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Abstract

This thesis addresses three fundamental questions: What is mixing? What makes a high-quality

mix? How can high-quality mixes be automatically generated? While these may seem essen-

tial to the very foundations of intelligent music production, this thesis argues that they have not

been sufficiently addressed in previous studies. An important contribution is the questioning of

previously-held definitions of a ‘mix’. Experiments were conducted in which participants used

traditional mixing interfaces to create mixes using gain, panning and equalisation. The data was

analysed in a novel ‘mix-space’, ‘panning-space’ and ‘tone-space’ in order to determine if there

is a consensus in how these tools are used. Methods were developed to create mixes by popu-

lating the mix-space according to parametric models. These mixes were characterised by signal

features, the distributions of which suggest tolerance bounds for automated mixing systems. This

was complemented by a study of real-world music mixes, containing hundreds of mixes each for

ten songs, collected from on-line communities. Mixes were shown to vary along four dimen-

sions: loudness/dynamics, brightness, bass and stereo width. The variations between individual

mix engineers were also studied, indicating a small effect of the mix engineer on mix preference

ratings (η2 = 0.021). Perceptual audio evaluation revealed that listeners appreciate ‘quality’ in a

variety of ways, depending on the circumstances. In commercially-released music, ‘quality’ was

related to the loudness/dynamic dimension. In mixes, ‘quality’ is highly correlated with ‘prefer-

ence’. To create mixes which maximised perceived quality, a novel semi-automatic mixing system

was developed using evolutionary computation, wherein a population of mixes, generated in the

mix-space, is guided by the subjective evaluations of the listener. This system was evaluated by

a panel of users, who used it to create their ideal mixes, rather than the technically-correct mixes

which previous systems strived for. It is hoped that this thesis encourages the community to pursue

subjectively motivated methods when designing systems for music-mixing.
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1
Introduction

Generally-speaking, the music production process comprises of five steps: composition, perfor-

mance, recording, mixing and mastering. In popular music1, these five acts can be undertaken by

completely separate actors, each motivated towards creating the best possible end product. Each of

these actions requires a high level of creativity, technical proficiency and, ultimately, good critical

listening skills.

The technical challenges faced at each step vary. To support their actions, the actor can

employ the use of certain tools. For example, a composer may use specific notation software,

performers take advantage of musical instruments and new music technologies for sound effects,

recording engineers will choose microphones and recording environments with appropriate acous-

tics, mix engineers will consider many different editing and processing strategies in order to en-

hance the impact of the recording, while the mastering engineer might use specially-designed

amplifiers and a cutting lathe to make the audio sound its best on a vinyl record.

Clearly, there is a highly-specialised use of tools, and each actor builds this knowledge over

their education and subsequent career. However, there can be barriers. For the novice user, there

can be a steep learning curve. For the visually-impaired user, these tools may place too much

emphasis on visual feedback. For a musician with limited mobility, traditional instruments may

present specific challenges.

This thesis addresses the novel research area of Intelligent Music Production (IMP). Research

in this area has a variety of aims, such as improving productivity, increasing accessibility and

furthering the study of psychoacoustics and music perception. IMP has been the subject of two

recent workshops by the Audio Engineering Society in the UK, with a third planned for 20172. It

1Described throughout as popular music, the audio samples used in this thesis are predominately of music featuring
a consistent set of instruments and timbres, particularly vocals, guitars and drums. Where this limitation leads to
potentially genre-specific analysis, it is noted (e.g. § 6.1.1).

2http://www.semanticaudio.co.uk/events/wimp2017/

1
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is proposed that research in this exciting new area can benefit from returning to some fundamental

questions about the nature of music production.

1.1 Scope of the thesis
Within these five stages of music production, this thesis is concerned with the fourth: mix engi-

neering. To introduce this thesis, three fundamental questions are posed:

1. What is mixing?

2. What makes a good mix?

3. How can good mixes be automatically generated?

Questions 1 and 2 are fundamental and an exhaustive investigation into these questions is not

possible, given the limited scope of the work. However, these three questions help to clarify the

motivations behind the work. Each question receives sufficient attention within this thesis.

1.1.1 What is mixing?
When an engineer is mixing a recording, what is it that is being altered? An engineer can utilise

a variety of tools to shape the multitrack audio recording and present the music in a variety of

different ways. These tools include volume control, equalisation, panning and spatial effects,

dynamic range compression and expansion, the addition of reverberation, delay, and a host of

related tools using modulated delays.

As outlined in Chapter 2, there exists a large collection of literature which suggests how these

tools could/should be used in certain situations, to mitigate certain technical issues and also for

creative manipulation of sound. What this thesis seeks to address is the effect these tools have

on the mix. What mixes are possible and how do they vary? These fundamental questions are

addressed in Chapters 4, 5 and 6.

1.1.2 What makes a good mix?
One does not often have the opportunity to hear more than one mix of any given song. Typically,

one only has access to the specific mix that was chosen by the artist/producer/engineer, was sent

to the mastering engineer and was distributed to the public. Consequently, many studies of digital

music signals are concerned with analysis across different songs, instruments, genres or artists,

but not between mixes, due to this relative level of scarcity. In contrast, the artist will often

compare many mixes of their own material. Furthermore, the mix engineer is constantly engaged

with the task of comparing different mixes, different processing outcomes, different strategies for

presenting the music. Finally, a producer may compare mixes from different mix engineers in

order to decide which should be hired for the job of mixing further content. Because of this,

developing a greater understanding of the psychoacoustics of mix-engineering is a worthwhile

endeavour, yet one which has rarely received much attention.

Traditionally, occasions where the public get to hear multiple mixes of the same material are

highly limited. These might include when an album has been completely remixed for re-release

(comparisons between different masters are very common, as many re-releases are not remixed,

only remastered). These comparisons are becoming more common, not only since the extensive
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catalogue of 20th century popular music allows for multiple re-releases but also because of emer-

gent music distribution technologies. With the release of an album as an app, or with object-based

broadcast technologies, more and more are listeners being exposed to alternate audio mixes. In

order to further understand our perception of quality in music mixes, we wish to determine what

it is that makes a mix ‘good’. This question is explored in Chapters 3 and 7 using psychoacoustic

testing.

1.1.3 How can good mixes be automatically generated?
Existing automated music production tools have succeeded in generating mixes by addressing

technical aspects of the mixing process (see Chapter 2). Rarely has subjectivity been so directly

included in an automated mixing tool.

After the first two questions were investigated in the initial chapters, it was clear that while

some degree of consensus may exist, there is not one optimal way to mix a given song. Rather,

there are multiple good-quality mixes, identified according to the subjective tastes of the user.

Having built this increased understanding of mixing and of quality perception in mixes, new

methodologies must be explored in an attempt to incorporate human subjectivity into the pro-

duction processes. This thesis addresses this final question in Chapters 8 and 9 by designing a

novel music mixing system using interactive evolutionary computation.
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1.2 Contributions made by this thesis
The following is a list of individual contributions to knowledge made in this thesis.

1. The ‘mix space’

(a) A definition for ‘mix’ and associated formulations for a space of mixes

(b) The analysis of real-world mixes in this space

(c) A method for creating mixes in this space by parametric models

(d) A system for the user-guided creation of mixes, by interactive evolutionary computa-

tion, which produces a range of mixes comparable to that of a traditional fader-based

interface.

2. Analysis of audio signal features in mixes

(a) Creation of a large dataset of mixes

(b) Analysis of audio signal features in this dataset

(c) Factor analysis, revealing loudness/dynamics, brightness, stereo width and bass as the

four dimensions of greatest variance

(d) Classification of mix engineers using the signal features of their mixes

3. Understanding quality in mixes

(a) Application of existing quality definitions to music mixes

(b) The relationship between “quality” and simply liking an audio clip depends on song-

familiarity

(c) For mixes, “quality” and “like” are highly-correlated

(d) Listeners can identify the mix engineer from the audio signal, in limited cases, al-

though the effect of mix engineer on preference ratings is small.

In summarising these individual contributions, two macro-contributions are made.

• The development of objective techniques and approaches to mix analysis, leading towards

large-scale simulations of music mixing practice

• The acknowledgement that, when mixes are to be generated for a specific user, the subjective

elements of audio quality need to be incorporated into the mix-creation process.

This work has aimed to further the understanding of music mixing. This thesis provides

insights into what can be achieved by mixing and the influence of audio signal processing tools on

the outcome of the mixing process. These findings can be utilised to complement existing audio

education pedagogy, for example, by illustrating to student mix engineers that mixes tend to vary

along dimensions such as loudness, brightness and width. Examples of the extreme loud/quiet,

bright/dull and wide/narrow mixes can help to illustrate what it is possible to achieve within the

design space of a particular mix.
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Knowing the extent of how these dimensions vary is useful for the design of automated or

intelligent music production tools. With a defined distribution for each of a number of audio

signal features, the system can be guided away from mixes that would be unlikely to be created

by a human mix engineer. It would also be possible to guide the system towards mixes which are

in line with the specified requests of the user, or explore less-expected areas of the mix-space to

uncover more unusual mix results.

