	acute	effects	of	massage	or	
active	exercise	in	relieving	muscle	soreness	and	concluded	that	either	active	warm-up	or	
massage	can	be	used	to	reduce	DOMS.		However,	it	could	be	argued	that	the	eccentric	
contractions	of	the	upper	trapezius	muscle	on	a	Biodex	dynamometer	utilised	in	this	study	to	
assess	effectiveness	of	massage	are	not	of	relevance	to	rugby	research,	where	the	whole	body	is	
exposed	to	ischemia	and	blunt	force	trauma.		The	above	research	into	sports	massage	illustrates	
the	contrasting	evidence	for	massage	as	a	recovery	tool.		Yet,	if	massage	is	a	regular	feature	
within	a	specific	athlete’s	“recovery	toolbox”,	then	it	best	to	leave	this	in	place	and	monitor	the	
resultant	effect,	rather	than	remove	it	from	an	athlete’s	daily	routine,	despite	its	use	possibly	
being	based	upon	research	irrelevant	to	the	sport	in	question.		More	research,	incorporating	
well-designed	research	studies	involving	team	sports,	is	needed	to	conclude	whether	or	not	
massage	facilitates	recovery	post	rugby	match	play.		The	extent	to	which	massage	can	
beneficially	affect	a	rugby	player	post-match	may	be	significantly	different	to	that	of	other	
sports	considering	the	variations	in	actions	performed.	

2.5.1.6 Sleep	to	aid	recovery	
Sleep	is	considered	to	be	a	complex	and	physiological	phenomenon	that	has	two	classified	
states;	rapid	eye	movement	(REM)	and	non-rapid	eye	movement	(NREM),	with	the	primary	
need	for	sleep	being	neural	based	rather	than	a	mechanism	necessary	for	tissue	repair	alone.		
NREM	consists	of	four	stages	of	progressively	deeper	sleep	and	is	associated	with	the	release	of	
growth	hormone,	which	is	important	for	optimal	sporting	recovery.		Two	main	methods	are	
used	to	assess	sleep;	one	being	a	non-invasive	ACTi	graph	and	the	other	being	
polysomnography	which	is	considered	to	be	the	“benchmark”	for	assessing	sleep	quality	and	
quantity.		Research	upon	the	effect	of	sleep	deprivation	in	sports	performance	is	well	
documented	(Mejri	et	al.,	2014;	Oliver,	Costa,	Laing,	Bilzon,	&	Walsh,	2009;	Skein,	Duffield,	Edge,	
Short,	&	Mundel,	2011;	Skein,	Duffield,	Minett,	Snape,	&	Murphy,	2013),	with	the	resultant	effect	
upon	post-match	recovery	affecting	many	performance	measures.		Sleep	is	considered	to	be	the	
premier	recovery	tool	for	many	elite	athletes	due	to	the	anabolic	processes	that	occur	during	
periods	of	sleep,	thereby	aiding	athletes	to	prepare	and	recover	from	training	and	competition	
demands	(Halson,	2008).		In	a	recent	review	of	sleep	and	its	influence	upon	performance,	
negative	effects	of	sleep	loss	were	associated	with	physiological,	psychological	and	immune	
suppression	(Fullagar	et	al.,	2015).		The	acute	response	of	sleep	deprivation	was	illustrated	by	
Killer,	Svendsen,	Jeukendrup,	and	Gleeson	(2015)	who	noted	progressive	declines	in	sleep	
quality,	mood	state	and	exercise	performance	during	a	period	of	short-term,	intensified	training	
in	elite	athletes.		Further	evidence	for	the	importance	of	quality	sleep	during	intensive	training	
periods	was	shown	by	Kölling	et	al.	(2016),	who	noted	improved	recovery	and	stress	(p	<	0.1)	
following	additional	sleep	opportunities	for	rowers	during	training	camps.		Results	from	this	
study	showed	improved	subjective	feelings	of	well-being	as	a	result	of	extended	sleep	periods,	
with	sleep	noted	as	being	a	simple	and	effective	strategy	to	enhance	recovery	and	stress	related	
ratings.	
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Research	by	Leeder,	Glaister,	Pizzoferro,	Dawson,	and	Pedlar	(2012)	across	multiple	Olympic	
sports	noted	that	the	average	sleep	time	of	athletes	is	8:36	±	0:53	hr:min	and	that	a	sleep	
periods	of	less	than	this	range	are	not	recommended.		When	considering	that	travel	demands,	
unfamiliar	sleep	environments	and	pre-competition	stress	can	often	add	to	an	athlete’s	sleep	
disruption,	the	need	to	maximise	and	monitor	sleep	responses	are,	therefore,	paramount.		The	
deepest	and	most	restorative	sleep	often	occurs	from	10pm	until	2am,	therefore	having	
implications	for	athletes	who	play	in	night	games.		When	evening	games	occur	athletes	are	
unlikely	to	be	in	their	beds	until	2am,	due	to	post-match	involvements	such	as	getting	
showered,	conducting	media	obligations	and	refuelling.		In	addition,	perhaps	the	most	
underestimated	factor	affecting	evening	post-match	sleep	commencing	is	the	inability	to	fall	
asleep	after	the	excitement	of	performance.		Evidence	supporting	this	notion	was	presented	by	
Eagles,	McLellan,	Hing,	Carloss,	and	Lovell	(2014),	who	noted	that	the	time	to	sleep	on	game	
nights	was	significantly	(p	<	0.05)	later	than	on	non-game	nights	in	professional	rugby	union	
players.		This	excitement	post-performance,	combined	with	ergogenic	aids	such	as	caffeine	
(outlined	in	Chapter	2.5.1.7	below),	means	that	athletes	understandably	struggle	to	relax	post-
match,	thereby	impacting	upon	their	post-match	recovery.		When	considering	and	combining	
these	difficult	post-match	relaxation	logistics,	including	the	need	for	athletes	to	travel	
immediately	post-match	(often	across	time	zones)	and	compete	again	in	a	short	number	of	days,	
the	impact	this	can	have	upon	restoration	of	performance	in	the	days	post-match	is	further	
emphasised.	

As	recommended	by	Halson	(2014),	monitoring	of	sleep	quantity	and	quality	as	is	often	
included	within	aforementioned	well-being	questionnaires	and	their	results	can	also	be	useful	
for	the	monitoring	of	fatigue.		The	early	detection	of	overtraining	via	the	use	of	well-being	
questionnaires,	however,	is	unclear	(Halson,	2008).		Within	rugby	specifically	twenty	eight	male	
rugby	union	players	had	their	sleep	patterns	assessed	over	a	four	game	period	via	an	ACTi	
watch,	with	results	demonstrating	that	sleep	was	deprived	post-match	and	that	this	may	have	
had	a	detrimental	effect	upon	the	recovery	process	(Shearer,	Jones,	Kilduff,	&	Cook,	2015).		
Additionally,	in	an	assessment	of	sleep	in	collision	sport	athletes	(Swinbourne,	2015),	it	was	
reported	that	collision	sport	athletes	experienced	reduced	sleep	quality	during	intense	training	
phases.		However,	perhaps	most	important	from	the	research	by	Swinbourne	(2015),	was	the	
finding	that	a	sleep	extension	intervention	elicited	a	significant	moderate	(-0.65;	±	0.99)	
improvement	in	the	percentage	change	in	sleep	quality	scores	compared	to	the	control	(-24.8	
%;	±	54.1	%).		This	notion,	therefore,	supports	the	views	that	the	implementation	of	a	sleep	
extension	with	rugby	players	is	likely	to	be	worthwhile	for	reducing	the	reported	rises	in	
cortisol	levels	(-18.7	%;	±	26.4	%)	and	small	(-0.44;	±	0.31)	resultant	improvements	in	reaction	
times	(-4.3	%;	±	3.1	%)	demonstrated	by	Swinbourne	(2015). 

2.5.1.7 Nutritional	interventions	to	aid	recovery	
Rehydration	during	and	post	training	or	competition	is	the	first	key	nutritional	intervention	
that	practitioners	should	focus	upon	to	fasten	a	return	to	homeostatic	balance.		Fluid	deficits	of	
2-4%	are	common	following	team	sport	exercise	(Maughan	&	Shirreffs,	2010;	Shirreffs	&	Sawka,	
2011),	with	physiological	changes	noted	such	as	changes	in	extracellular	osmolarity	that	is	
suggested	to	influence	glucose	and	leucine	kinetics	(Keller,	Szinnai,	Bilz,	&	Berneis,	2003).		
Rehydration	post-session	has	been	shown	to	effect	subsequent	sessions	positively	(Shirreffs,	
Taylor,	Leiper,	&	Maughan,	1996),	allowing	adaptation	and	regeneration	for	the	next	session	to	
be	advanced	as	a	result	of	strategies	implemented	in	the	hours	post-exercise.		Research	into	
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rehydration	strategies	post	rugby	match	play	is	lacking,	although	the	use	of	a	body	mass	urine	
specific	gravity	refractometer	was	recommended	by	Holway	and	Spriet	(2011)	in	order	to	help	
identify	team	sport	athletes	prone	to	dehydration.		An	additional	concern	regarding	hydration	
that	practitioners	should	take	note	of,	as	noted	by	Maughan	and	Shirreffs	(2010),	is	that,	during	
competition	periods,	many	athletes	report	for	training	in	a	hyper-hydrated	state,	which	can	be	
just	as	detrimental	upon	performance	as	a	dehydrated	state. 

Alongside	rehydration	post	exercise,	foods	consumed	in	the	immediate	hours	post-exercise	
make	a	large	contribution	to	the	recovery	process,	with	restoration	of	muscle	glycogen	
reportedly	remaining	attenuated	for	2-3	days	(Nedelec	et	al.,	2012,	2013).		Adequate	muscle	
glycogen	replenishment	and	a	healthy	diet	will	aid	individuals	in	recovery	during	periods	of	
excessive	training,	speeding	tissue	repair	and	promoting	adaptations	to	training.		In	a	review	of	
nutritional	strategies	to	maximise	performance	in	rugby	Casiero	(2013)	recommended	intake	of	
appropriate	nutritional	refuelling	in	the	hours	post-exercise	in	order	to	enhance	recovery.		
Repair	and	re-synthesis	of	muscle	cells	is	key,	with	the	size	of	the	snack	or	meal	depending	upon	
the	type,	length	and	intensity	of	the	exercise	undertaken.		Specific	guidelines	regarding	when	
and	what	to	eat	post	team	sports	vary	(Mujika	&	Burke,	2010),	with	an	athlete’s	overall	
nutritional	aims	guiding	their	refuelling	process	post-exercise.		The	need	to	refuel	is	always	of	
importance,	although	calorie	restriction	should	also	be	considered	within	other	time-periods	of	
an	athlete’s	day,	rather	than	in	the	immediate	hours	post-exercise.		Effective	nutritional	
recovery	maintains	energy	and	limits	tissue	breakdown,	especially	during	periods	of	high	
volume/high	intensity	training,	with	both	carbohydrate	and	protein	being	essential	to	the	plan	
(Macnaughton	et	al.,	2016).		One	of	the	key	factors	to	keep	in	mind	is	that	the	“window	of	
opportunity”	for	maximising	glycogen	repletion	starts	to	close	as	soon	as	exercise	stops	and	
lasts	for	about	up	to	four	hours	(Mujika	&	Burke,	2010).	

Carbohydrates	are	probably	the	most	researched	form	of	recovery	strategy	post-exercise,	with	
the	utilisation	of	carbohydrate	during	exercise	being	recommended	for	sustained	performance	
(Jentjens	&	Jeukendrup,	2003).		This	review	by	Jentjens	and	Jeukendrup	(2003),	however,	
outlines	the	use	of	food	sources	post-exercise	to	enhance	recovery,	with	team	sport	activities	
reported	to	deplete	fuel	sources	during	competition	(Costill	et	al.,	1973).		Carbohydrate	forms	
the	majority	of	food	intake	post-exercise,	with	food	sources	with	a	high	or	moderate	glycaemic	
index	(GI)	recommended	for	rapid	replenishment	of	glycogen	stores	in	the	liver	and	muscle.		
Since	carbohydrates	are	the	primary	source	of	energy	in	training	and	competition,	it	is	
important	that	these	losses	are	replaced	before	the	next	exertion.		Research,	reporting	that	
during	a	soccer	match	muscle	glycogen	stores	usually	deplete	by	up	to	75%	during	a	match	
(Bangso,	2000),	also	provides	guidelines	for	carbohydrate	intake	post-game	as	being	1-1.2	g	per	
kg	of	body	mass.		As	mentioned	previously,	more	recent	research	(Bradley	et	al.,	2016)	into	
rugby	league	has	subsequently	reviewed	muscle	glycogen	stores	and	fatigue	research,	with	
glycogen	pools	noted	to	affect	muscle	contractility	and	fatigability.		In	relation	to	carbohydrate	
replenishment	post-match	play,	perhaps	most	interesting	from	the	research	by	Bradley	et	al.	
(2016),	is	that	rugby	league	players	were	noted	to	use	<	40%	of	their	glycogen	during	a	
competitive	match	regardless	of	their	carbohydrate	consumption	in	the	preceding	36	hours.		
This	evidence	by	Bradley	et	al.	(2016)	does	not	dispute	the	importance	of	carbohydrates	during	
and	after	exercise,	but	it	does	present	a	point	for	consideration	for	practitioners	when	using	
nutritional	interventions	to	hasten	recovery	and	restoration	post	rugby	match	play.	
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Research	assessing	the	influence	of	resistance	training	and	timing	of	protein	ingestion	is	also	
well	documented	(Tipton	et	al.,	2001),	yet	the	influence	of	protein	post-rugby	is	unclear.		
Protein	intake	with	carbohydrates	is	recommended	especially	after	hard	training	such	as	
weights,	sprinting	or	when	impact	activities	have	been	undertaken	(Howarth	et	al.,	2009;	Minett	
et	al.,	2010;	Moore	et	al.,	2009).		Protein	is	especially	important	for	muscle	regeneration	and	the	
prevention	of	exercise-related	anaemia	and	is	therefore	a	commonly	used	food	source	for	many	
rugby	players	(Casiero,	2013).		Rugby	players	are	advised	to	include	some	protein	alongside	
their	complex	carbohydrates	within	their	post-exercise	meal.		A	ratio	of	4:1	is	a	good	
recommendation,	with	guidelines	for	protein	intake	post-game	being	0.3	-	0.4	g	per	kg	of	body	
mass	(Casiero,	2013).			

Within	team	sport	settings	where	activities	differ	from	resistance	training,	active	recovery	
sessions	and	“on	field”	team	activities,	the	guidelines	for	post-activity	nutrition	may	vary.		The	
nature	of	individual	training	days	within	the	team	sport	setting	may	guide	the	food	and	fluid	
intake.		For	example,	a	player	may	fuel	differently	after	an	intense	training	day	compared	to	a	
light	training	day,	typically	the	day	prior	to	a	game.		One	aspect	that	should	remain	constant	
throughout,	though,	is	that	food	and	fluid	replenishment	should	be	an	integral	part	of	the	team’s	
recovery	strategy	after	games.		Within	elite	sport,	supplements	have	become	a	regular	addition	
to	an	athlete’s	post	exercise	nutrition	strategy.		Although	a	well-balanced	diet	is	considered	
appropriate	for	optimal	recovery,	many	rugby	players	use	supplements	for	logistical	purposes	
and	to	add	calories	to	a	daily	diet	where	they	are	considered	necessary	during	periods	of	
intense	training,	or	periods	when	added	lean	muscle	mass	is	the	goal	of	the	training	strategy	
(Roberts	et	al.,	2011).		Many	supplements	are	now	included	within	an	athlete’s	daily	routine,	
including	the	use	of	dietary	nitrates	(Jones,	2014)	and	tart	cherry	juice	(Bell,	Walshe,	Davison,	
Stevenson,	&	Howatson,	2015)	both	of	which	have	received	significant	praise	for	their	use	due	
to	their	ability	to	increase	antioxidative	capacity	and	enhance	recovery	(Howatson	et	al.,	2010).		
Foods	and	fluids	are,	however,	considered	to	be	a	preferred	option	to	supplements,	as	they	
contain	many	nutrients	that	supplements	cannot	supply	thus	encouraging	a	more	balanced	
routine	within	an	athlete’s	daily	life.	

An	additional	point	to	consider	for	practitioners	regarding	food	and	fluid	intake	in	the	
immediate	hours	post-game	is	alcohol.		In	a	study	assessing	alcohol	use	within	rugby	union	in	
New	Zealand,	Quarrie,	Feehan,	et	al.	(1996)	noted	patterns	of	the	sample	group’s	alcohol	use	as	
being	of	concern	and	emphasised	their	potential	impact	upon	performance.		The	effect	of	
alcohol	during	recovery	periods	post-exercise	has	been	shown	to	be	detrimental	(Barnes,	
2014),	with	the	consumption	of	1	g	of	alcohol	per	kg	of	body	mass	negatively	affecting	lower	
body	power	output	post	simulated	rugby	match	(Barnes,	Mundel,	&	Stannard,	2012).		Within	
rugby	league	alcohol	was	also	noted	to	have	detrimental	effects	upon	peak	power,	measured	via	
CMJ	and	cognitive	function	(modified	Stroop	test)	in	the	hours	post-game	(Murphy,	Snape,	
Minett,	Skein,	&	Duffield,	2013).		This	thesis,	however,	focuses	more	upon	the	NMF	elements	of	
restoration	of	performance,	rather	than	the	lack	of	macronutrient	supplementation	post-
exercise	to	restore	performance.	

2.5.1.8 Rest	and	days	without	training	
Perhaps	the	most	under	researched	and	least	strategically	implemented	strategy	to	enhance	
recovery	post-exercise	is	rest	days.		Despite	rest	being	the	most	obvious	strategy	to	implement	
post-exertion	in	order	to	manage	fatigue,	it	could	be	argued	that	few	practitioners	deliberately	
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put	rest	into	their	periodised	training	plans	and	instead	react	to	the	response	created	from	
training.		Of	the	limited	research	that	does	exist	regarding	recommended	rest	days	for	athletes,	
Bruin,	Kuipers,	Keizer,	and	Vander	Vusse	(1994)	in	a	study	of	adaptation	and	overtraining	in	
horses,	reported	that	the	absence	of	a	recovery	day	was	related	to	the	onset	of	signs	of	
overreaching	and	under	recovery.		Replenishment	of	substrates	and	the	repair	of	muscle	
damage	induced	by	training	and	competition	are	the	most	likely	reason	for	rest	day	
implementation	in	elite	rugby	union	settings.		Without	the	addition	of	rest	days	to	enable	the	
replenishment	of	substrates	and	the	repair	of	muscle	damage,	rugby	players	are	likely	to	
produce	sub-optimal	performance.		When	considering	research	that	reported	time-course	of	
restoration	and	substrate	decrement	(Bradley	et	al.,	2016;	Casiero,	2013;	Cunniffe	et	al.,	2009;	
Lindsay,	Lewis,	Scarrott,	Gill,	et	al.,	2015;	Minett	et	al.,	2010),	the	implementation	of	rest	days	
where	fatigue	is	dissipated	is	therefore	potentially	more	advantageous	than	days	that	involve	
training.	

It	is	also	important	for	practitioners	to	understand	that	rest	days	are	not	solely	put	in	place	for	
physical	recovery	but	also	with	the	aim	of	positively	impacting	mental	recovery.		Days	without	
training	provide	athletes	with	a	distraction	from	the	daily	routine	of	training	and	in	addition	
will	reduce	perception	of	mental	fatigue	due	to	time	away	from	organised	training	events.		It	
could	be	argued	that	psychological	recovery	achieved	via	rest	days	is	just	as	important	as	
physiological	recovery.		When	considering	that	physiological	stress	is	difficult	to	identify	and	
variant	in	mechanism,	perhaps	the	attention	of	practitioners	should,	instead	focus	upon	
investigating	psychological	recovery	alongside	physiological	elements	as	recommended	by	
Rattray	et	al.	(2015).		Despite	limited	research	existing	as	regards	psychological	stress	post-
exercise,	psychological	stress	is,	perhaps,	a	more	easily	investigated	area	in	comparison	to	
physiological	stress	and	therefore	warrants	attention.	

Alongside	physiological	stress,	rugby	union	match	play	demands	high	levels	of	cognitive	activity	
and	most	likely	will	have	a	cost	upon	subsequent	recovery.		The	neurological	fatigue	created	
from	exertion	can	be	reduced	by	the	implementation	of	rest	days	from	training,	which,	if	
planned	appropriately,	will	have	a	positive	influence	upon	adaptation.		It	is,	however,	important	
for	practitioners	to	note	that	some	physiological	focused	recovery	interventions	(massage,	for	
example)	also	potentially	encompass	a	psychological	restorative	element	(Poppendieck	et	al.,	
2016),	whereby	the	individual	perceives	care	and	consideration	for	their	current	physiological	
and	psychological	state	to	be	present.		The	same	notion	can	perhaps	be	said	for	active	recovery	
sessions	(swim	recovery,	for	example).		The	likelihood,	however,	of	this	being	true	for	
modalities	such	as	CWI	immersion	(which	typically	carry	less	compliance)	can	be	questioned.		It	
is	important	that	practitioners	note	the	potential	negative	psychological	influence	that	a	
recovery	intervention	might	have,	even	if	this	modality	has	been	deliberately	implemented	into	
an	athletes	training	schedule	alongside	a	pre-planned	rest	day.		If	a	modality	such	as	CWI	is	not	
enjoyed,	or	not	perceived	as	beneficial	by	individuals,	this	could	be	having	a	negative	effect	
upon	the	global	recovery	response,	when	considering	the	influence	of	the	added	psychological	
stress.		In	summary,	the	ability	of	practitioners	to	implement	rest	days,	at	the	appropriate	time	
and	for	the	appropriate	number	of	days,	is	mainly	due	to	common	sense	and	“coaching	art”.		
Experienced	coaches	will	likely	recognise	periods	of	fatigue	using	some	of	the	objective	training	
load	management	methods	(GPS	and	HR)	and	subjective	measures	(WB)	of	assessment	outlined	
in	Chapter	2.4.		Coaches	are,	however,	advised	to	use	their	coaching	experience	and	their	
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knowledge	of	the	individuals	they	oversee	to	implement	rest	day	interventions	where	
appropriate.	

2.5.1.9 Selecting	the	appropriate	recovery	modality	
As	proposed	in	research	from	Yamane	et	al.	(2006)	the	micro	damage,	cellular	and	humoral	
events	induced	by	endurance	and	strength	training	are	important	aspects	of	the	adaptive	
process	which	lead	to	improved	performance.		This	adaptive	process	is,	therefore,	contrary	to	
the	application	of	recovery	modalities	that	hasten	the	recovery	process.		Recovery	interventions	
go	beyond	the	natural	mechanisms	involved	within	the	physiological	training	adaptation	
process	and	as	reported	above	are	regularly	implemented.		From	the	evidence	presented	above,	
it	is	clear	that	“recovery	training”	in	team	sports	is	an	aspect	of	importance.		Selecting	the	
appropriate	recovery	modality	is,	therefore,	a	key	decision	for	practitioners	and	is	dependent	
upon	many	factors,	including	the	recognition	that	what	has	fatigued	the	athlete,	is	of	prime	
importance.		Not	only	do	the	mechanical	movements	performed	affect	the	response	created	but	
the	nature	of	the	movements	also	affects	the	fatigue	outcome.		For	example,	if	metabolic	fatigue	
is	created	then	perhaps	replenishment	of	fluid	and	fuel	stores	need	to	administered,	whereas	if	
the	movement	involved	explosive	exercises,	then	the	fatigue	may	be	more	psychological	in	
nature	and	therefore	another	recovery	intervention	may	be	better	suited.		Regardless	of	the	
fatigue	mechanism	created,	enhanced	recovery	following	completion	of	an	athletic	task	is	
crucial	for	future	performance	for	many	athletes,	although	reliable	and	specific	scientific	
evidence	to	support	recovery	strategies	has	yet	to	be	found.		It	is,	however,	important	for	
practitioners	to	note	that	the	poor	evidence	to	date	for	assessing	the	recovery	strategies	post	
exercise	exertion,	is	partially	the	result	of;	a	lack	of	diagnostic	tools	available	to	assess	
effectiveness,	large	variability	of	results	of	research	studies	and	a	lack	of	well	controlled	studies.	

Individualisation	of	recovery	strategies	by	practitioners	is	recommended	due	to	the	individual	
nature	of	recovery	post	contact	sports	(position-specific)	and	the	requirement	to	monitor	the	
individual	responses	to	interventions	required	to	assessing	effectiveness.		Another	
consideration	within	team	sport	settings	is	availability	of	resources,	with	a	pragmatic	approach	
often	considered	best	when	choosing	the	intervention	to	implement.		Within	team	sports	the	
number	of	athletes	to	recover	is	large,	meaning	that	logistical	considerations	and	time	
constraints	are	of	importance.		The	cost	of	selected	modalities	has	impacted	upon	commonly	
used	practices	in	team	sports,	with	techniques	which	can	be	self-administered	and	incur	no	cost	
often	being	the	modalities	most	readily	used.		Sustainability	and	manageability	are	considered	
important	for	athlete	compliance,	as	recommended	by	Cook,	Kilduff,	and	Jones	(2014),	with	
sleep	and	nutrition	being	identified	as	the	two	most	critical	elements	of	the	recovery	process.		
Despite	many	practitioners	hoping	to	use	expensive	and	cutting	edge	technologies	within	their	
recovery	process,	budget	restrictions	often	limit	the	use	of	modalities	such	as	WBC,	which	incur	
a	greater	time	and	financial	investment.		A	holistic	approach	to	a	rugby	players	daily	and	weekly	
schedule	should	be	used	so	that	physical	stress,	psychological	stresses	and	off-field	demands	
are	managed.	

Within	the	professional	team	sport	environment	it	is	not	solely	the	coaches’	responsibility	to	
manage	the	recovery	process.		The	ability	of	practitioners	to	make	athletes	accountable	and	self-
aware	within	their	training	and	recovery	process	will	increase	compliance	and	subsequent	
recovery.		If	athletes,	however,	are	not	compliant	or	do	not	listen	to	their	bodies	throughout	a	
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competitive	season	they	will	struggle	to	cope	with	the	workload	and	maladaptation	could	
potentially	occur.	

2.5.2 Summary	
Contrasting	evidence	supporting	the	effectiveness	of	many	recovery	modalities	exists,	mainly	
due	to	the	methodology	used,	protocol	undertaken	and	performance	measures	assessed	being	
so	varied	in	nature	that	no	clear	agreement	can	be	concluded.		The	need	to	research	recovery	
practices	in	rugby	union	is	therefore	of	importance	to	practitioners	aiming	to	improve	player	
readiness	between	games,	where	supposed	benefits	need	to	be	considered	against	the	financial	
and	practical	implications	that	each	modality	assumes.		Modalities	that	provide	simplicity	of	
administration	and	low	financial	cost,	will	most	likely	be	the	intervention	strategy	implemented	
within	many	elite	rugby	settings.		A	sound	recovery	theory	with	consistency	of	administration	
and	player	education	embedded	into	daily	lifestyle	choices	such	as	sleep	and	nutrition,	is	
considered	an	effective	starting	point	for	enhancing	rates	of	recovery	post	rugby	union	match	
play	and	to	improve	player	compliance.		The	choices	of	additional	recovery	modalities	being	
used	by	elite	clubs,	alongside	improved	lifestyle	choices	to	enhance	recovery,	are	likely	to	be	
scenario	specific.		It	is,	however,	important	for	practitioners	to	note	that	management	of	fatigue	
does	not	always	require	the	use	of	recovery	modalities	and	that	instead	coaches	should	look	to	
manage	fatigue	by	monitoring	readiness	(using	methods	outlined	in	Chapter	2.4),	alongside	
controlling	the	variables	that	they	have	the	power	to	manipulate	(intensity,	volume	and	rest	
days).	
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2.6 Relevance	of	readiness	and	restoration	research	

As	was	recommended	by	Pyne	and	Martin	(2011),	a	systems	based	approach	that	integrates	
well-chosen	diagnostic	tools	is	considered	to	be	the	future	for	fatigue	management	in	elite	
sport.		The	above	diagnostic	tools	and	recovery	modalities	need	to	be	selected	based	upon	the	
movements	and	activities	of	the	sport	and	the	fatigue	response	created.		As	a	result	of	using	a	
system-based	approach	that	encompasses	recovery	and	restoration	of	performance	monitoring,	
overall	player	readiness	can	be	better	assessed.		The	increasing	amount	of	commercially	
available	athlete	monitoring	systems	in	elite	rugby	(RugbySquad,	Egde10,	Apollo	and	KitMan	
Labs)	make	integration	of	performance	monitoring	data	within	the	athlete’s	training	regime	
more	easily	accessible	and	enable	better	management	and	reporting.		It	is	important	to	note,	
however,	that	data	collected	within	an	elite	rugby	setting	should	not	be	used	solely	for	research	
purposes	and	should	instead	be	prioritised	for	use	to	improve	rugby	players’	daily	training	and	
playing	readiness.	

2.6.1 The	importance	of	readiness	
NMF	is	perhaps	a	term	that	could	be	perceived	as	having	a	negative	connotation	by	sports	
coaches.		Therefore,	sports	science	practitioners	should	perhaps	use	the	term	“neuromuscular	
readiness”,	as	this	is	less	likely	to	be	construed	as	a	performance	test	that	can	only	detect	
fatigue	in	a	negative	context.		Instead,	readiness	assessment	will	aid	sport	specific	coaches	to	
understand	the	mechanism	and	causes	of	the	fatigue	and	guide	practitioners	in	choosing	a	
specific	readiness	assessment	tool	for	the	sport	in	question.		The	term	“readiness”	has	been	
used	in	various	recent	studies,	ranging	from	Plews,	Laursen,	Stanley,	et	al.	(2013)	mentioning	
readiness	when	using	HRV	and	training	response;	Gaviglio	and	Cook	(2014)	using	testosterone	
and	cortisol	to	measure	readiness	leading	up	to	games	in	rugby	union;	Duffield	et	al.	(2008)	
when	measuring	the	effects	of	compression	garments	and	Myer,	Paterno,	Ford,	and	Hewett	
(2008)	using	“readiness”	terminology	when	discussing	return	to	participation	criteria	post	
anterior	cruciate	ligament	injury.		Readiness	has	been	described	as	“the	current	functional	state	
of	an	athlete	that	determines	the	ability	of	an	individual	to	effectively	achieve	their	performance	
potential”	(Fomin	and	Nasedkin,	2013,	p.	5).		It	could	be	argued	that	readiness	in-season	relates	
to	restoration	of	performance	values	and	that	during	pre-season	readiness	relates	to	the	
aforementioned	FOR	theory.		High	training	volumes	during	elite	rugby	union	pre-season	
periods	are	designed	to	cause	a	positive	player	adaptation	to	a	training	dose	stimulus	and	will	
therefore	have	a	differing	impact	upon	readiness	than	a	typical	in-season	tapered	training	week	
as	a	game	day	approaches.		Based	upon	the	concept	of	readiness,	recent	technological	
developments	have	enabled	objective	feedback	on	changes	taking	place	as	a	result	of	training	
and	competition	exposure,	meaning	evaluation	of	player	readiness	has	become	more	
quantifiable	(Fomin,	Grainger,	Nasedkin,	Bork,	&	Huttunen,	2015).		One	could	argue	that	the	
goal	of	every	coach	should	be	to	improve	the	management	of	the	functional	state	of	an	athlete,	
with	the	most	important	marker	of	this	being	readiness	to	train	and	play.		Readiness	is,	
therefore,	the	result	of	many	different	stimuli	applied	to	the	athlete	from	both	training	and	non-
training	stressors,	and	is	an	accurate	indicator	of	an	athlete’s	ability	to	realise	their	performance	
potential,	when	considering	cardiac	pulmonary	readiness,	autonomic	nervous	system	readiness	
and	readiness	of	the	neuromuscular	system.		Reduced	readiness	when	assessed	via	accurate	
measures	should	provide	coaches	with	cues	to	alter	training	load,	as	a	result	of	the	adaptive	
responses	of	the	athlete’s	organism	to	the	stimuli	applied.	
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Readiness	to	train,	from	a	sports	coach’s	perspective,	surrounds	the	influence	of	training	
program	design	and	management	and	the	impact	this	has	upon	athlete	fatigue.		As	illustrated	in	
Figure	2.2,	many	coaches	follow	the	overloading	training	stimulus	response	
(supercompensation	model)	for	training	adaptation,	where	an	athlete	is	exposed	to	an	
overloading	training	stimulus	that	causes	fatigue,	with	the	body	then	reorganising	its	capacities	
so	that	the	next	exposure	to	the	same	stimulus	causes	less	strain.		The	displacement	in	
homeostasis	caused	by	the	overload	will	result	in	adaptation,	with	the	recovery	time	between	
exposures	being	long	enough	for	the	next	training	stimulus	to	create	a	further	positive	
adaptation	from	homeostasis.		The	accumulation	of	training	effect	and	possible	training	stress,	
where	the	recovery	periods	between	exertions	are	not	sufficient,	will	result	in	inadequate	
adaptation.		Monitoring	of	an	individual	athlete’s	responses	to	the	training	effect	imposed	is	
therefore	of	significant	importance,	in	order	to	avoid	maladaptation	and	improve	daily	
readiness	to	handling	training	exposures.	

Readiness	assessment	by	practitioners	can	result	in	the	load	being	applied	at	an	appropriate	
time	within	the	training	process.		This	utilisation	of	“windows	of	trainability”	enables	coaches	to	
prescribe	specific	sessions	with	the	appropriate	load,	with	the	aim	of	producing	optimal	
performance.		In	essence,	readiness	assessment	enables	coaches	to	manage	athlete	preparation	
based	upon	readiness	measures,	which	assess	NMF	and	the	athletes’	overall	functional	state.		It	
is	common	practice	for	coaches	to	design	long-term	training	programs,	without	taking	into	
account	the	response	of	the	athlete	to	the	load	implemented.		Readiness	assessment	could	be	
considered	to	be	a	more	athlete-focused	approach	to	optimal	training	than	the	more	commonly	
used	training-focused	process.		Concurrent	alterations	to	a	long-term	periodised	plan	using	
readiness	assessment	increases	the	chances	of	optimal	performance,	while	avoiding	
maladaptation	or	potential	injury.	

2.6.2 Meaningful	change	
Coaches	want	to	know	that	their	athletes	have	recovered	from	training	or	game	exertion.		Often,	
though,	players	will	not	have	recovered	completely	from	training	and	games,	yet	have	to	
compete	again.		This	insufficient	recovery,	prior	to	commencing	another	training	session	or	
game,	is	common	in	many	team	sport	environments	where	time	between	games	is	limited	and	
the	need	to	prepare	for	and	compete	within	the	next	game	are	essential.		Practitioners	need	to	
ascertain	whether	they	should	be	looking	for	faults	in	player	performance	through	testing,	or	be	
alert	to	clues	that	should	be	investigated	further	to	assess	readiness.		One	could	argue	that	
readiness	does	not	mean	complete	restoration	of	performance	to	pre-game	levels,	as	often	this	
is	unrealistic	in	rugby	where	the	number	of	days	between	games	are	small.		This	lack	of	
restoration	of	performance	to	pre-game	levels	does	not	mean,	however,	that	optimal	
performance	cannot	be	attained,	and	should,	perhaps,	not	be	considered	too	much	of	a	concern	
in	the	elite	setting.	

Incomplete	recovery	is	therefore	a	scenario	that	should	be	considered	when	preparing	athletes,	
although	it	that	should	not	cause	too	much	concern.		A	more	specific	concern	should	be	the	level	
of	performance	decrement,	rather	than	that	there	is	a	decrement	in	the	first	place.		As	
mentioned	in	Chapter	2.3.6,	performance	decrement	is	commonly	seen,	especially	in	the	later	
periods	of	playing	seasons	when	cumulative	fatigue	is	a	factor.		The	ability	to	identify	decrement	
in	performance	and	associated	readiness	is	only	one	task	for	strength	and	conditioning	coaches.		
The	decision	over	when	to	act	upon	this	change	and	implement	intervention	for	the	player	in	
question	is	the	key	area	of	future	focus	in	readiness	to	train.		As	supported	by	Twist	and	Highton	
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(2013),	more	research	needs	to	be	conducted	to	understand	more	clearly	what	meaningful	
change	represents,	for	selected	monitoring	tools,	before	any	interventions	are	made.		More	
informed	decisions	could	be	made	upon	readiness	when	knowledge	of	performance	standards	
in	the	tests	critiqued	above	is	combined	with	a	coach’s	instinctive	understanding	of	their	
players.		This	combination	of	objective	and	subjective	measures	was	recommended	by	Twist	
and	Highton	(2013),	who	identified	that	large	changes	in	performance,	combined	with	an	
increase	in	perceptual	fatigue,	could	aid	coaches	in	making	decisions	upon	readiness	using	
assessments	such	as	CMJ,	HRV	and	self-report	well-being.	

The	importance	of	individualised	monitoring	is	key,	with	research	by	Pyne	and	Martin	(2011)	
illustrating	the	need	for	a	system-based	approach	that	integrates	well-chosen	diagnostic	tests.		
It	could	be	argued	that	one	athlete’s	readiness	data	cannot	be	compared	to	another,	as	reaction	
to	the	training	dose-response	relationship	is	bespoke	to	the	individual.		Individual	rugby	players	
are	expected	to	have	differing	capabilities	to	adapt	to	the	same	training	load,	with	the	
physiological	and	psychological	buffer	zones	determining	the	resultant	fatigue	response.		As	
reported	by	Twist	and	Highton	(2013),	the	multifaceted	elements	of	fatigue	and	the	physical	
and	mental	response	that	individuals	athletes	demonstrate,	mean	that	single	biochemical,	
hormonal	or	performance	tests	do	not	present	a	clear	picture	of	athlete	readiness,	but	instead	
mean	that		athletes	should	be	monitored	within	a	multi-method	individualised	approach.		
Additionally,	Twist	and	Highton	(2013)	discourage	the	use	of	arbitrary	cut-off	points	across	
measurement	tools	when	alterations	in	performance	are	reported.		Previous	research	has	
investigating	inter-day	reliability	of	measure	for	each	individual,	by	assessing	repeated	
measures.		Twist	and	Highton	(2013),	when	assessing	change,	reported	multiplying	factors	of	
0.3,	0.9	and	1.6	to	determine	what	would	be	small,	moderate	and	large	changes,	while	Hopkins	
(2004)	proposed	the	implementation	of	SWC	values	within	performance	testing,	in	order	to	
determine	whether	or	not	a	meaningful	change	has	occurred.		A	meaningful	change	was	noted	
to	occur	when	CV	error	bars	lay	outside	of	the	SWC	threshold,	with	this	method	proposed,	
therefore,	for	use	by	practitioners	in	assessing	readiness	to	train.	

The	collection	of	average	scores	for	individuals,	on	selected	performance	measures	assessing	
fatigue	post	periods	of	rest	or	perceived	optimal	state,	is	key.		The	aim	for	practitioners	is	to	
establish	a	stable	value	for	each	individual	that	can	be	used	to	serve	as	a	comparison	as	the	
season	progresses.		It	could	be	argued	that	the	most	important	comparison	is	intra-individual,	
yet	it	is	recommended	that	practitioners	pay	specific	attention	to	the	comparison	of	acute	and	
chronic	training	alongside	individual	fatigue	responses	as	recommended	by	Hulin,	Gabbett,	
Lawson,	Caputi,	and	Sampson	(2016).		The	ability	of	practitioners	to	be	able	to	make	informed	
decisions	based	upon	fatigue	data	(irrespective	of	the	testing	variable	used),	while	also	
considering	the	acute	and	chronic	training	response	will	take	a	large	amount	of	data	collection	
and	analysis.		However,	if	reliability	values	(CV%)	and	SDD	are	detected	prior	to	collation	of	
data,	this	will	be	of	benefit	for	informed	decision-making	moving	forward.		This	notion	of	
individualised	monitoring	within	rugby	union	was	further	supplemented	with	the	recent	
application	of	bespoke	high	speed	running	values	by	Reardon,	Tobin,	and	Delahunt	(2015).		
Reardon	et	al.	(2015)	recommended	the	use	of	positional	sub-categories	when	interpreting	high	
speed	running	demands,	to	enable	making	more	informed	decisions	on	the	data	collected.	
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2.6.3 Improving	readiness	
If	practitioners	are	confident	in	making	informed	decisions	based	upon	readiness	of	their	
athletes	to	perform,	improved	performance	and	reduced	presence	of	injury	from	training	and	
competition	seem	likely	to	occur.		This	assumption	could	be	made	for	many	sports	where	
coaches	are	often	unsure	of	the	appropriate	training	dose	needed.		In	addition	to	practitioners	
being	able	to	make	informed	decisions	over	whether	or	not	athletes	should	train,	perhaps	the	
area	that	elite	practitioners	should	be	focusing	upon	is	the	need	to	improve	readiness,	if	
required,	and	how	best	to	do	so.		Specific	recovery	protocols	and	adjustable	training	schedules	
on	the	day	post-performance	are	of	significant	importance.		Athlete	involvement	and	feedback	
in	the	monitoring	process	are	valuable,	as	the	empowerment	and	sense	of	ownership	given	to	
the	players	will	enhance	the	process.	

The	ability	to	quantify	decrement	in	key	performance	indicators	and	associated	readiness,	or	
neuromuscular	function	from	a	functional	test	such	as	jump	height,	is	a	key	area	of	focus	for	
future	research,	especially	during	periods	of	intense	training	or	playing.		Considering	the	
research	by	Gabbett	and	Jenkins	(2011),	who	noted	a	relationship	between	athlete	fatigue	and	
injury	rates	in	professional	rugby	league,	pre-season	periods	(when	player	load	is	high)	are	
potentially	of	most	significance.		Increased	training	loads	and	incidence	of	injury	were	studied	
by	Killen	et	al.	(2010),	with	no	significant	relationship	observed	in	professional	rugby	league,	
yet	the	pre-season	period	was	signified	as	a	key	time	for	injury	to	occur.		Despite	injury	and	
training	load	being	interlinked	and	therefore	being	of	importance	to	practitioners,	the	area	of	
focus	for	this	research	does	not	include	injury.		Injury’s	relationship	to	readiness,	however,	
could	be	considered	as	a	future	area	of	study	for	return	to	play	protocol.		In	an	analysis	of	return	
to	play	(RTP)	protocol	post-injury	by	Reid	et	al.	(2013)	in	elite	level	rugby	union,	a	progressive	
rugby-specific	training	program	was	recommended	based	on	a	player’s	positional	demands.		
Due	to	the	frequency,	intensity,	and	duration	of	running	efforts	by	each	playing	position	being	
vastly	different	during	games,	as	detailed	in	Chapter	2.1,	position-specific	training	programs	
involving	RTP	protocol	are	common	practice	(Reid	et	al.,	2013).		The	use	of	GPS	data	in	
conjunction	with	fatigue	monitoring	measures,	as	discussed	in	Chapter	2.1.2,	will	provide	
practitioners	with	more	informed	decisions	throughout	the	rehabilitation	period	post-injury.	

Twist	and	Highton	(2013)	noted	that	performance	test	data	assessing	neuromuscular	function,	
combined	with	perceptual	data	from	questionnaires,	would	provide	a	more	accurate	
understanding	of	player	fatigue.		This	notion	is	further	endorsed	by	more	recent	research	
assessing	measurement	sensitivity	of	monitoring	tools	(Crowcroft,	McCleave,	Slattery,	&	Coutts,	
2016).		As	previously	discussed,	Twist	and	Highton	(2013)	noted	the	multifaceted	elements	of	
fatigue	and	the	physical	and	mental	response	that	individual	athletes	demonstrate,	with	a	multi-
method	approach	that	assesses	any	change	below	baseline	recommended	for	implementation.		
Practitioners	using	jump	testing	to	assess	NMF,	for	example,	should	question	at	what	
percentage	jump	performance	reduction	warrants	altered	training	volume	or	intensity.		Below	
baseline	change	plus	the	ability	to	have	objective	measures	of	readiness	to	train	are	therefore	
paramount,	so	that	a	player	knows	when	to	return	to	full	training	instead	of	holding	back	based	
upon	the	reported	altered	sense	of	fatigue	(McLellan	et	al.,	2011b;	Sykes,	Nicholas,	Lamb,	&	
Twist,	2013).		Considering	that	players	often	resume	resistance	training	in	the	immediate	days	
after	a	match	and	often	before	any	field	sessions,	the	views	of	Jennings,	Viljoen,	Durandt,	and	
Lambert	(2005)	are	of	note.		Jennings	et	al.	(2005)	indicate	that	resistance	sessions	could	
perhaps	provide	the	opportunity	for	coaches	to	monitor	power	output	during	exercises	such	as	
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bench	press,	prior	to	the	main	training	session	commencing	later	in	the	day.		Gymnasium	based	
sessions	on	the	morning	of	a	training	day	are	common	within	both	rugby	league	and	rugby	
union,	enabling	practitioners	to	assess	players	readiness	to	train	in	subsequent	sessions	that	
day.		During	the	early	part	of	their	training	day	(in	the	gymnasium),	decisions	could	be	made	
based	upon	the	results	of	the	mornings	readiness	testing,	thus	providing	better	overall	
management	of	daily	player	training	prescription.	

2.6.4 Limitations	of	the	research	to	date	
Equipment	available	for	use	in	assessing	performance	measures	and	the	time	available	to	
perform	the	testing	were	also	limiting	factors	within	this	research.		Although	force	plates	would	
have	provided	more	detailed	analysis	of	player	performance	when	assessing	CMJ,	the	logistical	
and	financial	involvement	of	force	plate	testing	made	this	unrealistic.		Additionally,	the	short	
periods	of	time	available	on	a	typical	training	day	to	collect	performance	measures	meant	that	
often	fewer	individuals	than	desired	were	assessed	on	a	daily	basis.		This	smaller	sample	size	
collected,	therefore,	presented	a	less	detailed	analysis	of	performance	across	the	whole	rugby	
playing	squad,	yet	the	time	constraints	involved	are	considered	to	be	a	“real	world”	scenario	
within	elite	rugby	union	testing,	where	players’	and	practitioners’	time	is	limited	within	busy	
training	days	in	the	lead	up	to	competitive	games.	

Another	limitation	of	this	research	exists	within	the	game	data	collected	where,	although	this	
research	assessed	the	demands	of	player	actions	during	game	situations,	it	did	not	consider	the	
effect	impacts	(measured	via	GPS)	from	contact	situations	had	upon	players,	as	was	researched	
by	McLellan	and	Lovell	(2012)	during	rugby	league	match	play.		When	assessing	neuromuscular	
responses	to	impact	and	collisions	during	elite	rugby	league	match	play	McLellan	and	Lovell	
(2012)	reported	impacts	>	7G	as	being	a	significant	influence	upon	neuromuscular	fatigue.		This	
research	by	McLellan	and	Lovell	(2012)	does	not	include	the	movement	classification	of	impacts	
experienced	and	instead	simply	focuses	upon	the	volume	of	impacts.		This	lack	of	detail	
surrounding	the	magnitude	of	impacts	experienced	is	an	obvious	limitation	in	this	research	and	
one	that	would	be	amended	in	future	study	to	guide	practitioners	more	clearly	on	the	typical	
restoration	of	performance	timings	for	positional	groups.	

Lastly,	a	limitation	of	this	research	also	surrounds	rugby	coaches	making	decisions	on	when	to	
train	and	when	to	rest,	with	no	consideration	for	the	evidence	collected.		Although,	in	this	
respect,	guidance	can	be	given	to	sport	specific	coaches	from	sports	science	practitioners,	the	
rugby	coaches	and	not	the	sports	science	practitioners	often	make	the	final	decision.		This	
notion,	that	sport	specific	coaches	have	the	power	to	overrule	sports	science	practitioners	and	
medical	personnel,	upon	when	to	train	and	when	to	rest,	is	a	commonly	reported	issue	in	elite	
rugby.		Although	this	notion	of	the	rugby	coaches	making	ill-informed	decisions	upon	individual	
player	training	availability	is	not	ideal	for	best	practice,	this	process	of	player	management	is	
simple	a	“real	world	consequence”	of	elite	sport,	where	the	pressures	to	succeed	are	high	and	
the	emphasis	to	push	players	when	perhaps	ill	advised	is	a	commonly	seen	phenomenon.		
Decisions	regarding	weekly	training	structure,	and	consequently	individual	player	
management,	are	often	guided	by	external	factors	such	as	weather	and	instinctive	“coaching	
art”,	rather	than	being	driven	by	scientific	data	aimed	at	enhancing	performance,	while	
incorporating	restoration	of	performance	measures	and	associated	readiness.		Based	on	these	
findings	it	is	the	author’s	belief	that	“coaching	art”	and	“performance	science”,	delivered	by	
practitioners	to	rugby	coaches,	while	keeping	in	mind	logistical	issues	regarding	player	
management,	would	be	the	best	combination	to	for	achieving	optimal	results.	 	
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2.7 Summary	of	research	proposed	

In	summary,	the	above	literature	review	has	led	to	the	conclusion	that	readiness	testing,	
assessing	restoration	of	performance	levels,	is	essential	within	elite	rugby	union	settings.	
Although,	implementing	performance	tests	that	fit	well	within	a	team’s	daily	and	weekly	
structure,	that	would	benefit	decision	making	over	player	preparedness,	is	more	problematic.		
The	overall	aim	of	the	following	research	chapters	is,	therefore,	to	identify	a	monitoring	tool	
that	could	effectively	assess	restoration	of	performance	post	rugby	union	match	play.	

Firstly,	a	specific	objective	of	this	research	was	to	ascertain	the	match	demands	experienced	by	
elite	rugby	union	players.		Via	analysis	of	match	data	taken	GPS,	assessing	movement	
requirements,	match	load	experienced	by	players	will	be	revealed.		As	previously	stated,	the	
novel	aspect	of	this	research	in	comparison	to	that	of	previous	study	(Cahill	et	al.,	2013;	Quarrie	
et	al.,	2013),	is	that	this	research	encompasses	players	who	play	less	than	80	minutes	of	a	rugby	
match	and	thereby	represent	a	true	reflection	of	current	elite	positional	demands.		Secondly,	
another	objective	of	this	research	associated	with	the	collection	of	match	demands	data,	
encompasses	assessment	of	performance	tests	that	identify	the	match	characteristics	that	affect	
time-course	of	restoration.		Although	this	research	will	not	assess	which	match	characteristics	
influence	restoration	of	performance	to	a	greater	degree	than	others,	an	understanding	of	the	
sensitivity	of	selected	performance	tests	will	be	ascertained.		Match	characteristics	that	impose	
a	greater	levels	of	fatigue	with	resultant	longer	periods	of	restoration	of	performance	are	of	
significant	interest	to	the	rugby	clubs	and	could	help	them	plan	subsequent	training	sessions	
post-game,	for	both	positional	groups	and	individuals.	

In	addition	to	assessment	of	GPS	match	data;	a	further	objective	of	this	research	was	to	identify	
a	measurement	tool	that	would	assess	restoration	of	performance	and	readiness	for	training	
and	match	play	within	rugby	union.		This	measurement	tool	has	to	be	accurate,	reliable	and	
feasible	for	use	within	elite	rugby	environments,	where	time	and	budget	constraints	exist.		The	
tools	proposed	for	assessment	of	readiness	are,	therefore,	the	CMJ	test	and	the	self-report	well-
being	questionnaire.		These	tools	are	used	to	assess	pre	and	post-match	changes	in	
performance,	with	restoration	of	neuromuscular	function	collated	via	CMJ	performance	tests,	
and	the	more	subjective	notions	of	recovery	collected	via	self-report	well-being	questionnaires.		
CMJ	and	WB	questionnaires	were	identified	for	use	from	the	literature	review	above;	due	to	the	
ease	with	which	they	can	be	implemented	and	the	logistical	issues	that	surround	the	setting	in	
question.		Previous	match	characteristic	research	and	the	effect	that	matches	have	upon	
restoration	of	performance	have	predominately	focused	upon	rugby	league	(Johnston	et	al.,	
2013;	McLellan	et	al.,	2011b;	Twist	&	Highton,	2013;	Twist	et	al.,	2017;	Twist	et	al.,	2012),	with	
limited	research	into	rugby	union	specifically	(Crewther	et	al.,	2009;	West	et	al.,	2014).		This	
research	aims	to	add	to	the	knowledge	of	performance	measures	that	can	detect	a	meaningful	
change	in	neuromuscular	function	as	a	result	of	specific	match	characteristics	in	rugby	union.	

Lastly,	another	objective	of	this	research	was	to	assess	the	frequency	and	magnitude	of	impacts	
experienced	by	players	during	elite	rugby	union	match	play,	using	both	video	footage	and	GPS	
data.		This	combination	of	methodologies	will	provide	practitioners	with	greater	insight	into	
elite	rugby	union	impacts,	as	the	footage	and	GPS	data	combined	will	provide	more	detail	than	
earlier	research	(Cahill	et	al.,	2013;	Coughlan	et	al.,	2011;	Venter,	Opperman,	&	Opperman,	
2011).		The	studies	by	Cunniffe	et	al.	(2009)	and	Cahill	et	al.	(2013)	did	not	involve	analysis	of	
impacts,	while	two	studies	that	do	consider	impacts	within	match	analysis	assessment	
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(Coughlan	et	al.,	2011;	Venter	et	al.,	2011)	involve	smaller	sample	sizes	and	less	extensive	
analysis	of	impact	across	positional	groups.		A	more	detailed	analysis	of	where	impacts	occur	
during	match	play	will	further	help	quantify	the	demands	experienced	by	players	and	will	
provide	additional	information	about	the	effect	of	specific	match	characteristics	upon	time-
course	of	recovery	for	positional	groups.		The	GPS	data	collected	within	this	study	will	identify	
the	match	intensity	experienced	by	the	players	(illustrated	by	GPS	variables),	while	the	video	
footage	will	act	as	a	reference	file	against	which	to	compare	the	GPS	results	data.		This	
combined	data	collection	will	help	to	ascertain	match	involvements	and	their	associated	
impacts.	

The	novel	approach	outlined	within	this	research,	incorporating	greater	analysis	of	match	data	
and	more	specific	use	of	the	methods	of	neuromuscular	assessment	presented	in	Table	2.13,	
will	enable	a	more	global	overview	of	player	readiness.		This	is	in	contrast	to	research	by	
McLean	et	al.	(2010)	and	McLellan	et	al.	(2011b)	who	only	used	CMJ,	biochemical	and	WB	
values	and	did	not	provide	any	immediate	feedback	to	players	or	practitioners,	with	the	result	
that	concurrent	interventions	could	not	be	implemented.		To	date,	methods	used	in	the	key	
research	by	McLellan	et	al.	(2011b)	included	questionable	CMJ	protocols	where,	for	example,	
subjects	hands	were	not	placed	upon	hips	during	the	jump.		This	protocol	has	been	shown	to	be	
inaccurate	(Domire	&	Challis,	2007)	where	arm	swing	allows	greater	muscular	force	to	be	
generated,	therefore	illustrating	that	some	of	the	results	presented	may	be	difficult	to	compare.	

2.7.1 Research	questions	proposed	
• Do	the	physiological	requirements	of	elite	rugby	union	players	differ	across	positional	

groups,	irrespective	of	duration	played?	
o Do	backs	cover	a	greater	distance	across	all	distance	zones	compared	to	

forwards?	
o Are	forwards	involved	in	a	greater	number	of	impacts	across	all	impact	zones	

compared	to	backs?	
o Are	backs	involved	in	more	accelerations	and	decelerations	compared	to	

forwards?	
o Do	backs	complete	game	activities	at	a	greater	intensity	than	forwards?	

• Which	jump	modality	is	more	reliable	within	and	between	sessions	in	elite	rugby	
settings?	

o Are	bilateral	jumps	more	reliable	than	unilateral	jumps?	
o Is	CMJ	measurement	an	accurate,	reliable	and	feasible	task	for	use	within	elite	

rugby,	to	assess	restoration	of	performance?	
• Does	time-course	of	recovery	of	elite	rugby	union	players	post-match	differ	across	

positional	groups?	
o Are	CMJ	performances	and	WB	scores	restored	within	60	hours	post-match?	
o Do	forwards	take	longer	to	restore	CMJ	performance	and	WB	scores	due	to	the	

greater	number	of	impacts	they	experience	during	games?	
o Do	many	of	the	impacts	experienced	from	players	during	match	play	occur	only	

during	collision	situations?	
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3 Match	Characteristics	in	an	Elite	Rugby	Union	Playing	Season	

3.1 Abstract	

An	understanding	of	the	physical	demands	placed	upon	elite	rugby	players	during	match	play	is	
important,	in	order	for	practitioners	to	prescribe	appropriate	training	plans	for	positional	
groups.		The	purpose	of	this	study	was	to	quantify	the	match	characteristics	of	elite	rugby	union	
players	across	a	competitive	playing	season	and	to	identify	whether	position-related	differences	
exist.		Thirty-eight	players	from	one	English	Premiership	Club	were	tracked	using	GPS	during	
thirty-two	games	played	throughout	the	2014/2015	playing	season	(462	data	sets).		This	study	
involved	nine	positional	groups,	which	were	defined	as:	backs	(n=220)	or	forwards	(n=242);	
and	further	subdivided	into	props	(n=62),	hookers	(n=30),	locks	(n=59),	back	rows	(n=95),	
scrum	half	(n=34),	out	half	(n=33),	centres	(n=59),	wings	(n=62)	and	full	backs	(n=27).		The	
match	characteristics	revealed	a	significantly	greater	(p	<	0.001)	distance	covered	for	backs	
(5918	±	1206	m)	compared	to	forwards	(5035	±	1157	m),	in	conjunction	with	the	backs	playing	
at	a	significantly	higher	intensity	(70.9	±	7.4	m/min)	compared	to	the	forwards	(64.0	±	6.3	
m/min)	(p	<	0.001).		Additionally,	backs	conducted	a	significantly	greater	(p	<	0.001)	number	of	
accelerations	(32.2	±	10.6)	compared	to	forwards	(22.0	±	11.9)	and	a	significantly	greater	(p	<	
0.001)	number	of	decelerations	(41.9	±	12.3)	compared	to	the	forwards	(30.8	±	14.4),	while	
forwards	experienced	a	greater,	yet	insignificant	(p	>	0.05)	number	of	impacts	>	Zone	3	(229	±	
160)	compared	to	the	backs	(226	±	151).		Within	the	nine	positional	groups,	many	differences	in	
match	demands	were	identified,	with	full	backs	covering	the	greatest	distance	(6904	±	740	m)	
compared	to	the	lowest	being	props	(4285	±	893	m)	(p	<	0.001).		Centres	performed	the	highest	
distance	covered	in	D1	(2405	±	256	m),	full	backs	the	furthest	in	D2	(2078	±	275	m)	and	D5	
(429	±	118	m),	scrum	half’s	the	furthest	distance	covered	in	D4	(1009	±	214	m),	while	wingers	
presented	the	furthest	distance	covered	in	D6	(139	±	72	m).		Impact	zones	for	the	nine	
positional	groups	showed	that	props	typically	experienced	the	lowest	number	of	impacts	in	the	
lower	impact	zones	(Im1,	Im2	and	Im3),	yet	experienced	a	large	number	of	impacts	in	the	
higher	impacts	zones	(Im4,	Im5	and	Im6).		Full	backs	showed	a	large	level	of	impacts	on	both	
low	and	high	impact	zones,	yet	the	positions	of	prop,	hooker	and	back	row	illustrated	high	Im6	
values	when	compared	to	the	values	they	experienced	at	the	lower	impact	zones.		Results	from	
this	study	help	guide	coaches	upon	what	each	positional	group	should	complete	within	the	
team’s	playing	structure	and	enable	coaches	to	make	more	informed	decisions	upon	whether	an	
individual	player	can	perform	such	a	role	for	the	team.		Specific	training	recommendations	
resulting	from	this	study	are,	firstly,	that	high	levels	of	aerobic	fitness	are	required	to	complete	
match	distances,	and	secondly	that	high	muscle	mass	and	strength	are	needed	to	cope	with	
match	impacts	experienced.		Finally,	implementation	of	match	characteristic	comparison	could	
help	guide	the	future	of	strength	and	conditioning	training	prescription	in	order	to	improve	
individual	readiness	to	train	in	the	days	post-match.	

3.2 Introduction	

Rugby	union,	like	many	other	team	sports,	is	a	sport	of	intermittent	periods	of	both	high	and	
low	intensity	activity,	with	many	gait	changes	during	game	phases	(Austin	et	al.,	2011a;	Quarrie	
et	al.,	2013).		The	ability	to	identify	and	understand	the	specific	demands	placed	upon	sport	
performers	during	match-play	has	long	since	been	recognised	as	a	crucial	factor	in	developing	
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appropriate	training	and	recovery	programmes,	which	might	elicit	improved	performance	
(Coughlan	et	al.,	2011;	Quarrie	et	al.,	2013;	Roberts	et	al.,	2008).		Increased	commercial	interest	
in	rugby	union,	since	it	became	professional	in	1995,	has	resulted	in	matches	reported	as	
becoming	faster,	containing	more	phases	as	well	as	involving	bigger,	faster,	more	physical	
players	(Quarrie	et	al.,	2013).		Additionally,	the	development	of	GPS	technology	is	providing	
practitioners	with	detailed	data	relating	to	the	specific	movement	demands	and	work	rates	of	
players.		A	competitive	game	of	rugby	union	lasts	for	approximately	90	minutes	and	involves	
high	intensity	activities	including	blunt	force	impact		(forwards	≤	838	impacts;	backs	≤	573	
impacts)	and	sprinting	(>24	km/h;	forwards	60	±	32	m,	backs	143		±	67	m,	backs)	(Austin	et	al.,	
2011a;	Cahill	et	al.,	2013;	Coughlan	et	al.,	2011;	Deutsch,	Kearney,	&	Rehrer,	2007).	

Data	from	a	recent	study	from	the	English	Premiership	rugby	union	league	(Cahill	et	al.,	2013)	
reported	that	match	distances	per	game,	averaged	across	a	season,	were	significantly	lower	for	
forwards	(5850	±	1101	m)	compared	to	backs	(6545	±	1055	m),	with	high	intensity	bouts	
(sprinting,	tackling,	static	holds	and	scrummaging)	(Austin	et	al.,	2011a)	and	high	impact	forces	
(>	10G)	(Venter	et	al.,	2011)	being	a	major	source	of	cumulative	fatigue	throughout	a	game.		In	a	
recent	time-motion	analysis	study	by	Quarrie	et	al.	(2013)	involving	763	players,	it	was	clear	
that	varying	demands	are	placed	upon	differing	positions	(forwards	5040	±	874	m;	backs	5800	
±	822	m).		The	distances	covered	by	positional	groups	at	varying	speed	intensities	was	the	key	
finding,	implying	that	differing	conditioning	and	recovery	programs	should	be	implemented	to	
prepare	players	most	effectively	(forwards	44	±	32	times	>	8	m/s;	backs	104	±	54	times	>	8	
m/s).		Roberts	et	al.	(2008)	found	players	to	cover	distances	of	5408	–	6190	m	on	average	
depending	on	the	positional	role,	with	backs	generally	covering	the	greater	distances,	made	up	
of	sprinting,	jumping	and	change	of	direction	at	various	velocities.		In	a	study	involving	2008	
and	2009	Super	14	rugby	union	games,	Austin	et	al.	(2011a),	reported	that	the	maximum	
distance	covered	in	a	game	by	four	positional	groups	were:	front	row	forwards	(4662	±	659	m),	
back	row	forwards	(5262	±	131	m),	inside	backs	(6095	±	213	m)	and	outside	backs	(4774	±	
1017	m).		An	additional	study	that	warrants	attention	is	that	by	Venter	et	al.	(2011)	which	
showed	conflicting	data.		Venter	et	al.	(2011)	noted	that	players	on	average	covered	a	total	
distance	of	4469	±	292	m,	with	front	row	forwards	covering	the	greatest	total	distance	4672	±	
215,	followed	by	outside	backs	4597	±	210	m,	inside	backs	4307	±	214	m	and	then	back	row	
forwards	4302	±	529	m.		It	is,	however,	difficult	for	comparisons	to	be	made	with	the	research	
by	Venter	et	al.	(2011),	as	it	involved	a	small	sample	size	(n	=	23)	of	semi-professional	under	19	
players,	who	play	for	60	minutes	rather	than	80	minutes.		Player	positions,	their	roles	and	the	
physical	characteristics	associated	with	each	position	within	rugby	union	are	detailed	within	
Table	2.1	and	Table	2.11	(Chapter	2.1)	of	the	literature	review.	
	
