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Comparison of methods of calculating dynamic strength index 30 

 31 

Abstract 32 

Purpose: To determine the reliability and variability of dynamic strength index (DSI) 33 

calculated from squat jump (SJ) (DSI-SJ) versus countermovement jump (CMJ) (DSI-CMJ) 34 

peak force (PF) and to compare DSI values between methods. Methods: Male youth soccer 35 

and rugby league players (n = 27; age = 17.2 ± 0.7 years; height = 173.9 ± 5.7 cm; body mass 36 

= 71.1 ± 7.2 kg) performed 3 trials of the SJ, CMJ and isometric mid-thigh pull (IMTP), on 37 

two separate days. DSI was calculated by dividing the PF during each jump by the IMTP PF. 38 

Results: DSI-SJ exhibited moderate (intraclass correlation coefficient (ICC) = 0.419) within-39 

session reliability and high variability (percentage coefficient of variation (%CV) = 15.91) 40 

during session one; however, this improved noticeably during session two (ICC = 0.948; %CV 41 

= 4.03). Contrastingly, DSI-CMJ showed nearly perfect within-session reliability (ICC = 42 

0.920-0.952) and low variability (%CV = 3.80-4.57) for both sessions. Moreover, DSI-SJ 43 

values demonstrated a small yet significant increase between sessions (P = 0.01, d = 0.37), 44 

whereas only a trivial and non-significant increase was observed for DSI-CMJ between 45 

sessions (P = 0.796 d = 0.07). Between-session reliability was very high for the DSI-SJ (ICC 46 

= 0.741) and nearly perfect for the DSI-CMJ (ICC = 0.924). There was no significant or 47 

meaningful difference (P = 0.261; d = 0.12) between DSI-SJ (0.82 ± 0.18) and DSI-CMJ (0.84 48 

± 0.15). Conclusions: Practitioners should use DSI-CMJ as it is a more reliable measure than 49 

DSI-SJ, although it produces similar ratios.  50 
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Introduction 73 

Strength has been shown to underpin performance in numerous athletic tasks,1 including 74 

sprint,2-4 jump5,  6 and change of direction performance.6-8 However, strength is commonly 75 

assessed using a variety of methods, including one repetition maximum (1RM) testing, during 76 

different compound exercises,2-4, 6 and peak force (PF) assessed during the isometric mid-thigh 77 

pull (IMTP)5, 9, 10 and the isometric squat.11  78 

While 1RM assessments are easy to conduct, can be incorporated within scheduled training 79 

sessions, demonstrate high reliability12, 13 and are regularly used to prescribe training intensity, 80 

such testing can be fatiguing and only provide a maximal load lifted. In contrast, minimal 81 

fatigue is likely to result from performance of the IMTP, and additional information regarding 82 

rate of force development (RFD) 14, 15, impulse, and force produced across specific epochs (e.g. 83 

0-100, 0-150, 0-200 ms) can be determined 15-17. Such information may provide the practitioner 84 

with greater information regarding the athlete’s ability to express not only maximal force, but 85 

their ability to rapidly produce force. It is worth noting however, that the reliability of the RFD 86 

calculation during the IMTP has been questioned, with peak RFD over short epochs (2-50 ms) 87 

being suggested to be the most reliable of the available measures.14 88 

To provide greater insight into an athlete’s training status, the ratio of ballistic PF, produced 89 

during a squat jump (SJ) or a countermovement jump (CMJ), and PF during the IMTP has been 90 

discussed within the literature.9, 10, 18-21 This ratio is commonly referred to as the dynamic 91 

strength index (DSI) or the dynamic strength deficit and has been reported to be highly reliable 92 

(intraclass correlation coefficient (ICC) 0.952-0.987) with low variability (2.01-4.60% 93 

coefficient of variation percentage (CV%)).19, 22 Recommendations for interpreting the ratio 94 

suggest focusing on ballistic force production when the ratio is low (< 0.60) and maximal 95 

strength development when the ratio is high (> 0.80).19 However, it is important to note that in 96 

athletes with low relative strength, developing relative strength may be more advantageous 97 

than focussing on achieving a specific ratio.23, 24 98 

As the calculation of DSI using both PF attained during the SJ and CMJ has been reported 99 

within the literature, it is important to determine whether the differences in these methods 100 

affects not only the reliability and variability of the measures, but also the resultant DSI ratios. 101 