Ultimately, the availability of a large dataset of real-world mixes, as well as the ability to

generate even greater quantities of random mixes, allows for further understanding of music infor-

matics. It is hoped that the contributions in this thesis will aid further study in the analysis of audio

signals and the generation of new audio signal features, for complex tasks such as onset detection,

beat detection, genre prediction and the prediction of how a piece of music can induce emotions

in a listener.



2
Review of literature

This chapter provides an outline of relevant literature at the time of writing. Many of the topics

considered are still under active research. While not intending to be an exhaustive review of

the related subject areas, this chapter is intended to clarify the motivations and intentions behind

the research that is presented in subsequent chapters. These later sections of the thesis contain

additional review of literature, as deemed appropriate.

The organisation of this chapter is as follows. First, the theory behind quality perception is

explored, leading to a variety of definitions and perspectives. The application of these definitions

to the case of audio quality is subsequently discussed. From here, a review of the psychoacoustics

of music production is provided, detailing studies which have investigated human perception of

audio processing typically found in music production. Automated music production techniques

are discussed along with a review of the various system architectures used and the studies in

which systems have been developed and subjectively evaluated. Finally, a brief introduction of

evolutionary computing is provided.

6
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2.1 Perception of quality
The following is a definition of the term ‘quality’, taken from the Oxford English dictionary 1:

a. The standard of something as measured against other things of a similar kind; the degree of

excellence of something, e.g. “an improvement in product quality”.

b. A distinctive attribute or characteristic possessed by someone or something, e.g. “he shows

strong leadership qualities”.

Colloquially, these two meanings can give rise to some confusion when one is considering quality.

An individual may become confused as to which particular quality is being assessed, or if an

overall measure of goodness is the concept sought. After conducting a detailed review of available

literature, a framework for quality assessment was provided by Reeves and Bednar [1], suggesting

that the concept of quality can be considered from four points of view:

1. Quality as excellence or superiority

2. Quality as value

3. Quality as conforming to specifications

4. Quality as meeting or exceeding customer expectations

A summary of these four approaches, along with the strengths and weakness of each, is presented

in Table 2.1. According to point #3, it is possible for anything to be of good quality if it conforms

to specifications, while the specifications themselves may not be excellent, have value, or exceed

customer expectations. The ISO-9000 series of standards [2] have been designed to address this

point and guide the manufacturing industry towards high-quality production of goods. ISO-9000

defines quality as follows:

Definition 1. The degree to which a set of inherent characteristics fulfil requirements

This definition calls for product or service to have certain defined requirements, and a set of inher-

ent characteristics that have been identified and demonstrated to influence quality. These charac-

teristics can then be optimised in order to maximise quality. This optimisation may be subject to

certain constraints, such as available resources — human, financial, temporal or otherwise.

Therefore, to aid this optimisation, there is great interest in understanding how the quality

of the product will be perceived by the consumer. Consider the case of wine, which is one of

the more well-studied examples in the field of food quality and preference. Seven dimensions

related to quality in the specific case of red wine have been identified, namely ‘origin’, ‘image’,

‘presentation’, ‘age’, ‘harvest’, ‘sensitivity’ and ‘acuteness of bouquet’ [3].

A study by Thach and Olsen [4] has indicated that the primary reason a person does or does

not drink wine is that they do or do not like the taste. However, notice how a number of the

scales by Verdú Jover et al. [3] are related to perceptions other than taste — the presentation of

the product and the image of the brand are significant. These factors provide expectations to the

consumer, often conveyed through the choice of label and so the label on the bottle is important

1http://www.oxforddictionaries.com/definition/english/quality , accessed: 18/3/16
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Table 2.1: Synopsis of the strengths and weaknesses of the four approaches to quality definition,
as reproduced from Reeves and Bednar [1]

Definition Strengths Weaknesses

Excellence Strong marketing and human
resource benefits
Universally recognisable —
mark of uncompromising
standards and high achievement

Provides little practical guidance
to practitioners
Measurement difficulties
Attributes of excellence may
change dramatically and rapidly
Sufficient number of customers
must be willing to pay for excel-
lence

Value Concept of value incorporates
multiple attributes
Focusses attention on a firm’s in-
ternal efficiency and external ef-
fectiveness
Allows for comparisons across
disparate objects and experi-
ences

Difficulty extracting individual
components of value judgement
Questionable inclusiveness
Quality and value are different
constructs

Conformance to
specifications

Facilitates precise measurement
Leads to increased efficiency
Necessary for global strategy
Should force disaggregation of
consumer needs
Most parsimonious and appro-
priate definition for some cus-
tomers

Consumers do not know or care
about internal specifications
Inappropriate for services
Potentially reduces organisa-
tional adaptability
Specifications may become
obsolete in rapidly changing
markets
Internally focussed

Meeting and/or
exceeding expec-
tations

Evaluates from customer’s per-
spective
Applicable industries
Responsive to market changes
All-encompassing definition

Most complex definition
Difficult to measure
Customers may not know ex-
pectations
Idiosyncratic reactions
Pre-purchase attitudes affect
subsequent judgements
Short-term and long-term evalu-
ations may differ
Confusion between customer
service and customer satisfac-
tion
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in consumers’ quality assessment [5]. A study by Bruwer et al. [6] has indicated that preference

for wine can be influenced by a variety of additional factors, including the age and sex of the

consumer. Additionally, these factors interacted with others, as consumers of varying age and sex

were influenced by the bottle’s label in varying ways [6].

Clearly, these scales would not be suitable for other food and drink items, and may not be

accurate even for white wines, due to differences in colour, taste and odour. Babakus and Boller

[7] suggested that quality is specific of a single good or service — while the term ‘quality’ is

ubiquitous, the meaning must be carefully evaluated for each specific case. Nonetheless, the

methodologies and concepts discussed in relation to food quality and preference can be important

in the assessment of quality in other modalities, such as audio quality evaluation.

2.1.1 Perception of audio quality
Audio quality, generally, refers to the quality of an audio stream. However, due to the various ways

in which audio can be experienced, a variety of meanings have been attributed to audio quality.

The following is an overview of a number of quality-assessment concepts used in audio evaluation.

Section § 2.1 referred mainly to the perceived quality of products. Many products may be

evaluated on their auditory nature, if that is perceived to be an important part of the experience of

using that product (examples of products often evaluated on their auditory nature are numerous,

but include vehicles, home appliances and even seating). In the context of product sound quality,

Jekosch [8] has defined quality with the following statement:

Definition 2. The result of an assessment of the perceived auditory nature of a sound with respect

to its desired nature.

This definition shares many characteristics with the model of Reeves and Bednar [1] and ISO

9000:2005 [2], in that it refers to quality with respect to a product’s desired nature, something

which may be unique to each product. Importantly, this definition refers to the perceived auditory

nature, which implies that the subjective impression of the listener is being evaluated. Figure

2.1 shows how this quality judgement is made by a listener. Since the reflexion is unique to the

observer, the perceived quality is also unique. However, since the result of reflexion is based on

experiential, social and cultural factors, amongst others, groups of similar observers may reach a

comparable understanding of quality in a given scenario.

The concept of Quality of Experience (QoE) differs somewhat from the definitions provided

by Jekosch etc. as it not only considers the auditory elements of the item being evaluated but an

overall quality. According to ITU-T P.10, 2008, QoE is defined as follows:

Definition 3. The overall acceptability of an application or service, as perceived subjectively by

the end user.

Since this definition provides no information about what constitutes acceptability, the following

definition from Qualinet [9] helps to clarify the concept of QoE.

Definition 4. Quality of Experience is the degree of delight or annoyance of the user of an appli-

cation or service. It results from the fulfilment of his or her expectations with respect to the utility

and / or enjoyment of the application or service in the light of the user’s personality and current

state.
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Figure 2.1: Judgement of quality, according to Jekosch [8]

In addition to introducing the idea of enjoyment, definition 4 refers to the user’s personality and

current state. This suggests that the subjective evaluation is not consistent but modulated by these

factors — the same service may appear to have over-exaggerated or under-exaggerated quality

depending on the mood of the user. The inclusion of emotion in a model of quality is an important

consideration.

Thus far, the definitions of quality have pertained to products, applications and services. It is

debatable whether an audio stream can belong to one, all or none of the categories. The answer

is context-dependent. Clearly, music is marketed and sold as a product (such as a physical CD or

record) but can also be delivered to a user by an application (such as audio streaming services like

Spotify, iTunes etc.) which is concurrently providing a service (music-listening). For now, one

can consider these definitions to have varying applicability to audio, particularly music.