Reported	work	to	rest	ratios,	of	between	1:4	and	1:6	for	varying	positions	exist,	with	the	
average	number	of	sprints	during	a	match	being	twenty	(Roberts	et	al.,	2008).		Austin	et	al.	
(2011a)	also	reported	work	to	rest	ratios	of	between	1:4	and	1:6	for	varying	positions,	with	
back	row	forwards	spending	the	greatest	amount	of	time	in	high	intensity	exercise.		It	is,	
however,	important	for	practitioners	to	note	that	these	work	to	rest	and	sprint	values	do	not	
reflect	the	actual	movement	patterns	during	intense	periods	of	matches	(including	repeated	
high	intensity	efforts)	and	are,	therefore,	only	average	values	across	the	game.		As	reported	in	
recent	rugby	league	literature	(Gabbett,	2013),	preparing	for	the	“worst	case	scenario”	(work	to	
rest	ratio	3:1)	is	recommended,	instead	of	the	“average”	reported	measures	of	game	demands	
(work	to	rest	ratio	1:5),	with	positional	differences	surrounding	this	notion	noted	by	Reardon,	



	 102	

Tobin,	Tierney,	and	Delahunt	(2017).		Additionally,	it	is	important	for	practitioners	to	note	that	
the	research	by	Quarrie	et	al.	(2013)	was	taken	from	time-motion	analysis	assessments	and	not	
from	GPS	data.		The	difference	in	match	demand	intensity	between	positional	groups	was	
further	emphasised	in	recent	research	by	Cunningham	et	al.	(2016)	who	noted	that	forwards	
(5370	m)	covered	less	distance	than	backs	(6230	m)	and	typically	performed	these	at	lower	
speeds	(Forwards	HSR	284	m;	Backs	HSR	656	m).		Despite	the	research	by	Cunningham	et	al.	
(2016)	being	collated	upon	age	grade	(under	20)	internationals	and	therefore	ill-advised	for	
comparison	against	studies	using	senior	professionals,	it	is	of	interest	for	practitioners	to	note	
that	forwards	experienced	greater	contact	loads	than	backs.		However,	the	assessment	of	
contact	loads	within	the	research	by	Cunningham	et	al.	(2016)	does	not	incorporate	GPS	
measurements	for	impacts	and	therefore	can	be	questioned.		Instead	the	research	by	
Cunningham	et	al.	(2016)	utilised	earlier	research	(Cahill	et	al.,	2013;	Docherty	et	al.,	1988;	
Quarrie	&	Wilson,	2000),	to	explain	its	view	that	forwards	experienced	greater	contact	loads	
than	backs,	with	the	reduced	locomotive	patterns	in	forwards	being	due,	potentially,	to	their	
primary	role	of	contesting	possession.	

In	another	study	involving	southern	hemisphere	rugby	union	it	was	reported	that	rugby	union	
players	performed	most	of	their	sprints	over	distances	between	10	m	and	20	m,	with	forwards	
sprinting	less	often,	on	average,	than	backs,	highlighting	the	importance	of	speed	training	for	
some	positional	groups	(Duthie	et	al.,	2006).		Studies	using	time-motion	analysis	found	that	
sprinting	occurred	on	average	16	±	15	and	23	±	19	times	for	forwards	and	backs	respectively,	
lasting	on	average	1.2	±	0.2	s	(Roberts	et	al.,	2008).		It	is,	however,	important	to	note	that	many	
of	the	studies	considered	above,	assessing	game	demands	in	rugby	union,	incorporated	only	the	
players	that	play	the	full	game	and	therefore	do	not	represent	the	full	spectrum	of	playing	
positions	and	their	requirements.		As	is	commonly	seen	within	elite	modern	rugby,	many	
positional	groups	rarely	complete	the	full	duration	of	the	game	and	instead	are	substituted	in	a	
pre-determined	format,	meaning	that	these	players	can	be	conditioned	specifically	for	these	
particular	match	demands.		Recent	evidence	illustrating	this	notion	was	presented	by	Lacome	et	
al.	(2015),	who	noted	that	85.2%	of	substitutions	were	made	for	tactical	reasons,	with	the	mean	
period	for	non-injury	substitutions	varying	between	positional	groups	(Forwards	50-65	mins;	
Backs	70-75	mins).		Also	of	interest	from	the	research	by	Lacome	et	al.	(2015),	assessing	
international	players	using	time-motion	analysis,	was	the	positive	impact	of	substitutions	upon	
match	play	(as	represented	by	improved	running	performance;	ES	0.2-0.5),	therefore	
supporting	the	use	of	substitutions	in	order	to	improve	match	outcome.	

Austin	et	al.	(2011a)	noted	that	forward	walking	and	forward	jogging	comprised	65%	of	the	
total	distance	covered	by	front	row	forwards,	compared	to	63%	for	back	row	forwards,	56%	for	
inside	backs	and	58%	for	outside	backs.		This	amount	of	time	either	walking	or	jogging	
illustrates	the	nature	of	rugby	union	as	an	intermittent	sport,	with	short	periods	of	high	
intensity	activity.		Striding	and	sprinting	accounted	for	31%,	32%,	38%	and	33%	respectively	
for	the	above	positions;	with	inside	backs	covering	the	greatest	distance	at	sprinting	speeds	and	
front	row	forwards	the	smallest.		High	intensity	runs	are	performed	41	±	16	and	59	±	28	times	
forwards	and	backs	respectively	lasting	on	average	1.3-1.5	s	(Roberts	et	al,	2008).		A	measure	of	
intensity	is	heart	rate,	where	it	was	reported	that	high	demands	are	placed	on	a	player’s	
cardiovascular	system	when	players	are	required	to	reach	86%	of	their	maximal	heart	rate	
(Cunniffe	et	al.,	2009).		Another	performance	aspect	that	adds	to	the	match	demands	to	which	
players	are	exposed,	is	that	of	“static	holds”.		The	scrum,	maul	and	ruck	elements	of	rugby	union	
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were	categorised	by	Austin	et	al.	(2011a)	as	“static	holds”	and	they	reported	that	front	row	(11	
±	8	s)	and	back	row	(15	±	9	s)	forwards	spent	significantly	more	time	in	static	hold	positions	
compared	to	the	inside	and	outside	backs.		Forwards	perform	high-intensity	static	exertion	for	
longer	periods,	spending	eight	minutes	in	intense	scrummaging,	each	lasting	5-20	s	and	5	
minutes	in	rucks	and	mauls	contributing	to	15%	of	total	game	time,	compared	to	4	minutes	of	
high-intensity	static	exertion	by	the	backs.	

Distances	covered	and	intensity	of	effort	have	been	reported	to	have	increased	in	rugby	union	
since	the	advent	of	professionalism	in	1995,	with	distances	covered	in	excess	of	5	m.s	appearing	
more	frequently	in	the	international	game,	compared	to	other	forms	of	the	professional	game	
(Quarrie	et	al.,	2013).		Data	from	Austin	et	al.	(2013)	showed	changes	of	2%	increased	sprinting	
time	and	a	7%	decrease	in	time	standing	during	match	play,	when	comparing	data	with	that	of	
Duthie	et	al.	(2006),	collected	from	Super	12	rugby	six	years	earlier.		Cunniffe	et	al.	(2009)	
revealed	that	the	average	number	of	total	impacts	in	a	game	was	>	1000	per	game	and	McLellan	
and	Lovell	(2012)	noted	correlations	between	the	total	number	of	impacts	experienced	within	
elite	rugby	league	match	play	and	compromised	neuromuscular	function	in	the	48	hours	post-
match.		Takarada	(2003)	concluded	that	although	the	direct	impact	of	tackles	on	the	body	was	
considered	to	be	the	major	cause	of	muscle	damage,	repeated	intermittent	sprinting	was	also	a	
major	contributor.		Research	in	rugby	union	has	noted	that	creatine	kinase	(CK)	values	(an	
indicator	of	muscle	damage)	relate	specifically	to	physical	impacts	from	games,	with	CK	values	
post-match	perhaps	providing	a	basis	for	recovery	strategies	(Smart	et	al.,	2008).		It	is	likely	
that	impacts	during	game	time,	identified	from	GPS	units,	do	no	solely	arise	from	collisions	but	
instead	from	a	combination	of	movement	and	collisions,	meaning	that	lower	level	impacts	can	
be	a	result	of	activities	such	as	deceleration,	change	of	direction	and	landing	in	a	lineout.		
McLellan	and	Lovell	(2012)	noted	“very	heavy”	(8.1-10	G)	and	“severe”	(>10.1	G)	impacts	to	be	
significantly	correlated	with	neuromuscular	responses	(peak	rate	of	force	development	and	
peak	power)	24	hours	post-match.		It	is,	however,	important	for	practitioners	to	note	that	a	4	G	
classification	from	a	collision	occurring	during	a	tackle,	for	example,	might	have	a	very	different	
neuromuscular	response	to	that	of	a	4	G	classification	from	a	change	of	direction.	
	
A	critical	appraisal	of	GPS	monitoring	in	team	sports	was	conducted	by	Cummins	et	al.	(2013),	
with	six	studies	detailed	across	varying	playing	levels	in	rugby	union,	confirming	the	physical	
demands	that	are	placed	upon	players	and	the	specific	metrics	involved.		GPS	data	is	collected	
throughout	rugby	players	training	weeks	and	longitudinally	over	an	entire	playing	season,	with	
many	studies	published	recently	on	game	data	(Austin	et	al.,	2011a;	Cahill	et	al.,	2013;	Coughlan	
et	al.,	2011;	Quarrie	et	al.,	2013).		The	need	to	analyse	GPS	data	and	the	associated	training	
volume	(distances,	speeds	and	impacts	for	example)	has	been	utilised	in	many	studies	of	rugby	
union	(Austin	et	al.,	2011a;	Cahill	et	al.,	2013;	Coughlan	et	al.,	2011)	and	is	considered	an	
essential	tool	of	many	elite	sport	teams.		The	detailed	information	collected,	on	both	external	
load	(i.e.	distance)	and	internal	load	(i.e.	heart	rate),	provides	a	more	global	assessment	of	
exercise	intensity.		It	is,	however,	of	note	to	practitioners	that	the	sampling	frequency	used	
within	research	varies,	potentially	resulting	in	differing	values	for	many	match	demand	metrics.	

The	aim	of	this	study	is	to	develop	a	greater	understanding	of	match	demands	within	elite	rugby	
union	and	to	identify	differences	between	positions	and	positional	groups.		The	novel	aspect	of	
this	research	is	that	the	data	used	to	measure	match	characteristics	includes	match	data	
collected	for	players	who	played	longer	than	30	minutes,	unlike	earlier	research,	which	only	
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focused	upon	match	characteristics	from	players	that	played	the	entire	match.		It	could	be	
argued	that	solely	assessing	data	involving	players	who	played	the	entire	match	limits	“real	
world”	application.		Implementation	of	the	findings	from	the	assessment	of	match	data,	which	
only	encompasses	the	entire	match,	would	perhaps	underprepare	players	for	the	peak	
intensities	experienced	during	match	play,	as	the	relative	metrics	(such	as	intensity)	are	likely	
to	be	higher	amongst	players	who	perform	substitute	roles.		In	line	with	earlier	research	(Austin	
et	al.,	2011a;	Cahill	et	al.,	2013;	Cunningham	et	al.,	2016),	it	was	hypothesised	that	distance	
covered	within	games	would	be	greater	for	backs	than	forwards	and	that	backs	would	complete	
their	activities	at	a	greater	intensity.		It	was	also	hypothesised,	that	forwards	would	experience	
a	greater	number	of	impacts	>	Zone	3	in	match	situations	compared	to	backs	and	that	backs	
would	conduct	a	greater	volume	of	accelerations	and	decelerations	compared	to	forwards.			
Additionally,	as	was	seen	in	previous	research	(Austin	et	al.,	2011a;	Cahill	et	al.,	2013),	it	was	
hypothesised	that	of	the	nine	positional	groups;	full	backs,	wingers	and	scrum	halves,	would	
cover	the	greatest	distances	and	work	at	the	highest	intensities.		Lastly,	in	a	similar	vein	to	
previous	findings	(Coughlan	et	al.,	2011;	Venter	et	al.,	2011),	it	was	hypothesised	that	of	the	
nine	positional	groups,	back	row	forwards	would	experience	the	highest	number	of	impacts	>	
Zone	3	and	that	props,	hookers	and	locks	would	experience	the	highest	magnitude	of	impacts	
(measured	in	G-forces).		The	results	from	this	study,	showing	varying	match	characteristics	
across	a	variety	of	match	minutes,	will	help	guide	practitioners	upon	the	required	match	
demands	of	all	nine	positional	groups.		The	additional	knowledge	gained	as	a	result	of	this	
study,	surrounding	the	influence	of	tactical	substitutions	and	likely	match	demands	upon	
positional	demands,	will	also	help	guide	future	practice	in	modern	rugby	union.	

3.3 Method	

3.3.1 Experimental	Approach		
The	assessment	period	covered	thirty-two	games	and	was	collected	throughout	a	competitive	
rugby	union	playing	season.		Data	was	collected	from	thirty-eight	professional	players,	
including	data	from	some	players	who	did	not	compete	in	every	game;	meaning	that	462	sets	of	
game	data	were	assessed	(age	26.4	±	4.7	years,	height	182.3	±	30.2	cm,	mass	100.0	±	11.0	kg,	
training	age	7.8	±	4.6	years).		A	detailed	breakdown	of	positions	is	included	in	Table	3.1	below.		
The	GPS	units	used	by	the	players	were	worn	in	bespoke	pockets	incorporated	within	their	
playing	jerseys.		They	were	positioned	on	the	thoracic	spine	between	the	scapulae	in	order	to	
reduce	unnecessary	movement	during	match	play	that	might	influence	data	collected.	
	

Table	3.1:	Physical	characteristics	of	players	assessed	

Position	 n	 Age	 Height	(cm)	 Bodyweight	(kg)	 Training	Age	(years)	
All	positions	 462	 26.3	±	4.8	 187.4	±	6.4	 100.1	±	11.1	 7.7	±	4.6	
Forwards	 242	 27.5	±	5.0	 189.4	±	6.5	 109.0	±	8.0	 8.9	±	5.1	
Backs	 220	 25.2	±	4.4	 185.4	±	5.9	 91.3	±	5.3	 6.5	±	4.4	
Prop	 62	 27.2	±	5.5	 184.7	±	1.2	 115.2	±	9.8	 7.0	±	4.6	
Hookers	 30	 23.6	±	3.5	 184.3	±	4.0	 106.3	±	1.5	 5.3	±	4.0	
Locks	 59	 31.0	±	4.8	 197.2	±	2.8	 116.5	±	5.0	 13.0	±	4.8	
Back	Row	 95	 27.3	±	5.0	 189.8	±	6.4	 103.1	±	3.8	 9.2	±	5.1	
Scrum	Half	 34	 26.3	±	5.5	 179.6	±	2.8	 85.3	±	3.2	 8.3	±	5.5	
Out	Half	 33	 25.5	±	2.1	 184.0	±	1.4	 88.5	±	4.9	 7.5	±	2.1	
Centre	 59	 24.3	±	5.4	 185.8	±	7.1	 95.3	±	5.88	 4.6	±	3.9	
Wing	 62	 26.1	±	4.2	 187.1	±	6.1	 91.3	±	3.6	 7.6	±	3.2	
Full	Back	 27	 23.5	±	4.9	 189.5	±	2.1	 91.5	±	3.5	 5.5	±	4.9	
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Participants	were	advised	to	maintain	their	usual	recovery	process	post-match	during	the	
testing	period,	including	nutritional	interventions	or	active	swim	recovery	sessions.		On	
average,	each	week	consisted	of	two	resistance	training	sessions	and	five	rugby	sessions,	with	
the	training	volume	tapering	on	a	weekly	basis	as	game	day	approached	(Table	3.2).		This	study	
was	conducted	in	accordance	with	the	Declaration	of	Helsinki	and	was	approved	by	Salford	
University	Institutional	Review	Board.		All	participants	provided	written	informed	consent	to	
participate	in	this	study.	
	
Table	3.2:	Example	training	week	

Microcycle	
and	time	of	
day	

GAME	DAY	 +1	 +2	 +3	 +4	 +5	 +6	

AM	
	
	
	

	
	
	
	
	

Club	
Prescribed	
Recovery	
with	Team	

Rest	Day	 Weights	&	
Units	
Rugby	

Rugby	
Team	
Session	

Rest	Day	 Rugby	
Team	
Session	

PM	 Game	 	 Rugby	
Team	
Session	

Weights	 	

	

3.3.2 Match	analysis	
All	matches	within	this	study	were	played	during	the	competitive	playing	season	of	an	English	
Premiership	Rugby	Union	team	over	a	period	of	nine	months,	with	data	only	included	when	
players	played	≥	30	minutes.		The	rationale	for	the	inclusion	of	data	when	players	played	≥	30	
minutes,	was	that	this	is	typically	the	smallest	number	of	minutes	played	considered	large	
enough	for	measurement.		Players	who	played	less	than	30	minutes	were	considered	as	not	
having	completed	typical	match	demands	and	would	therefore	represent	an	inaccurate	measure	
of	match	characteristics.		When	combining	this	view	with	the	commonly	seen	practice	within	
professional	rugby	union	of	substituting	players	at	around	the	50	minute	time-point,	for	tactical	
reasons	rather	than	injury,	further	rationale	for	selecting	players	who	played	≥	30	minutes	for	
analysis	is	evident.	

Measurements	were	conducted	on	players	from	one	club	with	10	Hz	GPS	units	(StatSports	Viper,	
Northern	Ireland)	being	used	throughout	all	games	to	assess	movement	patterns.		Reliability	of	
GPS	analysis	in	team	sport	settings	has	been	confirmed	in	many	previous	studies	(Coutts	&	
Duffield,	2010;	Cummins	et	al.,	2013;	Johnston,	Watsford,	Kelly,	Pine,	&	Spurrs,	2014;	Varley,	
Fairweather,	&	Aughey,	2012),	with	Coutts	and	Duffield	(2010)	reporting	total	distance	being	
stable	between	match	variations	in	rugby	league	(<5%	CV),	while	Johnston,	Watsford,	et	al.	
(2014)	showed	a	larger	degree	of	between	match	variability	for	higher	speed	activities	(TEM	=	
0.8-19.9%)	also	in	rugby	league.	

Player	positions	were	defined	as:	backs	or	forwards;	further	subdivided	into;	props,	hookers,	
locks,	back	rows,	scrum	half,	out	half,	centres,	wings	and	full	backs.		The	match	characteristics	
assessed	included	[game	time,	distance	covered,	intensity,	accelerations,	decelerations,	impacts	
>	Zone	3,	Distance	in	Zone	1	(D1),	Distance	in	Zone	2	(D2),	Distance	in	Zone	3	(D3),	Distance	in	
Zone	4	(D4),	Distance	in	Zone	5	(D5),	Distance	in	Zone	6	(D6),	Impacts	in	Zone	1	(Im1),	Impacts	
in	Zone	2	(Im2),	Impacts	in	Zone	3	(Im3),	Impacts	in	Zone	4	(Im4),	Impacts	in	Zone	5	(Im5)	and	
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Impacts	in	Zone	6	(Im6)].		The	specific	categorisation	of	the	speed	and	impact	zones	are	detailed	
in	Table	3.3	below.	

The	dependent	variables	assessed	from	the	GPS	data	were;	total	distance	covered,	game	time	
played,	intensity,	accelerations,	decelerations	and	GPS	impacts.		Intensity	was	measured	as	
average	movement	velocity	across	the	game	(m/min).		The	GPS	device	(which	includes	a	100	Hz	
3-D	accelerometer)	measures	GPS	impacts	when	values	are	above	2	G	in	a	0.1	second	period.		
Impacts	are	instantaneous	moments	throughout	a	training	or	match	situation,	measured	in	G-
forces	and	expressed	as	a	quantity,	with	a	number	of	impacts	at	each	of	the	6	zones	categorised	
in	the	Viper	system.		It	is	important	to	note,	that	GPS	impacts	are	a	combination	of	collision	and	
impacts	created	from	movement	(stepping,	jumping,	and	decelerations).		The	number	of	
accelerations	and	decelerations	was	measured	via	the	accelerometer,	with	individually	
prescribed	zones	categorised	for	each	individual	regards	speed	aiding	to	signify	accelerations,	
decelerations	and	distance	covered	in	speed	zones.	

Table	3.3:	Categorisation	of	distances	covered	and	impacts	

	 Zone	1	 Zone	2	 Zone	3	 Zone	4	 Zone	5	 Zone	6	
Speed	(m/s)	
Speed	(km/h)	

0	–	1.5	 1.51	–	3.0	 3.01	–	4.0	 4.01	–	5.5	 5.51.	–	7.0	 7.01	+	
0	–	5.40	 5.41	–	10.80	 10.81	–	14.40	 14.41	–	19.80	 19.81	–	25.20	 25.21	+	

Impacts	in	Zones	(G)	 3	-	5	 5	–	7	 7	-	9	 9	-	11	 11	-	13	 >13	
	

3.3.3 Statistical	Analyses	
Statistical	analysis	was	performed	using	SPSS	Version	20	(IBM),	with	an	a	priori	alpha	level	set	
at	p	<	0.05.		Normality	of	analysed	variables	was	assessed	using	Shapiro-Wilks	test	between	
positional	groups	(forwards	and	backs)	and	across	positions	(props,	hookers,	locks,	back	rows,	
scrum	half,	out	half,	centres,	wings	and	full	backs).		Absolute	values	for	all	positions	were	
assessed	in	order	to	determine	the	influence	of	positions	on	each	of	the	match	characteristics,	
regardless	of	the	number	of	minutes	they	played.		Differences	between	forwards	and	backs	
were	determined	using	Wilcoxon	signed	ranks	tests.	

Non-parametric	Friedman	tests	were	conducted	in	order	to	determine	differences	between	each	
position	for	each	variable,	with	multiple	pairwise	comparisons	performed	using	Wilcoxons	
tests,	including	subsequent	Bonferroni	correction,	in	order	to	assess	where	the	difference	
occurred.		Cohen’s	d	effect	sizes	(ES)	were	used	to	assess	the	magnitude	of	any	effect	in	
accordance	with	Rhea	(2004)	and	interpreted	as	follows;	trivial	=	<	0.25,	small	=	0.25	-	0.5,	
moderate	=	0.50	-	1.0	and	large	>	1.0.		Post-hoc	statistical	power	was	calculated	using	G	Power	
3.1	(Faul,	Erdfelder,	Buchner,	&	Lang,	2009).	

3.4 Results	

3.4.1 Match	characteristics	between	forwards	and	backs	
Shapiro	Wilks	tests	of	normality	revealed	that	all	match	characteristics	for	forwards,	(excluding	
intensity,	Im1	and	Im2),	were	not	normally	distributed	(p	>	0.05).		For	backs,	Shapiro	Wilks	
tests	of	normality	revealed	that	all	match	characteristics,	(excluding	intensity,	accelerations,	
decelerations	and	D5),	were	not	normally	distributed	(p	>	0.05).	

The	Wilcoxons	tests	showed	that	backs	played	at	a	significantly	(p	<	0.001)	greater	intensity,	
with	a	large	effect	size	reported.		Backs	also	demonstrated	a	greater	number	of	impacts	in	Zone	
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1	compared	to	the	forwards,	although	the	difference	between	positions	was	small	(Table	3.4	
and	Table	3.5).		Additionally,	Wilcoxon	tests	showed	that	forwards	performed	a	significantly	(p	
<	0.001)	greater	number	of	accelerations	and	decelerations,	with	a	moderate	difference	noted.		
Backs	covered	more	distance	in	D5	compared	to	forwards,	with	a	large	difference	between	
positional	groups.		Wilcoxon	tests	identified	that	backs	performed	significantly	(p	<	0.001)	more	
game	time,	distance	covered	in	D1,	D4,	D6,	compared	to	forwards	(Table	3.4),	with	a	moderate	
to	large	difference	between	positional	groups	noted.	

Table	3.4:	Descriptive	statistics	(mean	±	standard	deviations;	CI=95%	confidence	intervals),	
effects	sizes	and	statistical	power,	across	distance	data	for	forwards	and	backs		

Position	 Forwards	 Backs	 Cohen’s	d	 Effect	 Statistical	Power	

Game	Time	(mins)	 66.6	±	14.8	
(CI	64.8-68.5)	

71.6	±	13.0*	
(CI	69.9-73.3)	

0.35	 Small	 1.00	

Distance	(m)	 5035	±	1157	
(CI	4890-5179)	

5918	±	1206*	
(CI	5758-6078)	

0.74	 Moderate	 1.00	

Intensity	(m/min)	 64.0	±	6.3	
(CI	63.2-64.8)	

70.9	±	7.4*	
(CI	69.9-71.8)	

1.00	 Moderate	 1.00	

Accelerations		 22.0	±	11.9	
(CI	20.5-23.5)	

32.2	±	10.6*	
(CI	30.8-33.6)	

0.90	 Moderate	 1.00	

Decelerations		 30.8	±	14.4	
(CI	29.0-32.6)	

41.9	±	12.3*	
(CI	40.3-43.6)	

0.82	 Moderate	 1.00	

Distance	Zone	1	
(m)	

1898	±	450	
(CI	1443-1555)	

2195	±	542*	
(CI	2123-2267)	

0.59	 Moderate	 1.00	

Distance	Zone	2	
(m)	

1499	±	494	
(CI	1836-1960)	

1558	±	399	
(CI	1505-1610)	

0.13	 Trivial	 0.88	

Distance	Zone	3	
(m)	

914	±	264	
(CI	881-947)	

904	±	243	
(CI	871-936)	

0.04	 Trivial	 0.23	

Distance	Zone	4	
(m)	

531	±	232	
(CI	502-560)	

804	±	245*	
(CI	771-836)	

1.14	 Large	 1.00	

Distance	Zone	5	
(m)	

153	±	97	
(CI	141-165)	

322	±	119*	
(CI	306-338)	

1.07	 Large	 1.00	

Distance	Zone	6	
(m)	

14	±	19	
(CI	12-17)	

77	±	66*	
(CI	68-86)	

1.29	 Large	 1.00	

	 *	p	<	0.001	

	

Table	3.5:	Descriptive	statistics	(mean	±	standard	deviations;	CI=95%	confidence	intervals),	
effect	sizes	and	statistical	power,	across	impact	zones	for	forwards	and	backs		

Position	 Forwards	 Backs	 Cohen’s	d	 Effect	 Statistical	Power	
Impacts	>	Zone	3	 229	±	160	

(CI	209-249)	
226	±	151	
(CI	206-246)	

0.01	 Trivial	 0.10	

Impacts	Zone	1	 1836	±	604	
(CI	1760-1911)	

2054	±	546*	
(CI	1981-2126)	

0.37	 Small	 1.00	

Impacts	Zone	2	 811	±	243	
(CI	781-841)	

857	±	297	
(CI	817-896)	

0.16	 Trivial	 0.97	

Impacts	Zone	3	 301	±	133	
(CI	285-318)	

312	±	154	
(CI	292-333)	

0.07	 Trivial	 0.50	

Impacts	Zone	4	 114	±	79	
(CI	104-124)	

118	±	79	
(CI	107-128)	

0.05	 Trivial	 0.28	

Impacts	Zone	5	 48	±	41	
(CI	43-53)	

47	±	38	
(CI	42-53)	

0.02	 Trivial	 0.13	

Impacts	Zone	6	 66	±	44	
(CI	60-71)	

59	±	40#	
(CI	53-64)	

0.16	 Trivial	 0.97	

	 *	p	=	0.001	#	p	=	0.03	
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3.4.2 Match	characteristics	between	the	nine	positional	groups	
Shapiro	Wilks	tests	of	normality	revealed	that	all	match	characteristics	were	not	normally	
distributed	(p	<	0.05)	across	the	nine	positional	groups.		Friedman	tests	showed	significant	
differences	between	positional	groups	for	all	the	match	characteristics	variables,	excluding	D3,	
where	no	significant	differences	were	observed	(p	>	0.05).	

Pairwise	comparisons	demonstrated	that	game	time	was	the	greatest	among	the	full	backs	and	
that	this	was	significantly	greater	compared	to	props	(p	=	0.003,	d	=	1.37),	hookers	(p	=	0.010,	d	
=	1.55)	and	scrum	halves	(p	=	0.015,	d	=	1.32),	although	not	significantly	different	(p	>	0.05)	
compared	to	the	other	positional	groups.		By	contrast,	hookers	demonstrated	the	lowest	values	
for	game	time,	which	was	significantly	lower	than	locks	(p	=	0.036,	d	=0.99),	back	row	(p	=	
0.011,	d	=	0.92),	centres	(p	>	0.001,	d	=1.43),	wing	(p	=	0.001,	d	=	1.08)	and	full	back	(p	=	0.010,	
d	=1.55),	although	not	significantly	different	(p	>	0.05)	compared	to	the	other	positional	groups	
(Table	3.6).	

Full	backs	demonstrated	the	greatest	intensity	during	match	play,	which	was	significantly	
greater	compared	to	props	(p	=	0.001,	d	=	2.88),	hookers	(p	<	0.001,	d	=	1.71),	locks	(p	<	0.001,	
d	=	1.53),	back	row	(p	<	0.001,	d	=	1.94),	out	halves	(p	=	0.036,	d	=	0.76)	and	wingers	(p	=	0.036,	
d	=	1.15)	although	not	significantly	different	(p	>	0.05)	compared	to	the	other	positional	groups.		
In	contrast,	props	competed	at	the	lowest	intensity,	which	was	significantly	lower	than	hookers	
(p	=	0.001,	d	=	1.377),	locks	(p	<	0.001,	d	=	1.133),	back	row	(p	<	0.001,	d	=	0.945),	scrum	halves	
(p	<	0.001,	d	=	2.476),	out	halves	(p	<	0.001,	d	=	2.341),	centres	(p	<	0.001,	d	=	1.234),	wingers	
(p	<	0.001,	d	=	1.587)	and	full	backs	(p	=	0.001,	d	=	2.881)	(Table	3.6).	

Out	halves	performed	the	most	accelerations,	which	was	significantly	greater	than	props	(p	<	
0.001,	d	=	2.71),	hookers	(p	<	0.001,	d	=	1.58),	locks	(p	=	0.006,	d	=	1.11),	although	not	
significantly	different	(p	>	0.05)	compared	to	back	row,	scrum	halves,	centres,	wingers	and	full	
backs.		In	contrast,	props	demonstrated	the	lowest	values	for	accelerations,	which	was	
significantly	lower	than	locks	(p	<	0.001,	d	=	1.57),	back	row	(p	<	0.001,	d	=	1.02),	scrum	halves	
(p	<	0.001,	d	=	1.97),	out	halves	(p	<	0.001,	d	=	2.71),	centres	(p	<	0.001,	d	=	1.94),	wingers	(p	<	
0.001,	d	=	2.18)	and	full	backs	(p	<	0.001,	d	=	2.61),	although	not	significantly	different	(p	>	
0.05)	compared	to	hookers	(Table	3.6).	

Full	backs	performed	the	most	decelerations,	which	was	significantly	greater	than	props	(p	<	
0.001,	d	=	2.91)	and	hookers	(p	<	0.001,	d	=	1.57),	although	not	significantly	different	(p	>	0.05)	
compared	to	the	other	positional	groups.		In	contrast,	props	demonstrated	the	lowest	values	for	
accelerations,	which	was	significantly	lower	compared	to	locks	(p	<	0.001,	d	=	1.51),	back	row	
(p	<	0.001,	d	=	1.20),	scrum	halves	(p	<	0.001,	d	=	1.72),	out	halves	(p	<	0.001,	d	=	2.17),	centres	
(p	<	0.001,	d	=	2.48),	wingers	(p	<	0.001,	d	=	2.05)	and	full	backs	(p	<	0.001,	d	=	2.91),	although	
not	significantly	different	(p	>	0.05)	compared	to	hookers	(Table	3.6).



Table	3.6:	Descriptive	statistics	(mean	±	standard	deviations;	CI=95%	confidence	intervals)	across	selected	match	demands	data	for	all	positions	

Position	 Prop	 Hooker	 Lock	 Back	Row	 Scrum	Half	 Out	Half	 Centre	 Wing	 Full	Back	
Game	Time	

(mins)	

61.2	±	14.2	

	

(CI	57.7-

64.8)	

56.6	±	16.8	

	

(CI	50.6-

60.5)	

70.6	±	10.8		

✚	û	
(CI	67.7-

73.4)	

70.9	±	14.3	

û	✚	
(CI	68.0-

73.8)	

63.7	±	11.8	

	

(CI	59.5-67.8)	

66.3	±	14.2	

	

(CI	64.1-71.3)	

76.0	±	9.4		

Ψ	α		

(CI	73.5-

78.4)	

73.2	±	13.9		

μ	ţ	

(CI	69.7-76.7)	

77.0	±	8.0		

μ ✚ ★		
(CI	73.8-80.1)	

Intensity	

(m/min)	

59.6	±	5.4	

	

(CI	58.2-

60.9)	

66.7	±	4.9		

μ	

(CI	64.9-

68.4)	

66.5	±	6.7		

Ψ	

(CI	64.7-

68.2)	

64.8	±	5.6		

Ψ	

(CI	63.6-

65.9)	

74.4	±	6.5		

Ψ	α	®	ν	

(CI	72.1-76.6)	

71.9	±	5.1		

Ψ	®	ţ	ŵ	

(CI	70.1-73.7)	

68.1	±	8.1	

Ψ	

(CI	65.9-

70.2)	

69.0	±	6.4		

Ψ	ξ	

(CI	67.4-70.7)	

76.2	±	6.1		

Ψ	α	®	¥	Ω	♮		
(CI	73.8-78.6)	

Accelerations		 13.6	±	7.0	

	

(CI	11.9-

15.3)	

21.5	±	9.9	

	

(CI	18.0-

25.0)	

26.6	±	9.3		

Ψ	

(CI	24.1-

29.0)	

24.7	±	13.6	

Ψ	

(CI	21.9-

27.4)	

31.5	±	10.7	

Ψ	✚	
(CI	27.7-35.2)	

37.5	±	10.3		

Ψ	α	ν	

(CI	33.9-41.1)	

29.2	±	8.9	

Ψ	

(CI	26.9-

31.5)	

34.1	±	11.3		

Ψ	α	ν	Α	

(CI	31.2-37.0)	

32.6	±	7.5		

Ψ	✚	
(CI	29.6-35.5)	

Decelerations		 20.3	±	7.7	

	

(CI	18.4-

22.2)	

28.9	±	11.8	

	

(CI	24.7-

33.1)	

34.5	±	10.8		

Ψ	

(CI	31.6-

37.3)	

36.0	±	16.7	

Ψ	

(CI	32.6-

39.4)	

35.1	±	9.4		

Ψ	

(CI	31.8-38.4)	

43.4	±	12.9		

Ψ	ţ	

(CI	38.8-47.9)	

43.6	±	10.8	

Ψ	ν	ţ	

(CI	40.8-

46.5)	

42.8	±	13.4		

Ψ	α	★	ŵ	
(CI	39.4-46.2)	

46.0	±	9.8		

Ψ	α		

(CI	42.1-48.9)	

Key	for	p	values	falling	within	the	following	ranges:	
	
Ψ	significantly	greater	(p<0.001)	compared	to	Props		

μ	significantly	greater	(0.001≤p<0.01�compared	to	Props			

û	significantly	greater	(0.01≤p<0.05)	compared	to	Props	
	

α	significantly	greater	(p<0.001)	compared	to	Hookers		
ţ	significantly	greater	(0.001≤p<0.01�compared	to	Hookers		

✚	significantly	greater	(0.01≤p<0.05)	compared	to	Hookers	
	

¥	significantly	greater	(p<0.001)	compared	to	Locks		
ν	significantly	greater	(0.001≤p<0.01�compared	to	Locks	

ŵ	significantly	greater	(0.01≤p<0.05)	compared	to	Locks	

	

	

®	significantly	greater	(p<0.001)	compared	to	Back	Row		

ξ	significantly	greater	(0.001≤p<0.01�compared	to	Back	Row	

Α	significantly	greater	(0.01≤p<0.05)	compared	to	Back	Row	
 
★	significantly	greater	(0.01≤p<0.05)	compared	to	Scrum	Halves	
	

Ω	significantly	greater	(0.01≤p<0.05)	compared	to	Out	Halves	
	

♮ significantly	greater	(0.01≤p<0.05)	compared	to	Wings	
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Full	backs	covered	the	greatest	distance,	which	was	significantly	greater	compared	to	props	(p	
<	0.001,	d	=	3.19),	hookers	(p	<	0.001,	d	=	2.39),	locks	(p	<	0.001,	d	=	1.60),	back	row	(p	<	
0.001,	d	=	1.55),	scrum	halves	(p	=	0.001,	d	=	1.73)	and	out	halves	(p	=	0.003,	d	=	1.33),	
although	not	significantly	different	(p	>	0.05)	compared	to	the	other	positional	groups.		In	
contrast,	props	covered	the	lowest	distance	which	was	significantly	lower	than	locks	(p	<	
0.001,	d	=	1.31),	back	row	(p	<	0.001,	d	=	1.10),	scrum	halves	(p	=	0.002,	d	=	1.20),	out	halves	
(p	<	0.001,	d	=	1.23),	centres	(p	<	0.001,	d	=	1.89),	wingers	(p	<	0.001,	d	=	1.48)	and	full	backs	
(p	<	0.001,	d	=	3.19),	although	not	significantly	different	(p	>	0.05)	compared	to	hookers	
(Table	3.7).	

Centres	covered	the	greatest	distance	in	Zone	1	(D1),	which	was	significantly	greater	
compared	to	props	(p	<	0.001,	d	=	1.28),	hookers	(p	<	0.001,	d	=	2.10),	locks	(p	<	0.001,	d	=	
0.94),	back	row	(p	=	0.001,	d	=	0.77)	scrum	halves	(p	<	0.001,	d	=	1.69)	and	out	halves	(p	=	
0.78,	d	=	3.193),	although	not	significantly	different	(p	>	0.05)	compared	to	the	other	
positional	groups.		In	contrast,	hookers	demonstrated	the	lowest	values	for	D1,	which	was	
significantly	lower	than	back	row	(p	=	0.002,	d	=	1.24),	centres	(p	<	0.001,	d	=	2.10),	wingers	
(p	=	0.001,	d	=	1.72)	and	full	back	(p	<	0.001,	d	=	2.12),	although	not	significantly	different	(p	>	
0.05)	compared	to	the	other	positional	groups	(Table	3.7).	

Full	backs	covered	the	greatest	distance	in	Zone	2	(D2)	which	was	significantly	greater	
compared	to	props	(p	<	0.001,	d	=	3.47),	hookers	(p	=	0.003,	d	=	1.79),	locks	(p	=	0.036,	d	=	
0.98),	back	row	(p	=	0.005,	d	=	1.24),	scrum	halves	(p	<	0.001,	d	=	2.39),	out	halves	(p	<	0.001,	
d	=	2.34),	centres	(p	=	0.001,	d	=	1.63)	and	wingers	(p	=	0.003,	d	=	1.484).		In	contrast,	props	
demonstrated	the	lowest	values	for	D2,	which	was	significantly	lower	than	hookers	(p	=	0.036,	
d	=	1.11),	locks	(p	<	0.001,	d	=	2.00),	back	row	(p	<	0.001,	d	=	1.76),	scrum	halves	(p	=	0.002,	d	
=	1.27),	out	halves	(p	=	0.002,	d	=	1.34),	centres	(p	<	0.001,	d	=	1.61),	wingers	(p	<	0.001,	d	=	
0.83)	and	full	backs	(p	<	0.001,	d	=	3.47)	(Table	3.7).	

Locks	covered	the	greatest	distance	in	Zone	3	(D3),	which	was	significantly	greater,	compared	
to	props	(p	=	0.002,	d	=	0.75),	and	centre	(p	=	0.004,	d	=	0.82),	although	not	significantly	
different	(p	>	0.05)	compared	to	the	other	positional	groups.		In	contrast,	centres	
demonstrated	the	lowest	values	for	D3,	which	was	significantly	lower	than	locks	(p	=	0.004,	d	
=	0.82),	although	not	significantly	different	(p	>	0.05)	compared	to	the	other	positional	groups	
(Table	3.7).	

Scrum	halves	covered	the	greatest	distance	in	Zone	4	(D4)	which	was	significantly	greater	
compared	props	(p	<	0.001,	d	=	3.51),	hookers	(p	<	0.001,	d	=	2.16),	locks	(p	<	0.001,	d	=	1.84),	
back	row	(p	<	0.001,	d	=	1.87),	out	halves	(p	=	0.036,	d	=	0.72),	centres	(p	=	0.002,	d	=	1.28)	
and	wingers	(p	=	0.010,	d	=	1.35),	although	not	significantly	different	(p	>	0.05)	compared	to	
full	backs.		In	contrast,	props	demonstrated	the	lowest	values	for	D4,	which	was	significantly	
lower	than	locks	(p	<	0.001,	d	=	1.02),	back	row	(p	<	0.001,	d	=	0.87),	scrum	halves	(p	<	0.001,	
d	=	3.51),	out	halves	(p	<	0.001,	d	=	2.48),	centres	(p	<	0.001,	d	=	2.19),	wingers	(p	<	0.001,	d	=	
1.69;)	and	full	backs	(p	<	0.001,	d	=	3.45),	although	not	significantly	different	(p	>	0.05)	
compared	to	hookers	(Table	3.7).	

Full	backs	covered	the	greatest	distance	in	Zone	5	(D5)	which	was	significantly	greater	than	
props	(p	<	0.001,	d	=	3.36),	hookers	(p	<	0.001,	d	=	3.96),	locks	(p	<	0.001,	d	=	3.12),	back	row	
(p	<	0.001,	d	=	1.91),	scrum	halves	(p	=	0.002,	d	=	1.49)	and	out	halves	(p	=	0.001,	d	=	1.49),	
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although	not	significantly	different	(p	>	0.05)	compared	to	centres	and	wingers.		In	contrast,	
hookers	demonstrated	the	lowest	values	for	D5,	which	was	significantly	lower	compared	to	
props,	(p	<	0.036,	d	=	0.87),	locks	(p	<	0.001,	d	=	1.36),	back	row	(p	<	0.001,	d	=	1.42),	scrum	
halves	(p	<	0.001,	d	=	3.29),	out	halves	(p	<	0.001,	d	=	2.83),	centres	(p	<	0.001,	d	=	3.01),	
wingers	(p	<	0.001,	d	=	2.73)	and	full	backs	(p	<	0.001,	d	=	2.59)	(Table	3.7).	

Wingers	covered	the	greatest	distance	in	Zone	6	(D6)	which	was	significantly	greater	than	
props	(p	<	0.001,	d	=	2.28),	hookers	(p	<	0.001,	d	=	2.62),	locks	(p	<	0.001,	d	=	2.59),	back	row	
(p	<	0.001,	d	=	2.21)	scrum	halves	(p	<	0.001,	d	=	1.99),	out	halves	(p	<	0.001,	d	=	1.69)	and	
centres	(p	<	0.001,	d	=	1.49),	although	not	significantly	different	(p	>	0.05)	compared	to	and	
full	backs.		In	contrast,	hookers	demonstrated	the	lowest	values	for	D6,	which	was	
significantly	lower	than	props	(p	=	0.007,	d	=	0.73),	back	row	(p	=	0.010,	d	=	0.87)	scrum	
halves	(p	<	0.001,	d	=	1.76),	out	halves	(p	<	0.001,	d	=	1.51),	centres	(p	<	0.001,	d	=	1.53),	
wingers	(p	<	0.001,	d	=	2.62)	and	full	backs	(p	<	0.001,	d	=	2.69),	although	not	significantly	
different	(p	>	0.05)	compared	to	locks	(Table	3.7).	
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Table	3.7:	Descriptive	statistics	(mean	±	standard	deviations;	CI=95%	confidence	intervals)	across	distance	data	for	all	positions	(symbols	presented	
on	Table	3.8)	

Position	 Prop	 Hooker	 Lock	 Back	Row	 Scrum	Half	 Out	Half	 Centre	 Wing	 Full	Back	
Distance	(m)	 4285	±	893	

	
	
(CI	4065-4505)	

4469	±	1238	
	
	
(CI	4029-4908)	

5517	±	979		
Ψ	
	
(CI	5259-5774)	

5411	±	1134		
Ψ	χ	
	
(CI	5181-5641)	

5408	±	978		
#	
	
(CI	5067-5750)	

5583	±	1191		
#	
	
(CI	5167-5999)	

6043	±	966		
Ψ		Γ			
	
(CI	5791-6295)	

5926	±	1295		
Ψ	₠	
	
(CI	5597-6255)	

6904	±	740		
Ψ	₠	⌃	$	£	€	
	
(CI	6617-7191)	

Distance	Zone	1	
(m)	

1799	±	487	
	
	
(CI	1679-1919)	

1474	±	429	
	
	
(CI	1322-1627)	

1963	±	479	
	
	
(CI	1837-2089)	

2043	±	482		
Γ				
	
(CI	1945-2141)	

1692	±	381	
	
	
(CI	1559-1825)	

2029	±	499		
	
	
(CI	1855-2203)	

2405	±	456		
Ψ	₠	⌃	℗	ξ	∨	
	
(CI	2286-2524)	

2337	±	562		
Ψ	Γ	ŵ	£	♮	
	
(CI	2194-2480)	

2328	±	371		
₠	#	ŵ		£	
	
(CI	2184-2472)	

Distance	Zone	2	
(m)	

1043	±	319	
	
	
(CI	965-1122)	

1451	±	410		
û	
	
(CI	1306-1597)	

1748	±	383		
Ψ	✪	
	
(CI	1647-1849)	

1663	±	382		
Ψ	★	
	
(CI	1586-1741)	

1421	±	273	
#	
	
(CI	1325-1716)	

1439	±	269		
#		
	
(CI	1345-1533)	

1574	±	338		
Ψ	
	
(CI	1485-1662)	

1446	±	400		
Ψ	
	
(CI	1344-1548)	

2078	±	275		
Ψ	℗	¤	Γ	✪	ξ	u	ϖ	
	
(CI	1971-2185)	

Distance	Zone	3	
(m)	

847	±	210	
	
	
(CI	795-899)	

926	±	296	
	
	
(CI	821-1031)	

1046	±	306		
#	u	
	
(CI	965-1127)	

863	±	244	
	
	
(CI	814-913)	

971	±	217	
	
	
(CI	895-1047)	

948	±	228	
	
	
(CI	869-1028)	

824	±	225	
	
	
(CI	766-883)	

861	±	263	
	
	
(CI	794-928)	

1042	±	199	
	
	
(CI	965-1119)	

Distance	Zone	4	
(m)	

394	±	124	
	
	
(CI	364-425)	

536	±	223	
	
	
(CI	457-615)	

589	±	240		
Ψ	
	
(CI	526-580)	

568	±	254		
Ψ	
	
(CI	517-620)	

1009	±	214		
Ψ	₠	⌃	$	u	®	∨	
	
(CI	934-1084)	

848	±	227		
⌃	Ψ	Γ	
	
(CI	769-927)	

748	±	191		
Ψ	ξ	χ	ϖ		
	
(CI	698-798)	

708	±	230		
Ψ	
	
(CI	650-767)	

922	±	177		
Ψ	₠	⌃	
	
(CI	853-991)	

Distance	Zone	5	
(m)	

118	±	56		
χ	
	
(CI	104-131)	

73	±	47	
	
	
(CI	57-90)	

142	±	54		
₠	
	
(CI	127-156)	

202	±	119		
₠	#	
	
(CI	178-226)	

281	±	76		
Ψ	₠	⌃	♮	
	
(CI	254-308)	

273	±	88		
Ψ	₠	⌃	
	
(CI	242-304)	

322	±	107		
Ψ	₠	⌃	$	
	
(CI	294-350)	

346	±	113		
Ψ	₠	⌃	$	
	
(CI	317-374)	

429	±	118		
Ψ	₠	⌃	$	£	€	
	
(CI	384-475)	

Distance	Zone	6	
(m)	

17	±	23	
	Γ	
	
(CI	11-23)	

4	±	10	
	
	
(CI	1-8)	

6	±	9	
	
	
(CI	3-8)	

20	±	24		
ŵ	χ	
	
(CI	15-25)	

33	±	21		
⌃	₠	
	
(CI	25-40)	

43	±	35		
⌃	₠	û	
	
(CI	31-55)	

51	±	42		
$	Ψ	₠	⌃	
	
(CI	40-62)	

139	±	72		
Ψ	₠	⌃	$	℗	¤	Α	
	
(CI	120-157)	

101	±	50		
Ψ	₠	⌃	$	£	∨	
	
(CI	82-121)	
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Table	3.8:	Key	for	descriptive	distance	data	in	Table	3.7	

Key	for	p	values	falling	within	the	following	ranges:	
	
Ψ	significantly	greater	(p<0.001)	compared	to	Props		
#	significantly	greater	(0.001≤p<0.01)	compared	to	Props	
û	significantly	greater	(0.01≤p<0.05)	compared	to	Props	
	
₠	significantly	greater	(p<0.001)	compared	to	Hookers	
Γ	significantly	greater	(0.001≤p<0.01)	compared	to	Hookers	
χ	significantly	greater	(0.01≤p<0.05)	compared	to	Hookers	
	
⌃	significantly	greater	(p<0.001)	compared	to	Locks	
ŵ	significantly	greater	(0.001≤p<0.01)	compared	to	Locks	
ϖ	significantly	greater	(0.01≤p<0.05)	compared	to	Locks	
	
$	significantly	greater	(p<0.001)	compared	Back	Row	
ξ	significantly	greater	(0.001≤p<0.01)	compared	to	Back	Row	
♮	significantly	greater	(0.01≤p<0.05)	compared	to	Back	Row	

	
	
℗	significantly	greater	(p<0.001)	compared	to	Scrum	Halves	
£	significantly	greater	(0.001≤p<0.01)	compared	to	Scrum	Halves	
★	significantly	greater	(0.01≤p<0.05)	compared	to	Scrum	Halves	
	
¤	significantly	greater	(p<0.001)	compared	to	Out	Halves	
€	significantly	greater	(0.001≤p<0.01)	compared	to	Out	Halves	
∨ significantly	greater	(0.01≤p<0.05)	compared	to	Out	Halves	
	
Α	significantly	greater	(p<0.001)	compared	to	Out	Halves	
u	significantly	greater	(0.001≤p<0.01)	compared	to	Centre	
	
✪	significantly	greater	(0.001≤p<0.01)	compared	to	Wingers	
®	significantly	greater	(0.01≤p<0.05)	compared	to	Wingers	
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Impacts	>	Zone	3	showed	the	highest	values	among	the	full	backs	which	was	significantly	
greater	compared	to	locks	(p	=	0.001,	d	=	1.84),	back	row	(p	=	0.003,	d	=	0.68),	out	half	(p	=	
0.036,	d	=	1.24)	and	wingers	(p	=	0.036,	d	=	0.76),	although	not	significantly	different	(p	>	
0.05)	compared	props,	hookers,	scrum	half	and	centres.		In	contrast,	locks	demonstrated	the	
lowest	values	for	Impacts	>	Zone	3,	which	was	significantly	different	to	hookers	(p	<	0.001,	d	=	
1.25),	scrum	halves	(p	=	0.002,	d	=	1.10)	and	full	backs	(p	=	0.001,	d	=	1.84),	although	not	
significantly	different	(p	>	0.05)	compared	to	props,	back	row,	out	halves,	centres	and	wingers	
(Table	3.9).	

Im1	showed	the	highest	values	among	the	full	backs	which	was	significantly	greater	than	
props	(p	<	0.001,	d	=	3.24),	hookers	(p	=	0.009,	d	=	1.38),	scrum	halves	(p	=	0.036,	d	=	1.03),	
out	halves	(p	=	0.036,	d	=	0.98)	and	wingers	(p	=	0.012,	d	=	1.26),	although	not	significantly	
different	(p	>	0.05)	compared	to	lock,	back	row	and	centres.		In	contrast,	props	demonstrated	
the	lowest	values	for	Im1,	which	was	significantly	lower	compared	to	hookers	(p	=	0.001,	d	=	
1.43),	locks	(p	<	0.001,	d	=	2.41),	back	row	(p	<	0.001,	d	=	2.08),	scrum	halves	(p	<	0.001,	d	=	
1.79),	out	halves	(p	<	0.001,	d	=	1.99),	centres	(p	<	0.001,	d	=	2.28),	wingers	(p	<	0.001,	d	=	
1.68)	and	full	backs	(p	<	0.001,	d	=	3.24)	(Table	3.9).	

Im2	showed	the	highest	values	among	the	scrum	halves	which	was	significantly	greater	
compared	to	props	(p	<	0.001,	d	=	1.81),	locks	p	<	0.001,	d	=	0.72,	back	row	(p	=	0.009,	d	=	
1.20),	centres	(p	=	0.030,	d	=	1.18),	wingers	(p	=	0.002,	d	=	1.47)	and	full	backs	p	=	0.030,	d	=	
0.097),	although	not	significantly	different	(p	>	0.05)	compared	to	hookers	and	out	halves.		In	
contrast,	props	demonstrated	the	lowest	values	for	Im2,	which	was	significantly	different	to	
locks	(p	=	0.013,	d	=	0.65),	scrum	half	(p	<	0.001,	d	=	1.81),	out	half	(p	=	0.015,	d	=	1.02)	and	
full	back	(p	=	0.036,	d	=	0.98),	although	not	significantly	different	(p	>	0.05)	compared	to	the	
other	positional	groups	hookers,	back	row,	centres	and	wingers	(Table	3.9).	

Im3	showed	the	highest	values	among	the	scrum	halves	which	was	significantly	greater	locks	
(p	<	0.001,	d	=	1.68),	back	row	(p	=	0.004,	d	=	1.02),	out	halves	(p	=	0.009,	d	=	1.03)	and	
wingers	(p	=	0.008,	d	=	1.17),	although	not	significantly	different	(p	>	0.05)	compared	to	
props,	hookers,	centres	and	full	backs.		In	contrast,	locks	demonstrated	the	lowest	values	for	
Im3,	which	was	significantly	lower	than	props	(p	<	0.001,	d	=	0.87),	hookers	(p	=	0.001,	d	=	
1.19),	scrum	half	(p	<	0.001,	d	=	1.68),	out	half	(p	=	0.005,	d	=	0.84)	and	full	back	(p	=	0.003,	d	
=	1.30),	although	not	significantly	different	(p	>	0.05)	compared	to	back	row,	centres	and	
wingers	(Table	3.9).	

Im4	showed	the	highest	values	among	the	scrum	halves	which	was	significantly	greater	
compared	to	back	row	(p	=	0.036,	d	=	0.69),	out	half	(p	=	0.036,	d	=	0.86)	and	centres	(p	<	
0.001,	d	=	0.55),	although	not	significantly	different	(p	>	0.05)	compared	to	props,	hookers,	
locks,	wingers	and	full	backs.		In	contrast,	locks	demonstrated	the	lowest	values	for	Im4,	
which	was	significantly	lower	compared	to	hookers	(p	<	0.001,	d	=	1.24),	scrum	half	(p	<	
0.001,	d	=	1.43),	out	half	(p	=	0.004,	d	=	0.91)	and	full	back	(p	=	0.001,	d	=	1.66),	although	not	
significantly	different	(p	>	0.05)	compared	to	props,	back	row,	centres	and	wingers	(Table	
3.9).	

Im5	showed	the	highest	values	among	the	full	backs	which	was	significantly	greater	compared	
to	locks	(p	=	0.001,	d	=	1.78),	back	row	(Im5	p	=	0.003,	d	=	0.75),	out	halves	(Im5	p	=	0.036,	d	=	
1.22)	and	wingers	(Im5	p	=	0.036,	d	=	0.77),	although	not	significantly	different	(p	>	0.05)	
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compared	to	props,	hookers,	scrum	halves	and	centres.		In	contrast,	locks	demonstrated	the	
lowest	values	for	Im5,	which	was	significantly	lower	compared	to	hookers	(p	<	0.001,	d	=	
1.25)	and	full	back	(p	=	0.001,	d	=	1.78),	although	not	significantly	different	(p	>	0.05)	
compared	to	props,	back	row,	out	halves,	centres	and	wingers	(Table	3.9).	

Im6	showed	the	highest	values	among	the	full	backs	which	was	significantly	greater	compared	
to	locks	(p	=	0.006,	d	=	1.73),	back	row	(p	=	0.030,	d	=	0.74),	scrum	halves	(p	=	0.005,	d	=	1.29),	
out	halves	(p	=	0.001,	d	=	1.92)	and	wingers	(p	=	0.011,	d	=	0.85),	although	not	significantly	
different	(p	>	0.05)	compared	to	props,	hookers	and	centres.		In	contrast,	out	half	
demonstrated	the	lowest	values	for	Im6,	which	was	significantly	lower	compared	to	hookers	
(p	=	0.003,	d	=	1.41),	back	row	(p	=	0.007,	d	=	1.07),	centres	(p	=	0.003,	d	=	0.72)	and	full	back	
(p	=	0.001,	d	=	1.92),	although	not	significantly	different	(p	>	0.05)	compared	to	props,	locks,	
scrum	halves	and	wingers	(Table	3.9).	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Table	3.9:	Descriptive	statistics	(mean	±	standard	deviations;	CI=95%	confidence	intervals)	across	impacts	data	for	all	positions	

Position	 Prop	 Hooker	 Lock	 Back	Row	 Scrum	Half	 Out	Half	 Centre	 Wing	 Full	Back	
Impacts	
>	Zone	3	

259	±	250	
	
(CI	198-321)	

291	±	145		
ε		Ψ	
(CI	239-342)	

157	±	40	
	
(CI	146-167)	

225	±	109	
	
(CI	203-247)	

274	±	145		
θ		
(CI	223-324)	

186	±	77	
	
(CI	159-213)	

229	±	186	
	
(CI	180-278)	

197	±	155	
	
(CI	158-237)	

296	±	99		
θ		Ψ	Π	Ω		
(CI	257-334)	

Impacts	
Zone	1	

1178	±	313	
	
(CI	1100-1255)	

1820	±	549	
⌃	
(CI	1625-2015)	

2232	±	533	
¢	
(CI	2092-2373)	

2019	±	476	
	¢	
(CI	1922-2115)	

1998	±	566		
¢	
(CI	1800-2195)	

2042	±	528		
¢	
(CI	1857-2226)	

2053	±	441	
¢	
(CI	1938-2168)	

1901	±	521	
¢	
(CI	1768-2033)	

2553	±	510		
¢	¤	v	Ω		Ψ	
(CI	2355-2751)	

Impacts	
Zone	2	

716	±	195	
	
(CI	668-764)	

900	±	326	
	
(CI	785-1016)	

845	±	201	
α	
(CI	792-898)	

815	±	259	
	
(CI	762-868)	

1107	±	234		
¢	ε		ρ		σ	Α	¶	
(CI	1025-1188)	

948	±	255		
⌃	
(CI	859-1038)	

762	±	337	
	
(CI	674-850)	

748	±	252	
	
(CI	684-812)	

902	±	182		
α	
(CI	832-973)	

Impacts	
Zone	3	

323	±	128		
ε	
(CI	292-355)	

379	±	158		
θ			
(CI	323-435)	

231	±	76	
	
(CI	211-251)	

294	±	135	
	
(CI	267-322)	

449	±	166		
ε	ρ			χ			σ	
(CI	391-507)	

307	±	102		
θ		
(CI	271-343)	

274	±	177	
	
(CI	228-320)	

273	±	132	
	
(CI	239-307)	

341	±	92	
θ	
(CI	306-377)	

Impacts	
Zone	4	

130	±	114	
	
(CI	102-158)	

148	±	79		
ε	Ψ	
(CI	120-176)	

75	±	25	
	
(CI	69-82)	

112	±	59	
	
(CI	99-124)	

162	±	82		
ε	Π	Ω	
(CI	133-191)	

106	±	41	
θ		
(CI	91-120)	

111	±	101	
	
(CI	85-138)	

100	±	73	
	
(CI	82-119)	

142	±	51		
θ		
(CI	122-162)	

Impacts	
Zone	5	

57	±	67	
	
(CI	40-73)	

62	±	35		
ε	χ	σ	Π	
(CI	49-75)	

30	±	9	
	
(CI	28-33)	

46	±	26	
	
(CI	41-51)	

58	±	37		
ε	
(CI	45-72)	

37	±	20	
	
(CI	29-44)	

48	±	48	
	
(CI	35-61)	

41	±	37	
	
(CI	31-50)	

66	±	27	
θ	ρ	Ω	Ψ	
(CI	55-76)	

Impacts	
Zone	6	

70	±	74	
	
(CI	51-88)	

80	±	33		
θ	χ	σ	v	
(CI	68-92)	

49	±	15	
	
(CI	45-53)	

67	±	27		
χ	ω	
(CI	61-72)	

52	±	27	
	
(CI	43-62)	

42	±	19	
	
(CI	36-49)	

66	±	43		
Ω	
(CI	54-77)	

53	±	49	
	
(CI	40-65)	

87	±	27		
θ	τ			χ	Π		Ψ	
(CI	76-97)	

Key	for	p	values	falling	within	the	following	ranges:	
	
¢	significantly	greater	(p<0.001)	compared	to	Props	
⌃	significantly	greater	(0.001≤p<0.01)	compared	to	Props	
α	significantly	greater	(0.01≤p<0.05)	compared	to	Props	
	
¤	significantly	greater	(0.001≤p<0.01)	compared	to	Hookers	
	
ε	significantly	greater	(p<0.001)	compared	to	Locks	
θ	significantly	greater	(0.001≤p<0.01)	compared	to	Locks	
ω	significantly	greater	(0.01≤p<0.05)	compared	to	Locks	
	
ρ	significantly	greater	(0.001≤p<0.01)	compared	to	Back	Row	
Π	significantly	greater	(0.01≤p<0.05)	compared	to	Back	Row	

	
	
τ	significantly	greater	(0.001≤p<0.01)	compared	to	Scrum	Halves	
v	significantly	greater	(0.01≤p<0.05)	compared	to	Scrum	Halves	
	
χ	significantly	greater	(0.001≤p<0.01)	compared	to	Out	Halves	
Ω	significantly	greater	(0.01≤p<0.05)	compared	to	Out	Halves	
	
¶	significantly	greater	(0.01≤p<0.05)	compared	to	Centre	
	
σ	significantly	greater	(0.001≤p<0.01)	compared	to	Wingers	
Ψ	significantly	greater	(0.01≤p<0.05)	compared	to	Wingers	
	
Α	significantly	greater	(0.01≤p<0.05)	compared	to	Full	Backs	
	



3.5 Discussion	

Positional	differences	in	match	demands	were	identified,	as	hypothesised,	with	a	greater	(p	<	
0.001,	d	=	0.74)	distance	covered	for	backs	(5918	±	1206	m)	compared	to	forwards	(5035	±	
1157	m),	in	conjunction	with	the	backs	playing	at	a	higher	intensity	(70.9	±	7.4	m/min)	
compared	to	the	forwards	(64.0	±	6.3	m/min;	p	<	0.001,	d	=	1.00).		As	was	also	hypothesised,	
forwards	experienced	a	greater	number	of	impacts	>	Zone	3	(229	±	160)	compared	to	the	backs	
(226	±	151),	although	this	was	not	significantly	different	(p	>	0.05,	d	=	0.01).		Additionally,	it	
was	correctly	hypothesised	that	backs	conducted	a	greater	number	of	accelerations	(32.2	±	
10.6)	compared	to	forwards	(22.0	±	11.9;	p	<	0.001,	d	=	0.88)	and	a	greater	number	of	
decelerations	(41.9	±	12.3)	compared	to	the	forwards	(30.8	±	14.4;	p	<	0.001,	d	=	0.82).	

Within	the	nine	positional	groups,	differences	in	match	demands	were	identified,	as	
hypothesised,	with	a	greatest	distance	covered	by	full	backs	(6904	±	740	m)	compared	to	the	
lowest	being	props	(4285	±	893	m)	(p	<	0.001,	d	=	3.19).		It	was,	however,	important	to	note	
that	centres	(6043	±	966	m)	covered	a	greater	distance	than	wingers	(5926	±	1295	m)	(p	>	
0.05,	d	=	0.10)	and	scrum	halves	(5408	±	978	m)	(p	>	0.05,	d	=	0.65),	unlike	what	was	
hypothesised.		Additionally,	full	backs	played	at	the	highest	intensity	(70.9	±	7.4	m/min)	
compared	to	the	props	(64.0	±	6.3	m/min)	(p	<	0.001,	d	=	1.00),	who	played	at	the	lowest	
intensity,	with	out	halves	(71.9	±	5.1	m/min)	surprisingly	working	at	a	greater	intensity	than	
wingers	(69.0	±	6.4	m/min)	(p	>	0.05,	d	=	0.50),	unlike	what	was	hypothesised.		Lastly,	
conflicting	with	the	hypothesis,	scrum	halves	(274	±	145),	hookers	(291	±	145)	and	full	backs	
(296	±	99)	experienced	the	highest	number	of	impacts	>	Zone	3.		Back	row	(225	±	109)	
experienced	the	fifth	highest	number	of	impacts	>	Zone	3	and	the	forth	most	Im6	(67	±	27),	
behind	full	backs	(87	±	27),	hookers	(80	±	33)	and	props	(70	±	74).	

