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ABSTRACT 

Hydroponic and pot experiments were conducted to examine the effects of Fenton reagent on paddy 

rice plant growing in arsenic-contaminated soils. Fenton reagent significantly reduced arsenic 

phytotoxicity, uptake by the plants and accumulation in rice grain. This is attributed to oxidation of 

As3+ to As5+ by hydroxyl radicals and immobilization of arsenate by reacting with precipitating Fe3+ 

to form practically insoluble compounds. Although this process enhanced the formation of Fe-

enriched coatings on root surface, it appears that root plaque had limited effects on inhibiting As 

uptake since most of the young roots were not covered by iron plaque. It is more likely that As 

immobilization in the bulk soils play a major role in reducing As flux towards rhizosphere. The 

findings have implications for understanding As behavior in paddy field receiving rainwater-borne 

hydrogen peroxide and developing cost-effective techniques for reducing As level in rice grain 

produced from As-contaminated soils.  

Keywords:  Paddy rice, arsenic, iron plaque, soil, Fenton reaction 
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1 INTRODUCTION

Consumption of rice is a major pathway of human arsenic exposure, which could affect billions 

of people around the world (Schoof et al., 1999; Meharg, 2004; Williams et al., 2006; Zhu et al., 

2008; Syu et al., 2015; Sinha and Bhattacharyya, 2015; Clemens and Ma, 2016). The anaerobic soil 

conditions associated with water inundation required for paddy rice farming favour reduction 

reactions, leading to formation of highly toxic arsenite ions (Xu et al., 2008; Li et al., 2009; 

Somenahally et al., 2011; Spanu et al., 2012). Arsenite tends to be predominantly present in 

undissociated form (H3AsO3
o) under pH conditions encountered in most paddy rice soils (Zhao et al., 

2009), and therefore it may be more resistant to immobilization by soil adsorbents. In addition, under 

reducing conditions the arsenic-scavenging capacity of soil is weakened due to reductive dissolution 

of various iron compounds that play a key role in binding soluble arsenic species through either 

formation of practically insoluble iron arsenate minerals or adsorption of arsenate to iron 

oxyhydroxides (Zhao et al., 2010; Zhu et al., 2014). As such, arsenite is readily available for uptake 

by rice plants and accumulation in rice grain (Williams et al., 2007; Su et al., 2010; Wang et al., 

2015).

Iron-enriched root plaque plays an important role in reducing the entry of As present in the soil 

pore water (soil solution) into rice plant roots (Lee et al., 2013; Syu et al., 2013). The formation of 

root plaque is believed to be mediated by oxidation of ferrous iron (Fe2+) using molecular oxygen 

released from rice plant roots (Armstrong, 1964), and it is likely that the root-released oxygen also 

promotes microbially mediated oxidation of arsenite to form arsenate (Hu et al., 2015). As arsenate 

has the stronger affinity to Fe3+, it is likely that arsenate-As tends to be intercepted more easily by 

the root plaque, as compared to arsenite-As (Chen et al., 2005; Liu et al., 2005).

It has been demonstrated that Fenton process involving reaction between hydrogen peroxide 

(H2O2) and ferrous iron (Fe2+) resulted in enhanced oxidation of arsenite to form less toxic arsenate 

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177



4

(Hug and Leupin, 2003). Fe2+ is available in flooded soils like paddy rice soils (Becker and Asch, 

2005; Kögel-Knabner et al., 2010). H2O2 is also commonly present in rainwater (Cooper et al., 1988; 

Willey et al., 1996; Gonçalves et al., 2010; Guo et al., 2014). In areas with abundant rainfall, Fenton 

reaction may be a naturally-occurring process that can affect the biogeochemical behaviour of 

arsenic in paddy rice soils. Where the enrichment of arsenic in rice grain becomes a significant 

health concern, it may be worthwhile to consider the use of Fenton reagent (a mixture of H2O2 and 

Fe2+) for reducing As uptake by rice plants.

The objective of this study was to examine the effects of Fenton reagent on reducing As uptake 

by rice plants. The impacts of Fenton reagent on plant growth are also evaluated. In addition, the 

major biogeochemical mechanisms responsible for the observed phenomena are explored. 

2 MATERIALS AND METHODS 

2.1 Materials

2.1.1 Hydroponic Nutrient Solution

The hydroponic nutrient solution used for the solution culture experiment consisted of the 

following chemical compounds: 5 mM NH4NO3, 2 mM K2SO4, 4 mM CaCl2, 1.5 mM MgSO4·7H2O, 

1.3 mM KH2PO4, 50 µM Fe(Ⅱ)-ethylenediaminetetraacetic acid (EDTA), 10 µM H3BO4, 1.0 µM 

ZnSO4·7H2O, 1.0 µM CuSO4·5H2O, 5.0 µM MnSO4·H2O, 0.5 µM Na2MoO4·2H2O, and 0.2 µM 

CoSO4·7H2O. The pH of the solution was adjusted to 5.5 using 0.1 M KOH or HCl.

2.1.2 The Experimental Soil

The soil sample used for the greenhouse experiment was taken from the paddy rice field of 

the experimental farm at the South China Agricultural University (Guangzhou, China). The soil 

samples were air-dried after collection and then crushed to pass a 2 mm sieve prior to the use in the 
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experiments. The soil had a pH of 6.52 and contained 2.38% of organic matter. Total nitrogen, 

phosphorus and potassium were 1.06, 1.04 and 19.6 g/kg, respectively. Available nitrogen, 

phosphorus and potassium were 114, 77.8 and 122 mg/kg, respectively. The soil contained 15.6 

mg/kg of arsenate-As and no other arsenic species were detected. 

2.1.3 The Rice Seedlings Used in the Experiment

The seeds of rice (Oryza sativa cultivar: Tianyou 122) used in the experiment were provided 

by the Guangdong Academy of Agricultural Sciences. Prior to sowing, the seeds were surface-

sterilized by soaking in 30% H2O2 for 15 min. The sterilized seeds were then rinsed with deionized 

water and placed in a container with moistened sands for germination. The pre-germinated seeds 

were sown into the seed bed that was covered by a plastic sheet to maintain the temperature at 28 ± 

2 °C. Healthy seedlings with 4 leaves were selected for the experiment.    

2.2 Experimental Design

2.2.1 Solution Culture Experiment

The rice seedlings were grown in the hydroponic nutrient solution for 3 weeks. The seedlings 

were then rinsed with deionized water and transplanted into a beaker containing 500 mL of 20 mg 

Fe2+/L solution (pH being adjusted to 5.5) for 24 h to allow the formation of iron plaques on the root 

surfaces of the seedlings. After this, the seedlings were rinsed to remove any soluble Fe attached to 

the plant surface before being used in the experiments. 

Two sets of the experiments were performed aiming to collect data at the end of two different 

lengths of growth period: 1 day (24 h) and 30 days (720 h). For each set of the experiment, one 

control and one treatment were set; (a) control: plant growing in the hydroponic nutrient solution 

with added arsenite-As at a dose of 1 mg/L; (c) Treatment: plant growing in the hydroponic nutrient 
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solution with added arsenite-As at a dose of 1 mg/L plus Fenton reagent (100 µM H2O2 and 100 µM 

Fe2+). For the 1-day experiment, the control and treatment were labelled as C1d and T1d, 

respectively. For the 30-day experiment, the control and treatment were labelled as C30d and T30d, 

respectively.  

A 500 mL plastic cup (diameter: 8 cm; height: 15 cm) was used as a hydroponic container, 

which was placed into a black nylon bag to avoid exposure of the plant roots to light. The lid with 

holes was used to support the plants. Six rice plants were grown in each hydroponic container. The 

plant growth units were placed randomly in a climate chamber with the daily light-dark cycle being 

set at 16 h : 8 h. The light density during the photoperiod was fixed at 2500 lx. Temperature during 

the dark and light periods was set at 20 °C and 28 °C, respectively. Relative humidity was 

maintained at a range of 80-85 %. All the experiments were performed in 4 replicates.

For the 30-day experiment, the culture solution in each hydroponic container was replenished 

every 3 days. This included addition of arsenite-As for the control and addition of arsenite-As plus 

Fenton reagent for the treatment.

At the end of the 1-day experiment, samples of the spent culture solution were taken to 

determine various As species. For the 30-day experiment, only the first (3 days or 72 hours) spent 

culture solution was used for analysis of As species. These spent solution samples were labelled as 

CS1d and TS1d for the control and treatment of the 1-day experiment, respectively, and CS3d and 

TS3d for the control and the treatment of the first spent solution of the 30-day experiment, 

respectively. 

At the end of each experiment, the plants were harvested for determinations of biomass, various 

As species in the plant tissues, and Fe and various As species in the root plaques. Since all the six 

plants growing in each hydroponic container had very similar growth performance, only three of the 
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six plants were randomly selected: (a) the first one was used for determination of the biomass; (b) the 

second one was used for measurement of As in various plant organs; and (c) the third one was used 

to extract iron plaque.

2.2.2 Pot Experiment

A greenhouse experiment was conducted to observe the growth performance of the rice plants 

and uptake of As by the rice plants. The experiment lasted for more than 9 months, including two 

continuous crops with a fallow period of about 3 months. The first crop commenced on September 8, 

2013 and the rice plants were harvested on January 7, 2014; the second crop commenced on April 3, 

2014 and the rice plants were harvested on July 22, 2014. 

The soil without added As was used as the control (Ck); Treatments 1 and 2 (T1 and T2, 

respectively) were the artificially contaminated soils without and with added Fenton reagent (100 

µM H2O2:100 µM Fe2+), respectively. The dose of added arsenite-As in the contaminated soils was 

set at 50 mg/kg. The thickness of the overlying water layer was maintained at approximately 2 cm. 

For T2, an appropriate amount of standardized H2O2 and FeSO4 solution was added to the overlying 

water to maintain a theoretical concentration of H2O2 and Fe2+ at 100 µM each at the beginning of 

Fenton reagent addition for each 3-day cycle.   

Two seedlings were transplanted to a soil column consisting of alternating layers (1 cm thick) of 

quartz sand and a relevant soil material. This design was to allow easy separation of the root 

materials from the soils upon harvest. The soil column was contained in a nylon mesh bag (#400 

mesh; diameter: 8 cm; depth: 12 cm). Four soil columns were placed in a plastic bucket (Diameter: 

22 cm; Height: 15 cm) that was filled with the same soil material. This design allowed the separation 

of rhizospheric soil from the bulk soil by confining the rice plant roots within the nylon mesh bag or 

so-called rhizo-bag.
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Compound fertilizer (N:P:K=15:15:15) was applied at a rate of 19 g per pot at the 7th day of the 

experiment. Additional fertilizers were added at a rate of 6.8 g/pot for compound fertilizer and 9.6 

g/pot for urea in the early tillering stage of the first crop. In the second crop, 6.8 g/pot and 7 g/pot 

were added 7 days after transplanting of the rice seedlings and in the heading stage, respectively.      

In the first crop, one of the four rhizo-bags (together with the above-ground portion) was 

randomly removed from each bucket in the heading stage. A second rhizo-bag was removed in the 

maturity stage. For the second crop, sampling was carried out in the tillering, heading and maturity 

stages. After collection, the soil materials in each rhizo-bag were recovered by separation from the 

quartz sands. One of the two rice plants from each rhizo-bag was used for measurement of biomass 

and another one was used for determination of various As species in the plant tissues. 