A study by Blauert and Jekosch [10] has proposed a layer model of sound quality which

was an attempt to structure the broad field of sound-quality evaluation and assessment on strictly

perceptual grounds. Table 2.2 is taken directly from Blauert and Jekosch [10] and outlines four

main categories on which quality can be perceived, along with examples of the methods which

can be employed in their measurement.

2.1.2 Categorisation of sound attributes

Letowski [11] refers to audio quality as being comprised of timbral quality and spatial quality.

Each of these categories is further divided into subcategories, as shown in Figure 2.2. Berg and

Rumsey [12] is concerned with spatial quality and the development of scales by elicitation and

structuring of verbal data, provided in response to auditory stimuli. Four categories of quality are

determined from this study.
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Table 2.2: Synopsis of the four identified conceptual layers of sound-quality, as reproduced from
Blauert and Jekosch [10]

Conceptual Aspect Examples of Issues Suitable Measuring Methods

Auditive Quality
(Classical Psychoacous-
tics)

Perceptual properties
such as loudness, rough-
ness, sharpness, pitch,
timbre, spaciousness

Indirect scaling: thresholds, dif-
ference limens, points of subjec-
tive equality
Direct scaling: category scaling,
ratio scaling, direct magnitude
estimation

Aural-scene Quality
(Perceptual Psychology)

Identification and local-
ization of sounds in a
mixture, speech intelligi-
bility, audio perspective
incl. distance cues, scenic
arrangement, tonal bal-
ance, aural transparency

Discretic: semantic differential,
multi-dimensional scaling.
Syncretic: scaling of preference,
suitability, and/or appropriate-
ness, benchmarking against tar-
get sounds

Acoustic Quality
(Physics)

Sound-pressure level, im-
pulse response, transmis-
sions function, reverber-
ation time, sound-source
position, lateral-energy
fraction, inter-aural cross
correlation

Instrumental measurements with
physical equipment for the mea-
surement of elasto-dynamic vi-
brations and waves, including
appropriate signal processing

Aural-communication
Quality
(Communication Sci-
ences)

Product-sound quality,
comprehensibility, us-
ability, content quality,
immersion, assignment of
meaning, dialogue quality

Psychological (cognitive) tests,
particularly in realistic use
cases, e.g., the product in use,
the audience in concert, etc.,
questionnaires, dialogue tests,
comprehension test, usability
tests, market surveys
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Figure 2.2: MURAL (MUltilevel auditoRy Assessment Language), reproduced from Letowski
[11].

• Technical: relating to distortion, hiss, hum, etc.

• Spatial: relating to the three-dimensional nature of the sound sources and environments

• Timbral: relating to the tone colour

• Miscellaneous: relating to the remaining properties

A decade later, a study by Le Bagousse et al. [13] categorised a corpus of words describing various

sound attributes. While this test was a lexical study and did not have an auditory component, the

categorisation of terms has much in common with the result of Berg and Rumsey [12] — four

categories were obtained and are described as follows:

• Defects: these are interfering elements or nuisances present in a sound

• Space: refers to spatial impression-related characteristics

• Timbre: deals with the sound colour

• Quality: is made up of homogeneity, stability, sharpness, realism, fidelity and dynamics

This indicates a level of agreement in the ways in which audio quality is described. Interestingly,

the final category of Le Bagousse et al. [13], referred to as ‘quality’, contains the terms which

describe, in the language of Reeves and Bednar [1], ‘excellence’, as shown in Table 2.1 — the

three other categories are more in reference to specifications.
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Figure 2.3: Sound wheel, for the development of a common lexicon for reproduced sound, taken
from Pedersen and Zacharov [14].

Pedersen & Zacharov [14] proposed a “sound wheel”, representing a lexicon of terms used

to describe reproduced sound, as shown in Figure 2.3. Contained are many of the same categories

that have been seen in earlier studies. Each of the terms in the outer ring has been defined and a

scale provided for its evaluation.

2.1.3 Audio quality with respect to a reference example

Audio quality has an understood meaning when applied to the ability of a data compression system

to reproduce audio signals at reduced bitrates. When signal information is lost, the perceived

degradation of the audio experience is measured. Systems for which the perceived degradation

is minimal are considered to have higher quality than those where the degradation can clearly be

perceived. The following are examples of such audio quality evaluation procedures.

Perceptual evaluation of speech quality (PESQ) is a method for estimating speech quality

in telecommunications systems [15]. It has been incorporated into the ITU-T recommendation

P.862. PEAQ [16], or perceptual evaluation of audio quality, was originally released as ITU-R

recommendation BS.1387. It is a method of predicting subjective responses to listening tests

performed under ITU-R BS.1116 (methods for the subjective assessment of small impairments in

audio systems). This is achieved by the use of a psychoacoustic model and audio signal feature

extraction.

HASQI [17, 18], or Hearing Aid Speech Quality Index, is a measure of audio quality orig-

inally designed for the assessment of speech quality after processing by a hearing aid system.

Beyond hearing aid users, HASQI has been shown to have predictive power comparable to PESQ

[19]. As hearing aid processing often consists of linear filters, noise and non-linear distortions,
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HASQI has since been used as a measure of audio quality in a variety of non-speech sounds, even

music signals [20].

This approach to quality evaluation assumes the existence of a reference. In the case of data

compression systems (for these examples we can consider audio codec systems such as MP3 or

AAC), a number of samples of audio are compared to one another. These samples may be created

using the same codec but at varying bitrates or possibly different codecs at the same bit rate. The

original programme material, from which all compressed versions were created, can be used as a

reference, an example of the highest quality possible. Systems of testing in this style are described

in various standards (including [21] and [22]), and include the MUSHRA (MUltiple Stimuli with

Hidden Reference and Anchor) method of audio evaluation, recently updated by Liebetrau et al.

[23]. In addition to assuming a reference sample of highest quality, this method also utilises an

anchor sample, of lowest quality. In MUSHRA, these samples are not explicitly revealed to test

participants, as they are hidden.

It is important to consider that, in these circumstances, it is not strictly the inherent quality of

the programme material that is being measured but rather the perceived degradation in quality of

the signal, after being subject to destructive processes. In effect, the evaluation of the audio signal

is being used as an intermediate step towards evaluating the algorithm, reproduction system, or

other such device under test.

Other “MUSHRA-like” test interfaces offer variations on the theme, where the reference and

anchor may be hidden, not hidden, or omitted entirely. MUSHRA was designed for the evaluation

of audio codecs but has been re-imagined for other scenarios. These tests can be described using

the term multi-stimulus audio evaluation and will feature in later chapters of this thesis.

2.1.4 Quality of audio programme material
Recall the statement of Babakus and Boller [7], that quality is specific of a single good or service.

The approach to quality evaluation in Section § 2.1.3 is difficult to apply to music productions as it

is unlikely there exists a reference audio sample (a recording of a particular song), which represents

the maximum quality rating, to which all other samples (other recordings of other songs) could be

compared. Nonetheless, aspects of this approach can be useful. This topic is discussed in detail in

Chapter 3.

In the case of music, the perceived quality of the audio content depends on more than just the

technical aspects of the signal — there are subjective and personal aspects to consider. If, as in

Table 2.1, quality can be considered as value, then an audio signal representing such music that is

of value to an individual may be perceived to have a high level of quality. Music that is highly liked

can be considered to have high quality in these circumstances. Ratings of pleasure when listening

to music are related to emotional arousal [24] and an increase in blood oxygen level in regions of

the brain related to emotion has been measured when listening to familiar music [25]. Hargreaves

indicated that as music becomes more familiar, it becomes liked more, although this effect can

reach a point of saturation [26]. A number of studies have further investigated this relationship

between familiarity and liking of music [27–29]. It is then hypothesised that this liking of the

programme material influences the evaluation of more technical aspects of quality.

In ITU-R Recommendation BS.1534 [22] Basic Audio Quality is described as a “single,

global attribute is used to judge any and all detected differences between the reference and the
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object”. While this is commonly used in tests as outlined in § 2.1.3, the discussion in this chapter

thus far suggests that audio quality would be difficult to explain in one attribute. Chapter 3 will

explore this in greater detail.
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2.2 Psychoacoustics of music production
Music production is a diverse and complex topic. While the goal of the music production process

may be to create an artistic work that delivers the required experience to the listener, the necessary

skills to achieve this goal can be considered tacit knowledge of the artists, producers and engineers

who work together towards this aim. Attempts have been made to represent this tacit knowledge

as formal knowledge. To this end, lists of “best-practice” behaviours have been compiled, often

based on extensive interviews with expert practitioners. Section § 2.3 details how these behaviours

are often used as rules in the development of automated music production systems.