Distances	covered	in	this	study	were	lower	than	presented	in	previous	research	(Cahill	et	al.,	
2013;	Coughlan	et	al.,	2011).		Cahill	et	al.	(2013)	reported	distances	of	5850	m	and	6545	m	for	
the	forwards	and	backs	respectively,	while	Coughlan	et	al.	(2011)	noted	distances	of	6427	m	for	
the	forwards	and	7002	m	for	the	backs.		The	greater	distance	covered	by	backs	compared	to	
forwards	in	this	study	was	expected,	because	backs	tend	to	complete	more	open	field	running,	
as	has	been	reported	in	previous	research	(Cahill	et	al.,	2013;	Quarrie	et	al.,	2013).		When	
comparing	results	from	the	nine	positional	groups	with	previous	research	(Cahill	et	al.,	2013),	
it	was	apparent	that	distances	covered	across	positional	groups	were	lower	for	all	positions	
except	full	back.		This	study	showed	full	backs	(6904	±	740	m)	to	cover	greater	distance	than	
that	recorded	by	Cahill	et	al.	(2013)	(6489	±	1572).		On	further	analysis	of	the	full	back	
position,	this	was	the	position	that	recorded	the	highest	mean	duration	of	minutes	played	
within	the	data	set	and	therefore	likely	explains	the	high	distances	covered	compared	to	the	
other	eight	positional	groups	within	this	research.		The	values	reported	by	Cahill	et	al.	(2013),	
for	full	backs	are	likely	to	be	explained	by	these	players	playing	fewer	minutes.		However,	as	
Cahill	et	al.	(2013)	does	not	quantify	minutes	played	within	their	research,	this	notion	is	
somewhat	questionable.	

As	previously	mentioned,	since	the	advent	of	professionalism	the	game	has	become	more	
intense	(Quarrie	et	al.,	2013),	with	one	of	the	consequences	being	that	tactical	substitutions	are	
made	to	ensure	that	players	are	fresh	to	perform	their	task.		Considering	the	results	above,	the	
variations	seen	in	the	match	characteristic	data	for	this	study	and	that	of	previous	research	
(Cahill	et	al.,	2013;	Coughlan	et	al.,	2011)	may	be	explained	by	the	minutes	played	by	
individuals.		Coughlan	et	al.	(2011)	examined	only	players	who	played	for	80	minutes	and	
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Cahill	et	al.	(2013)	only	included	players	who	played	longer	than	the	average	substitute’s	game	
time.		It	could,	however,	be	argued	that	this	study	is	perhaps	more	representative	of	modern	
rugby	union,	where	players	are	often	asked	to	play	less	than	the	full	match	duration,	with	the	
reduced	volume	of	playing	minutes	expected,	potentially,	to	result	in	a	more	fast	paced	and	
explosive	performance.		As	was	noted	within	this	study	and	the	research	by	Lacome	et	al.	
(2015),	forwards	generally	played	fewer	minutes	than	backs.		Positional	groups,	especially	in	
the	forwards,	are	often	substituted	for	tactical	reasons	and	it	is	now	commonplace,	in	many	
elite	teams,	to	see	forwards	not	playing	the	full	duration	of	the	game.		Due	to	the	reduced	game	
time	performed	by	players,	positional	groups	are	often	conditioned	for	substitution	roles,	
which	appear	to	involve	greater	intensity	of	movements	and	activities	over	shorter	playing	
times.		Therefore,	excluding	players	who	do	not	play	the	whole	duration	of	the	game	is	short	
sighted	and	does	not	guide	practitioners	upon	the	game	demands	placed	upon	specific	
individuals.	

Intensity,	in	this	study,	(Forwards	64.0	±	6.3	m/min	and	backs	70.9	±	7.4	m/min)	displayed	
slightly	smaller	values	in	comparison	to	Cahill	et	al.	(2013)	(Forwards	64.6	±	6.3	m/min	and	
backs	71.1	±	11.7	m/min),	with	similar	findings	presented	by	Coughlan	et	al.	(2011),	who	
reported	66.7	m/min	for	forwards	and	71.9	m/min	for	backs.		This	is	similar	to	the	research	by	
both	Reardon	et	al.	(2015)	and	Lindsay,	Draper,	et	al.	(2015),	who	noted	average	intensity	of	77	
m/min	and	81	m/min,	respectively.		It	is,	however,	important	to	note	that	the	values	from	both	
Reardon	et	al.	(2015)	and	Lindsay,	Draper,	et	al.	(2015),	were	taken	from	distance	per	game	
time	minutes,	and	therefore	possibly	account	for	the	higher	intensity	values	displayed.		As	
noted	above,	individuals	who	play	shorter	durations	are	likely	to	play	with	greater	intensity	
than	individuals	who	played	for	the	full	80	minute	duration	of	a	match,	as	pacing	strategies	
would,	potentially,	not	be	adopted.		This	study	showed	that	hookers,	locks,	wings	and	full	backs	
played	at	a	higher	intensity	than	that	reported	by	Cahill	et	al.	(2013),	yet	props,	back	row,	
scrum	halves,	out	halves	and	centres	were	reported	to	play	at	a	higher	intensity	in	the	study	by	
Cahill	et	al.	(2013).		As	this	study	used	players	who	played	durations	ranging	from	thirty	to	
eighty	minutes,	it	is	surprising	that	some	positional	groups’	intensity	values	are	smaller	when	
compared	to	those	in	previous	research	(Cahill	et	al.,	2013;	Coughlan	et	al.,	2011),	particularly	
as	they	involved	players	competing	for	longer	durations.		It	is,	however,	important	to	consider	
that	the	study	by	Coughlan	et	al.	(2011)	is	taken	from	international	rugby	(involving	only	two	
subjects),	where	one	would	expect	a	higher	average	intensity,	compared	to	that	of	the	domestic	
level	professional	rugby,	as	it	is	considered	to	be	a	lower	playing	level.	

On	analysis	of	the	distance	covered	in	speed	zones	it	was	apparent	that	backs	spent	longer	in	
D1	(2195	±	542	m)	and	D6	(77	±	66	m)	compared	to	forwards	(D1	1898	±	450	m;	D6	14	±	19	
m),	but	that	forwards	(914	±	264	m)	spent	longer	in	D3	compared	to	backs	(904	±	243	m).		A	
back	spending	a	longer	time	in	both	D1	and	D6	is	not	surprising,	considering	they	are	required	
to	perform	more	high	intensity	movements	than	forwards	and	are	reported	to	have	longer	
work	to	rest	ratios	than	forwards	during	match	play	(Austin	et	al.,	2011a).		Accelerations	and	
decelerations	assessed	within	this	study	are	also	highest	amongst	backs	(Accelerations	32.2	±	
10.6;	Decelerations	22.0	±	11.9),	compared	to	forwards	(Accelerations	22.0	±	11.9;	
Decelerations	30.8	±	14.4),	supporting	the	view	that	backs	work	at	a	higher	intensity,	but	have	
longer	recovery	periods	between	efforts.		This	notion	is	further	supported	when	considering	
the	aforementioned	distance	covered	in	each	distance	zone.	

As	reported	by	Coughlan	et	al.	(2011),	75%	of	total	rugby	union	match	distance,	is	performed	at	
low	intensity	(0-3.6	m/s).		This	study	also	shows	the	majority	of	match	distance	covered	as	
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being	of	low	intensity	(95%)	(D1,	D2,	D3	and	D4)	and	it	is	perhaps	surprising	how	little	of	the	
actual	distance	covered	is	of	high	intensity	(D5	and	D6),	when	comparing	values	to	that	of	
previous	research.		Practitioners	are,	however,	guided	to	consider	the	intensity	values	with	
caution	as	the	distance	in	zone	categories	within	this	study	differ	to	that	of	previous	research	
(Cahill	et	al.,	2013;	Coughlan	et	al.,	2011)	and	in	addition	the	classification	of	what	is	regarded	
high	intensity	also	differs.		This	research	classified	high	intensity	work	as	movement	above	19.8	
km/h,	whereas	the	work	by	Cahill	et	al.	(2013)	noted	high	intensity	work	at	differing	values.		
Cahill	et	al.	(2013)	noted	that	all	positions	covered	at	least	80%	of	their	total	distance	at	the	
following	categories	<20%	Vmax	(standing	and	walking),	20–	50%	Vmax	(jogging).		Also,	
instead	of	using	distance	covered	in	speed	zones	to	classify	low	and	high	intensity	work,	the	
authors	reported	relative	speed	classifications	that	were	based	upon	unclassified	individual	
maximum	sprint	speeds.	

On	closer	examination	of	the	distance	covered	at	high	intensity	within	this	study,	forwards	
performed	3%	of	their	distance	at	high	intensity	(>D4),	while	backs	performed	6%	of	their	
distance	at	high	intensity	(>D4).		Cahill	et	al.	(2013)	noted	forwards	performed	6%	(369	m)	of	
their	distance	at	high	intensity	(>	81%	Vmax),	while	backs	performed	4%	(323	m)	of	their	
distance	at	high	intensity.		This	small	amount	of	high	intensity	work	has	also	been	reported	
within	many	time-motion	analysis	studies	(Austin	et	al.,	2011a;	Deutsch	et	al.,	2007;	Quarrie	et	
al.,	2013)	and	GPS	studies	(Cunniffe	et	al.,	2009),	illustrating	that	rugby	union	is	a	sport	of	
intermittent	activity	with	contact	situations	and	high	work	to	rest	ratios	representing	a	large	
proportion	of	the	match	demands	to	which	players	are	exposed	to.		Within	the	nine	positional	
groups	assessed	no	clear	pattern	emerged,	with	many	positions	sharing	the	furthest	and	
shortest	values	for	the	distance	covered	within	zones.		Scrum	halves	presented	the	furthest	
distance	covered	in	D4	(1009	±	214	m),	which	considering	their	role	within	the	game	as	the	
link	between	the	forwards	and	backs,	is	perhaps	not	surprising.		They	are	required	to	perform	
many	metres	at	moderate	pace	and	attend	every	contact	situation	in	order	to	distribute	the	
ball.		Additionally,	of	note	within	the	distance	zones	was	the	data	showing	that	full	backs	
presented	the	furthest	D2	(2078	±	275	m)	and	D5	(429	±	118	m),	which	signify	that	full	backs	
are	required	to	cover	a	vast	amount	of	distance	at	both	low	and	high	intensity,	to	follow	play	in	
the	backfield	during	both	attacking	and	defending	situations.		Also	of	interest	was	the	data	for	
centres,	which	illustrated	the	significant	(p	<	0.001)	amount	of	time	spent	in	D1	(2405	±	256	
m),	where	they	are	most	likely	to	be	engaging	in	contact	situations	(attacking	and	defending),	
as	is	common	within	their	positional	role.		This	is	also	evident	in	the	high	total	number	of	
impacts	recorded	for	centres	compared	to	the	other	backs	(excluding	full	backs).		Lastly,	it	is	of	
note	(Table	3.7)	that	wingers	perform	the	furthest	distance	in	D6	(139	±	72	m),	which	would	be	
expected,	considering	their	physical	characteristics	and	their	main	role	within	the	team	as	an	
attacking	threat	to	score	tries,	as	detailed	within	the	literature	review	of	this	research	(Table	
2.1	and	Table	2.11).	

As	previously	mentioned,	few	earlier	studies	in	rugby	union	have	incorporated	GPS	data	on	
impacts,	meaning	that	values	upon	which	to	draw	comparison	within	this	study	are	limited,	
therefore	adding	to	the	novelty	of	this	study.		Cunniffe	et	al.	(2009)	revealed	that	forwards	
were	involved	in	60%	more	high	level	impacts	(>	8	G)	than	backs,	but	that	backs	produced	
marginally	more	work	than	forwards.		In	the	study	by	Cunniffe	et	al.	(2009)	it	was	also	revealed	
that	forwards	experience	thirteen	“severe”	impacts	(10+	G)	per	game	compared	to	backs,	who	
were	noted	to	only	encounter	four	“severe”	impact	instances,	although	the	relevance	of	this	
data	can	be	questioned,	considering	that	it	was	based	on	only	three	players.		Recent	research	by	
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Schoeman	et	al.	(2015),	assessing	differences	between	playing	position	and	collision	rates	
within	professional	rugby	union,	added	to	the	knowledge	of	impacts,	noting	significant	
differences	between	forwards	and	backs	regarding	collision	rates	(p	≤	0.05).		This	is	in	contrast	
to	the	results	presented	within	this	study,	which	identify	backs	as	experiencing	more	collisions.		
It	is,	however,	important	to	note	that	the	research	by	Schoeman	et	al.	(2015)	was	taken	from	
time-motion	analysis	and	therefore	does	not	identify	the	magnitude	of	impacts	from	GPS	
analysis	(be	these	impacts	from	collisions	or	not).		A	need	for	caution	when	comparing	the	
results	from	this	study	to	that	of	any	previous,	or	future,	research	in	the	area	is,	however,	
advised.	

Recent	research	using	GPS	methods	upon	which	to	compare	the	frequency	of	impacts	reported	
within	this	study	does	exist	(Tee	&	Coopoo,	2015),	where	it	was	revealed	that	there	was	no	
difference	in	the	total	number	of	impacts	(>	5	G)	experienced	by	backs	(9.5	±	3.2)	or	forwards	
(10.0	±	3.0)	(>	5	G.min-1),	or	the	frequency	of	high-intensity	impacts	(>	8	G.min-1)(Backs	1.1	±	
0.4;	Forwards	1.1	±	0.5).		This	is,	however,	in	contrast	to	the	research	by	Lindsay,	Draper,	et	al.	
(2015),	who	noted	forwards	as	experiencing	more	impacts	per	minute	than	backs	(0.56	±	0.23;	
0.36	±	0.17).		Despite	this	study	showing	that	backs	experienced	a	greater	total	number	of	
impacts	than	forwards	(Forwards	3176;	Backs	5501),	in	contrast	to	their	hypothesis,	this	study	
does	support	the	view	that	forwards	are	involved	in	more	“heavy”	impacts	(>	Zone	3).		Impacts	
<	7	G	in	this	study	(Forwards	229	±	160;	Backs	226	±	151)	were	lower	than	those	reported	by	
Coughlan	et	al.	(2011)	(Forwards		670;	Backs		466).		However,	the	GPS	units	used	both	within	
this	study	and	that	of	Coughlan	et	al.	(2011)	do	vary,	therefore	potentially	explaining	the	
differing	results	regarding	impacts.		It	is	also	important	to	note	that	forwards	experienced	a	
significantly	greater	number	of	Im6	when	compared	to	backs	(p	<	0.03),	which	when	
considering	these	Im6	instances	represent	a	13-15	G	involvement,	the	resultant	physical	
influence	this	might	have	upon	the	players	involved	is	apparent.		Further	support	for	the	effect	
of	high	magnitude	impacts	upon	resultant	time-course	of	recovery	post-match	play	was	noted	
within	similar	research	in	rugby	league	(McLellan	et	al.,	2011a),	where	it	was	reported	that	
significant	skeletal	muscle	damage	was	highly	dependent	on	the	number	of	heavy	collisions	
>8.1	G,	as	illustrated	by	increased	CK	and	C	values.		Another	comparison	of	interest	when	
assessing	similar	research	is	that	the	accelerometer	in	the	StatSports	device	used	within	this	
study	classified	impacts	if	they	were	above	the	3	G	level,	meaning	that	many	so-called	“impacts”	
from	match	situations	were	potentially	due	to	movements,	rather	than	physical	contact	with	
the	opposition	or	the	playing	surface.		In	contrast,	Coughlan	et	al.	(2011)	reported	light	impacts	
as	5.0	–	5.9	G,	therefore	excluding	many	impacts	which	could	be	accounted	for	by	movement	
rather	than	contact.		The	varying	impacts	values	displayed	in	this	study,	could,	therefore,	be	
accounted	for	by	the	differing	classification	of	impact	zones.	

Props	typically	experienced	the	lowest	number	of	impacts	in	the	lower	impact	zones	(Im1,	Im2	
and	Im3),	yet	experienced	a	large	number	of	impacts	in	the	higher	impacts	zones	(Im4,	Im5	and	
Im6),	when	compared	to	other	positions	(locks,	scrum	half	and	out	half).		The	results	from	this	
study,	therefore,	differ	from	that	of	Schoeman	et	al.	(2015),	who	noted	props	and	locks	
experiencing	similar	collision	rates	(Props	p	=	0.07;	Locks	p	=	0.62).		However,	as	noted	above	
the	research	by	Schoeman	et	al.	(2015)	was	taken	from	time-motion	analysis	research	and	not	
GPS	assessment,	meaning	that	comparisons	should	be	cautioned	against.		Full	backs	showed	a	
significant	level	of	impacts	on	both	low	(p	<	0.001)	and	high	impact	zones	(p	=	0.006),	yet	the	
positions	of	props,	hookers	and	back	row	illustrated	high	Im6	values	when	compared	to	the	
values	they	experienced	at	the	lower	impact	zones.		It	is	important	for	practitioners	to	note,	
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that,	as	hypothesised,	this	research	does	not	support	the	view	that	props,	hookers	and	locks	
experience	the	largest	number	of	high	magnitude	impacts.		However,	the	duration	of	minutes	
played	by	each	position	should	be	considered	before	comparison	is	made.	

A	new	finding	of	this	research	is	the	total	number	of	impacts	and	the	wide	range	of	impacts	
experienced	by	full	backs.		It	is,	however,	important	for	practitioners	to	note	that	the	high	
number	of	low	level	impacts,	could	perhaps	be	explained	by	the	distance,	speeds	and	intensity	
at	which	full	backs	are	required	to	work,	as	evidenced	within	this	study	by	the	amount	of	time	
full	backs	spend	in	all	speed	zones.		The	low	level	impacts	assigned	to	Zones	1m1,	Im2	and	Im3	
are	most	likely	to	be	collected	by	the	GPS	unit	during	locomotive	tasks,	rather	than	during	
contact	situations	(with	the	opposition	and	the	ground)	meaning	that	1m1,	Im2	and	Im3	do	not	
provide	a	true	reflection	of	player	impact	load	experienced	via	contact.		However,	the	number	
of	high	level	impacts	(Im6)	for	full	backs	is	a	new	finding	from	this	study,	which	although	
caution	still	needs	to	be	considered	when	comparing	positions	within	this	research,	is	an	area	
of	potential	future	investigation.		Prior	research	(Tee	&	Coopoo,	2015)	has	also	reported	that	
outside	backs	(1.2	±	0.4,	ES	0.2	-	1.4)	were	the	positions	most	likely	to	be	involved	in	high-
intensity	impacts	(>	8	G.min-1)	and	the	results	from	this	experimental	study	would	support	this.		
When	considering	that	outside	backs	are	capable	of	performing	high-speed	movements,	
resulting	in	a	preponderance	of	high-speed	collisions,	these	findings	are	not	unexpected.		The	
distances	covered	within	this	experimental	study	are	not	surprising,	considering	those	
presented	in	prior	research	outlined	in	the	Chapter	1	(Austin	et	al.,	2011a;	Cahill	et	al.,	2013;	
Cunniffe	et	al.,	2009;	Jones	et	al.,	2015;	Lindsay,	Draper,	et	al.,	2015;	Venter	et	al.,	2011).		
Importantly,	however,	high	intensity	effort,	such	as	the	frequency	of	accelerations,	
decelerations	and	impacts	with	their	likely	influence	they	upon	restoration	of	performance,	
should	be	a	consideration	for	future	research.	

Future	investigation	of	GPS	impacts	data	perhaps	needs	to	assess	critically	and	in	more	detail	
the	exact	load	being	placed	upon	players	during	impacts,	with	the	aim	of	classifying	them	into	
“heavy”	and	“very	heavy”	values	as	outlined	by	Coughlan	et	al.	(2011).		Additionally,	the	
incorporation	of	video	analysis	alongside	GPS	data	would	better	inform	practitioners	upon	
which	movement	or	match	involvement	is	eliciting	these	impacts.		As	explained	above,	many	of	
the	impacts	experienced	by	some	positional	groups,	within	this	research,	may	have	been	as	a	
result	of	varying	match	demands	(landing	from	jumps,	changing	direction	or	skill	
involvements)	and	not	solely	from	collision	contacts	with	the	opposition.		This	further	level	of	
impacts	analysis	would	help	guide	practitioners	on	the	magnitude	of	impacts	and	the	effect	
these	impacts	have	upon	players.		Baseline	values	of	the	amount	of	impacts	experienced	by	
positional	groups	(props,	locks)	and	the	magnitude	of	these	impacts	may	aid	future	
prescription	of	positional	specific	training	programmes	for	rugby	union	players.		Although	this	
study	does	not	investigate	the	number	of	contact	situations	(scrum,	ruck,	tackle	and	maul)	
experienced	by	players	during	games	of	rugby	union,	one	could	argue	that	that	the	contact	
elements	of	rugby	union	are	so	intense	that,	although	small	in	actual	number,	are	high	in	
overall	load	upon	players.		Despite	the	effect	that	contact	situations	analysis	could	have	upon	
the	results	from	this	study,	the	complexity	of	assessing	static	exertions	meant	that	this	research	
only	assessed	the	dynamic	involvements	of	match	play	and	impacts	classified	from	GPS.		Load	
analysis,	assessing	contact	situation	involvement,	would	require	time-motion	analysis	research,	
as	seen	in	the	study	by	Schoeman	et	al.	(2015)	assessing	collision	rates.		The	combination	of	
time-motion	analysis	with	GPS	data	would	provide	a	greater	level	of	detail	regarding	contact	
load,	which	is,	therefore,	a	further	potential	area	of	future	development.	
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From	this	research	it	is	clear	that	backs	perform	at	a	higher	relative	intensity	than	forwards	
and	that	backs	compete	over	a	longer	time	period	than	forwards.		The	greater	intensity	to	
which	backs	are	exposed	would	likely	have	an	effect	upon	their	neuromuscular	performance	
post-match,	as	supported	by	the	aforementioned	research	of	McLellan	et	al.	(2011b).		Despite	
forwards	experiencing	only	a	slightly	higher	number	of	impacts	>	Zone	3	compared	to	backs,	
the	impacts	they	experience	are	most	likely	to	be	a	result	of	the	greater	volume	of	contact	
situations,	rather	than	from	the	jumping	and	landing	impact	tasks	that	the	backs	experience.		
The	impacts	experienced	by	forwards	compared	to	backs	are	likely	to	add	significant	fatigue	
and	neuromuscular	response	to	forwards’	post-match.		This	notion	is	supported	by	previous	
research	by	Duthie	et	al.	(2006),	who	noted	that	sprinting	represents	4%	of	the	game	
movements	for	the	forwards	and	25%	for	the	backs,	yet	the	relative	effect	that	sprints	have	
upon	fatigue,	compared	to	that	experienced	as	a	result	of	collisions,	could	be	questioned.		The	
questionable	effects	on	fatigue	of	distance	covered	and	neuromuscular	response	post-match,	is,	
perhaps,	an	area	practitioners	should	focus	upon,	with	relative	intensity	and	relative	impacts	
(impacts	per	minute)	used	as	possible	guidelines	for	judging	the	load	exerted	upon	rugby	union	
players	during	matches.	

This	greater	number	of	impacts	experienced	by	positional	groups,	within	both	previous	
research	and	this	study,	was	noted	as	important	for	future	consideration	by	Quarrie	et	al.	
(2013),	where	forwards	require	a	longer	time	to	recovery,	due	to	the	greater	contact	load	
experienced.		The	effect	that	this	larger	volume	of	impacts	has	on	forwards,	in	contrast	to	backs,	
is	another	possible	area	of	investigation	for	the	future,	where	muscle	soreness	post-match	in	
forwards	is	often	the	consequence.		It	could	also	be	important	to	consider	backs’	muscle	
soreness,	in	contrast	to	forwards’,	who	despite	completing	greater	match	distances,	are	
exposed	to	a	lower	number	of	impacts.		This	lower	level	of	match	impacts	for	backs,	may	mean	
that	they	have	more	opportunities	for	passive	recovery	while	they	walk	or	jog	between	plays.		
This	longer	time	between	efforts,	therefore,	potentially	enables	creatine	kinase	clearance,	
subsequently	enhancing	recovery	(Cunniffe	et	al.,	2009).		These	resultant	movement	patterns	
and	time	to	work	ratios	for	positional	groups	could	perhaps	further	explain	the	differences	
seen	in	muscle	soreness	post-match	and	therefore	could	aid	practitioners	in	prescribing	future	
training	programmes.		Performance	testing	is	now	commonplace	in	many	rugby	union	settings,	
yet	GPS	data	should	be	the	mainstay	upon	which	to	compare	testing	data	in	the	days	post-
match.		Data	from	this	study,	showing	forwards	covering	less	distance	and	experiencing	more	
impacts	than	backs,	provides	further	support	for	position	specific	conditioning	programmes,	
with	recommendations	for	coaches	regarding	match	demands.		Future	planning	is	
recommended	for	coaches,	where	training	prescription	can	be	based	upon	a	player’s	recent	
training	history,	comparing	previous	training	cycles	to	concurrent	data	and	the	match	demands	
presented.	

3.5.1 Limitations	of	this	study	
All	of	the	variables	reported	within	this	research	represent	absolute	values	(excluding	
intensity),	making	the	relevance	of	comparing	the	nine	positional	groups	somewhat	
questionable.		As	previously	argued,	analysing	data	from	players	who	played	between	30	and	
80	minutes,	adds	weight	to	the	novelty	and	rationale	for	this	research.		However,	comparing	
and	contrasting	positions	is	cautioned	against.		Instead	practitioners	should	perhaps	consider	
relative	data	(variable	per	minute)	for	some	of	the	match	demands	assessed	in	order	to	obtain	
a	true	representation	of	position	comparisons.		Practitioners	are,	therefore,	advised	to	conduct	
further	research	into	the	comparison	of	absolute	and	relative	methods	of	match	demands	
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analysis.		Relative	data	will	aid	in	identifying	why	differences	might	occur	between	positions,	
while	absolute	values	are	useful	in	understanding	the	real	demands	of	each	position,	as	they	
record	what	the	players	suffer	as	a	total	load	throughout	the	match.		Absolute	values	are,	
therefore,	an	important	consideration	and	as	such	should	not	be	discounted.		For	example	a	
player	might	perform	at	a	high	intensity	(variable	per	minute)	during	their	time	on	the	field,	yet	
if	their	minutes	on	the	field	are	small,	the	relative	values	they	experience	are	perhaps	not	as	
important	for	consideration	when	compared	to	another	player	who	has	played	the	full	duration	
of	the	game.		A	player	who	plays	the	full	duration	of	the	game	is	likely	to	have	lower	relative	
values	across	many	match	demands,	yet	also	likely	to	have	very	high	absolute	values,	therefore	
warranting	consideration	within	post	match	analysis.	

When	considering	the	claim	above	that	both	absolute	and	relative	measures	are	of	interest,	it	is	
potentially	also	important	for	practitioners	to	consider	analysis	to	be	position	related.		The	
relative	values	for	forwards	are	perhaps	of	more	interest	than	the	backs	when	assessing	the	
data	above	in	Tables	3.4-3.9.		Some	variables	might	present	more	information	from	a	relative	
view,	rather	than	an	absolute,	considering	the	reduced	minutes	played	by	many	of	the	positions	
within	the	forwards,	compared	to	those	of	the	backs.		Despite	no	data	existing	to	show	the	
reduced	minutes	played	by	forwards	in	comparison	to	backs	across	many	leagues	and	teams,	
this	view	is	considered	“real	world”.		The	playing	positions	that	experience	bouts	of	impacts	
within	a	shorter	period	of	time	(impacts	per	minute)	are	perhaps	better	assessed	from	a	
relative	view,	with	the	resultant	effect	of	clustered	impact	bouts	upon	restoration	of	
performance	post-match	warranting	future	investigation.		However,	an	individual	that	plays	29	
minutes	could	in	fact	be	exposed	to	a	large	match	demand	and	the	procedure	for	inclusion	
within	this	research	would	not	allow	such	examples	thus	limiting	analysis	potential.		A	“cut	off”	
point,	nevertheless,	had	to	be	set	to	ensure	clarity	and	avoid	unstructured	data	collection.	

As	a	result	of	the	data	within	this	research	being	provided	by	only	one	team	over	the	period	of	a	
playing	season,	it	could	be	argued	that	this	data	does	not	present	a	full	picture	of	the	match	
demands	of	players	within	the	northern	hemisphere,	instead	only	representing	the	match	
demands	for	the	team	in	question.		Playing	styles,	tactics	and	league	position	could	all	be	major	
factors	in	the	minutes	played	by	positional	groups	within	this	team	and	in	the	tasks	that	they	
are	asked	to	perform.		Additionally,	it	is	important	for	practitioners	to	note	that	differences	in	
findings	between	studies	(Austin	et	al.,	2011a;	Cahill	et	al.,	2013;	Coughlan	et	al.,	2011)	might,	
in	part,	be	due	to	the	contrasting	styles	of	play	between	northern	and	southern	hemisphere	
teams,	as	impacted	by	weather	conditions,	referee	interpretation	and	strength	and	conditioning	
practices	(Jones,	Smith,	Macnaughton,	&	French,	2017).		Despite	the	data	collected	adding	to	the	
knowledge	of	match	demands	within	rugby	union	in	the	northern	hemisphere,	the	limitation	of	
using	data	from	only	one	team	only	is	a	point	for	practitioners	to	consider	when	they	are	
examining	the	results.		One	potential	way	of	overcoming	sample	size	and	“one	team”	limitations	
is	to	combine	data	from	multiple	teams,	similarly	to	the	research	of	Cahill	et	al.	(2013).		
However,	the	element	of	direct	competition,	inherent	in	European	team	games,	means	that	
sharing	of	data	is	and	will	continue	to	be	unlikely.	

Differences	in	methodology	are	also	a	point	to	consider,	as	some	previous	studies	utilised	GPS	
to	measure	movement,	while	others	solely	used	time-motion	analysis	methods	from	video	
review.		Considering	that	both	the	studies	by	Coughlan	et	al.	(2011)	and	Cahill	et	al.	(2013)	
used	5	Hz	GPS	units,	in	comparison	to	the	10	Hz	units	used	in	this	study,	this	is	a	major	point	of	
consideration	when	comparing	GPS	data.		As	was	illustrated	by	Johnston,	Watsford,	et	al.	
(2014),	10	Hz	GPS	units	are	more	reliable	than	5	Hz	GPS	units	and	therefore	are	recommended	
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for	use	in	future	research.		Another	possible	explanation	for	the	differences	in	data	is	that	rugby	
union	in	the	professional	era	is	getting	faster.		Evidence	for	evolving	match	characteristics	is	
illustrated	by	Roberts	et	al.	(2008)	who	found	that	the	average	number	of	sprints	during	a	
game	was	20.		This	is	in	contrast	to	data	from	Austin	et	al.	(2011a)	showing	an	average	of	40	
sprints	across	all	playing	positions.		The	disparities	in	GPS	values,	seen	in	this	study	and	similar	
research	by	Twist	et	al.	(2014)	between	northern	and	southern	hemisphere,	does,	however,	
add	ecological	validity	to	the	current	body	of	research.	

3.6 Practical	Applications	

The	data	from	this	study	adds	to	the	knowledge	of	what	are	typical	match	characteristics	for	
professional	rugby	union	in	the	northern	hemisphere,	helping	guide	practitioners	to	assess	the	
match	demands	required	for	positional	groups.		Based	upon	the	results	of	this	study,	coaches	
will	be	more	informed	upon	what	each	positional	group	is	required	to	complete	within	an	elite	
team’s	match	situations.		The	ability	of	coaches	to	make	decisions	upon	whether	an	individual	
player	can	perform	a	specific	role	for	the	team	is	important	for	future	practice.		When	new	
match	characteristic	data	is	collected	it	can	be	compared	against	previous	match	data	and	the	
potential	neuromuscular	effect	that	games	might	have	had	on	the	individual	players	can	be	
assessed.	

When	assessing	the	demands	of	the	sport,	specific	training	recommendations	that	should	be	
considered	for	elite	level	rugby	union,	are,	firstly	that	high	levels	of	aerobic	fitness	are	required	
to	complete	the	distances	noted	within	this	research.		Secondly,	that	high	muscle	mass	and	
strength	are	required	to	cope	with	the	impacts	illustrated	within	this	study.		The	aerobic	fitness	
and	ability	to	withstand	impact	forces	vary	across	all	nine	positional	groups,	yet	the	need	for	
both	of	these	components	of	physical	preparedness	is	evident	from	the	data	collated.		As	a	
result	of	this	study,	it	could	be	concluded	that	the	physical	stature	of	each	positional	group	
guides	the	match	demands	expected	and	that	aerobic	fitness	and	strength	programming	should,	
therefore,	be	prescribed	relative	to	position.		Additionally,	from	match	characteristic	
comparison,	future	planning	can	be	implemented	into	strength	and	conditioning	programmes	
in	order	to	improve	individual	readiness	to	train	in	the	days	post-match.	

Lastly,	as	mentioned	previously,	a	combination	of	video	analysis	with	GPS	data	would	help	
guide	practitioners	on	the	nature	of	the	impacts	experienced	within	match	situations.		A	deeper	
level	of	assessment	is	needed,	when	considering	that	the	results	from	this	research	show	the	
high	level	of	impacts	experienced	by	positions	such	as	full	back.		Despite	backs	experiencing	a	
greater	number	of	impacts,	many	of	these	impacts	are	likely	not	to	be	from	collisions	and	could,	
as	a	result	of	the	match	demands	conducted,	result	in	a	different	neuromuscular	response.	

	 	



	 125	

3.7 Implications	of	experimental	chapter	3	for	subsequent	studies	

	
Now	that	match	characteristics	have	been	identified,	a	need	exists	to	identify	a	performance	
measures	that	will	be	able	to	assess	rugby	player	fatigue	in	the	days	post-match.		As	illustrated	
in	the	review	of	literature,	jump	testing	is	perhaps	the	most	realistic	performance	measure	for	
use	in	the	applied	context	within	which	this	series	of	investigations	occur.		The	following	
experimental	chapter	therefore	aims	to	assess	the	reliability	of	multiple	jump	modalities,	to	
ascertain	which	is	the	most	applicable	for	use	within	assessments	of	match	fatigue.		
Additionally,	the	likely	restoration	of	performance	experimental	chapters	that	will	follow	this	
jump	reliability	study,	need	to	involve	assessment	of	match	characteristics	data,	therefore	
further	supporting	the	completion	of	match	characteristic	assessment	within	this	thesis.	 	
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4 Within	and	Between-Session	Reliability	of	Jump	Performance	in	
Elite	Rugby	Union	Players	

4.1 		Abstract	

CMJ	testing	is	commonly	used	within	elite	field	sport	settings	to	assess	NMF.		This	study	
assessed	the	within	and	between-session	reliability	of	three	jump-tests,	including	CMJ,	SJ,	single	
leg	drop	jump	left	leg	(SLDJ-L)	and	single	leg	drop	jump	right	leg	(SLDJ-R),	to	determine	which	
jump	protocol	was	most	reliable	and	reported	on	their	resultant	measurement	error.		
Participants	completed	two	trials	of	each	jump	during	each	session,	on	three	occasions.		Within-
session	reliability	was	determined	via	intraclass	correlation	coefficients	(ICC)	and	between-
session	reliability	determined	using	both	ICC	and	repeated	measures	ANOVA,	with	Bonferroni	
post-hoc	analysis,	or	non-parametric	equivalent,	used	to	check	for	learning	effects.		Reliability	
within-session	for	CMJ,	SJ	and	SLDJ-L	(ICC	0.938,	ICC	0.954	and	0.759	respectively)	jump	
height,	demonstrated	high	reliability,	while	SLDJ-R	jump	height	showed	low	reliability	(ICC	
0.445).		Between-sessions	CMJ	and	SJ	showed	high	reliability,	including	trivial	to	small	effect	
sizes	(CMJ	ICC	=	0.906;	SJ	ICC	=	0.866),	with	no	significant	differences	(p	>	0.05)	in	jump	height	
observed	between	days.		Between-sessions	reliability	for	SLDJ	jump	height	showed	high	
reliability	for	left	leg	(ICC	=	0.875)	and	moderate	reliability	for	the	right	leg		(ICC	=	0.759),	with	
a	small	effect	size	between	sessions	for	the	left	leg	and	trivial	effect	size	for	the	right	leg,	yet	
both	were	non-significant	(p	>	0.05)	between	days.		This	study	illustrates	that	CMJ	jump	height	
represents	high	reliability	both	within	and	between-session	across	all	three	testing	days,	in	
contrast	to	the	SJ,	SLDJ-L	and	SLDJ-R.		Findings	also	show	that	CMJ	demonstrates	the	lowest	
SDD	(1.7%)	between	sessions.		When	comparing	unilateral	jumps	to	bilateral	jumps,	it	was	
clear	that	CMJ	provides	the	most	sensitive	and	reliable	data,	therefore	it	is	suggested	that	
unilateral	jumps	should	not	be	used	as	a	performance	indicator,	due	to	lower	reliability.		In	
addition,	practitioners	should	consider	a	change	in	jump	height	of	≥	1.7%	as	meaningful,	when	
assessing	elite	rugby	union	players	performing	CMJ.	

4.2 		Introduction	

The	vertical	jump	has	long	been	used	as	a	method	of	assessing	lower	limb	power	and	has	been	
reported	to	possess	sensitivity	in	tracking	training	induced	changes	for	peak	power	output	and	
rate	of	force	development	(Carlock	et	al.,	2004;	McLellan	et	al.,	2011d).		Jumping	in	general,	is	
one	of	the	most	prevalent	acts	performed	in	sport	(Markovic	et	al.,	2004),	with	athletes	in	many	
sports	often	required	to	jump	in	order	to	perform	their	role	in	a	team	game	or	an	athletic	task;	
including	jumping	to	intercept	a	ball	in	football	or	jumping	to	avoid	an	obstacle	in	athletics.		
Research	by	Bosco	et	al.	(1987)	noted	performance	qualities	of	jumping	and	running	to	be	
similar	in	nature,	with	vertical	jump,	therefore,	highly	relevant	for	assessing	sporting	
performance,	where	a	large	running	element	exists.		Approximately	500	ground	impacts	have	
been	reported	to	occur	in	rugby	match	situations,	with	many	of	these	likely	to	be	from	jumping	
actions	(Cadore	et	al.,	2013;	Sheppard,	Gabbett,	&	Stanganelli,	2009).		Many	of	the	jumping	
aspects	of	game	movement	in	team	sports	appear	at	important	moments	in	the	game,	often	in	
order	to	contest	possession	and	likely	to	be	critical	moments	in	game	outcome.		Activities	that	
do	not	involve	jumping,	such	as	tackling	in	rugby,	also	utilise	power	elements,	upon	which	an	
effective	measurement	of	power	is	required	when	monitoring	the	athlete’s	development	
(Klavora,	2000).	
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An	individual’s	ability	to	generate	force	quickly	is	a	key	performance	measurement	for	athletes	
competing	in	many	team	sports,	hence	jump	tests	have	been	utilised	to	monitor	power	and	the	
effects	of	training	and	for	talent	selection	purposes	(Markovic	et	al.,	2004).		When	measuring	
jump	performance,	the	goal	of	many	practitioners	is	to	measure	jump	height,	with	the	role	of	
power	within	this	measure	being	interrelated.		However,	as	reported	by	Winter	et	al.	(2016),	
the	use	of	the	term	“power”	is	often	misplaced.		Power	is	the	product	of	force	and	velocity,	with	
power	described	as	the	rate	of	work	or	the	force	multiplied	by	the	velocity	of	movement	
(Kawamori	&	Haff,	2004).		Within	the	context	of	jump	performance	testing,	it	is	essential	that	
practitioners	understand	the	relationship	between	jump	height	and	power,	as	one	is	not	a	
direct	measure	of	the	other.		In	essence,	jump	height	is	commonly	used	as	a	proxy	for	power,	
yet	the	understanding	of	the	difference	between	these	two	measures	is	key.		In	their	review	of	
mechanical	terms	commonly	used	in	sport	and	exercise	research,	Winter	et	al.	(2016)	
recommended	the	use	of	the	term	“intensity”	alongside	the	appropriate	unit	measurement	
when	discussing	power	elements,	to	best	describe	the	specific	kind	of	exercise	performed.	

With	the	goal	of	assessing	lower	limb	jumping	ability,	many	jump	tests,	including	vertical	jump,	
have	been	developed.		Vertical	jump	is	perhaps	the	most	commonly	reported	jump	modality,	
yet	many	similar	jump	tests	commonly	used	in	the	applied	setting	include	CMJ	and	SJ.		The	
vertical	jump	has	been	also	been	reported	to	represent	an	inaccurate	measure	of	explosive	
lower	limb	power,	when	arm	swing	is	permitted,	due	to	the	more	complex	nature	of	leg	and	
arm	coordination	(Leard	et	al.,	2007;	Markovic	et	al.,	2004;	Young	et	al.,	1997).		Lees	et	al.	
(2006)	concluded	that	arm	swing	contributes	to	jump	performance	by	aiding	the	storing	and	
release	of	energy	from	muscles	and	tendons	around	the	ankle,	knee	and	hip	and	by	initiating	a	
pull	force	at	the	shoulder	joint	thereby	increasing	jump	height	by	10%	or	more	(Lees	et	al.,	
2004).		Harman	(1990)	reported	that	this	increase	in	jump	height	is	not	due	to	upward	
acceleration	of	the	arms	seen	during	the	jump,	but	by	the	force	velocity	relationship	of	the	
muscle	contraction.		Simultaneously	the	upward	acceleration	of	the	arms	creates	a	downward	
force	on	the	rest	of	the	body,	slowing	the	contraction	of	the	quadriceps	and	gluteal	muscles,	so	
that	more	force	can	be	exerted.		Due	to	the	above	effects	regarding	variability	of	vertical	jumps	
(using	arm	action),	this	type	of	jump	assessment	has	generally	been	excluded	from	recent	
research	(Acero	et	al.,	2012),	with	bilateral	jump	performances	commonly	being	conducted	
with	hands	on	hips	or	holding	a	bar	on	the	shoulders	to	minimise	variability.	

Research	by	Harman	et	al.	(1990)	reported	that	unilateral	jump	performance	had	a	stronger	
relationship	with	sprint	performance	than	a	bilateral	jump.		Despite	recent	jump	testing	
investigations	focusing	solely	on	the	SJ	and	CMJ	and	not	unilateral	derivatives	(Gallardo-
Fuentes	et	al.,	2016;	Gathercole,	Sporer,	&	Stellingwerff,	2015;	McMahon,	Murphy,	Rej,	&	
Comfort,	2016;	Till,	Jones,	Darrall-Jones,	Emmonds,	&	Cooke,	2015;	West	et	al.,	2014),	the	use	of	
unilateral	derivatives	should	not	be	discounted,	as	many	movements	associated	with	team	
sport	play	are	conducted	on	one	leg	and	therefore	the	validity	of	unilateral	testing	is	warranted.		
When	considering	that	unilateral	jumping	is	a	typical	plyometric	exercise,	widely	used	as	an	
effective	training	method	(Young,	MacDonald,	&	Flowers,	2001)	and	considered	to	be	a	faster	
stretch	shortening	cycle	movement	than	the	CMJ,	its	need	for	future	investigation	is	further	
emphasised.			

In	addition	to	using	jump	tests	to	measure	lower	limb	jumping	ability,	recent	research	
(Cormack	et	al.,	2013;	Cormack	et	al.,	2014;	Hamilton,	2009;	McLellan	&	Lovell,	2012;	McLellan	
et	al.,	2011a,	2011b;	Taylor,	2012)	has	focused	on	utilising	vertical	jumps	with	a	standardised	
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protocol	to	assess	NMF,	as	discussed	in	Chapter	2.3.3.		A	recent	study	in	elite	rugby	league,	
found	that	CMJ	performance	was	impaired	for	up	to	24	hours	post-match,	reporting	a	26%	
reduction	in	PRFD	24	hours	post-match	(McLellan	et	al.,	2011a,	2011b,	2011c,	2011d;	Twist	et	
al.,	2012).		As	seen	in	the	study	by	McLellan	et	al.	(2011a),	PRFD	on	average	was	12653N.s-1	
across	rugby	league	players	24	hours	before	the	game	and	on	average	9379N.s-1	24	hours	post-
match.		Additionally,	another	study	on	rugby	league	players	(McLean	et	al.,	2010)	reported	that	
CMJ	flight	time	and	relative	power	were	significantly	reduced	in	the	48	hours	following	the	
match.		Moreover,	McLean	et	al.	(2010)	reported	that	CMJ	variables	returned	to	near	baseline	
values	four	days	after	matches.		The	ability	to	assess	NMF	will	provide	a	better	understanding	
of	athletes’	readiness	to	train	and	the	possible	foresight	to	alter	their	training	load	based	upon	
data.		It	is,	however,	important	for	practitioners	to	note	that	an	instant	measure	of	NMF	is	often	
required	in	elite	team	sport	settings,	meaning	that	he	investigation	of	kinetic	measures	may	be	
discounted	in	favour	of	a	more	instantaneous	measure,	such	as	jump	height.	

When	using	force	plates,	the	inability	to	test	on	a	sport	specific	surfaces	is	considered	a	
disadvantage,	yet	the	many	advantages	of	force	plates	outweigh	the	disadvantages	and	they	are	
therefore	considered	to	be	the	“gold	standard”	instrument	for	jump	assessment	(Casartelli	et	
al.,	2010).		Optical	measuring	systems	(infrared	mats)	have	also	been	critically	analysed	
(Glatthorn	et	al.,	2011).		The	OptoJump	system	(Microgate,	Bolzano,	Italy),	which	consists	of	one	
receiver	and	one	transmitter	bar	was	shown	to	have	excellent	reliability	(Glatthorn	et	al.,	2011)	
with	recommendations	to	use	OptoJump	and	force	plate	(Quattro	Jump,	Kistler,	Winterthur,	
Switzerland)	interchangeably	(Bosquet	et	al.,	2009).		Glatthorn	(2011)	reported	intraclass	
correlation	coefficients	(ICCs)	for	reliability	of		0.997–0.998,		despite	a	systematic	difference	in	
jump	height	between	force	plate	and	Optojump	(2.5%;	p	=	0.001).		The	main	benefit	of	the	
OptoJump	optical	timing	system	is	that	it	allows	subjects	to	be	assessed	for	jump	tests	on	the	
same	surface	upon	which	they	would	perform	during	their	sporting	activity.		Caution	was,	
however,	advised	when	using	optical	devices’	such	as	OptoJump	as	misalignment	of	
photoelectric	cells	can	cause	discrepancies	in	results.		A	more	recent	study	by	Castagna	et	al.	
(2013)	reported	a	significant	difference	in	two	portable	devices	(OptoJump	and	MyoTest),	
assessing	CMJ	flight	times,	compared	to	that	collected	via	a	force	plate.		One	of	these	portable	
devices	(OptoJump)	showed	a	significantly	lower	flight	time	than	that	recorded	on	a	force	plate,	
further	emphasising	the	need	for	future	study	into	the	validity	and	reliability	of	jump	testing	
instruments.		In	a	study	by	Castagna	et	al.	(2013),	assessing	validity	of	vertical	jump	
performance	assessment	systems,	it	was	stated	that	the	OptoJump	was	considered	to	be	more	
accurate	and	reliable	that	the	MyoTest	(Sion,	Switzerland),	which	utilised	a	body	accelerometer	
attached	to	participants	waist.		In	conclusion,	Castagna	et	al.	(2013,	p.	766)	agreed	with	the	
work	of	Bosquet	et	al.	(2009),	stating	that	the	“OptoJump	was	a	valid	and	accurate	method	of	
assessing	flight	time	when	a	force	plate	is	not	available”.		Alongside	the	reported	high	reliability	
of	OptoJump	and	perhaps	of	most	importance	in	supporting	its	future	investigation,	is	the	
notion	that	this	instrument	is	more	cost	effective	than	a	force	plate.		This	means	that	the	
likelihood	of	continued	use	in	many	sporting	settings	is	improved.	

This	study	aimed	to	assess	the	reproducibility,	of	the	performance	of	three	jump-testing	
protocols	(CMJ,	SJ,	SLDJ-L	and	SLDJ-R)	assessing	jump	height	on	an	OptoJump,	both	within	and	
between	sessions.		The	assessment	of	jump	height	was	considered	to	be	of	importance;	as	time	
restrictions	in	many	elite	team	sport	settings	discount	the	assessment	of	more	labour	intensive	
kinetic	measures.		Similarly,	the	assessment	of	an	OptoJump	was	required,	as	the	cost	
implications	of	force	plate	use	outweigh	its	advantages	for	many	sport	settings.		Lastly,	the	
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assessment	of	both	bilateral	and	unilateral	jump	was	considered	necessary,	when	considering	
that	many	rugby	union	match	play	activities	are	not	always	performed	from	two	feet.		Results	
from	this	study	will	inform	practitioners	about	which	jump	protocol	is	most	reliable	and	the	
resultant	measurement	error	of	each	method,	while	assessing	an	individual’s	ability	to	replicate	
performance.		It	was	hypothesised	that	the	CMJ	would	be	the	most	reliable	jump	modality	for	
within	and	between-sessions	performances,	as,	firstly,	it	is	the	jump	method	that	was	most	
commonly	performed	by	the	test	subjects,	and	secondly,	CMJ	is	the	jump	method	that	is	least	
likely	to	carry	a	variability	of	technique	adopted,	when	compared	to	SJ	and	SLDJ,	which	perhaps	
require	more	coach	instruction	and	familiarisation.	

4.3 		Materials	and	methods	

4.3.1 Participants	
Eight	elite	rugby	union	players	(age	21.0	±	4.4	years,	height	185.0	±	8.0	cm,	mass	90.0	±	8.2	kg)	
from	the	same	professional	rugby	club	volunteered	for	the	study.		Participants	were	all	healthy	
and	active	individuals	who	had	no	current	injury	issues.		All	subjects	provided	written	
informed	consent	to	participate	and	Salford	University	Research	and	Ethics	Committee	
approved	the	study.	

4.3.2 Jumps	
Three	types	of	jump	were	tested	within	this	study,	with	two	repetitions	of	each	jump	
performed	on	three	separate	days.		Participants	were	asked	to	standardise	activity	levels	and	
dietary	intake	for	the	24	hours	prior	to	testing.		The	jumps	performed	included	a	CMJ,	a	SJ	and	a	
SLDJ.		Prior	to	testing,	participants	engaged	in	two	familiarisation	sessions	to	ensure	that	
techniques	were	appropriate	and	standardised.		Participants	placed	their	hands	on	the	hips,	for	
all	jumps,	to	eliminate	contribution	of	arm	movement	(Taylor,	2012).		This	was	also	the	method	
to	which	all	participants	were	accustomed	during	regular	testing	in	their	sporting	environment.		
In	line	with	previous	studies,	assessing	CMJ	and	SJ	performance,	protocols	such	as	hands	on	the	
hips	throughout	the	jump	and	extended	legs	throughout	flight	to	prevent	tucking	of	the	knees,	
(which	had	been	reported	to	cause	inaccuracies)	were	implemented	(Flanagan,	Ebben,	&	
Jensen,	2008;	Taylor,	2012).		Prior	to	performing	the	jumps,	subjects	were	asked	to	perform	
five	minutes	of	stationary	cycling	and	two	minutes	of	prescribed	dynamic	stretching.	

4.3.2.1 Countermovement	Jump	(CMJ)	technique	
The	CMJ	was	performed	from	a	standing	position,	with	the	whole	plantar	part	of	the	foot	
touching	the	jumping	surface	and	the	hands	resting	on	the	hips.		A	counter	movement	was	
conducted	by	the	participants	until	the	knee	angle	reached	approximately	90°,	then	
immediately	the	participants	jumped	as	high	as	they	could,	with	their	legs	remaining	straight	
upon	flight,	therefore	preventing	any	tucked	legs	which	would	lead	to	inaccurate	measurement.		
Upon	landing	the	participants	made	contact	with	the	testing	surface	with	knees	extended,	only	
flexing	to	absorb	the	impact	once	contact	had	been	made	with	the	floor.		Participants	were	
encouraged	to	jump	as	high	as	possible,	prior	to	each	jump,	with	all	participants	receiving	
verbal	feedback	about	their	performance	after	each	jump.	

4.3.2.2 Squat	Jump	(SJ)	technique	
The	participants	had	hands	on	their	hips	throughout	the	SJ,	and	when	cued	the	participants	
moved	from	a	tall	standing	starting	position	into	a	semi	squat	position,	which	they	held	for	
three	seconds	before	commencing	their	jump.		After	the	jump	participants	received	verbal	
feedback	about	their	performance	and	where	encouraged	to	jump	as	high	as	possible,	with	no	
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countermovement	jump	made	at	the	start	of	the	jump,	as	identified	from	visual	inspection	of	
the	force-time	data.		If	countermovement	occurred,	participants	rested	for	a	further	60	seconds	
and	then	repeated	the	attempt.		Previous	research	by	La	Torre	et	al.	(2010)	assessing	the	effect	
of	starting	knee	angle	during	SJ	showed	that	an	increase	height,	peak	force,	and	maximal	
velocity	may	occur	as	a	result	of	angle	amplitude.		The	notion	of	knee	angle	was	therefore	
considered	within	this	testing	protocol,	with	an	angle	of	greater	than	90°	recommended	in	
accordance	with	the	research	by	La	Torre	et	al.	(2010).	

4.3.2.3 Single	Leg	Drop	Jumps	(SLDJ)	technique	
Participants	were	instructed	to	place	hands	on	the	hips	throughout	the	SLDJ	and	instructed	to	
“jump	for	height”	when	landing	in	the	area	directly	below	the	raised	starting	box	position.		The	
box	that	the	subjects	started	on	for	the	SLDJ	was	30	cm	high	and	the	box	the	subjects	finished	
on	was	14	cm	above	the	floor	where	the	lasers	lay,	enabling	them	to	perform	correctly	this	
unilateral	movement.	

4.3.3 Procedure	
Despite	the	testing	being	conducted	post-match,	the	time-points	of	assessment	were	consistent	
throughout	this	study	and	the	training	and	match	protocol	prior	to	testing	commencing	on	each	
occasion	was	standardised.		In	addition,	the	players	tested	within	this	study	were	accustomed	
to	games,	as	this	testing	was	conducted	during	the	competitive	phase	of	the	players’	season,	
meaning	no	differing	effects	of	game	fatigue	could	have	altered	results	between	weeks.		The	
order	of	the	jumps	was	standardised,	to	minimise	the	effect	of	fatigue	or	order	during	
subsequent	testing	sessions,	with	one-minute	rest	intervals	between	jumps	allowing	
restoration	of	the	phosphagen	system	to	ensure	maximal	effort.		As	the	unilateral	jump	
involved	the	most	eccentric	forces,	SLDJ’s	were	performed	last.		SJ	and	CMJ	were	performed	
first	and	second	respectively,	as	they	were	deemed	less	fatiguing	and	are	bilateral	in	nature,	
providing	a	natural	progression	towards	unilateral	jumps.		The	CMJ	was	seen	as	a	good	
progression	from	the	SJ,	hence	it	was	the	second	jump	to	be	performed.		Additionally,	in	
accordance	with	previous	research,	it	was	thought	that	the	order	detailed	above	for	these	
jumps	could	potentiate	each	jump	(Harman	et	al.,	1990),	giving	maximal	results.		Possible	
potentiation	within	this	study,	however,	was	not	considered	to	be	of	particular	concern,	as	the	
jumps	used	were	commonly	performed	by	the	elite	athletes	participating	and	despite	the	order	
being	standardised,	a	protocol	of	jump	technique	and	the	activities	performed	in	the	days	prior	
to	testing	was	replicated	throughout.			

4.3.3.1 Instrument	
The	instrument	used	within	this	research	to	assess	jump	height	was	the	OptoJump	(Microgate,	
Bolzano,	Italy),	which	was	shown	to	have	excellent	reliability	(Glatthorn	et	al.,	2011),	with	
recommendations	for	the	use	of	flight	time	previously	reported	(Cormack,	Newton,	McGuigan,	
&	Doyle,	2008)	and	used	in	previous	research	(Buchheit	et	al.,	2008).		An	OptoJump	is	described	
as	an	optical	measuring	system	consisting	of	transmitting	and	receiving	bars	containing	light	
Emitting	Diodes	(LED),	which	communicate	with	each	other.		OptoJump	systems	are	presently	
used	by	many	elite	sports	teams,	making	it	possible	to	measure	flight	and	contact	times	with	an	
accuracy	of	1/1000	of	a	second.		The	OptoJump	was	placed	on	the	gym	floor,	with	one	box	
either	end	of	the	OptoJump	to	enable	performance	of	the	SLDJ.		The	sampling	frequency	was	
1000	Hz	and	the	sensors	were	located	3	mm	from	the	testing	surface	upon	which	the	OptoJump	
bars	were	placed.		The	OptoJump	was	1	m	in	length	with	spacing	between	sensors	being	
1.041cm	apart,	meaning	that	there	were	96	sensors	per	metre	of	OptoJump.	
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4.3.3.2 Jump	Height	and	Flight	time	
Jump	height	was	calculated	via	flight	time	using	the	following	equation	utilised	by	McMahon	et	
al.	(2015)	and	adapted	from	that	proposed	by	Bosco	et	al.	(1983).			

Jump	Height	=	(9.81	m.s-2	x	flight	time2)	/8	

To	ensure	accuracy	and	reliability,	participants	used	a	consistent	landing	technique	on	CMJ	and	
SJ,	where	the	legs	and	hips	are	extended	until	contact	was	made	with	the	floor.		Flexing	of	the	
knees	or	the	hips	delays	contact	with	the	mat	and	therefore	distorts	flight	time.	

4.3.4 Statistical	Analyses	
All	statistical	analysis	was	conducted	on	SPSS	for	windows,	with	an	a	priori	alpha	level	set	at	p	
<	0.05.		Within-session	reliability	was	tested	via	intraclass	correlation	coefficients	(ICC)	(Model	
3,	1).		Between-session	reliability	was	determined	using	both	ICC	and	RMANOVA	with	
Bonferroni	post-hoc	analysis,	or	non-parametric	equivalent,	assessing	learning	effects.		Partial	
eta	squared	was	reported	as	recommended	by	Cohen	(1988)	and	calculated	to	see	if	there	were	
any	meaningful	differences	between	testing	days.		Despite	the	sample	population	being	elite	
and	therefore	difficult	to	recruit	for,	the	low	sample	size	(n	=	8)	involved	in	this	study	meant	
that	effect	sizes	were	calculated.		In	accordance	with	the	views	of	Buchheit	(2016),	the	sole	use	
of	p	values	should	be	discounted	against	as	they	are	sample	size	dependant.	Effect	sizes	(ES)	
were	also	determined	using	the	Cohens	d	method,	and	interpreted	based	upon	the	criteria	
suggested	by	Rhea	(2004)	and	interpreted	as	follows;	trivial	=	<	0.25,	small	=	0.25	-	0.5,	
moderate	=	0.50	-	1.0	and	large	>	1.0.		Post-hoc	statistical	power	was	calculated	using	G	Power	
3.1	(Faul	et	al.,	2009),	for	a	large	effect	size	of	0.5,	a	total	n	=	8	was	sufficient	to	deliver	an	actual	
power	of	0.76.		The	reliability	was	considered	acceptable	if	the	ICC	r≥0.8	(Cortina,	1993).		SEM	
and	smallest	detectable	differences	(SDD)	were	calculated	to	provide	information	upon	
whether	a	change	in	an	individual’s	performance	is	significant,	with	SEM	calculated	using	the	

formula:	SD pooled ∗  1 − ICC 	and	SDD	calculated	from	the	formula:	( 1.96 ∗ 2 ∗
SEM).		Limits	of	agreement	were	represented	using	Bland-Altman	plots	within	sessions	for	day	
one	of	testing.			

4.4 		Results	

4.4.1 Within-session	variability	and	reliability	
Table	4.1:	Descriptive	(mean	±	standard	deviations)	and	reliability	statistics,	within	testing	
days	for	jump	height	for	CMJ,	SJ	and	SLDJ	

	 Leg	 Trial	1	(cm)	 Trial	2	(cm)	 ICC	 SEM	(cm)	 SDD	(cm)	

CMJ	 39.40	±	3.40	 39.32	±	2.94	 0.938*	 0.17	 0.49	(1.3%)	

SJ	 35.10	±	3.81	 34.75	±	3.79	 0.954*	 0.23	 0.65	(1.9%)	

SLDJ	 Left	 22.70	±	3.05	 23.56	±	3.07	 0.759	 0.36	 1.01	(4.4%)	

Right	 23.96	±	2.89	 22.73	±	3.25	 0.445	 0.42	 1.17	(5.0%)	
*Reliability	significant	(p<0.001)	

	

Within-session	reliability	for	CMJ	height	demonstrated	high	reliability	(Table	4.1),	which	is	also	
illustrated	within	Figure	4.1,	with	similar	reliability	for	SJ	performance	(Table	4.1,	Figure	4.2).	

	



	 132	

	

Figure	4.1:	Bland-Altman	plot	for	CMJ	within	session	one		
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Figure	4.2:	Bland-Altman	plot	for	SJ	within	session	one		

Within-session	SLDJ	performance	demonstrated	moderate	reliability	(Table	4.1),	which	is	also	
illustrated	within	Figure	4.3.		Right	leg	performances	showed	low	reliability	(Table	4.1),	which	
is	also	illustrated	within	Figure	4.4.	

	

Figure	4.3:	Bland-Altman	plot	for	SLDJL	within	session	one		

	

Figure	4.4:	Bland-Altman	plot	for	SLDJR	within	session	one		
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4.4.2 Between-session	
Between-session	reliability	was	high	for	the	CMJ,	yet	significant	differences	were	noted	
between	testing	days	one	and	two	(Table	4.2).		Between-session	reliability	in	the	SJ	showed	
high	reliability,	with	trivial	and	non-significant	difference	between	days	(Table	4.2).		SLDJ	also	
showed	moderate	reliability	for	both	left	leg	and	the	right	leg,	with	small	to	trivial	effect	sizes	
that	were	non-significant	between	days	(Table	4.2).	

Table	4.2:	Descriptive	(mean	±	standard	deviations)	and	reliability	statistics,	between	testing	
days	for	CMJ,	SJ	and	SLDJ	

Jump	 Day	1	
(cm)	

Day	2	
(cm)	

Day	3	
(cm)	

ICC	r	 Partial	eta	
squared	

SEM	
(cm)	

SDD	(cm)		

CMJ		 39.96	±	
3.04	

37.91*	±	
2.90	

38.73	±	
3.69	

0.906	 0.329	 0.23	 0.65	(1.7%)	

SJ	 35.49	±	
4.21	

37.21	±	
3.73	

35.80	±	
3.56	

0.866	 0.171	 0.39	 1.08	(3.0%)	

SLDJ	 Left	 24.26	±	
2.95	

23.51	±	
4.62	

21.58	±	
4.01	

0.875	 0.321	 0.39	 1.09	(4.8%)	

Right	 24.53	±	
2.44	

23.63	±	
5.25	

19.42	±	
4.36	

0.759	 0.199	 0.65	 1.80	(7.9%)	

*	Statistical	significance	between	testing	days	one	and	two	

	

The	SLDJ-R	showed	the	largest	SDD	(7.9%),	with	the	lowest	SDD	being	observed	in	the	CMJ	
(1.7%).	

4.5 	Discussion	

The	results	of	this	study	are	in	line	with	the	hypothesis,	showing	that	the	CMJ	demonstrates	the	
highest	reliability	within	and	between	sessions,	when	compared	to	SJ	and	SLDJ.		CMJ	also	
resulted	in	the	lowest	SDD	within	(1.3%)	and	between	sessions	(1.7%),	with	significant	
differences	noted	between	session	one	and	session	two,	although	no	statistically	significant	
differences	were	observed	between	session	two	and	session	three.		Despite	SLDJ-L,	SLDJ-R	and	
the	SJ	showing	moderate	reliability,	the	SDDs	for	these	tasks	were	higher	than	the	CMJ,	ranging	
from	3.0-7.9%	between	sessions,	therefore	further	supporting	the	hypothesis	that	bilateral	
jumps	are	more	reliable	than	unilateral	jumps.	

4.5.1 Within-session	
Bilateral	jumps	resulted	in	the	most	reliable	performances	within	sessions	(Table	4.1).		
Reliability	of	SLDJ	within-session	was	considered	unacceptable	(ICC	r<0.8),	for	both	left	and	
right	leg	(Table	4.1).		The	highest	within-session	reliability	was	observed	during	the	SJ	(r	=	
0.954),	with	the	CMJ	providing	the	second	most	reliable	measure	(r	=	0.938).		The	higher	
reliability	within-session	for	bilateral	jumps,	when	compared	to	unilateral	jumps,	is	likely	due	
to	bilateral	jump	requiring	less	variation	in	technique	adopted	and	by	these	jumps	being	easier	
to	perform.		These	results	are	consistent	with	other	research	(Bosquet	et	al.,	2009;	Glatthorn	et	
al.,	2011),	which	showed	that	bilateral	jumps	using	an	optical	measuring	systems	are	reliable	
and	demonstrates	that	the	athletes	can	reliably	replicate	CMJ	and	SJ	performances.	