2.3 Sample Preparation and Analytical Methods

For biomass measurements, the straw and root portions of the rice plant were separated. The 

roots were rinsed with water and the excess moisture on the root surfaces was removed using 

absorbent paper towels. Fresh biomass of the two portions was obtained before they were oven-dried 

at 60 °C until constant weight was attained. 

For measurements of various As species in plant tissues, different organs of the rice plant (leaf, 

stem, root and grain) were deep-frozen at -40 ℃ immediately after collection. The samples were then 

freeze-dried using a VirTis freeze dryer. The dried plant tissue samples were pulverized (For the rice 

grains, the hulls were removed but no polish was applied prior to pulverization; for the roots, iron 

plaque was not removed) and then stored at -20 ℃ before being analyzed. Four As species were 

determined. These include arsenate-As, arsenite-As, monomethylarsonic acid-As (MMA-As) and 

dimethylarsinic acid-As (DMA-As). Measurements of various As species were performed using a 

HPLC-ICP-MS system. For HPLC (Agilent1260) separation, Athena C18-WP column and guard 

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



9

column were used. The mobile phase was a mixed solution of citric acid and sodium sulfonate. The 

flow rate was set at 1.0 mL/min with an injection volume of 20 μL. For ICP-MS (Agilent 7700), 

argon was used as carrier gas and make-up gas. Details on the instrumental operating conditions are 

given in Supplementary Table S1.

Iron plaque attached on the root surface was extracted by dithionite-citrate-bicarbnate (DCB, 

Liu et al., 2005). Briefly, fresh roots were rinsed with deionized water and then dried with adsorbent 

paper towels. For each rhizo-bag, an appropriate amount of root materials were randomly taken and 

placed in a beaker containing 30 mL of mixed solution of 0.03 M Na3C6H5O7·2H2O and 0.125 M 

NaHCO3. 1 g of Na2S2O4 was then added into the beaker. After mixing, the beaker with its content 

was allowed to stand for 30 min. The root materials were removed from the beaker and washed with 

deionized water three times. The extract, together with the spent washing water, was transferred into 

a 100 mL volumetric flask, followed by adding an appropriate amount of water to the mark. The 

washed roots were then oven-dried at 70 °C to constant weight.  

The iron in the DCB extract was determined by atomic absorption spectrometry (ZEEnit 700 P). 

Measurements of various As species in the DCB extract were performed using a HPLC-ICP-MS 

system. The total As in the root plaque was estimated by the sum of various As species.

2.4 QC/QA and statistical analysis

The hydroponic culture experiment was performed in 4 replicates and the pot experiment was 

performed in 3 replicates. The recovery rates of matrix spike for plant tissue samples in the 

hydroponic experiment were 80.7±3.51 for arsenate-As, 92.5±2.41 for arsenite-As, 82.2±2.72 for 

MMA-As and 123±5.98 for DMA-As. The recovery rates of matrix spike for plant tissue samples in 

the pot experiment were 89.6±3.43 for arsenate-As, 105±3.44 for arsenite-As, 106±3.18 for MMA-

As and 122±6.96 for DMA-As. Statistical difference analysis was performed using One-way 
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ANOVA (SPSS17.0).

3 RESULTS

3.1 Hydroponic Culture Experiment

For both CS1d and CS3d, the concentration of the originally added arsenite-As more or less 

remained unchanged (Fig. 1). However, for TS1d and TS3d, all the originally added arsenite-As 

disappeared and arsenate-As was the only As species detected. The concentration of As5+ in the 

solution was lower than that of arsenite-As originally added into the system. In particular, TS3d only 

contained about 3.8% of the originally added As. Iron precipitates were observed to occur on the 

bottom and wall of the hydroponic containers. 

The fresh biomass (either total, shoot or root) of the rice plant was significantly (p<0.05) 

higher in the treatment than in the control for both the 1-day and the 30-day experiments though for 

the dry biomass, the difference between the control and the treatment was statistically insignificant 

for the 1-day experiment (Table 1). 

Arsenate-As dominated the As species, followed by arsenite-As. Very small amounts of 

methylated As species were also detected (Table 1). There was a consistent trend showing that the 

arsenate-As and DMA-As in the root portion was significantly (p<0.05) higher in the control than in 

the treatment for both the 1-day experiment and the 30-day experiment while there was no 

significant difference (p>0.05) in arsenite-As and MMA-As between the control and the treatment 

for both the 1-day experiment and the 30-day experiment. Overall, the sum of various As species was 

higher in the control than in the treatment, especially for the leaf portion. 

For the stem portion, mixed results were observed. The 1-day experiment showed a higher sum 

of As species in the control than in the treatment (Table 1). However, the opposite was observed for 
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the 30-day experiment. Unlike root portion, arsenite-As dominated As species in the stem portion 

and methylated As species was detected only in the 1-day experiment. There was no significant 

(p>0.05) difference in any As specie between the control and the treatment for both the 1-day 

experiment and the 30-day experiment.  

For the leaf portion, there was no significant (p>0.05) difference in any As species between the 

control and the treatment except for arsenite-As in the 30-day experiment, which showed a 

significantly (p<0.05) higher value of arsenite-As in the control than in the treatment (Table 1). 

Similar to the stem portion, arsenite-As dominated As species and no methylated As species were 

detected in the treatment for the 30-day experiment.

For both the 1-day and 30-day experiments, the total Fe in the root plaque was greater in the 

treatment than in the control (Table 1). Total As in the root plaque was significantly greater in the 

treatment than in the control for the 30-day experiment. However, the same was not observed for the 

1-day experiment; there was no significant difference in root plaque-borne As between the control 

and the treatment.

3.2 Pot Experiment

As expected, biomass tended to be smaller in the contaminated soils (T1 and T2) than in the 

control (Ck, non-contaminated soil) due to As toxicity (Table 2). Comparison shows that treatment 

of the contaminated soil with Fenton reagent (T2) resulted in a significant (p<0.05) increase in 

biomass, as compared to T1 for the first crop and the tillering stage of the second crop. For the 

maturity stage of the first crop, the growth performance was even better in T2 than in Ck. However, 

it is interesting to note that there was no significant difference in dry biomass of the shoot portion 

between T1 and T2 for the heading stage of the second crop and the dry biomass of the shoot portion 

was even greater in T1 than in T2 for the maturity stage of the second crop. For the root portion, 
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there was no significant difference in the dry biomass among Ck, T1 and T2. In consistent with the 

biomass, grain yield also tended to be in the following decreasing order: Ck (10.6 g) > T2 (8.0 g) > 

T1 (5.7 g). 

The sum of various As species in the root portion was greater in T1 than in Ck, particularly in 

the first crop and the tillering stage of the second crop. By comparison, the root-borne As was 

significantly (p<0.05) less in T2 than in T1 for the heading stage of the first crop and the tillering 

stage of the second crop. However, no significant (p>0.05) difference in root-borne As between T1 

and T2 was observed for the other sampling occasions (Table 3). 

Methylated As species only accounted for a small proportion of the root-borne As (Table 3). 

In most of situations, arsenite-As dominated As species except in T1 for the heading stage of the first 

crop and in T1 and T2 for the tillering stage of the second crop when the amount of arsenate-As was 

close to that of arsenite-As or even slightly greater. One thing in common was that root-borne As 

tended to be lower in the maturity stage than in the respective earlier growing stages for either 

arsenite-As or arsenate-As. By comparison, root-borne As at the same growth stage tended to be 

higher in the first crop than in the second crop for the control and the treatments.

In comparison with the root-borne As, the concentration of As in the stem portion was 

relatively smaller (Table 4). Like root-borne As, stem-borne As (sum of various As species) also 

showed a significantly higher value in T1 than in Ck for any of the growth stages for the two crops. 

Unlike the root-borne As, stem-borne As was smaller in T1 than in T2 for the heading stage of the 

first crop and the tillering stage of the second crop while the opposite was observed for the other 

three sampling occasions.

The proportion of methylated As species in the sum of As species was generally small except 

for those in the maturity stage of the first crop (Table 4). For the first crop and the tillering stage of 
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the second crop, arsenate-As was greater than did arsenate-As while the opposite was observed for 

the heading stage and maturity stage of the second crop. 

Like the root and stem portions, leaf-borne As (sum of the As species) was consistently 

greater (significantly at p<0.05) in T1 than in Ck though the difference was not statistically 

significant in the maturity stage of the second crop (Table 5). For all of the five sampling occasions, 

there was no significant difference in leaf-borne As between T1 and T2. Like the root and stem 

portions, methylated As species only took up a small proportion in the sum of various As species. 

There was a clear trend showing that arsenite-As dominated As species in the heading and maturity 

stages of the second crop. However, mixed results were observed for other sampling occasions.

The abundance of grain-borne As (sum of various As species) in both the first and second 

crops had the same pattern: T1 > T2 > Ck. This was consistent with the pattern observed for the stem 

portion in the maturity stage (Fig. 2). By comparison, the concentration of As in the grain portion 

was consistently higher in the second crop than in the first crop. This was accompanied by the same 

trend for the stem-borne As. Arsenite-As and DMA-As were the two dominant species. Depending 

on individual treatments, Ck had more DMA-As; T2 contained more arsenite-As; and T1 tended to 

have equal amounts of arsenite-As and DMA-As. 

There were orange-colored coating materials (root plaque) on the surfaces of plant roots. 

However, root coatings did not cover the entire root surface with T1 tending to have a lower 

coverage of root plaque, as compared to T2. The abundance of root plaque-borne Fe, as measured by 

the amount of Fe attached to the surface of per unit of root biomass (g/kg) in the different stages of 

rice plant growth for the control and the two treatments is shown in Table 6. The root plaque-borne 

Fe tended to be higher in T2 than in either T1 or Ck (significant at p<0.05). There was a clear trend 

showing that root plaque-borne As increased from Ck to T1 to T2 for all the five sampling occasions. 
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4 DISCUSSION

The results obtained from the hydroponic experiment suggest that, under the set experimental 

conditions, As3+ was resistant to oxidation in the presence of molecular oxygen only. However, 

addition of Fenton reagent markedly accelerated the oxidation of As3+, resulting in formation of As5+. 

The decrease in As concentration in the culture solutions suggests that immobilization of As took 

place. The presence of iron precipitates on the bottom and wall of the hydroponic containers suggests 

that the Fe3+ formed from Fenton reaction acted as a scavenger to sequester As from the hydroponic 

solution, resulting in a decrease in solution-borne As. Since the hydroponic nutrient solution 

contained FeII-EDTA, which is not stable in the presence of oxygen, the Fe from this source could 

be oxidized to Fe3+, resulting in the formation of iron oxyhydroxide that might add to the plaque 

(Seibig and and van Eldik, 1997). This was also likely to enhance the local oxidation of As3+ to As5+ 

(Hug and Leupin, 2003). In addition, the As(III)-oxidizing microbes could also play an important 

role in oxidizing As on the root iron plaque (Hu et al. 2015). 