This section of the literature review outlines selected studies which have examined the psy-

choacoustics of various music production activities. Particular attention is paid to mixing prac-

tices, as this is the focus of the original work presented in later chapters. A more fundamental

review of the psychoacoustics related to audio engineering can be found in a text by Zwicker and

Zwicker [30]. Loudness-perception and other related topics are relatively well-studied compared

to other aspects of the literature review. Consequently, there is little need for an in-depth review.

An overview of loudness models can be found in Glasberg and Moore [31] and related standards

[32].

2.2.1 Level-balancing
The modern day process of mix engineering began as level balancing. In the electrical era of

recording, the relative levels of various microphones would be set by an engineer for recording

onto the medium of choice. Rather than the term mix engineering, this task was referred to as bal-

ance engineering. Often, a mix engineer will attempt to balance the level of various instruments

and sources to recreate the impression of a live performance. A microphone (or array of micro-

phones) may be used to capture the overall sound of an instrument in a space, while additional

microphones may be placed close to particular instruments, or locations surrounding an instru-

ment. These are often referred to as “close mics” or “spot mics”. It is then required to balance the

relative level of these microphones to create the desired impression of space and tone. One instru-

ment where this is often required is the drum kit. Typically, a pair of microphones is suspended

over the kit, in some stereo configuration, and individual close mics are positioned to record the

kick drum, snare drum and possibly other elements of the kit. While the overhead microphones

will capture the sound of the kick and snare drums, the close mics are useful in helping those

elements be heard clearly above other instruments, which is important in establishing rhythm. The

choice of balance between overheads and close mics, or between kick and snare, is dependent on

the desired sound, as influenced by the style of music.

Few scientific studies have been performed which have investigated level-balancing tech-

nique. Lembke et al. [33] tested a scenario analogous to the preceding paragraph, where the close

mics of a horn and bassoon were blended, along with a microphone positioned further away in the

space. Nineteen participants were asked to create a mix of these three sources which achieved “the

highest degree of blend possible.” The relative volume levels of these three sources was found to

vary across a number of factors, including the simulated acoustic environment in which the perfor-

mance took place. This concept of representing a mix as a series of inter-channel blends is similar

to the work which forms the basis of Chapter 4.

Some of the earliest studies known to the author took place within the last decade and tested
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trivial level balancing examples. King et al [34] investigated the preferred levels within a simple

mix scenario and the variance in this balance over time. Twenty-two participants were asked to

balance the volume of a stereo backing track with a solo instrument or voice. This was repeated

eight times for each of three different music samples — classical (soprano voice over orchestral

backing), rock (vocalist over guitar/bass/drums backing) and jazz (solo trumpet over unknown

backing track). Ten of the participants were tested twice, in two separate sessions, one week apart.

When compared to the level set by the original engineer of each sample, the median levels found

were −3.6 dB, +0.6 dB and 0 dB, for classical, rock and jazz samples respectively. Participants

with a greater number of years experience displayed less variance. Since these levels are relative

to those of the original mix engineer, one can observe that there is apparent consensus concerning

the level of the voice in the rock sample and the level of the trumpet in the jazz sample. It appears

as if the original mix engineer set the level of the soprano voice in the classical sample higher

than average. With only one sample per genre, and only two solo instruments, it is difficult to

generalise these results to the act of mixing as a whole. A follow-up study was conducted [35].

This investigation used three excerpts per genre (this time referred to as classical, jazz and pop).

The classical and pop samples featured voice over instrumental backing, while each excerpt in the

jazz category featured a different solo instrument (piano, trumpet or guitar). Results indicated that

the median results for each category, when all trials were taken into account, were roughly 0 dB,

0 dB and +2 dB for the classical, jazz and pop categories respectively. This indicated a consensus

for levels in classical and jazz settings but that the original mix engineer set the vocal level in the

pop recordings lower than the consensus. Both excerpt and genre were found to be significant

factors in the setting of level, using a repeated measures ANOVA. The level of the vocal in the pop

category was suggested to be multi-modal, meaning that various optimal levels were identified.

This finding suggests that there may be various levels at which to set the vocal, each acceptable to

different listeners. One flaw in these studies is that the levels presented are relative to the levels

set by the original mix engineer, assumed to be the ideal levels. The results are not presented in

terms of an absolute measure of loudness, or a level relative to the combined mix, which would

have been more insightful and repeatable.

There are few studies of complete, real-world, mixing scenarios. One study is that by De Man

et al. [36] in which students were asked to mix a complete multitrack session, using a restricted

but representative selection of processing options, including equalisation, panning, dynamic range

compression, delay, reverberation and modulation effects. Each student had two hours to mix each

session. Later, each student participated in a multi-stimulus audio evaluation test, in which they

evaluated all mixes of each song, including their own mix. Preference ratings were given for each

audio sample, along with comments. As the Digital Audio Workstation (DAW) session file for

each audio sample was known, the relative levels of each instruments could be extracted. Figure

2.4 displays an average loudness of each of a number of instruments, relative to the combined

mix, over all songs and participants. It is evident that vocals are set at higher levels than other

instruments.

These studies have investigated the practice of level-balancing and indicated that some con-

sensus can be found. As this area of study is in its relative infancy, no one test methodology

has been established and utilised over a variety of studies, covering a large enough sample of
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Figure 2.4: Average and standard deviation of loudness of sources relative to the total loudness
of the mix, across songs and mixing engineers, taken from De Man et al. [36]. ‘Rest’ refers to

the sum of the rest of the drums.

participants and music samples. Further studies are necessary.

2.2.2 Perception of other common processes

While a relatively large amount of research has been carried out in relation to perceived loudness

and its influence on level balancing, a number of other technical aspects of the music production

process have been investigated from a psychoacoustic point of view. Many of these processes, such

as equalisation and panning, are themselves concerned with loudness, as equalisation is frequency-

dependent loudness and panning is channel-dependent loudness.

2.2.2.1 Equalisation

Equalisation (EQ) is used to adjust the distribution of spectral energy in a sound and therefore

is a vital tool in audio engineering. In applying EQ, tt is not uncommon for audio engineers

to communicate with artists and other engineers using a language that contains many seemingly

abstract terms. Cartwright et al. [37] investigated the ways in which equalisation is used to achieve

certain auditory impressions. Each participant entered a word used to describe sound, such as

“warm”. Then the participant was asked to rate 40 audio samples in which the equalisation curve

varied, on a scale from “not at all warm” to “very warm”. From these responses, an equalisation

curve relating to the supplied term (“warm”) was determined. As the test was conducted on-line,

the total number of training sessions included in the study was 731, where 324 unique descriptors

were used.

Another study attempted to collect similar data but directly from a users DAW session. Sta-

bles et al. [38] describes the development of a series of plugins, known by the acronym SAFE

(Semantic Audio Feature Extraction). These plugins allow the current setting to be uploaded to a

webserver, along with metadata, such as which instrument is being processed. A series of audio

signal features are also extracted from the track, before and after processing. Upon upload, the

user can describe the result by a semantic descriptor, such as “warm” or “bright”. This allows

other users to load settings from the webserver. A user can then process their audio tracks without

direct adjustment of plugin parameters, if they so desire, but by simply choosing a semantic de-

scriptor which best matches their desired result. Ideally, the system can learn how to associate the

plugin settings to a given descriptor.
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2.2.2.2 Panning

While surround sound formats are standard in cinema, and there is increasing interest in bringing

surround and 3D audio systems into the home for broadcast, within music production, two-channel

stereo can be considered the standard format. This has been the case for roughly 50 years. As such,

the work in this thesis does not consider reproduction formats with more than two channels.

In this format, with careful set-up, it is possible create a realistic auditory scene by placing

sources in phantom locations on an imaginary line between the two loudspeakers. This is typically

achieved by adjusting the relative volume of the source in the two channels, resulting in the per-

ception of inter-aural level difference (ILD) and inter-aural time difference (ITD) in the listener. A

variety of laws exist for placing sources in such locations, one of the most common shown in Eqn.

2.1c. Here, θs is the azimuthal angle of the virtual source, θ0 is the loudspeaker base angle (typ-

ically 30°), gl and gr are the normalised gains of the left and right loudspeakers and p ∈ [−1,1],

−1 indicating a pan position fully left, and 1 indicating a pan position fully right.

sinθs

sinθ0
=

gl −gr

gl +gr
(2.1a)

gl = cos
(
(p+1)π

4

)
(2.1b)

gr = sin
(
(p+1)π

4

)
(2.1c)

The placement of sound sources in a stereo system can also be achieved by the use of delay,

creating perceived inter-aural time difference (ITD) in the listener. A study by Lee and Rumsey

[39] has produced the following expressions which can be used to determine the ILD and ITD

required to place a source at an angle α .