Due to the CMJ incorporating the stretch-shortening cycle (SSC), it is likely that the PF will 102 

be higher when compared to the PF attained during the SJ.25, 26  Additionally, it is not clear 103 

from the studies that have used the CMJ, if the PF was obtained during the braking or 104 

propulsive phase which may affect the resultant PF,9, 10, 20, 21 as the phase in which PF occurs 105 

differs between individuals. The aim of this study, therefore, was to determine the reliability 106 

and variability of DSI ratios when calculated based on PF attained during the SJ (DSI-SJ) and 107 

CMJ (DSI-CMJ) and to compare the resultant DSI values between methods. It was 108 

hypothesised that both methods would be reliable, both within- and between sessions, with 109 

greater values derived from DSI-CMJ due to the higher PF compared to the DSI-SJ calculation, 110 

due to the use of the SSC during the CMJ.  111 

 112 

 113 
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Methods 114 

Subjects 115 

Male professional youth soccer and rugby league players (n = 27; age = 17.2 ± 0.7 years; height 116 

= 173.9 ± 5.7 cm; body mass = 71.1 ± 7.2 kg) participated in this study. All participants 117 

provided written informed consent, with consent from the parent or guardian of all subject 118 

under the age of 18 years. The study procedures were approved by the University Institutional 119 

Review Board, and procedures conformed to the Declaration of Helsinki. 120 

 121 

Procedures 122 

To determine between session reliability, participants were assessed on two separate occasions, 123 

at the same time of day, 7 days apart. Testing was conducted within the first 4 weeks of the 124 

season, during which time all participants were in full training comprising all the elements of 125 

performance including four sport-specific skill based training sessions, plus two lower body 126 

resistance training sessions each week. At the time of testing, participants had completed a 4-127 

week strength mesocycle and were in the middle of a 4-week power mesocycle.  128 

All athletes rested the day before testing and were asked to attend testing in a fed and hydrated 129 

state, similar to their normal practices before training. On arrival, all participants had their 130 

height (Stadiometer; Seca, Birmingham, United Kingdom) and body mass assessed (Seca 131 

Digital Scales, Model 707), measured to the nearest 0.1 kg and 0.1 cm, respectively. After 132 

performing a standardized dynamic warm up, which they were familiar with from all previous 133 

off-field training sessions, they performed three maximal effort SJ and CMJ trials, followed by 134 

three IMTPs, with five minutes of rest between each test.  135 

Data from the second day of testing was used to compare between DSI-SJ and DSI-CMJ and 136 

to determine any relationships between the two methods. 137 

 138 

Jump Testing 139 

Both the SJ and CMJ trials were performed with the subjects standing on a force platform (type: 140 

9286AA, dimensions 600 mm x 400 mm, Kistler Instruments Inc., Amherst, NY, USA) 141 

sampling at 1000 Hz, interfaced with laptop computer running Bioware software (version 5.11, 142 

Kistler Instruments Inc., Amherst, NY, USA). Subjects were instructed to stand still for the 143 

initial one second of the data collection period (known as the silent period immediately prior 144 

to performing the jumps) 27, 28 to allow for the subsequent determination of body weight. The 145 

raw, unfiltered, vertical force-time data for each jump trial were exported as text files and 146 

analysed, in line with previous recommendations to minimise sources of error, 29 using a 147 

customised Microsoft Excel spreadsheet (version 2016, Microsoft Corp., Redmond, WA, 148 

USA). 149 

All jumps were performed whilst the subjects kept their hands on their hips, with any jumps 150 

that were inadvertently performed with the inclusion of arm swing omitted and additional trials 151 

performed after one minute of rest. For the SJ, subjects were instructed to squat down to a self-152 
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selected depth (approximately 90°), pause for a count of three and then jump as fast and as high 153 

as possible, without performing any preparatory countermovement. Resultant force-time data 154 

was visually inspected to determine if any countermovement had been performed, and if it had, 155 

subjects repeated the trial after one minute of rest. Subsequent analysis of the SJ force-time 156 

data revealed that no trial exceeded the threshold used to determine a countermovement (five 157 

times the standard deviation of body weight, as derived during the silent period), 27, 30 as 158 

described below.  For the CMJ subjects were instructed to aim to jump as high as possible, 159 

performing a rapid dip, to a self-selected depth, which they believed would achieve their 160 