The generally lower concentration of As in the rice plant tissue in the treatment, relative to the 

control, can be attributed to the reduced availability of As in the hydroponic solution. The 

predominant presence of arsenate-As in the root portion appears to suggest that while both arsenate 

and arsenite might be taken up by the rice seedlings, the uptake of As by root took place more 

favourably through an arsenate pathway. The change in the predominant As species from arsenate-

As to arsenite-As in the above-ground portion reflects the in-plant reduction of arsenate-As (Kramar 

et al., 2015).

The significantly greater root plaque-borne Fe concentration in the treatment than in the control 

suggests that addition of Fenton reagent significantly enhanced the formation of iron compounds on 
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the root surfaces of the rice plants. Liu et al. (2006) suggested that root plaque-Fe was in mineral 

forms of iron oxyhydroxides. This work demonstrates that addition of Fenton reagent enhanced the 

formation of Fe3+-containing chemical compounds on the root surface. 

Although no significant difference between the control and the treatment was observed for the 1-

day experiment, the root plaque-borne As was significantly (p<0.05) greater in the treatment than in 

the control for the 30-day experiment. This suggests that the addition of Fenton reagent could 

enhance retention of As by the root plaque. However it took time to incorporate solution-borne As 

into root plaque and a duration of 24 hours was not sufficient to allow this to take place even when 

Fenton reagent was added into the system. For the control, transformation of arsenite-As to arsenate-

As did not take place and arsenite was the only form of arsenic in the nutrient solution (Fig. 1). 

Therefore, any arsenate contained in the root plaque was likely to be formed as a result of arsenite 

oxidation driven by root-released oxygen. For the treatment, production of arsenate was markedly 

enhanced due to Fenton reaction. From Fig. 1, it is clear that conversion of all arsenite-As into 

arsenate-As was completed within 1 day after addition of Fenton reagent. The arsenate formed was 

then gradually removed from the nutrient solution by deposition as iron precipitates and plant uptake.      

In the pot experiment, the poorer growth performance, as indicated by smaller biomass in T1 than in 

Ck during the first crop and the tillering stage of the second crop suggests that an initial dose of As at 

50 mg/kg was sufficient to cause phytotoxicity to the rice plants under the set experimental 

conditions. Das et al. (2013) observed phytotoxicity to paddy rice at a dose of 40 mg As/kg, which is 

very similar to 50 mg As/kg in this experiment. The toxic effects of As on rice plant growth became 

less significant during the heading and maturity stages of the second crop. This may be attributed to 

reduced bioavailability of the added As due to As immobilization through formation of practically 

insoluble minerals such as scorodite or adsorption by soil colloids such as Fe oxyhydroxides (Lin 

and Puls, 2000; Campbell and Nordstrom, 2014; Serrano et al., 2015). Contamination of the soils by 
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As led to increased uptake of As by the plants, which impedes the physiological functions of the 

plants (Hughes, 2002; Islam et al., 2015). However, the application of Fenton reagent effectively 

reduced this harmful effect and significantly enhanced the growth of the rice plants grown in the As-

contaminated soils. It is interesting to note that the significant increase in biomass in the first crop 

and the tillering stage of the second crop in T2, as compared to T1, was accompanied by a significant 

reduction in root-borne As in T2, relative to T1 while the insignificant difference in biomass between 

T1 and T2 in the heading and maturity stages of the second crop was consistent with the insignificant 

difference in root-borne As between T1 and T2. It is noted that the biomass tended to be greater in 

the first crop than in the second crop (Table 2). The rice cultivar (TY122) used for the experiment 

was the one that is more suitable for being grown during the period from autumn to early winter (the 

first crop) than during the period from late spring to summer (the second crop). In addition, the 

application rate of chemical fertilizers was relatively lower in the second crop than in the first crop, 

and this might also affect the growth performance of the rice plants in the second crop.  

The relatively low level of root plaque-borne As in Ck reflected the limited availability of As in 

the non-contaminated soil. A significantly higher level of root plaque-borne As in T2, as compared 

to T1 is attributable to the enhanced formation of iron plaques on the root surfaces of the rice plants 

due to application of Fenton reagent, which in turn allowed more As being intercepted when As in 

the soil solution moved towards the surfaces of the plant roots, and consequently reduced the 

amounts of As being taken by the plant roots.

The trend that AsStem/AsRoot and Asleaf/AsRoot increased over time (Table 7 and Table 8) suggests 

that the root-to-shoot translocation of As was enhanced as the rice plants became more mature, 

possibly due to intensified transpiration. The much higher AsStem/AsRoot at the maturity stage in the 

second crop than in the first crop indicates that the efficiency of root-to-stem As translocation was 

improved due to the reduced As phytotoxicity, which allowed better growth performance of the rice 
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plants being achieved. This explains the much higher rice grain-borne As in the second crop than in 

the first crop.

The capacity of root plaque to impede As flux towards the root surfaces in T1 were limited, 

leading to substantial uptake of As by the roots. This could also be due to that younger roots and the 

younger parts of the old roots that play key role in plant uptake of nutrients and metals were hardly 

coated by iron plaque, as also pointed out by other workers (Seyfferth et al., 2010; Yamaguchi et al., 

2014). The addition of Fenton reagent led to production of Fe3+ and hydroxyl radical that enhanced 

formation of iron precipitates and As3+-As5+ conversion. This effect was not limited to rhizosphere 

but also the bulk soils. As demonstrated in the hydroponic experiment, solution-borne arsenite can be 

oxidized and removed from the culture solution within a relatively short period of time after addition 

of Fenton reagent. It is therefore likely that arsenite in the soil pore water could experience the same 

process for the pot experiment. The immobilization of As in the bulk soil could markedly reduce the 

supply of dissolved As for the plant root, leading to reduced uptake of As by the rice plants. The 

effect of FeSO4 addition on enhancing formation of iron plaque on rice root surfaces was previously 

observed by Hossain et al. (2009)

The concentration of As (0.26 mg/kg for the 1st crop and 0.55 mg/kg for the 2nd crop) in the 

grain of rice plants grown in the contaminated soils (T1) far exceeded the maximum limit of 0.1 

mg/kg set by the European Union for the rice destined for the production of foods for infants and 

young children (Signes-Pastor et al. 2017) though the level of As could be lower than these values if 

the rice grains are polished (Meharg et al., 2008). The significant reduction in rice grain-borne As in 

both the first and second crops due to addition of Fenton reagent sheds some light on the possible 

role of rainwater-borne H2O2 in alleviating As contamination in rice grain. In our recent experiment 

examining the paddy soils receiving natural rainwater containing hydrogen peroxide, a similar effect 

like what was showed in this microcosm experiment was observed, suggesting that rainwater-borne 
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hydrogen peroxide does affect arsenic chemistry in paddy soils (unpublished data). This raises a 

question on whether rice produced from areas receiving abundant rainfall tends to contain less 

arsenic. It will be interesting to establish whether there is a relationship between annual rainfall and 

rice grain-borne As on a global scale. 

From a mitigation perspective, the research findings have implications for developing cost-

effective management strategies and remediation techniques to reduce As uptake by rice plants and 

accumulation in the rice grain. The uses of industrial grade H2O2 (US$500/t, source: Zhengzhou 

Huize Biochemical Technology Co., Ltd) and FeSO4 (US$100/t, source: Dalian Future International 

Co., Ltd.) are not economically prohibitive. A rough calculation based on the experimental design in 

this study gives an estimated cost of US$89 per hectare for the purchase of the required chemicals. If 

appropriate procedure for mixing the Fenton reagent into the irrigation water can be developed, 

significant reduction of As level in rice grain may be achieved cost-effectively in rice-producing 

areas where the soils contain high level of As or where As-bearing groundwater is used for irrigation 

purpose. 
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Fig 1 Concentration of various arsenic species in the culture solution in the control (CS) and 

the treatment (TS) at the end of the 1-day experiment (24 h) and at the end of the first nutrient 

replenishment cycle (72 h) of the 30-day experiment. All values are presented as mean ± standard 

error (n=4). 
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Table 1 Dry biomass, arsenic species in plant tissues, and iron and arsenic species in root 
plaque for the 1-day and 30-day hydroponic experiments

C1d T1d C30d T30d
Dry biomass (g) Straw 0.20±0.01 0.26±0.05 0.56±0.05 0.78±0.06

Root 0.07±0.01 0.06±0.00 0.23±0.06 0.30±0.02
As (root portion, mg/kg) Arsenate-As 98.5±3.04* 70.0±1.85 315±9.74* 238±6.30

Arsenite-As 18.4±0.63 18.7±3.02 59.0±2.03 59.9±9.67
MMA-As 2.08±0.44 0.82±0.10 4.99±1.06 1.96±0.24
DMA-As 3.40±0.78* 1.65±0.15 8.84±2.04* 4.29±0.38
Total As 122 91.1 387 304

As (stem portion, mg/kg) Arsenate-As 5.14±0.61 4.42±0.68 15.9±0.21 19.5±1.49
Arsenite-As 11.4±0.73 8.86±0.63 22.5±1.70 25.7±3.29
MMA-As ND ND ND ND
DMA-As 1.1±0.12 0.64±0.31 ND ND
Total As 17.6 13.9 38.4 45.2

As (leaf portion, mg/kg) Arsenate-As 1.85±0.38 2.04±0.26 20.6±2.56 11.3±1.47
Arsenite-As 3.13±0.37 3.48±0.12 45.7±6.11* 27.6±2.69
MMA-As ND ND ND ND
DMA-As 0.14±0.02 0.06±0.02 ND ND
Total As 5.12 5.58 66.3 38.9

Root plaque-Fe (g/kg) Total Fe 5.86±1.38* 8.29±0.46 2.00±0.18* 8.45±0.58
Root plaque-As (mg/kg) Total As 60.9±1.26 56.2±1.12 76.6±0.51* 115±5.59
All values are presented as mean ± standard error (n=4). Independent sample t-test was used to 
determine whether the two mean values obtained for the control and the treatment differ significantly. 
Pairs marked with an asterisk indicate significant (P <0.05) difference between the control and the 
treatment for each harvest time. ND: not detectable.
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Table 2 Fresh and dry weight (g) of the shoot and root in the first crop and second crop for the 
control and the two treatments for the pot experiment

Growth stage Treatments Shoot
fresh weight 

Shoot
 dry weight 

Root 
fresh weight 

Root
dry weight

Ck 47.4±1.11a 8.88±0.59a 20.5±1.35a 4.48±0.74a
T1 14.5±1.32c 2.88±0.3c 6.04±0.97c 0.94±0.21c

Heading
(1st crop)
 T2 28.8±1.84b 6.14±0.27b 13.9±0.68b 2.76±0.24b

Ck 29.1±4.20ab 14.7±1.45a 24.0±0.91b 8.52±0.91b
T1 21.1±0.45c 8.24±1.05c 4.11±0.29c 1.64±0.32c

Maturity
(1st crop)

T2 31.0±1.82a 13.2±0.60ab 31.0±4.21a 14.6±1.32a
Ck 5.40±0.58a 0.71±0.11a 0.52±0.05a 0.12±0.02a
T1 1.57±0.13c 0.23±0.02c 0.14±0.00c 0.07±0.02ab

Tillering
(2nd crop)

T2 2.75±0.53bc 0.41±0.09bc 0.30±0.05bc 0.08±0.01ab
Ck 24.7±2.72a 8.07±1.23a 13.3±1.70ab 1.73±0.17a
T1 18.5±1.29ab 6.52±0.31ab 17.8±0.80a 2.12±0.11a