ILD(α) =

0.425α dB, α ≤ 20°

0.85α −8.5 dB, 20° < α ≤ 30°
(2.2a)

IT D(α) =

0.025α ms, α ≤ 20°

0.05α −0.5 ms, 20° < α ≤ 30°
(2.2b)

2.2.2.3 Delay, reverberation and dynamic range compression

As previously described [39], panning can be achieved using very short delay times. More often,

reverberation is used to give the impression of space or depth, to tell the listener what size space

the sound was produced in. Artificial reverberation is also used for creative purposes.

According to Pestana and Reiss [40], excessive amounts of reverberation are strongly dis-

liked. However, such a preference is context-dependant. The use of additional reverberation was

commonplace in the popular music of the 1980s, at levels which may be considered excessive

by modern standards. Recall from Table 2.1 that the perception of quality can change over time,

as consumer expectations change. Additionally, certain styles of music are also linked to use of

reverb. Certain artists and/or producers are known for the use of reverb, or lack thereof.

At the time of writing, there have been a number of recent publications on the perception of

delay and reverberation: Pestana et al. [41] indicated that delay time preferences were linked to



2.2. PSYCHOACOUSTICS OF MUSIC PRODUCTION 20

song tempo, De Man et al. [42] found that “too much reverb” was a comment often levied at mixes

that received relatively low ratings of overall preference and Chourdakis and Reiss [43] proposed

a method of semi-automated reverb application based on user-provided examples.

This thesis does not directly address issues relating to delay and reverberation and so this

section has been added for completeness. Similarly, the scope of this thesis does not extend to

models of dynamic range processing, although this topic has received attention in other works

[44].

2.2.3 Effect of reproduction system / environment
The influence of the reproduction environment has been debated. This includes the influence of the

room acoustics as well as the playback system being used. For example, a more reverberant control

room might lead a mix engineer to add less artificial reverb than they might in a less reverberant

space. Leonard et al [45] tasked 13 experienced mix engineers with adding artificial reverberation

in a control room with adjustable acoustics. The programme material used was an orchestral

recording made in a relatively dry hall and a soprano voice which was recorded separately. The

room microphones and additional reverb, applied by the session’s original engineer, were printed

to a separate track and participants were asked to set this track to their preferred level. In the

more reflective condition, the level of the reverb was lower when compared to the less reflective

condition and the variance was also lower.

It can be argued that, in 2017, headphone reproduction may be one of the most prevalent

ways in which music is consumed. Subsequently, there is interest in knowing if mixing music on

headphones, specifically for headphone reproduction, could produce high quality results. In the

case of headphone reproduction, the acoustics of the room are bypassed and therefore assumed to

be negligible2. The important factors are therefore the transfer function of the electroacoustic sys-

tem and the mechanical coupling to the wearers head, the latter having an effect on low-frequency

reproduction.

King et al [46] has compared the mixing behaviours of users in two conditions — loudspeaker

and headphone reproduction. Ten participants were tested in both conditions, and asked to set the

volume of a vocal performance relative to the instrumental backing track. Three music samples

were used, representing three styles of music (jazz, classical and rock). For classical and rock

samples, there was a significant difference in the balance set under the two conditions: vocals were

set lower in the headphone condition for the rock sample, while, for the classical sample, vocals

were set lower in the loudspeaker condition. It is hard to draw conclusions from this inconsistent

result and it highlights the need for a more complete study.

2Virtual room acoustics and reproduction systems can, of course, be rendered over headphones using binaural
technology, although this will not be considered here.
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2.3 Intelligent music production
As the processes involved with producing music are often highly technical, highly creative and

greatly time-consuming, there has been much research devoted to automating certain elements of

the process. Often an audio engineer will approach a session from a standard point of view, each

session beginning with the same fundamental tasks. An example of this may be to set the input

gain of each channel, and then set the fader level to achieve a rough balance. The automation

of this process would save valuable time, but also physical effort in the case of disabled users.

For musicians, who may not have the technical skills to adequately record and mix their music,

intelligent music production tools could be used to assist in this task. Considering this from

another point of view, with more experienced engineers, the user could act as a guide to the

intelligent system, allowing the system to improve over time.

As discussed in § 2.2.1, level-balancing has always been considered a fundamental aspect of

music mixing. The balancing of instrument levels is often a first step in creating a mix, before

the more creative processes begin. In the context of live sound, especially in amateur settings,

this balancing of levels and some basic equalisation may be all that is done to the mix. Perhaps

because of its relative importance, one of the first tasks attempted in automated music production

was the setting of track fader levels and input gains.

Some of the earliest examples of the automated audio engineering in this context comes from

the work of Duggan in the 1970’s and 1980’s [47]. These developments produced systems for the

automatic adjustment of microphone levels, ideally for multiple speakers, as well as automated

noise-gating, for feedback reduction. A summary of these developments was provided in 1992

[48]. Additional developments in this area were sporadic although an increasing number of authors

referred to the concept of computers acting as assistants to mix engineers [49–52]. A renewed

interest in the subject arose in the mid-2000’s, spurred by advances in computer processing power

and storage, machine learning, the prevalence of low-cost DAWs and the availability of multitrack

digital audio on-line, among other factors.

2.3.1 Definitions of an audio ‘mix’
Naturally, in order to implement automated mixing, the term ‘mix’ must first be defined. Izhaki

[53] offers the following definitions.

A basic definition of mixing is: a process in which multitrack material - whether

recorded, sampled or synthesized - is balanced, treated and combined into a multi-

channel format. Most commonly, two-channel stereo. But a less technical definition

would be: a sonic presentation of emotions, creative ideas and performance.

These definitions can be interpreted in a number of ways. The first definition is for ‘mixing’ (an

action), but does not define ‘mix’ (an object). The second definition may apply to ‘mix’ but is not

easy to implement in the form of an equation, as it is highly subjective.

The following are equations used to define a ‘mix’ according to various authors. Note that the

nomenclature in the following equations has not been changed from the original texts. Equation

2.3 was used by Perez-Gonzalez and Reiss [54], stating simply that a mix is the sum of all channels.

mix =
N

∑
n=1

Chn[t] (2.3)
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This definition seems logical, even trivial, and has become the foundation for a series of more

elaborate definitions. Tsilfidis et al. [55] goes a step further in adding a gain vector, a to each

track, allowing for time-dependent changes to the track gains.

y[n] =
K

∑
k=1

ak[n].xk[n] (2.4)

In a review paper from 2011, Equation 2.5 was used by Reiss [56], adding generic control vec-

tors c which modulate the input signals x. These control vectors allow for a variety of results,

such as polarity correction, delay correction, panning and source separation, depending on their

implementation.

mixl(n) =
M−1

∑
m=0

K−1

∑
k=0

ck,m,l(n)∗ xm(n) (2.5)

Each of these equations considers the mix as the sum of the input tracks, although there is little

agreement on terminology or nomenclature in this general definition. It is shown in Chapter 4 that

this definition is too broad for certain automated mixing tasks and, as such, a new definition is put

forward in this thesis (see § 4.1).

2.3.2 System architectures

Table 2.3 refers to three types of system architecture used in automatic music production sys-

tems, namely knowledge engineering (KE), grounded theory (GT) and machine learning (ML).

Knowledge engineering refers to the coding of expert knowledge, for use in expert systems. An

Table 2.3: List of selected automated music production literature broken into three categories —
knowledge engineering, grounded theory and machine learning. Entries marked with * involved
the development of a system. The table is expanded from that which was presented by Reiss
[57] in 2015. Note that there is not much work featured from 2013 onwards: arguably, the field
has moved slightly away from the development of systems and towards perceptual studies. For

simplicity, studies from this thesis are not included.

Work Refs. Topic KE GT ML

Chourdakis 2015 [43] Reverberation x
*Ma 2015 [58] Dynamic range compression x x
Ma 2013 [59] Equalisation x
*De Man 2013 [60] Various x
Pestana 2013 [61] Various x x x
*Ward 2012 [62] Level balancing x
*Scott 2011 [63] Level balancing x
*Maddams 2012 [64] Dynamic range compression x
*Mansbridge 2012 [65] Level balancing x
Aichinger 2011 [66] Inter-channel masking x
Bocko 2010 [67] Various x
Lopez 2010 [68] Equalisation x
*Terrel 09-10 [69, 70] Various x
Pardo 09-12 [37, 71, 72] Equalisation x
Heise 09-10 [73] Reverberation x
Barchiesi 09-10 [74, 75] Various x
Perez 07-10 [54, 76–78] Level balancing x
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expert system is a computer system that emulates the complex decision-making of an expert in

some specific field of expertise. Knowledge engineered expert systems are well suited to prob-

lems which can be represented as decision trees i.e. where the application of a finite amount of

rules can yield a decision. Applications have been found in medical diagnosis and mortgage ap-

proval. Music production, and mix engineering in this case, is arguably more nuanced than this

due to its creative elements. Intelligent music production systems based on this architecture have

therefore shown varied results, as discussed in § 2.3.3. Table 2.3 shows a number of studies that

have used knowledge engineering in attempts to design expert systems for music mixing. This typ-

ically involves gathering “best-practice” rules from a variety of sources and implementing these

rules in the system. Pestana & Reiss [40] refer to a number of these rules, which are listed in

Table 2.4 — some are supported by subjective testing and some are not, demonstrating a lack of

consensus on some “best-practice”.