greatest jump height. To aid the standardisation of instructions and procedures all, assessments 161 

were performed by the same experienced researcher. 162 

The start of the jumps were identified in line with current recommendations where the onset of 163 

movement for each jump trial was considered to have occurred 30 milliseconds prior to the 164 

instant when vertical force had reduced (CMJ) or increased (SJ) by five times the standard 165 

deviation of body weight, as derived during the silent period.27, 30 The interpretation of the CMJ 166 

force-time curves attained in this study is in line with recent research.30 Instantaneous centre 167 

of mass (COM) velocity was calculated by dividing vertical force (excluding body weight) by 168 

body mass and then integrating the product using the trapezoid rule. The concentric phase of 169 

the CMJ and SJ was then defined as occurring between the instant at which COM velocity 170 

exceeded 0.01 m·s-1 and take-off.30 The instant of take-off was defined as the instant in time 171 

when vertical force was less than five times the standard deviation of the flight force following 172 

the onset of movement.27 It was important to clearly identify the concentric peak force 173 

(propulsive phase) during the CMJ rather than the eccentric peak force (braking phase) (Figure 174 

1), to ensure that this is comparable with the SJ which has no eccentric phase. Concentric PF 175 

was defined as the maximum value attained during the propulsion phase of the jumps. Jump 176 

height was derived from vertical velocity at take-off with take-off.28, 30  177 

 178 

 179 

[***Insert figure 1 here***] 180 

 181 

 182 

 183 

Isometric Mid-Thigh Pull Testing 184 

The IMTP was performed using a portable force platform (type: 9286AA, dimensions 600 mm 185 

x 400 mm, Kistler Instruments Inc., Amherst, NY, USA) sampling at 1000 Hz, interfaced with 186 

laptop computer running Bioware software (version 5.11, Kistler Instruments Inc., Amherst, 187 

NY, USA). Raw force-time was subsequently exported and analysed in a custom-made 188 

Microsoft Excel spreadsheet. Subjects adopted a posture which replicated the position at which 189 

they would start the second pull phase of the clean, with their knee and hip angles within 140-190 

150°, in line with previous research.31, 32 An immovable, collarless cold rolled steel bar was 191 

positioned around mid-thigh, just below the crease of the hip, using a portable IMTP rig 192 

(Fitness Technology, Adelaide, Australia). Once the bar height was established, the athletes 193 

stood on the force platform, and their hands were strapped to the bar using standard lifting 194 

straps. The height of the bar and the resultant joint angles were replicated between trials and 195 

between testing sessions.  196 
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Each athlete performed two warm-up pulls, one at 50% and one at 75% of the athlete’s 197 

perceived maximum effort, separated by one minute of rest. Once body position was stable 198 

(verified by visual inspection of the force trace), the subject was given a countdown of “3, 2, 199 

1, Pull.” Minimal pretension was allowed to ensure that there was no slack in the subject’s 200 

body or IMTP rig before initiation of the pull. Athletes performed three maximal IMTP, with 201 

the instruction to pull against the bar with maximal effort pulling as fast and hard as possible, 202 

and push the feet down into the force platform. Each maximal IMTP trial was performed for 203 

five seconds, and all athletes were given strong verbal encouragement during each trial. Two 204 

minutes of rest was given between the maximal effort pulls. Trials were repeated if the PF 205 

values varied by >250 N in line with previous research.16, 17, 31, 32 The maximum force recorded 206 

from the force-time curve during the five-second IMTP trial was reported as the PF. Each of 207 

the 3 trials was used to determine within session reliability, with the mean of the best two trials, 208 

based on PF, used to compare between sessions, in line with previous research.31, 32  209 

The DSI was calculated by dividing jump PF by IMTP PF, with DSI-SJ using PF from the SJ 210 

and DSI-CMJ using PF from the CMJ. 211 

 212 

Statistical Analyses 213 

Within- and between-session reliability of dependent variables was examined using the ICC, 214 

and typical error of measurement (TE) expressed as a CV%. A CV of ≤ 10% was considered 215 

to be reflective of acceptable variability.33 Specifically, a two-way random effects model ICC 216 

was used to determine within- and between-session reliability (internal consistency), with 217 

paired samples t-tests and Cohen’s d effect sizes used to determine if any differences occurred 218 

between days, between the two methods of calculating DSI (DSI-SJ and DSI-CMJ) and 219 

between PF achieved during the SJ and CMJ. Finally, Pearson’s correlation was performed to 220 

determine the relationship between both methods of assessing DSI, based on the resultant 221 

values from the second day of testing, due to the higher reliability and lower variability 222 

observed. 223 

To assess the magnitude of the ICC, the values were interpreted as low (<0.30), moderate (0.30-224 