Heading
(2nd crop)
 T2 16.8±2.17b 6.42±0.76ab 18.4±2.01a 2.25±0.64a

Ck 15.9±1.46a 6.63±0.68ab 14.0±1.50a 1.77±0.24a
T1 16.7±1.87a 7.27±0.78a 11.8±2.87a 2.43±0.67a

Maturity
(2nd crop)

T2 12.8±1.68ab 4.74±0.76b 9.36±0.58ab 1.87±0.12a
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p<0.05).
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Table 3 Concentration (mg/kg) of various As species in the root portion of the rice plant during 
different growth stages for the pot experiment

Growth stage Treatment Arsenate-As Arsenite-As MMA-As DMA-As Sum
Ck 12.7±2.10bc 19.1±1.94c 1.20±0.14a 0.10±0.01c 33.1±3.74b
T1 73.2±0.78a 60.1±1.57a 1.21±0.12a 1.41±0.22a 136±2.16a

Heading
(1st crop)
 T2 11.8±0.37c 32.8±5.95b 0.65±0.04b 0.79±0.11b 46.1±6.16b

Ck 1.21±0.05c 7.04±1.08c 0.79±0.02c 0.89±0.09ab 9.93±1.10b
T1 2.03±0.31b 30.0±1.56a 1.19±0.15b 0.60±0.03b 33.8±1.11a

Maturity
(1st crop)

T2 3.82±0.24a 22.1±2.96b 1.52±0.10a 1.28±0.23a 28.7±3.38a
Ck 8.56±0.68c 11.1±1.15b 0.03±0.01b 0.59±0.03b 20.3±1.45c
T1 82.6±4.15a 85.9±2.15a 2.90±0.37a 2.51±0.29a 174±6.72a

Tillering
(2nd crop)

T2 27.8±1.27b 18.2±1.26b 0.17±0.02b 0.66±0.04b 46.9±0.38b
Ck 3.04±0.39b 14.6±0.64b 0.14±0.00a 1.33±0.23a 19.1±0.53b
T1 4.91±0.64ab 49.7±5.64a 0.35±0.05a 0.77±0.17a 55.7±6.11a

Heading
(2nd crop)
 T2 6.52±0.94a 52.4±2.92a 0.22±0.01a 1.27±0.23a 60.4±4.01a

Ck 1.60±0.21a 4.94±0.32c 0.34±0.04b 0.50±0.08b 7.38±0.57b
T1 1.89±0.55a 9.30±0.69b 1.42±0.20a 0.73±0.13ab 13.3±1.05a

Maturity
(2nd crop)

T2 1.61±0.39a 12.4±1.06a 0.82±0.04ab 0.88±0.05a 15.7±1.43a
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p< 0.05).
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Table 4 Concentration (mg/kg) of various As species in the stem portion of the rice plant 
during different growth stages for the pot experiment

Growth stage Treatment Arsenate Arsenite MMA DMA Sum
Ck 1.40±0.09c 1.02±0.13c 0.19±0.01b 0.13±0.01c 2.74±0.15c
T1 6.47±0.82ab 4.03±0.29ab 0.28±0.01ab 0.44±0.07b 11.2±0.49b

Heading
(1st crop)
 T2 7.70±0.48a 5.12±0.16a 0.34±0.00a 0.60±0.01a 13.7±0.35a

Ck 2.16±0.21b 1.58±0.20ab 0.36±0.06c 0.47±0.03c 4.57±0.22c
T1 3.75±0.30a 2.28±0.13a 1.30±0.21a 1.54±0.16a 8.87±0.34a

Maturity
(1st crop)

T2 3.01±0.21ab 1.84±0.06ab 0.94±0.07ab 1.26±0.1ab 7.06±0.08b
Ck 0.43±0.07c 0.34±0.03b 0.00±0.00ab 0.04±0.00a 0.80±0.05c
T1 1.33±0.30b 0.55±0.01a 0.03±0.00a 0.04±0.00a 1.94±0.30b

Tillering
(2nd crop)

T2 2.45±0.13a 0.64±0.08a 0.02±0.00ab 0.07±0.00a 3.17±0.06a
Ck 0.56±0.13ab 7.03±0.78c 0.03±0.00b 0.06±0.00b 7.68±0.81c
T1 0.88±0.19a 18.21±1.77a 0.08±0.02a 0.23±0.03a 19.3±1.84a

Heading
(2nd crop)
 T2 0.57±0.03ab 12.58±1.02b 0.05±0.02ab 0.24±0.05a 13.4±0.93b

Ck 0.57±0.22a 8.78±0.55b 0.03±0.00a 0.08±0.02ab 9.46±0.60b
T1 0.67±0.06a 20.46±2.65a 0.05±0.02a 0.23±0.06a 21.4±2.78a

Maturity
(2nd crop)

T2 0.91±0.37a 10.75±2.19b 0.03±0.00a 0.18±0.00a 11.8±2.52b
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p< 0.05).
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Table 5 Concentration (mg/kg) of various As species in the leaf portion of the rice plant during 
different growth stages for the pot experiment

Growth stage Treatment Arsenate-As Arsenite-As MMA-As DMA-As Sum
Ck 1.64±0.16b 1.76±0.22c 0.08±0.01a 0.06±0.01b 3.53±0.33b
T1 5.16±0.36a 3.48±0.56ab 0.09±0.01a 0.23±0.03b 8.97±0.87a

Heading
(1st crop)
 T2 4.45±0.38a 3.83±0.33a 0.11±0.02a 0.88±0.07a 9.27±0.36a

Ck 1.87±0.18c 1.66±0.07c 0.09±0.02a 0.15±0.01b 3.77±0.13b
T1 4.10±0.29a 4.81±0.42ab 0.08±0.01a 0.28±0.01a 9.27±0.66a

Maturity
(1st crop)

T2 2.94±0.31b 5.40±0.42a 0.12±0.02a 0.12±0.02b 8.58±0.64a
Ck 1.70±0.07c 2.40±0.20ab 0.04±0.00a 0.06±0.00ab 4.19±0.18b
T1 3.73±0.28b 4.47±0.81a 0.05±0.00a 0.15±0.01a 8.41±1.08a

Tillering
(2nd crop)

T2 5.57±0.50a 3.04±0.57a 0.05±0.01a 0.09±0.01a 8.76±1.03a
Ck 0.11±0.01b 1.14±0.06b 0.00±0.00b 0.02±0.00b 1.26±0.07b
T1 0.15±0.01ab 1.88±0.18a 0.02±0.00a 0.05±0.01a 2.10±0.19a

Heading
(2nd crop)
 T2 0.19±0.02a 2.08±0.21a 0.01±0.00ab 0.04±0.01ab 2.32±0.21a

Ck 1.13±0.25a 7.20±0.85ab 0.14±0.03ab 0.25±0.04b 8.72±1.10a
T1 2.22±1.14a 8.65±1.00a 0.27±0.03a 0.82±0.09a 11.9±0.45a

Maturity
(2nd crop)

T2 2.22±0.49a 7.97±0.51a 0.15±0.02ab 0.80±0.05a 11.1±1.00a
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p< 0.05).
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Table 6 Concentration of total iron and arsenic in the iron plaque of root surface during 
different growth stages for the pot experiment

Growth stage Treatments Total Fe (g/kg) Total As (mg/kg)
Heading Ck 1.61±0.10c 19.1±4.84c
(1st crop) T1 2.34±0.15bc 29.7±4.19b

T2 21.35±1.44a 55.4±12.0a
Maturity Ck 15.00±0.60a 73.7±18.5c
(1st crop) T1 11.30±0.36b 330±20.5b

T2 15.50±0.49a 711±37.1a
Tillering Ck 17.79±0.51a 235±3.35c
(2nd crop) T1 9.79±0.57b 526±20.6b

T2 19.43±1.32a 980±38.2a
Heading Ck 28.28±3.73a 175±8.86c
(2nd crop) T1 16.42±0.57b 562±13.5b

T2 25.62±1.10a 707±38.8a
Maturity Ck 17.52±0.98ab 173±4.98c
(2nd crop) T1 15.57±0.43b 297±3.28b

T2 20.07±1.17a 579±15.6a
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p<0.05).
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Table 7 The ratios of stem-borne As to root-borne As (AsStem/AsRoot) in the different growth 
stages of rice plants for the control and the treatments for the pot experiment

Growth stage Treatment Arsenate-As Arsenite-As MMA-As DMA-As Sum
Heading (1st crop) Ck 0.110 0.053 0.158 1.300 0.083

T1 0.088 0.067 0.231 0.312 0.082
T2 0.651 0.156 0.523 0.759 0.298

Mature (1st crop) Ck 1.785 0.224 0.456 0.528 0.460
T1 1.847 0.076 1.092 2.567 0.262
T2 0.788 0.083 0.618 0.984 0.245

Tillering (2nd crop) Ck 0.050 0.030 0.000 0.068 0.039
T1 0.016 0.006 0.010 0.016 0.011
T2 0.088 0.035 0.118 0.106 0.068

Heading (2nd crop) Ck 0.184 0.481 0.214 0.045 0.401
T1 0.179 0.366 0.229 0.299 0.348
T2 0.087 0.240 0.227 0.189 0.223

Mature (2nd crop) Ck 0.356 1.777 0.088 0.160 1.282
T1 0.354 2.200 0.035 0.315 1.606
T2 0.565 0.866 0.037 0.205 0.753
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Table 8 The ratios of leaf-borne As to root-borne As (Asleaf/AsRoot) in the different growth 
stages of rice plants for the control and the treatments for the pot experiment

Growth stage Treatment Arsenate-As Arsenite-As MMA-As DMA-As Total
Heading (1st crop) Ck 0.128 0.092 0.067 0.600 0.106

T1 0.070 0.058 0.074 0.163 0.066
T2 0.376 0.116 0.169 1.114 0.201

Mature (1st crop) Ck 1.545 0.236 0.114 0.169 0.380
T1 2.020 0.160 0.067 0.467 0.274
T2 0.770 0.244 0.079 0.094 0.298

Tillering (2nd crop) Ck 0.199 0.215 1.333 0.102 0.206
T1 0.045 0.052 0.017 0.060 0.048
T2 0.200 0.166 0.294 0.136 0.187

Heading (2nd crop) Ck 0.036 0.078 0.000 0.015 0.066
T1 0.031 0.038 0.057 0.065 0.038
T2 0.029 0.040 0.045 0.031 0.038

Mature (2nd crop) Ck 0.706 1.457 0.412 0.500 1.182
T1 1.175 0.930 0.190 1.123 0.896
T2 1.379 0.642 0.183 0.909 0.708
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Highlights

● Hydroponic and pot experiments were conducted in arsenic-contaminated systems

● The effects of Fenton reagent on immobilization of arsenic were examined

● Fenton process enhanced the growth of rice plants in arsenic –contaminated systems

● As uptake by rice plant was impeded leading to reduced level of As in rice grain

 ● Implications for minimizing human health risk from consumption of As-rich rice
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ABSTRACT 

Hydroponic and pot experiments were conducted to examine the effects of Fenton reagent on paddy 

rice plant growing in arsenic-contaminated soils. Fenton reagent significantly reduced arsenic 

phytotoxicity, uptake by the plants and accumulation in rice grain. This is attributed to oxidation of 

As3+ to As5+ by hydroxyl radicals and immobilization of arsenate by reacting with precipitating Fe3+ 

to form practically insoluble compounds. Although this process enhanced the formation of Fe-

enriched coatings on root surface, it appears that root plaque had limited effects on inhibiting As 

uptake since most of the young roots were not covered by iron plaque. It is more likely that As 

immobilization in the bulk soils play a major role in reducing As flux towards rhizosphere. The 

findings have implications for understanding As behavior in paddy field receiving rainwater-borne 

hydrogen peroxide and developing cost-effective techniques for reducing As level in rice grain 

produced from As-contaminated soils.  