Grounded theory involves the analysis of experimental outcomes, leading to the formulation

of hypotheses [79]. For music production systems, this can be achieved using psychoacoustic

studies, particularly those which assess quality and preference. For this approach to be useful, the

number of participants in such experiments needs to be sufficiently high and experiments must be

carefully designed.

Machine learning is the field of study which exploits a computer’s ability to learn without

being programmed explicity, achieved by large-scale analysis of observations. Often a system

is trained on a set of input data with known output and the rules learned in this training phase

are applied to new inputs with unknown output. This process is known as supervised learning.

Unsupervised learning is also commonly used, in situations where no labelled data is available. In

this case, patterns in the data and the clustering of observations are used to infer information.

2.3.3 Subjective evaluation of systems
In order to determine if the developed system is operating as intended, and also establish whether

its development can be considered a success, subjective evaluation is necessary. A number of

papers listed in Table 2.3 include a subjective evaluation. This section outlines some of the issues

with subjective evaluation of automated music production systems.

Scott & Kim [80, 81] have proposed a method of automatic mixing in which the instruments

are identified and common instrument-specific processing is applied, based on best-practice. The

processing consisted of gain adjustment, stereo panning and “coarse” equalisation. Figure 2.5

shows the result of a subjective evaluation with 15 participants. For only six of the ten songs

evaluated is the proposed model preferred over the summed mix. From this result it is not clear

that the system provides an advantage over the default condition, which is a mix where the gains of

each track are each set to an equal, arbitrary value. This indicates the system has trouble adapting

to different songs. This issue is possibly caused by the use of best-practice guidelines in the mixing

process.

In the evaluation of an automatic dynamic range compression (DRC), Maddams [64] uses

“no DRC”, “expert manual” and four variations on their own settings, using four songs. Partici-

pants were asked to “rate the following according to the overall quality of the mix.” The results

indicate that the application of DRC did not noticeably improve the quality but that inappropriate

application did reduce the overall quality, as shown in Figure 2.6.
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Table 2.4: Best practice assumptions used for the design of intelligent music production systems,
as reproduced from Pestana and Reiss [40]. The origin of the assumption can either be literature
review (LIT), the interview process with professionals (INT), or the assumption made in previous
implementations (PI). The method of testing is either through mixing exercises by professionals
(EX), measuring number one hit singles for features (MM), subjective evaluation with a listening

panel (SE) or a questionnaire sent to professionals (Q).

# Title Proven Origin Tested

01 All signals should be presented with equal loudness. False PI SE; Q
02 The main element should be up by an understandable amount of loud-

ness units.
True INT EX; MM; SE; Q

03 Vocals should be ridden above the backing track True INT; LIT EX; Q
04 No element should be able to mask any of the frequency content of the

vocals.
True INT; PI Q

05 Track panning affects partial loudness True LIT EX; SE
06 Dynamic Range Compression affects relative loudness choices. False INT SE
07 Low-end frequencies should be centrally panned. True LIT; INT; PI MM; SE
08 The main track is always panned centrally. True LIT; INT; PI MM
09 Remaining tracks are panned out of the center. True LIT; INT EX; MM; Q
10 The higher the frequency content the more a track can be panned side-

ways.
False LIT; PI MM

11 Frequency balance should be kept between left and right. True LIT; INT; PI MM; Q
12 Hard panning should be avoided. False LIT; PI SE ; Q
13 Sources recorded with close (mono) and far (stereo) techniques simul-

taneously should have the mono source panned to the same perceived
position featured in the stereo source.

True INT Q

14 Monophonic compatibility should be kept. True LIT, INT MM; Q
15 Panning is mostly done audience-perspective. False LIT Q
16 It is customary to apply temporal cues to panning. False PI Q
17 Equalization is frequently done to avoid inter-track masking effects. True LIT; INT; PI EX; Q
18 Salient resonant frequencies should be subdued. True INT Q
19 High-pass filters should be used in all tracks with no significant low-

frequency content.
False LIT; PI SE; Q

20 There is a specific low-mid region that can be attenuated to improve
clarity.

False LIT SE ; Q

21 Expert mixers tend to cut more than boost. False LIT Q
22 High Q-factors should be used when cutting and low Q-factors when

boosting.
True LIT; INT Q

23 Equalization use should always be minimized. False LIT Q
24 Every song is unique in its spectral/timbral contour. True INT MM; Q
25 Reverb time is strongly dependent on song tempo. False INT SE ; Q
26 Reverb time is strongly dependent to an autocorrelation measure. True - SE
27 Delay times are typically locked to song tempo. True LIT; INT SE ; Q
28 The pre-delay is timed as a multiple of the subdivided song tempo. True LIT; INT SE ; Q
29 The level of the reverb returns is on average set to a specific amount of

loudness lower than the direct sound.
True - SE

30 Low-end frequencies are less tolerant of reverb and delay. True LIT; INT EX; Q
31 Transients are less tolerant of reverb and delay. True LIT; INT EX; Q
32 The sends into the reverbs should be equalized. True INT Q
33 Reverbs can be carefully substituted by delays to lessen masking effects. True INT SE; Q
34 Compression takes place whenever a source track varies too much in

loudness.
True LIT; INT EX; SE; Q

35 Compression takes place whenever headroom is at stake, and the low-
end is usually more critical.

True INT MM; EX; SE; Q

36 Gentle bus/mix compression helps blend things better. True LIT; INT SE; Q
37 There is an optimal amount of compression in terms of dB and it de-

pends on sound source features.
True LIT EX; Q

38 Compression should not be overused and there are maximum values for
it.

False LIT EX; Q

39 Compressor attack is set up so that only the transient goes through. False LIT EX; Q
40 Compressor release is set up so that it is over when the next note is

about to start.
False LIT EX; Q

41 It is acceptable to judiciously lop off some micro-burst transients to gain
peak-to-RMS space.

True - SE ; Q

42 In deciding a tracks dynamic profile, an expert engineer will shift the fo-
cus of the listener by enhancing different tracks over time, with volume
changes that may some times be quite big.

True INT EX; Q
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Figure 2.5: Subjective evaluation of automatic mixing system, taken from Scott and Kim [80].

Figure 2.6: Subjective evaluation of automatic dynamic range compression system, taken from
Maddams et al. [64].

Figure 2.7: Subjective evaluation of automatic dynamic range compression system, taken from
Ma et al. [58]. Y-axis shows overall preference and error bars indicate 95% confidence intervals.
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Figure 2.8: Subjective evaluation of automated mixing systems, taken from De Man and Reiss
[60]. Y-axis shows overall preference and error bars indicate 95% confidence intervals. Systems

are listed as follows (1: ‘KEAMS’, 2: ‘VST’, 3: ‘pro 1’, 4: ‘pro2’, 5: ‘sum’).

Ma et al. [58] describes a newer dynamic range compression system. In subjective eval-

uation, shown in Figure 2.7, the ratings of overall preference were found to be comparable to

one out of two human engineers, slightly preferred to no compression and superior to a alternate

implementation. Based on these results, the system is described as having an “outstanding per-

formance”. However, the alternate implementation is actually that of Maddams [64], which itself

was reported on par with an experienced engineer, for certain settings. A previous question asked

participants to rate each system according to the perceived amount of DRC applied and the per-

ceived amount of DRC artefacts — the ‘no DRC’ condition scored middle of the range for both

questions. This illustrates that participants were either not well trained in preparation for the test

or that the concepts were not well-defined. This example illustrates the need for greater care when

designing subjective evaluation experiments in this field.

A complete mixing system was implemented using the knowledge engineering approach [60].

This system was compared against two experienced engineers, an alternate implementation and

an anchor condition, where the mix was created by summing all of the individual tracks, after

normalisation. The alternative system was collection of VST processors developed for previous

work (including [58, 64, 65]). Figure 2.8 indicates that the proposed system is preferred to the

alternate implementation and the anchor, and is comparable to the two professionals.

In a later study [82], an automated system (believed to be the same as ‘VST’ used above) was

compared against 26 mix-engineers (the same two professionals as [60] and 24 of their students).