4.5.2 Between-session	
Between-session	reliability	followed	a	similar	pattern	to	the	within-session	data,	yet	CMJ	
appeared	as	the	most	reliable	(r	=	0.906),	with	significant	differences	noted	between	session	
one	and	session	two,	although	no	statistically	significant	differences	were	observed	between	
session	two	and	session	three.		Between	sessions,	the	SLDJ-R	was	considered	unreliable	(r	=	
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0.759),	yet	SLDJ-L	was	considered	reliable	(r	=	0.875)	(Table	4.2),	with	no	significant	
differences	observed	between	days.		Despite	a	significant	difference	existing	between	testing	
day	one	and	testing	day	two	for	performance	of	CMJ,	one	could	conclude	that	a	learning	effect	
does	not	exist,	as	the	values	decrease	between	day	one	and	testing	day	two.		In	addition,	when	
considering	the	effect	size	presented	for	CMJ	is	trivial	(Partial	eta	squared	=	0.329),	the	
significant	differences	noted	between	session	one	and	session	two	could	be	questioned.		The	
reasons	for	this	difference	could	perhaps	be	explained	by	the	CMJ	strategy	employed	by	the	
players.		The	depth	that	players	moved	to	on	testing	day	one	and	testing	day	two	may	have	
differed	despite	attempts	made	to	standardise	the	protocol,	yet	this	is	not	considered	a	concern	
as	this	study	wanted	to	identify	variation	across	testing	days.	

As	reported	in	similar	research	assessing	jump	performances	using	the	OptoJump,	Glatthorn	et	
al.	(2011)	considered	OptoJump	to	be	reliable	for	detecting	changes	in	longitudinal	assessments	
verifying	the	effectiveness	of	training	programs,	when	assessing	CMJ	and	SJ.		Glatthorn	et	al.	
(2011)	noted	high	ICC	values	(mean	0.985)	and	random	errors	averaged	2.81	cm	(2.7%).			
Within	this	study,	SDD	was	noted	as	0.65	cm	(1.7%)	for	CMJ	and	1.08	cm	(3.0%)	for	SJ.		When	
trying	to	identify	NMF	using	CMJ,	jump	height,	assessed	from	flight	time	using	the	force	plate,	
has	been	considered	to	be	the	most	precise	and	reliable	instrument.		However,	in	many	team-
based	scenarios	a	force	plate	is	not	readily	available,	therefore	the	OptoJump	would	be	the	next	
best	alternative,	with	a	difference	of	greater	than	0.49	cm	(1.3%)	signifying	a	meaningful	
change	within-session	and	a	difference	of	greater	than	0.65	cm	(1.7%)	signifying	a	meaningful	
change	between	session.		Despite	differences	existing	between	session	one	and	session	two,	the	
sensitivity	identified	for	CMJ	(0.65	cm;	1.7%)	is	a	positive	finding	of	this	research	and	one	that	
should	be	considered	by	practitioners.	

4.5.3 Limitations	of	this	study	
The	small	sample	size	within	this	study	could	be	considered	a	limitation,	yet	the	
implementation	of	effect	size	calculation	alongside	RMANOVA	in	accordance	with	
recommendations	by	Buchheit	(2016)	to	assess	magnitude	dispute	this.		The	trivial	effect	size	
findings	in	this	study	therefore	further	supports	the	use	of	this	small	sample	size	utilising	elite	
rugby	union	players.		Another	possible	limitation	of	this	study	surrounds	the	self-selected	jump	
protocol	for	all	jumps	by	the	players.		Players	were	noted	to	adopt	differing	jump	techniques,	
mainly	whereby;	depth	of	both	SJ	and	CMJ	on	the	downward	phase	varied	and	width	of	stance	
was	individually	selected	which	could	have	altered	results.		In	addition,	the	technique	adopted	
during	the	SLDJ-L	and	SLDJ-R	differed	mostly	on	the	start	of	the	jump	were	some	players	were	
noted	to	“drop	off”	the	box	and	some	were	noted	to	“jump	off”	the	box	onto	the	landing	surface	
below.		It,	however,	could	be	argued	that	this	variability	in	jump	technique	improved	the	
ecological	validity	of	this	study,	as	not	all	players	would	move	in	the	same	manner	possibly	due	
to	innate	locomotion	skills	developed	from	an	early	age.	

4.6 		Practical	Applications	

Despite	unilateral	jumps	being	likely	to	identify	NMF	more	easily,	results	from	this	research	
question	their	reliability.		The	large	discrepancies	in	results	for	unilateral	jumps,	mainly	
associated	with	participant	technique	adopted,	mean	that	bilateral	jumps	should	be	used	for	
performance	assessment	instead	of	unilateral,	with	CMJ	being	the	jump	modality	that	would	
produce	the	most	reliable	measure	of	performance.		A	change	of	0.65	cm	(1.7%)	can	be	
considered	meaningful	when	assessing	elite	rugby	union	players	performing	CMJ	and	therefore	
this	value	can	be	implemented	to	assess	performance	measures	and	readiness	on	a	daily	basis.	
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4.7 Implications	of	experimental	chapter	4	for	subsequent	studies	

The	identification	of	CMJ	as	more	reliable	than	SJ	and	SLDJ	means	that	a	need	now	exists	to	
assess	if	CMJ	assessment	conducted	on	an	OptoJump	is	as	valid	as	that	of	the	“gold	standard”	
force	plate.		Assessment	of	OptoJump	validity	is	of	importance,	as	the	applied	“real	world”	
setting	within	which	future	time-course	of	restoration	of	performance	investigations	are	to	be	
conducted	is	not	suitable	for	regular	force	plate	use.		In	addition,	jump	height	needs	to	be	
compared	against	kinetic	measures	to	warrant	its	use	in	following	experimental	chapters.	 	
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5 Countermovement	Jump	in	Elite	Rugby	Players	–	A	comparison	
between	devices	

5.1 Abstract	

Methods	of	assessing	power	output	via	optical	measuring	systems	have	been	questioned,	
despite	force	plates	used	in	many	environments	due	to	their	accurate	measurement	of	jump	
height.		Force	plates	are,	moreover,	expensive	and	impractical	for	use	in	many	team	sport	
settings.		This	study	determined	the	validity	of	the	OptoJump,	which	calculates	jump	height	
from	flight	time,	by	comparing	CMJ	height	measured	by	the	same	method	on	a	force	plate.		This	
study	also	compared	CMJ	performance,	using	an	OptoJump	measuring	flight	time,	to	that	of	a	
force	plate	using	the	take-off	velocity	measure,	to	examine	jump	height	as	an	effective	measure	
of	neuromuscular	performance,	while	also	providing	a	“sense	check”	for	OptoJump	validity.		
Lastly,	jump	height	measured	on	a	force	plate	using	velocity	of	centre	of	mass	at	take-off	was	
compared	to	that	of	a	force	plate	using	the	flight	time	measure,	with	the	assessment	of	eccentric	
RFD	also	considered	within	this	analysis.		Results	from	this	study	indicate	that	a	significant	
correlation	exists	between	CMJ	height	measured	on	an	OptoJump	and	CMJ	height	measured	on	a	
force	plate	also	calculated	via	flight	time	(ρ	=	0.907;	p	<	0.05;	r	=	0.924),	therefore	supporting	
OptoJump	use.		Weaker	correlations	were,	however,	noted	between	OptoJump	CMJ	height	and	
CMJ	height	measured	on	a	force	plate	via	velocity	at	take-off	(ρ	=	0.202;	p	>	0.05;	0.449)	and	
between	CMJ	height	measured	on	a	force	plate	via	flight	time	and	CMJ	height	measured	on	a	
force	plate	via	velocity	at	take-off	(ρ	=	0.210;	p	>	0.05;	0.410),	which	could	possibly	be	
explained	by	subjects	not	standing	still	on	the	force	plate	prior	to	jump	commencing,	thereby	
affecting	the	determination	of	bodyweight.		Additionally,	results	support	the	use	of	OptoJump	
jump	height	(CV	<	10%)	when	compared	against	eccentric	RFD,	which	when	assessed	on	a	
force	plate	exhibit	lower	reliability	between	sessions	(CV	>	10%).		Jump	height	from	CMJ	on	an	
OptoJump	is	therefore	recommended	as	a	reliable	measure	of	neuromuscular	performance	and	
provides	support	for	the	use	of	CMJ	as	a	means	for	assessment	within	real	world	settings	where	
use	of	force	plates	is	unrealistic.	

5.2 Introduction	

Jump	testing	protocols	have	been	scrutinised,	with	specific	jump	and	power	testing	tools	
coming	under	criticism,	mainly	due	to	incorrect	data	analysis	methods	and/or	the	testing	of	
subjects	who	are	incapable	of	performing	the	jumps	correctly.		Numerous	instruments	
measuring	jump	height	and	contact	time	(using	different	technologies	and	calculations)	have	
provided	varying	results	(Markovic	et	al.,	2004).		Force	plates	have	been	considered	the	“gold	
standard”	for	the	measurement	of	jump	tests	and	have	been	reported	to	provide	excellent	
measurement	accuracy	for	estimation	of	power	via	forward	dynamics,	calculated	by	the	force	
applied	to	the	jumping	surface	(Owen,	Watkins,	Kilduff,	Bevan,	&	Bennett,	2014;	Walsh	et	al.,	
2006).		Jump	instruments,	such	as	optical	measuring	systems	that	solely	assess	flight	time	and	
do	not	determine	jump	height	from	the	impulse	momentum	relationship,	as	used	by	Domire	
and	Challis	(2007),	are	open	to	question,	as	subjects	can	alter	jump	technique,	such	as	a	flexed	
foot	on	landing	to	increase	flight	time.		By	contrast,	force	plate	assessment,	which	uses	vertical	
velocity	of	the	centre	of	mass	at	take-off,	provides	a	more	accurate	measure	of	jump	height,	
using	a	forward	dynamics	approach.		The	optimal	method	of	determining	take-off	velocity	
during	jumps	is	proposed	by	Owen	et	al.	(2014)	to	involve	analysis	of	the	corresponding	
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vertical	component	of	the	ground	reaction	force	(VGRF).		The	VGRF	is	calculated	from	the	time	
before	(30	ms)	the	start	of	the	jump	until	take-off,	with	the	impulse	momentum	relationship	
applied	to	determine	velocity	of	the	centre	of	mass.		Its	reliability	was	supported	in	prior	
research	(variability	<±1%)	(Street,	McMillan,	Board,	Rasmussen,	&	Heneghan,	2001).		Owen	et	
al.	(2014)	recommended	the	implementation	of	a	1000	Hz	sampling	frequency,	with	the	mean	
ground	reaction	force	measured	for	one	second	while	stationary	prior	to	jump,	in	order	to	
enable	valid	measurement	of	bodyweight,	which	is	integral	to	forward	dynamics	calculations.	

The	main	disadvantages	associated	with	force	plates	are	that	they	are	expensive	to	use	and	
often	impractical	in	field-testing	scenarios	(Casamichana	et	al.,	2013).		Methods	of	assessing	
neuromuscular	function	via	kinetic	methods,	such	as	the	force	plate,	have	been	criticised	
regarding	data	collection	and	analysis	procedures,	due	to	their	influences	on	power	output	
calculations	(Cormie	et	al.,	2007).		Significant	differences	have	been	noted	between	jump	height	
measured	via	change	in	centre	of	mass	displacement	and	jump	height	calculated	using	flight	
time	or	take-off	velocity	(Aragon-Vargas,	2000).		Much	of	the	criticism	regarding	the	use	of	
kinetic	measures	concerns	the	difficulty	in	quantifying	such	measures	and	with	the	result	that	
the	frequency	of	their	use	is	limited.		Forward	dynamics	has	been	used	to	assess	jump	
performance	in	previous	research	(French	et	al.,	2004;	Owen	et	al.,	2014),	with	good	reliability	
noted	(Aragon-Vargas,	2000).		Aragon-Vargas	(2000)	assessed	four	different	methods	of	
calculating	vertical	jump	height,	showing	good	reliability	within-session	for	all	(r	=	0.97),	with	
the	change	in	centre	of	mass	displacement	measure	used	as	the	criterion	against	which	to	
compare	the	other	methods.		The	results	demonstrated	that	flight	time	yields	a	valid	and	
reliable	measure	of	vertical	jump	performance,	with	the	other	three	jump	measures	(two	
methods	based	of	force	plate	vertical	take-off	velocity	and	one	based	on	flight	time)	showing	
excellent	validity	(r	=	0.97)	compared	to	the	change	in	centre	of	mass	displacement	measure.	

CMJ	use	for	assessing	change	in	performance	within	rugby	union	is	commonplace	(Argus,	Gill,	
Keogh,	et	al.,	2012;	Darrall-Jones,	Jones,	&	Till,	2015;	Gathercole,	Sporer,	&	Stellingwerff,	2015;	
Roe	et	al.,	2015),	yet	the	analysis	of	CMJ	has	generally	been	limited	to	jump	height	assessment	
and	only	relates	to	the	concentric	phase	of	vertical	jumps	(Cormie,	McBride,	&	McCaulley,	
2009).		Recent	research	(Gathercole,	Sporer,	&	Stellingwerff,	2015;	Kennedy	&	Drake,	2017a)	
has	therefore	looked	at	each	of	the	phases	of	the	jump	and	the	way	in	which	the	subject	moves	
throughout	this	triple	flexion	and	triple	extension	movement.		The	three	commonly	reported	
phases	of	CMJ	include	the	unweighting	phase,	the	braking	phase	and	the	propulsive	phase,	yet	
these	phases	are	often	misunderstood	when	assessing	force-time	curves	alone.		The	un-
weighting	phase	involves	the	onset	of	downward	movement	of	the	trunk	to	the	peak	negative	
velocity;	while	the	braking	phase	involves	the	deceleration	of	the	downward	movement	from	
peak	negative	velocity	to	when	the	movement	becomes	stationary.		Lastly,	the	propulsive	phase	
involves	movement	starting	from	the	lowest	position	of	the	centre	of	mass	to	the	instant	of	
take-off	when	performing	a	CMJ.	

Support	for	the	reliability	of	OptoJump	has	previously	been	reported	by	Glatthorn	et	al.	(2011),	
who	noted	very	high	ICCs	for	CMJ	height	derived	from	flight	time	on	both	an	OptoJump	and	CMJ	
height	measured	on	a	force	plate	via	flight	time,	despite	systematic	differences	occurring	
between	instruments	(-1.06	cm;	p	<	0.001).		Glatthorn	et	al.	(2011)	noted	excellent	test-retest	
reliability	of	the	OptoJump	CMJ	height	measurement	(ICC	0.989;	CV	2.2%),	although	the	jump	
protocol	implemented	in	this	study	and	the	subjects	used	were	not	considered	elite	and	
therefore	comparisons	should	be	made	cautiously.		Additional	previous	research	(Cormack,	
Newton,	McGuigan,	&	Doyle,	2008)	has	calculated	the	reliability	of	CMJ	variables	in	elite	
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Australian	rules	football	players,	reporting	high	reliability	within	(1.1	–	1.7%)	and	between	
sessions	(1.0	–	5.7%)	for	multiple	kinetic	measures.		However,	findings	by	Nibali,	Tombleson,	
Brady,	and	Wagner	(2015)	noted	average	eccentric	RFD	not	to	be	reliable	(CV	21.3%),	with	
concern	therefore	advised,	as	average	eccentric	RFD	may	not	be	sensitive	to	training	induced	
changes.		When	assessing	kinetic	data,	Nibali	et	al.	(2015)	also	noted	that	vertical	jumps	tasks	
can	be	performed	without	the	need	for	familiarisation,	with	average	concentric	force	and	
concentric	impulse	being	highly	reliable	(CV	2.7%),	although	jump	height	was	noted	as	the	only	
variable	to	display	a	%	CV	smaller	than	the	SWC.		When	considering	these	findings	by	Nibali	et	
al.	(2015),	the	need	for	validity	of	this	measure	for	testing	both	within	and	between	sessions	is	
needed.	

Other	research	of	interest	regarding	kinetic	measures	includes	that	by	Marques	et	al.	(2014),	
who	assessed	vertical	jumps	and	reported	jump	height,	RFD	and	peak	force	all	to	be	highly	
reliable	(jump	height	CV	7.0%,	ICC	0.89;	RFD	CV	11.6%,	ICC	0.91;	peak	force	CV	6.1%,	ICC	0.92).	
However,	research	showing	relationships	between	eccentric	RFD	and	CMJ	performance	are	
conflicting	with	McLellan	et	al.	(2011d)	assessing	the	RFD	on	vertical	jump	performance	and	
noting	poor	retest	reliability	(CV	16.3%)	within	twenty	three	physically	active	men.		McLellan	
et	al.	(2011d)	did,	on	the	other	hand,	note	that	significant	correlations	between	maximum	RFD	
and	jump	height	could	only	explain	46%	of	the	variance	noted	in	jump	height	and	that	the	other	
variance	is	likely	to	be	due	both	to	the	inexperience	of	the	subjects	performing	this	explosive	
movement	and	the	testing	protocol	implemented.		Additionally,	research	by	Ebben	et	al.	(2007)	
noted	no	correlation	between	average	RFD	and	CMJ	(r	=	0.19,	p	=	0.22)	and	therefore	
questioned	the	usefulness	of	RFD	for	assessing	CMJ	performance.	

The	aim	of	this	study	was	to	compare	CMJ	performance	using	different	devices;	one	using	jump	
height	measured	via	flight	time	on	an	OptoJump	and	two	methods	of	assessment	from	a	force	
plate,	using	firstly	velocity	of	centre	of	mass	at	take-off	and	secondly	flight	time.		The	results	of	
this	research	will	also	determine	test	re-test	reliability	of	a	jump	height	measurement;	thereby	
providing	a	“sense	check”	for	future	chapters	within	this	thesis	and	informing	on	whether	or	
not	jump	height	alone	can	demonstrate	sensitivity	of	neuromuscular	performance	when	
assessed	via	CMJ.		Based	upon	prior	findings	(Glatthorn	et	al.,	2011;	Jensen,	Furlong,	Graham,	&	
Harrison,	2011),	it	was	hypothesised	that	jump	height	from	CMJ	on	an	OptoJump	would	be	just	
as	valid	a	measure	of	neuromuscular	performance	compared	to	jump	height	calculated	on	a	
force	plate.		Additionally,	based	upon	prior	findings	(McLellan	et	al.,	2011d;	Moir	et	al.,	2009;	
Nibali	et	al.,	2015)	it	was	also	hypothesised	that	RFD	for	assessing	jump	performance	is	not	as	
reliable	a	measure	of	assessing	neuromuscular	performance	compared	to	jump	height.		This	
notion	therefore	supports	the	use	of	CMJ	using	the	OptoJump	as	a	means	for	assessment	within	
real	world	settings,	where	the	time	consuming	analysis	associated	with	force	plates	means	
their	use	is	often	unrealistic.	

5.3 Method	

5.3.1 Participants	
Seven	elite	rugby	union	players	(age	21.0	±	4.7	years,	height	185.0	±	8.6	cm,	mass	89.0	±	8.2	kg)	
from	the	same	professional	rugby	club	volunteered	for	the	assessment	of	the	CMJ	height	
against	kinetic	measures	(jump	height,	and	mean	eccentric	RFD).		Participants	were	all	healthy	
and	active	individuals	who	had	no	current	injury	issues.		All	subjects	provided	written	
informed	consent	to	participate	and	Salford	University	Research	and	Ethics	Committee	
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approved	the	study.		The	sample	sizes	used	within	both	research	groups	were	considered	
satisfactory	in	accordance	with	guidelines	provided	by	Hopkins	(2000).	

5.3.2 Procedure	
The	assessment	of	two	CMJ	trials	across	three	testing	days	was	conducted,	with	no	greater	than	
seven	days	between	each	assessment.		The	CMJ	protocol	was	standardised	throughout	the	
three	testing	days,	with	appropriate	warm	up	given	prior	to	testing	and	adequate	rest	
administered	between	each	trial.		In	accordance	with	previous	research	(Cunningham	et	al.,	
2013;	McLellan	&	Lovell,	2012;	McLellan	et	al.,	2011b;	West	et	al.,	2014)	that	used	kinetic	
measures	(RFD)	to	assess	neuromuscular	function	pre	and	post	rugby	union	match	play,	this	
research	used	RFD	to	compare	against	CMJ	performance.		Jump	Height	(JH)	measured	in	cm,	
and	mean	eccentric	Rate	of	Force	Development	(RFD)	measured	in	(N.s-1),	provided	more	detail	
about	CMJ	performance	and	assessed	the	reliability	of	CMJ	values	when	measured	via	
OptoJump.		A	custom	Microsoft	Excel	data	collection	sheet	was	used	within	this	research	to	
compare	the	validity	of	jump	height	between	instruments	and	to	calculate	performances	from	
force-time	data	against	kinetic	measures	(JH	and	mean	eccentric	RFD),	with	the	statistical	
analysis	performed	in	SPSS.	

Support	for	the	use	of	using	a	0%	load	for	assessing	jump	performance	in	order	to	maximise	
power	output	was	noted	by	Cormie,	McBride,	and	McCaulley	(2008),	with	McBride	et	al.	(2002)	
also	noting	that	acceleration	of	the	system	mass	during	a	squat	jump	decreases	as	the	external	
load	is	increased.		This	methodological	rationale	is	also	more	practically	relevant	for	use	within	
elite	settings,	as	it	is	often	not	viable	to	implement	loaded	jumps	in	competition	and	training	
settings.		Players	wore	appropriate	footwear	for	each	jump	and	were	given	the	same	verbal	
instructions	pre	each	attempt.		Despite	the	testing	being	conducted	post-match,	the	influence	of	
games	was	considered	to	be	unlikely	to	have	an	influence	upon	results,	as	the	time-points	of	
assessment	were	consistent	throughout	this	study	and	the	training	and	match	protocol	prior	to	
testing	commencing	on	each	occasion	was	standardised.		In	addition,	as	the	players	tested	
within	this	study	were	accustomed	to	games	and	as	this	testing	was	conducted	during	the	
normal	competitive	phase	of	the	players’	season,	possible	effects	of	match	fatigue	were	unlikely	
to	have	an	adverse	impact	upon	results.	

5.3.2.1 Countermovement	Jump	(CMJ)	technique	
The	CMJ	was	performed	from	a	standing	position	with	the	whole	plantar	part	of	the	foot	
touching	the	jumping	surface	with	the	hands	resting	on	the	hips.		A	rapid	counter	movement	
was	conducted	by	the	participant	until	the	knee	angle	reached	approximately	90°,	then	
immediately,	the	participant	jumped	as	high	as	they	could,	with	their	legs	remaining	straight	
upon	flight,	therefore	preventing	any	tucked	legs	which	would	lead	to	inaccurate	measurement	
of	jump	height	derived	from	flight	time.		Upon	landing	the	participants	made	contact	with	the	
testing	surface	with	legs	extended,	only	flexing	the	knees	enough	to	absorb	the	impact	once	
contact	had	been	made	with	the	floor.		Prior	to	each	jump	the	participant	was	encouraged	to	
jump	as	high	as	possible.		Post-jump,	participants	received	verbal	feedback	about	their	
performance.	

5.3.2.2 Instruments	

5.3.2.2.1 Force	plate	
The	force	plate	used	in	this	study	was	a	400s	Performance	Force	Plate	(Innervations,	Adelaide,	
Australia)	operated	by	software	(Ballistic	Measurement	System,	Fitness	Technology).		The	force	
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plate	was	set	to	record	for	five	seconds,	sampling	at	600	Hz,	initiated	using	an	external	trigger.		
This	sampling	frequency	was	well	within	the	guidelines	presented	by	Hori	et	al.	(2009),	who	
recommended	that	practitioners	consider	sampling	as	low	as	200	Hz	for	CMJ	assessment.		The	
force	plate	was	zeroed	before	testing	commenced,	so	that	the	weight	of	the	participant	would	
not	influence	the	measurement.		The	threshold	for	determining	take-off	and	touchdown	was	set	
at	5	N	for	all	participants,	in	line	with	other	recent	research	(Castagna	et	al.,	2013).	

5.3.2.2.2 OptoJump	
The	OptoJump	(Microgate,	Bolzano,	Italy)	was	used	to	assess	flight	time	and	to	compare	against	
the	criterion	method	of	take-off	velocity	on	the	force	plate,	which	had	previously	been	shown	to	
have	excellent	reliability	(Glatthorn	et	al.,	2011).		Similarly	to	this	study,	Twist	and	Sykes	
(2011)	used	an	OptoJump	in	their	study	of	exercise	induced	muscle	damage	from	simulated	
rugby	league	match	play.		The	OptoJump	(previously	reported	in	more	detail	within	chapter	
4.3.3.1)	was	placed	on	top	of	the	force	plate	on	the	gym	floor,	with	players	standing	between	
the	OptoJump	bars	when	jumping.	

	

Figure	5.1:	An	illustration	of	the	test	set-up,	showing	the	OptoJump	sitting	alongside	the	force	
plate	

5.3.2.3 Data	analysis	

5.3.2.3.1 Jump	Height	and	Flight	Time	
Flight	time	was	used	to	calculate	OptoJump	jump	height,	with	both	flight	and	take-off	velocity	
used	to	calculate	jump	height	from	force	plate	force-time	data.		Jump	height	was	calculated	via	
flight	time,	using	the	following	equation	utilised	by	McMahon	et	al.	(2015),	adapted	from	that	
proposed	by	Bosco	et	al.	(1983).			

Jump	Height	=	(9.81	m.s-2	x	flight	time2)	/8	
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5.3.2.3.2 Force-time	analysis	
Force-time	analysis	uses	the	impulse-momentum	relationship	to	determine	velocity,	which	
calculates	power	through	the	forward	dynamics	approach	(Cormie	et	al.,	2007).		Kinetic	
variables	were	assessed	for	both	the	eccentric	and	concentric	phases	of	the	CMJ.		Eccentric	RFD	
concerns	the	average	force	exerted	during	the	eccentric	phase	of	the	CMJ	and	is	measured	in	
N.s-1,	with	the	ability	to	handle	the	maximal	eccentric	force	in	the	minimal	time	possible	being	a	
typical	indicator	of	explosive	strength.		RFD	relates	to	short	duration	components	of	the	SSC	
and	are	characterised	by	time-displacement	(100	to	250	ms)	of	the	ankle,	knee	and	hip	joints	
during	CMJ.		The	eccentric	phase	consists	of	the	point	in	the	downward	movement	where	the	
force	being	exerted	into	the	force	plate	exceeds	body	weight,	until	the	point	of	zero	velocity	at	
the	lowest	point	of	the	countermovement.		In	recent	times,	the	use	of	RFD	has	been	employed	
as	a	more	specific	predictor	of	explosive	strength,	in	contrast	to	the	term	“power”	that	is	used	
to	indicate	maximal	exercise	performance.		Similarly,	as	reported	by	Gathercole,	Sporer,	
Stellingwerff,	et	al.	(2015a)	and	based	upon	the	research	by	Owen	et	al.	(2014),	jump	start	
threshold	in	this	study	was	set	at	five	times	the	standard	deviation	of	the	noise,	in	order	to	
calculate	the	start	of	the	movement	and	to	improve	accurate	data	collection.	

Previous	research	has	utilised	the	flight	time	calculation	via	the	height	of	rise	of	centre	of	mass	
(French	et	al.,	2004;	McBride	et	al.,	1999,	2002).		The	vertical	take-off	velocity	of	the	centre	of	
mass	is	calculated,	whereby	acceleration	(a)	is	determined	by	dividing	vertical	ground	reaction	
forces	(F)	by	the	mass	of	the	system	(SM)	at	each	time	point.		As	acceleration	and	velocity	are	
two	different	measurements,	acceleration	is	multiplied	by	time	to	provide	velocity:	

! = !/!"	

Jump	height	(JH)	from	velocity	of	centre	of	mass	was	calculated	via	the	following	equation:		

!" = (!^2)/(2 ! 9.81)	

v	=	displacement/time	

5.3.3 Statistical	Analyses	
All	statistical	analysis	was	conducted	on	SPSS	for	windows,	with	an	a	priori	alpha	level	set	at	p	
<	0.05.		Reliability	was	determined	using	RMANOVA	with	Bonferroni	post-hoc	analysis,	or	non-
parametric	equivalent.		Effect	sizes	(ES)	were	also	determined	using	the	Cohen’s	d	method	and	
interpreted	based	on	the	criteria	suggested	by	Rhea	(2004);	trivial	=	<	0.25,	small	=	0.25	-	0.5,	
moderate	=	0.50	-	1.0	and	large	>	1.0.		Post-hoc	statistical	power	was	calculated	using	G	Power	
3.1	(Faul	et	al.,	2009),	for	a	large	effect	size	of	0.5,	a	total	n	=	7	was	sufficient	to	deliver	an	actual	
power	of	0.69.		In	addition,	partial	eta	squared	was	assessed	to	see	if	there	were	any	
meaningful	differences	between	testing	days,	as	reported	and	recommended	by	Cohen	(1988).		
Within-session	reliability	was	tested	via	intraclass	correlation	coefficients	(ICC)	(Model	3,	1).		
The	reliability	was	considered	acceptable	if	the	ICC	≥	0.8	(Cortina,	1993).		SEM	and	smallest	
detectable	differences	(SDD)	were	calculated	in	order	to	provide	information	for	on	whether	or	
not	a	change	in	an	individual’s	performance	was	significant,	with	SEM	calculated	using	the	

formula:	SD pooled ∗  1 − ICC 	and	SDD	calculated	from	the	formula:	( 1.96 ∗ 2 ∗
SEM).		In	line	with	previous	research	(Cormack,	Newton,	McGuigan,	&	Doyle,	2008;	Marques	et	
al.,	2014;	McMahon	et	al.,	2016),	assessing	jump	performance	measures	in	both	team	and	
individual	sports,	a	measure	must	demonstrate	a	CV	<	10%	to	be	considered	reliable,	with	
practitioners	therefore	needing	to	assess,	if	this	change	is	of	practical	significance.	
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5.4 Results	

5.4.1 Jump	height	measures	from	OptoJump	and	force	plate	
Shapiro	Wilks	tests	of	normality	revealed	that	OptoJump	jump	height;	force	plate	jump	height	
(flight	time	and	take	of	velocity)	and	eccentric	RFD	were	not	normally	distributed	(p	<	0.05).	
Reliability	statistics	demonstrated	that	OptoJump	jump	height	displayed	a	higher	CV	within-
session	than	eccentric	RFD.		Within-session	CMJ	height	assessed	on	a	force	plate,	was,	however,	
lower	than	that	presented	for	OptoJump	jump	height	(Table	5.1).	

Between-session	reliability	was	considered	to	be	acceptable	for	OptoJump	jump	height,	force	
plate	jump	height	from	flight	time	eccentric	and	RFD	measures	of	CMJ	(ICC	>	0.8),	although	not	
for	jump	height	from	velocity	at	take-off	on	a	force	plate.		OptoJump	jump	height,	force	plate	
velocity	at	take-off	and	force	plate	flight	time	illustrated	lower	SDD	than	eccentric	RFD	(Table	
5.2).		A	strong	positive	Spearman’s	correlation	was	noted	when	comparing	OptoJump	jump	
height	and	force	plate	jump	height	with	flight	time	(ρ	=	0.907;	p	<	0.05;	r	=	0.924)	(Figure	5.2),	
yet	poor	correlations	were	noted	between	force	plate	velocity	at	take-off	and	force	plate	flight	
time	(ρ	=	0.210;	p	>	0.05;	r	=	0.449)	(Figure	5.3)	and	between	jump	height	from	velocity	at	take-
off	on	a	force	plate	and	jump	height	derived	from	flight	time	on	an	OptoJump	(ρ	=	0.202;	p	>	
0.05;	r	=	0.410)	(Figure	5.4).	

Table	5.1:	Descriptive	(mean	±	standard	deviations)	and	reliability	statistics,	within	testing	
days	for	CMJ	height	and	RFD	(N.s-1)	

CMJ	 Day	1	
average	

Day	1	
%CV	

Day	2	
average	

Day	2	
%CV	

Day	3	
average	

Day	3	
%CV	

All	
sessions	
average	

Average	
%CV	

CMJ	Height	
OptoJump	
(cm)	

39.1	±	0.03	 8.31%	 37.6	±	0.02	 7.23%	 37.8	±	0.04	 10.70%	 38.2	±	0.03	 8.74%	

CMJ	Height	
Force	Plate	
(Flight	
time)	(cm)	

40.6	±	0.01	 1.69%	 39.7	±	0.01	 1.82%	 39.8	±	0.01	 2.92%	 40.0	±	0.01	 2.14%	

CMJ	Height	
Force	Plate	
(Velocity	at	
Take-off)	
(cm)	

39.6	±	0.05	 1.50%	 36.8	±	0.08	 2.21%	 35.6	±	0.02	 0.56%	 37.3	±	0.05	 1.42%	

CMJ	
Eccentric	
RFD	(N.s-1)	

5242	±	443	 8.9%	 4841	±	466	 10.50%	 5286	±	330	 6.56%	 5123	±	413	 8.67%	
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Figure	5.2:	Relationship	between	OptoJump	jump	height	(from	flight	time)	and	force	plate	flight	
time	during	the	same	jump,	using	pooled	data	

	

Figure	5.3:	Relationship	between	jump	height	from	flight	time	on	a	force	plate	and	jump	height	
derived	from	velocity	at	take-off	on	a	force	plate,	using	pooled	data	
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Figure	5.4:	Relationship	between	jump	height	from	velocity	at	take-off	on	a	force	plate	and	
jump	height	derived	from	flight	time	on	an	OptoJump,	using	pooled	data	

Table	5.2:	Descriptive	(mean	±	standard	deviations)	and	reliability	statistics,	between	testing	
days	for	CMJ	height	(cm)	and	RFD	(N.s-1)	

Jump	 Day	1	
(cm)	

Day	2	
(cm)	

Day	3	
(cm)	

ICC	r	 Partial	eta	
squared	

SEM	
(m)	

SDD	(m)		

OptoJump	CMJ	
Height	(cm)	

39.1	±	
0.03	

37.6	±	
0.02	

37.8	±	
0.04	

0.895	 0.192	 0.01	 0.03	(7.9%)	

Force	Plate	CMJ	
Height	(Flight	time)	
(cm)	

40.6	±	
0.01	

39.7	±	
0.01	

39.8	±	
0.01	

0.923	 0.103	 0.00	 0.02	(6.7%)	

CMJ	Height	Force	
Plate	(Velocity	at	
Take-off)	(cm)	

39.6	±	
0.03	

36.8	±	
0.02	

35.6	±	
0.04	

0.728	 0.528	 0.00	 0.02	(6.2%)	

CMJ	Eccentric	RFD	
Force	Plate	(N.s-1)	

5242	±	
1264	

4841	±	
1721	

5286	±	
1741	

0.921	 0.111	 450.0	 1247.5	(24.3%)	

	

5.5 Discussion	

The	results	presented	indicate	that	a	significant	correlation	exists	between	OptoJump	CMJ	
height	measured	via	flight	time	and	CMJ	height	measured	via	flight	time	on	a	force	plate.		
Results	from	this	study	would	indicate	that	OptoJump	jump	height	is	a	jump	performance	
metric	that	can	be	used	in	elite	sport	settings	where	accessibility	to	force	plates	within	different	
training	environments	are	difficult,	therefore	supporting	OptoJump	use.	

5.5.1 Jump	height	measures	from	OptoJump	in	comparison	to	force	plate	
The	R2	value	of	ρ	=	0.907	presented	in	figure	5.2	above	illustrates	that	a	linear	relationship	
exists	between	OptoJump	jump	height	and	force	plate	jump	height,	with	the	correlation	
coefficient	of	r	=	0.924	further	supporting	this	notion.		This	study	and	that	of	previous	research	
(Cormack,	Newton,	McGuigan,	&	Doyle,	2008)	note	that	jump	height	is	the	most	reliable	of	the	
variables	measured,	therefore	disagreeing	with	the	claim	by	Gathercole,	Sporer,	and	
Stellingwerff	(2015)	that	jump	height	reflects	a	gross	performance	measure.		Gathercole,	
Sporer,	and	Stellingwerff	(2015)	argued	that	despite	players	being	asked	to	jump	as	high	as	
possible,	it	seems	that	the	outcome	and	subsequent	values	presented	are	more	likely	to	
manifest	themselves	in	measures	directly	related	to	the	force	plate	rather	than	the	resultant	
jump	height	performed,	with	future	assessment	of	jump	performance	recommended	to	include	
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kinetic	measures	instead.		The	results	of	this	study	do	not	dispute	this	notion	of	altered	jump	
mechanics,	but	do	show	that	jump	height	is	a	simple	and	reliable	measure	to	be	used	when	
kinetic	measurement	tools	are	perhaps	not	available.	

It	is	also	important	for	practitioners	to	note	that	the	mean	jump	height	values	reported	within	
previous	research	(Jensen	et	al.,	2011;	Marques	et	al.,	2014)	were	lower	(26	cm)	than	those	
noted	within	this	study.		This	finding,	along	with	the	lower	CV	values	identified,	could	perhaps	
be	explained	by	the	lower	athletic	level	of	the	subjects	involved.		Alongside	the	incorporation	of	
sub-elite	level	rugby	players	in	the	research	by	Jensen	et	al.	(2011),	it	is	of	note	that	the	use	of	
arm	swing	was	allowed	during	jump	completion,	whereas	no	arm	swing	was	allowed	within	the	
testing	protocol	implemented	within	this	experimental	study,	meaning	that	caution	regarding	
comparison	would	be	advised.		Previous	research	(Klavora,	2000;	McLellan	et	al.,	2011d)	has	
shown	that	the	use	of	arm	swing	will	result	in	an	increase	in	take-off	velocity	when	compared	
to	using	no	arm	swing.		When	combining	knowledge	of	the	use	of	arm	swing	with	the	findings	
in	research	by	McLellan	et	al.	(2011d),	who	used	a	Vertec	to	assess	jump	height,	any	resultant	
comparison	of	jump	height	values	between	studies	should	be	questioned.		More	crucially,	as	the	
Vertec	has	been	shown	to	overestimate	jump	height	in	contrast	to	the	calculation	from	a	force	
plate,	comparison	between	some	studies	is	better	discounted	altogether	(Ferreira,	Schilling,	
Weiss,	Fry,	&	Chiu,	2010).		Differences	in	ability	of	the	participants	and	the	tools	used	to	assess	
jump	performance	could,	perhaps,	explain	the	differences	seen	in	the	CV’s	reported.		The	
results	from	this	study	would,	however,	support	the	views	of	Jensen	et	al.	(2011)	for	using	
OptoJump,	when	a	force	plate	is	not	available.		Although	any	comparison	between	jump	height	
values	would	be	discouraged,	where	participants	and	methodologies	differ.	

In	a	study	assessing	the	validity	of	using	a	wearable	accelerometric	system	(MyoTest)	for	
assessing	vertical	jump	height	(Casartelli	et	al.,	2010),	it	was	noted	that	jump	height	measured	
via	flight	time	on	a	MyoTest	overestimated	jump	height	compared	to	OptoJump	(p	<	0.001),	with	
a	systematic	bias	of	7	cm	noted,	despite	a	high	reliability	shown	(>	0.98).		This	systematic	error	
shown	for	jump	height	assessed	via	flight	time	could	partly	explain	the	differences	noted	in	
jump	height	values	reported	between	instruments	in	this	experimental	study,	while	perhaps	
providing	further	rationale	for	the	lower	reliability	noted	within-session	for	OptoJump	
compared	to	RFD.		Within	the	research	by	Casartelli	et	al.	(2010)	it	is,	however,	important	to	
note	that	two	calculation	methods	(flight	time	and	vertical	take-off	velocity)	were	used	to	
estimate	jump	height	measured	on	the	MyoTest.		The	peak	velocity	calculated	during	the	
jumping	movement,	therefore	should	be	questioned,	as	it	does	not	relate	specifically	to	take-off	
velocity.		Additionally,	peak	negative	velocity	is	actually	a	measure	of	impact	which	can	
consequently	lead	to	overestimation	within	calculations.		The	results	of	this	study	illustrate	a	2	
cm	difference	in	jump	height	calculated	from	force	plate	compared	to	those	taken	from	
OptoJump.		However,	when	considering	that	the	force	plate	measurements	taken	within	this	
study	also	incorporated	jump	height	from	flight	time	and	jump	height	from	velocity	of	centre	of	
mass	at	take-off,	relevant	comparison	can	therefore	be	made	with	the	research	of	Casartelli	et	
al.	(2010).	

The	comparison	of	the	results	of	this	study	with	prior	research	is	ill	advised,	as	the	testing	
protocol	implemented	within	different	studies	is	likely	to	vary.		The	complexity	of	any	testing	
protocol	associated	with	force	plates,	means	that	discrepancies	in	data	collection	are	probable.		
One	area	of	concern	is	the	need	to	make	subjects	remain	still	on	a	force	plate	prior	to	jumping.		
Practitioners	cannot	assume	that	subjects	are	made	to	remain	still	on	a	force	plate	prior	to	
jumping,	as	was	implemented	in	prior	research	(Owen	et	al.,	2014;	Street	et	al.,	2001)	and	this	
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notion	can	perhaps	explain	much	of	the	erroneous	data	produced.		Protocol	in	this	
experimental	study	did	not	enforce	a	period	of	standing	still	and	it	could	therefore	be	assumed	
that	this	impacted	negatively	upon	the	velocity	measurements	produced.		This	testing	protocol	
and	resultant	data	produced	could,	however,	be	considered	a	“real	world”	consequence	of	force	
plate	testing,	and	where	the	alternative	expectation	of	players	being	enforced	to	stand	still	
prior	to	jump	movement	is	perhaps	unrealistic.		As	a	consequence,	as	observed	in	this	study,	
many	practitioners	do	not	implement	a	standing	still	element	prior	to	jump	testing.		
Additionally,	the	complexity	of	obtaining	accurate	force-time	data	could	perhaps	explains	why	
many	practitioners	who	use	a	force	plate	only	report	jump	height	from	flight	time	calculations	
instead	of	via	forward	dynamics.		When	considering	that	the	vast	amount	of	research	in	rugby	
has	used	vertical	jump	assessment	(Darrall-Jones,	Jones,	&	Till,	2015;	McMahon	et	al.,	2016;	Till	
et	al.,	2015;	Till	et	al.,	2014;	Twist	&	Highton,	2013;	Twist	et	al.,	2012),	yet	they	report	jump	
height	instead	of	kinetic	measures,	it	could	be	concluded	that	jump	height	alone	captures	what	
is	needed	by	practitioners	in	applied	settings.		It	could	also	be	argued	that	many	practitioners	
do	not	know	how	to	determine	forward	dynamics,	as	its	calculation	is	complicated,	meaning	
that	future	research	is	likely	to	steer	away	from	the	implementation	of	force-time	data,	thus	
further	adding	to	the	confusion	surrounding	this	performance	testing	measure.	

5.5.2 Reliability	of	OptoJump	and	force	plate	
The	results	of	this	study	demonstrate	that	jump	height,	measured	via	flight	time	collected	
during	a	single	CMJ	on	both	a	force	plate	and	an	OptoJump,	exhibits	high	reliability	(CV	<	10%;	
SDD	<	10%).		The	average	coefficient	of	variation	presented	for	OptoJump	jump	height	
measured	via	flight	time	(CV	7.9%)	is	larger	than	the	jump	height	measured	via	flight	time	on	a	
force	plate	(CV	6.7%),	yet	both	measures	of	jump	performance	exhibited	high	reliability	within	
and	between	sessions	(Table	5.1	and	5.2).		It	is,	however,	important	for	practitioners	to	note	
that	the	consideration	of	the	between-sessions	values	is	of	more	importance	than	the	within-
session,	as	the	within-session	values	are	not	as	important	for	assessing	changes	in	fatigue	
required	from	this	study,	while	the	between-sessions	values	are	likely	to	be	more	sensitive	to	
this	measure.		Research,	of	interest	for	practitioners	and	that	specifically	relates	to	this	
experimental	study,	is	offered	by	Jensen	et	al.	(2011).		When	assessing	reliability	of	jump	
measures	in	rugby	union	players,	Jensen	et	al.	(2011)	presented	high	reliability	(ICC	0.966;	CV	
5.1%)	for	OptoJump	using	the	flight	time	calculation	reported	earlier	(Chapter	5.3.2.3).	
Therefore	comparisons	between	these	results	are	warranted	considering	that	similar	
methodologies	used.		The	results	collected	within	this	experimental	study	illustrate	that	the	
reliability	of	OptoJump	CMJ	height	is	similar	to	that	reported	by	Glatthorn	et	al.	(2011),	who	
noted	very	high	ICCs	(0.995	–	0.999)	for	both	OptoJump	CMJ	height	and	CMJ	height	measured	
on	a	force	plate.		When	considering	that	jump	height	measured	on	OptoJump	is	not	measured	by	
displacement	and	instead	calculated	by	mathematical	assumption,	the	varying	reliability	
measures	presented	are	perhaps	of	no	surprise,	with	this	finding	supported	by	the	systematic	
differences	identified	by	Glatthorn	et	al.	(2011)	between	OptoJump	CMJ	height	and	CMJ	height	
measured	on	a	force	plate	(-1.06	cm;	p	<	0.001).	

In	a	meta	analytical	review	of	the	reliability	of	power	measurements	in	physical	performance	
tests	(Hopkins	et	al.,	2012),	it	was	noted	that	the	lowest	CV	expected	for	the	assessment	of	
jump	height	was	likely	to	be	2.0%,	with	Cormack,	Newton,	McGuigan,	and	Doyle	(2008)	
reporting	the	reliability	of	jump	height	assessment	taken	from	a	single	CMJ	demonstrating	in	
elite	Australian	rules	players	(CV	<	5%).		More	recent	research,	specifically	relating	to	rugby	
(Roe	et	al.,	2015),	showed	acceptable	reliability	(CV	2.14%)	for	CMJ	peak	force,	yet	did	not	
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report	jump	height	reliability	measures.			Roe	et	al.	(2015)	did,	however,	report	that	such	
reliability	testing	should	be	both	population	and	sport	specific,	which	may	explain	the	differing	
values,	reported	between	studies.		Previous	research	(Cormack,	Newton,	McGuigan,	&	Doyle,	
2008;	Taylor	et	al.,	2010)	assessing	jump	performance	has	adopted	arbitrary	threshold	values	
of	10%	CV	as	showing	“good	reliability”.		Within	this	experimental	study,	both	measures	of	
jump	height	(OptoJump	and	force	plate)	therefore	exhibit	acceptable	reliability	between	
sessions	(CV	<	10%),	as	similarly	classified	within	other	jump	performance	research	(Cormack,	
Newton,	&	McGuigan,	2008;	Cormack,	Newton,	McGuigan,	&	Doyle,	2008;	Taylor	et	al.,	2010).		
Despite	Aragon-Vargas	(2000)	noting	excellent	reliability	(CV	13.4%	to	18.3%)	for	vertical	
jump	on	a	force	plate,	this	study	could	argue	that	these	values	do	not	represent	excellent	
reliability	as,	the	values	reported	within	Table	5.1	are	lower,	despite	similar	methods	of	
assessment	being	used.	

From	the	results	assessing	reliability	between	sessions,	it	is	clear	that	jump	height	measured	on	
the	OptoJump	offers	less	reliability	(CV	7.9%),	when	compared	against	the	force	plate	jump	
height.		The	between-session	values	noted	for	OptoJump	CMJ	height	appear	less	reliable	(ICC	
0.775	–	0.895),	than	those	of	Glatthorn	et	al.	(2011)	(ICC	0.998).		However,	as	the	jump	
protocols	implemented	within	the	two	studies	differ,	careful	consideration	is	warranted	prior	
to	any	comparisons	being	made.		Not	only,	did	the	set-up	of	the	OptoJump	on	the	force	plate	
differ	between	the	studies,	but	also	the	force	plate	used	and	the	sampling	frequency	set.		This	
study	would	therefore	support	the	views	of	Glatthorn	et	al.	(2011),	who	noted	that	the	
discrepancy	noted	between	OptoJump	CMJ	height	and	CMJ	height	measured	on	a	force	plate	
may	be	most	likely	explained	by	test	set-up.		The	misalignment	of	the	photoelectrical	cells	
associated	with	the	OptoJump	could	have	explained	some	of	the	differences	seen,	alongside	the	
notion	that	a	subject’s	foot	may	have	broken	the	electrical	cell	but	not	yet	landed	on	the	force	
plate.		In	addition,	it	must	be	considered	by	practitioners	that	any	potential	difference	in	
sensitivity	of	electrical	cells	(OptoJump),	in	comparison	to	that	of	vertical	reaction	forces	(force	
plate),	may	also	account	for	the	differences	noted.	

Previous	work,	utilising	a	timing	mat,	has	shown	displacement	of	the	centre	of	gravity	in	CMJ	
performed	on	a	timing	mat	to	be	a	reliable	measure	with	CV	of	6.3%	(Arteaga,	Dorado,	
Chavarren,	&	Calbet,	2000).		Similarly,	Markovic	et	al.	(2004)	also	used	a	contact	mat	to	
determine	CMJ	reliability	and	reported	an	ICC	of	r	=	0.98	and	TE	values	of	2.8%.		The	research	
by	Glatthorn	et	al.	(2011)	is	perhaps	the	most	useful	for	comparison	to	this	experimental	study,	
as	the	OptoJump	was	also	used	in	determining	reliability.		Additional	research	of	note	for	
practitioners	is	that	by	Casartelli	et	al.	(2010),	which	illustrated	high	reliability	(ICC	0.92-0.96)	
for	MyoTest	(flight	time),	but	poor	reliability	(ICC	0.56-0.89)	for	MyoTest	(vertical	take-off),	
therefore	demonstrating	the	unsuitability	of	using	flight	time	measurements	and	the	
importance	of	comparing	similar	calculations	when	assessing	kinetic	data.	

Lastly,	support	for	the	reliability	of	CMJ	height	was	noted	by	Cormack,	Newton,	McGuigan,	and	
Doyle	(2008)	(CV	2.4%;	ICC	0.93)	when	assessing	elite	Australian	rules	football	players.		
Although	the	average	CMJ	height	values	reported	by	Cormack,	Newton,	McGuigan,	and	Doyle	
(2008)	are	higher	(48.8	cm)	than	those	reported	within	this	research	and	the	reliability	
reported	is	lower,	(CV	5.2%),	comparisons	can	still	be	made.		The	differences	in	reliability	
values	between	these	studies	could	be	explained	by	the	methodology.		Firstly,	the	study	by	
Cormack,	Newton,	McGuigan,	and	Doyle	(2008)	involved	athletes	from	Australian	rules	football	
and	therefore	their	physical	performance	abilities	of	a	CMJ	are	likely	to	differ.		Secondly,	it	is	
also	important	to	note	that	a	larger	sample	size	was	incorporated	within	this	study	compared	
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to	that	of	Cormack,	Newton,	McGuigan,	and	Doyle	(2008).		This,	along	with	the	sampling	
frequencies	used	also	differing	between	protocols;	perhaps	explain	the	differences	reported	in	
reliability.	

5.5.3 Jump	height	in	comparison	to	RFD	
Data	in	research	settings	that	show	a	relationship	between	RFD	and	CMJ	height	is	limited,	
although	findings	from	this	experimental	study	show	that	eccentric	RFD	measured	on	the	force	
plate	presents	similar	reliability	values	within-session	(CV	8.6%)	to	that	of	jump	height	
measured	on	the	OptoJump	(8.8%).		Both	within	and	between-session,	jump	height	measured	
on	a	force	plate	illustrated	the	most	reliable	measure	of	CMJ	assessment,	therefore	supporting	
its	notion	as	the	“gold	standard”	tool	of	measurement.		The	finding	from	this	experimental	
chapter,	reporting	that	jump	height	assessed	via	OptoJump	illustrates	lower	reliability	values	
(CV	8.8%)	compared	to	RFD	(CV	8.6%)	within-session,	is	surprising.		Kinetic	measures	are	
normally	a	more	informative	measure	than	jump	height,	but	the	contrasting	findings	from	this	
study	are	perhaps	due	to	the	lack	of	a	proper	pre-jump	“silent	period”	implemented.		One	
cannot	therefore	dismiss	the	use	of	kinetic	measures	for	jump	performance	assessment	in	
future	practice,	but	can	include	prior	knowledge	of	aforementioned	RFD	inaccuracies	when	
making	judgements.	

Despite	the	ability	to	develop	force	rapidly	being	a	prerequisite	for	explosive	strength,	a	
scarcity	of	knowledge	regarding	RFD	correlations	to	vertical	jump	exist.		The	availability	of	
reliability	statistics	for	eccentric	RFD	is	limited,	with	Moir	et	al.	(2009)	reporting	lower	RFD	
values	(CV	17-21%)	than	seen	within	this	study,	yet	it	must	be	noted	that	the	values	presented	
by	Moir	et	al.	(2009)	are	from	non-elite	men	and	women	and	therefore	cannot	be	compared	
directly	with	the	eccentric	RFD	values	presented	within	this	study	(ICC	0.921,	CV	24.3%).		
McLellan	et	al.	(2011d)	assessed	RFD	on	vertical	jump	performance	using	a	force	plate,	noting	
poor	re-test	reliability	(CV	16.3%)	within	twenty-three	physically	active	men.		In	relation	to	the	
results	from	this	study,	eccentric	RFD	also	displayed	low	reliability.		However,	an	important	
point	for	consideration	when	comparing	the	results	from	this	study	with	the	research	of	
McLellan	et	al.	(2011d)	is	that	this	study	used	a	differing	sampling	frequency	(600	Hz)	to	that	of	
McLellan	et	al.	(2011d)	(1000	Hz).		Additional	findings	by	Nibali	et	al.	(2015)	noted	eccentric	
RFD	not	to	be	reliable	(CV	21.3%),	with	caution	advised,	as	eccentric	RFD	may	be	sensitive	to	
training	induced	changes.		It	is	also	important	to	note	that	Nibali	et	al.	(2015)	did	observe	that	
eccentric	RFD	was	sensitive	to	fatigue,	therefore	supporting	its	use	within	fatigue	assessment	
using	jumping	movements,	as	is	proposed	in	later	chapters	of	this	study.		As	was	recommended	
by	Nibali	et	al.	(2015)	further	investigation	is	warranted	regarding	the	sensitivity	of	eccentric	
RFD	to	fatigue.	

The	results	of	research	by	Marques	et	al.	(2014),	assessing	the	reliability	of	time-force	variables	
using	a	linear	power	transducer,	are	also	of	interest	to	this	experimental	study.		Similar	to	this	
study,	Marques	et	al.	(2014)	concluded	that	using	jump	height	calculated	during	a	CMJ	
constitutes	a	valid	lower-body	measure	of	performance.		Marques	et	al.	(2014)	also	assessed	
vertical	jumps	and	reported	jump	height,	RFD	and	peak	force	all	to	be	highly	reliable	(jump	
height	CV	7.0%,	ICC	0.89;	RFD	CV	11.6%,	ICC	0.91;	peak	force	CV	6.1%,	ICC	0.92).		Within	the	
research	by	Marques	et	al.	(2014),	RFD	was	demonstrated	to	have	the	largest	correlation	with	
jump	height,	with	greater	RFD	being	associated	with	greater	jump	height	and	RFD	reported	as	
likely	to	explain	69%	of	the	variance	in	jump	height	reported.		The	use	of	a	linear	power	
transducer	was	noted	as	reliable	by	Marques	et	al.	(2014)	for	assessing	force-time	data	during	
CMJ	and	was	recommended	for	use	when	the	more	expensive	option	of	a	force	plate	was	not	
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available.		Similarly	to	as	noted	within	this	study,	Marques	et	al.	(2014)	concluded	that	using	
CMJ	jump	height	constitutes	a	valid	lower-body	measure	of	performance.		Within	the	research	
by	Marques	et	al.	(2014)	RFD	demonstrated	the	largest	correlations	with	jump	height,	with	
greater	RFD	being	associated	with	greater	jump	height	and	RFD	likely	to	explain	69%	of	the	
variance	in	jump	height	reported.		The	research	by	McLellan	et	al.	(2011d)	also	noted	a	
significant	relationship	existed	between	vertical	jump	displacement	(VJD)	and	PRFD	for	the	
CMJ	(r	=	0.68;	p	=	0.001),	yet	the	results	from	this	study	would	contradict	these	views,	as,	
despite	eccentric	RFD	within	this	study	showing	high	ICC	values,	no	correlation	existed	
between	OptoJump	jump	height	and	RFD,	while	the	SDD	reported,	illustrates	the	variability	
associated	with	this	kinetic	measure.	

Perhaps	most	importantly	for	future	consideration	within	the	assessment	of	RFD	values,	is	the	
understanding	of	how	this	kinetic	measure	is	calculated.		Prior	research	such	as	McLellan	et	al.	
(2011d)	reports	poor	reliability	for	RFD,	but	does	not	determine	from	where	this	measure	was	
taken.		This	experimental	chapter	assessed	eccentric	RFD,	yet	other	studies	such	as	McLellan	et	
al.	(2011d)	could	have	taken	a	concentric	measure	of	RFD,	or	a	combination	of	both	eccentric	
and	concentric	RFD,	resulting	in	two	peaks	on	the	force	trace.		This	notion	of	poor	classification	
and	understanding	of	RFD	assessment	would	therefore	further	support	the	use	of	OptoJump	
jump	height.		Further	support	for	the	reliability	of	jump	height	assessed	via	OptoJump	is	
illustrated	in	this	experimental	study,	where	OptoJump	(CV	7.9%)	demonstrated	better	
reliability	values	compared	to	RFD	(CV	24.3%),	when	assessing	CV	values	alone.		Figures	5.3	
and	5.4	showed	that	poor	variability	in	assessment	occurred	within	kinetic	measures,	as	was	
illustrated	by	the	correlation	values	presented.		The	weak	correlations	existing	between,	firstly,	
jump	height	measured	on	an	OptoJump	and	jump	height	collected	on	a	force	plate	from	velocity	
at	take-off	and	secondly	jump	height	collected	on	a	force	plate	from	velocity	at	take-off	and	
jump	height	collected	on	a	force	plate	via	flight	time,	are	most	likely	to	be	explained	by	the	lack	
of	a	proper	pre-jump	silent	period.	

5.5.4 Limitations	of	this	study	
When	considering	that	some	participants	may	have	carried	over	a	level	of	fatigue	or	muscle	
soreness	into	these	testing	days,	the	resultant	influence	this	may	have	had	upon	the	CMJ	
performance	needs	to	be	noted.		Despite	the	testing	being	conducted	during	the	competitive	
phase	of	a	playing	season	and	testing	standardised	post	each	game,	the	influence	of	training	
and	or	lifestyle	choices	may	have	influenced	the	CMJ	performance.		These	limitations	are	
considered	to	be	“real	world”	factors	in	testing	elite	players,	where	days	between	games	vary,	
training	load	is	often	high	and	the	notion	of	practitioners	being	able	to	influence	training	
schedules	based	upon	the	need	for	ensuring	reliability	of	test	results	is	unlikely.		Additionally,	a	
further	potential	limitation	of	this	research	surrounds	the	relatively	small	sample	size	(n=7)	
used	within	this	experimental	study.		An	increased	sample	size	would	have	added	greater	depth	
and	breadth	to	the	knowledge	base	of	a	CMJ	height	on	an	OptoJump	in	comparison	to	that	taken	
from	a	force	plate.	

Another	potential	limitation	of	this	study	is	the	protocol	implemented.		It	could	be	argued	
additional	analysis	of	all	phases	and	related	characteristics	of	a	CMJ	would	benefit	practitioners	
when	assessing	changes	in	performance.		Phases	of	a	CMJ	such	the	un-weighting	phase	and	the	
braking	phase	would	provide	more	information	on	the	neuromuscular	strategy	of	the	jump.		
However,	as	previously	discussed	it	is	important	to	note	that	a	protocol	of	kinetic	measurement	
using	a	force	plate	is	unrealistic	for	this	setting	and	is	instead	better	for	research	purposes.		
Assessment	using	force	plate	would	not	be	time-efficient	for	a	squad	of	up	to	50	rugby	players,	
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where	there	are	likely	to	be	time	pressures	from	coaches	to	complete	training	sessions	and	
post-match	debriefs,	prior	to	the	next	game	commencing.		Lastly,	within	this	study	the	
incorporation	of	the	OptoJump	3mm	above	the	force	plate	was	not	considered	a	concern,	as	this	
analysis	was	conducted	with	the	aim	of	assessing	the	reliability	of	the	same	instrument	and	was	
standardised	throughout	testing.		However,	the	results	from	the	study	by	Healy,	Kenny,	and	
Harrison	(2016),	showing	an	underestimation	in	flight	time	when	assessing	drop	jumps	(RSI),	
are	worth	consideration.		Healy	et	al.	(2016)	noted	that	this	underestimation	could	perhaps	be	
explained	by	differences	in	the	calculation	of	FT:CT,	with	regression	equations	therefore	
advised	for	the	future,	in	order	to	ensure	valid	interpretation	of	study	data.	

5.6 Practical	Applications	

The	aim	of	this	study	was	to	compare	jump	height	from	OptoJump	and	force	plate,	investigating	
the	notion	that	jump	height	alone	“overlooks”	fatigue	related	neuromuscular	changes	and	that	
the	implementation	of	kinetic	CMJ	performance	evaluation	would	add	more	relevant	
information.		Despite	recent	research	by	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	
assessing	fatigue	sensitivity	of	CMJ	and	reporting	that	jump	height	should	be	considered	
representative	of	the	“outcome”	of	jump	performance	and	not	reflect	the	neuromuscular	
strategy	of	the	jump,	the	results	from	this	study	somewhat	contradict	this	notion.		Gathercole,	
Sporer,	Stellingwerff,	et	al.	(2015a)	claim	that	jump	height	measures	alone	misinterpret	the	
phases	associated	with	vertical	jumping	and	therefore	ignore	important	data.		Results	from	this	
study,	would	not	dispute	their	view,	yet	the	finding	that	jump	height	taken	from	flight	time	
measured	on	a	force	plate,	presented	only	slightly	better	reliability	than	jump	height	measures	
on	an	OptoJump	are	of	importance.		Consideration	of	the	notions	of	Gathercole,	Sporer,	and	
Stellingwerff	(2015)	regarding	the	phases	associated	with	vertical	jumping	is,	however,	
worthwhile.		When	considering	that	OptoJump	measures	are	more	easily	obtained	and	incur	
fewer	cost	implications,	the	justification	for	the	inclusion	of	kinetic	measures	can	be	
questioned.		The	results	of	this	study	support	the	use	of	OptoJump	jump	height	to	assess	
performance	change	as	a	result	of	the	influence	of	rugby	training	and	matches.		Lastly,	it	is	
perhaps	advisable	for	practitioners	to	note	that	Cormie	et	al.	(2009)	recommended	the	
examination	of	changes	to	the	power,	force	velocity	and/or	displacement	time-curves	as	being	
a	useful	tool	for	longitudinal	assessment.		In	comparison	to	using	analysis	of	performance	
variables	alone	these	should	therefore	be	considered	for	inclusion	in	future	investigations.	

	 	



	 152	

5.7 Implications	of	experimental	chapter	5	for	subsequent	studies	

The	confirmation	of	the	use	of	CMJ	height	measured	on	an	OptoJump	leads	the	next	
investigation	of	this	thesis	towards	the	assessment	of	CMJ	height	between	rugby	matches.		As	
was	illustrated	in	the	review	of	literature,	fatigue	is	present	in	the	days	post-match,	yet	the	
reliability	of	CMJ	height	testing	between	matches	needs	to	be	examined.		Improved	clarity	upon	
the	reliability	of	CMJ	height	testing	in	the	days	between	matches	will	better	enable	more	
accurate	assessment	of	time-course	of	restoration	in	future	experimental	chapters.	 	
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6 Between-Session	Reliability	of	a	Countermovement	Jump	in	Elite	
Rugby	Players	Pre	Game	

6.1 Abstract	

Jump	tests	are	considered	to	be	excellent	indicators	of	neuromuscular	function	for	team	sport	
athletes,	due	to	the	stretch-reflex	actions	seen	in	jumping.		In	many	elite	team	sport	settings,	
jump	testing	is	used	to	assess	small	but	important	changes	in	performance,	although	the	
reliability	of	CMJ	between	games	is	yet	to	be	identified	in	elite	level	rugby	union.		Decrement	in	
jump	performance	post-match	rugby	match	has	been	reported	to	exhibit	decreased	values	for	
up	to	24	hours,	with	CMJ	previously	reported	to	measure	fatigue	accurately.		Daily	application	
of	multiple	jump	modalities	is	unrealistic,	with	many	practitioners	using	CMJ	assessment	in	
preference	to	other	jumps,	due	to	its	relevance	and	familiarity	within	elite	team	sport	settings.		
A	specific	testing	protocol	that	measures	CMJ	performance	between	games	and	enables	instant	
interpretation	of	meaningful	change	is,	however,	required.		This	study	aimed	to	assess	the	
reproducibility	of	one	CMJ	between	sessions,	using	an	OptoJump,	which	measures	flight	time	
and	permits	the	calculation	of	jump	height.		Results	from	this	study	indicate	that	between	
sessions	a	single	CMJ	shows	high	reliability	(CMJ	ICC	=	0.986,	SDD	2.4%),	with	no	significant	
differences	(p	>	0.05)	in	jump	height	observed	between	days.		Performance	of	a	single	CMJ	
(measuring	jump	height)	on	an	OptoJump	is	therefore	considered	to	be	a	reliable	measure	for	
assessing	post-match	levels	of	readiness	when	a	force	plate	is	not	readily	available,	with	advice	
for	practitioners	that	changes	of	>	2.4%	should	be	considered	meaningful.	