Keywords:  Paddy rice, arsenic, iron plaque, soil, Fenton reaction 
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1 INTRODUCTION

Consumption of rice is a major pathway of human arsenic exposure, which could affect billions 

of people around the world (Schoof et al., 1999; Meharg, 2004; Williams et al., 2006; Zhu et al., 

2008; Syu et al., 2015; Sinha and Bhattacharyya, 2015; Clemens and Ma, 2016). The anaerobic soil 

conditions associated with water inundation required for paddy rice farming favour reduction 

reactions, leading to formation of highly toxic arsenite ions (Xu et al., 2008; Li et al., 2009; 

Somenahally et al., 2011; Spanu et al., 2012). Arsenite tends to be predominantly present in 

undissociated form (H3AsO3
o) under pH conditions encountered in most paddy rice soils (Zhao et al., 

2009), and therefore it may be more resistant to immobilization by soil adsorbents. In addition, under 

reducing conditions the arsenic-scavenging capacity of soil is weakened due to reductive dissolution 

of various iron compounds that play a key role in binding soluble arsenic species through either 

formation of practically insoluble iron arsenate minerals or adsorption of arsenate to iron 

oxyhydroxides (Zhao et al., 2010; Zhu et al., 2014). As such, arsenite is readily available for uptake 

by rice plants and accumulation in rice grain (Williams et al., 2007; Su et al., 2010; Wang et al., 

2015).

Iron-enriched root plaque plays an important role in reducing the entry of As present in the soil 

pore water (soil solution) into rice plant roots (Lee et al., 2013; Syu et al., 2013). The formation of 

root plaque is believed to be mediated by oxidation of ferrous iron (Fe2+) using molecular oxygen 

released from rice plant roots (Armstrong, 1964), and it is likely that the root-released oxygen also 

promotes microbially mediated oxidation of arsenite to form arsenate (Hu et al., 2015). As arsenate 

has the stronger affinity to Fe3+, it is likely that arsenate-As tends to be intercepted more easily by 

the root plaque, as compared to arsenite-As (Chen et al., 2005; Liu et al., 2005).

It has been demonstrated that Fenton process involving reaction between hydrogen peroxide 

(H2O2) and ferrous iron (Fe2+) resulted in enhanced oxidation of arsenite to form less toxic arsenate 
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(Hug and Leupin, 2003). Fe2+ is available in flooded soils like paddy rice soils (Becker and Asch, 

2005; Kögel-Knabner et al., 2010). H2O2 is also commonly present in rainwater (Cooper et al., 1988; 

Willey et al., 1996; Gonçalves et al., 2010; Guo et al., 2014). In areas with abundant rainfall, Fenton 

reaction may be a naturally-occurring process that can affect the biogeochemical behaviour of 

arsenic in paddy rice soils. Where the enrichment of arsenic in rice grain becomes a significant 

health concern, it may be worthwhile to consider the use of Fenton reagent (a mixture of H2O2 and 

Fe2+) for reducing As uptake by rice plants.

The objective of this study was to examine the effects of Fenton reagent on reducing As uptake 

by rice plants. The impacts of Fenton reagent on plant growth are also evaluated. In addition, the 

major biogeochemical mechanisms responsible for the observed phenomena are explored. 

2 MATERIALS AND METHODS 

2.1 Materials

2.1.1 Hydroponic Nutrient Solution

The hydroponic nutrient solution used for the solution culture experiment consisted of the 

following chemical compounds: 5 mM NH4NO3, 2 mM K2SO4, 4 mM CaCl2, 1.5 mM MgSO4·7H2O, 

1.3 mM KH2PO4, 50 µM Fe(Ⅱ)-ethylenediaminetetraacetic acid (EDTA), 10 µM H3BO4, 1.0 µM 

ZnSO4·7H2O, 1.0 µM CuSO4·5H2O, 5.0 µM MnSO4·H2O, 0.5 µM Na2MoO4·2H2O, and 0.2 µM 

CoSO4·7H2O. The pH of the solution was adjusted to 5.5 using 0.1 M KOH or HCl.

2.1.2 The Experimental Soil

The soil sample used for the greenhouse experiment was taken from the paddy rice field of 

the experimental farm at the South China Agricultural University (Guangzhou, China). The soil 

samples were air-dried after collection and then crushed to pass a 2 mm sieve prior to the use in the 
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experiments. The soil had a pH of 6.52 and contained 2.38% of organic matter. Total nitrogen, 

phosphorus and potassium were 1.06, 1.04 and 19.6 g/kg, respectively. Available nitrogen, 

phosphorus and potassium were 114, 77.8 and 122 mg/kg, respectively. The soil contained 15.6 

mg/kg of arsenate-As and no other arsenic species were detected. 

2.1.3 The Rice Seedlings Used in the Experiment

The seeds of rice (Oryza sativa cultivar: Tianyou 122) used in the experiment were provided 

by the Guangdong Academy of Agricultural Sciences. Prior to sowing, the seeds were surface-

sterilized by soaking in 30% H2O2 for 15 min. The sterilized seeds were then rinsed with deionized 

water and placed in a container with moistened sands for germination. The pre-germinated seeds 

were sown into the seed bed that was covered by a plastic sheet to maintain the temperature at 28 ± 

2 °C. Healthy seedlings with 4 leaves were selected for the experiment.    

2.2 Experimental Design

2.2.1 Solution Culture Experiment

The rice seedlings were grown in the hydroponic nutrient solution for 3 weeks. The seedlings 

were then rinsed with deionized water and transplanted into a beaker containing 500 mL of 20 mg 

Fe2+/L solution (pH being adjusted to 5.5) for 24 h to allow the formation of iron plaques on the root 

surfaces of the seedlings. After this, the seedlings were rinsed to remove any soluble Fe attached to 

the plant surface before being used in the experiments. 

Two sets of the experiments were performed aiming to collect data at the end of two different 

lengths of growth period: 1 day (24 h) and 30 days (720 h). For each set of the experiment, one 

control and one treatment were set; (a) control: plant growing in the hydroponic nutrient solution 

with added arsenite-As at a dose of 1 mg/L; (c) Treatment: plant growing in the hydroponic nutrient 
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solution with added arsenite-As at a dose of 1 mg/L plus Fenton reagent (100 µM H2O2 and 100 µM 

Fe2+). For the 1-day experiment, the control and treatment were labelled as C1d and T1d, 

respectively. For the 30-day experiment, the control and treatment were labelled as C30d and T30d, 

respectively.  

A 500 mL plastic cup (diameter: 8 cm; height: 15 cm) was used as a hydroponic container, 

which was placed into a black nylon bag to avoid exposure of the plant roots to light. The lid with 

holes was used to support the plants. Six rice plants were grown in each hydroponic container. The 

plant growth units were placed randomly in a climate chamber with the daily light-dark cycle being 

set at 16 h : 8 h. The light density during the photoperiod was fixed at 2500 lx. Temperature during 

the dark and light periods was set at 20 °C and 28 °C, respectively. Relative humidity was 

maintained at a range of 80-85 %. All the experiments were performed in 4 replicates.

For the 30-day experiment, the culture solution in each hydroponic container was replenished 

every 3 days. This included addition of arsenite-As for the control and addition of arsenite-As plus 

Fenton reagent for the treatment.

At the end of the 1-day experiment, samples of the spent culture solution were taken to 

determine various As species. For the 30-day experiment, only the first (3 days or 72 hours) spent 

culture solution was used for analysis of As species. These spent solution samples were labelled as 

CS1d and TS1d for the control and treatment of the 1-day experiment, respectively, and CS3d and 

TS3d for the control and the treatment of the first spent solution of the 30-day experiment, 

respectively. 

At the end of each experiment, the plants were harvested for determinations of biomass, various 

As species in the plant tissues, and Fe and various As species in the root plaques. Since all the six 

plants growing in each hydroponic container had very similar growth performance, only three of the 
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six plants were randomly selected: (a) the first one was used for determination of the biomass; (b) the 

second one was used for measurement of As in various plant organs; and (c) the third one was used 

to extract iron plaque.

2.2.2 Pot Experiment

A greenhouse experiment was conducted to observe the growth performance of the rice plants 

and uptake of As by the rice plants. The experiment lasted for more than 9 months, including two 

continuous crops with a fallow period of about 3 months. The first crop commenced on September 8, 

2013 and the rice plants were harvested on January 7, 2014; the second crop commenced on April 3, 

2014 and the rice plants were harvested on July 22, 2014. 

The soil without added As was used as the control (Ck); Treatments 1 and 2 (T1 and T2, 

respectively) were the artificially contaminated soils without and with added Fenton reagent (100 

µM H2O2:100 µM Fe2+), respectively. The dose of added arsenite-As in the contaminated soils was 

set at 50 mg/kg. The thickness of the overlying water layer was maintained at approximately 2 cm. 

For T2, an appropriate amount of standardized H2O2 and FeSO4 solution was added to the overlying 

water to maintain a theoretical concentration of H2O2 and Fe2+ at 100 µM each at the beginning of 

Fenton reagent addition for each 3-day cycle.   

Two seedlings were transplanted to a soil column consisting of alternating layers (1 cm thick) of 

quartz sand and a relevant soil material. This design was to allow easy separation of the root 

materials from the soils upon harvest. The soil column was contained in a nylon mesh bag (#400 

mesh; diameter: 8 cm; depth: 12 cm). Four soil columns were placed in a plastic bucket (Diameter: 

22 cm; Height: 15 cm) that was filled with the same soil material. This design allowed the separation 

of rhizospheric soil from the bulk soil by confining the rice plant roots within the nylon mesh bag or 

so-called rhizo-bag.
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Compound fertilizer (N:P:K=15:15:15) was applied at a rate of 19 g per pot at the 7th day of the 

experiment. Additional fertilizers were added at a rate of 6.8 g/pot for compound fertilizer and 9.6 

g/pot for urea in the early tillering stage of the first crop. In the second crop, 6.8 g/pot and 7 g/pot 

were added 7 days after transplanting of the rice seedlings and in the heading stage, respectively.      

In the first crop, one of the four rhizo-bags (together with the above-ground portion) was 

randomly removed from each bucket in the heading stage. A second rhizo-bag was removed in the 

maturity stage. For the second crop, sampling was carried out in the tillering, heading and maturity 

stages. After collection, the soil materials in each rhizo-bag were recovered by separation from the 

quartz sands. One of the two rice plants from each rhizo-bag was used for measurement of biomass 

and another one was used for determination of various As species in the plant tissues. 