Each engineer had two hours to create a mix, using an identical array of tools. The automated

system was out-performed by all 26 engineers, as shown in Figure 2.9. This suggests that there is

much room for improvement in the development of future systems. However, the settings for the

automated system in this study were not calibrated for each song, which may explain some of the

poor performance. Additionally, many automated music production systems are designed with the

live environment in mind — they operate in real-time, performing simple operations such as gain

adjustment, equalisation, DRC and panning. In this study, the automated mix was being compared
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Figure 2.9: Box plot of ratings per mixing engineer, in decreasing order per median. A-H are
first year students in 2013-2014 (4 songs), and second year students in 2014-2015 (1 song); I-P
are second year students in 2013-2014 (4 songs), and Q-X are first year students in 2014-2015
(1 song). ‘P1’ and ‘P2’ are their teachers (‘Pro’), ‘Auto’ denotes the automatic mix. Graph taken

from De Man et al. [82].

to mixes generated in a studio environment, and it could be argued that the human engineers could

exercise a greater level of creativity than the automated system was capable of.

This highlights an aesthetic consideration in the design of automated music production sys-

tems — should the system be capable of ‘blindly’ processing any audio material or should they

require user input? If user input is not required, it may still be possible for a user to interact with

the system, to further improve the mix or tailor it to their requirements. In summary, the following

observations can be made:

• Many papers include a subjective evaluation.

• There is often comparison to at least one previous implementation.

• There is often comparison to some “real-world” mixes by mix engineers, although often

only one or two.

• Audio samples are often rated on one attribute (such as clarity of sources, or audibility of

compression artefacts) in addition to preference, yet the relationship between the two is not

known

Subsequently, what is required for a detailed and fair evaluation of any proposed system is com-

parison with a number of other methods and comparison with a range of real-world mixes.
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2.4 Evolutionary computing
One of the propositions in this thesis is the use of evolutionary computing to address intelligent

music production challenges. A brief review of literature in this topic is therefore required. Evo-

lutionary computing (EC) is a broad term referring to a series of algorithms and analysis methods

often used in global optimisation problems. They are so-called as they utilise systems in which a

population consisting of multiple potential solutions changes over time, evolving towards the opti-

mal point in the solution space. Generally, this is achieved using some meta-heuristic derived from

biological processes, noting that living systems have evolved towards optimal solutions to specific

problems, such as adapting their collective behaviour in order to survive in new landscapes. This

is in contrast with more traditional optimisation strategies which iterate one solution over the solu-

tion space. These methods include gradient-based or “hill-climbing” methods which require that

the solution space be smooth and differentiable. EC is commonly used for problems which are

non-deterministic, or non-linear, where the solution space may not be smooth and differentiable,

such as logistics, scheduling, engineering and design.

2.4.1 Genetic algorithm
There is a great variety of biologically-inspired meta-heuristics used in optimisation. Perhaps

the most well-known is the genetic algorithm (GA). The contemporary understanding of what

constitutes a genetic algorithm owes much to the works of Holland [83] and Goldberg et al. [84],

among other authors.

A genetic algorithm begins with an initial population of candidate solutions, which evolve

towards an optimal solution in a manner akin to genetic evolution using Darwinian principles, par-

ticularly “survival of the fittest”. Each solution is represented as a chromosome, a list of ordered

genes. For binary GA, each gene is a value in the allele set {0,1}. For example, the chromosome

[0,1,1,0] contains four genes. The dimensions of the problem to be solved are represented within

this chromosome, i.e. if x and y coordinates in a fixed range can each be represented as a 4-bit

binary string, then the 8-bit chromosome [1,1,1,1,0,0,0,0] represents a maximal value of x and

a minimal value of y. Within the population of solutions, each is rated according to its quality

as a solution. This is known as a fitness function. Individuals with fit solutions are chosen more

frequently to “mate” with other fit solutions, thus producing offspring in the next generation of

solutions. Done correctly, this allows the average fitness of the population to increase, converg-

ing on the optimal solution. The basic form of a genetic algorithm can be described as follows,

illustrated in Figure 2.10.

1. Initialise population

2. Representation of population as chromosomes

3. Evaluation of population ‘fitness’

4. Selection of fittest individuals for reproduction

5. Reproduction by genetic crossover and mutation

6. Repeat 3 → 5 until stop condition is met
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Population

Initialisation

Termination

Parents

Offspring

Recombination

Mutation

Survivor
selection

Parents
selection

Figure 2.10: Flowchart of a basic Genetic Algorithm

For the sake of brevity at this point, further explanation of selection, crossover and mutation will

be discussed in Chapters 7 and 8, within the context of the specific problem at hand.

2.4.2 Interactive Evolutionary Computation (IEC)
In problems that are highly subjective, EC methods are particularly suitable. IEC is a form of

EC in which the fitness evaluation is not based on a clearly defined formula but on the subjective

response of a user. IEC has been utilised in the solution of various problems which are subjective,

such as fashion design [85], logo design [86] and sound design (see Takagi [87] for a detailed

overview of applications). Notably, these examples all incorporate design problems in which

aesthetics are important. In such applications relating to aesthetic design, there may not be a

clearly defined optimal solution that is considered suitable for a range of users. Neither is the

fitness landscape clearly defined. The fitness function depends greatly on what is asked of the

user conducting the evaluation and their understanding of the question posed and the domain of

the problem. For example, in the case of fashion design, users may be asked to rate the fitness of

presented candidate solutions (outfits) where the target is a series of descriptions such as “warm,

smart, casual, autumnal” etc. IEC is useful here since when attempting to solve such a problem

“...we cannot use the gradient information of our mental psychological space...” [87].

2.4.3 Specific challenges of IEC
In IEC, the system generates solutions in the problems parameter space while the user evaluates

the fitness of the solution in some psychological space, which may be unique to each user. The

mapping between these two spaces may not be well-defined.

Considering that in IEC a user must evaluate the fitness of each solution, this can become a

time-consuming activity, with potential for high levels of cognitive demand and eventual fatigue.

This is especially a problem in audio, where each individual solution may take tens of seconds to

evaluate, rather than in image evaluation, where a number of solutions can be compared side-by-

side. In parallel to the emergence of IEC has been the development of hybrid methods in which

a relatively small number of solutions is evaluated by the user and the remaining solutions are

evaluated by extrapolation. This reduces the burden on the user for problem types where large

populations are helpful. Approaches to reducing the user burden include clustering of solutions

[88] and alternating user-evaluated generations with computer-evaluated generations.
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Figure 2.11: Psychological distance between target in our psychological spaces and actual sys-
tem output become the fitness axis of a feature parameter space where EC searches for the global

optimum in an IEC system. Image taken from Takagi [87].

2.4.4 Suitability of EC to IMP problems
This thesis proposes that there exists a strong argument as to why EC is well-suited to IMP prob-

lems. This argument is based on the following.

Non-linearities — due to the perceptual nature of audio evaluation, the solution space may not be

smooth and differentiable, making optimisation methods such as gradient descent difficult or

impossible to apply. Additionally, as each user may have a different goal in mind, there may

not exist a single global optimum. Each user may perceive a “personal global optimum”

rather than every user agreeing on a “universal global optimum”.

Large number of parameters — often there are a large number of parameters where the re-

lationships between them are not well-understood. Furthering the understanding of these

relationships helps construct more efficient search spaces. It is also important to establish

the mapping between system parameters and perceptual factors.

Fitness functions — the definition of a “good” mix, or at least a desired mix, can be complex but

is ultimately subjective. What is required is a numerical value for fitness. Quantities to be

minimised include the distance to a desired target which is known in advance, or quantities

thought to degrade audio quality such as inter-channel masking [66, 89]. However, if per-

ceptual targets are being sought, such as “warmth” or “clarity”, explicit subjective ratings

can be used as a fitness function in place of a numerical approximation.

A synthesis of these three observations leads to the use of Interactive Evolutionary Computing.

If “quality” is the variable to be optimised one must appreciate that quality can be considered as

specific to a single product, good or service [7]. Recall the framework for quality proposed by

Reeves and Bednar [1], repeated below. While definition #3 could possibly lead to an objective

fitness function, the other perspectives suggest subjective evaluation, furthering the case for using

IEC.

1. Quality as excellence of superiority

2. Quality as value
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3. Quality as conforming to specifications

4. Quality as meeting or exceeding customer expectations

Many of the works in Table 2.3 were aimed at live-sound applications, i.e., real-time processing

of incoming audio streams without prior knowledge, analysis of extracted features, heuristics used

to guide optimisation etc. An EC-based approach may be more suited to studio environments,

where processing is often applied after audio has been recorded, where there exists the time and

the possibility to compare various processing decisions before arriving at the final settings. Here,

there is no longer a need to analyse “live” audio as the entire audio track is known. Importantly,

multiple audio tracks are known as are the relationships between them. This scenario increasingly

allows for cross-adaptive effects and the temporal variation of parameters.