6.2 Introduction	

Jump	tests	have	commonly	been	used	for	assessing	changes	in	performance,	as	jumps	are	a	
convenient	exercise	to	implement	into	a	high	performance	sport	settings	and	providing	great	
ecological	validity.		Jump	testing	has,	however,	come	under	scrutiny	because	of	the	technique	
that	many	subjects	use	and	the	inconsistent	testing	protocol	administered	(Markovic	et	al.,	
2004).		An	individual’s	ability	to	generate	force	quickly	is	a	key	performance	measure	for	
athletes	competing	in	many	team	sports;	hence	jump	tests	have	been	commonly	used.		Testing	
irregularities	such	as	the	subject’s	ability	to	swing	their	arms	for	greater	height	mean	that	
recent	jump	testing	has	focused	solely	on	the	SJ	and	CMJ.		CMJ	involves	the	use	of	the	stretch	
shortening	cycle	(SSC),	whereby	subjects	perform	a	downward	movement	from	an	erect	
standing	position	until	they	feel	comfortable	and	then	jump	for	height	in	an	upward	motion.		
The	assessment	of	the	mechanics	involved	within	this	movement,	provide	valuable	detail	for	
future	training	prescription	(Argus,	Gill,	Keogh,	et	al.,	2012;	Argus	et	al.,	2009;	Baker,	2001c).	

In	addition	to	using	jump	tests	that	measure	power,	velocity,	force,	contact	time	and	rate	of	
force	development;	recent	research	has	focused	on	utilising	vertical	jumps	to	assess	NMF	
(Hamilton,	2009;	Mooney	et	al.,	2013;	Roe	et	al.,	2015;	Rowell,	Aughey,	Hopkins,	Stewart,	&	
Cormack,	2016;	Taylor,	2012),	with	effectiveness	of	CMJ	confirmed	by	Gathercole,	Sporer,	
Stellingwerff,	et	al.	(2015a).		This	SSC	assessment,	when	utilising	CMJ,	can	help	guide	
practitioners	upon	player	restoration	and	recovery	in	the	days	post-match.		Evidence	showing	
lack	of	restoration	post	rugby	union	match	play	was	presented	by	McLean	(2010),	who	
reported	that	CMJ	variables	did	not	return	to	baseline	values	until	four	days	after	matches,	
while	West	et	al.	(2014)	noted	that	peak	power,	measured	via	CMJ,	recovered	no	sooner	than	



	 154	

60	hours	post	rugby	union	match	play.		Further	support	for	jump	testing	to	measure	fatigue	
was	presented	by	Twist	et	al.	(2012)	within	elite	level	rugby	league,	who	reported	that	CMJ	
provided	the	most	appropriate	indirect	marker	of	both	tissue	damage	and	reduction	in	muscle	
force	generating	capacity.		Reductions	in	jump	performance	are	often	caused	by	a	change	in	
calcium	release	per	action	potential,	which	leads	to	impairment	of	excitation-contraction	
coupling	and	the	associated	LFF.		This	resultant	LFF	has	an	impact	upon	players’	jump	
performance	potential,	post	muscle	damaging	exercise	such	as	rugby	union	(Skurvydas,	
Jascaninas,	&	Zachovajevas,	2000),	and	therefore	supports	CMJ	assessment	post-match	to	
measure	fatigue.	

CMJ	is	a	jump	method	that	is	less	likely	to	carry	the	variability	of	technique	observed	in	other	
jump	methods,	as	reported	in	Chapter	4.4.		Further	investigation	into	assessing	the	variability	
of	a	single	CMJ	performance,	post	rugby	union	match,	is	therefore	required.		Results	from	the	
previous	chapter	(Chapter	5)	would	support	this	view,	where	it	was	noted	that	CMJ	exhibited	
high	reliability	between-session	when	compared	to	SJ	and	SLDJ.		The	results	from	Chapter	5	
involved	two	jumps	per	trial,	yet	due	to	time	constraints	within	elite	team	sport	settings,	the	
likelihood	of	being	able	to	perform	multiple	jumps	within	a	daily	assessment	of	readiness	is	
unrealistic.		Due	to	these	“real	world”	limitations,	a	single	measure	of	CMJ	performance	that	
measures	jump	height	alone	is	perhaps	a	more	realistic	tool	for	performance	assessment.		CMJ	
displays	relevance	to	rugby	specific	movements,	which,	when	combined	with	its	ease	of	
administration	within	regular	gym	based	sessions,	make	it	a	commonly	preferred	assessment	
tool	for	NMF.		Support	for	the	use	of	a	sole	CMJ	was	noted	by	Cormack,	Newton,	McGuigan,	and	
Cormie	(2008),	who	showed	that	singular	CMJ	flight	time	presented	more	substantial	
reductions	in	performance	compared	to	five	repeated	CMJs,	suggesting	that	repeated	jumps	
make	it	less	able	to	distinguish	between	levels	of	neuromuscular	function	despite	their	reactive	
nature	and	SSC	involvement.	

As	a	result	of	many	practitioners’	inability	to	conduct	multiple	jump	tests	pre-training	and	the	
unreliable	nature	of	between-session	testing	noted	for	SJ	and	SLDJ	as	noted	in	the	Chapter	4,	
this	study	aimed	to	assess	the	reproducibility	between	sessions	of	the	performance	of	one	CMJ.		
This	study	will	also	determine	if	the	use	of	one	CMJ	(jump	height)	is	sufficient	for	use	in	future	
research	and	identify	SWC	between	sessions.		The	identification	of	the	most	reliable	measures	
of	testing	for	use	in	field	settings,	rather	than	in	controlled	laboratory	conditions,	was	noted	by	
Hopkins	et	al.	(2012).		As	previously	researched	(Hopkins	et	al.,	2012),	measures	that	provide	
the	smallest	typical	error	and	are	also	practical	for	use	within	elite	team	sport	field	settings	are	
key.		A	jump	test	such	as	a	single	CMJ	needs	sufficiently	high	reliability	for	use	in	research,	
which	assesses	small	but	important	changes	in	performance,	although	its	practicality	for	use	in	
the	field	is	also	of	importance.		It	was	hypothesised	that	a	single	CMJ	would	be	a	reliable	jump	
modality	for	assessing	between-sessions	performances.		Results	from	this	study	will	inform	
practitioners	about	the	reliability	of	a	single	CMJ	and	the	resultant	measurement	error	and	in	
addition	will	assess	an	individual’s	ability	to	replicate	performance.	

6.3 Method	

6.3.1 Participants	
Twelve	elite	rugby	union	players	(age	28.0	±	5.2	years,	training	age	9.0	±	4.9,	height	183.6	±	5.1	
cm,	mass	97.9	±	12.3	kg),	from	the	same	professional	rugby	club,	volunteered	for	the	study.		
Participants	were	all	healthy	and	active	individuals	who	had	no	current	injury	issues.		All	
subjects	provided	written	informed	consent	to	participate	and	Salford	University	Research	and	
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Ethics	Committee	approved	the	study.		The	sample	size	used	within	this	study	was	considered	
satisfactory	in	accordance	with	guidelines	provided	by	Hopkins	(2000).	

6.3.2 Procedure	
This	study	assessed	between-sessions	reliability	of	a	single	CMJ	across	two	testing	sessions.		
Testing	sessions	were	separated	by	no	longer	than	fourteen	days	for	all	players	and	the	training	
weeks	throughout	the	testing	period	were	standardised.		Players	wore	appropriate	footwear	
for	each	jump	and	were	given	the	same	verbal	instructions	prior	to	each	attempt.		Despite	the	
testing	being	conducted	post-match,	the	influence	of	games	was	considered	to	be	unlikely	to	
have	an	influence	upon	results,	as	the	time-points	of	assessment	were	consistent	throughout	
this	study	and	the	training	and	match	protocol	prior	to	testing	commencing	on	each	occasion	
was	standardised.	

6.3.2.1 Instrument	
The	instrument	used	to	assess	jump	height	within	this	research	was	the	OptoJump	(Microgate,	
Bolzano,	Italy),	previously	reported	in	more	detail	within	chapter	4.3.3.1.		Players	stood	
between	the	OptoJump	bars	when	jumping,	with	jump	height	assessed	via	flight	time.	

6.3.2.2 Countermovement	Jump	(CMJ)	technique	
The	CMJ	was	performed	from	a	standing	position,	with	the	whole	plantar	part	of	the	foot	
touching	the	jumping	surface	with	the	hands	resting	on	the	hips.		A	counter	movement	was	
conducted	by	the	participant,	until	the	knee	angle	reached	approximately	90°,	then	
immediately	the	participant	jumped	as	high	as	they	could,	with	their	legs	remaining	straight	
upon	flight,	therefore	preventing	any	tucked	legs	which	would	lead	to	inaccurate	measurement.		
Upon	landing,	the	participants	made	contact	with	the	testing	surface,	with	knees	extended	and	
only	flexing	to	absorb	the	impact	once	contact	had	been	made	with	the	floor.		Flexing	of	the	
knees	or	the	hips	delays	contact	with	the	mat	and	therefore	distorts	flight	time.		Prior	to	each	
jump	the	participant	was	encouraged	to	jump	as	high	as	possible.		Post-jump,	participants	
received	verbal	feedback	about	their	performance.	

6.3.2.3 Jump	Height	and	Flight	Time	
Jump	height	was	calculated	via	flight	time	using	the	following	equation	utilised	by	Byrne	and	
Eston	(2002),	adapted	from	that	proposed	by	Bosco	et	al.	(1983).			

Jump	Height	=	(9.81	x	flight	time2)	/8	

6.3.3 Statistical	Analyses	
All	statistical	analysis	was	conducted	on	SPSS	for	windows,	with	an	a	priori	alpha	level	set	at	p	
<	0.05.		Between-session	reliability	was	determined	using	both	ICC	(Model	3,	1)	and	Paired	
samples	T	tests.		In	accordance	with	Rhea	(2004),	Cohen’s	d	effect	sizes	(ES)	were	interpreted	
as	follows;	trivial	=	<	0.25,	small	=	0.25	-	0.5,	moderate	=	0.50	-	1.0	and	large	>	1.0.		Post-hoc	
statistical	power	was	calculated	using	G	Power	3.1	(Faul	et	al.,	2009),	for	a	large	effect	size	of	
0.5,	a	total	n	=	7	was	sufficient	to	deliver	an	actual	power	of	0.49.		The	reliability	was	
considered	acceptable	if	the	ICC	r	≥	0.8	(Cortina,	1993).		SEM	and	smallest	detectable	
differences	(SDD)	were	calculated	to	provide	information	for	upon	whether	or	not	a	change	in	
an	individual’s	performance	was	significant,	with	SEM	calculated	using	the	formula:	

SD pooled ∗  1 − ICC 	and	SDD	calculated	from	the	formula:	 1.96 ∗ 2 ∗ SEM).	
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6.4 Results	

6.4.1 Between-session	reliability	of	a	single	CMJ	per	testing	day	
Between-session	reliability	was	high	for	the	CMJ	(ICC	=	0.986;	d	=	0.153;	SEM	0.003;	SDD	=	
0.01,	2.4%)	(Figure	6.1),	with	trivial	and	non-significant	differences	(p	>	0.05)	noted	between	
days.	

	

Figure	6.1:	CMJ	height	for	testing	days	one	and	two	

6.5 Discussion	

As	was	hypothesised,	a	single	CMJ	can	be	considered	to	be	a	reliable	jump	modality	for	
assessing	between-sessions	performances.		Results	from	this	study	followed	a	similar	pattern	
to	that	reported	in	Chapter	4	and	5,	with	a	single	CMJ	measured	via	OptoJump	appearing	as	
highly	reliable	(r	=	0.906)	between	sessions.		Despite	Chapter	4	showing	differences	existed	
between	session	one	and	session	two,	when	assessing	CMJ	performance,	this	particular	
investigation	shows	a	contrary	view:	that	the	performance	of	a	single	CMJ	(measuring	jump	
height)	is	a	reliable	measure	for	assessing	post-match	levels	of	readiness.	

Support	for	the	reliability	of	OptoJump	has	previously	been	reported	by	Glatthorn	et	al.	(2011),	
who	noted	very	high	ICCs	for	both	OptoJump	CMJ	height	and	CMJ	height	measured	on	a	force	
plate,	despite	systematic	differences	occurring	between	instruments	(-1.06	cm;	p	<	0.001).		
Glatthorn	et	al.	(2011)	noted	excellent	test-retest	reliability	of	the	OptoJump	CMJ	height	
measurement	(ICC	0.989;	CV	2.2%).		However,	the	jump	protocol	implemented	between	this	
experimental	study	and	that	of	Glatthorn	et	al.	(2011)	differs,	whereby,	for	example,	the	
subjects	used	were	not	considered	to	be	elite	within	the	research	by	Glatthorn	et	al.	(2011),	
meaning	that,	as	a	result,	clear	comparisons	should	be	not	be	made.		The	misalignment	of	the	
photoelectrical	cells	associated	with	the	OptoJump	could	also	have	explained	some	of	the	
differences	observed,	such	as	the	concern	that	a	subject’s	foot	might	have	broken	the	electrical	
cell,	but	not	yet	landed	on	the	force	plate.		Similarly,	when	assessing	reliability	of	jump	
measures,	Jensen	et	al.	(2011)	presented	high	reliability	(ICC	0.966;	CV	5.1%)	for	OptoJump	
using	the	flight	time	calculation	reported	earlier	(Chapter	5.3.2.3).		When	considering	that	the	
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research	by	Jensen	et	al.	(2011)	involved	similar	methodology	and	perhaps	most	importantly,	
rugby	union	players,	comparisons	between	these	results	are	warranted.	

More	recent	research	specifically	assessing	CMJ	performance	within	rugby	players	by	
Gathercole,	Sporer,	and	Stellingwerff	(2015)	is	also	of	interest.		Gathercole,	Sporer,	and	
Stellingwerff	(2015)	noted	that	flight	time	and	peak	displacement	corresponded	with	increased	
training	load.		One	might	therefore	assume	that	the	results	by	Gathercole,	Sporer,	and	
Stellingwerff	(2015)	indicate	that	jump	height	decreased	alongside	increases	in	training	
volume,	yet	the	opposite	is	true.		It	is	interesting	for	practitioners	to	note	that	there	was	an	
absence	of	change	in	the	jump	height	variable	itself.		Results	from	the	research	by	Gathercole,	
Sporer,	and	Stellingwerff	(2015),	assessing	the	response	of	CMJ	performance	to	increases	in	
training	load	in	elite	female	rugby	players,	cannot	be	compared	to	the	absolute	CMJ	values	
presented	in	this	study,	as	both	the	gender	of	the	subjects	and	fatigue	created	differ.		Readers	
are	also	advised	to	note	that	the	assessment	of	jump	height	used	within	the	research	by	
Gathercole,	Sporer,	and	Stellingwerff	(2015)	incorporated	a	different	testing	protocol	and	that	
the	assessed	data	was	taken	from	within	training	periods	and	not	from	testing	post-match	play,	
as	was	the	case	in	this	study.	

As	reported	in	Chapter	5,	when	assessing	two	CMJ	performances	using	the	OptoJump,	a	SDD	of	
1.7%	was	noted	to	be	of	interest	to	practitioners	working	in	the	elite	rugby	environment.		Data	
from	this	study	also	adds	to	the	knowledge	base,	with,	for	example,	the	value	of	2.4%	change	
for	a	single	CMJ	being	smaller	than	the	value	reported	by	Glatthorn	et	al.	(2011).		Glatthorn	et	
al.	(2011)	noted	high	ICC	values	(mean	0.986),	low	coefficient	of	variation	(2.5%)	and	low	
random	errors	averaged	(2.87	cm),	therefore	supporting	CMJ	as	reliable	for	detecting	changes	
in	longitudinal	assessments.		When	trying	to	identify	NMF	using	CMJ,	jump	height,	assessed	
from	flight	time	using	the	force	plate,	has	been	considered	the	most	precise	and	reliable,	yet	as	
previously	explained	in	Chapter	5,	for	most	team-based	scenarios	a	force	plate	is	not	readily	
available.		When	considering	the	financial	outlay	associated	with	force	plate	use,	the	likelihood	
of	rugby	clubs	being	able	to	implement	such	technology	is	unlikely;	therefore	the	OptoJump	
would	be	the	next	best	alternative.		This	study	adds	to	the	knowledge	base	by	identifying	a	
difference	of	greater	than	1	cm	(2.4%)	in	jump	height	signifying	meaningful	change	between	
sessions,	while	recommending	the	assessment	of	a	single	CMJ	performance.	

6.5.1 Limitations	of	this	study	
One	potential	limitation	of	this	research	surrounds	the	relatively	small	sample	size	(n=12).		
Despite	the	sample	size	being	larger	than	those	used	in	the	investigations	reported	in	Chapters	
4	and	5,	an	even	larger	sample	size	would	perhaps	have	presented	greater	depth	and	breadth	
to	the	knowledge	base	of	a	sole	CMJ.		Alongside	sample	size,	another	potential	limitation	of	this	
study	surrounds	the	self-selected	CMJ	protocol	of	the	players.		Players	were	noted	potentially	to	
have	adopted	differing	CMJ	techniques,	mainly	whereby	depth	of	CMJ	on	the	downward	phase	
varied	and	width	of	stance	was	individually	selected.		These	individually	selected	jump	
techniques	could,	therefore,	have	altered	results.		It	could,	however,	be	argued	that	the	
variability	in	CMJ	technique	improved	the	ecological	validity	of	this	study,	as	not	all	players	
would	normally	move	in	the	same	manner	especially	during	the	competition	phase	of	an	elite	
rugby	union	playing	season.		Fatigue	and	physical	mobility	issues	due	to	the	physical	nature	of	
the	games	and	the	training	that	the	players	undertake,	are	factors	that	can	commonly	influence	
movement	and	technique.	

	



	 158	

6.6 Practical	Applications	

From	this	research,	one	could	conclude	that	a	learning	effect	does	not	exist	between	testing	
days	for	performance	of	a	single	CMJ.		As	a	consequence,	contrary	to	the	views	of	past	research	
a	single	CMJ	measured	via	OptoJump	appears	to	be	a	highly	reliable	measure	of	assessing	
between-sessions	performances.		Future	practice	recommends	a	meaningful	change	of	2.4%	(1	
cm)	as	being	of	note	for	practitioners	working	in	the	elite	rugby	environments,	when	assessing	
CMJ	performance	between	sessions.		This	study	therefore	adds	to	the	knowledge	base	existing	
for	between-session	assessments	of	CMJ	performance	in	elite	rugby	union	players,	supporting	
the	OptoJump	as	the	next	best	alternative	for	assessing	a	single	CMJ	performance	when	force	
plates	are	not	available.	
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6.7 Implications	of	experimental	chapter	6	for	subsequent	studies	

Despite	this	chapter	firstly	confirming	the	reliability	of	conducting	one	CMJ	in	the	days	between	
matches	and	secondly	identifying	a	meaningful	change	of	2.4%	(1cm),	a	greater	understanding	
of	the	time-course	of	restoration	of	CMJ	in	the	days	post	rugby	match	is	needed.		The	ability	for	
applied	practitioners	to	be	able	to	quantify	both	magnitude	and	duration	of	performance	
decrement	would	be	of	major	benefit	for	training	prescription	in	the	days	post	match.		In	
addition	to	the	assessment	of	CMJ	height	as	a	measure	of	performance,	a	need	also	exists	to	
assess	another	measure	of	post-match	recovery,	to	provide	further	confidence	to	future	CMJ	
height	investigations.	
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7 Change	in	Countermovement	Jump	Performance	and	Well-being	
Scores	of	Professional	Rugby	Union	Players	Post-match	

7.1 		Abstract	

Planned	periodisation	without	consideration	for	restoration	of	performance	and	testing	of	
time-course	of	recovery	is	likely	to	put	players	at	risk	of	sub-optimal	performance	or	injury	
risk.		Stress	on	rugby	players’	bodies	is	often	more	frequently	accumulated	by	game	situations,	
where	players	are	asked	to	compete	on	a	weekly	basis.		CMJ	and	self-report	well-being	(WB)	
testing	protocol	is	commonly	used	within	elite	field	sport	settings	in	order	to	assess	NMF	and	
perceived	fatigue,	when	performance	is	impaired	in	the	immediate	days	post-match.		This	study	
aimed	to	compare	CMJ	performance	and	WB	scores	at	pre-match	and	three	time-points	post-
match	(60	hours,	90	hours	and	170	hours),	in	order	to	develop	a	better	understanding	of	time-
course	of	recovery	in	elite	level	rugby	union	across	positional	groups.		Relationships	between	
changes	in	CMJ	performance,	WB	scores	and	match	characteristics	(total	distance	covered,	
distance	covered	in	Zone	5,	distance	covered	in	Zone	6,	accelerations,	decelerations	and	
impacts	encountered	in	Zones	4,	5	and	6)	were	also	investigated	across	positional	groups.		
Differences	in	CMJ	and	WB	across	time-points	were	determined	using	repeated	measures	
ANOVA	with	Bonferroni	post-hoc	analysis,	or	non-parametric	equivalent,	illustrating	that	both	
CMJ	performance	and	WB	score	were	reduced	at	60	hours	post-match,	90	hours	post-match	
and	170	hours	post-match,	with	WB	score	reduced	to	a	greater	value	and	for	a	longer	time-
course	than	CMJ.		A	meaningful	change	of	2.6	cm	(-6%)	change	in	CMJ	performance	was	noted	
alongside	a	-9%	change	in	WB	score	at	60	hours	post-match.		In	addition,	correlations	were	
strong	and	significant	between	total	distances	covered	(p	=	0.002;	r	=	0.396),	decelerations	(p	<	
0.001;	r	=	0.532),	D5	(p	<	0.001;	r	=	0.488)	and	D6	(p	<	0.001;	r	=	0.489)	at	60	hours	post-match	
with	changes	in	CMJ	performance.		Further	correlations	were	noted	between	accelerations	(p	=	
0.001;	r	=	0.558)	at	60	hours	post-match	with	changes	in	CMJ	performance	for	the	forwards	
only.		The	data	from	this	study	adds	to	the	knowledge	relating	to	changes	in	CMJ	performance	
and	self-reported	WB	post-match	in	rugby	union,	although	the	evidence	from	this	study	would	
dispute	the	views	of	previous	time-course	research,	when	considering	the	longer	time-course	
of	recovery	associated	with	backs	compared	to	forwards.	

7.2 		Introduction	

Rugby	union	has	been	reported	to	involve	both	intense	anaerobic	exercise	interspersed	with	
lower	intensity	bouts	of	aerobic	exercise,	with	match	distances	averaged	across	a	season	being	
5850	±	1101	m	for	forwards	and	6545	±	1055	m	for	backs	per	game	(Cahill	et	al.,	2013).		The	
high	level	of	impacts	(>	795	per	game)	and	the	metabolic	cost	(work	to	rest	ratios	of	greater	
than	1:4)	involved	in	a	sport	such	as	rugby	union	are	contributing	factors	towards	the	
physiological	and	mechanical	stress	associated	with	EIMD	(Austin	et	al.,	2011a;	Roberts	et	al.,	
2008).		EIMD.		Additionally,	the	associated	time-course	of	recovery	has	been	extensively	
researched	(Hausswirth	et	al.,	2011;	McLellan	&	Lovell,	2012;	Twist	&	Eston,	2009;	Twist	&	
Sykes,	2011),	with	correlations	noted	between	the	total	number	of	impacts	experienced	within	
elite	rugby	league	match	play	and	compromised	neuromuscular	function,	when	assessing	jump	
performance	in	the	48	hours	post-match	(McLellan	&	Lovell,	2012).	
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A	typical	professional	rugby	season	in	the	northern	hemisphere	contains	over	30	games	and	
involves	blunt	force	trauma	and	high	running	volumes	in	training	and	matches	(Alaphilippe	et	
al.,	2012).		The	volume	and	intensity	of	work,	including	associated	trauma	from	contact	
completed	in	a	rugby	union	match,	result	in	fatigue	and	extended	recovery	time	post-match,	
with	West	et	al.	(2014)	noting	that	peak	power,	measured	via	CMJ,	recovered	no	sooner	than	60	
hours	post-match.		Due	to	blunt	force	trauma	and	high	running	volumes	from	both	training	and	
games	over	the	course	of	a	playing	season,	rugby	players	become	fatigued	(Argus,	Gill,	Keogh,	et	
al.,	2012;	Cresswell	&	Eklund,	2006;	Fuller	et	al.,	2007).		As	reported	by	Gill	et	al.	(2006),	the	
presence	of	residual	fatigue,	carried	over	from	the	previous	games	and	training,	is	represented	
by	increased	creatine	kinase	(CK)	levels,	with	reductions	in	performance	measures	also	being	
reported	(Crewther	et	al.,	2009).		It	is,	however,	important	for	practitioners	to	note	that	
restoration	of	performance	measures	is	of	utmost	importance	for	athletes	and	that	this	must	be	
achieved	prior	to	subsequent	competition,	irrespective	of	biochemical	markers.		In	essence,	
restoration	of	performance	is	perhaps	more	important	than	any	residual	biochemical	
disruptions,	as	the	ability	of	rugby	players	to	be	able	to	perform	their	role	within	match	play	is	
paramount.		Biochemical	disruption	may	be	evident	upon	assessment	of	rugby	players	in	the	
days	post-match	(Crewther	et	al.,	2009;	Lindsay,	Lewis,	Scarrott,	Gill,	et	al.,	2015;	Smart	et	al.,	
2008;	Takarada,	2003;	West	et	al.,	2014),	although	if	this	biochemical	imbalance	is	not	affecting	
a	player’s	ability	to	perform	optimally,	then	surely	this	is	of	less	of	a	concern	than	a	lack	of	
restoration	of	performance	measures,	which	potentially	signify	an	inability	to	execute	optimal	
performance,	despite	fatigue	being	present	in	both	cases.	

Intense	exercise,	such	as	rugby	union	match	play,	has	been	shown	to	cause	temporal	
impairments	in	immune	function,	with	disturbances	in	immunity	lasting	up	to	38	hours	post-
match	(Cunniffe	et	al.,	2010).		Frequently,	the	greatest	physical	stimuli	of	a	rugby	player’s	week	
is	the	match,	yet	high	training	loads	combined	with	match	exertions	and	insufficient	recovery	
have	been	reported	in	rugby,	often	pushing	players	into	states	of	overreaching	with	resultant	
reduced	neuromuscular	function	(Coutts,	Reaburn,	Piva,	&	Murphy,	2007).		Recent	research	
from	rugby	union	(Jones	et	al.,	2014)	supports	the	view	that	muscle	damage	is	position-specific,	
with	the	number	of	impacts	encountered	during	a	match	relating	directly		to	the	levels	of	
muscle	damage,	indicated	by	increased	levels	of	(CK).		Mashiko	et	al.	(2004b)	noted	that	the	
blunt	trauma	associated	with	match	demands	performed	by	forwards	may	produce	longer	
lasting	muscle	damage	than	that	experienced	from	eccentric	actions,	which	backs	would	be	
more	likely	to	encounter.		As	was	illustrated	in	previous	research	(Reardon,	Tobin,	Tierney,	&	
Delahunt,	2016),	forwards	are	more	likely	to	incur	contacts	during	match-play,	with	recent	
research	by	Roe	et	al.	(2017),	noting	increased	likelihood	of	upper	body	NMF,	reduced	well	
being	and	greater	elevations	in	CK	post	training	sessions	involving	contact	than	sessions	
without	contact.	

Further	evidence	of	match	contacts	and	resultant	fatigue	was	noted	by	Twist	et	al.	(2012),	
where	total	contacts	for	forwards	was	reported	to	correlate	with	all	markers	of	post-match	
fatigue	(muscle	soreness	r	=	0.62;	perceived	fatigue	r	=	0.69;	CK	r	=	0.74;	jump	flight	time	r	=	-
0.55),	yet	only	flight	time	was	correlated	with	offensive	contacts	in	backs	(r	=	0.54).		This	
research	by	Twist	et	al.	(2012)	used	time-motion	analysis	to	assess	contacts	encountered	by	
professional	rugby	league	players,	reporting	that	backs	presented	greater	decrement	in	
performance	than	forwards,	when	assessing	changes	in	CK,	perceptual	and	neuromuscular	
fatigue	48	hours	post-match.		The	influence	of	concentric	and	eccentric	forces	during	match	
play,	upon	resultant	muscle	damage,	was	also	presented	by	Jones	et	al.	(2014),	who	reported	
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that	high	speed	running	was	a	predictor	of	muscle	damage	for	backs.		These	high-speed	
running	involvements	are	likely	to	include	deceleration	and	accelerations,	which,	when	
considered	alongside	the	findings	from	Chapter	3	(that	backs	encounter	a	greater	frequency	of	
these	match	demands	compared	to	forwards)	is	an	important	consideration	for	future	time-
course	of	restoration	research.		The	research	presented	above,	therefore,	highlights	the	
importance	of	looking	at	the	relationships	between	match	characteristics	that	assess	positional	
differences	and	the	muscle	damage	response	created,	with	high	level	impacts	and	high	speed	
running	being	the	main	areas	of	focus.	

Prior	research	has	illustrated	the	negative	influence	of	high	intensity	rugby	specific	activities,	
such	as	sprinting	and	collisions	along	with	the	resultant	muscle	damage	response	(Jones	et	al.,	
2014;	McLellan	&	Lovell,	2012;	Morel	et	al.,	2015).		In	addition,	from	the	evidence	gathered	in	
Chapter	3	it	was	noted	that	total	distance	covered,	high	intensity	running	zones	and	impacts	in	
higher	zones	are	likely	to	have	an	influence	upon	delayed	restoration	of	performance	post-
match.		When	considering	the	research	by	McLellan	et	al.	(2011a)	showing	impacts	in	higher	
zones	(>	8.1	G)	were	positively	correlated	with	significant	muscle	damage,	and	the	research	by	
Jones	et	al.	(2014)	showing	correlations	between	high	speed	running	(>	5	m.s-1)	and	sprinting	
(>	5.6	m.s-1)	and	increased	plasma	CK,	the	need	to	further	investigate	specific	GPS	metrics	is	
warranted.		The	influence	of	specific	match	demands	(specifically	the	high	intensity	metrics)	
are	therefore	of	interest	to	practitioners,	when	assessing	restoration	levels	post	rugby	union	
match	play	across	positional	groups.		High	force	muscle	contractions	such	as	those	experienced	
in	accelerations,	decelerations	and	collision	situations	(which	are	likely	to	be	associated	with	
impacts	in	Zones	4,	5	and	6)	are	assumed	to	result	in	greater	decreases	in	performance,	and	
therefore	also	warrant	investigation.	

An	accumulation	of	training	stress,	if	managed	properly,	will	have	a	positive	effect	upon	the	
athlete,	however,	if	managed	poorly	and	insufficient	recovery	occurs,	FOR	can	develop	into	the	
more	severe	training	response	phenomenon	of	OT.		Subjective	measures,	specifically,	have	been	
used	to	monitor	fatigue	in	previous	research,	including	self-report	well-being	questionnaires	
showing	reduced	perception	of	restoration	across	a	longitudinal	period	(Cresswell	&	Eklund,	
2006),	with	correlations	between	OT	scores	assessed	via	questionnaire	and	altered	CK	values	
apparent	in	the	study	by	Alaphilippe	et	al.	(2012),	which	assesses	biochemical	markers	over	a	
longitudinal	period	in	rugby	union.		Neuromuscular	function	tests	are	perhaps	the	most	
commonly	used	forms	of	assessing	player	fatigue	in	team	sport	settings;	and	include	varying	
forms	of	jump	tests,	plyometric	push-ups,	sprint	performances,	sub-maximal	and	maximal	
performance	tests	and	isokinetic	dynamometry	(Duffield	et	al.,	2012;	Johnston	et	al.,	2013;	
Twist	&	Sykes,	2011).		Decreased	jump	performance	has	been	reported	for	up	to	24	hours,	with	
a	reported	26%	reduction	in	PRFD	(McLellan	et	al.,	2011b;	Twist	et	al.,	2012).	

Despite	the	use	of	a	rugby	specific	activity	being	the	most	likely	activity	to	indicate	readiness	in	
the	immediate	days	post-match,	its	practicality	for	use	within	a	weekly	training	cycle	is	
unrealistic.		Many	studies	(Gathercole,	Sporer,	&	Stellingwerff,	2015;	Johnston	et	al.,	2015;	
McLellan	et	al.,	2011d;	West	et	al.,	2014)	assessing	rate	of	recovery	post	fatigue	in	rugby	have,	
therefore,	assessed	restoration	of	performance	through	using	tests	that	are	reproducible	and	
do	not	induce	added	fatigue.		In	an	assessment	of	multiple	tests	(CMJ	and	20	m	sprint),	to	detect	
NMF	post	fatiguing	exercise	with	team	sport	athletes,	Gathercole,	Sporer,	Stellingwerff,	and	
Sleivert	(2015b)	noted	moderate	reductions	in	CMJ	at	72	hours,	while	20	m	sprint	performance	
showed	no	reduction,	therefore	recommending	their	use.		One	aim	of	this	research	was	to	
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compare	CMJ	performance	and	WB	scores	pre-match	and	60	hours	(post-match),	90	hours	
(post-match)	and	170	hours	(post-match),	in	order	to	develop	a	better	understanding	of	time-
course	of	recovery	post-match	in	elite	level	rugby	union.		Secondly,	this	research	aimed	to	
determine	whether	or	not	there	were	differences	in	CMJ	performance	and	WB	scores;	baseline,	
60	hours	(post-match),	90	hours	(post-match)	and	170	hours	(post-match)	and	also	between	
positional	groups	(forwards	and	backs)	as	a	result	of	the	match	demands	specific	to	these	
groups.		Thirdly,	this	research	aims	to	assess	changes	in	CMJ	performance	and	WB	performance	
between	positional	groups	(forwards	and	backs),	GPS	variables	used	to	assess	the	influence	of	
specific	match	demands	upon	restoration	of	performance.		In	line	with	the	previous	research	
(McLellan	&	Lovell,	2012;	McLellan	et	al.,	2011b;	Twist	et	al.,	2017;	Twist	&	Sykes,	2011;	Twist	
et	al.,	2012;	West	et	al.,	2014),	it	was	hypothesised	that	delay	of	restoration	of	CMJ	performance	
and	reduced	WB	scores	would	be	present	in	the	immediate	days	post-match,	and	that	forwards	
would	take	longer	to	recover	from	match	demand	than	backs.		Relationships	between	changes	
in	CMJ	performance,	WB	scores	and	match	characteristics	(Total	distance	covered,	distance	
covered	in	Zone	5	and	6,	accelerations,	decelerations	and	impacts	encountered	in	Zones	4,	5	
and	6)	were	also	investigated.		Only	these	match	variables	were	investigated,	as	these	metrics	
were	considered	to	be	important	for	further	investigation,	in	light	of	research	outlined	above	
(Lindsay,	Lewis,	Scarrott,	Gill,	et	al.,	2015;	McLean	et	al.,	2010;	McLellan	et	al.,	2011a,	2011b;	
Roe	et	al.,	2017).	

7.3 		Method	

This	study	focused	upon	two	measures;	neuromuscular	function	(CMJ	height)	and	subjective	
self-report	well-being	(WB).		These	test	measures	were	then	related	to	GPS	data	(Total	distance	
covered,	accelerations,	decelerations	and	impacts	encountered	in	Zones	4,	5	and	6),	in	order	to	
assess	the	effect	of	game	demands	upon	subsequent	CMJ	performance	and	WB	at	60	hours,	90	
hours	and	170	hours	post-match.		Comparisons	were	made	baseline	to	determine	if	these	
variables	had	returned	to	normal	prior	to	the	start	of	the	next	match.	

7.3.1 Participants	
Twenty-seven	subjects	(Age	27.7	±	4.6	years,	training	age	8.4	±	4.7	years,	bodyweight,	98.1	±	
11.2	kg	and	height	being	184.3	±	6.3	cm)	were	assessed	across	five	games	resulting	in	fifty-nine	
data	sets,	with	some	players	presenting	data	from	more	than	one	game.		Of	the	59	data	samples,	
forwards	represented	31	instances,	while	the	backs	represented	28	instances.		All	participants	
were	taken	from	within	the	professional	training	squad	at	the	participating	rugby	club.	

7.3.2 Experimental	Approach	
This	study	was	conducted	in	accordance	with	the	Declaration	of	Helsinki	and	was	approved	by	
Salford	University	Institutional	Review	Board.		The	seven-week	assessment	period	covered	five	
games	and	was	taken	during	a	competitive	phase	of	a	rugby	union	playing	season.		Throughout	
the	seven-week	period,	no	coach-led	recovery	strategies	were	administered	upon	the	
participants,	such	as	ice	baths,	to	aid	restoration	of	performance.		Any	recovery	methods	
utilised	by	the	participants	were	noted	and	taken	into	account	for	further	analysis.		Participants	
were	advised	to	maintain	their	usual	recovery	process	post-match	throughout	the	testing	
period,	including	nutritional	interventions	or	active	swim	recovery	sessions.	

Throughout	the	testing	period,	training	volume	was	consistent	between	games;	on	average,	
each	week	consisted	of	two	resistance-training	sessions	and	five	rugby	sessions.		As	commonly	
seen	within	team	sport	settings,	where	games	are	weekly,	training	volume	tapered	as	game	day	
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approached.		For	the	performance	testing	analysis,	only	players	who	completed	over	30	
minutes	of	matches	were	included.		Thirty	minutes	was	considered	to	be	an	appropriate	game-
time	exposure	for	players	to	experience	trauma	and	fatigue	that	might	affect	the	performance	
measures	assessed.		As	illustrated	by	research	outlined	in	Chapter	1	of	this	thesis	and	from	the	
results	recorded	in	Chapter	3,	elite	rugby	players	are	likely	to	be	substituted	at	varying	time	
points,	depending	upon	positional	group	(Forwards	50-65	mins;	Backs	70-75	mins),	with	these	
varying	times,	therefore,	being	likely	to	affect	restoration	of	performance	levels	post-match.	

Due	to	the	structure	of	the	training	weeks	associated	with	this	study,	performance	tests	were	
measured	at	pre-match,	60	hours	post-match,	90	hours	post-match	and	at	170	hours	post-
match	(prior	to	the	subsequent	match).		Pre-match	tests	were	considered	the	baseline	upon	
which	to	compare	the	post-match	values	against,	with	tests	conducted	approximately	three	
hours	prior	to	kick	off.		These	time-points	were	chosen	as	they	were	the	only	available	time-
slots	that	could	be	consistently	assessed	across	this	study	and	in	addition	were	considered	to	
be	a	consequence	of	“real	world”	testing	in	the	elite	sport	environment,	where	training	
schedules	often	change	post-match.	

7.3.3 Jump	testing	
The	CMJ	was	selected	in	line	with	previous	research	(Johnston	et	al.,	2015;	Johnston,	Gabbett,	et	
al.,	2014;	McLean	et	al.,	2010;	McLellan	&	Lovell,	2012;	McLellan	et	al.,	2011b;	Twist	et	al.,	
2012;	West	et	al.,	2014)	in	order	to	measure	neuromuscular	performance	and	was	performed	
from	a	standing	position,	with	the	whole	plantar	part	of	the	foot	touching	the	jumping	surface	
and	the	hands	resting	on	the	hips	throughout.		A	counter	movement	was	conducted	by	the	
participants	until	the	knee	angle	reached	approximately	90°,	then	immediately	the	participants	
jumped	as	high	as	they	could,	with	their	legs	remaining	straight	upon	flight,	therefore	
preventing	any	tucked	legs	which	would	lead	to	inaccurate	measurement.		Upon	landing	the	
participants	made	contact	with	the	testing	surface	with	a	knee	angle	extended	to	180°	and	
flexed	upon	contact	with	the	surface.		Post-jump,	each	participant	received	verbal	feedback	
about	his	performance,	with	only	one	jump	being	allowed	for	each	individual	due	to	time	
constraints.		This	was	not	considered	to	be	an	issue	as	all	individuals	were	familiar	with	CMJ	
protocol.		In	line	with	previous	studies	assessing	CMJ	performance,	protocols	such	as	hands	on	
the	hips	throughout	the	jump	and	extended	feet	throughout	flight	to	prevent	tucking	of	the	
knees,	were	administered,	as	these	alternative	techniques	have	been	reported	to	cause	
inaccuracies	(Flanagan	et	al.,	2008;	Taylor,	2012).		All	CMJs	were	performed	at	a	depth	at	which	
the	subjects	were	comfortable	and	they	were	instructed	to	“jump	as	high	as	possible”.		CMJ	was	
performed	without	arm	swing,	as	an	increase	in	jumping	height	of	10%	has	been	observed	
when	countermovement	jumping	with	arms	is	performed	compared	to	without	arms	(Lees	et	
al.,	2004).		All	jumps	were	performed	on	an	OptoJump	optical	measuring	system	(Microgate,	
Bolzano,	Italy),	previously	reported	in	more	detail	within	Chapter	4.3.3.1.		Players	stood	
between	the	OptoJump	bars	when	jumping,	with	jump	height	assessed	via	flight	time.	

7.3.4 Self-report	well-being	questionnaires	
All	players	completed	a	WB	questionnaire	upon	waking	in	their	own	homes,	using	an	online	
player	management	tool.		This	questionnaire	assessed	WB	via	the	players’	subjective	responses	
to	questions	around	their	sleep,	muscle	soreness,	mood	and	appetite.		The	questionnaire	
structure	was	based	upon	the	recommendations	of	Hooper	and	Mackinnon	(1995)	and	was	
completed	on	every	training	day	throughout	the	testing	period.		The	WB	questionnaire	used	
within	this	research	was	one	that	was	familiar	to	the	participants	and	was	completed	at	the	



	 165	

same	time-points	to	try	and	ensure	reliability,	consistency	and	reproducibility.		WB	assessment	
was	scored	out	of	ten,	with	zero	being	poor	and	ten	being	good.		A	sample	questionnaire	can	be	
found	within	Appendix	A.		Despite	WB	assessment	being	regularly	implemented	in	many	rugby	
specific	scientific	studies	and	considered	to	be	easy	to	implement,	the	reliability	of	WB	use	is	
yet	to	be	assessed.		The	main	reason	behind	the	lack	of	academic	research	to	support	WB	use	
surrounds	the	notion	that	self-report	subjective	WB	is	difficult	to	quantify.		In	order	to	measure	
the	reliability	of	WB	questionnaires	subjects	would	have	to	complete	a	structured	WB	
assessment	on	more	than	one	occasion	within	a	short	space	of	time.		However,	this	would	
perhaps	be	deemed	difficult	to	control,	as	subjects	could	potentially	deliberately	remember	
what	they	had	completed	in	the	prior	assessment	and	replicate	it,	therefore	questioning	the	
reliability	of	the	data	collected.	

7.3.5 Match	analysis	and	GPS	data	
Analysis	of	GPS	data	and	associated	training	volume	(distances,	speeds	and	impacts	for	
example)	has	been	utilised	in	many	studies	of	rugby	union	(Austin	et	al.,	2011a;	Cahill	et	al.,	
2013;	Coughlan	et	al.,	2011)	and	is	considered	an	essential	tool	of	many	elite	sport	team	
practitioners.	

Measurements	were	conducted	on	players	from	one	club,	with	GPS	units	(StatSports	Viper,	
Northern	Ireland)	being	used	throughout	all	games	to	assess	movement	patterns,	sampling	at	a	
10	Hz	frequency.		Reliability	of	GPS	analysis	in	team	sport	settings	has	been	confirmed	in	many	
previous	studies	(Coutts	&	Duffield,	2010;	Cummins	et	al.,	2013;	Johnston,	Watsford,	et	al.,	
2014;	Varley	et	al.,	2012),	with	it’s	worth	outlined	in	greater	detail	in	Chapter	2.1.2.		The	indices	
assessed	from	the	GPS	data	were;	total	distance	covered,	distance	covered	in	Zone	5,	distance	
covered	in	Zone	6,	accelerations,	decelerations	and	impacts	encountered	in	Zones	4,	5	and	6.		
All	participants	took	part	in	normal	training	weeks,	prescribed	by	the	staff,	with	no	training	
being	altered	for	the	purpose	of	this	study.	

Table	7.1:	Categorisation	of	distances	covered	and	impacts	

	 Zone	1	 Zone	2	 Zone	3	 Zone	4	 Zone	5	 Zone	6	
Speed	(m/s)	
Speed	(km/h)	

0	–	1.5	 1.51	–	3.0	 3.01	–	4.0	 4.01	–	5.5	 5.51.	–	7.0	 7.01	+	
0	–	5.40	 5.41	–	10.80	 10.81	–	14.40	 14.41	–	19.80	 19.81	–	25.20	 25.21	+	

Impacts	in	Zones	
(G)	

3	–	5	 5	–	7	 7	-	9	 9	–	11	 11	-	13	 13	–	15	

	

For	the	purposes	of	discussing	the	distance	and	impact	zones,	shorthand	abbreviations	were	
used.		D5	related	to	distance	covered	in	Zone	5,	D6	to	distance	covered	in	Zone	6.		Similarly,	
impact	zones	were	abbreviated	to	Im4	for	impacts	encountered	in	Zone	4,	Im5	for	impacts	
encountered	in	Zone	5	and	Im6	for	impacts	encountered	in	Zone	6.	

7.3.6 Statistical	Analyses	
Statistical	analysis	was	performed	using	SPSS	Version	20	(IBM),	with	an	a	priori	alpha	level	set	
at	p	<	0.05.		Distributions	of	analysed	variables	were	assessed	using	Shapiro	Wilk	test.		Two	
separate	repeated	measures	ANOVA’s	with	Bonferonni	post-hoc	analysis	were	conducted	to	
determine	changes	in	CMJ	performance	and	WB	scores	at	0,	60,	90	and	170	hours	(immediately	
prior	to	next	game).		Effect	sizes	(ES)	were	also	determined	using	the	Cohen’s	d	method,	and	
interpreted	based	upon	the	criteria	suggested	by	Rhea	(2004)	and	interpreted	as	follows;	
trivial	=	<	0.25,	small	=	0.25-0.5,	moderate	=	0.50-1.0	and	large	>	1.0.	
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Relationships	were	assessed	amongst	the	whole	data	set	and	separately	for	forwards	and	
backs;	in	order	to	determine	associations	between	GPS	match	performance	data	and	change	in	
CMJ	performance	and	WB	score	(Pre-match	score	–	post-match	score).		Correlations	were	made	
using	both	parametric	and	non-parametric	equivalents,	where	appropriate.		When	multiple	
correlations	were	made,	the	p	value	was	calculated	via	Bonferonni	post-hoc	analysis	in	order	to	
determine	the	true	significance.		Associations	were	also	assessed	separately	for	forwards	and	
backs,	as	a	result	of	the	data	presented	in	Tables	3.4	and	3.5	within	Chapter	3.4.2	along	with	
those	presented	in	prior	research	(Cahill	et	al.,	2013;	Coughlan	et	al.,	2011;	Cunniffe	et	al.,	2009;	
Jones	et	al.,	2015;	Lindsay,	Draper,	et	al.,	2015;	Roberts	et	al.,	2008),	thus	illustrating	
differences	in	match	characteristics	between	forwards	and	backs	across	many	metrics	
(distance	covered,	accelerations,	decelerations,	distance	in	Zone	6	and	Impacts	in	Zone	6).	

7.4 Results	

7.4.1 Changes	in	CMJ	performance	pre	to	post-match	
Shapiro-Wilk	tests	of	normality	revealed	that	CMJ	(jump	height)	was	normally	distributed	at	
time-points	baseline,	60	and	170	hours	post-match	(p	>	0.05),	but	not	at	90	hours	post-match	
(p	=	0.012).		Alongside	absolute	values,	relative	values	also	demonstrated	normal	distribution	
via	Shapiro-Wilk	tests,	when	assessing	the	percentage	change	in	CMJ	(jump	height)	at	time-
points	baseline,	60,	90	and	170	hours	post-match	(p	>	0.05).		As	a	result,	a	Friedman	test	was	
conducted	showing	a	significant	difference	in	jump	height	across	time-points	(p	=	0.000),	with	
multiple	Wilcoxon	tests	with	Bonferonni	correction	demonstrating	a	small	yet	significant	
decrease	between	CMJ	performance	pre-game	(baseline	=	39.9	±	5.3	cm)	and	60	hours	(37.3	±	
4.8	cm,	p	=	0.000,	d	=	0.51),	90	hours	(37.1	±	5.3	cm,	p	=	0.000,	d	=	0.52)	and	170	hours	post-
match	(38.7	±	5.1	cm,	p	=	0.015,	d	=	0.23)	(Figure	7.1).		CMJ	performance	at	60	hours	(37.3	±	4.8	
cm)	was	significantly	lower	than	at	170	hours	post-match	(38.7	±	5.1	cm,	p	=	0.045,	d	=	0.28),	
with	a	significance	difference	also	noted	between	90	hours	post-match	(37.1	±	5.3	cm)	and	170	
hours	post-match	(38.7	±	5.1	cm,	p	=	0.003,	d	=	0.30).		No	significant	(p	>	0.05)	or	meaningful	(d	
=	0.039)	difference	was	noted	between	60	hours	and	90	hours	post-match.	
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Figure	7.1:	Comparison	of	CMJ	performances	pre	and	post-match	(n=59)	

7.4.2 Changes	in	WB	performance	post-match	
In	contrast	to	CMJ,	Shapiro-Wilk	tests	of	normality	revealed	that	WB	(total	score)	were	
normally	distributed	at	all	time-points	(p	>	0.05).		Alongside	absolute	values,	relative	values	
also	demonstrated	normal	distribution	via	Shapiro-Wilk	tests,	when	assessing	the	percentage	
change	in	WB	score	at	time-points	baseline,	60,	90	and	170	hours	post-match	(p	>	0.05).		As	a	
result,	RMANOVA	tests	revealed	that	WB	scores	were	significantly	different	(p	<	0.001),	when	
comparing	baseline	(3.77	±	0.47)	to	60	hours	(3.43	±	0.54)	(p	<	0.001,	d	=	0.67),	90	hours	(3.40	
±	0.52)	(p	<	0.001,	d	=	0.74)	and	170	hours	(3.65	±	0.58)	(p	<	0.001,	d	=	0.22)	post-match,	yet	
not	between	60	and	90	hours	(p	<	0.05,	d	=	0.05).		In	addition,	significant	differences	were	
noted	between	60	hours	and	170	hours	post-match	(p	<	0.001,	d	=	0.39)	(Figure	7.2).		
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Figure	7.2:	Changes	in	wellbeing	scores	pre	to	post-match	(n=59)		

7.4.3 A	comparison	of	changes	in	CMJ	performance	pre	and	post-match	between	forwards	and	
backs	

Friedman	test	showed	no	significant	difference	in	jump	height	for	forwards	across	time-points	
(p	>	0.05)	(Baseline	36.9	±	0.82	cm;	60	35.7	±	0.97	cm;	90;	35.4	±	1.06	cm;	170	hours	36.7	±	
0.94	cm).		In	contrast,	Friedman	test	showed	a	significant	difference	in	jump	height	for	backs	
across	time-points,	with	multiple	Wilcoxon	tests	and	Bonferonni	correction	demonstrating	a	
significant	decrease	in	CMJ	performance	between	baseline	(43.2	±	3.9	cm)	and	60	hours	(39.0	±	
3.2	cm,	p	<	0.000,	d	=	2.30),	90	hours	(39.1	±	3.9	cm,	p	<	0.000,	d	=	2.57)	and	170	hours	(41.0	±	
3.9	cm,	p	=	0.005,	d	=	1.57).		Additionally,	for	the	backs,	CMJ	performance	was	significantly	(p	=	
0.010,	d	=	0.53)	lower	at	90	hours	compared	to	170	hours	post-match,	although	no	significant	
differences	(p	>	0.05)	were	noted	between	60	and	90	hours	post-match	and	60	and	170	hours	
post-match	(Figure	7.3).	
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Figure	7.3:	Changes	in	CMJ	performance	pre	to	post-match	(Forwards	n=31;	Backs	n=28)	

7.4.4 A	comparison	of	changes	in	WB	performance	pre	and	post-match	between	forwards	and	
backs	

RMANOVA	revealed	that	WB	scores	for	forwards	were	significantly	different	between	baseline	
(3.7	±	0.3)	and	60	hours	(3.4	±	0.3;	p	<	0.001,	d	=	1.00)	post-match	and	between	baseline	and	
90	hours	(3.4	±	0.4;	p	<	0.001,	d	=	0.84)	post-match,	yet	no	significant	differences	were	noted	(p	
>	0.05)	between	baseline	(3.7	±	0.3)	and	170	hours	(3.7	±	0.3)	post-match	and	between	60	
hours	(3.4	±	0.3)	and	90	hours	(3.4	±	0.4)	post-match	(Figure	7.4).		Additionally,	forwards	
showed	significant	differences	between	60	hours	(3.4	±	0.3)	and	170	hours	(3.7	±	0.3;	p	<	0.001,	
d	=	-1.00)	post-match	and	between	90	hours	(3.4	±	0.4)	and	170	hours	(3.7	±	0.3;	p	=	0.005,	d	=	
-0.84)	post-match.		Backs	also	showed	significantly	different	WB	scores	between	baseline	(3.7	±	
0.4)	and	60	hours	(3.3	±	0.4;	p	<	0.001,	d	=	1.00)	post-match,	baseline	(3.7	±	0.4)	and	90	hours	
(3.3	±	0.3;	p	<	0.001,	d	=	1.13)	post-match	and	baseline	(3.7	±	0.4)	and	170	hours	(3.5	±	0.5;	p	=	
0.023,	d	=	0.44)	post-match,	yet	no	significant	differences	were	noted	(p	>	0.05)	between	60	
hours	(3.3	±	0.4)	and	90	hours	(3.3	±	0.3)	post-match	and	between	60	hours	(3.3	±	0.4)	and	170	
hours	(3.5	±	0.5)	post-match	(Figure	7.4).	
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Figure	7.4:	Changes	in	WB	score	pre	to	post-match	(Forwards	n=31;	Backs	n=28)	

7.4.5 Relationships	between	match	data	and	changes	in	CMJ	performance	and	WB	scores	
Shapiro-Wilk	tests	of	normality	revealed	that	within	the	GPS	variables,	intensity	and	D5,	were	
normally	distributed	(p	>	0.05),	yet	total	distance	covered,	D6,	accelerations,	decelerations,	
sprints,	ImZ4,	ImZ5	and	ImZ6	were	not	normally	distributed	(p	<	0.05).		As	a	result,	Spearman’s	
correlations	with	Bonferonni	post-hoc	analysis	were	conducted	showing	no	significant	
relationship	between	CMJ	and	WB	and	the	match	demands	variables	selected	for	analysis	at	
170	hours	post-match.		However,	Spearman’s	correlations	were	strong	and	significant	between	
total	distances	covered,	decelerations,	D5	and	D6	at	60	hours	post-match	with	changes	in	CMJ	
performance.		Additionally,	changes	in	CMJ	performance	displayed	a	strong	and	significant	
relationship	between	decelerations	at	90	hours	post-match	(Table	7.2).	

Table	7.2:	Relationships	between	match	data	and	changes	in	CMJ	performance	and	WB	scores	

	 Distance	
covered	
(m)	

D5	(m)	 D6	(m)	 Decelerations	 Im5	 Im6	

CMJ	Change	
60	hours	

r	=	0.396;	
p	=	0.016*	

r	=	0.488;	
p	<	0.001*	

r	=	0.489;	
p	<	0.001*	

r	=	0.532;	p	<	
0.001*	

r	=	0.145;	
p	=	2.716	

r	=	0.073;	
p	=	4.656	

CMJ	Change	
90	hours	

r	=	0.244;	
p	=	0.496	

r	=	0.133;	
p	=	2.520	

r	=	0.294;	
p	=	0.192	

r	=	0.365;	p	=	
0.032*	

r	=	-0.111;	
p	=	3.224	

r	=	-0.025;	
p	=	6.800	

WB	Change	
60	hours	

r	=	0.305;	
p	=	0.152	

r	=	0.322;	
p	=	0.104	

r	=	0.186;	
p	=	1.264	

r	=	0.072;	p	=	4.712	 r	=	0.144;	
p	=	2.216	

r	=	0.056;	
p	=	5.400	

WB	Change	
90	hours	

r	=	0.188;	
p	=	1.232	

r	=	0.185;	
p	=	1.288	

r	=	0.158;	
p	=	1.832	

r	=	-0.031;	p	=	
6.544	

r	=	-0.114;	
p	=	3.128	

r	=	-0.141;	
p	=	2.296	

*	statistically	significant	(p<	0.05)	
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7.4.6 Relationships	between	match	data	and	changes	in	CMJ	performance	and	WB	scores	
across	positional	groups	

When	assessing	the	relationships	between	match	characteristics	and	both	CMJ	and	WB	
(forwards	n=	31;	and	backs	n=	28),	similarly	to	the	whole	sample	group	(n	=	59),	no	significant	
relationships	were	noted	for	selected	match	demands	variables	at	170	hours	post-match	for	
both	positional	groups.		However,	Spearman’s	correlations	with	Bonferonni	post-hoc	analysis	
were	conducted,	showing	a	strong	and	significant	relationship	between	accelerations	at	60	
hours	post-match	with	changes	in	CMJ	performance	for	the	forwards	only.		No	significant	
relationships	were	noted	for	selected	match	demands	variables	at	90	hours	post-match	for	
both	positional	groups	(Table	7.3).	

Table	7.3:	Relationships	between	match	data	and	changes	in	CMJ	performance	and	WB	scores	
across	positional	groups	

	 D6	(m)	 Accelerations	 Decelerations	 Im6	

Forwards	CMJ	
Change	60	hours	

r	=	0.364;	p	=	0.352	 r	=	0.558;	p	=	
0.008*	

r	=	-0.177;	p	=	2.720	 r	=	-0.023;	p	=	
7.208	

Forwards	CMJ	
Change	90	hours	

r	=	-0.036;	p	=	
7.576	

r	=	0.365;	p	=	0.352	 r	=	-0.373;	p	=	0.312	 r	=	-0.260;	p	=	
1.264	

Backs	CMJ	Change	
60	hours	

r	=	0.203;	p	=	2.408	 r	=	0.102;	p	=	4.840	 r	=	-0.028;	p	=	7.104	 r	=	0.243;	p	=	1.696	

Backs	CMJ	Change	
90	hours	

r	=	0.209;	p	=	2.280	 r	=	-0.255;	p	=	
1.520	

r	=	-0.130;	p	=	4.072	 r	=	0.026;	p	=	7.160	

Forwards	WB	
Change	60	hours	

r	=	0.162;	p	=	3.080	 r	=	0.248;	p	=	1.432	 r	=	0.158;	p	=	3.160	 r	=	0.115;	p	=	4.296	

Forwards	WB	
Change	90	hours	

r	=	0.045;	p	=	6.488	 r	=	0.206;	p	=	2.136	 r	=	-0.008;	p	=	7.744	 r	=	-0.119;	p	=	
4.200	

Backs	WB	Change	
60	hours	

r	=	0.012;	p	=	7.600	 r	=	-0.035;	p	=	
6.872	

r	=	0.358;	p	=	0.496	 r	=	0.012;	p	=	7.608	

Backs	WB	Change	
90	hours	

r	=	0.083;	p	=	5.408	 r	=	-0.238;	p	=	
1.792	

r	=	0.196;	p	=	2.536	 r	=	-0.188;		p=	
4.400	

*	statistically	significant	(p<	0.05)	

	

7.5 	Discussion	

The	main	finding	of	this	study	supports	previous	research	(McLean	et	al.,	2010;	McLellan	et	al.,	
2011b;	Twist	et	al.,	2017;	West	et	al.,	2014)	and	that	which	was	hypothesised	prior	to	testing,	
illustrating	clearly	that	a	delay	of	restoration	of	CMJ	performance	and	reduced	WB	scores	is	
present	in	the	immediate	days	post	rugby	union	match	play.		It	is,	however,	important	to	note	
that	some	findings	in	this	study	are	in	contrast	to	those	hypothesised.		For	example,	it	appears	
that	backs	experience	greater	reduction	in	both	CMJ	and	WB	post-match	and	take	longer	to	
recover	post-match,	in	comparison	to	forwards.		It	was	also	of	note	that	WB	provided	a	more	
sensitive	measure	of	time-course	of	restoration	compared	to	that	of	CMJ.	
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7.5.1 Normal	CMJ	change	
Across	the	whole	sample	group	(forwards	and	backs),	significant	changes	were	observed	for	
CMJ	performance	between	baseline	pre-match	and	all	three	time-points	assessed	post-match	
(60	hours,	90	hours	and	170	hours	post-match).		No	significant	changes	were,	however,	
observed	for	CMJ	performance	between	60	and	90	hours	post-match,	yet	they	were	noted	
between	90	hours	and	170	hours	post-match.		The	change	in	CMJ	performance	compared	to	
baseline	was	shown	to	be	-6.5%	at	60	hours	post-match,	-7.0%	at	90	hours	post-match	and	-
3.0%	at	170	hours	post-match,	with	individual	variations	identified	upon	inspection.		Time-
course	of	recovery	assessed	via	CMJ	performance	has	previously	been	identified	in	other	
studies,	with	at	least	two	days	modified	activity	post-match	recommended	to	facilitate	optimal	
recovery	in	rugby	league	(McLellan	&	Lovell,	2012).		Many	similar	studies	(Maso	et	al.,	2004;	
Smart	et	al.,	2008;	Takarada,	2003)	have	used	other	testing	indices	(creatine	kinase,	
testosterone	and	cortisol)	to	measure	return	to	baseline	post-matches	of	rugby	union,	with	
recommendations	also	being	made	for	training	in	the	48	hours	post-match.	

In	contrast	to	the	results	of	this	study,	previous	research	assessing	CMJ	post	fatiguing	exercise	
has	reported	no	decreases	in	CMJ	output	(jump	height),	although	comparison	with	these	results	
could	be	questioned	as	they	did	not	involve	rugby	players	(Boullosa,	Tuimil,	Alegre,	Iglesias,	&	
Lusquiños,	2011;	Cormack,	Newton,	&	McGuigan,	2008).		The	CMJ	performance	reduction,	
noted	at	60	hours	post-match	within	this	study	(-6%),	was	assumed	to	be	a	result	of	match	
exertion,	which	included	blunt	trauma	(Average	Im5	=	45;	Im6	=	57)	and	the	total	distance	
(4692	m	averaged	across	the	games)	covered	by	the	players	during	a	game.		Perhaps	most	
important	for	consideration,	is	the	notion	that	the	significant	decrease	(p	<	0.001;	2.6	cm,	-
6.5%)	in	CMJ	in	performance	at	60	hours	post-match	seen	within	this	study,	is	greater	than	the	
measurement	error	previously	reported	1.0	cm	(-2.4%)	in	Chapter	6,	when	assessing	CMJ	
reliability	between	sessions.		One	could,	therefore,	assume	that	a	change	of	2.6	cm	(-6.5%)	is	
meaningful	and	cannot	be	accounted	for	by	measurement	error.		As	a	result,	future	research	
investigating	CMJ	performance	post-match	warrants	altered	training	prescription	in	the	
immediate	days	post-match,	in	order	to	ensure	a	greater	likely	hood	of	improved	restoration	of	
performance.		Further	support	for	this	-6%	change	being	meaningful,	is	evidenced	by	previous	
researchers	(Cormack	et	al.,	2013;	Cormack,	Newton,	&	McGuigan,	2008;	Cormack,	Newton,	
McGuigan,	&	Cormie,	2008;	Mooney	et	al.,	2013),	who	noted	that	an	-8%	decrease	in	FT:CT	was	
indicative	of	NMF.		Of	note,	however,	for	practitioners	when	assessing	prior	research,	is	that,	
firstly,	many	of	these	studies	were	conducted	in	Australian	rules	football	and	secondly,	that	the	
reliability	of	FT:CT	and	the	calculation	used	to	equate	these	values	has	been	questioned	
(Gathercole,	Sporer,	&	Stellingwerff,	2015).	