2.3 Sample Preparation and Analytical Methods

For biomass measurements, the straw and root portions of the rice plant were separated. The 

roots were rinsed with water and the excess moisture on the root surfaces was removed using 

absorbent paper towels. Fresh biomass of the two portions was obtained before they were oven-dried 

at 60 °C until constant weight was attained. 

For measurements of various As species in plant tissues, different organs of the rice plant (leaf, 

stem, root and grain) were deep-frozen at -40 ℃ immediately after collection. The samples were then 

freeze-dried using a VirTis freeze dryer. The dried plant tissue samples were pulverized (For the rice 

grains, the hulls were removed but no polish was applied prior to pulverization; for the roots, iron 

plaque was not removed) and then stored at -20 ℃ before being analyzed. Four As species were 

determined. These include arsenate-As, arsenite-As, monomethylarsonic acid-As (MMA-As) and 

dimethylarsinic acid-As (DMA-As). Measurements of various As species were performed using a 

HPLC-ICP-MS system. For HPLC (Agilent1260) separation, Athena C18-WP column and guard 
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column were used. The mobile phase was a mixed solution of citric acid and sodium sulfonate. The 

flow rate was set at 1.0 mL/min with an injection volume of 20 μL. For ICP-MS (Agilent 7700), 

argon was used as carrier gas and make-up gas. Details on the instrumental operating conditions are 

given in Supplementary Table S1.

Iron plaque attached on the root surface was extracted by dithionite-citrate-bicarbnate (DCB, 

Liu et al., 2005). Briefly, fresh roots were rinsed with deionized water and then dried with adsorbent 

paper towels. For each rhizo-bag, an appropriate amount of root materials were randomly taken and 

placed in a beaker containing 30 mL of mixed solution of 0.03 M Na3C6H5O7·2H2O and 0.125 M 

NaHCO3. 1 g of Na2S2O4 was then added into the beaker. After mixing, the beaker with its content 

was allowed to stand for 30 min. The root materials were removed from the beaker and washed with 

deionized water three times. The extract, together with the spent washing water, was transferred into 

a 100 mL volumetric flask, followed by adding an appropriate amount of water to the mark. The 

washed roots were then oven-dried at 70 °C to constant weight.  

The iron in the DCB extract was determined by atomic absorption spectrometry (ZEEnit 700 P). 

Measurements of various As species in the DCB extract were performed using a HPLC-ICP-MS 

system. The total As in the root plaque was estimated by the sum of various As species.

2.4 QC/QA and statistical analysis

The hydroponic culture experiment was performed in 4 replicates and the pot experiment was 

performed in 3 replicates. The recovery rates of matrix spike for plant tissue samples in the 

hydroponic experiment were 80.7±3.51 for arsenate-As, 92.5±2.41 for arsenite-As, 82.2±2.72 for 

MMA-As and 123±5.98 for DMA-As. The recovery rates of matrix spike for plant tissue samples in 

the pot experiment were 89.6±3.43 for arsenate-As, 105±3.44 for arsenite-As, 106±3.18 for MMA-

As and 122±6.96 for DMA-As. Statistical difference analysis was performed using One-way 
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ANOVA (SPSS17.0).

3 RESULTS

3.1 Hydroponic Culture Experiment

For both CS1d and CS3d, the concentration of the originally added arsenite-As more or less 

remained unchanged (Fig. 1). However, for TS1d and TS3d, all the originally added arsenite-As 

disappeared and arsenate-As was the only As species detected. The concentration of As5+ in the 

solution was lower than that of arsenite-As originally added into the system. In particular, TS3d only 

contained about 3.8% of the originally added As. Iron precipitates were observed to occur on the 

bottom and wall of the hydroponic containers. 

The fresh biomass (either total, shoot or root) of the rice plant was significantly (p<0.05) 

higher in the treatment than in the control for both the 1-day and the 30-day experiments though for 

the dry biomass, the difference between the control and the treatment was statistically insignificant 

for the 1-day experiment (Table 1). 

Arsenate-As dominated the As species, followed by arsenite-As. Very small amounts of 

methylated As species were also detected (Table 1). There was a consistent trend showing that the 

arsenate-As and DMA-As in the root portion was significantly (p<0.05) higher in the control than in 

the treatment for both the 1-day experiment and the 30-day experiment while there was no 

significant difference (p>0.05) in arsenite-As and MMA-As between the control and the treatment 

for both the 1-day experiment and the 30-day experiment. Overall, the sum of various As species was 

higher in the control than in the treatment, especially for the leaf portion. 

For the stem portion, mixed results were observed. The 1-day experiment showed a higher sum 

of As species in the control than in the treatment (Table 1). However, the opposite was observed for 
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the 30-day experiment. Unlike root portion, arsenite-As dominated As species in the stem portion 

and methylated As species was detected only in the 1-day experiment. There was no significant 

(p>0.05) difference in any As specie between the control and the treatment for both the 1-day 

experiment and the 30-day experiment.  

For the leaf portion, there was no significant (p>0.05) difference in any As species between the 

control and the treatment except for arsenite-As in the 30-day experiment, which showed a 

significantly (p<0.05) higher value of arsenite-As in the control than in the treatment (Table 1). 

Similar to the stem portion, arsenite-As dominated As species and no methylated As species were 

detected in the treatment for the 30-day experiment.

For both the 1-day and 30-day experiments, the total Fe in the root plaque was greater in the 

treatment than in the control (Table 1). Total As in the root plaque was significantly greater in the 

treatment than in the control for the 30-day experiment. However, the same was not observed for the 

1-day experiment; there was no significant difference in root plaque-borne As between the control 

and the treatment.

3.2 Pot Experiment

As expected, biomass tended to be smaller in the contaminated soils (T1 and T2) than in the 

control (Ck, non-contaminated soil) due to As toxicity (Table 2). Comparison shows that treatment 

of the contaminated soil with Fenton reagent (T2) resulted in a significant (p<0.05) increase in 

biomass, as compared to T1 for the first crop and the tillering stage of the second crop. For the 

maturity stage of the first crop, the growth performance was even better in T2 than in Ck. However, 

it is interesting to note that there was no significant difference in dry biomass of the shoot portion 

between T1 and T2 for the heading stage of the second crop and the dry biomass of the shoot portion 

was even greater in T1 than in T2 for the maturity stage of the second crop. For the root portion, 
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there was no significant difference in the dry biomass among Ck, T1 and T2. In consistent with the 

biomass, grain yield also tended to be in the following decreasing order: Ck (10.6 g) > T2 (8.0 g) > 

T1 (5.7 g). 

The sum of various As species in the root portion was greater in T1 than in Ck, particularly in 

the first crop and the tillering stage of the second crop. By comparison, the root-borne As was 

significantly (p<0.05) less in T2 than in T1 for the heading stage of the first crop and the tillering 

stage of the second crop. However, no significant (p>0.05) difference in root-borne As between T1 

and T2 was observed for the other sampling occasions (Table 3). 

Methylated As species only accounted for a small proportion of the root-borne As (Table 3). 

In most of situations, arsenite-As dominated As species except in T1 for the heading stage of the first 

crop and in T1 and T2 for the tillering stage of the second crop when the amount of arsenate-As was 

close to that of arsenite-As or even slightly greater. One thing in common was that root-borne As 

tended to be lower in the maturity stage than in the respective earlier growing stages for either 

arsenite-As or arsenate-As. By comparison, root-borne As at the same growth stage tended to be 

higher in the first crop than in the second crop for the control and the treatments.

In comparison with the root-borne As, the concentration of As in the stem portion was 

relatively smaller (Table 4). Like root-borne As, stem-borne As (sum of various As species) also 

showed a significantly higher value in T1 than in Ck for any of the growth stages for the two crops. 

Unlike the root-borne As, stem-borne As was smaller in T1 than in T2 for the heading stage of the 

first crop and the tillering stage of the second crop while the opposite was observed for the other 

three sampling occasions.

The proportion of methylated As species in the sum of As species was generally small except 

for those in the maturity stage of the first crop (Table 4). For the first crop and the tillering stage of 
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the second crop, arsenate-As was greater than did arsenate-As while the opposite was observed for 

the heading stage and maturity stage of the second crop. 

Like the root and stem portions, leaf-borne As (sum of the As species) was consistently 

greater (significantly at p<0.05) in T1 than in Ck though the difference was not statistically 

significant in the maturity stage of the second crop (Table 5). For all of the five sampling occasions, 

there was no significant difference in leaf-borne As between T1 and T2. Like the root and stem 

portions, methylated As species only took up a small proportion in the sum of various As species. 

There was a clear trend showing that arsenite-As dominated As species in the heading and maturity 

stages of the second crop. However, mixed results were observed for other sampling occasions.

The abundance of grain-borne As (sum of various As species) in both the first and second 

crops had the same pattern: T1 > T2 > Ck. This was consistent with the pattern observed for the stem 

portion in the maturity stage (Fig. 2). By comparison, the concentration of As in the grain portion 

was consistently higher in the second crop than in the first crop. This was accompanied by the same 

trend for the stem-borne As. Arsenite-As and DMA-As were the two dominant species. Depending 

on individual treatments, Ck had more DMA-As; T2 contained more arsenite-As; and T1 tended to 

have equal amounts of arsenite-As and DMA-As. 

There were orange-colored coating materials (root plaque) on the surfaces of plant roots. 

However, root coatings did not cover the entire root surface with T1 tending to have a lower 

coverage of root plaque, as compared to T2. The abundance of root plaque-borne Fe, as measured by 

the amount of Fe attached to the surface of per unit of root biomass (g/kg) in the different stages of 

rice plant growth for the control and the two treatments is shown in Table 6. The root plaque-borne 

Fe tended to be higher in T2 than in either T1 or Ck (significant at p<0.05). There was a clear trend 

showing that root plaque-borne As increased from Ck to T1 to T2 for all the five sampling occasions. 
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4 DISCUSSION

The results obtained from the hydroponic experiment suggest that, under the set experimental 

conditions, As3+ was resistant to oxidation in the presence of molecular oxygen only. However, 

addition of Fenton reagent markedly accelerated the oxidation of As3+, resulting in formation of As5+. 

The decrease in As concentration in the culture solutions suggests that immobilization of As took 

place. The presence of iron precipitates on the bottom and wall of the hydroponic containers suggests 

that the Fe3+ formed from Fenton reaction acted as a scavenger to sequester As from the hydroponic 

solution, resulting in a decrease in solution-borne As. Since the hydroponic nutrient solution 

contained FeII-EDTA, which is not stable in the presence of oxygen, the Fe from this source could 

be oxidized to Fe3+, resulting in the formation of iron oxyhydroxide that might add to the plaque 

(Seibig and and van Eldik, 1997). This was also likely to enhance the local oxidation of As3+ to As5+ 

(Hug and Leupin, 2003). In addition, the As(III)-oxidizing microbes could also play an important 

role in oxidizing As on the root iron plaque (Hu et al. 2015). 

The generally lower concentration of As in the rice plant tissue in the treatment, relative to the 

control, can be attributed to the reduced availability of As in the hydroponic solution. The 

predominant presence of arsenate-As in the root portion appears to suggest that while both arsenate 

and arsenite might be taken up by the rice seedlings, the uptake of As by root took place more 

favourably through an arsenate pathway. The change in the predominant As species from arsenate-

As to arsenite-As in the above-ground portion reflects the in-plant reduction of arsenate-As (Kramar 

et al., 2015).