0.49), high (0.50-0.69), very high (0.70-0.89), nearly perfect (0.90-0.99), and perfect (1.0), 225 

respectively.34 The magnitude of differences, as determined using Cohen’s d, between sessions 226 

were classified as trivial (≤ 0.19), small (0.20 – 0.59), moderate (0.60 – 1.19), large (1.20 – 227 

1.99), and very large (2.0 – 4.0).35 228 

Normality of data was assessed by Shapiro–Wilk statistic and Q-Q plot analysis. Relationships 229 

between variables were determined using Pearson’s product-moment correlation coefficients. 230 

Correlations were evaluated as follows: small (0.10 − 0.29), moderate (0.30 − 0.49), large (0.50 231 

− 0.69), very large (0.70 − 0.89), nearly perfect (0.90 − 0.99), and perfect (1.0).35 Statistical 232 

analyses were conducted using SPSS software (version 23.0; SPSS, Inc.) with an alpha level 233 

of P ≤ 0.05. 234 

 235 

Results 236 

DSI-SJ showed poor to moderate within-session reliability and high variability during session 237 

one; however, this improved during session two resulting in nearly perfect within-session 238 
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reliability and reduced variability (Table 1). In contrast, DSI-CMJ showed nearly perfect 239 

within-session reliability and low variability for both testing sessions. Moreover, DSI-SJ 240 

demonstrated a small yet significant increase between sessions, whereas there was only a trivial 241 

and non-significant increase in DSI-CMJ between sessions (Table 1). Between-session 242 

reliability was very high for the DSI-SJ (ICC = 0.741) and nearly perfect for the DSI-CMJ 243 

(ICC = 0.924). 244 

 245 

 246 

[***Insert Table 1 here***] 247 

 248 

 249 

There was no significant or meaningful difference (P = 0.261; d = 0.12) between DSI-SJ (0.82 250 

± 0.18) and DSI-CMJ (0.84 ± 0.15) (Figure 2), with a trivial and non-significant difference (P 251 

= 0.272; d = 0.19) in PF between the SJ (1789 ± 350 N) and the CMJ (1854 ± 345 N). The 252 

results of Pearson’s correlation analysis showed a very large positive relationship (r = 0.797; 253 

R2 = 0.635) between DSI-SJ and DSI-CMJ (Figure 3).   254 

 255 

 256 

 257 

[***Insert figure 2 here***] 258 

 259 
 260 
  261 
 262 

[***Insert figure 3 here***] 263 

 264 

 265 

 266 

Discussion 267 

This study examined the reliability and variability of DSI-SJ and DSI-CMJ and compared the 268 

resultant DSI values between methods. The DSI-SJ demonstrated improved reliability and 269 

reduced variability between sessions, with a small and significant increase in values between 270 

sessions. In contrast, there was no notable change in reliability and variability, or any 271 

meaningful or significant change in DSI-CMJ between sessions (Table 1), highlighting that 272 

DSI-CMJ is a more stable method of assessing DSI compared to DSI-SJ. In contrast to our 273 

hypotheses, there was no meaningful or significant difference between DSI-SJ and DSI-CMJ, 274 

with strong associations between DSI values determined using either method.  275 

The greater variability and lower reliability observed for DSI-SJ is likely due to the difficulties 276 

associated with subjects consistently performing the SJ, without any countermovement, while 277 

attempting to jump as high as possible from a static squat position. It is therefore plausible that 278 

greater familiarisation with the SJ is required, which is likely to improve the reliability and 279 

reduce the variability of the performances, as observed during the second day of testing. In line 280 

with previous observations,25, 26 the inclusion of the countermovement during the CMJ resulted 281 

in a higher PF (3.6%) than that observed during the SJ, although this difference was trivial and 282 
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non-significant. This non-significant difference in PF between the CMJ and SJ explain the 283 

trivial and non-significant differences in DSI-CMJ and DSI-SJ. In contrast, and as expected, a 284 

moderate and significantly greater jump height (12%) was achieved during the CMJ compared 285 

to the SJ, most likely due to the utilisation of the SSC resulting in increased force from the 286 

neurological potentiation and contribution from the elastic components.  287 

The reliability and variability values in the current study are in line with those previously 288 

reported,19, 22 although the reliability of the DSI-SJ from session one shows notably lower 289 

reliability and much higher variability than presented in previous research.19, 22 This higher 290 

variability in the DSI-SJ, during session one, with an increased reliability and reduced 291 

variability during session two suggests a potential learning effect during the SJ.  However, 292 

further research is needed to examine potential learning effects on SJ performance.  293 