Twist	et	al.	(2012)	reported	an	inverse	relationship	between	game	contacts	and	impaired	flight	
time	during	a	CMJ,	indicating	that	players	that	are	involved	in	more	contacts	experience	more	
loading	on	the	lower	limbs	musculature.		It	could	be	argued	that	the	decreased	CMJ	
performance	observed	in	this	study	could	be	attributed	to	several	factors:	muscle	damage	of	
the	lower	limb,	possibly	resulting	from	the	number	of	contacts	encountered	during	game	play;	
neurological	fatigue;	or	the	large	proportion	of	accelerations	and	decelerations	performed	prior	
to	contact	situations.		McLellan	et	al.	(2011b)	found	similar	results	with	reductions	in	PRFD	
attributed	to	the	trauma	from	contact	situations	and	noted	not	to	restore	until	48	hours	post-
match.		It	is,	however,	important	to	note	that	biochemical	markers	in	the	hours	post-match	
were	noted	to	take	longer	to	recover	than	PRFD,	with	CK	remaining	elevated	up	to	120	hours	
post-match.		The	effect	of	contacts	experienced	in	games	upon	PRFD	within	jump	testing,	as	
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reported	by	McLellan	and	Lovell	(2012),	should	perhaps	be	combined	with	findings	from	other	
performance	measures	to	provide	more	detail	within	future	time-course	of	recovery	
investigations.	

Despite	the	results	from	this	study	illustrating	the	ability	for	CMJ	height	to	detect	changes	in	
restoration	of	performance	post-match,	the	results	of	the	research	by	Gathercole,	Sporer,	
Stellingwerff,	et	al.	(2015a)	are,	however,	important	for	consideration.		In	an	analysis	of	male	
college-level	team-sport	athletes,	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	noted	that	
most	kinetic	variables	take	longer	to	return	towards	baseline	values	at	72	hours	post-exercise,	
when	compared	to	CMJ	output	(typically	concentric	focused	variables),	with	these	views	
further	supported	in	elite	rugby	union	(Kennedy	&	Drake,	2017a;	Kennedy	&	Drake,	2017b).		
Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a),	therefore,	recommended	that	practitioners	
consider	NMF	by	assessing	changes	in	both	output	and/or	movement	economy.		The	main	
reasoning	for	the	inclusion	of	kinetic	data,	when	assessing	fatigue	by	many	authors,	(Cormie	et	
al.,	2009;	Ebben	et	al.,	2007;	Gathercole,	Sporer,	&	Stellingwerff,	2015;	Gathercole,	Sporer,	
Stellingwerff,	et	al.,	2015a;	Gathercole,	Stellingwerff,	et	al.,	2015),	is	that	the	biphasic	SSC-
recovery	pattern	that	exists	following	team-sport	play,	needs	to	be	considered	to	gain	a	more	
thorough	analysis	of	NMF	response.		Biphasic	trends	can	be	explained	by	the	neural	and	
mechanical	responses	resulting	from	muscle	damage	experienced	during	exercise.		As	muscle	
damage	is	commonplace	within	rugby	union	match	play	(Johnston,	Gabbett,	et	al.,	2014;	Jones	
et	al.,	2014;	McLellan	&	Lovell,	2012;	Takarada,	2003;	West	et	al.,	2014),	the	influence	of	
biphasic	SSC-recovery	pattern	is	a	consideration	that	warrants	attention	by	future	researchers.		
Such	views	are	further	endorsed	when	considering	the	recent	research	in	elite	rugby	(Kennedy	
&	Drake,	2017a)		showing	kinetic	values	decreasing	by	a	greater	amount	than	outcome	
measures	post	rugby	union	training.		However,	despite	kinetic	values	deemed	more	sensitive	to	
fatigue,	the	aforementioned	disadvantages	of	kinetic	methods	of	assessment	make	this	form	of	
testing	less	viable	for	daily	use	in	applied	settings.	

7.5.1.1 CMJ	performance	between	positional	groups	
One	surprising	finding	of	this	study	is	the	lack	of	contrast	between	the	CMJ	performance	of	
backs	between	60	and	170	hours	post-match.		When	considering	that	170	hours	post-match	is	
immediately	pre	the	following	game,	this	would	intimate	that	performance	has	not	restored	to	
optimal	levels	prior	to	commencement	of	the	next	game.		Despite	forwards	not	displaying	any	
significant	reductions	in	CMJ	performance	at	three	time-points	post-match	(-3.3%	reduction	in	
CMJ	performance	at	60	hours;	-1.5%	reduction	in	CMJ	performance	at	90	hours),	these	values	
are	smaller	than	those	noted	for	backs	at	60	hours	post-match	(-9.6%	60	hours	post-match;	-
9.5%	90	hours	post-match).		One	could	assume,	therefore,	that	backs	experienced	more	
adverse	effects	than	forwards	in	the	immediate	hours	post-match.		A	smaller	muscle	damage	
response	and	the	resultant	effect	upon	positional	CMJ	change	was	reported	in	a	study	by	Twist	
et	al.	(2012)	assessing	NMF	(CMJ	flight	time;	24	hours	Backs	-2.9%,	Forwards	-3.9%;	48	hours	
Backs	-2.3%,	Forwards	-1.2%).		However,	as	this	research	by	Twist	et	al.	(2012)	was	taken	from	
rugby	league	and	assessed	CMJ	via	a	different	method	to	that	undertaken	within	this	research,	
it	should	be	considered	with	caution.		More	significant	for	this	experimental	study	is	research	
from	professional	rugby	union,	specifically	the	finding	of	Tee	et	al.	(2016)	that	forwards	suffer	
progressively	greater	performance	decrements	over	the	course	of	match	play	compared	to	
backs.		This	notion	would	therefore	perhaps	indicate	that	forwards	are	likely	to	experience	
longer	time-course	of	recovery	as	a	result	of	the	fatigue;	yet	the	data	presented	in	this	chapter	
contradicts	this.	
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The	greater	decrement	in	jump	performance	observed	for	backs,	compared	to	forwards	within	
this	research,	is	supported	by	the	finding	that	this	decrement	also	lasted	for	longer	amongst	
backs	compared	to	forwards,	as	represented	by	the	lack	of	restoration	for	backs	at	170	hours	
post-match.		When	viewing	these	results	specifically,	it	could	be	assumed	that	a	greater	and	
longer	decrement	in	jump	performance	is	representative	of	a	higher	level	of	fatigue,	which	has	
manifested	itself	into	a	longer	time-course	of	recovery.		Despite	match	characteristics	within	
this	study	being	normally	distributed	and	this	experimental	study	not	being	able	to	identify	the	
exact	mechanisms	that	caused	this	greater	and	longer	decrement	in	backs,	the	differences	
observed	in	magnitude	and	length	of	decrement	experienced	by	backs,	compared	to	forwards,	
could	perhaps	be	explained	by	the	match	demands	encountered.		This	is	also	evident	when	
considering	the	results	from	Chapter	3.4.1,	which	identified	that	backs	completed	significantly	
more	game	minutes,	at	greater	intensity	and	with	significantly	more	distance	covered	in	D1,	D4	
and	D6	than	forwards.		This	identification	of	differences	in	match	demands	between	positional	
groups,	when	considered	alongside	the	magnitude	and	decrement	of	performance	restoration	
reported	within	this	study,	is	therefore	of	interest	for	future	practice.	

Another	potential	reason	for	the	lack	of	restoration	of	CMJ	performance	amongst	backs,	noted	
within	this	study,	is	that	the	training	sessions	undertaken	in	the	days	post-match	also	
influenced	backs’	restoration	of	recovery	rates,	thereby	not	allowing	them	to	return	to	expected	
pre-game	levels.		Forwards,	in	contrast	to	backs,	were	deemed	to	be	more	capable	of	returning	
to	optimal	levels	of	performance	post-match,	with,	surprisingly,	no	significant	difference	in	CMJ	
performance	at	60	hours	post-match,	despite	training	sessions	between	games	being	common.		
The	research	by	Johnston	et	al.	(2015),	which	shows	more	highly	trained	individuals	(in	terms	
of	relative	strength	and	aerobic	capacity)	recovering	faster,	is	also	of	consideration	when	
assessing	the	differences	in	rates	of	restoration	between	forwards	and	backs.		Based	upon	the	
research	by	Johnston	et	al.	(2015),	this	more	rapid	restoration	of	performance	for	forwards	
compared	to	backs,	could	perhaps	be	explained	by	forwards	typically	demonstrating	higher	
levels	of	strength,	although	no	conclusions	can	be	made	upon	this	notion	as	the	supporting	
evidence	to	confirm	these	thoughts	is	lacking.	

Despite	match	characteristics	within	this	study	being	normally	distributed,	the	finding	that	
backs	did	not	restore	performance	prior	to	the	next	game	could	also	perhaps	be	explained	by	
the	cumulative	fatigue	experienced	from	training.		Training	completed	by	backs	between	games	
is	different	to	that	of	forwards,	with	more	emphasis	being	placed	upon	high	speed	running	and	
high	intensity	effort	such	as	accelerations	and	decelerations,	and	could,	therefore,	explain	the	
inability	of	backs	to	restore	performance	between	matches.		Further	evidence	illustrating	the	
influence	of	training	upon	decreased	CMJ	output,	was	presented	by	Gathercole,	Sporer,	and	
Stellingwerff	(2015),	with	longitudinal	NMF	testing	of	rugby	players	using	CMJ	height	
recommended.		The	results	from	this	study	show	that	the	differences	in	restoration	rates	for	
forwards	and	backs	between	games	is	one	that	warrants	attention	and	is	an	area	of	future	
investigation	for	practitioners,	where	assessment	of	specific	match	characteristics	is	required.	

7.5.2 Normal	WB	change	
Across	the	whole	sample	group	(forwards	and	backs),	significant	changes	were	observed	for	
WB	between	baseline	pre-game	and	all	three	time-points	assessed	post-match	(60	hours,	90	
hours	and	170	hours	post-match).		No	significant	changes	were,	however,	observed	for	WB	
between	60	and	90	hours	post-match.		The	change	in	WB	scores	was	shown	to	be	-9.0%	at	60	
hours	post-match,	-9.8%	at	90	hours	post-match	and	-3.1%	at	170	hours	post-match,	with	
individual	variations	identified	upon	inspection.		Similar	to	results	reported	in	research	within	
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professional	rugby	league	by	McLean	et	al.	(2010),	this	study	showed	that	overall	WB	remained	
significantly	reduced	at	60	hours	post-match.		The	magnitude	of	change	in	WB	scores	noted	
within	this	study	was	similar	to	that	reported	by	Halson	et	al.	(2003),	where	mood	state	
alteration	was	seen	during	intensified	training	periods	in	overreaching	cyclists	(POMS-65	90.4	
during	normal	training;	116.4	during	intensified	training	period).		Nicholls	et	al.	(2009)	noted	
that	rugby	union	players	reported	many	self-report	stressors	as	being	“worse	than	normal”	the	
day	after	a	match,	in	comparison	to	days	preceding	and	including	match	day.		Additionally,	in	a	
study	involving	Australian	rules	football	players,	Gastin,	Meyer,	and	Robinson	(2013)	noted	
that	subjective	ratings	of	wellness	appeared	sensitive	to	changes	in	load,	which	support	the	
finding	from	this	study	that	despite	WB	values	reducing	in	the	immediate	hours	post-match,	
WB	improves	post-match	as	the	next	match	day	approaches.		It	is,	however,	important	for	
practitioners	to	note	that	comparison	of	reduced	WB	scores	to	other	research	is	difficult,	as	
often	figures	reported	are	taken	from	arbitrary	values	and	therefore	cannot	be	judged	against	
values	from	other	research.		Additionally,	as	WB	questionnaire-scoring	protocol	varies,	the	
ability	to	quantify	a	meaningful	change	is	difficult.		As	a	result	practitioners	are,	therefore,	
advised	to	use	%	change	values	instead	of	absolute	values.		This	notion	is	evidenced	by	the	
large	individual	variations	in	WB	scores	identified	within	this	study	and	is	supported	in	recent	
research	by	Roe	et	al.	(2015),	which	presented	a	CV	of	7.1%	for	WB	questionnaires,	which	
despite	being	lower	than	the	recommended	<10%	CV	noted	by	Buchheit	et	al.	(2011)	is	a	point	
of	consideration	for	future	research.	

One	could	argue	that	the	use	of	well-being	questionnaires	in	team	sport	settings	are	especially	
important,	considering	that	each	individual	might	respond	in	a	different	manner,	as	a	result	of	
the	training	dose	administered	by	the	coaches.		This	notion	of	varied	individual	responses	to	
training	dose	is	supported	by	evidence	presented	in	the	study	by	Lovell	et	al.	(2013),	assessing	
factors	affecting	rate	of	perceived	exertion	(RPE)	in	rugby	league.		The	categorical	nature	of	
questionnaire	data	means	that	a	small	change	is	difficult	to	detect,	not	only	because	WB	scores	
change	in	increments	of	one	but	also	because	the	reliability	of	such	measures	are	difficult	to	
quantify.		It	could,	however,	be	concluded	from	this	study	that	performance	test	data	assessing	
neuromuscular	function,	combined	with	perceptual	data	from	questionnaires,	would	provide	a	
more	accurate	understanding	of	player	fatigue,	as	the	changes	in	CMJ	performance	and	WB	
appear	to	represent	a	similar	trend.		As	reported	by	Twist	and	Highton	(2013),	the	multifaceted	
elements	of	fatigue	and	the	physical	and	mental	responses	that	individual	athletes	
demonstrate,	mean	that	single	biochemical,	hormonal	or	performance	tests	do	not	present	a	
clear	picture	of	athlete	readiness.		Instead	athletes	should	be	monitored	within	a	multi-method	
approach	that	would	assess	any	change	below	baseline.		Recent	research	by	Gathercole,	Sporer,	
and	Stellingwerff	(2015),	assessing	the	influence	of	increased	training	load	upon	elite	female	
rugby	players,	noted	a	meaningful	correlation	(r	=	0.34)	between	wellness	and	CMJ	flight	time,	
therefore	supporting	the	use	of	WB	data	for	assessing	restoration	of	performance	post	rugby	
union	match	play.	

7.5.2.1 WB	scores	between	positional	groups	
Similarly,	as	reported	for	CMJ	performance,	backs	displayed	WB	scores	in	the	hours	post-match	
that	would	signify	that	sub-optimal	perceptions	of	WB	were	present	immediately	prior	to	
subsequent	matches,	therefore	indicating	residual	fatigue.		Forwards	displayed	a	-9.7%	
reduction	in	WB	score	at	60	hours,	an	-8.6%	reduction	at	90	hours	post-match	and	a	-1.4%	
reduction	noted	at	170	hours	post-match.		These	values	are	smaller	than	the	-12.9%	reduction	
noted	at	60	hours	post-match,	-11.8%	reduction	noted	at	60	hours	post-match	and	-3.5%	
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reduction	noted	at	170	hours	post-match	for	backs.		As	was	noted	for	CMJ	performance,	
reductions	in	WB	scores	are	longer	lasting	amongst	backs	than	forwards,	which	could,	perhaps,	
also	be	explained	by	the	match	demands	encountered,	or	the	typical,	accumulated	training	
activities	performed	between	matches.	

7.5.3 Performance	reduction	across	170	hours	assessing	both	CMJ	and	WB	
Despite	previous	research	showing	that	restoration	of	performance	is	restored	at	60	hours	post	
rugby	union	match	play	(West	et	al.,	2014),	the	results	from	this	research	are	contrasting	as	
both	CMJ	performance	and	WB	scores	are	seen	not	to	be	restored	back	to	pre-game	levels	at	
170	hours	post-match.		The	cumulative	fatigue	apparent	in	this	research,	as	presented	by	
reduced	WB	and	CMJ	values	(throughout	microcycles),	is	similar	to	the	research	of	Cresswell	
and	Eklund	(2006),	who	assessed	burnout	across	a	playing	season	using	questionnaires.		A	
decrement	in	performance	measures	throughout	a	competitive	playing	period	is	perhaps	no	
surprise,	considering	both	the	movement	demands	executed	in	each	of	the	matches	and	the	
weekly	competitive	structure	of	professional	rugby,	where	players	are	required	to	perform	
every	weekend	for	a	period	of	nine	months.		Similarly	to	this	research,	Alaphilippe	et	al.	(2012)	
supported	the	view	that	fatigue	(assessed	by	biochemical	parameters)	increased	throughout	a	
playing	season	in	rugby	union.		Alaphilippe	et	al.	(2012)	investigated	biochemical	markers	over	
the	course	of	a	playing	season	and	noted	correlations	between	overtraining	scores	and	
biochemical	makers,	while	also	noting	a	positive	correlation	between	minutes	played	and	
increased	CK	levels.		The	evidence	from	this	study	would	also	indicate	that	cumulative	fatigue	
across	a	playing	season	had	an	effect	upon	restoration	of	performance.		It	is,	however,	
important	to	note	that	training	within	these	days	between	matches	may	have	had	a	larger	
influence	upon	performance	measures	than	matches	themselves,	and	could	therefore	have	
contributed	to	reduced	CMJ	and	WB	values	at	170	hours	post-match.	

Lastly,	it	is	important	for	practitioners	to	note	that	the	previous	research	showing	a	decrement	
in	performance	lasting	for	less	than	170	hours	post-exercise	(McLean	et	al.,	2010;	McLellan	et	
al.,	2011b)	was	not	taken	from	rugby	union.		In	addition,	it	should	be	noted	that	the	data	from	
much	of	the	previously	mentioned	research	assessing	recovery	post	rugby	union	match	play,	is	
collected	from	the	southern	hemisphere	(Coutts,	Reaburn,	Piva,	&	Murphy,	2007;	Johnston	et	
al.,	2015;	Johnston,	Gabbett,	et	al.,	2014;	Lindsay,	Lewis,	Scarrott,	Gill,	et	al.,	2015;	Maso	et	al.,	
2004;	McLean	et	al.,	2010;	McLellan	&	Lovell,	2012;	McLellan	et	al.,	2011a,	2011b;	Takarada,	
2003).		As	noted	by	Gannon,	Stokes,	and	Trewartha	(2015),	the	structure	of	the	playing	and	
training	season	in	the	southern	hemisphere	is	very	different	to	that	of	the	north,	due	to	the	
reduced	number	of	matches	played	in	the	southern	hemisphere	and	the	subsequent	impact	that	
this	has	upon	windows	of	opportunity	to	train.		In	the	southern	hemisphere,	the	cumulative	
fatigue	throughout	a	playing	season	could	be	argued	to	be	less	than	that	seen	in	the	northern	
hemisphere,	where	players	are	often	required	to	play	more	than	thirty	games	per	season	
(approximately	one	every	week).		This	reduced	match	demand,	would	therefore	likely	manifest	
itself	in	an	increased	ability	of	rugby	union	players	in	the	southern	hemisphere	to	restore	
performance	post-match	more	quickly.	

7.5.4 Relevance	of	GPS	parameters	upon	CMJ	performance	and	WB	scores	
Within	this	study,	significant	relationships	were	noted	between	selected	GPS	parameters	and	
CMJ	performance	only.		It	was	noted	that	as	distance	covered	increased,	percentage	change	in	
CMJ	performance	worsens	(p	<	0.05),	implying	that	the	distance	covered	by	players	during	
games	had	an	effect	upon	resultant	CMJ	performance	at	60	hours	post-match.		Time	spent	in	D5	
and	D6	also	presented	a	significant	relationship	with	CMJ	performance	(p	<	0.05)	at	60	hours	
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post-match,	meaning	that	practitioners	could	assume	that	a	greater	time	spent	in	D6	would	
lead	to	a	greater	reduction	in	restoration	of	performance	post-match	play.		From	the	results	of	
this	chapter,	it	was	also	interesting	to	note	that	decelerations	(many	of	which	are	likely	to	be	
completed	post	D6	movements)	were	significantly	correlated	with	CMJ	performance	at	90	
hours	post-match	(p	<	0.05).		This	view	that	a	greater	number	of	decelerations	and	time	spent	
in	the	higher	speed	zones	(D5	and	D6)	are	correlated	with	reduced	CMJ	performance,	would	be	
of	significant	interest	to	practitioners	when	assessing	outside	backs’	restoration	of	
performance.		When	considering	the	large	volume	of	the	high	intensity	metrics	(accelerations,	
decelerations	and	sprints)	that	backs	complete	within	match	play	(as	illustrated	within	Chapter	
3),	the	role	that	this	might	have	upon	time-course	of	restoration	of	performance	is	further	
emphasised.	

Prior	research	(Quarrie	et	al.,	2013)	recommends	that	practitioners	provide	forwards	with	
more	time	to	recover	post-match	than	backs,	given	the	greater	contact	loads	they	sustain,	yet	
evidence	from	this	study	would	dispute	these	views,	when	considering	its	results	that	show	
longer	time-course	of	recovery	associated	with	backs,	compared	to	forwards.		Despite	strong	
correlations	existing	between	forwards’	accelerations	tasks	and	reduced	CMJ	performance	
(Table	7.3),	no	significant	difference	existed	for	CMJ	performance	at	any	time-point	post-match.		
This	point	would	therefore	dispute	the	view	that	collision	and	contact	situations	were	
responsible	for	reduced	CMJ	performance,	as,	in	contrast	to	backs,	no	correlations	were	
observed	between	impacts	and	CMJ	performance	and	no	reduction	in	CMJ	performance	is	noted	
amongst	forwards	at	any	time-point	post-match.		The	larger	number	of	Impacts	>	Zone	3	(noted	
within	Chapter	3)	attributed	to	forwards,	perhaps	suggests	that	forwards	experience	a	large	
volume	of	blunt	trauma	during	match	play.		Evidence	from	this	chapter	would,	however,	
suggest	that	this	trauma	is	not	a	factor	in	CMJ	performance	scores	post-match.		Instead,	
perhaps,	the	trauma	that	forwards	experience	is	mainly	upper	body	trauma	associated	with	
their	positional	tasks	and	therefore	the	resultant	NMF	that	experienced	affects	the	upper	and	
not	the	lower	body.		Similarly,	since	CMJ	measures	lower	body	power	via	movement	of	the	
lower	limbs,	trauma	to	the	lower	body	would	be	more	likely	to	affect	its	performance	than	
upper	body.		Upper	body	trauma	is	just	as	likely	to	occur	during	match	play,	yet	the	influence	
this	has	upon	CMJ	performance	is	questionable	and	should,	therefore,	be	assessed	via	a	more	
specific	testing	protocol.	

7.5.4.1 Relevance	of	GPS	parameters	upon	CMJ	performance	and	WB	scores	between	positional	
groups	

On	further	analysis	of	the	relationships	between	match	variables	across	both	positional	groups,	
it	was	interesting	to	note	that	a	significant	relationship	(p	<	0.05)	was	noted	between	CMJ	and	
accelerations	at	60	hours	post-match.		It	could,	therefore,	be	argued	that	the	existence	within	
forwards,	of	this	relationship	between	greater	frequencies	of	accelerations	at	60	hours	post-
match	and	reduced	CMJ	performance	is	perhaps	due	to	forwards	having	to	accelerate	and	
decelerate	into	contact	situations	during	games.		These	greater	number	of	contact	situations	
experienced	by	forwards,	compared	to	backs,	which	was	reported	in	previous	research	(Jones	
et	al.,	2015;	Jones	et	al.,	2014)	(Forwards	31	±	14;	Backs	16	±	7),	could	result	in	the	significant	
relationship	shown	between	forwards’	accelerations	and	CMJ	performance	in	the	days	post-
match.		Despite	backs	completing	more	sprints	and	time	spent	in	D6	during	match	play	(as	
represented	in	Chapter	3),	compared	to	forwards,	the	results	from	this	chapter	show	that	
forwards	perhaps	experience	a	greater	level	of	fatigue	from	acceleration	tasks.		Considering	
that	many	of	forwards’	accelerations	are	performed	prior	to	contact/collision	situations	and	
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therefore	result	in	a	greater	level	of	neuromuscular	fatigue,	as	represented	by	reduced	CMJ	
performance,	the	relationship	identified	is	perhaps	more	clearly	understood.		Additionally,	
when	considering	that	forwards	typically	play	for	fewer	minutes	than	backs	(Table	3.4;	Chapter	
3),	and	therefore	undertake	a	more	intensified	period	of	work,	and	that	this	study	provides	
evidence	of	the	effects	of	these	on	restoration,	then	this	should	be	a	major	area	of	consideration	
for	practitioners.		

As	a	result	of	the	aforementioned	identification,	that	forwards	experienced	more	impacts	than	
backs	(Chapter	3),	this	was	perhaps	an	area	that	would	have	been	expected	to	show	positive	
correlations	with	CMJ	performance	and	WB	scores.		However,	when	assessing	the	playing	
group	as	a	whole	(n	=	59)	no	correlations	existed	amongst	Im5	and	Im6.		Further	analysis	of	
both	positional	groups	(forwards	n	=	31;	backs	n	=	28)	also	showed	no	significant	relationship	
between	impacts	and	CMJ	performance	or	WB	scores.		The	absence	of	a	correlation	between	
impacts	and	delayed	restoration	of	performance	is	somewhat	surprising,	yet	could	perhaps	be	
explained	by	the	small	sample	size	within	this	research,	and	therefore	one	that	warrants	
further	investigation.		This	finding	could	also	perhaps	be	explained	by	the	notions	proposed	by	
both	Lindsay,	Lewis,	Scarrott,	Draper,	and	Gieseg	(2015)	and	Reardon	et	al.	(2016)	that	the	
force,	angle	and	body	parts	involved	in	collisions	are	likely	to	be	a	determining	factor	
influencing	muscle	damage	and	therefore	restoration	of	performance.		Considering	the	
significant	relationship	discovered	regarding	accelerations	amongst	forwards	and	reduced	CMJ	
performance,	along	with	the	potential	influence	of	accelerations	into	contact/collision	
situations,	the	need	to	assess	where	the	high	level	impact	actually	occur	within	positional	
groups’	match	demands,	is	an	area	of	potential	future	research.		Improved	ability	of	
practitioners	to	quantify	where	high	level	impacts	occur	within	the	match	and	whether	or	not	
they	involved	accelerations,	decelerations	and/or	contact	situations	within	the	same	instance	
of	play,	will	shed	further	light	upon	player	match	demands	and	their	probable	effect	upon	
restoration	of	performance.	

7.5.5 Limitations	of	the	research	
Along	with	the	aforementioned	need	to	increase	the	sample	size	within	this	research,	the	main	
limitation	involves	the	lack	of	multiple	time-points	post-match,	upon	which	to	assess	change	in	
CMJ	performance	and	WB	scores.		Additional	time-points,	prior	and	post	the	60	hours	post-
match,	would	have	provided	added	value	to	the	research.		The	inability	of	the	researcher	to	gain	
additional	testing	time-points	was	due	to	logistical	constraints	of	the	players	training	schedule	
in	the	days	post-match,	meaning	that	access	to	players	for	assessment	was	limited.		This	limited	
access	to	players	in	the	days	post-match	is	considered	a	“real	world”	scenario	within	elite	team	
sport	settings,	where	days	off	from	training	are	often	employed	to	enhance	recovery	and	
improve	performance	restoration.	

Another	possible	limitation	with	this	study	is	that,	similarly	to	previous	research	(Cormack,	
Newton,	McGuigan,	&	Cormie,	2008;	McLean	et	al.,	2010),	analysis	of	CMJ	performance	was	
focused	upon	outcome	related	variables.		As	discussed	previously	(Chapter	5),	the	analysis	of	
kinetic	variables	that	assess	the	SSC	(specifically	eccentric	components	of	jumping	movement)	
would	provide	more	detail	on	the	reasons	for	lack	of	restoration	of	performance.		Despite	the	
focus	of	this	study	being	to	detect	time-course	of	recovery	of	CMJ	and	WB	measures	and	not	to	
detect	NMF,	it	is	perhaps	also	a	limitation	of	the	study,	that	no	inclusion	of	kinetic	values	was	
made	after	considering	the	evidence	presented	by	Gathercole,	Sporer,	and	Stellingwerff	(2015).		
Assessment	of	NMF	and	assessment	of	time-course	of	recovery	are	two	distinct	processes	and	
should	warrant	separate	testing	protocols,	although	it	should	be	noted	that	the	link	between	
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the	two	areas	of	focus	could	provide	future	direction	for	research	practices.		Lastly,	despite	
biochemical	analysis	being	an	expensive	and	inconclusive	performance	measure	(as	outlined	in	
chapter	2.4.4),	its	use	in	future	investigation	is	warranted	in	order	to	gain	a	better	
understanding	of	the	physiological	cost	of	games	and	perhaps	help	advise	practitioners	upon	
which	activities	to	undertake	in	the	days	post-match.		This	lack	of	inclusion	of	physiological	
analysis	of	the	performance	decrement	observed	could	therefore	also	be	considered	to	be	a	
limitation	of	this	study.	

7.6 Practical	implications	

The	findings	of	this	study	indicate	that	both	CMJ	performance	and	WB	were	reduced	at	60	
hours	post-match,	90	hours	post-match	and	170	hours	post-match,	with	changes	reported	
similar	to	previous	research	(Cormack,	Newton,	McGuigan,	&	Cormie,	2008;	Cormack,	Newton,	
McGuigan,	&	Doyle,	2008;	Gastin,	Meyer,	et	al.,	2013).		Restoration	of	performance	improved	
from	60	hours	to	170	hours	post-match,	yet	was	still	noted	to	be	below	pre-game	levels	at	this	
later	time-point.		When	considering	results	from	Chapter	4,	showing	meaningful	change	in	CMJ	
between-sessions	[1.0	cm	(2.4%)],	practitioners	should,	perhaps,	keep	in	mind	the	magnitude	
of	the	CMJ	decrement	before	adjusting	individual	player	training	prescription.		Also,	when	
making	decisions	upon	individual	player	training	prescription,	practitioners	are	advised	to	
consider	the	positional	group,	as	data	from	this	study	shows	that	forwards	tend	to	restore	
performance	at	a	quicker	rate	than	backs.	

This	research	also	shows	that	WB	is	reduced	to	a	greater	value	and	for	a	longer	time-course	
than	CMJ	between	baseline	and	60	hours	post-match	(CMJ	-6.5%;	WB	-9.0%),	baseline	and	90	
hours	post-match	(CMJ	-7.0%;	WB	-9.8%)	and	baseline	and	170	hours	post-match	(CMJ	-3.0%;	
WB	-3.1%).		Consideration	for	these	values	and	differences	in	time-course	of	recovery	between	
CMJ	performance	and	WB	scores	should	be	noted	by	practitioners	when	implementing	training	
schedules	in	the	days	post-match.		This	support	for	the	use	of	WB	questionnaires	is	an	
important	finding	from	this	study,	as	many	rugby	clubs	with	limited	resources,	could	
implement	its	use,	as,	not	only	is	it	cost	effective,	but	results	from	this	study	show	that	it	is	also	
a	good	indicator	of	performance	change.		Despite	insufficient	recovery,	prior	to	commencing	
another	training	session	or	game,	being	common	in	many	team	sport	environments,	as	well	as	
being	an	important	aspect	that	should	be	considered	when	preparing	athletes,	this	in	not	one	
that	should	cause	much	concern.		The	more	important	concern	should	perhaps	be	the	level	of	
performance	decrement	although	not	simply	that	there	is	a	decrement	in	the	first	place.		
Implementing	performance	testing	into	daily	training	schedules	is	perhaps	the	most	difficult	
aspect	for	many	practitioners	in	the	field;	yet	this	research	adds	support	to	the	use	of	CMJ	and	
WB	to	measure	restoration	of	performance.		When	considering	that	players	are	required	to	
resume	resistance	training	in	the	immediate	days	following	a	match,	gym-based	sessions	could	
perhaps	provide	the	opportunity	for	coaches	to	monitor	performance	during	exercises	such	as	
CMJ,	upon	which	they	could	make	decisions	on	readiness	to	train.		If	practitioners	are	confident	
in	making	informed	decisions	based	upon	readiness	of	their	athletes	to	perform,	improved	
performance	and	reduced	incidence	of	injury	from	training	and	competition	are	seemingly	to	
occur.		In	addition	to	practitioners	being	able	to	make	informed	decisions	upon	whether	
athletes	should	train,	perhaps	the	area	that	elite	practitioners	should	be	focusing	upon	should	
be	the	need	to	improve	readiness	if	and	when	required	and	how	to	do	so.		Specific	recovery	
protocols	and	adjustable	training	schedules	in	the	day	post-match	are	therefore	of	great	
importance.	 	
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7.7 Implications	of	experimental	chapter	7	for	subsequent	studies	

Results	from	this	chapter	support	the	use	of	both	CMJ	and	WB	to	assess	time-course	of	
restoration	in	the	days	post	match.		However,	the	findings	showing	no	significant	correlations	
between	CMJ	height	and	high	magnitude	GPS	impacts	were	surprising.		A	need	therefore	exists	
to	assess	the	occurrence	of	GPS	impacts	during	match	play,	via	use	of	video	recordings	
alongside	GPS	data.		As	the	influence	of	high	magnitude	GPS	impacts	was	noted	as	not	being	
related	to	delayed	time-course	of	restoration	in	the	days	post	match,	future	research	in	this	
thesis	needs	to	assess	when	and	how	often	high	magnitude	impacts	occur	during	match	play	
and	what	activities	players	are	preforming	when	they	accrue	them.	 	
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8 Quantification	of	GPS	impacts	using	video	analysis	in	Elite	Level	
Rugby	Union	

8.1 Abstract	

An	understanding	of	the	impacts	experienced	by	elite	rugby	players	during	match	play,	is	an	
important	consideration	for	practitioners	in	improving	their	ability	to	assess	the	influence	
these	impacts	may	have	upon	restoration	of	performance	post	match	play.		The	purpose	of	this	
study	was	to	quantify	the	frequency	and	magnitude	of	impacts	experienced	during	game,	with	
specific	attention	paid	towards	those	activities	which	resulted	in	impacts	during	game	play,	
combining	both	GPS	software	and	video	analysis	tools.		This	combination	of	methods	enabled	
comparison	between	impact	instances	identified	by	the	GPS,	which	could	then	be	cross-
referenced	against	video	files	to	ascertain	which	match	demands	illicit	these	impacts.		Using	
video	analysis,	data	was	collected	upon	nine	participants	(age	27.7	±	5.5	years,	height	186.1	±	
10.3	cm,	mass	97.4	±	13.2	kg,	training	age	9.4	±	5.7	years),	with	results	showing	no	significant	
difference	in	percentage	distribution	or	absolute	values	of	impacts	resulting	from	decelerations	
(p	>	0.05).		RMANOVA	revealed	no	significant	difference	in	percentage	distribution	(p	=	0.028)	
and	absolute	values	(p	=	0.061)	for	collisions	occurring	between	impact	zones.		Friedman	tests	
revealed	a	significant	difference	(p	<	0.001)	in	the	percentage	distribution	and	absolute	values	
of	impacts	as	a	result	of	changes	of	direction,	with	the	greatest	number	of	impacts	from	change	
of	direction	occurring	in	Zone	4	(90.7	±	18.8%;	3.8	±	3.2),	which	was	significantly	greater	than	
the	number	of	impacts	from	changes	of	direction	in	Zone	5	(p	=	0.015,	0.0	±	0.0;	d	=	6.82;	p	=	
0.007,	0.0	±	0.0%;	d	=	1.67)	and	Zone	6	(p	=	0.021,	9.2	±	18.8%;	Cohen’s	d	=	4.33;	p	=	0.011,	0.2	
±	0.4;	d	=	1.57).		A	significant	difference	(p	=	0.007)	in	the	percentage	distribution	of	impacts	as	
a	result	of	accelerations	was	noted,	however,	results	from	Wilcoxon	tests	with	Bonferroni	
correction	revealed	that	no	differences	were	observed	between	impact	zones	from	
accelerations.		When	assessing	absolute	values,	Friedman	tests	revealed	a	significant	difference	
(p	<	0.05)	in	the	frequency	of	impacts	as	a	result	of	accelerations,	with	Wilcoxon	revealing	that	
the	greatest	number	of	impacts	from	accelerations	occurred	in	Zone	4	(10.8	±	13.2),	which	was	
significantly	greater	than	the	number	of	impacts	from	accelerations	in	Zone	5	(p	=	0.018,	0.7	±	
1.3;	d	=	1.07)	and	Zone	6	(p	=	0.049,	1.5	±	2.2;	d	=	0.98).		As	was	hypothesised,	collisions	
accounted	for	higher	magnitude	impacts	than	other	movements.		As	a	result	of	this	research,	it	
can	be	concluded	that	player	movement	patterns	identified	from	GPS	impacts	may	provide	
misleading	information.		Practitioners	working	in	the	elite	field	are	therefore	recommended	to	
combine	video	and	GPS	data	to	develop	a	greater	representation	of	the	match	involvements	
assigned	to	impacts	experienced	during	match	play,	as	the	values	presented	from	GPS	outputs	
alone	cannot	be	taken	at	face	value.	

8.2 Introduction	

The	ability	to	identify	and	understand	the	specific	match	demands	placed	upon	rugby	players,	
has	long	been	recognised	as	an	essential	component	for	developing	appropriate	training	and	
recovery	programmes,	with	the	aim	of	improving	subsequent	performance	(Roberts	et	al.,	
2008).		The	development	of	GPS	and	video	analysis	technology,	provides	sports	science	
practitioners	with	detailed	objective	data	relating	to	specific	movement	demands	of	players	in	
rugby	union	(Austin	&	Kelly,	2013;	Cummins	et	al.,	2013;	McNamara,	Gabbett,	Naughton,	
Farhart,	&	Chapman,	2013),	with	variations	in	match	demands	between	position	(Chapter	3)	
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(Cahill	et	al.,	2013;	Lindsay,	Draper,	et	al.,	2015;	Reardon	et	al.,	2017)	and	between	playing	
levels	(Cahill	et	al.,	2013;	Coughlan	et	al.,	2011;	Cunningham	et	al.,	2016;	Venter	et	al.,	2011)	
also	having	been	identified	as	being	important.		Many	studies	have	attempted	to	assess	the	
influence	of	match	variables	upon	restoration	of	performance	(Cunniffe	et	al.,	2010;	Duffield	et	
al.,	2012;	Johnston	et	al.,	2015;	Johnston,	Gabbett,	et	al.,	2014;	McLellan	&	Lovell,	2012),	yet	few	
studies	have	incorporated	collision	or	impact	variables	when	evaluating	match	demands.	

Research	by	McLellan	and	Lovell	(2012)	noted	that	neuromuscular	fatigue	was	highly	
dependent	upon	the	number	of	heavy	impacts	(>	7.1	G)	experienced	during	game	play,	with	
many	authors	noting	positional	differences	in	the	number	of	impacts	experienced	during	match	
play	(Coughlan	et	al.,	2011;	Cunniffe	et	al.,	2009;	Lindsay,	Draper,	et	al.,	2015;	Venter	et	al.,	
2011).		Despite	the	research	by	McLellan	and	Lovell	(2012)	involving	both	time-motion	
analysis	and	GPS	in	assessing	the	influence	of	neuromuscular	impacts	and	collisions	during	
elite	rugby	league	match	play,	the	results	presented	did	not	quantify	which	specific	match	
movements	exhibit	muscle	trauma	that	would	delay	post-match	restoration	of	performance.		
The	need	for	a	more	detailed	analysis	of	impacts	resulting	from	accelerations,	decelerations,	
changes	of	direction	and	collisions	is	therefore	required,	with	an	improved	understanding	of	
the	impacts	resulting	from	these	match	demands	likely	to	benefit	practitioners	working	in	the	
elite	field.	

Both	GPS	and	video	analysis	are	regularly	used	in	applied	settings,	yet	both	methods	of	data	
collection	have	limitations	and	benefits	in	their	use.		Time-motion	analysis	using	video	based	
analysis	systems	have	been	employed	for	the	last	30	years	to	assess	match	demands	(Deutsch	
et	al.,	2007;	Duthie	et	al.,	2003a)	and	continue	to	be	utilised	extensively	in	a	variety	of	team	
sports	(Di	Salvo,	Collins,	McNeill,	&	Cardinale,	2006;	King,	Jenkins,	&	Gabbett,	2009;	Spencer	et	
al.,	2004),	with	video	analysis	appearing	to	produce	valid	data	(Duthie,	Pyne,	&	Hooper,	2003b).		
Limitations	of	video	analysis	for	assessing	match	demands	do,	however,	exist,	mainly	in	that	it	
is	a	labour	intensive	process	where,	unlike	GPS,	only	one	subject	can	be	tracked	at	a	time,	when	
using	time-motion	methods	via	one	operator.		In	addition,	the	intensity	of	each	activity	
collected	via	video	analysis	cannot	be	quantified,	making	match	demands	more	difficult	to	
assess.		The	reliability	of	time-motion	analysis	within	rugby	union	has	previously	been	
researched	by	Duthie	et	al.	(2003b),	who	noted	that	the	total	time	spent	by	individuals	
performing	movements	involving	static	exertions	(that	are	likely	to	incur	impacts)	presents	
moderate	to	poor	reliability	(5.8-11.1%	TEM).		Lastly,	perhaps	the	most	influential	limitation	of	
video	analysis	for	assessing	match	demands	is	user	error	and	the	somewhat	subjective	
measures	that	are	involved	within	this	data	collection	process.		Inter	and	intra-reliability	of	
data	collected	in	video	analysis	is	of	note,	with	what	one	user	may	categorise	as	a	specific	
movement	or	match	demand,	potentially	being	different	to	that	of	another	user,	thereby	
producing	contrasting	results.		Variances	in	the	reliability	data	for	intra-coder	analysis	were	
previously	investigated	by	Deutsch	et	al.	(2007),	with	a	typical	error	of	measurement	reported	
of	4.3-13.6%.	

Support	for	time-motion	analysis	methods	was	noted	by	Dogramaci,	Watsford,	and	Murphy	
(2011),	with	recommendations	for	the	use	of	subjective	notational	analysis	as	being	both	valid	
and	reliable	in	tracking	player	movements.		Dogramaci	et	al.	(2011)	also	recommended	the	use	
of	notational	time-motion	analysis	in	place	of	GPS,	when	assessing	field	sports	where	short	
sprints	and	changes	of	direction	are	common,	as	a	preferred	and	more	effective	method	for	
movement	analysis.		However,	the	inability	of	video	analysis	to	quantify	magnitude	of	effort	or	
impact	within	the	events	identified,	means	its	use	is	limited.		When	considering	that	recent	
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technological	advances	in	GPS	solutions	have	provided	practitioners	with	the	ability	to	analyse	
data	in	real	time	with	regards	to	players’	movement	intensity	and	resultant	fatigue,	time-
motion	analysis	has	become	secondary	within	many	team	sport	settings.		Instead	it	is	mainly	
used	for	post-match	analysis	by	sport	specific	coaches,	where	decision-making	and	individual	
play	within	the	context	of	the	game	are	better	displayed	by	time-motion	methods.		Reliability	of	
GPS	analysis	in	team	sport	settings	has	been	confirmed	in	many	previous	studies	(Coutts	&	
Duffield,	2010;	Cummins	et	al.,	2013;	Johnston,	Watsford,	et	al.,	2014;	Varley	et	al.,	2012),	with	
Coutts	and	Duffield	(2010)	reporting	total	distance	being	stable	between	match	variations	in	
rugby	league	(<	5%	CI),	while	Johnston,	Watsford,	et	al.	(2014)	showed	a	larger	degree	of	
between	match	variability	for	higher	speed	activities	(TEM	=	0.8-19.9%).		Critical	movements	
for	good	performance	in	rugby	include	the	ability	to	maximally	accelerate,	decelerate	and	
change	direction	at	speed	over	a	short	distance,	yet	when	assessing	the	reliability	and	validity	
of	team	sport	specific	running	patterns,	Jennings,	Cormack,	Coutts,	Boyd,	and	Aughey	(2010)	
have	questioned	the	use	of	GPS	systems	for	the	assessment	of	brief	high	speed	straight	line	
running	(CV	=	77.2%).	

It	is,	however,	interesting	to	note,	that	collision	events	recorded	using	GPS	have	been	compared	
to	video	analysis	and	were	noted	to	strongly	correlate	(r	=	0.89,	0.97	and	0.99)	with	mild,	
moderate	and	heavy	collisions	respectively,	therefore	supporting	GPS	use	(Gabbett,	Jenkins,	&	
Abernethy,	2010).		In	contrast,	recent	research	in	elite	level	rugby	union	(Reardon	et	al.,	2016)	
illustrated	inaccuracies	in	collision	assessment,	where	the	smallest	mean	difference	between	
micro	technology	and	video	coding	was	noted	at	the	2.5	G	collision	threshold,	with	statistical	
differences	noted	between	some	positional	groups.		Further	inaccuracies	have	been	noted	in	
elite	level	rugby	union	(Clarke,	Anson,	&	Pyne,	2017;	Kelly,	Coughlan,	Green,	&	Caulfield,	2012),	
where	collision	recall	assessment	(the	ability	to	detect	collisions	with	a	low	number	of	false	
positives)	was	noted	as	both	gender	(Women’s	=	0.45;	Men’s	=	0.69)	and	code	specific,	between	
the	fifteens	(0.93)	and	sevens	(0.45-0.73)	versions	of	the	game.		The	finding	by	Reardon	et	al.	
(2016)	therefore	has	implications	for	future	collision	assessment,	with	the	manipulation	of	G-
force	thresholds	having	no	effect	upon	accuracy	and	the	implementation	of	collision	counts	
based	upon	a	position-specific	basis	being	recommended.	

Impacts	with	opposition	players	or	the	playing	surface	in	rugby	union	are	also	likely	to	induce	
muscle	trauma	and	resultant	fatigue,	yet	the	commonly	reported	GPS	and	video	analysis	data	
collection	limitations	discussed	above,	mean	that	many	of	the	movements	that	illicit	and	
quantify	impacts	may	be	excluded	from	post-match	analysis.		A	greater	understanding	of	the	
highly	specific	game	related	activities	involved	within	rugby	union	match	play	and	the	likely	
GPS	impact	associated	with	each	movement	is	needed	to	better	understand	impacts	incurred	
during	specific	match	demands.		An	illustration	of	the	response	which	impacts	are	likely	to	have	
upon	post-match	fatigue,	was	illustrated	by	Johnston,	Gabbett,	et	al.	(2014)	where	markers	of	
muscle	damage	(CK	blood	analysis)	following	small	sided	rugby	league	games	were	reported	to	
still	be	rising	24	hours	following	the	contact	game	in	comparison	to	the	non-contact	small	sided	
game	(ES	0.86).		This	view	was	also	recently	supported	by	Roe	et	al.	(2017),	who	noted	
increased	likelihood	of	upper	body	NMF	,	reduced	well	being	and	greater	elevations	in	CK	post	
training	sessions	involving	contact	than	sessions	without	contact.		As	reported	within	rugby	
union	time-motion	analysis	research	(Deutsch	et	al.,	2007;	Docherty	et	al.,	1988),	the	majority	
of	collision	events	happen	during	tackle	situations,	potentially	emphasising	that	a	greater	
number	of	tackles	has	greater	impact	upon	NMF.		However,	when	considering	that	time-motion	
analysis	only	provides	a	frequency	of	events	with	no	magnitude	of	load,	some	of	the	data	
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produced	by	time-motion	analysis	research	may	be	erroneous	and	therefore	misleading,	
meaning	the	implementation	of	GPS	analysis	to	assess	magnitude	of	load	and	subsequent	
influence	upon	restoration	of	performance	is	paramount	as	it	provides	the	detail	surrounding	
the	impacts.	

	
Reardon	et	al.	(2016)	stated	that	GPS	technology	was,	however,	not	a	valid	technology	for	
detecting	rugby	union	collisions.		A	process	of	combined	data	collection	including	both	GPS	data	
and	video	recordings	was	recommended	by	Cunniffe	et	al.	(2009)	for	use	in	elite	rugby	union	in	
order	to	produce	a	more	thorough	analysis	of	match	demands.		In	a	study	assessing	playing	
demands	in	rugby	by	Cunniffe	et	al.	(2009),	more	accurate	data	was	collated	via	a	triangulation	
of	analysis	practices.		Cunniffe	et	al.	(2009,	p.	1202)	stated	that	a	“combination	of	GPS	software	
with	game	recordings	may	produce	more	insight	into	categorisation	of	forces/accelerations	
received/exerted	during	the	many	contact	elements	within	the	game”.		Despite	recent	research	
(Reardon	et	al.,	2016)	assessing	collision	counts	in	elite	level	rugby	union	existing,	this	
experimental	study	differs	as	it	aims	to	match	single	collision	events	coded	by	GPS	to	the	
relevant	passage	of	play	within	the	video	file.		The	results	of	this	study	therefore	have	
implications,	not	only	for	the	players	involved,	but	also	for	practitioners	aiming	to	implement	
training	sessions	in	the	days	post-match.		Not	only	will	the	physical	demand	(created	by	
impacts)	placed	upon	the	player	within	match	situations	be	available,	but	also	a	video	story	of	
movement	patterns	(involving	impacts)	will	be	available	for	analysis.		From	the	data	produced,	
practitioners	will	be	able	to	place	accurate	training	expectations	upon	players	in	the	days	post-
match,	as	the	impacts	experienced	and	the	consequences	of	impacts	upon	player	readiness	can	
be	analysed	more	fully.	
	
The	aim	of	this	study	was	to	identify	which	activities,	based	upon	video	analysis,	are	
responsible	for	impacts	at	different	intensities,	with	the	intensity	measured	via	the	

accelerometer	in	the	GPS	unit.		Based	upon	results	from	previous	chapters,	impacts	involving	≥�
9	G	were	identified	as	the	most	likely	to	impair	subsequent	performance	and	these	therefore	
warranted	further	investigation.		It	was	hypothesised,	that	as	the	impact	increases,	the	
percentage	of	impacts	from	collisions	would	also	increase	and	the	percentage	of	impacts	from	
accelerations,	decelerations	and	changes	of	direction	would	decrease.		Findings	from	this	study	
will	provide	further	information	upon	the	activities	which	result	in	the	highest	impacts	
experienced	during	match	play.		Evidence	presented	will	therefore	help	practitioners	to	make	
more	informed	decisions	upon	future	training	prescription	post	rugby	union	match	play,	in	
order	to	increase	the	likelihood	of	subsequent	optimal	performance.	
	

8.3 Method	

8.3.1 Participants	
The	assessment	period	covered	seven	games	during	a	competitive	rugby	union	playing	season,	
with	data	collected	upon	one	individual	from	each	of	the	nine	positional	groups	including	props	
(n=1),	hookers	(n=1),	locks	(n=1),	back	rows	(n=1),	scrum	half	(n=1),	out	half	(n=1),	centres	
(n=1),	wings	(n=1)	and	full	backs	(n=1);	meaning	nine	sets	of	game	data	were	assessed	(age	
27.7	±	5.5	years,	height	186.1	±	10.3	cm,	mass	97.4	±	13.2	kg,	training	age	9.4	±	5.7	years).		This	
study	was	conducted	in	accordance	with	the	Declaration	of	Helsinki	and	was	approved	by	
Salford	University	Institutional	Review	Board.		All	participants	provided	written	informed	
consent	to	participate	in	this	study.	
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8.3.2 Experimental	approach	
Both	GPS	and	video	analysis	data	provide	information	upon	the	impacts	experienced	during	
game	play.		Data	was	collected	from	the	same	rugby	club	for	all	nine	positional	groups,	and	if	
the	player	who	started	the	game	in	one	position	was	substituted,	the	data	produced	by	the	
substitute	player	was	combined	with	that	of	the	original	player,	therefore	providing	a	full	game	
duration	of	the	position	being	analysed.		The	GPS	file	used	for	analysis	was	a	raw	numerical	
data	file,	detailing	where	impacts	occurred	within	the	match	day	timeline.		This	GPS	file	was	
exported	directly	from	the	10	Hz	GPS	units	(StatSports	Viper,	Northern	Ireland)	detailed	below	
in	Chapter	8.3.3	and	was	subsequently	imported	into	the	video	footage	to	ascertain	
whereabouts	within	the	game	these	impacts	occurred.		Video	footage	was	viewed	throughout	
the	duration	of	each	game	and	a	sense	check	was	made	with	the	StatSports	data	export	to	
assess	exactly	what	the	impacts	related	to	within	the	video	file	and	whether	this	involved	
collisions,	change	of	direction,	accelerations	or	decelerations.			

Collisions	(including	or	excluding	set	piece	elements	of	rugby	union	match	play)	across	all	
positional	groups	was	not	considered	a	concern	as	the	data	comparison	between	all	nine	
positional	groups	was	normalised	via	percentage	calculations	of	each	collision	occurring,	
meaning	this	potential	disparity	between	positions	was	accounted	for.		In	order	to	ascertain	the	
match	involvements	and	the	impact	associated	with	these	movements,	the	GPS	data	provided	
the	magnitude	of	the	impact	experienced	by	the	players	(illustrated	by	GPS	impacts),	while	the	
video	footage	acted	as	a	reference	file	against	which	to	compare	the	GPS	impacts.		It	is	
important	for	readers	to	note	that	this	research	used	video	analysis	to	view	match	
involvements	alongside	the	GPS	data	and	did	not	employ	typical	time-motion	analysis	practices	
to	assess	movement	patterns,	thus	providing	speeds,	distances	and	speeds	of	locomotive	tasks	
as	outlined	by	Dobson	and	Keogh	(2007).		As	explained	above,	GPS	use	for	locomotive	tasks	is	
considered	superior	to	time-motion	methods,	therefore	this	research	only	used	video	analysis	
to	clarify	match	involvements	and	not	to	quantify	and	compare	locomotion	against	the	GPS	
data.	

8.3.3 Match	analysis	

8.3.3.1 GPS	analysis	
The	match	characteristics	exported	from	GPS	units	included:	accelerations,	decelerations,	
collisions,	sprints,	impacts	in	Zone	4	(9-11	G),	impacts	in	Zone	5	(11-13	G)	and	impacts	in	Zone	
6	(>	13	G).		Measurements	were	taken	with	10	Hz	GPS	units	(StatSports	Viper,	Northern	
Ireland)	throughout	all	games	in	order	to	assess	movement	patterns.		Player	positions	were	
defined	as:	(1)	backs	or	forwards;	(2)	props,	hookers,	locks,	back	rows,	scrum	half,	out	half,	
centres,	wings	and	full	backs.		The	main	focus	of	the	GPS	analysis	was	the	assessment	of	
impacts,	using	StatSports	Viper	GPS	units,	with	the	100	Hz	tri	axial	accelerometer	being	used	to	
collate	impacts	and	not	GPS	data.		The	GPS	device	measures	GPS	impacts	when	values	are	above	
2	G	in	a	0.1	second	period.		Impacts	are	instantaneous	moments	throughout	a	match	situation	
measured	in	G-forces	and	are	expressed	as	a	quantity,	with	a	number	of	impacts	at	each	of	the	6	
zones	categorised	in	the	Viper	system.		It	is	important	to	note	that	GPS	impacts	are	a	
combination	of	collisions	and	impacts	created	from	movement	(stepping,	jumping,	and	
decelerations).		For	the	purposes	of	discussing	the	impact	zones,	shorthand	abbreviations	were	
used.		Impact	zones	were	abbreviated	to	Im1	relating	to	impacts	in	Zone	1,	Im2	for	impacts	
encountered	in	Zone	2,	Im3	for	impacts	encountered	in	Zone	3,	Im4	for	impacts	encountered	in	
Zone	4,	Im5	for	impacts	encountered	in	Zone	5	and	Im6	for	impacts	encountered	in	Zone	6	
(Table	8.1).		Accelerations	and	decelerations	were	also	collated	by	the	StatSports	Viper	GPS	
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unit,	with	this	data	collected	purely	by	the	accelerometer.		Acceleration	is	a	change	in	
velocity/time	(using	GPS	data),	with	individual	acceleration	thresholds	similar	across	
positional	groups,	based	upon	longitudinal	analysis	of	players	performing	maximal	
accelerations.		Prescribed	zones	were	then	categorised	from	these	maximal	values	and	
manually	inputted	into	the	StatSports	Viper	software.	

Table	8.1:	Categorisation	of	impact	zones	

	 Zone	1	 Zone	2	 Zone	3	 Zone	4	 Zone	5	 Zone	6	
Impacts	in	Zones	(G)	 3	–	5	 5	–	7	 7	-	9	 9	–	11	 11	-	13	 13	-	15	

	

8.3.3.2 Video	analysis	
Nine	individual	player	videos	were	collected	with	all	video	recordings	filmed	on	a	digital	
camera	(Sony	AX1	4K)	mounted	on	a	tripod	and	captured	via	firewire	onto	an	Apple	MacBook	
Pro	using	SportsCode	(version	10.3)	analysis	software.		SportsCode	software	allowed	the	
importing	of	the	GPS	data	collected	for	further	analysis	via	an	xml	edit	list.		The	sole	use	of	
typical	game	footage	(side	on	and	covering	multiple	players)	was	considered	too	broad	for	use	
within	this	study	as	detailed	analysis	of	an	individual	was	the	goal,	therefore	close	up	“side	on”	
individual	player	cameras	were	also	administered	alongside.		Regular	rugby	footage	as	seen	on	
public	television	would	show	the	individual	playing	within	the	team	pattern,	but	would	not	
provide	specific	detail	surrounding	the	participant	being	analysed.		As	a	result,	the	main	
television	recording	covering	typical	match	footage	was	synchronised	with	the	individual	
player	video	within	SportsCode,	to	show	the	broader	aspect	of	the	game	the	individual	is	
playing	within,	while	also	covering	the	detail	of	the	individual	required.		For	example,	this	
combination	of	videos	would	supply	greater	detail	to	activities	in	contact	situations,	where	
typical	television	footage	of	the	player	may	be	obscured	by	other	players	on	the	field,	or	by	
replays	of	previously	completed	match	events	(scrum,	ruck	and	tackle	situations).		Due	to	the	
nature	of	this	study,	parameters	measured	within	both	methods	of	assessment	could	be	cross-
referenced	and	validated	against	each	other,	as	the	timings	were	identical	for	both	the	GPS	
analysis	and	the	video	footage.		As	a	result,	from	the	video	footage,	practitioners	would	be	able	
to	determine	if	the	impact	data	elicited	by	the	GPS	data	at	the	moment	in	question	is	actually	
what	is	expected	for	these	actions.	

8.3.4 Statistical	analyses	
Statistical	analysis	was	performed	using	SPSS	Version	20	(IBM),	with	an	a	priori	alpha	level	set	
at	p	<	0.05.		Normality	testing	was	conducted	on	both	the	percentages	distribution	of	match	
characteristics	and	the	absolute	values	that	account	for	impacts	occurring	(changes	of	
direction,	acceleration,	deceleration	and	collisions).		Normality	testing	on	percentages	
distribution	and	absolute	values	of	match	characteristics	was	conducted	across	impact	Zones	4,	
5	and	6	and	comparisons	between	zones	and	positions	were	made.		As	playing	positions	are	
different	in	the	match	demands	required	(as	illustrated	in	Chapter	3),	analysis	of	the	
percentages	distribution	of	match	characteristics	was	considered	important	alongside	analysis	
of	absolute	values.		Repeated	measures	ANOVAs	with	Bonferroni	post-hoc	analysis,	or	non-
parametric	equivalent	(Freidman	test,	with	multiple	Wilcoxon	tests	for	pairwise	comparison	
and	subsequent	Bonferonni	correction	applied)	were	conducted	to	compare	the	difference	
between	percentage	distribution	of	impacts	incurred	by	collisions	and	those	that	resulted	from	
changes	of	direction,	acceleration	or	deceleration,	across	impact	zones.		Subsequent	repeated	
measures	ANOVAs	with	Bonferroni	post-hoc	analysis,	or	non-parametric	equivalent	(Freidman	
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test,	with	multiple	Wilcoxon	tests	for	pairwise	comparison	and	subsequent	Bonferonni	
correction	applied)	were	performed	to	determine	if	there	was	a	significance	difference	in	the	
percentage	of	activities	resulting	in	impacts	within	each	zone.		Furthermore,	Cohen’s	d	effect	
sizes	(ES)	were	calculated	to	determine	if	any	meaningful	differences	occurred,	interpreted	
based	upon	the	criteria	suggested	by	Rhea	(2004)	and	were	interpreted	as	follows;	trivial		<	
0.25,	small	=	0.25	-	0.5,	moderate	=	0.50	-	1.0	and	large	>	1.0.	

8.4 Results	

Shapiro-Wilks	tests	showed	that	data	was	normally	distributed	(p	>	0.05)	for	the	percentage	
distribution	of	Zone	4	collisions	and	decelerations,	yet	was	not	normally	distributed	for	change	
of	direction	and	accelerations.		Additionally,	the	Shapiro-Wilks	tests	showed	that	data	was	
normally	distributed	(p	>	0.05)	for	the	percentage	distribution	of	Zone	5	collisions	and	
decelerations,	yet	changes	of	direction	and	accelerations	were	not	normally	distributed	(p	<	
0.05).		Lastly,	Shapiro-Wilks	test	showed	that	data	was	only	normally	distributed	(p	>	0.05)	for	
the	percentage	distribution	of	Zone	6	collisions,	while	changes	of	direction,	decelerations	and	
accelerations	were	not	normally	distributed	(p	<	0.05).		When	assessing	absolute	values,	the	
Shapiro-Wilks	test	showed	that	data	was	normally	distributed	(p	>	0.05)	for	Zone	4	
decelerations,	yet	not	for	change	of	direction,	accelerations	and	collisions.		Additionally,	the	
Shapiro-Wilks	test	showed	that	data	was	normally	distributed	(p	>	0.05)	for	the	absolute	values	
of	Zone	5	decelerations,	yet	changes	of	direction,	accelerations	and	collisions	were	not	normally	
distributed	(p	<	0.05).		Lastly,	the	Shapiro-Wilks	test	showed	that	data	was	normally	
distributed	(p	>	0.05)	only	for	the	percentage	distribution	of	Zone	6	collisions,	while	changes	of	
direction,	decelerations	and	accelerations	were	not	normally	distributed	(p	<	0.05).	

Figure	8.1	shows	the	frequency	of	impacts	in	Zones	4,	5	and	6	for	each	activity.		When	assessing	
these	absolute	values,	RMANOVA	revealed	no	significant	difference	(p	=	0.061;	Zone	4	=	15	±	
0.7;	Zone	5	=	11	±	0.6;	Zone	6	=	13	±	0.6)	in	collisions	between	impact	zones	(Figure	8.1).		
Friedman	tests	revealed	that	a	significant	difference	(p	<	0.001)	occurred	in	the	frequency	of	
impacts	as	a	result	of	changes	of	direction,	with	Wilcoxon	revealing	that	the	greatest	number	of	
impacts	from	change	of	direction	occurred	in	Zone	4	(3.8	±	3.2),	which	was	significantly	greater	
than	the	number	of	impact	from	changes	of	direction	in	Zone	5	(p	=	0.007,	0.0	±	0.0;	d	=	1.67)	
and	Zone	6	(p	=	0.011,	0.2	±	0.4;	d	=	1.57).		No	differences	were	observed	between	absolute	
values	for	impacts	from	changes	of	direction	between	Zones	5	and	6	(p	>	0.05).		Friedman	tests	
revealed	that	a	significant	difference	(p	<	0.05)	occurred	in	the	frequency	of	impacts	as	a	result	
of	accelerations,	with	Wilcoxon	revealing	that	the	greatest	number	of	impacts	from	
accelerations	occurred	in	Zone	4	(10.8	±	13.2),	which	was	significantly	greater	than	the	number	
of	impact	from	accelerations	in	Zone	5	(p	=	0.018,	0.7	±	1.3;	d	=	1.07)	and	Zone	6	(p	=	0.049,	1.5	
±	2.2;	d	=	0.98).		No	differences	were	observed	between	impacts	from	accelerations	between	
Zones	5	and	6	(p	>	0.05).		Friedman	tests	also	revealed	that	no	significant	difference	(p	>	0.05)	
occurred	in	the	absolute	values	of	impacts	incurred	as	a	result	of	decelerations	(Zone	4	=	12.6	±	
7.6;	Zone	5	=	4.6	±	2.6;	Zone	6	=	1.1	±	0.4).	
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Figure	8.1:	Frequency	of	impacts	in	Zones	4,	5	and	6	for	each	activity	

Figure	8.2	shows	the	percentage	of	impacts	in	Zones	4,	5	and	6	for	each	activity.		RMANOVA	
revealed	no	significant	difference	in	percentage	distribution	(p	>	0.05;	Zone	4	=	38.0	±	40.0%;	
Zone	5	=	28.0	±	8.4%;	Zone	6	=	34.0	±	32.1%)	between	impact	zones	from	collisions	(Figure	
8.2).		Friedman	tests	did,	however,	reveal	that	a	significant	difference	(p	<	0.001)	occurred	in	
the	percentage	distribution	of	impacts	as	a	result	of	changes	of	direction,	with	Wilcoxon’s	tests	
highlighting	that	the	greatest	number	of	impacts	from	change	of	direction	occurred	in	Zone	4	
(90.7	±	18.8%),	which	was	significantly	greater	than	the	number	of	impacts	from	changes	of	
direction	in	Zone	5	(p	=	0.015,	0.0	±	0.0%;	d	=	6.82)	and	Zone	6	(p	=	0.021,	9.3	±	18.8%;	d	=	
4.33).		No	differences	were	observed	between	percentage	distribution	of	impacts	from	changes	
of	direction	between	Zones	5	and	6	(p	>	0.05).	