The significantly greater root plaque-borne Fe concentration in the treatment than in the control 

suggests that addition of Fenton reagent significantly enhanced the formation of iron compounds on 
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the root surfaces of the rice plants. Liu et al. (2006) suggested that root plaque-Fe was in mineral 

forms of iron oxyhydroxides. This work demonstrates that addition of Fenton reagent enhanced the 

formation of Fe3+-containing chemical compounds on the root surface. 

Although no significant difference between the control and the treatment was observed for the 1-

day experiment, the root plaque-borne As was significantly (p<0.05) greater in the treatment than in 

the control for the 30-day experiment. This suggests that the addition of Fenton reagent could 

enhance retention of As by the root plaque. However it took time to incorporate solution-borne As 

into root plaque and a duration of 24 hours was not sufficient to allow this to take place even when 

Fenton reagent was added into the system. For the control, transformation of arsenite-As to arsenate-

As did not take place and arsenite was the only form of arsenic in the nutrient solution (Fig. 1). 

Therefore, any arsenate contained in the root plaque was likely to be formed as a result of arsenite 

oxidation driven by root-released oxygen. For the treatment, production of arsenate was markedly 

enhanced due to Fenton reaction. From Fig. 1, it is clear that conversion of all arsenite-As into 

arsenate-As was completed within 1 day after addition of Fenton reagent. The arsenate formed was 

then gradually removed from the nutrient solution by deposition as iron precipitates and plant uptake.      

In the pot experiment, the poorer growth performance, as indicated by smaller biomass in T1 than in 

Ck during the first crop and the tillering stage of the second crop suggests that an initial dose of As at 

50 mg/kg was sufficient to cause phytotoxicity to the rice plants under the set experimental 

conditions. Das et al. (2013) observed phytotoxicity to paddy rice at a dose of 40 mg As/kg, which is 

very similar to 50 mg As/kg in this experiment. The toxic effects of As on rice plant growth became 

less significant during the heading and maturity stages of the second crop. This may be attributed to 

reduced bioavailability of the added As due to As immobilization through formation of practically 

insoluble minerals such as scorodite or adsorption by soil colloids such as Fe oxyhydroxides (Lin 

and Puls, 2000; Campbell and Nordstrom, 2014; Serrano et al., 2015). Contamination of the soils by 
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As led to increased uptake of As by the plants, which impedes the physiological functions of the 

plants (Hughes, 2002; Islam et al., 2015). However, the application of Fenton reagent effectively 

reduced this harmful effect and significantly enhanced the growth of the rice plants grown in the As-

contaminated soils. It is interesting to note that the significant increase in biomass in the first crop 

and the tillering stage of the second crop in T2, as compared to T1, was accompanied by a significant 

reduction in root-borne As in T2, relative to T1 while the insignificant difference in biomass between 

T1 and T2 in the heading and maturity stages of the second crop was consistent with the insignificant 

difference in root-borne As between T1 and T2. It is noted that the biomass tended to be greater in 

the first crop than in the second crop (Table 2). The rice cultivar (TY122) used for the experiment 

was the one that is more suitable for being grown during the period from autumn to early winter (the 

first crop) than during the period from late spring to summer (the second crop). In addition, the 

application rate of chemical fertilizers was relatively lower in the second crop than in the first crop, 

and this might also affect the growth performance of the rice plants in the second crop.  

The relatively low level of root plaque-borne As in Ck reflected the limited availability of As in 

the non-contaminated soil. A significantly higher level of root plaque-borne As in T2, as compared 

to T1 is attributable to the enhanced formation of iron plaques on the root surfaces of the rice plants 

due to application of Fenton reagent, which in turn allowed more As being intercepted when As in 

the soil solution moved towards the surfaces of the plant roots, and consequently reduced the 

amounts of As being taken by the plant roots.

The trend that AsStem/AsRoot and Asleaf/AsRoot increased over time (Table 7 and Table 8) suggests 

that the root-to-shoot translocation of As was enhanced as the rice plants became more mature, 

possibly due to intensified transpiration. The much higher AsStem/AsRoot at the maturity stage in the 

second crop than in the first crop indicates that the efficiency of root-to-stem As translocation was 

improved due to the reduced As phytotoxicity, which allowed better growth performance of the rice 
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plants being achieved. This explains the much higher rice grain-borne As in the second crop than in 

the first crop.

The capacity of root plaque to impede As flux towards the root surfaces in T1 were limited, 

leading to substantial uptake of As by the roots. This could also be due to that younger roots and the 

younger parts of the old roots that play key role in plant uptake of nutrients and metals were hardly 

coated by iron plaque, as also pointed out by other workers (Seyfferth et al., 2010; Yamaguchi et al., 

2014). The addition of Fenton reagent led to production of Fe3+ and hydroxyl radical that enhanced 

formation of iron precipitates and As3+-As5+ conversion. This effect was not limited to rhizosphere 

but also the bulk soils. As demonstrated in the hydroponic experiment, solution-borne arsenite can be 

oxidized and removed from the culture solution within a relatively short period of time after addition 

of Fenton reagent. It is therefore likely that arsenite in the soil pore water could experience the same 

process for the pot experiment. The immobilization of As in the bulk soil could markedly reduce the 

supply of dissolved As for the plant root, leading to reduced uptake of As by the rice plants. The 

effect of FeSO4 addition on enhancing formation of iron plaque on rice root surfaces was previously 

observed by Hossain et al. (2009)

The concentration of As (0.26 mg/kg for the 1st crop and 0.55 mg/kg for the 2nd crop) in the 

grain of rice plants grown in the contaminated soils (T1) far exceeded the maximum limit of 0.1 

mg/kg set by the European Union for the rice destined for the production of foods for infants and 

young children (Signes-Pastor et al. 2017) though the level of As could be lower than these values if 

the rice grains are polished (Meharg et al., 2008). The significant reduction in rice grain-borne As in 

both the first and second crops due to addition of Fenton reagent sheds some light on the possible 

role of rainwater-borne H2O2 in alleviating As contamination in rice grain. In our recent experiment 

examining the paddy soils receiving natural rainwater containing hydrogen peroxide, a similar effect 

like what was showed in this microcosm experiment was observed, suggesting that rainwater-borne 
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hydrogen peroxide does affect arsenic chemistry in paddy soils (unpublished data). This raises a 

question on whether rice produced from areas receiving abundant rainfall tends to contain less 

arsenic. It will be interesting to establish whether there is a relationship between annual rainfall and 

rice grain-borne As on a global scale. 

From a mitigation perspective, the research findings have implications for developing cost-

effective management strategies and remediation techniques to reduce As uptake by rice plants and 

accumulation in the rice grain. The uses of industrial grade H2O2 (US$500/t, source: Zhengzhou 

Huize Biochemical Technology Co., Ltd) and FeSO4 (US$100/t, source: Dalian Future International 

Co., Ltd.) are not economically prohibitive. A rough calculation based on the experimental design in 

this study gives an estimated cost of US$89 per hectare for the purchase of the required chemicals. If 

appropriate procedure for mixing the Fenton reagent into the irrigation water can be developed, 

significant reduction of As level in rice grain may be achieved cost-effectively in rice-producing 

areas where the soils contain high level of As or where As-bearing groundwater is used for irrigation 

purpose. 
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Fig 1 Concentration of various arsenic species in the culture solution in the control (CS) and 

the treatment (TS) at the end of the 1-day experiment (24 h) and at the end of the first nutrient 

replenishment cycle (72 h) of the 30-day experiment. All values are presented as mean ± standard 

error (n=4). 
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Table 1 Dry biomass, arsenic species in plant tissues, and iron and arsenic species in root 
plaque for the 1-day and 30-day hydroponic experiments

C1d T1d C30d T30d
Dry biomass (g) Straw 0.20±0.01 0.26±0.05 0.56±0.05 0.78±0.06

Root 0.07±0.01 0.06±0.00 0.23±0.06 0.30±0.02
As (root portion, mg/kg) Arsenate-As 98.5±3.04* 70.0±1.85 315±9.74* 238±6.30

Arsenite-As 18.4±0.63 18.7±3.02 59.0±2.03 59.9±9.67
MMA-As 2.08±0.44 0.82±0.10 4.99±1.06 1.96±0.24
DMA-As 3.40±0.78* 1.65±0.15 8.84±2.04* 4.29±0.38
Total As 122 91.1 387 304

As (stem portion, mg/kg) Arsenate-As 5.14±0.61 4.42±0.68 15.9±0.21 19.5±1.49
Arsenite-As 11.4±0.73 8.86±0.63 22.5±1.70 25.7±3.29
MMA-As ND ND ND ND
DMA-As 1.1±0.12 0.64±0.31 ND ND
Total As 17.6 13.9 38.4 45.2

As (leaf portion, mg/kg) Arsenate-As 1.85±0.38 2.04±0.26 20.6±2.56 11.3±1.47
Arsenite-As 3.13±0.37 3.48±0.12 45.7±6.11* 27.6±2.69
MMA-As ND ND ND ND
DMA-As 0.14±0.02 0.06±0.02 ND ND
Total As 5.12 5.58 66.3 38.9

Root plaque-Fe (g/kg) Total Fe 5.86±1.38* 8.29±0.46 2.00±0.18* 8.45±0.58
Root plaque-As (mg/kg) Total As 60.9±1.26 56.2±1.12 76.6±0.51* 115±5.59
All values are presented as mean ± standard error (n=4). Independent sample t-test was used to 
determine whether the two mean values obtained for the control and the treatment differ significantly. 
Pairs marked with an asterisk indicate significant (P <0.05) difference between the control and the 
treatment for each harvest time. ND: not detectable.
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Table 2 Fresh and dry weight (g) of the shoot and root in the first crop and second crop for the 
control and the two treatments for the pot experiment

Growth stage Treatments Shoot
fresh weight 

Shoot
 dry weight 

Root 
fresh weight 

Root
dry weight

Ck 47.4±1.11a 8.88±0.59a 20.5±1.35a 4.48±0.74a
T1 14.5±1.32c 2.88±0.3c 6.04±0.97c 0.94±0.21c

Heading
(1st crop)
 T2 28.8±1.84b 6.14±0.27b 13.9±0.68b 2.76±0.24b

Ck 29.1±4.20ab 14.7±1.45a 24.0±0.91b 8.52±0.91b
T1 21.1±0.45c 8.24±1.05c 4.11±0.29c 1.64±0.32c

Maturity
(1st crop)

T2 31.0±1.82a 13.2±0.60ab 31.0±4.21a 14.6±1.32a
Ck 5.40±0.58a 0.71±0.11a 0.52±0.05a 0.12±0.02a
T1 1.57±0.13c 0.23±0.02c 0.14±0.00c 0.07±0.02ab

Tillering
(2nd crop)

T2 2.75±0.53bc 0.41±0.09bc 0.30±0.05bc 0.08±0.01ab
Ck 24.7±2.72a 8.07±1.23a 13.3±1.70ab 1.73±0.17a
T1 18.5±1.29ab 6.52±0.31ab 17.8±0.80a 2.12±0.11a

Heading
(2nd crop)
 T2 16.8±2.17b 6.42±0.76ab 18.4±2.01a 2.25±0.64a

Ck 15.9±1.46a 6.63±0.68ab 14.0±1.50a 1.77±0.24a
T1 16.7±1.87a 7.27±0.78a 11.8±2.87a 2.43±0.67a