Given that CMJ testing is one of the most commonly used tools in athlete monitoring, it may 294 

be preferable to use DSI-CMJ ratios compared to DSI-SJ.  In addition to DSI, the CMJ offers 295 

the opportunity to assess a variety of other performance characteristics that may not be possible 296 

with the SJ, namely the reactive strength index-modified.36  Measuring both DSI and reactive 297 

strength index-modified will allow practitioners to assess both isometric and dynamic force 298 

production as well as the ability to utilise the SSC, respectively.37  Such an approach may 299 

provide a more comprehensive assessment of an athlete’s force production qualities. 300 

The use of only three trials for each of the jumps, especially during the initial testing session, 301 

is a potential limitation of this investigation, due to the low reliability and high variability 302 

observed during the SJ. While such an approach is ecologically valid, and in line with applied 303 

practice, it is suggested that future research consider applying a similar approach to that 304 

commonly used with the IMTP, 16, 17, 31, 32 where a specific force threshold (<250 N) is used to 305 

determine if trials are acceptable. Additionally, future research should adopt a precise method 306 

to determine and standardise the squat depth during the performance of the SJ, which may aid 307 

in improving reliability and reducing variability of such performance. 308 

 309 

Practical Applications 310 

The results of the current study provide options to practitioners who would like to use DSI as 311 

an athlete monitoring tool. Both DSI-CMJ and DSI-SJ are reliable measures that give 312 

practitioners information regarding the ability of an athlete to produce maximal force during 313 

isometric and dynamic tasks.  However, DSI-CMJ may provide a more consistent measurement 314 

as compared to DSI-SJ due to potential learning effects.  Moreover, utilising a CMJ as opposed 315 

to a SJ may allow for the assessment of other force production characteristics.     316 

Based on previous recommendations,19 it would appear that the athletes in the current study, 317 

on average, should focus on developing greater levels of muscular strength.  However, it is 318 

important to note that training recommendations should be made on an individual basis. In 319 

addition, practitioners should be aware that while DSI ratios may help guide training decisions, 320 

a paucity of research has been completed on the long-term monitoring of DSI during lower and 321 

upper body tasks. Thus, further research is needed that focuses on how specific types of training 322 

affect DSI ratios and how DSI ratios relate to other sport performance characteristics. 323 

 324 
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Conclusions 325 

Based on the results of the current study it is suggested that DSI ratios are calculated based on 326 

PF during the propulsion phase of the CMJ, as this is more reliable and less variable compared 327 

to PF during the SJ. In addition, it is also easier to standardise performance of the CMJ 328 

compared to ensuring that athletes do not initiate the SJ with any form of countermovement. 329 
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Table and Figure Legends 444 

 445 
Figure 1: Illustration of the identification of the specific phases of the CMJ. The dark line 446 

represents force, while the grey line represents velocity of the centre of mass 447 
 448 

Figure 2: Comparison of DSI calculated from SJ and CMJ peak force  449 

 450 

Figure 3: Relationship between DSI calculated from SJ and CMJ peak force  451 
 452 

Table 1: Descriptive statistics (mean ± standard deviation), within- and between-session 453 

reliability (ICC) and variability (CV%) of DSI calculated from peak force during the SJ and 454 

CMJ  455 
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Figure 1: Illustration of the identification of the specific phases of the CMJ. The dark line 470 

represents force, while the grey line represents velocity of the centre of mass 471 

 472 
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 475 

Figure 2: Comparison of DSI calculated from SJ and CMJ peak force  476 
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 479 

Figure 3: Relationship between DSI calculated from SJ and CMJ peak force (Grey lines depict upper 480 

and lower 95% confidence limits) 481 

y = 0.9692x + 0.0023
R² = 0.6345
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