Friedman	tests	also	revealed	a	significant	difference	(p	=	0.007)	in	the	percentage	distribution	
of	impacts	as	a	result	of	accelerations,	however,	Wilcoxon’s	tests	with	Bonferonni	correction	
revealed	that	no	differences	were	observed	between	impacts	from	accelerations,	between	any	
of	the	impact	zones	(Zone	4	=	69.6	±	34.3%;	Zone	5	=	8.6	±	12.3%;	Zone	6	=	21.8	±	31.7%).		In	
contrast	to	accelerations	and	changes	of	direction,	Friedman	tests	revealed	that	no	significant	
difference	(p	>	0.05)	occurred	in	the	percentage	distribution	of	impacts	as	a	result	of	
decelerations	(Zone	4	=	50.1	±	33.2%;	Zone	5	=	19.2	±	16.9%;	Zone	6	=	30.7	±	40.9%).	
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Figure	8.2:	Percentage	of	impacts	in	Zones	4,	5	and	6	for	each	activity	

Figure	8.3	shows	the	percentage	distribution	within	and	between	zones	for	each	activity,	
displaying	that	the	largest	frequency	match	demand	in	all	zones	was	collisions	(Zone	4	=	32.7	±	
40.0%;	Zone	5	=	61.9	±	8.4%;	Zone	6	=	76.3	±	32.1%)	and	that	the	frequency	of	collisions	
increased	in	comparison	to	other	zones	as	the	magnitude	of	the	impact	also	increased.		
Decelerations	(Zone	4	=	27.9	±	33.2%;	Zone	5	=	25.3	±	16.9%;	Zone	6	=	6.6	±	40.9%)	were	
noted	to	decrease	as	the	magnitude	of	the	impact	increased,	while	accelerations	(Zone	4	=	30.8	
±	34.3%;	Zone	5	=	12.8	±	12.3%;	Zone	6	=	15.8	±	31.7%)	and	changes	of	direction	(Zone	4	=	8.6	
±	18.8%;	Zone	5	=	0.0	±	0.0%;	Zone	6	=	1.3	±	0.0%)	were	lowest	in	Zone	5.		RMANOVA	revealed	
that	there	were	significant	differences	(p	<	0.05)	in	the	percentage	distribution	of	impacts	
within	Zone	4,	Zone	5	and	Zone	6.		Friedman	tests	revealed	that	a	significant	difference	(p	<	
0.005)	occurred	in	the	percentage	distribution	of	impacts	within	Zone	4,	with	Wilcoxon’s	tests	
highlighting	that	the	greatest	number	of	impacts	in	Zone	4	occurred	as	a	result	of	collisions	
(32.7	±	18.8%),	this	being	significantly	greater	than	the	number	of	impacts	in	Zone	4	from	
decelerations	(p	=	0.012,	27.9	±	33.2%)	and	changes	of	direction	(p	=	0.008,	8.6	±	18.8%;	d	=	
0.71).		No	differences	(p	>	0.05)	were	observed	between	collisions	and	accelerations	within	
Zone	4.		Friedman	tests	also	revealed	a	significant	difference	(p	<	0.005)	occurred	in	the	
percentage	distribution	of	impacts	within	Zone	5,	with	Wilcoxon’s	tests	highlighting	that	the	
greatest	number	of	impacts	in	Zone	5	occurred	as	a	result	of	collisions	(61.9	±	8.4%),	this	being	
significantly	greater	than	the	number	of	impacts	in	Zone	5	from	changes	of	direction	(p	=	0.012,	
0.0	±	0.0%)	and	accelerations	(p	=	0.025,	12.8	±	12.3%;	d	=	1.47).		Lastly,	Friedman	tests	also	
revealed	a	significant	difference	(p	<	0.005)	occurred	in	the	percentage	distribution	of	impacts	
within	Zone	6,	with	Wilcoxon’s	tests	highlighting	that	the	greatest	number	of	impacts	in	Zone	6	
occurred	as	a	result	of	collisions	(76.3	±	32.1),	this	being	significantly	greater	than	the	number	
of	impacts	in	Zone	6	from	changes	of	direction	(p	=	0.008,	1.3	±	0.0%;	d	=	3.30).	
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Figure	8.3:	Percentage	distribution	of	impacts	across	Zones	4,	5	and	6	for	each	activity	

Table	8.2:	Key	of	significant	differences	in	percentage	distribution	of	impacts	across	Zones	4,	5	
and	6	for	each	activity	relating	to	Figure	8.3	

Key	of	significant	differences	

£	significant	difference	(p	=	0.012)	between	collision	and	decelerations	within	Zone	4	

*	significant	difference	(p	=	0.008)		between	collision	and	changes	of	direction	within	Zone	4	

#	significant	difference	(p	=	0.012)		between	collision	and	changes	of	direction	within	Zone	5	

$	significant	difference	(p	=	0.025)		between	collision	and	accelerations	within	Zone	5	

€	significant	difference	(p	=	0.008)		between	collision	and	changes	of	direction	within	Zone	6	

	

8.5 Discussion	

The	findings	of	this	study	indicate	that	the	majority	of	the	impacts	registered	during	collisions	
are	of	a	higher	magnitude	than	accelerations,	decelerations	and	changes	of	direction.		In	line	
with	the	hypothesis,	the	results	confirm	that	as	the	magnitude	of	impacts	increase	the	
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percentage	of	impacts	from	collisions	also	increase	and	the	percentage	of	impacts	from	
accelerations,	decelerations	and	changes	of	direction	decrease.	

8.5.1 Impacts	resulting	from	collisions	
When	considering	recent	literature	assessing	the	impacts	encountered	during	rugby	match	play	
(Lindsay,	Lewis,	Scarrott,	Draper,	et	al.,	2015;	McLellan	&	Lovell,	2012;	McLellan	et	al.,	2011a;	
Suarez-Arrones	et	al.,	2014),	one	would	assume	that	an	impact	of	greater	than	9	G	(≥	Zone	4)	
would	be	a	collision	and	the	results	from	this	experimental	study	further	support	this	view.		
The	notion	that	within	Zone	6	the	most	impacts	accrued	were	from	collisions	(Frequency	=	13;	
Distribution	=	76.3%)	was	expected	within	this	study,	yet	the	results	from	this	study	which	
showed	a	large	contribution	of	impacts	from	collisions	in	Zone	4	(Frequency	=	15;	Distribution	
=32.7%)	was	unexpected	(Figure	8.1	and	8.3).		The	causes	of	the	collision	impacts	occurring	in	
Zone	6	are	likely	to	be	due	to	both	the	match	demands	occurring	in	open	field	play	and	those	
encountered	within	set	piece	elements	of	match	play.		Open	field	play	collisions	involve	
aggressive	and	forceful	match	movements	in	an	attempt	to	avoid	an	attacking	player	gaining	
momentum,	or	in	ruck	situations	where	the	opposition	are	attempting	to	regain	possession	of	
the	ball.		Similarly,	set	piece	elements	of	match	play	involve	close	contact	collision,	whereby	
players	are	deliberately	attacking	weaknesses	in	the	opposition’s	pre-planned	set	ups,	with	
aggressive	actions	conducted	to	spoil	possession	and	disrupt	team	momentum.		When	viewed	
during	game	play,	collision	actions	are	clearly	very	physical	in	nature	and	therefore	
unsurprisingly	create	the	highest	impact	forces	when	compared	to	other	match	movements	
such	as	changes	of	direction,	accelerations	and	decelerations.		Players	are	required	to	exert	
maximal	force	onto	the	opposition	during	collision	moments	in	an	attempt	to	halt	or	continue	
momentum;	meaning	collision	impacts	occurring	in	Zone	6	are	likely.	

Much	of	the	previous	research	in	elite	rugby	union	that	has	assessed	impacts	encountered	
during	match	play,	has	classified	impacts	as	“heavy”,	“very	heavy”	or	“severe”,	with	impacts	of	
these	high	magnitudes	experienced	during	match	play	assumed	to	cause	significant	changes	in	
markers	of	muscle	damage	(Coughlan	et	al.,	2011;	Cunniffe	et	al.,	2009;	Lindsay,	Lewis,	Scarrott,	
Draper,	et	al.,	2015;	McLellan	&	Lovell,	2012;	McLellan	et	al.,	2011a;	Venter	et	al.,	2011).		
Specifically,	when	assessing	neuromuscular	responses	to	impacts	post	rugby	league	match	play,	
McLellan	and	Lovell	(2012)	noted	“very	heavy”	and	“severe”	impacts	were	significantly	
correlated	to	change	in	PRFD	and	PP	24	hours	post-match,	with	collisions	that	involved	impacts	
>	8.1	G	noted	to	result	in	prolonged	neuromuscular	fatigue.		Additional	research	by	McLellan	et	
al.	(2011a)	in	elite	rugby	league,	noted	that	the	number	of	impacts	recorded	in	Zone	5	(8.1–10.0	
G)	and	Zone	6	(>	10.1	G)	during	match	play	was	significantly	correlated	(p	<	0.05)	to	CK	for	up	
to	72	hours	post-match	and	that	the	frequency	of	“heavy”	to	“severe”	impacts	experienced	by	
players	during	match	play	also	correlated	with	increased	muscle	damage	for	at	least	72	hours	
post-match.		More	recent	research	(Lindsay,	Lewis,	Scarrott,	Draper,	et	al.,	2015)	has	noted	
positive	correlations	between	total	neopterin/specific	gravity	and	total	impacts	(p	<	0.05)	
following	rugby	union	match	play,	further	supporting	the	influence	impacts	have	upon	
restoration	of	performance.		Post-match	muscle	damage	and	the	associated	muscle	catabolism	
are	therefore	of	importance	for	consideration	in	the	hours	post-match,	as	performance	
decrements	and	delayed	restoration	of	performance	are	likely.	

8.5.2 Impacts	resulting	from	changes	of	direction,	accelerations	and	decelerations	
As	would	be	expected	within	this	study,	the	largest	number	of	changes	of	direction,	
accelerations	and	decelerations	were	accrued	in	Zone	4,	yet	surprisingly,	only	changes	of	
direction	revealed	a	significant	difference	in	both	the	percentage	distribution	of	impacts	and	
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absolute	values	between	zones	(p	<	0.0001)	(Figures	8.1,	8.2	and	8.3).		Absolute	values	did,	
however,	show	significant	difference	between	zones	for	changes	of	direction	(Zone	5,	p	=	0.007,	
0.0	±	0.0,	d	=	1.67;	Zone	6	(p	=	0.011,	0.2	±	0.4;	d	=	1.57)	and	accelerations	(Zone	5,	p	=	0.018,	
0.7	±	1.3,	d	=	1.07;	Zone	6,	p	=	0.049,	1.5	±	2.2,	d	=	0.98).		Despite	no	significant	difference	being	
noted	for	accelerations	and	decelerations	between	zones	for	percentage	distribution,	
decelerations	did	follow	the	pattern	of	a	decreasing	frequency	of	impacts	as	the	magnitude	
increased,	yet	accelerations	revealed	a	greater	distribution	of	impacts	in	Zone	6	(Frequency	=	
2.2;	Distribution	=	15.8%)	compared	to	Zone	5	(Frequency	=	0.7;	Distribution	=	12.8%)	
(Figures	8.1	and	8.3).		Upon	further	assessment	of	impacts	occurring	from	changes	of	direction,	
accelerations	and	decelerations,	separately	from	those	incurred	from	collision,	it	was	found	
that	decelerations	accounted	for	the	greatest	proportion	of	these	explosive	movements	in	Zone	
4.		Due	to	the	likelihood	of	change	of	direction,	acceleration	and	deceleration	movements	
appearing	in	Zone	4,	one	could	perhaps	question	the	relevance	of	these	match	demands	for	
creating	fatigue,	when	compared	to	impacts	accrued	by	collisions.		Despite	the	high	frequency	
of	changes	of	direction,	accelerations	and	decelerations	within	a	rugby	player’s	match	
demands,	the	need	for	practitioners	to	focus	upon	the	more	likely	fatigue	inducing	collision	
elements	of	the	game	are	paramount,	as	these	are	the	match	demands	that	are	most	likely	to	
limit	future	optimal	training	ability.	

Research	upon	which	to	compare	the	results	from	this	study	is	sparse.		The	well	documented	
research	by	McLellan	and	Lovell	(2012)	has	been	referenced	in	many	recent	investigations	of	
impacts	from	team	sport	settings	(Cunningham	et	al.,	2016;	Jones	et	al.,	2015;	Wellman,	Coad,	
Goulet,	Coffey,	&	McLellan,	2016;	West	et	al.,	2014),	however,	it	is	important	for	practitioners	to	
note	that	their	research	only	involved	collision	impacts.		As	prior	research	did	not	include	
impacts	incurred	from	accelerations,	decelerations	and	changes	of	direction,	and	solely	those	
that	involved	collisions,	the	comparison	of	impact	frequencies	between	the	studies	would	be	ill	
advised.		In	addition	to	the	research	by	McLellan	and	Lovell	(2012)	not	involving	accelerations,	
decelerations	and	changes	of	direction,	the	impact	zones	classifications	(measured	in	G)	were	
different	to	this	study.		The	differing	impact	zone	classifications	between	studies,	combined	
with	a	difference	in	GPS	unit	specification,	mean	that	the	frequency	and	magnitude	of	impacts	
assigned	to	each	study	are	likely	to	be	misaligned.		Future	research	should	therefore	perhaps	
consider	the	alignment	of	GPS	impact	zones	between	studies	to	enable	better	comparison	of	
data.	

When	considering	the	results	from	Chapter	3,	detailing	the	match	demands	required	for	
positional	groups,	the	distances	covered	are	perhaps	not	surprising	and	cannot	be	considered	
abnormal	when	viewed	alongside	other	research	(Cahill	et	al.,	2013;	Lindsay,	Draper,	et	al.,	
2015;	Quarrie	et	al.,	2013).		However,	in	contrast	when	assessing	the	large	contribution	of	
impacts	from	collisions	in	Zone	4	(Frequency	=	15;	Distribution	=	32.7%)	noted	within	this	
experimental	study,	it	could	be	argued	that	the	high	intensity	collision	efforts	are	extreme	in	
frequency	(Figures	8.1	and	8.3).		This	unexpected	finding	has	implications	for	the	assessment	of	
likely	fatigue	which,	when	considered	alongside	the	findings	from	Suarez-Arrones	et	al.	(2014),	
which	indicate	that	contacts	induce	greater	internal	loads	(measured	via	heart	rate	response)	
to	that	accumulated	from	running,	the	influence	of	collisions	on	restoration	of	performance	and	
the	role	that	analysis	of	impact	data	can	have	upon	this	interpretation	is	further	emphasised.		In	
addition,	the	recommendations	by	Reardon	et	al.	(2016)	are	of	importance	for	future	
considerations,	as	assessment	of	collision	counts	in	rugby	union	should	perhaps	investigate	
smaller	G-force	increments.		These	assessments	of	smaller	G-force	increments	would	develop	a	
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better	understanding	of	micro-technology	collision	classification	and	therefore	potentially	
avoid	the	false	positives	seen	within	this	experimental	study,	when	assessing	impacts.		Lastly,	a	
potential	point	for	consideration	is	that	results	from	this	experimental	study,	in	particular	that	
of	Chapter	3,	would	indicate	that	elite	level	rugby	players	(and	specifically	the	backline	
players),	need	to	be	conditioned	to	able	to	perform	a	high	frequency	of	changes	of	direction,	
accelerations	and	decelerations	within	training	and	match	play.		If	elite	backline	players	are	not	
conditioned	to	perform	these	demands,	it	could	be	argued	that	avoidance	of	injury	and	
achievement	of	optimal	performance	will	be	sub-optimal.	

8.5.3 Impact	categorisation		
Based	upon	the	results	of	this	study,	the	notion	that	GPS	calculates	impacts	accurately	can	be	
questioned.		Future	practice	should	perhaps	include	the	analysis	of	a	collision	load	metric,	as	
sole	impact	values	do	not	illustrate	the	full	magnitude	of	the	match	demand	experienced.		It	
could	be	argued	that	a	collision	load	metric	would	provide	more	detail	upon	match	demands’	
likely	influence	upon	restoration	of	performance,	as	this	metric	would	involve	the	sum	of	the	
speed	and	duration	of	the	collision	and	the	magnitude	of	the	impact	involved	within	the	
collision.		Similarly	to	the	findings	of	this	experimental	study,	previous	research	(Suarez-
Arrones	et	al.,	2014)	has	shown	disparities	between	collisions	recorded	via	the	GPS	units	and	
those	coded	from	video	recordings,	with	non-significant	correlations	reported	(r	<	0.42,	ES	
>1.4).		The	notion	that	high	magnitude	impacts	encountered	during	rugby	match	play	involve	
only	collisions,	is	disputed	within	this	experimental	study.		Support	for	this	is	also	presented	by	
Gabbett,	Jenkins,	and	Abernethy	(2011),	who	noted	that	the	average	number	of	impacts	
performed	by	individual	players	were	considerably	greater	than	the	total	number	of	collisions	
typically	performed	during	match	play,	further	suggesting	that	impact	data	to	assess	collisions	
specifically	data	should	be	interpreted	with	a	degree	of	caution.		Additionally,	when	considering	
that	Reardon	et	al.	(2016)	noted	in	unpublished	findings	that	accelerations	are	likely	to	be	
mistaken	for	collisions,	due	to	the	G-force	experienced	and	the	tilt	in	body	orientation	
associated	with	acceleration	actions,	the	questionable	accuracy	of	impact	data	is	further	
emphasised.		This	notion	of	accelerations	likely	to	be	mistaken	for	collisions	could	be	explained	
by	an	over-coding	of	impacts	at	the	2	G	threshold,	as	represented	by	the	large	frequency	of	
impacts	associated	with	accelerations	within	this	study.	

A	player	load	variable	has	been	researched	by	Cormack	et	al.	(2014),	with	this	methodology	
regularly	generated	and	updated	by	GPS	providers	and	used	by	many	team	sport	practitioners	
to	monitor	players.		Player	load	values	measure	the	combined	load	across	three	movement	
planes	measuring	accelerations	and	decelerations,	yet	the	exact	algorithms	and	the	reliability	of	
such	metrics	is	unknown	and	therefore	warrants	caution	prior	to	implementation.		These	
“load”	values	are	calculated	by	the	rate	of	change	of	directions	in	the	upward,	downward	and	
lateral	directions,	allowing	three	dimensional	measurement	of	activities,	such	as	jumping	and	
impacts	in	team	sport	settings	to	be	measured,	providing	a	measure	of	total	load	applied	to	a	
player	in	matches	or	training.		It	is,	however,	important	to	note	that	a	collision	load	metric	
needs	further	investigation	to	assess	its	applicability	for	use	in	the	analysis	of	rugby	union	
match	demands.	

8.5.4 Limitations	of	the	research	
It	is	important	for	practitioners	to	note	that	the	nature	of	this	study	is	subjective	and	that	the	
results	are	only	a	representation	of	the	individual	players	in	question.		The	use	of	only	one	
player	per	assessment	of	impact	frequency	and	magnitudes	for	each	position	was	a	limitation	of	
this	study,	yet	the	time	consuming	nature	of	this	analysis	and	the	“real	world”	nature	of	the	
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elite	setting	from	which	the	impact	data	was	taken	were	major	determining	factors	in	the	
testing	protocol	implemented.		It	is	commonly	seen	in	professional	rugby,	that	some	players	
playing	the	same	position	perform	their	role	within	a	team	in	different	ways,	based	upon	team	
tactics	and	their	own	individual	strengths	and	weaknesses.		As	a	result	of	these	individual	
playing	styles,	it	is	unlikely	that	the	match	demands	for	two	games	are	going	to	be	the	same	and	
the	individual	nature	of	the	data	collected	would	therefore	have	implications,	meaning	
comparison	between	differing	data	sets	is	discouraged.		Similarly,	the	comparison	of	forwards	
and	backs	could	not	be	conducted	within	this	experimental	study,	due	to	there	only	being	nine	
data	sets	(one	per	position	group).		However,	it	could	be	argued	that	the	likely	difference	in	
impact	data	between	groups	was	accounted	for	via	normalised	percentage	calculations	of	each	
collision.		This	notion	of	differences	occurring	across	positional	groups	and	the	use	of	
normalised	percentage	calculations	is	therefore	an	additional	consideration	for	future	research.	
	
Despite	sample	sizes	being	low	in	chapters	4,	5	and	6,	the	associated	effect	sizes	support	the	
findings	from	these	experimental	chapters,	which	when	considered	alongside	the	notions	of	
Buchheit	(2016)	disputing	the	sole	use	of	p	values	further	reinforce	recommendations.		In	
addition	to	the	low	sample	size	being	a	limitation	of	this	study,	the	notion	that	the	results	
presented	being	only	a	reflection	of	the	assessors’	interpretation	of	the	movements	performed	
while	incurring	impacts,	is	also	a	limitation.		Despite	the	assessors’	definition	of	movements	
being	consistent	throughout	the	analysis,	it	would	be	recommended	in	future	practice	that	
multiple	researchers	should	be	used	to	assess	the	data	and	improve	inter	reliability	as	was	
recommended	by	Austin,	Gabbett	and	Jenkins	(2011).		Similarly,	despite	all	players	wearing	the	
GPS	unit	in	the	same	position	between	their	shoulder	blades,	the	discrepancy	noted	between	
some	players	wearing	tighter	fitting	playing	shirts	than	others,	and	some	players	wearing	their	
GPS	units	in	a	“GPS	vest”	was	also	considered	a	limitation	of	this	study.		Assessment	of	the	GPS	
files	created	alongside	the	video	enabled	the	coach	to	use	the	naked	eye	to	view	movement	
instances	where	impacts	occurred	and	it	is	the	assessor’s	belief	that	some	players’	GPS	units	
were	perhaps	more	sensitive	than	others.		This	sensitivity	was	perhaps	not	due	to	the	inter	
reliability	of	GPS	units	used,	but	was	most	likely	explained	by	the	way	in	which	the	GPS	unit	
was	sitting	between	the	shoulder	blades.		On	assessment	of	the	GPS	file	alongside	the	video	it	
was	evident	that	many	impacts	above	Zone	4	were	accounted	for	by	foot	strikes	on	the	playing	
surface	for	some	players	but	not	for	others,	therefore	supporting	the	view	that	the	fit	of	the	GPS	
unit	between	the	shoulder	blades	was	a	determining	factor	in	the	sensitivity	of	the	frequency	
and	distribution	of	impacts	generated.		This	notion	was	supported	in	recent	research	(Barrett	
et	al.,	2016)	which	illustrated	the	influence	of	wearing	a	GPS	unit	either	at	the	scapula	area	or	
closer	to	the	player’s	centre	of	mass.		Results	from	Barrett	et	al.	(2016)	in	simulated	soccer	
match	play	indicated	that	lower	limb	movement	strategies	taken	from	GPS	units	positioned	at	
the	scapula	should	be	taken	with	caution,	as	greater	contributions	to	vertical	forces	were	noted	
in	data	taken	from	the	scapula	compared	to	those	taken	from	the	centre	of	mass.	

8.5.5 Future	research	directions	
As	was	conducted	within	this	research,	absolute	values	of	impact	frequency	and	magnitude	
should	perhaps	be	used	alongside	those	detailing	percentage	distribution	in	order	to	better	
guide	practitioners	in	future	training	prescription.		When	“eye-balling”	the	results,	percentage	
distribution	values	for	collisions	were	noted	to	be	vastly	different	between	Zones	4,	5	and	6,	yet	
no	significant	difference	was	noted	in	the	analysis	of	the	results.		In	contrast,	when	assessing	
percentage	distribution	values	for	changes	of	direction	significant	differences	were	noted,	
despite	not	being	indicated	by	initial	viewing	of	the	relevant	raw	data.		However,	when	
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assessing	the	absolute	values	for	all	four	metrics	(changes	of	direction,	accelerations,	
deceleration	and	collisions)	it	is	apparent	that	more	differences	in	their	frequency	do	exist.		
Practitioners	are	therefore	advised	to	use	absolute	values	alongside	percentage	distribution,	as	
it	could	be	argued	that	the	percentage	distributions	of	where	impacts	occur	is	misguiding.		In	
addition,	it	could	be	argued	that	the	frequency	of	impacts	from	collision	is	of	more	concern	for	
post-match	analysis	than	the	percentage	distribution.		A	high	frequency	of	impacts	from	
collision	would	most	likely	indicate	a	longer	time-course	of	restoration	of	performance,	yet	
percentage	distribution	could	mislead	practitioners	in	this	assumption.	

Many	of	the	impacts	recorded	during	foot	strikes	are	likely	to	be	vertical	accelerations	and	
decelerations	and	not	horizontal	impacts,	despite	this	being	the	direction	in	which	the	player	is	
moving.		These	vertical	impacts	during	low	intensity	movement	in	match	play	are	therefore	
presenting	problems	for	practitioners	when	assessing	the	frequency	of	impacts	generated	≥	
Zone	4.		A	player	could	display	a	large	volume	of	impacts,	but	if	many	of	these	impacts	are	
vertical	in	nature	(and	perhaps	a	result	of	foot	strikes),	the	likely	fatigue	created	is	going	to	be	
less	than	if	they	were	attributed	to	collisions.		The	notion	of	vertical	impacts	being	of	relevance	
when	assessing	likely	impact	load	was	also	noted	by	Hausler,	Halaki,	and	Orr	(2016)	and	it	
could	therefore	be	argued	that	the	analysis	of	impacts	attributed	to	either	locomotion	or	
collision	is	required.		In	addition,	this	analysis	of	impacts	attributable	to	specific	match	
demands	would	benefit	from	the	assessment	of	absolute	values,	alongside	those	from	
percentage	distributions.		Lastly,	when	considering	the	likelihood	of	differing	match	demands	
between	players	playing	the	same	positions,	impact	profiles	should	perhaps	be	different	both	
within	and	between	playing	positions.		This	would	mean	that	the	analysis	of	individual	impact	
data	would	be	more	accurately	classified	and	accepted	for	continued	use	across	elite	rugby	
settings.	

8.6 Practical	applications	

Results	from	this	study	are	innovative	and	add	to	the	knowledge	of	impacts	encountered	during	
game	play.		However,	from	this	research	it	could	be	argued	that	the	values	presented	from	GPS	
outputs	alone	cannot	be	taken	at	face	value,	as	erroneous	interpretation	of	impacts	of	high	
magnitude	may	be	incorrectly	identified	as	collisions.		Due	to	the	data	collection	issues	
highlighted	above	regarding	impacts,	it	is	important	for	practitioners	to	not	only	view	the	
values	exported	from	GPS	software,	but	to	instead	sync	the	values	with	video	footage.		Varying	
relationships	in	fatigue	created	between	impacts	occurring	with	and	without	collisions	are	
likely,	meaning	a	recommendation	for	future	practice	in	the	assessment	of	how	the	impact	
occurred.		It	is	correct	for	practitioners	to	note	that	all	impacts	experienced	during	match	play	
are	likely	to	be	fatiguing,	but	the	notion	that	impacts	need	to	be	classified	is	warranted,	as	some	
impacts	will	impose	more	fatigue	than	others	depending	upon	the	match	demands	and	
movements	involved.		When	considering	that	almost	25%	of	high	magnitude	impacts	consisted	
of	accelerations,	deceleration	and	changes	of	direction,	the	relevance	of	the	impacts	to	time-
course	of	restoration	of	performance	needs	investigated	further.		Despite	the	above	limitations	
existing	for	the	use	of	GPS	data,	the	ability	to	assess	intensity	and	prescribe	restoration	
practices	from	the	technology	currently	available	is	essential	for	practitioners	in	the	elite	field.		
This	assessment	of	match	demands	incorporating	GPS	impacts	within	elite	rugby	union	is	
therefore	likely	to	continue.		As	a	result	of	the	evidence	presented	in	this	experimental	study,	
the	accuracy	with	which	practitioners	could	plan	future	training	post	rugby	union	match	play	is	
questioned.		Based	upon	GPS	data	alone,	the	information	provided	might	not	present	a	clear	
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picture	of	the	match	demands	experienced	and	therefore	a	practitioner’s	ability	to	make	
informed	decisions	upon	resultant	fatigue	is	blurred.		The	use	of	both	video	and	GPS	data	will	
provide	a	greater	representation	of	match	involvements	and	their	likely	influence	upon	fatigue	
post-match,	with	percentage	distribution	and	absolute	values	being	key	to	this	interpretation.	 	
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9 Thesis	discussion	

9.1 Introduction	and	recap	of	existing	research	

The	literature	review	conducted	provides	detail	surrounding	the	physiological	cost	of	rugby	
union	game	play	and	the	tests	that	are	commonly	used	to	assess	measures	of	fatigue	post-
match.		However,	this	review	of	current	research	showed	that	no	commonly	used	monitoring	
tool	or	protocol	exists	with	regards	to	the	assessment	of	recovery	and	restoration	of	
performance	in	the	days	post	rugby	union	game.		Current	research	proposes	that	differences	in	
movement	patterns	and	activities	undertaken	by	positional	groups	do	occur,	with	
recommendations	that	forwards	should	be	provided	with	more	time	to	recover	post-match	
than	backs,	given	the	greater	contact	loads	they	sustain	and	subsequent	longer	time-course	
restoration	of	performance	(Quarrie	et	al.,	2013).		Prior	research	intimated	that	mechanisms	of	
fatigue	are	wide	ranging	(chronic	and	acute)	(Alaphilippe	et	al.,	2012;	Jones	et	al.,	2014;	
Lindsay,	Lewis,	Scarrott,	Gill,	et	al.,	2015;	West	et	al.,	2014)	and	that	meaningful	levels	of	fatigue	
need	to	be	detected	via	both	subjective	and	objective	performance	testing,	such	as	CMJ	and	WB,	
in	order	to	better	advise	practitioners.	

As	identified	within	this	literature	review,	methods	of	measuring	performance	are	vast	in	
quantity	and	applicability	to	the	sport	setting	in	question,	with	measures	of	neuromuscular	
function,	hormonal	markers,	heart	rate	derived	measures	and	sub-maximal	testing	often	being	
utilised.		This	literature	review	enabled	the	identification	of	CMJ	testing	and	self-reported	well-
being	measures	as	tools	for	monitoring	restoration	levels	post	rugby	union	match	play.		This	
choice	of	monitoring	tool	was	mostly	dictated	by	methodological	and	logistical	considerations,	
and	the	series	of	investigations	that	followed	measured	their	reliability	and	relevance	to	elite	
rugby	settings.		The	knowledge	gained	regarding	match	demands	and	the	likely	fatigue	
response	created	will	enable	coaches	in	elite	rugby	to	make	more	informed	decisions	upon	
timing,	frequency	and	intensity	of	training	in	the	days	post-match.		Prior	research	has	not	
included	match	characteristics	for	players	that	have	played	less	than	the	entire	game	(<	80	
minutes),	yet	the	inclusion	of	match	characteristics	for	players	that	have	played	reduced	
minutes	would	better	guide	elite	environments	upon	resultant	physiological	cost.		Lastly,	a	
process	of	combined	data	collection	including	both	GPS	data	and	video	recordings	was	
implemented	within	this	thesis,	to	provide	more	detail	surrounding	the	individual	position-
specific	movement	patterns	and	the	likely	resultant	affect	these	match	instances	have	upon	
fatigue	levels.		Recent	research	in	rugby	league	identified	impacts	>	7	G	as	important	for	
consideration	of	timing,	frequency	and	intensity	of	training	in	the	days	post-match	(McLellan	&	
Lovell,	2012).		The	final	experimental	chapter	of	this	thesis	therefore	investigated	this	theory	
within	elite	rugby	union,	in	an	attempt	to	identify	which	match	demands	are	most	likely	to	
induce	these	high	magnitude	impacts.	

9.2 Major	findings	of	the	research	

Despite	many	of	the	experimental	chapters	within	this	thesis	investigating	topics	that	have	
been	detailed	previously,	the	combination	of	GPS	and	video	analysis	techniques	and	the	testing	
protocol	implemented	provided	new	findings	in	the	match	demands	experienced	by	elite	
players	and	are	therefore	of	importance	for	future	practice.		The	match	characteristics	revealed	
within	the	initial	experimental	chapter	are	perhaps	not	surprising	when	considered	alongside	
earlier	research	in	the	area	(Cahill	et	al.,	2013;	Coughlan	et	al.,	2011;	Jones	et	al.,	2015;	Lindsay,	
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Draper,	et	al.,	2015;	Venter	et	al.,	2011),	yet	the	evidence	presented	shows	many	previously	
unreported	differences	between	forwards	and	backs,	potentially	based	upon	the	incorporation	
of	data	from	players	that	played	less	than	80	minutes.		This	broader	assessment	of	game	
minutes	provides	rugby	union	coaches	with	a	more	true	representation	of	match	demands,	
across	varying	match	durations,	which	can	then	be	applied	to	future	prescription	of	training	
and	monitoring	methodologies.	

When	assessing	absolute	values,	no	significant	differences	were	observed	in	the	frequency	of	
impacts	>	Zone	3	between	forwards	and	backs.		This	non-significant	difference	in	the	frequency	
of	impacts	>	Zone	3	is	perhaps	surprising,	when	considering	forwards’	typical	match	
involvements.		However,	when	taking	into	account	the	reduced	match	minutes	performed	by	
forwards	(Chapter	3)	and	the	higher	magnitude	impacts	associated	with	collision	activities	
during	match	play	(Chapter	8),	the	results	are	of	added	value.		Backs	were	observed	to	perform	
at	a	higher	intensity	during	match	play	(70.9	±	7.4	m/min)	than	forwards	(64.0	±	6.3	m/min;	p	
<	0.001,	d	=	1.00),	with	backs	also	completing	a	greater	number	of	accelerations	(32.2	±	10.6)	
compared	to	forwards	(22.0	±	11.9;	p	<	0.001,	d	=	0.88)	and	a	greater	number	of	decelerations	
(41.9	±	12.3)	compared	to	the	forwards	(30.8	±	14.4;	p	<	0.001,	d	=	0.82).		In	contrast	to	the	
hypothesis,	results	from	this	study	also	show	that	backs	experienced	a	greater	total	number	of	
impacts	than	forwards	(Forwards	3176;	Backs	5501),	however	this	study	does	support	the	
view	that	forwards	are	involved	in	more	“heavy”	impacts	(>	Zone	3)	(Forwards	229	±	160;	
Backs	226	±	151).		It	was	also	of	note	within	this	research,	that	forwards	experienced	a	
significantly	greater	number	of	Im6	when	compared	to	backs,	which	when	considering	these	
Im6	instances	represent	a	13-15	G	involvement,	the	resultant	physical	effect	this	must	have	
upon	the	players	involved	is	apparent.	

Despite	many	of	the	match	demands	assessed	in	this	research	being	lower	than	those	
previously	reported	(Cahill	et	al.,	2013;	Coughlan	et	al.,	2011;	Lindsay,	Draper,	et	al.,	2015;	
Reardon	et	al.,	2015),	the	influence	of	relative	assessment	is	likely	to	explain	this.		For	example,	
forwards	in	this	research	were	noted	to	compete	for	66	minutes	on	average,	which	is	lower	
than	the	whole	match	duration	figures	reported	in	other	similar	studies.		The	incorporation	of	
relative	measures	was,	however,	considered	more	applicable	for	match	demands	assessment,	
as	it	could	be	argued	that	this	study	is	perhaps	more	representative	of	modern	rugby	union	
where	players	are	often	asked	to	play	less	than	the	full	match	duration.		As	reported	in	Chapter	
3.5,	consideration	of	both	absolute	and	relative	measure	is	of	importance.		The	relative	values	
for	forwards	are	perhaps	of	more	interest	than	the	backs	when	assessing	the	data	displayed	
above	in	Tables	3.4-3.9,	where	some	variables	may	present	more	information	from	a	relative	
view	rather	than	an	absolute.		This	notion	of	relative	position-specific	assessment	may	help	
better	guide	practitioners	in	future	match	demand	analysis.	

Of	specific	interest	from	this	research,	were	the	findings	that	showed	that	differences	in	match	
demands	occur	between	the	nine	positional	groups.		Specifically,	props	typically	experienced	
the	lowest	number	of	impacts	in	the	lower	impact	zones	(Im1,	Im2	and	Im3),	yet	also	
experienced	a	large	number	of	Im6	values.		Similarly,	full	backs	showed	a	large	number	of	
impacts	in	the	high	impact	zones	(Im4,	Im5	and	Im6),	yet	they	also	experienced	a	large	number	
of	low-level	impacts.		The	positions	of	hooker	and	back	row	also	illustrated	a	large	number	of	
Im6	values	when	compared	to	the	values	they	experienced	at	the	lower	impact	zones.		This	may	
not	be	surprising	considering	their	typical	match	involvements,	yet	it	adds	weight	to	the	notion	
that	forwards	experience	more	high	magnitude	impacts	than	backs	and	that	impact	demands	
also	differ	between	forwards’	positional	groups.		These	results	therefore	provide	a	greater	
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understanding	in	respect	to	the	likely	blunt	trauma	resulting	from	match	demands	and	should	
help	guide	practitioners	in	planning	strength	and	conditioning	programmes	for	positional	
groups.	

Chapters	4,	5	and	6	assessed	jump	modalities,	regarding	their	reliability	and	practicality	for	use	
within	elite	rugby	union	settings.		Similarly	to	what	has	been	reported	in	prior	research	
(Markovic	et	al.,	2004),	results	from	Chapter	4	identify	CMJ	as	the	jump	modality	that	
illustrated	the	highest	reliability	both	within	(ICC	0.938)	and	between-session	(ICC	0.906)	
across	testing	days,	in	comparison	to	the	SJ,	SLDJ-L	and	SLDJ-R.		Alongside	CMJ	being	a	
previously	identified	jump	modality	for	use	in	restoration	of	performance	testing	(Gathercole,	
Sporer,	Stellingwerff,	et	al.,	2015b),	the	results	of	this	thesis	support	the	notion	that	CMJ	
provides	the	most	sensitive	and	reliable	data	for	jump	performance	monitoring	in	elite	rugby	
union	settings.		Evidence	collated	within	Chapter	4	showed	that	CMJ	demonstrates	the	lowest	
SDD	(1.7%)	between	sessions	when	compared	to	SJ,	SLDJ-L	and	SLDJ-R	and	therefore	adds	to	
the	knowledge	base.		However,	perhaps	most	relevant	from	this	experimental	chapter	was	the	
finding	that	a	change	in	jump	height	of	≥	1.7%	was	meaningful	for	CMJ	performance	and	that	
this	value	should	be	used	for	future	practice	in	the	subject	area.	

As	a	result	of	CMJ	being	identified	as	the	jump	modality	that	exhibits	the	highest	reliability	
within	and	between	sessions,	the	subsequent	experimental	chapter	aimed	to	assess	the	use	of	
CMJ	measurement	on	an	OptoJump	compared	to	that	on	a	force	plate.		The	force	plate	is	
considered	the	“gold	standard”	tool	for	jump	measurement,	yet	results	from	this	experimental	
chapter	indicate	that	the	use	of	OptoJump	is	also	reliable	(CV	<	10%).		Within	Chapter	5,	a	
significant	correlation	(r	=	0.906)	was	noted	between	OptoJump	CMJ	height	and	CMJ	height	
measured	on	a	force	plate,	therefore	supporting	the	reliability	of	future	OptoJump	use.		Results	
from	Chapter	6	examining	a	single	CMJ	showed	high	reliability	(CMJ	ICC	=	0.986,	SDD	2.4%),	
with	no	significant	differences	(p	>	0.05)	in	jump	height	observed	between	days.		Despite	
Chapter	4	showing	differences	existing	between	session	one	and	session	two,	when	assessing	
CMJ	performance,	Chapter	6	shows	that	the	performance	of	a	single	CMJ	(measuring	jump	
height)	is	a	reliable	measure.		Therefore,	as	was	also	noted	in	Chapter	5,	the	findings	from	
Chapter	6	support	the	performance	of	a	single	CMJ	(measuring	jump	height)	on	an	OptoJump	as	
a	reliable	measure	for	assessing	post-match	levels	of	readiness,	when	a	force	plate	is	not	readily	
available.		This	finding	is	therefore	of	importance	for	guiding	future	jump	assessment	in	elite	
rugby	settings.	

The	final	experimental	chapter	utilising	jump	assessment	was	Chapter	7,	which	aimed	to	
identify	meaningful	change	in	CMJ	and	self-reported	well-being	scores.		Due	to	the	findings	of	
the	previous	experimental	chapters,	CMJ	height	had	been	noted	as	reliable	and	applicable	for	
use	in	elite	rugby	union	settings	and	therefore	warranted	further	investigation	regarding	
expected	change	post-match	play.		Results	from	Chapter	7	showed	that	both	CMJ	performance	
and	WB	score	were	reduced	at	60	hours	post-match,	90	hours	post-match	and	170	hours	post-
match,	with	interestingly	WB	scores	reduced	to	a	greater	value	and	for	a	longer	time-course	
than	CMJ.		A	meaningful	change	of	2.6	cm	(-6%)	in	CMJ	performance	was	noted	alongside	a	-9%	
change	in	the	WB	score	at	60	hours	post-match,	therefore	adding	to	the	knowledge	base	of	
existing	research	surrounding	the	time-course	of	recovery	post	match	play.		Despite	
correlations	noted	between	D6	(p	=	0.044;	r	=	0.950)	and	accelerations	(p	=	0.001;	r	=	0.953)	at	
60	hours	post-match	with	changes	in	CMJ	performance	for	the	forwards,	evidence	from	this	
study	would	dispute	the	views	of	previous	time-course	research	(Quarrie	et	al.,	2013),	which	
reported	that	a	longer	recovery	time-course	would	likely	be	associated	with	forwards	
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compared	to	backs.		As	a	result	of	this	experimental	chapter,	practitioners	are	therefore	
advised	to	consider	backs	as	having	a	longer	time-course	of	recovery.		In	conjunction	with	this,	
the	match	demands	of	positional	groups	may	also	guide	the	length	of	recovery	post-match	and	
therefore	the	use	of	GPS	data	warrants	consideration,	alongside	performance	change	measures,	
when	assessing	players’	readiness	post-match.	

Lastly,	within	Chapter	8,	as	was	hypothesised,	collisions	accounted	for	higher	magnitude	
impacts	than	other	movement	match	demands.		However,	new	findings	from	this	research,	
combining	video	and	GPS	data,	do	show	that	the	reliability	of	the	classification	of	impacts	
identified	within	this	study	are	a	concern,	as	individual	player	movement	patterns	and	the	
resultant	output	provided	from	the	GPS	were	noted	to	provide	misleading	information.		
Additionally,	the	frequency	of	impacts	experienced	as	a	result	of	acceleration	and	deceleration	
were	shown	to	be	an	important	consideration	for	future	training	prescription	and	analysis	of	
likely	restoration	of	performance	in	the	days	post	match	play	was	noted	as	a	new	finding	and	
one	warranting	further	investigation.		As	a	result	of	this	experimental	chapter,	practitioners	
working	in	the	elite	field	are	therefore	recommended	to	combine	video	and	GPS	data,	whilst	
also	incorporating	both	absolute	and	relative	values.		This	methodology	should	help	to	develop	
a	greater	representation	of	the	match	involvements	assigned	to	impacts	experienced	during	
match	play,	as	the	values	presented	from	GPS	outputs	alone	cannot	be	taken	at	face	value.	

9.3 Limitations	of	the	research	conducted	

9.3.1 “Real	world”	limitations	
The	main	limitation	of	this	research	involves	the	lack	of	multiple	time-points	post-match	upon	
which	change	in	CMJ	performance	and	WB	scores	were	assessed.		Sixty	hours	post-match	was	
the	most	comparable	time	point	between	that	of	previous	research	and	this	thesis,	yet	it	is	clear	
that	including	time	points	prior	to	and	post	the	60	hours	post-match	would	have	provided	
added	value.		The	inability	of	the	author	to	gain	additional	time-points	prior	and	post	to	the	60	
hours	post-match	was	due	to	logistical	constraints	of	the	players’	training	schedule,	meaning	
access	to	players	for	assessment	was	limited.		A	further	“real	world”	limitations	that	prevented	
the	collection	of	additional	data,	that	would	have	benefitted	the	results,	was	that	the	data	was	
collected	from	only	one	team.		Despite	the	data	collected	adding	to	the	knowledge	of	match	
demands	within	rugby	union	in	the	northern	hemisphere,	the	limitation	of	the	data	being	from	
only	one	team	is	a	point	for	practitioners	to	consider	when	they	are	examining	the	results.		
However,	as	previously	discussed,	the	direct	competition	that	exists	between	many	teams	
within	Europe,	means	that	sharing	of	inter-team	data	may	be	unlikely	and	that	this	limitation	is	
therefore	unlikely	to	be	resolved	in	future	research.	

Additionally,	a	point	for	consideration	and	potentially	another	“real	world”	limitation	of	this	
thesis	was	that	despite	all	the	games	and	weekly	training	structures	within	this	research	being	
consistent,	some	games	involved	more	travel	than	others,	meaning	the	effect	travel	could	have	
had	upon	subsequent	CMJ	performance	and	well-being	needs	further	investigation.		This	notion	
of	travel	upon	performance	decrement	was	noted	in	recent	research	from	the	southern	
hemisphere	(George	et	al.,	2015),	where	travel	resulted	in	more	missed	tackles	and	(1.7	±	1.3),	
less	gain	line	success	in	the	first	half	of	games	(-3.0	±	1.9)	and	less	points	scored	in	the	second	
half	of	games	by	away	teams.		Similarly,	in	youth	soccer	players,	large	positive	correlations	(r	=	
0.70-0.87)	were	noted	between	well-being	and	distance	travelled	to	away	game	location.		
Travel	or	lack	of	travel	between	home	and	away	games	could	therefore	have	been	a	limitation	
of	this	thesis,	yet	similarly	to	the	limitation	regarding	limited	time	points	for	performance	
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assessment,	logistical	constraints	surrounding	the	players’	seasonal	schedule	were	the	main	
determining	factor	in	the	choice	of	games	to	be	assessed.	

The	above	issues	detailing	limitations	associated	with	the	logistics	of	the	“real	world”	setting	
within	which	this	research	was	conducted,	are	an	important	consideration.		However,	readers	
need	to	consider	that	this	thesis	and	any	future	investigations	need	to	be	ecologically	valid	to	
be	applicable	in	the	applied	setting.		Therefore,	the	concerns	surrounding	the	lack	of	additional	
time-points	for	assessment	of	restoration,	the	potential	issues	surrounding	travel	and	the	
notion	that	the	data	from	this	thesis	is	only	representative	of	one	team	are	perhaps	accounted	
for.		The	idea	that	any	future	studies	can	be	implemented	into	an	applied	setting	and	that	the	
testing	protocol	could	guide	the	training	schedule	within	which	assessments	are	taking	place	is	
naïve.		It	is	unlikely	that	rugby	coaches	working	in	the	elite	field	will	allow	for	alteration	of	
training	schedules	purely	for	in	order	for	testing	to	be	conducted	and	the	potential	conflict	this	
intervention	could	cause	as	a	result	of	trying	to	implement	such	plans,	means	that	this	is	a	
situation	that	should	be	avoided.	

As	a	result	of	such	“real	world”	issues,	the	informed	selection	of	CMJ	and	WB	as	tools	to	assess	
restoration	in	this	elite	setting	was	mostly	guided	by	logistical	influences.		Once	reliability	was	
noted	for	these	measures,	the	rationale	for	their	use	was	warranted.		It	could	be	argued	that	
other	performance	tests	could	have	provided	more	information	upon	restorative	state	than	CMJ	
and	WB,	yet	the	logistical	issues	surrounding	such	tests	would	have	outweighed	the	benefit	of	
their	inclusion.		For	example,	this	thesis	could	have	conducted	twitch	potentiation	on	an	
isokinetic	dynamometer	as	this	would	have	been	a	more	accurate	measure	of	fatigue,	yet	
logistically	it	is	unlikely	that	this	form	of	testing	would	have	worked	within	the	applied	setting	
in	which	this	thesis	stood.		The	unstructured	nature	of	training	weeks	throughout	a	rugby	
union	playing	season	and	the	logistics	that	surround	management	of	a	squad	of	fifty-plus	
players,	make	these	forms	of	intricate	testing	impractical.		Elite	sport	is	an	ever-evolving	setting	
and	a	logistically	difficult	scenario	within	which	to	conduct	research,	with	practitioners	advised	
to	be	aware	that	a	sound	study	design	is	often	more	realistic	than	a	perfect	one.	

9.3.2 Limitations	of	CMJ	protocol	implemented	
As	discussed	above	(Chapter	9.3.1),	a	major	limitation	of	this	thesis	was	the	inability	to	test	the	
players	at	additional	time-points	post-match,	with	this	therefore	having	an	influence	upon	the	
CMJ	testing	protocol	implemented.		However,	as	noted,	the	“real	world”	limitations	associated	
with	daily	access	to	elite	players	dictated	the	time-points	selected.		Another	possible	limitation	
with	this	study	when	considering	the	evidence	presented	by	Gathercole,	Sporer,	and	
Stellingwerff	(2015),	is	that	the	analysis	of	CMJ	performance	was	only	focused	upon	outcome-
related	variables.		As	discussed	previously,	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	
argued	that	outcome	driven	CMJ	analysis	does	not	assess	the	later	element	of	the	SSC-recovery	
pattern	and	therefore	overlooks	some	key	information.		Based	upon	this	research	by	
Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	it	could	be	assumed	that	rugby	players	adapt	
their	CMJ	strategy	to	avoid	any	decreased	jump	height	value	being	presented,	despite	NMF	
existing.		For	example,	a	player	may	adjust	their	eccentric	depth	and	resultant	concentric	force	
during	CMJ	execution,	dependent	upon	their	current	neuromuscular	function.		Within	this	
thesis,	it	could	therefore	be	argued	that	the	lack	of	decrement	shown	in	jump	height	for	
forwards	compared	to	backs	could	be	explained	by	the	movement	strategies	of	subjects	not	
having	been	assessed.		The	results	of	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	do	not	
dispute	the	notion	that	CMJ	testing	is	a	suitable	test	to	detect	fatigue-induced	changes	in	NM	
function,	yet	it	does	recommend	analysis	of	both	typical	CMJ	variables	(jump	height)	and	



	 202	

kinetic	variables	(RFD)	to	provide	a	more	detailed	analysis	reflecting	both	CMJ	output	and	
movement	strategy	employed.		It	is,	however,	the	author’s	view	that	the	aforementioned	
logistical	and	financial	implications	of	assessing	CMJ	performance	using	kinetic	measures	do	
not	warrant	the	use	of	a	force	plate.	

The	implementation	of	recent	research	regarding	the	inclusion	of	kinetic	variables	(Claudino	et	
al.,	2016;	Gathercole,	Sporer,	Stellingwerff,	et	al.,	2015a;	Kennedy	&	Drake,	2017a;	Kennedy	&	
Drake,	2017b;	Roe	et	al.,	2015)	within	future	practice	is	warranted	and	its	omission	could	
therefore	be	included	as	a	potential	limitation	of	this	thesis.		However,	when	considering	that	
ultimately	this	thesis	aimed	to	assess	whether	players	had	restored	performance	prior	to	the	
next	game	(as	measured	by	pre	and	post-match	jump	height),	the	strategy	for	how	they	
achieved	this	jump	height	is	perhaps	irrelevant.		It	could	be	argued	that	players	may	achieve	
this	jump	height	via	a	different	strategy	and	in	a	different	movement	pattern,	which	although	
informative	is	immaterial	to	this	thesis.		The	impulse	players	create	during	CMJ	performance	
will	determine	their	velocity	at	take-off	and	therefore	the	notion	that	you	can	adopt	two	
different	strategies	of	CMJ	to	create	the	same	impulse	(by	producing	lower	force	over	a	greater	
period	of	time	or	a	higher	force	over	a	shorter	period	of	time),	should	be	considered.		This	
impulse	(calculated	by	multiplying	force	by	time)	will	result	in	the	same	acceleration,	the	same	
velocity	of	take-off,	and	will	therefore	yield	the	same	jump	height,	making	the	strategy	of	
movement	unimportant.		Despite	the	strategy	employed,	if	players	are	noted	to	have	restored	
CMJ	height	back	to	prior	performance	levels,	it	could	then	be	assumed	that	this	jump	height	
could	be	transferred	to	the	field	and	therefore	utilised	to	achieve	a	positive	outcome	(winning	a	
lineout	for	example).		At	present,	the	disadvantages	of	using	a	force	plate	still	outweigh	the	
advantages	and	it	is	unlikely	that	all	team	sport	practitioners	will	invest	in	such	technology	
despite	the	evidence	presented	above.		The	implementation	of	such	jump	assessment	protocol	
depends	considerably	upon	the	level	of	financial	and	scientific	support	available	to	the	
practitioners.		This	combined	NMF	assessment	approach	typically	requires	a	force	plate	for	
assessment	and	therefore	limits	the	majority	of	rugby	teams,	due	to	both	financial	and	practical	
implications	of	its	use	in	the	elite	field	on	a	daily	basis.	

Considering	the	restoration	of	performance	assessments	conducted	within	this	thesis	
surrounding	the	use	of	mean	squad	CMJ	values,	highlights	another	potential	limitation.		
Evidence	to	support	the	use	of	individual	assessment	of	CMJ	performance,	instead	of	mean	
squad	CMJ	values,	was	presented	by	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a),	who	noted	
that	different	individuals	exhibit	marked	differences	in	recovery	profile	post	fatiguing	exercise	
and	that	the	NMF	response	elicited	during	CMJ	performance	must	therefore	also	be	
individualised.		Additional	support	for	individualised	jump	testing	was	presented	by	Hamilton	
(2009),	who	noted	limited	worth	in	assessing	mean	squad	jump	values	and	instead	
recommended	that	practitioners	focus	upon	individual	scores	to	accurately	measure	fatigue	pre	
and	post	soccer	match.		It	could	be	argued	that	implementation	of	individualised	jump	testing,	
alongside	the	recommendations	of	Roe	et	al.	(2015)	to	use	mean	values	of	two	or	three	jumps,	
would	perhaps	provide	improved	reliability	and	sensitivity	in	comparison	to	an	individual	
jump	measuring	a	maximal	jump	height	value.	

Lastly,	a	future	direction	of	jump	testing	protocol	to	assess	NMF	and	therefore	a	potential	
limitation	of	this	research	surrounds	the	use	of	a	DJ.		Despite	a	unilateral	SLDJ	being	examined	
in	Chapter	4	and	considered	to	be	unreliable	(SLDJ;	ICC	0.759	-	0.875)	and	therefore	
impractical	for	use	in	applied	settings,	the	potential	use	of	a	DJ	that	is	bilateral	should	perhaps	
be	considered	in	future	investigations.		It	could	be	argued	that	a	DJ	that	encompasses	bilateral	
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landing	and	take-off,	enables	increased	sensitivity	in	part	due	to	a	DJ	using	both	contact	and	
flight	time	measures.		The	results	from	Chapter	4	and	the	views	of	Hamilton	(2009),	who	noted	
incorporation	of	DJ-RSI	being	a	performance	test	capable	of	assessing	NMF,	were	considered	
when	deciding	upon	which	jump	performance	tests	to	include,	yet	the	rationale	for	a	SLDJ	can	
now	be	questioned.		The	reasoning	behind	the	incorporation	of	SLDJ	at	the	commencement	of	
this	thesis,	was	that	Harman	et	al.	(1990)	reported	that	unilateral	jump	performance	had	a	
stronger	relationship	with	sprint	performance	than	bilateral	jumps.		In	hindsight	it	could	now	
be	assumed	that	the	assessment	of	impaired	neuromuscular	function	may	have	been	better	
assessed	via	utilisation	of	a	bilateral	DJ.		The	results	from	Chapter	4	and	the	unpublished	views	
of	the	author,	noted	that	the	technique	adopted	during	the	SLDJ	differed	mostly	on	the	start	of	
the	jump	where	some	players	were	noted	to	“drop	off	the	box”	and	some	were	noted	to	“jump	
off	the	box”	onto	the	landing	surface	below,	meaning	a	discrepancy	in	results	was	likely.		
Utilisation	of	a	bilateral	DJ	would	have	still	assessed	the	relatively	short	contraction	times	
involved	in	such	a	movement,	yet	would	have	provided	less	opportunity	for	altered	technique	
as	associated	with	the	SLDJ	and	therefore	may	have	led	to	more	sensitive	measures.	

9.3.3 GPS	limitations	
Despite	GPS	being	a	commonly	used	tool	to	manage	training	load	in	many	elite	rugby	settings,	
evidence	from	this	research	illustrates	that	limitations	to	its	use	do	exist.		Firstly,	it	appears	that	
much	of	the	data	collected	and	subsequently	produced	by	GPS	units	surrounds	the	use	of	
accelerometer	data.		Many	GPS	providers	have	recently	added	metrics	utilising	gyroscopes	
alongside	accelerometer	data,	yet	as	is	illustrated	by	this	research	the	reliability	and	
practicality	of	their	use	can	be	questioned.		Results	from	this	study	would	support	the	views	of	
Chambers,	Gabbett,	Cole,	and	Beard	(2015),	that	GPS	is	capable	of	assessing	sport	specific	
movements,	but	the	ability	of	GPS	to	quantify	collision	elements	of	rugby	union	match	is	still	
unwarranted.		Within	StatSports	Viper	software,	a	rugby	specific	collision	metric	has	been	
developed	to	quantify	when	a	collision	has	occurred,	by	using	the	gyroscope	and	the	
accelerometer	data.		Essentially,	this	metric	is	derived	from	the	gyroscope	experiencing	a	tilt	in	
its	axis	(as	is	commonly	seen	during	collision	movements	by	players	in	rugby)	and	an	impact	
registering	in	the	accelerometer	within	a	similar	timeframe,	with	the	magnitude	of	the	collision	
determined	via	the	speed	and	duration	of	the	collision.		The	collisions	are	therefore	categorised	
via	a	weighting	system	within	the	software,	yet	the	specifics	of	these	weightings	are	not	
disclosed	to	end-users.		Results	from	this	study	would,	however,	dispute	this	metric,	as	it	was	
noted	for	one	of	the	players	assessed	that	multiple	collisions	were	incorrectly	assigned	to	him,	
when	he	simultaneously	decelerated	as	he	approached	a	ruck	(therefore	accruing	an	impact)	
and	bent	over	to	pick	up	the	ball.	

The	use	of	a	sole	metric	can	therefore	be	classified	as	a	limitation	of	GPS	use,	with	the	
algorithms	that	quantify	collision	metrics	using	gyroscopes,	for	example,	requiring	further	
investigation.		Research	within	other	team	sports	(Gabbett	et	al.,	2010;	Gastin,	McLean,	Spittle,	
&	Breed,	2013)	used	only	the	gyroscope	to	assess	player	collision	movements	and	did	not	use	
the	sum	of	rotational	forces	from	the	gyroscope	in	combination	with	the	sum	of	perpendicular	
forces	from	the	accelerometer	also	housed	within	the	GPS	units.		Despite	research	existing	
(Kelly	et	al.,	2012)	to	confirm	the	reliability	of	correctly	identifying	collisions	in	elite	level	rugby	
union	(recall	and	precision	rating	0.933	and	0.958	respectively),	no	evidence	has	currently	
been	reported	to	support	StatSports	Viper	software	in	the	analysis	of	collision	instances.		In	
addition,	when	considering	the	perceived	reluctance	of	many	software	suppliers	to	provide	
detail	in	the	quantification	of	impact	and	load	collated	by	GPS	units,	the	need	for	a	more	
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thorough	examination	of	impacts,	their	occurrence	within	game	play	and	the	incorporation	of	
this	data	within	GPS	data	analysis	is	emphasised.		Future	development	of	collisions	detection	
within	the	software	and	the	validation	of	impact	forces	will	improve	the	applicability	for	use	in	
elite	rugby	settings.	

Despite	it	not	being	the	focus	of	this	thesis,	the	lack	of	validity	of	the	assessment	of	collisions	as	
a	reliable	metric	of	use	in	rugby	union,	is	a	concern	and	is	consistent	with	the	findings	of	
Hausler	et	al.	(2016).		Similarly	to	as	seen	in	this	thesis,	Hausler	et	al.	(2016)	conducted	a	meta-
analysis	of	GPS	technology	and	revealed	that	inconsistencies	are	evident	between	collision	
identification	and	categorisation	between	magnitudes.		However,	in	a	review	comparing	a	
micro-technology	unit	(minimaxX;	Catapult	Sports)	with	video-based	coding	of	the	actual	
collisions	in	elite	rugby	league	(Gabbett	et	al.,	2010),	no	significant	differences	were	detected.		
Despite	correlations	not	proving	validity,	Gabbett	et	al.	(2010)	observed	strong	correlations	(r	
=	0.96,	p	<	0.01)	between	collisions	recorded	via	the	minimaxX	units	and	those	coded	from	
video	recordings,	therefore	demonstrate	that	the	minimaxX	micro-technology	units	offer	a	
sound	method	of	quantifying	the	contact	load	of	collision	sport	athletes.		Yet,	more	recently,	
disparities	between	collisions	recorded	via	the	GPS	units	and	those	coded	from	video	
recordings,	were	noted	within	rugby	sevens	match	play	(Suarez-Arrones	et	al.,	2014)	with	non-
significant	correlations	reported	(	r	<	0.42,	ES	>1.4).		The	differences	in	findings	between	these	
studies	could,	however,	be	explained	by	the	technology	used,	the	study	populations	involved	
and	the	experimental	conditions,	as	not	only	did	the	sport	differ,	but	so	did	the	context	
(training	or	match).	

Upon	viewing	the	matches	used	for	assessment	within	this	study,	it	was	noted	that	the	way	in	
which	the	impact	from	a	collision	experience	is	categorised	(Zone	4	to	Zone	6)	often	depends	
upon	the	orientation	of	the	way	the	collision	is	made	with	the	ground	or	the	opposition.		When	
viewing	individual	collision	instances	that	accrued	high	magnitude	impacts,	it	could	be	argued	
that	if	the	opponent	is	moving	in	the	same	direction	as	the	attacker	or	defender,	this	is	likely	to	
have	an	influence	upon	lessening	the	magnitude	of	impact	assigned	to	them.		Within	the	
individual	analysis	of	player	files,	some	players	were	seen	to	make	a	tackle,	yet	the	tackle	
completed	registered	as	<	9	G	and	therefore	was	not	included	within	the	final	analysis	of	where	
impacts	occurred.		However,	when	assessing	some	accelerations	conducted	by	players,	it	was	
noted	that	on	multiple	occasions	some	of	these	acceleration	instances	registered	as	>	9	G.		
These	results	may	be	correct,	but	on	viewing	the	video	instances	for	these	movements	the	
researcher	would	question	this,	when	comparing	these	match	instances	to	collision	instances	
that	did	not	register	as	high	impact	values.		When	considering	that	collision	metrics	developed	
within	the	software	often	involve	high	magnitude	impacts,	the	applicability	of	impact	
magnitude	and	its	use	for	assessment	of	match	demands	and	future	training	prescription	can	
be	questioned.		Collision	profiles	should	perhaps	be	different	across	playing	positions	and	the	
identification	of	collision	zones	more	accurately	classified	and	accepted	for	use	across	elite	
rugby	settings.	
	
Another	area	of	investigation	within	GPS	classification	that	warrants	investigation	is	the	
weighting	of	movement	tasks.		As	was	evident	when	viewing	the	video	files	encompassed	in	
Chapter	8,	it	could	be	argued	that	movement	demands	that	elicit	impacts	in	the	GPS	unit	should	
not	be	globally	weighted.		A	landing	from	a	jumping	movement	from	a	player	that	elicits	a	Zone	
6	impact,	for	example,	will	be	unlikely	to	have	the	same	fatigue	effect	as	a	Zone	6	impact	from	a	
collision	situation.		This	notion	therefore	warrants	further	investigation,	especially	when	
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considering	the	individual	frequency	of	impacts	produced	via	movement	dynamics	discussed.		
These	findings	would	therefore	further	lend	towards	the	view	that	absolute	values	need	to	be	
accounted	for	in	analysis	of	GPS	impacts	and	not	solely	percentage	distribution,	as	the	likely	
fatigue	response	from	collisions	is	going	to	be	longer	lasting	than	those	attributed	to	other	
movement	tasks.		Lastly,	within	this	thesis,	the	discrepancy	noted	between	some	players	
wearing	tighter	fitting	playing	shirts	than	others,	and	some	players	wearing	their	GPS	units	in	a	
“GPS	vest”	is	considered	a	limitation	of	GPS	research.			