Maturity
(2nd crop)

T2 12.8±1.68ab 4.74±0.76b 9.36±0.58ab 1.87±0.12a
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p<0.05).
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Table 3 Concentration (mg/kg) of various As species in the root portion of the rice plant during 
different growth stages for the pot experiment

Growth stage Treatment Arsenate-As Arsenite-As MMA-As DMA-As Sum
Ck 12.7±2.10bc 19.1±1.94c 1.20±0.14a 0.10±0.01c 33.1±3.74b
T1 73.2±0.78a 60.1±1.57a 1.21±0.12a 1.41±0.22a 136±2.16a

Heading
(1st crop)
 T2 11.8±0.37c 32.8±5.95b 0.65±0.04b 0.79±0.11b 46.1±6.16b

Ck 1.21±0.05c 7.04±1.08c 0.79±0.02c 0.89±0.09ab 9.93±1.10b
T1 2.03±0.31b 30.0±1.56a 1.19±0.15b 0.60±0.03b 33.8±1.11a

Maturity
(1st crop)

T2 3.82±0.24a 22.1±2.96b 1.52±0.10a 1.28±0.23a 28.7±3.38a
Ck 8.56±0.68c 11.1±1.15b 0.03±0.01b 0.59±0.03b 20.3±1.45c
T1 82.6±4.15a 85.9±2.15a 2.90±0.37a 2.51±0.29a 174±6.72a

Tillering
(2nd crop)

T2 27.8±1.27b 18.2±1.26b 0.17±0.02b 0.66±0.04b 46.9±0.38b
Ck 3.04±0.39b 14.6±0.64b 0.14±0.00a 1.33±0.23a 19.1±0.53b
T1 4.91±0.64ab 49.7±5.64a 0.35±0.05a 0.77±0.17a 55.7±6.11a

Heading
(2nd crop)
 T2 6.52±0.94a 52.4±2.92a 0.22±0.01a 1.27±0.23a 60.4±4.01a

Ck 1.60±0.21a 4.94±0.32c 0.34±0.04b 0.50±0.08b 7.38±0.57b
T1 1.89±0.55a 9.30±0.69b 1.42±0.20a 0.73±0.13ab 13.3±1.05a

Maturity
(2nd crop)

T2 1.61±0.39a 12.4±1.06a 0.82±0.04ab 0.88±0.05a 15.7±1.43a
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p< 0.05).
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Table 4 Concentration (mg/kg) of various As species in the stem portion of the rice plant 
during different growth stages for the pot experiment

Growth stage Treatment Arsenate Arsenite MMA DMA Sum
Ck 1.40±0.09c 1.02±0.13c 0.19±0.01b 0.13±0.01c 2.74±0.15c
T1 6.47±0.82ab 4.03±0.29ab 0.28±0.01ab 0.44±0.07b 11.2±0.49b

Heading
(1st crop)
 T2 7.70±0.48a 5.12±0.16a 0.34±0.00a 0.60±0.01a 13.7±0.35a

Ck 2.16±0.21b 1.58±0.20ab 0.36±0.06c 0.47±0.03c 4.57±0.22c
T1 3.75±0.30a 2.28±0.13a 1.30±0.21a 1.54±0.16a 8.87±0.34a

Maturity
(1st crop)

T2 3.01±0.21ab 1.84±0.06ab 0.94±0.07ab 1.26±0.1ab 7.06±0.08b
Ck 0.43±0.07c 0.34±0.03b 0.00±0.00ab 0.04±0.00a 0.80±0.05c
T1 1.33±0.30b 0.55±0.01a 0.03±0.00a 0.04±0.00a 1.94±0.30b

Tillering
(2nd crop)

T2 2.45±0.13a 0.64±0.08a 0.02±0.00ab 0.07±0.00a 3.17±0.06a
Ck 0.56±0.13ab 7.03±0.78c 0.03±0.00b 0.06±0.00b 7.68±0.81c
T1 0.88±0.19a 18.21±1.77a 0.08±0.02a 0.23±0.03a 19.3±1.84a

Heading
(2nd crop)
 T2 0.57±0.03ab 12.58±1.02b 0.05±0.02ab 0.24±0.05a 13.4±0.93b

Ck 0.57±0.22a 8.78±0.55b 0.03±0.00a 0.08±0.02ab 9.46±0.60b
T1 0.67±0.06a 20.46±2.65a 0.05±0.02a 0.23±0.06a 21.4±2.78a

Maturity
(2nd crop)

T2 0.91±0.37a 10.75±2.19b 0.03±0.00a 0.18±0.00a 11.8±2.52b
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p< 0.05).
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Table 5 Concentration (mg/kg) of various As species in the leaf portion of the rice plant during 
different growth stages for the pot experiment

Growth stage Treatment Arsenate-As Arsenite-As MMA-As DMA-As Sum
Ck 1.64±0.16b 1.76±0.22c 0.08±0.01a 0.06±0.01b 3.53±0.33b
T1 5.16±0.36a 3.48±0.56ab 0.09±0.01a 0.23±0.03b 8.97±0.87a

Heading
(1st crop)
 T2 4.45±0.38a 3.83±0.33a 0.11±0.02a 0.88±0.07a 9.27±0.36a

Ck 1.87±0.18c 1.66±0.07c 0.09±0.02a 0.15±0.01b 3.77±0.13b
T1 4.10±0.29a 4.81±0.42ab 0.08±0.01a 0.28±0.01a 9.27±0.66a

Maturity
(1st crop)

T2 2.94±0.31b 5.40±0.42a 0.12±0.02a 0.12±0.02b 8.58±0.64a
Ck 1.70±0.07c 2.40±0.20ab 0.04±0.00a 0.06±0.00ab 4.19±0.18b
T1 3.73±0.28b 4.47±0.81a 0.05±0.00a 0.15±0.01a 8.41±1.08a

Tillering
(2nd crop)

T2 5.57±0.50a 3.04±0.57a 0.05±0.01a 0.09±0.01a 8.76±1.03a
Ck 0.11±0.01b 1.14±0.06b 0.00±0.00b 0.02±0.00b 1.26±0.07b
T1 0.15±0.01ab 1.88±0.18a 0.02±0.00a 0.05±0.01a 2.10±0.19a

Heading
(2nd crop)
 T2 0.19±0.02a 2.08±0.21a 0.01±0.00ab 0.04±0.01ab 2.32±0.21a

Ck 1.13±0.25a 7.20±0.85ab 0.14±0.03ab 0.25±0.04b 8.72±1.10a
T1 2.22±1.14a 8.65±1.00a 0.27±0.03a 0.82±0.09a 11.9±0.45a

Maturity
(2nd crop)

T2 2.22±0.49a 7.97±0.51a 0.15±0.02ab 0.80±0.05a 11.1±1.00a
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p< 0.05).
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Table 6 Concentration of total iron and arsenic in the iron plaque of root surface during 
different growth stages for the pot experiment

Growth stage Treatments Total Fe (g/kg) Total As (mg/kg)
Heading Ck 1.61±0.10c 19.1±4.84c
(1st crop) T1 2.34±0.15bc 29.7±4.19b

T2 21.35±1.44a 55.4±12.0a
Maturity Ck 15.00±0.60a 73.7±18.5c
(1st crop) T1 11.30±0.36b 330±20.5b

T2 15.50±0.49a 711±37.1a
Tillering Ck 17.79±0.51a 235±3.35c
(2nd crop) T1 9.79±0.57b 526±20.6b

T2 19.43±1.32a 980±38.2a
Heading Ck 28.28±3.73a 175±8.86c
(2nd crop) T1 16.42±0.57b 562±13.5b

T2 25.62±1.10a 707±38.8a
Maturity Ck 17.52±0.98ab 173±4.98c
(2nd crop) T1 15.57±0.43b 297±3.28b

T2 20.07±1.17a 579±15.6a
All values are presented as mean ± standard error (n=3) and means with different letters in the same 
column for each of the five sampling occasions are significantly different (p<0.05).
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Table 7 The ratios of stem-borne As to root-borne As (AsStem/AsRoot) in the different growth 
stages of rice plants for the control and the treatments for the pot experiment

Growth stage Treatment Arsenate-As Arsenite-As MMA-As DMA-As Sum
Heading (1st crop) Ck 0.110 0.053 0.158 1.300 0.083

T1 0.088 0.067 0.231 0.312 0.082
T2 0.651 0.156 0.523 0.759 0.298

Mature (1st crop) Ck 1.785 0.224 0.456 0.528 0.460
T1 1.847 0.076 1.092 2.567 0.262
T2 0.788 0.083 0.618 0.984 0.245

Tillering (2nd crop) Ck 0.050 0.030 0.000 0.068 0.039
T1 0.016 0.006 0.010 0.016 0.011
T2 0.088 0.035 0.118 0.106 0.068

Heading (2nd crop) Ck 0.184 0.481 0.214 0.045 0.401
T1 0.179 0.366 0.229 0.299 0.348
T2 0.087 0.240 0.227 0.189 0.223

Mature (2nd crop) Ck 0.356 1.777 0.088 0.160 1.282
T1 0.354 2.200 0.035 0.315 1.606
T2 0.565 0.866 0.037 0.205 0.753
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Table 8 The ratios of leaf-borne As to root-borne As (Asleaf/AsRoot) in the different growth 
stages of rice plants for the control and the treatments for the pot experiment

Growth stage Treatment Arsenate-As Arsenite-As MMA-As DMA-As Total
Heading (1st crop) Ck 0.128 0.092 0.067 0.600 0.106

T1 0.070 0.058 0.074 0.163 0.066
T2 0.376 0.116 0.169 1.114 0.201

Mature (1st crop) Ck 1.545 0.236 0.114 0.169 0.380
T1 2.020 0.160 0.067 0.467 0.274
T2 0.770 0.244 0.079 0.094 0.298

Tillering (2nd crop) Ck 0.199 0.215 1.333 0.102 0.206
T1 0.045 0.052 0.017 0.060 0.048
T2 0.200 0.166 0.294 0.136 0.187

Heading (2nd crop) Ck 0.036 0.078 0.000 0.015 0.066
T1 0.031 0.038 0.057 0.065 0.038
T2 0.029 0.040 0.045 0.031 0.038

Mature (2nd crop) Ck 0.706 1.457 0.412 0.500 1.182
T1 1.175 0.930 0.190 1.123 0.896
T2 1.379 0.642 0.183 0.909 0.708
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Supplementary Material

Supplementary Table S1 Instrumental operating conditions for the HPLC-ICP-MS system

Parameter Detailed information
HPLC Agilent1260
Column Athena C18-WP column (4.6*250 mm, 5 μm, CNW) 

CNW guard column (Athena C18-WP, 4.0*20 mm, 5 μm)
Mobile phase 2.5 mM Citric acid/2.5 mM Sodium sulfonate (pH 4.5)
Flow rate 1.0 mL/min
Injected volume 20 μL
ICP-MS Agilent 7700
RF (forward and reflected power) 1550 W
Spray chamber Quartz dual channel type  
Carrier gas 0.75 L/min
Make-up gas 0.40 L/min
Sample introduction Meinhard nebulizer
Channels monitored 75, 77 and 78