9.4 Practical	applications	and	future	research	directions	as	a	result	
of	the	research	conducted	

9.4.1 Future	jump	testing	protocol	to	assess	restoration	of	performance	
This	thesis	identified	CMJ	as	applicable	in	the	assessment	of	restoration	of	performance	testing	
and	its	use	in	many	elite	settings	is	likely	to	continue.		Findings	from	this	thesis	further	the	
recommended	protocol	for	CMJ	testing	in	measuring	fatigue,	with	a	change	in	jump	height	of	≥	
1.7%	being	noted	as	meaningful.		Results	collected	within	this	thesis	also	support	the	
performance	of	a	single	CMJ	(measuring	jump	height)	on	an	OptoJump	as	a	reliable	measure	for	
assessing	post-match	levels	of	readiness,	when	a	force	plate	is	not	readily	available.		Perhaps	
most	importantly	for	future	implementation	of	CMJ	testing,	was	the	finding	that	reduced	CMJ	
performance	was	noted	at	60	hours	post-match,	90	hours	post-match	and	170	hours	post	rugby	
union	game.		This	finding	would	therefore	support	the	notion	of	reducing	training	volume	in	
the	days	immediately	post	rugby	union	match	play,	yet	would	also	support	previously	
unpublished	observations	that	elite	rugby	players	often	do	not	restore	performance	prior	to	the	
next	game	commencing	and	that	players	often	play	in	a	sub-optimal	state.		As	a	result	of	this	
thesis,	recommended	time-course	of	recovery	is	therefore	noted	to	be	longer	than	that	shown	
from	previous	research	(West	et	al.,	2014)	and	should	be	a	major	consideration	for	rugby	
administrators	when	scheduling	fixtures.		In	addition,	a	finding	from	this	research	that	needs	to	
be	considered	within	future	CMJ	testing	protocol	is	the	discovery	that	backs	have	a	longer	time-
course	of	recovery	compared	to	forwards.		Considering	that	this	finding	disputes	the	views	of	
previous	time-course	research	(Quarrie	et	al.,	2013),	which	reported	a	likely	longer	time-
course	of	recovery	associated	with	forwards	compared	to	backs,	the	need	for	positional	CMJ	
testing	protocol	is	perhaps	required.	
	
As	was	incorporated	within	this	research,	the	majority	of	studies	have	used	the	highest	CMJ	
performance	to	assess	fatigue,	with	recent	research	adding	support	to	the	use	of	jump	height	to	
assess	neuromuscular	status	(Claudino	et	al.,	2016).		It	is	clear	from	the	results	in	the	
experimental	chapters	above,	that	utilising	CMJ	as	a	fatigue	test	provides	added	value	to	the	
protocol	that	should	be	implemented	in	the	days	post	rugby	union	match	play.		Despite	this	
series	of	investigations	proposing	the	use	of	a	sole	CMJ	(mainly	due	to	logistical	constraints),	
recent	evidence	presented,	regarding	the	number	of	repetitions	and	average	measures	(in	
contrast	to	highest	values),	are	also	important	for	consideration	within	future	jump	testing	in	
assessing	fatigue.		Perhaps	most	interesting	based	upon	the	meta-analysis	conducted	by	
Claudino	et	al.	(2016)	is	that	averaged	jump	results	(of	repetitions	conducted)	were	reported	to	
be	more	sensitive	than	the	highest	single	jump,	in	detecting	fatigue.		Research	by	Roe	et	al.	
(2015),	discussing	CMJ	protocol	for	NMF	assessment,	is	also	of	note	for	future	implementation	
in	elite	applied	rugby	settings.		Roe	et	al.	(2015)	reported	that	CMJ	metrics	are	reliable	(CV	<	
5%),	when	assessed	with	two	or	three	repetitions	of	a	CMJ.		The	results	presented	by	Roe	et	al.	
(2015)	support	the	earlier	findings	(Cormack,	Newton,	McGuigan,	&	Doyle,	2008)	that	mean	



	 206	

force	was	capable	of	detecting	SWC,	however,	it	is	still	important	to	note	that	the	findings	of	
Cormack,	Newton,	McGuigan,	and	Doyle	(2008)	are	taken	from	a	single	CMJ	protocol,	therefore	
illustrating	a	lack	of	commonly	used	CMJ	protocol.	
	
Perhaps	the	most	important	consideration	for	practitioners	when	implementing	CMJ	to	assess	
NMF,	are	the	views	of	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a),	who	questioned	the	use	
of	CMJ	height.		Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	instead	recommended	using	
variables	that	assess	changes	in	jump	performance	outcome,	but	also	variables	that	assess	
changes	in	the	movement	economy	of	the	athlete	in	question.		CMJ	could	be	considered	a	slow	
SSC	activity	and	therefore	its	use	for	detecting	the	higher-end	more	explosive	and	neural	
fatiguing	elements	of	readiness	could	be	questioned.		The	inclusion	of	kinetic	variables	to	
monitor	NMF	responses,	which	differ	in	focus	based	upon	circumstances	(intensity,	duration	
and	type	of	activity),	is	potentially	the	next	area	of	focus	for	research	in	restoration	of	
performance	in	elite	level	rugby	union.		The	results	from	this	thesis	do	support	jump	height	for	
measuring	NMF	in	the	days	post	rugby	game,	yet	practitioners	should	consider	that	NMF	may	
also	present	itself	as	an	altered	movement	strategy	on	CMJ	performance,	rather	than	jump	
height	assessment	alone.		Alongside	the	investigation	of	specific	kinetic	variables	in	monitoring	
NMF	responses,	the	notion	of	start	thresholds	related	to	absolute	and	relative	force	changes	
needs	further	investigation.		As	noted	by	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a),	it	is	
important	for	practitoners	to	consider	that	some	methods	of	assessment	are	often	prone	to	
false	starts,	with	standardised	jump	initiation	time	perhaps	being	a	better	strategy	to	ensure	
relaibility.		Upon	reviewing	the	findings	of	Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	it	
could	therefore	be	concluded	that	a	combined	approach	(outcome	and	strategy)	to	CMJ	
assessment,	would	perhaps	provide	more	sensitivity	in	NMF	detection,	and	the	data	provided	
would	potentially	display	more	information	upon	the	athlete’s	preparedness	for	subsequent	
training.	

Lastly,	despite	the	focus	of	the	experimental	Chapter	7	being	to	detect	time-course	of	recovery	
of	CMJ	and	WB	measures	and	not	to	detect	NMF,	it	could	be	argued	that	the	assessment	of	NMF	
is	also	warranted	in	future	time-course	of	recovery	research.		From	the	literature	review	
conducted,	it	is	clear	that	assessment	of	time-course	of	recovery	and	NMF	are	two	individually	
distinct	processes	and	should	therefore	warrant	separate	testing	protocols.		It	is,	however,	
important	for	practitioners	to	note	that	the	use	of	CMJ	is	questioned	when	assessing	NMF	in	
elite	level	rugby	union,	due	to	its	lack	of	specificity.		The	match	demands	presented	from	prior	
research	(Cunniffe	et	al.,	2009;	Cunningham	et	al.,	2016;	Jones	et	al.,	2015;	Quarrie	et	al.,	2013)	
note	large	frequency	of	sprints,	accelerations	and	decelerations,	which	it	could	be	argued	are	
more	likely	to	be	performed	during	match	play	than	vertical	jumping	movements,	therefore	
questioning	the	applicability	of	CMJ.		Additional	research	questioning	CMJ	applicability	is	
presented	by	Marrier	et	al.	(2016),	who	indicated	that	the	changes	in	CMJ	performance	were	
unaffected	by	a	simulated	rugby	union	sevens	training	session,	while	the	30	m	sprint	time	
increased	in	response	to	the	prescribed	training	session.		Marrier	et	al.	(2016)	therefore	
recommended	the	use	of	maximal	sprints	that	measure	force	over	a	horizontal	plane,	as	a	more	
suitable	assessment	of	NMF	in	rugby	union,	where	these	movements	are	more	likely	to	occur	in	
comparison	to	movements	in	the	vertical	plane.		However,	as	previously	explained	(Chapter	
2.4),	the	rationale	and	applicability	of	implementing	maximal	sprints	in	the	days	post-match	
which	measure	force	over	a	horizontal	plane,	is	perhaps	unrealistic.	
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9.4.2 Application	of	subjective	and	objective	measures	of	restoration	
Alongside	analysis	of	CMJ	within	this	thesis,	the	assessment	of	WB	scores	in	the	days	post-
match	also	revealed	results	of	interest	for	future	practice.		The	finding	that	WB	scores	reduced	
to	a	greater	value	and	for	a	longer	time-course	than	CMJ	is	one	of	importance	for	future	
applications	in	elite	settings.		Despite	evidence	from	this	thesis	supporting	the	use	of	both	
objective	and	subjective	measures	of	monitoring	athlete-training	response,	subjective	
measures	were	considered	more	sensitive	in	measuring	fatigue.		Further	evidence	for	
supporting	the	use	of	subjective	measures	was	noted	by	Saw	et	al.	(2016),	who	found	in	their	
systematic	review	that	subjective	measures	reflected	acute	and	chronic	training	loads	with	
superior	sensitivity	and	more	consistency	than	objective	measures.		Practitioners	are	therefore	
advised	to	implement	subjective	measures	within	their	testing	battery.		The	reliability	and	
sensitivity	of	WB	scores	identified	within	this	thesis	and	their	use	alongside	objective	measures	
(specifically	CMJ),	in	a	mixed	methods	approach	to	monitoring	restoration	of	performance	in	
elite	rugby	union	match	play,	is	recommended.		Additionally,	when	considering	the	large	
variability	and	financial	expense	associated	with	many	objective	measures	of	performance	and	
the	low	financial	expense	associated	with	many	subjective	measures,	the	views	of	Saw	et	al.	
(2016)	that	subjective	measures	are	a	viable	option	for	monitoring	acute	fatigue	in	the	days	
post	rugby	union	match	play,	is	further	supported.		Based	upon	unpublished	observations	
throughout	the	author’s	career	in	elite	sport,	it	could	also	be	argued	that	perhaps	sometimes	
the	best	metric	to	monitor	an	athlete's	readiness	comes	from	asking	players	simple	daily	
questions	regarding	their	general	well-being.		However,	in	elite	rugby	environments,	where	
squad	sizes	are	large,	the	practicality	of	being	able	to	speak	to	every	player	pre	training	session	
is	unrealistic	and	therefore	supports	the	continued	use	of	self-report	well-being	questionnaires	
that	players	can	complete	in	their	own	time,	therefore	limiting	unrealistic	practitioner	
responsibilities.	

Future	investigations	assessing	readiness	on	a	daily	basis	within	team	sport	settings	will	
perhaps	focus	upon	measures	of	performance	derived	from	both	objective	and	subjective	
testing.		Recent	research	by	Thorpe	et	al.	(2015),	assessing	fatigue	during	a	competitive	phase	
of	an	elite	soccer	playing	season,	noted	that	perceived	ratings	of	fatigue	alongside	rMSSD	were	
sensitive	to	daily	fluctuations	in	high	intensity	running.		Despite	the	aforementioned	limitations	
of	using	HR	derived	measures	(Chapter	2.4.5)	for	assessing	fatigue	and	the	small	correlation	
identified	by	Thorpe	et	al.	(2015)	between	rMSSD	and	high	intensity	running,	the	results	do	
show	that	vagal	related	time	indices	are	a	potential	area	of	investigation	for	restoration	of	
performance	assessment	in	elite	rugby	union	players.		It	is	perhaps	less	surprising	that	
moderate	to	strong	correlations	(r	=	-0.51,	p	<	0.001)	were	observed	between	the	players	
perceived	rating	of	fatigue	and	variations	in	high	intensity	running,	with	Thorpe	et	al.	(2015)	
noting	a	400	m	increase	in	high	intensity	running	leading	to	a	1	AU	decrease	in	perceived	
fatigue.		Results	from	this	thesis,	would	therefore	support	the	views	of	Thorpe	et	al.	(2015),	
with	WB	scores	recommended	as	an	appropriate	tool	for	non-invasive	assessment	of	fatigue	
status	in	elite	rugby	union	players.		It	should,	however,	be	noted	that	WB	application	should	be	
administered	in	a	mixed	methods	approach	to	monitoring	restoration	of	performance	in	elite	
rugby	union	match	play.	

9.4.3 Position-specific	tests	of	performance	restoration	
As	a	result	of	this	research	it	could	be	argued	that,	alongside	individual	data	being	assessed	in	
comparison	to	mean	values,	the	objective	performance	tests	conducted	should	also	be	
positional	in	focus.		The	content	of	these	objective	performance	tests	should	perhaps	be	guided	
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by	the	match	demands	that	individual	positions	are	required	to	perform,	with	a	restoration	of	
performance	test	measuring	the	likely	fatigue	induced	by	these	demands.		The	views	of	
Gathercole,	Sporer,	Stellingwerff,	et	al.	(2015a)	support	this	notion,	recommending	a	process	of	
identification	of	variables	that	are	subject	to	change	in	specific	positions.		It	is	likely	that	some	
strategy-focused	variables	are	more	sensitive	to	performance	change	than	others,	therefore	
potentially	explaining	the	exclusion	of	some	testing	options.	
	
Fatigue	in	positions	such	as	full	back	and	wing,	which	have	been	noted	within	this	thesis	to	
experience	more	accelerations	than	other	positions	(Chapter	3),	may	be	better	assessed	by	a	
performance	test	that	measures	a	lower	body	explosive	element.		Positions	that	complete	a	
large	volume	of	accelerations	and	decelerations	during	match	play,	should	perhaps	have	their	
NMF	assessed	by	force	at	zero	velocity,	as	this	measure	is	likely	to	offer	good	repeatability	and	
appears	useful	for	inferring	changes	in	movement	strategy	during	the	eccentric	phase.		
Likewise,	a	prop	and	a	full	back	have	been	shown	(Chapter	3)	to	experience	differing	demands	
during	game	play	and	therefore	the	performance	test	that	is	conducted	should	perhaps	reflect	
this.		An	additional	consideration	to	support	this	notion,	was	the	finding	from	this	thesis	that	
forwards	experience	a	less	reduced	CMJ	performance	in	the	immediate	days	post-match	
compared	to	backs,	despite	experiencing	a	larger	volume	of	high	magnitude	impacts	during	
match	play.		One	could	therefore	argue	that	implementing	the	use	of	a	“plyometric	push	up”	to	
assess	position-specific	upper	body	fatigue	of	forwards	in	the	days	post-match	would	be	more	
appropriate.		The	above	evidence,	combined	with	unpublished	observations	from	experimental	
Chapter	8	(showing	forwards	experiencing	more	ball	carries,	tackles	and	set	piece	collisions	
throughout	game	play	than	backs),	mean	it	could	be	argued	that	the	likely	fatigue	response	of	
forwards	is	more	related	to	upper	body	muscle	soreness.		It	is	therefore	perhaps	unsurprising	
within	Chapter	7,	that	CMJ	did	not	detect	higher	magnitude	of	fatigue	in	forwards	compared	to	
backs,	as	CMJ	is	aimed	at	assessing	lower	body	mechanics	and	not	upper	body	mechanics.	
	
As	previously	explained,	high	magnitude	impacts	experienced	via	ball	carries,	tackles	and	set	
piece	collisions,	are	thought	to	have	a	greater	influence	upon	restoration	of	performance	post-
match.		As	such,	the	use	of	a	“plyometric	push	up”	in	assessing	upper	body	fatigue	in	future	
research	may	be	a	more	reliable	measure	for	use	within	assessment	of	forwards’	time-course	of	
restoration.		When	considering	this	notion	of	a	“plyometric	push	up”	being	used	to	assess	upper	
body	fatigue	post-match,	the	use	of	the	OptoJump	should	not	be	discounted,	using	the	flight	
time	calculation	within	the	OptoJump	software.		This	data	assessing	upper	body	fatigue	could	
provide	practitioners	with	a	score	upon	which	to	make	informed	decisions	upon	forwards’	
fatigue	post-match.		Evidence	to	support	this	notion	was	presented	by	Roe	et	al.	(2015),	who	
noted	good	reliability	(CV	<	5%)	for	“plyometric	push	up”	assessed	across	flight	time	(2-3	
repetitions),	peak	force	(1	and	repetitions)	and	mean	force	(1-3	repetitions).		Lower	reliability	
measures	(CV	>	5%)	have	previously	been	reported	for	“plyometric	push	up”	(Hogarth,	Deakin,	
&	Sinclair,	2013)	therefore	supporting	its	use,	yet	the	sub-elite	level	of	the	rugby	league	players	
within	the	study	mean	its	relevance	can	be	questioned.		Perhaps	most	interesting	from	the	
research	by	Roe	et	al.	(2015)	was	the	finding	that	only	mean	force	(2	and	3	repetitions)	was	
capable	of	detecting	SWC		and	this	is	something	that	would	require	consideration	from	
practitioners	looking	to	implement	“plyometric	push	up”	into	their	fatigue	testing	protocol.		
Flight	time	(2	and	3	repetitions),	peak	force	(1	and	3	repetitions)	and	mean	force	(1-3	
repetitions)	all	displayed	a	CV	of	<5%,	therefore	potentially	discounting	their	use.	
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Lastly,	in	addition	to	the	prescription	of	performance	tests	aligned	with	positional	demands,	the	
notion	that	performance	tests	should	be	prescribed	based	upon	mechanical	or	metabolic	
elements	is	another	area	of	future	interest	in	this	subject	area.		Prior	research	has	identified	the	
likely	metabolic	(Cummins,	Gray,	Shorter,	Halaki,	&	Orr,	2016;	Jones	et	al.,	2014;	Kempton,	
Sirotic,	Rampinini,	&	Coutts,	2015;	Lindsay,	Lewis,	Scarrott,	Gill,	et	al.,	2015;	McLellan	et	al.,	
2011b;	Twist	&	Highton,	2013)	and	mechanical	fatigue	(Coutts,	Reaburn,	Piva,	&	Murphy,	2007;	
Johnston	et	al.,	2015;	Johnston,	Gabbett,	et	al.,	2014;	Johnston	et	al.,	2013)	induced	by	rugby	
match	play,	yet	the	mechanisms	of	effect	associated	with	these	responses	are	still	unclear.		It	
could	be	argued	that	positional	groups	experience	either	a	predominate	mechanical	or	
metabolic	fatigue	as	a	result	of	match	play	and	therefore	the	performance	tests	implemented	
should	aim	to	investigate	this	response.		Similarly,	a	positional	group	that	experiences	more	
impacts	should	perhaps	have	a	performance	test	implemented	that	assesses	elements	of	muscle	
soreness,	as	this	is	the	likely	response	that	would	be	assumed.		It	is,	however,	important	for	
practitioners	to	note	that	prior	to	such	position-specific	performance	testing	being	
implemented,	development	of	technology	that	would	be	able	to	test	such	measures	needs	to	be	
reviewed.	

9.4.4 Future	GPS	integration	for	recovery	intervention	
Based	upon	the	results	of	this	thesis,	future	implementation	of	GPS	analysis	in	monitoring	
fatigue	and	the	implementation	of	training	interventions	should	encompass	analysis	of	
movement	patterns	and	more	specifically	the	way	in	which	players	encounter	the	impacts	
occurred	during	match	play	and	training.		As	explained	previously	(Chapter	9.3.3),	the	way	in	
which	a	player	experiences	an	impact	(collision	or	movement	task)	will	have	a	major	influence	
upon	the	resultant	fatigue	created,	meaning	that	GPS	analysis	utilising	impact	metrics	should	
involve	the	combined	method	approach	detailed	in	Chapter	8.		The	evidence	presented	in	
Chapter	8	shows	that	GPS	does	not	tell	users	all	that	they	need	to	know	regarding	match	
demands,	and	in	some	cases	can	perhaps	be	misleading.		In	addition	to	a	combined	approach	
(GPS	and	video)	being	recommended,	the	use	of	relative	GPS	measures	is	proposed	for	future	
implementation.		To	the	author’s	knowledge,	no	research	has	attempted	to	measure	relative	
GPS	metrics	and	resultant	fatigue,	yet	the	recent	research	by	Delaney	et	al.	(2016),	illustrating	
considerably	higher	relative	intensities	(150-180	m/min-1)	of	match	play	compared	to	previous	
research	in	professional	rugby	union	(Cahill	et	al.,	2013;	Lindsay,	Draper,	et	al.,	2015),	signifies	
the	need	for	relative	measurement.		Evidence	supporting	the	use	of	relative	measures	is	
presented	in	the	recent	research	by	Delaney	et	al.	(2016),	who	recommended	the	use	of	a	
rolling	averages	approach	for	intensity	assessment,	as	their	research	showed	the	intensity	of	
match	play	to	be	greater	as	the	length	of	the	moving	average	decreased	(ES=0.05-2.96),	thereby	
illustrating	that	whole	match	values	may	not	be	reflective	of	the	most	intense	periods	of	match	
play.		This	evidence	therefore	highlights	an	inherent	issue	when	considering	intensity	metrics	
and	one	that	warrants	the	consideration	of	relative	GPS	metrics	for	practitioners,	when	
comparing	players	and	assessing	resultant	fatigue	in	future	research.		Future	investigation	
needs	to	be	aimed	towards	the	way	in	which	relative	intensity	(m/min)	during	match	play	is	
performed	for	each	position	and	in	addition	the	resultant	fatigue	response	created	as	a	result	of	
relative	intensity.		For	example,	one	player	could	spend	40	minutes	at	8	km/h	and	40	minutes	
at	4	km/h	and	another	could	spend	40	minutes	at	10	km/h	and	40	minutes	at	2	km/h,	therefore	
both	equating	to	a	total	distance	of	8	km	and	a	relative	intensity	of	100	m/min.		However,	
despite	both	these	players	achieving	the	same	distances,	the	way	in	which	they	achieved	this	
distance	is	different	and	therefore	potentially	does	not	present	a	clear	picture	of	their	match	
demands	and	likely	fatigue	created.	
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In	addition	to	the	future	use	of	collision	load	(as	discussed	in	Chapter	8.5),	the	use	of	software	
derived	load	metrics	such	as	Dynamic	Stress	Load	(DSL)	and	Metabolic	Power	(MP)	used	to	
assess	the	physiological	cost	of	rugby	union	match	play	also	need	investigated	further.		Despite	
Delaney	et	al.	(2016)	noting	MP	values	of	11-13.5	w/kg	across	varying	positions	and	
recommending	assessment	of	this	metric	using	a	rolling	averages	approach,	recent	research	
(Hader	,	Mendez-Villanueva,	Palazzi,	Ahmaidi,	&	Buchheit,	2016)	in	highly	trained	soccer	
players	questioned	the	use	of	MP	as	a	measure	of	running	load,	when	comparing	changes	of	
direction	and	straight	line	running.		When	considering	that	recent	trends	in	GPS	solutions	have	
seen	development	of	users’	ability	to	track	indices	such	as	heart	rate,	impacts	and	stress	loads	
instantaneously	and	report	a	value	of	“load”	experienced,	the	reliability	of	the	metrics	and	their	
associated	algorithms	needs	to	be	critically	appraised.		DSL	is	used	to	assess	the	overall	load	of	
impacts,	assessing	magnitude	of	impacts	and	classifying	the	effect	this	has	upon	fatigue.		
However,	similarly	to	collision	load	metrics,	the	use	of	DSL	is	yet	to	be	validated	and	is	a	future	
area	of	investigation	within	match	demands	research.	

Future	research,	incorporating	impact	assessments,	should	also	perhaps	involve	an	analysis	of	
the	exact	points	during	match	play	at	which	collisions	are	most	likely	to	occur.		It	could	either	
be	argued	that	the	majority	of	impacts	will	occur	at	the	start	of	the	match,	when	players	are	
fresh	and	therefore	able	to	exert	maximal	intensity	to	impacts,	or	it	could	be	argued	that	
players	are	more	likely	to	perform	higher	magnitude	impacts	in	later	parts	of	the	match	when	
fatigue	is	more	common	and	opportunities	to	regain	possession	of	the	ball	or	halt	attacking	
momentum	are	more	prevalent.		Information	provided	from	an	analysis	of	impact	timings	
during	match	play,	would	perhaps	help	guide	practitioners	upon	future	training	prescription,	
as	the	expected	timing	and	magnitude	of	impacts	during	game	play	will	be	more	fully	
understood.		Secondly,	analysis	of	rugby	players	in	a	laboratory	setting,	moving	over	force	
plates	while	wearing	GPS	units,	would	provide	more	detail	around	the	impacts	being	generated	
during	locomotion	and	the	reliability	of	GPS	unit	impact	classifications	across	zones.		The	
findings	of	such	an	analysis	of	impact	classifications	zones,	using	the	commonly	reported	“gold	
standard”	force	plate	as	a	reference	point	against	which	to	compare	GPS,	would	better	guide	
practitioners	upon	the	relevance	of	GPS	impact	data	within	elite	team	sport	settings.	

Based	upon	the	results	from	experimental	Chapter	3	and	8,	it	can	be	assumed	that	accelerations	
and	decelerations	can	be	considered	to	account	for	a	large	and	crucial	element	of	elite	rugby	
union	match	play.		Another	future	GPS	integration	for	assessing	recovery	intervention	should	
then	perhaps	include	the	analysis	of	energetic	costs	of	acceleration	and	deceleration	tasks.		
Given	the	high	energetic	cost	of	accelerating	and	the	tissue	disruption	associated	with	
decelerating,	the	need	for	more	research	into	the	influence	of	these	tasks	upon	resultant	fatigue	
is	warranted.		Research	assessing	energy	cost	and	metabolic	power	in	elite	soccer	(Osgnach,	
Poser,	Bernardini,	Rinaldo,	&	Di	Prampero,	2009)	noted	that	instantaneous	metabolic	power	
can	be	calculated	during	match	play,	demonstrating	that	running	speeds	can	generate	different	
metabolic	demands	depending	upon	the	acceleration	incorporated.		The	research	by	Osgnach	et	
al.	(2009),	therefore	added	to	the	knowledge	of	the	influence	of	high	intensity	running	
(including	accelerations	and	decelerations)	upon	fatigue,	as	the	results	showed	that	players	
covered	18%	of	their	total	distance	>	16	km/h-1,	yet	this	corresponded	to	42%	of	the	total	
energy	being	at	high	power	(>20	w/kg-1).		More	recently,	however,	this	experimental	approach	
was	questioned	by	Buchheit,	Manouvrier,	Cassirame,	and	Morin	(2015),	with	the	application	of	
this	methodology	utilising	GPS	noted	to	underestimate	the	energy	demands	of	soccer	specific	
drills,	especially	during	recovery	phases.		The	use	of	GPS	in	the	calculation	of	energetic	costs	is	
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therefore	questioned.		Support	for	the	use	of	metabolic	power	for	the	development	of	the	
understanding	of	the	physical	demands	of	team	sport	play,	does,	however,	exist	and	has	been	
noted	by	many	authors	(Castagna,	Varley,	Póvoas	Araújo,	&	D’Ottavio,	2016;	Coutts	et	al.,	2015;	
Cummins	et	al.,	2016;	Kempton	et	al.,	2015),	yet	to	the	author’s	knowledge	no	specific	
metabolic	power	research	has	been	presented	within	rugby	union.		When	considering	the	
aforementioned	poor	reliability	issues	associated	with	short	distance	high-speed	movements	
such	as	accelerations	and	decelerations,	the	use	of	GPS	to	assess	these	metrics	and	resultant	
fatigue	can	be	questioned.	

Lastly,	when	assessing	impacts,	it	could	perhaps	be	argued	that	impact	zones	should	be	
individualised,	as	some	players	are	likely	to	be	able	to	tolerate	larger	impact	forces	than	others.		
Future	research	should	perhaps	aim	to	incorporate	the	analysis	of	impact	forces	based	upon	
prior	research,	showing	what	are	considered	“normal”	for	these	positions.		As	a	result	of	this	
analysis,	comparing	concurrent	data	against	that	of	positional	norms,	a	better	understanding	of	
the	likely	response	impacts	encountered	during	each	match	may	have	upon	likely	restoration	of	
performance	can	be	assumed.		Additionally,	future	implementation	of	training	programme	
prescription	could	be	administered	based	upon	longitudinal	GPS	data	that	assesses	positional	
movement	demands.		When	“eye	balling”	the	results	from	Chapter	8,	it	was	evident	that	no	
positional	group	appeared	to	display	a	pattern	in	the	distribution	of	their	changes	of	direction,	
accelerations	or	decelerations	across	impact	zones.		However,	the	implementation	of	
longitudinal	data	collection,	using	GPS	and	video,	may	perhaps	provide	added	detail	upon	the	
magnitude	of	changes	of	direction,	accelerations	or	decelerations	positions	experienced	across	
impact	zones.		This	information	would	therefore	help	better	guide	practitioners	upon	the	
required	conditioning	components	of	positional	groups.		It	is,	however,	important	for	
practitioners	to	note	that	performance	data,	such	as	GPS	or	data	derived	from	testing,	should	
only	be	used	as	a	guide	and	not	an	as	element	of	performance	coaching	which	is	dictator	driven.		
Based	upon	the	results	presented	in	the	experimental	chapters	above	and	data	previously	
reported	(Buchheit,	2014;	Buchheit	et	al.,	2014),	it	could	be	argued	that	the	important	element	
for	coaches	is	to	assess	athlete	readiness	in	a	holistic	manner	and	make	educated	and	informed	
decisions,	which	are	guided	by	both	data	and	“coaching	art”,	whilst	also	ensuring	they	are	non-
emotional	in	nature.	

9.4.5 Athletic	resilience,	training	loads	and	hastened	restoration	of	performance	
Higher	training	loads	were	noted	by	Veugelers,	Young,	Fahrner,	and	Harvey	(2015)	to	provide	a	
protective	effect	against	both	injury	and	illness	in	elite	Australian	rules	football,	with	this	thesis	
also	noting	that	recovery	rates	can	be	assumed	as	individual	in	nature,	and	can	perhaps	be	
guided	by	training	load.		A	recently	updated	version	of	the	aetiology	model	was	recommended	
by	Windt	and	Gabbett	(2016),	examining	the	influence	of	training	loads	upon	injury.		This	
notion	of	training	load	analysis	and	subsequent	intervention	is	paramount	for	developing	
athletic	resilience	that	can	contribute	to	hastened	restoration	of	performance.		Similar	research	
proposed	by	Hulin,	Gabbett,	Lawson,	et	al.	(2016)	investigating	acute:chronic	workload,	also	
supports	this	view.		Perhaps	most	importantly	for	practitioners	working	in	elite	rugby	settings,	
were	the	findings	by	Hulin,	Gabbett,	Lawson,	et	al.	(2016),	that	showed	that	players	with	a	high	
chronic	workload	are	more	resilient	to	injury.		A	high	chronic	workload	combined	with	a	
moderate	(0.85-1.35)	acute:chronic	workload	ratio	was	recommended	by	Hulin,	Gabbett,	
Lawson,	et	al.	(2016)	to	be	appropriate	for	the	development	of	injury	resiliency.	

Higher	training	loads	have	not	always	been	recommended	for	improving	rugby	player	
resilience,	with	out-dated	views	by	Gabbett	&	Jenkins	(2011,	p.	209)	originally	proposing	“the	
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harder	rugby	league	players	train,	the	more	injuries	they	will	sustain”.		However,	as	knowledge	
has	been	developed	in	this	topic	area,	the	same	authors	are	now	in	agreement	that	training	load	
may	actually	assist	in	developing	player	resilience	(Hulin,	Gabbett,	Caputi,	Lawson,	&	Sampson,	
2016;	Hulin,	Gabbett,	Lawson,	et	al.,	2016;	Johnston	et	al.,	2015).		Similarly	to	the	research	by	
Hulin,	Gabbett,	Lawson,	et	al.	(2016),	a	recent	investigation	assessing	acute:chronic	training	
loads	in	elite	youth	football	players	warrants	attention.		Bowen,	Gross,	Gimpel,	and	Li	(2016)	
noted	that	accumulated	workload	and	injury	risk	are	related	and	that	progressive	increases	in	
chronic	workload	may	develop	players’	physical	tolerance	to	acute	loads.		Malone,	Roe,	Doran,	
Gabbett,	and	Collins	(2016b)	also	supported	the	notion	that	moderate	increases	in	workload	in	
Gaelic	football	appear	to	provide	a	protective	measure	against	injury.		These	studies	therefore	
further	emphasise	the	view	that	increased	levels	of	conditioning	and	appropriate	load	
management	may	result	in	quicker	recovery	rates	post	rugby	union	match	play	and	increased	
resilience	to	injury.		Training	load	and	readiness	assessment	are	inextricably	linked	and	when	
applying	the	above	training	load	evidence	to	the	findings	from	this	thesis,	performance	testing	
using	CMJ	and	WB	should	be	implemented	to	regularly	assess	the	effect	training	and	playing	is	
having	upon	elite	rugby	players’	daily	readiness.	

The	notion	of	training	loads	influencing	the	likelihood	of	injury	is	not	a	new	phenomenon,	yet	
as	was	presented	by	Gabbett	(2016),	the	implementation	of	smarter	training	in	place	of	harder	
training	(using	many	of	the	methods	critiqued	and	examined	further	in	this	thesis)	are	key	for	
future	improvements	in	this	topic	area.		Perhaps	the	next	level	of	investigation	regarding	the	
training	load	paradox,	should	involve	the	assessment	of	position-specific	training	load	ratios.		
Based	upon	the	results	presented	in	thesis	and	the	evidence	critiqued	previously,	these	
position-specific	training	load	ratios	would	not	only	help	prevent	avoidable	injuries,	but	could	
also	aid	in	the	development	of	appropriate	training	load	stimuli	that	would	likely	hasten	
restoration	of	performance	time-course.		Evidence	to	support	this	notion	is	presented	by	
Murray	et	al.	(2014),	who	showed	that	injury	rates	of	specific	playing	positions	are	influenced	
by	the	amount	of	recovery	between	matches.		The	notions	by	Murray	et	al.	(2014)	therefore	
support	the	views	of	this	thesis,	in	that	match	demands	and	specifically	physical	collisions	have	
implications	for	future	recovery	programming.	

The	effect	of	players’	physical	condition	and	overall	fitness	levels	on	time-course	of	restoration	
also	needs	to	be	investigated.		Killen	et	al.	(2010)	noted	that	maximal	aerobic	power	acted	as	a	
protective	measure	for	injury	and	this	could	perhaps	mean	that	players	with	better	overall	
fitness	levels	not	only	are	protected	from	injury	but	also	recover	at	quicker	rates.		These	views	
were	supported	by	recent	research	in	Gaelic	football	by	Malone	et	al.	(2016b),	recommending	a	
high	aerobic	capacity	to	offer	injury	protection	against	rapid	changes	in	workload.		Similarly	
Johnston	et	al.	(2015)	noted	that	players	with	well	developed	high	intensity	running	and	lower	
body	strength,	were	deemed	as	able	to	restore	performance	post-match	play	more	quickly	than	
players	that	did	not	display	these	attributes.		If	this	evidence,	supporting	high	fitness	levels	
being	a	potential	strategy	to	improve	restoration	of	performance	post-match,	is	believed	to	be	
consistent	across	elite	rugby	union	settings,	it	could	perhaps	be	argued	that	athletic	resilience	
and	improved	fitness	is	the	first	obstacle	for	practitioners	to	overcome	in	their	desire	to	
improve	player	readiness	between	games.	

Lastly,	an	additional	point	for	consideration	within	the	analysis	of	the	results	collated	regarding	
changes	of	direction,	acceleration	and	deceleration,	is	the	notion	that	in	a	typical	training	week	
players	are	exposed	to	a	larger	frequency	of	changes	of	direction,	acceleration	and	deceleration,	
than	impacts.		This	exposure	to	changes	of	direction,	acceleration	and	deceleration	on	a	daily	
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basis,	means	that	it	could	be	argued	that	practitioners	should	only	assess	impacts	from	
collisions,	as	these	are	the	less	regularly	experienced	demands	and	are	likely	to	have	a	greater	
influence	upon	restoration.		Adaptation	and	an	ability	to	handle	load	experienced	from	changes	
of	direction,	acceleration	and	deceleration	is	potentially	likely	to	occur	naturally	within	
training.		Recently,	this	notion	of	appropriate	exposure	to	maximal	velocity	events	acting	as	a	
protective	measure	against	injury	was	presented	by	Malone,	Roe,	Doran,	Gabbett,	and	Collins	
(2016a)	in	elite	Gaelic	football	players,	yet	evidence	to	specifically	support	this	finding	in	elite	
level	rugby	union	is	still	unfound.		The	focus	of	future	recovery	and	restoration	protocols	using	
GPS	impacts	should	therefore	perhaps	take	more	of	a	specific	approach,	to	include	
quantification	of	impacts	from	collisions	and	not	all	impact	instances.		This	notion	could	
therefore	form	the	basis	of	the	rationale	for	excluding	those	impacts	not	experienced	from	
collision,	and	would	enable	easier	analysis	and	quantification	of	impacts	occurred	in	relation	to	
their	likely	effect	upon	restoration.	

9.4.6 Physiological	and	psychological	restoration	post	rugby	union	math	play	
It	could	be	argued	that	all	aspects	of	match	output	need	to	be	recovered	from,	meaning	
recovery	must	therefore	be	individualised	and	should	encompass	both	physical	and	mental	
restoration.		One	recent	study	of	interest,	is	the	work	by	Rattray	et	al.	(2015)	who	proposed	
that	modern	post-exercise	recovery	strategies	should	focus	upon	not	only	peripheral	
mechanisms,	but	central	mechanisms	also.		As	demonstrated	in	this	thesis,	much	of	the	
attention	of	recovery	strategies	and	their	effectiveness	has	focused	upon	peripheral	measures	
of	fatigue,	yet	the	views	of	Rattray	et	al.	(2015)	propose	the	notion	that	the	assessment	of	
central	fatigue,	alongside	peripheral	fatigue,	is	an	important	consideration	for	future	practice.		
When	considering	the	high	cognitive	load	experienced	by	rugby	union	players,	both	in	the	build	
up	to	match	play	and	during	the	match	itself,	the	need	to	assess	this	psychological	stressor	and	
influence	a	hastening	of	restoration	of	performance	from	a	central	fatigue	viewpoint	is	
paramount.		More	focused	future	research	upon	the	brain	and	its	role	in	recovery	post	exercise	
is	needed,	with	investigation	into	the	recovery	modalities	that	more	effectively	impact	the	
central	fatigue	associated	with	the	brain	being	key.	

The	ability	of	sports	science	practitioners	to	target	central	fatigue,	as	an	intervention	to	
improve	restoration	of	performance	following	rugby	union	match	play,	would	be	a	major	
advancement	in	the	area	of	recovery.		Further	support	for	the	implementation	of	central	fatigue	
assessment	and	associated	recovery,	is	noted	when	assessing	the	aforementioned	research	by	
Noakes	(2012).		When	combining	the	views	of	Noakes	(2012)	(emphasising	the	role	of	central	
fatigue	in	performance	decrement)	with	the	notions	of	Rattray	et	al.	(2015)	(illustrating	the	
importance	of	central	fatigue	within	the	recovery	process),	one	could	argue	that	central	fatigue	
predetermines	peripheral	fatigue,	so	should	perhaps	be	targeted	initially	to	hasten	the	
peripheral	feelings	of	perceived	fatigue.		Future	recovery	intervention	planning	should	
therefore	take	into	account	elements	of	a	rugby	player’s	daily	life,	including,	for	example,	peer	
pressure	and	potential	pressure	from	sponsors.		Practitioners	working	in	the	elite	field	are	
advised	to	look	beyond	physiological	time-course	of	recovery	assessment,	and	instead	include	a	
combined	approach	of	physiological	and	psychosocial	recovery	intervention.	
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9.5 Final	conclusion	

A	need	for	continued	research	in	rugby	union	match	demands	exists,	as	the	results	presented	
regarding	the	applicability	of	GPS	metrics	in	their	current	format	are	questionable.		More	
accurate	GPS	load	assessment	metrics	are	required,	with	future	technological	developments	in	
match	demand	assessment	being	recommended	to	include	a	combination	of	data	taken	from	
the	GPS,	accelerometer	and	gyroscope.		Such	software	advances,	combined	with	the	use	of	the	
GPS	and	video	analysis	techniques	applied	within	this	thesis,	could	provide	more	detail	in	
terms	of	the	activities	performed	by	positional	groups	and	the	likely	resultant	fatigue.		As	a	
result,	a	more	meaningful	analysis	of	match	demands	will	be	developed	through	better	
identification	of	movement.		Relative	measures	are	also	recommended	for	involvement	in	
future	match	demands	research,	as	it	could	be	argued	that	this	thesis	is	perhaps	more	
representative	of	modern	rugby	union	than	those	conducted	previously.		Observations	from	
this	thesis	would	indicate	that	relative	values	for	forwards	are	perhaps	of	more	interest	than	
those	of	the	backs	when	assessing	some	variables,	as	they	present	more	information	from	a	
relative	rather	than	an	absolute	view.		The	notion	of	a	relative	position-specific	assessment	
would	better	guide	practitioners	in	future	match	demands	analysis.	

Other	important	findings	from	this	thesis	identified	CMJ	and	WB	as	being	applicable	for	use	in	
restoration	of	performance	testing,	with	a	change	in	CMJ	height	of	≥	1.7%	being	meaningful	and	
therefore	warranting	further	investigation	by	practitioners.		Despite	CMJ	height	testing	shown	
to	be	of	use	in	elite	rugby	settings	for	assessing	restoration	of	performance,	WB	assessment	
also	indicated	its	worth.		Results	from	this	thesis	would	indicate	that	elite	rugby	players	often	
do	not	restore	performance	prior	to	the	next	game	commencing	and	that	players	often	play	in	a	
sub-optimal	state.		The	reduced	CMJ	performance	and	WB	scores	noted	at	60	hours,	90	hours	
and	170	hours	post	rugby	union	match,	between	positional	groups,	is	of	importance	for	future	
training	prescription	in	the	immediate	days	post-match.		Finally,	results	from	this	thesis	would	
indicate	that	the	differences	in	time-course	of	restoration	between	positional	groups	and	
reported	for	CMJ	performance	and	WB	scores,	could	be	explained	by	both	the	match	demands	
encountered	and	the	typically	accumulated	training	activities	performed	between	games.		
When	considering	the	number	of	fixtures	in	a	season	and	the	fact	that	match	demands	
experienced	by	players	are	ever-increasing,	the	findings	from	this	thesis	are	of	prominence	for	
many	stakeholders	within	the	elite	game.	
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11 Appendix	

11.1 Appendix	A	

	

Figure	11.1:	Example	well-being	questionnaire	relating	to	Chapter	

WEEKLY WELL-BEING MONITOR
SCHEDULE: MON TUE WED THU FRI SAT SUN

SLEEP QUALITY
(record figure from 1-10 that best relates to your sleep quality from last night)

10 = undisturbed
9
8
7
6
5
4
3
2
1 = little/none

ENERGY LEVELS
(record figure from 1-10 that best relates to your energy levels this morning)

10 = fresh
9
8
7
6
5
4
3
2
1 = exhausted

MUSCLE SORENESS
(record figure from 1-10 that best relates to your body condition)

10 = no pain
9
8
7
6
5
4
3
2
1 = pain interupting training

MOOD
(record figure from 1-10 that best relates to your mood)

10 = motivated
9
8
7
6
5
4
3
2
1 = negative

APPETITE
(record figure from 1-10 that best relates to your appetite)

10 = excellent
9
8
7
6
5
4
3
2
1 = none

SUMMARY
DAILY SCORES (TOTAL):

WEEKLY AVERAGE SCORE:



	
11.2 Appendix	B	

Table	11.1:	Descriptive	(mean	±	standard	deviations)	and	reliability	statistics,	within	testing	days	for	Impulse	(N.s)	and	concentric	power	(W)	relating	
to	Chapter	5	

CMJ	 Day	1	
average	

Day	1	
%CV	

Day	2	
average	

Day	2	
%CV	

Day	3	
average	

Day	3	
%CV	

All	sessions	
average	

Average	
%CV	

CMJ	
Impulse	
(N.s)	

229	±	4.1	 1.7%	 224	±	8.1	 3.6%	 222	±	7.3	 3.2%	 225	±	6.5	 2.8%	

CMJ	Peak	
Concentric	
Power	(W)	

4661	±	109	 2.2%	 4493	±	466	 10.5%	 4367	±	88	 2.0%	 4507	±	121	 2.6%	

	

Table	11.2:	Descriptive	(mean	±	standard	deviations)	and	reliability	statistics,	between	testing	days	for	Impulse	(N.s)	and	concentric	power	(W)	relating	
to	Chapter	5	

Jump	 Day	1	
(cm)	

Day	2	
(cm)	

Day	3	
(cm)	

ICC	r	 Partial	eta	
squared	

SEM	
(cm)	

SDD	(cm)		

CMJ	Impulse	Force	
Plate	(N.s)	

228	±	
18.6	

223	±	
22.7	

221	±	
22.5	

0.847	 0.090	 8.5	 23.7	(10.60%)	

CMJ	Peak	
Concentric	Power	
Force	Plate	(W)	

4661	±	
450	

4493	±	
547	

4367	
±453	

0.851	 0.224	 188.2	 521.7	(11.5%)	
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11.3 Appendix	C	

Table	11.3:	Descriptive	(mean±	StDv;	CI=95%	confidence	intervals)	across	selected	match	demands	data	for	all	positions	relating	to	Chapter	3	

Position	 Prop	 Hooker	 Lock	 Back	Row	 Scrum	Half	 Out	Half	 Centre	 Wing	 Full	Back	
Game	Time	
(mins)	

61.2	±	14.2	
	
(CI	57.7-64.8)	

56.6	±	16.8	
	
(CI	50.6-
60.5)	

70.6	±	10.8	
χ	û	
(CI	67.7-73.4)	

70.9	±	14.3	
∞	
(CI	68.0-73.8)	

63.7	±	11.8	
	
(CI	59.5-67.8)	

66.3	±	14.2	
	
(CI	64.1-71.3)	

76.0	±	9.4	
¥	
(CI	73.5-78.4)	

73.2	±	13.9	
§	
(CI	69.7-76.7)	

77.0	±	8.0	
*#	
(CI	73.8-80.1)	

Intensity	
(m/min)	

59.6	±	5.4	
	
(CI	58.2-60.9)	

66.7	±	4.9	
μ	
(CI	64.9-
68.4)	

66.5	±	6.7	
Ψ	
(CI	64.7-68.2)	

64.8	±	5.6	
Ψ	
(CI	63.6-65.9)	

74.4	±	6.5	
ζ	θ	
(CI	72.1-76.6)	

71.9	±	5.1	
ϕ	φ	ϖ	
(CI	70.1-73.7)	

68.1	±	8.1	
Ψ	
(CI	65.9-70.2)	

69.0	±	6.4	
Ψ	ξ	
(CI	67.4-70.7)	

76.2	±	6.1	
Ω	α	
(CI	73.8-78.6)	

Accelerations		 13.6	±	7.0	
	
(CI	11.9-15.3)	

21.5	±	9.9	
	
(CI	18.0-
25.0)	

26.6	±	9.3	Ψ	
	
(CI	24.1-29.0)	

24.7	±	13.6	
Ψ	
(CI	21.9-27.4)	

31.5	±	10.7	
Ψ	✚	
(CI	27.7-35.2)	

37.5	±	10.3	
¥	η	
(CI	33.9-41.1)	

29.2	±	8.9	
Ψ	
(CI	26.9-31.5)	

34.1	±	11.3	
¥	ν	Α	
(CI	31.2-37.0)	

32.6	±	7.5	
Ψ	χ	
(CI	29.6-35.5)	

Decelerations		 20.3	±	7.7	
	
(CI	18.4-22.2)	

28.9	±	11.8	
	
(CI	24.7-
33.1)	

34.5	±	10.8	Ψ	
(CI	31.6-37.3)	

36.0	±	16.7	Ψ	
(CI	32.6-39.4)	

35.1	±	9.4	Ψ	
	
(CI	31.8-38.4)	

43.4	±	12.9	
Ψ	β	
(CI	38.8-47.9)	

43.6	±	10.8	Ψ	Δ	
ţ	
(CI	40.8-46.5)	

42.8	±	13.4		
¥★	ŵ	
(CI	39.4-46.2)	

46.0	±	9.8	
¥	
(CI	42.1-48.9)	

Ψ	significantly	greater	(p<0.001)	compared	to	Props		
Ω	significantly	greater	(p=0.03)	compared	to	Out	Halves	and	Wings	
η	significantly	greater	(p=0.006)	compared	to	Locks	
ν	significantly	greater	(p=0.002)	compared	to	Locks	
*	significantly	greater	(p=0.01)	compared	to	Scrum	Half	and	Hookers	
#	significantly	greater	(p=0.003)	compared	to	Props	
¥	significantly	greater	(p<0.001)	compared	to	Props	and	Hookers	
§	significantly	greater	(p=0.001)	compared	to	Props	and	Hookers	
∞	significantly	greater	(p=0.01)	compared	to	Props	and	Hookers	
χ	significantly	greater	(p=0.03)	compared	to	Hookers	
φ	significantly	greater	(p=0.004)	compared	to	Hookers	
μ	significantly	greater	(p=0.001)	compared	to	Props	
✚	significantly	greater	(p=0.01)	compared	to	Hookers	
★	significantly	greater	(p=0.03)	compared	to	Scrum	Halves	

ϕ	significantly	greater	(p<0.001)	compared	to	Props	and	Back	Row		
ξ	significantly	greater	(p=0.003)	compared	to	Back	Row	
α	significantly	greater	(p<0.001)	compared	to	Props,	Hookers,	Locks	and	Back	Row	
χ	significantly	greater	(p=0.03)	compared	to	Hookers	
β	significantly	greater	(p=0.007)	compared	to	Hookers	
Δ	significantly	greater	(p=0.008)	compared	to	Locks	
θ	significantly	greater	(p=0.005)	compared	to	Locks	
û	significantly	greater	(p=0.03)	compared	to	Props	
ζ	significantly	greater	(p<0.001)	compared	to	Props,	Hookers	and	Back	Row	
ϖ	significantly	greater	(p=0.03)	compared	to	Locks	
Α	significantly	greater	(p=0.01)	compared	to	Back	Row	
ţ	significantly	greater	(p=0.002)	compared	to	Hookers	
ŵ	significantly	greater	(p=0.01)	compared	to	Locks	
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Table	11.4:	Descriptive	(mean±	StDv;	CI=95%	confidence	intervals)	across	distance	data	for	all	positions	relating	to	Chapter	3	(symbols	presented	on	
Table	11.5)	

Position	 Prop	 Hooker	 Lock	 Back	Row	 Scrum	Half	 Out	Half	 Centre	 Wing	 Full	Back	
Distance	
(m)	

4285	±	893	
	
(CI	4065-4505)	

4469	±	1238	
	
(CI	4029-4908)	

5517	±	979	Ψ	
	
(CI	5259-5774)	

5411	±	1134		
⌘	Ψ	
(CI	5181-5641)	

5408	±	978		
≠	
(CI	5067-5750)	

5583	±	1191		
≠	
(CI	5167-5999)	

6043	±	966		
¶	Ψ	
(CI	5791-6295)	

5926	±	1295		
¥	
(CI	5597-6255)	

6904	±	740		
$	£	€	
(CI	6617-7191)	

Distance	
Zone	1	(m)	

1799	±	487	
	
(CI	1679-1919)	

1474	±	429	
	
(CI	1322-1627)	

1963	±	479	
	
(CI	1837-2089)	

2043	±	482	
i			
(CI	1945-2141)	

1692	±	381	
	
(CI	1559-1825)	

2029	±	499		
	
(CI	1855-2203)	

2405	±	456		
Β	Κ	⏏	
(CI	2286-2524)	

2337	±	562	
Ψ	Γ	Σ	Α	£	
(CI	2194-2480)	

2328	±	371	
¢	₠	≈	
(CI	2184-2472)	

Distance	
Zone	2	(m)	

1043	±	319	
	
(CI	965-1122)	

1451	±	410	
#	
(CI	1306-1597)	

1748	±	383	
Ψ	✪	
(CI	1647-1849)	

1663	±	382	
Ψ	★	
(CI	1586-1741)	

1421	±	273	
≠	
(CI	1325-1716)	

1439	±	269	
≠	
(CI	1345-1533)	

1574	±	338	
Ψ	
(CI	1485-1662)	

1446	±	400		
Ψ	
(CI	1344-1548)	

2078	±	275	
¤	π	ϖ		u	
(CI	1971-2185)	

Distance	
Zone	3	(m)	

847	±	210	
	
(CI	795-899)	

926	±	296	
	
(CI	821-1031)	

1046	±	306	
≠	x	
(CI	965-1127)	

863	±	244	
	
(CI	814-913)	

971	±	217	
	
(CI	895-1047)	

948	±	228	
	
(CI	869-1028)	

824	±	225	
	
(CI	766-883)	

861	±	263	
	
(CI	794-928)	

1042	±	199	
	
(CI	965-1119)	

Distance	
Zone	4	(m)	

394	±	124	
	
(CI	364-425)	

536	±	223	
	
(CI	457-615)	

589	±	240	
Ψ	
(CI	526-580)	

568	±	254	
Ψ	
(CI	517-620)	

1009	±	214	
$	⏏	⌫	®	
(CI	934-1084)	

848	±	227		
⌃	Ψ	Γ	
(CI	769-927)	

748	±	191	
Ψ	✚	ϖ þ	
(CI	698-798)	

708	±	230	
Ψ	
(CI	650-767)	

922	±	177	
¥	⌃	
(CI	853-991)	

Distance	
Zone	5	(m)	

118	±	56	
⌘	
(CI	104-131)	

73	±	47	
	
(CI	57-90)	

142	±	54	
₠	
(CI	127-156)	

202	±	119	
✓	₠	
(CI	178-226)	

281	±	76	
¥	⌃♮	
(CI	254-308)	

273	±	88	
¥	⌃	
(CI	242-304)	

322	±	107	
$	
(CI	294-350)	

346	±	113		
$	
(CI	317-374)	

429	±	118	
$	♭	♫	
(CI	384-475)	

Distance	
Zone	6	(m)	

17	±	23		
β	
(CI	11-23)	

4	±	10	
	
(CI	1-8)	

6	±	9	
	
(CI	3-8)	

20	±	24	
✚	ŵ	
(CI	15-25)	

33	±	21		
⌃	₠	
(CI	25-40)	

43	±	35		
û	⌃	₠	
(CI	31-55)	

51	±	42		
$	
(CI	40-62)	

139	±	72		
$	℗	
(CI	120-157)	

101	±	50		
$	∧	∨	
(CI	82-121)	
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Table	11.5:	Key	for	descriptive	distance	data	in	Table	11.6	relating	to	Chapter	3	

*	significantly	greater	(p=0.01)	compared	to	Scrum	Half	and	Hookers	
#	significantly	greater	(p=0.003)	compared	to	Props	
¥	significantly	greater	(p<0.001)	compared	to	Props	and	Hookers	
§	significantly	greater	(p=0.001)	compared	to	Props	and	Hookers	
∞	significantly	greater	(p=0.01)	compared	to	Props	and	Hookers	
⌘	significantly	greater	(p=0.03)	compared	to	Hookers	
$	significantly	greater	(p<0.001)	compared	to	Props,	Hookers,	Locks	and	Back	
Row	
£	significantly	greater	(p=0.001)	compared	to	Scrum	Half	
€	significantly	greater	(p=0.003)	compared	to	Out	Half	
¶	significantly	greater	(p=0.002)	compared	to	Hookers	
≠	significantly	greater	(p=0.002)	compared	to	Props	
Ψ	significantly	greater	(p<0.001)	compared	to	Props		
Ω	significantly	greater	(p=0.03)	compared	to	Out	Halves	and	Wings	
α	significantly	greater	(p<0.001)	compared	to	Props,	Hookers,	Locks,	Back	Row	
and	Wings	
χ	significantly	greater	(p=0.03)	compared	to	Hookers	
Γ	significantly	greater	(p=0.001)	compared	to	Hookers	
Σ	significantly	greater	(p=0.004)	compared	to	Locks	
¢	significantly	greater	(p=0.005)	compared	to	Props	and	Locks	
₠	significantly	greater	(p<0.001)	compared	to	Hookers	
≈	significantly	greater	(p=0.004)	compared	to	Scrum	Halves	
¤	significantly	greater	(p<0.001)	compared	to	Props,	Scrum	Half	and	Out	Half	
u	significantly	greater	(p=0.001)	compared	to	Centre	
✪	significantly	greater	(p=0.001)	compared	to	Wingers	
★	significantly	greater	(p=0.03)	compared	to	Scrum	Halves	
⌫	significantly	greater	(p=0.002)	compared	to	Centre	
⌃	significantly	greater	(p<0.001)	compared	to	Locks	
♭ significantly	greater	(p=0.002)	compared	to	Scrum	Halves	
♫	significantly	greater	(p=0.001)	compared	to	Out	Halves	
℗	significantly	greater	(p<0.001)	compared	to	Scrum	Half,	Out	Half	and	Centre	
∨ significantly	greater	(p=0.01)	compared	to	Out	Halves	

ζ	significantly	greater	(p<0.001)	compared	to	Props,	Hookers	and	Back	Row	
ϕ	significantly	greater	(p<0.001)	compared	to	Props	and	Back	Row		
ϖ	significantly	greater	(p=0.03)	compared	to	Locks	
β	significantly	greater	(p=0.007)	compared	to	Hookers	
ξ	significantly	greater	(p=0.003)	compared	to	Back	Row	
π	significantly	greater	(p=0.003)	compared	to	Hooker	and	Wings	
Α	significantly	greater	(p=0.01)	compared	to	Back	Row	
Β	significantly	greater	(p<0.001)	compared	to	Props,	Hookers,	Locks	and	
Scrum	Half	
Κ	significantly	greater	(p=0.001)	compared	to	Back	Row	
i	significantly	greater	(p=0.002)	compared	to	Hookers	
x	significantly	greater	(p=0.004)	compared	to	Centre	
	significantly	greater	(p=0.005)	compared	to	Back	Row	
®	significantly	greater	(p=0.01)	compared	to	Wingers	
⏏	significantly	greater	(p=0.03)	compared	to	Out	Halves	
✚	significantly	greater	(p=0.01)	compared	to	Hookers	
þ	significantly	greater	(p=0.004)	compared	to	Back	Row	
♮	significantly	greater	(p=0.03)	compared	to	Back	Row	
✓	significantly	greater	(p=0.005)	compared	to	Props	
∧ significantly	greater	(p=0.003)	compared	to	Scrum	Halves	
û	significantly	greater	(p=0.03)	compared	to	Props	
ŵ	significantly	greater	(p=0.001)	compared	to	Locks	
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Table	11.6:	Descriptive	(mean±	StDv;	CI=95%	confidence	intervals)	across	impacts	data	for	all	positions	relating	to	Chapter	3	

Position	 Prop	 Hooker	 Lock	 Back	Row	 Scrum	Half	 Out	Half	 Centre	 Wing	 Full	Back	
Impacts	
>	Zone	3	

259	±	250	
	
(CI	198-321)	

291	±	145	
ε	n	
(CI	239-342)	

157	±	40	
	
(CI	146-167)	

225	±	109	
	
(CI	203-247)	

274	±	145	τ	
	
(CI	223-324)	

186	±	77	
	
(CI	159-213)	

229	±	186	
	
(CI	180-278)	

197	±	155	
	
(CI	158-237)	

296	±	99		
Θ	Π	Ω★	
(CI	257-334)	

Impacts	
Zone	1	

1178	±	313	
	
(CI	1100-1255)	

1820	±	549	
⌃	
(CI	1625-2015)	

2232	±	533	
¢	
(CI	2092-2373)	

2019	±	476		
¢	
(CI	1922-2115)	

1998	±	566		
¢	
(CI	1800-2195)	

2042	±	528		
¢	
(CI	1857-2226)	

2053	±	441	
¢	
(CI	1938-2168)	

1901	±	521	
¢	
(CI	1768-2033)	

2553	±	510		
¢	¤		Κ	Ω		✚	
(CI	2355-2751)	

Impacts	
Zone	2	

716	±	195	
	
(CI	668-764)	

900	±	326	
	
(CI	785-1016)	

845	±	201β	
	
(CI	792-898)	

815	±	259	
	
(CI	762-868)	

1107	±	234		
¢	ε			¶	i	x	
(CI	1025-1188)	

948	±	255	∞	
	
(CI	859-1038)	

762	±	337	
	
(CI	674-850)	

748	±	252	
	
(CI	684-812)	

902	±	182		
α	
(CI	832-973)	

Impacts	
Zone	3	

323	±	128	ε	
	
(CI	292-355)	

379	±	158		
η	
(CI	323-435)	

231	±	76	
	
(CI	211-251)	

294	±	135	
	
(CI	267-322)	

449	±	166		
ε	γ	ζ	δ	
(CI	391-507)	

307	±	102		
ι	
(CI	271-343)	

274	±	177	
	
(CI	228-320)	

273	±	132	
	
(CI	239-307)	

341	±	92		
θ	
(CI	306-377)	

Impacts	
Zone	4	

130	±	114	
	
(CI	102-158)	

148	±	79		
ε	Ψ	
(CI	120-176)	

75	±	25	
	
(CI	69-82)	

112	±	59	
	
(CI	99-124)	

162	±	82		
ε	Π	Ω	
(CI	133-191)	

106	±	41		
π	
(CI	91-120)	

111	±	101	
	
(CI	85-138)	

100	±	73	
	
(CI	82-119)	

142	±	51		
η	
(CI	122-162)	

Impacts	
Zone	5	

57	±	67	
	
(CI	40-73)	

62	±	35		
ε	Π	ζ	σ	
(CI	49-75)	

30	±	9	
	
(CI	28-33)	

46	±	26	
	
(CI	41-51)	

58	±	37		
η	
(CI	45-72)	

37	±	20	
	
(CI	29-44)	

48	±	48	
	
(CI	35-61)	

41	±	37	
	
(CI	31-50)	

66	±	27		
η	ρ	Ω	★	
(CI	55-76)	

Impacts	
Zone	6	

70	±	74	
	
(CI	51-88)	

80	±	33		
φ	v	χ	i	
(CI	68-92)	

49	±	15	
	
(CI	45-53)	

67	±	27		
ω	®	
(CI	61-72)	

52	±	27	
	
(CI	43-62)	

42	±	19	
	
(CI	36-49)	

66	±	43		
Ω	
(CI	54-77)	

53	±	49	
	
(CI	40-65)	

87	±	27		
ς	Π	⏏	§	✚	
(CI	76-97)	

Θ	significantly	greater	(p=0.001)	compared	to	Locks		
σ	significantly	greater	(p=0.001)	compared	to	Wingers	
Π	significantly	greater	(p=0.03)	compared	to	Back	Row	
Ω	significantly	greater	(p=0.03)	compared	to	Out	Half	
ε	significantly	greater	(p<0.001)	compared	to	Locks	
υ	significantly	greater	(p=0.03)	compared	to	Wingers	
τ	significantly	greater	(p=0.002)	compared	to	Locks	
¢	significantly	greater	(p<0.001)	compared	to	Props	
¤	significantly	greater	(p=0.009)	compared	to	Hookers	
Κ	significantly	greater	(p=0.03)	compared	to	Scrum	Half	
✚	significantly	greater	(p=0.01)	compared	to	Wingers	
⌃	significantly	greater	(p=0.001)	compared	to	Props	
Ψ	significantly	greater	(p=0.02)	compared	to	Wingers	
	significantly	greater	(p=0.009)	compared	to	Back	Row	
π	significantly	greater	(p=0.004)	compared	to	Locks	
⏏ significantly	greater	(p=0.005)	compared	to	Scrum	Half	
φ	significantly	greater	(p=0.007)	compared	to	Locks	

x	significantly	greater	(p=0.03)	compared	to	Full	Backs	
∞	significantly	greater	(p=0.01)	compared	to	Props	
α	significantly	greater	(p=0.03)	compared	to	Props	
β	significantly	greater	(p=0.01)	compared	to	Props	
γ	significantly	greater	(p=0.004)	compared	to	Back	Row	
δ	significantly	greater	(p=0.008)	compared	to	Wingers	
ζ	significantly	greater	(p=0.009)	compared	to	Out	Half	
η	significantly	greater	(p=0.001)	compared	to	Locks	
θ	significantly	greater	(p=0.003)	compared	to	Locks	
ι	significantly	greater	(p=0.005)	compared	to	Locks	
ω	significantly	greater	(p=0.03)	compared	to	Locks	

ρ	significantly	greater	(p=0.003)	compared	to	Back	Row	
ς	significantly	greater	(p=0.006)	compared	to	Lock	
§	significantly	greater	(p=0.001)	compared	to	Out	Half	
χ	significantly	greater	(p=0.003)	compared	to	Out	Half	
®	significantly	greater	(p=0.007)	compared	to	Out	Half	
¶	significantly	greater	(p=0.03)	compared	to	Centre	
i	significantly	greater	(p=0.002)	compared	to	Wingers	
n	significantly	greater	(p=0.009)	compared	to	Wingers	
★significantly	greater	(p=0.03)	compared	to	Wingers	