2.4.5 Previous work on EC in IMP
Much of the earliest applications of EC to this area are in subjects that may not be considered

as intelligent music production in the modern context, but do relate to audio/acoustic engineering

applications, such as filter optimisation in non-musical applications [90, 91], acoustic designs

[92, 93] and binaural hearing [94, 95]. Synthesis and/or sound design is perhaps the area that has

made most use out of EC-based techniques, where the parameter space of a synthesis engine is

searched for optimal sounds [96–101].

Many of these prior works are based on matching a sound or mix to a target, using the

distance from the target as a fitness function to be minimised. Of course, this target must be

known in advance. Heise et al. [73] compared four techniques (including genetic algorithm and

particle swarm optimisation) in the task of adjusting the parameters of a reverberation plug-in to

best match a given room impulse response. Kolasinski [102] was concerned with matching a mix

to a target, by adjusting tracks gains and using the Euclidean distance between spectral histograms

as a similarity measure that was to be minimised using GA. Barchiesi and Reiss [74] also attempted

matching to a given target mix, by optimising track gains and track EQ filters, using least-squares.

This paper was critical of Kolasinski [102] and of GA in general for this application, stating

“... for the purpose of this application, the results are quite poor as the number of

tracks increases and the algorithm is computationally expensive”.

These performance issues may not have been due to high-dimensionality per se, but rather the

choice of an inefficient solution space. Chapter 4 shows that optimisation of track gains and EQ

filters benefits from carefully designed solution spaces, in which each possible configuration exists

only once. Additionally, computational expense is less of a problem now than in 2009. There are

many more papers on various “matching to a target” applications [103–106]. What about when

there is no target audio available? In place of explicit target audio there may still exist a target in

some other domain, such as a perceptual target (“Make the mix sound bright/warm...etc”). Reed

[49], while not using EC, does emphasise that IMP applications should be “assistants” rather than

replacing the human operator. This is a philosophy that has been echoed by others [50–52] and is

applied in this thesis.
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2.5 Summary of literature review
In general, ‘quality’ can be considered as the degree to which a set of inherent characteristics fulfils

requirements, as defined in Definition 1. In a more detailed fashion, quality (of experience) is

described in Definition 4 and emphasises the importance of consumer expectations and emotional

state in the perception of subjective quality. In the case of audio programme material (such as

music), other factors are often considered such as perceived loudness, distortion, noise and other

signal defects, frequency response, timbre and spatial impression. More subjectively, it is shown

that, if quality can be considered as value (see Table 2.1), then liked music may be of high-quality.

Familiarity is often associated with liked material, and so familarity may be related to quality.

When evaluating musical material, the impression of quality can depend on how one listens

to elements of the production. For example, one may consider the quality of music to be reduced

if the vocal, and thus lyrics, are unintelligible. As intelligibility of speech is also subjective, the

mechanisms for this can be evaluated in different ways — is the overall level of the vocal too low,

or simply too low in certain critical bands? — is the vocal masked by another instrument? An

understanding of the psychoacoustics, mechanics and aesthetics of music production is important

in understanding quality perception.

Automated music production systems have been developed to automate simple tasks yet the

results have been mixed. This thesis is built on the following proposal: the reason for this is

that the understanding of quality perception in music production is currently insufficient. Thus,

by studying this specialised area of quality perception, alongside the psychoacoustics of music

production, greater understanding can be reached and new systems can be developed. It is also

proposed herein that evolutionary computing can be utilised to overcome some of the challenges

brought on by perceptual evaluation.



3
Quality in commercially-released music

As noted by Izhaki [53, p. 7], rarely does one have the opportunity to compare more than one mix

of the same song. This chapter is about the perception of audio quality in commercially-released

music, where there is only one mix of each song available. The majority of the chapter refers

to one experiment in particular, in which the audio stimuli were programme material that, being

examples of commercially-released popular music, were familiar to participants (albeit to varying

degrees of familiarity, including none). The following were the research questions which applied

to the work in this chapter.

RQ-1. Are quality ratings related to objective measures of the music signal and if so, how?

RQ-2. Is the percept of liking a song distinct from that of assessing its quality?

RQ-3. What influence does familiarity with a song have on listener preference?

RQ-4. Does listener expertise have a significant influence on perception of quality?

RQ-5. Which words are used to justify quality ratings and is there significant variation in the words

used to describe varying levels of quality?

Portions of the work in this chapter have been published in [107–110].

33
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3.1 Dataset #1 — popular music, 1982 to 2016
In order to provide a dataset of audio samples for study, 404 audio samples were collected from

commercially released compact discs. As such, these files have a sampling rate of 44.1 kHz

and a bit-depth of 16-bits. Each sample was 20 seconds in duration, centred about the second

chorus of the song. This region was chosen for consistency, as a chorus is frequently a memorable

centrepiece of the song. For songs without a chorus, or where the chorus does not feature the

vocals, an alternative section was chosen based on audition. A one-second fade-in and fade-out

were applied. In this dataset, care has been taken to include a wide variety of musical styles

which were popular during the time period considered. There are at least ten audio samples from

each calendar year, mostly covering pop, rock, electronic and hip-hop styles. All samples feature

vocals.

The earliest samples in this dataset are from 1982. This date was chosen as it represents the

commercial release of the CD format. Previous studies have studied large datasets of digital audio

for feature-extraction [111], however these datasets have contained samples of music originally

released long before the CD format was created. When these samples are included, they have

been sourced from remastered releases, since 1982. Due to this inclusion of remastered audio

samples, the results in these studies, describing the features of audio signals of music from the

1970s and earlier cannot be confidently stated. It is because of this that the current study only

uses music originally released on digital media, since 1982. As with other datasets of popular

music used in the literature there is a “western bias” [112], as nearly all of these samples feature

vocals in English.This was due to a requirement of subjective testing, that all samples used feature

vocals with lyrics in English, in order to maximise the likelihood of comprehension among test

participants, the tests being conducted in the UK.

For two of the earliest samples in the dataset, the audio extracted from CD was subject to

pre-emphasis, similar to the RIAA equalisation applied to vinyl records. This practice was oc-

casionally implemented on some of the earliest commercially released CDs and was necessitated

by the use of technologies originally designed for a 14-bit system, with a higher noise floor. The

high frequencies are boosted at the mastering stage and a flag encoded onto the disc. This flag

would engage a filter on-board the player so as to compensate for this boost, restoring the intended

frequency response but with reduced noise. For the samples in this dataset with pre-emphasis, a

de-emphasis filter was created according to specifications described by Galo [113].

The list of audio signal features used to characterise the dataset is shown in Table 3.3. Many

of these tasks were aided by the use of the MIR toolbox [114] and additional references are shown

in Table 3.3. Of all the audio datasets and feature extraction described in this thesis, chronologi-

cally, this dataset was the first to be examined. As such the set of features is not identical to those

described in later chapters but those analyses were informed by the analysis in this chapter.

As shown in Figure 3.1b, the central value of spectral centroid is between 3.3 and 3.8 kHz

throughout the period. This compares well with the distribution of spectral centroid in mixes,

as shown in Chapter 6 (see Fig. 6.5, Table 6.6 and Fig. 6.9). It is also clear that the perceived

loudness of the audio has generally increased (see Fig. 3.1a). In Figs. 3.1a and 3.1b, the smoothed

lines were determined using a weighted linear least squares method, as implemented in the smooth

function in Matlab. This method rejected outliers, defined in this case as being outside of six mean
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Figure 3.1: Trends in audio dataset #1. It is clear that the perceived loudness of digital music
releases has increased over this timespan.

absolute deviations.

Plotting the change in a single feature over time is useful as it is repeatable and directly

comparable to other studies, such as by Deruty [115]. However, a single feature does not fully

explain the complex nature of loudness or brightness 1 [116–118], for example, let alone subjective

impressions of audio quality. Later in this chapter, this type of plot will be re-visited using a

factor-based approach, which can better reveal the combined effect of numerous signal features —

the bigger picture.

1Brightness is typically considered to be well-approximated by spectral centroid alone, while § 6.1.1 indicates that
additional features provide additional insights.
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3.2 Experimental set-up
The test took place in the listening room at University of Salford, a room which conforms to

appropriate standards set out in ITU-R BS 1116-1 [21]. In total, 63 songs were chosen for this

listening test, from the dataset in § 3.1. These were chosen pseudo-randomly such that there was

an even distribution over the 31 year period from 1982 to 2013. Being examples of popular music,

these samples would be familiar to participants, to varying degrees. For each audio sample, the

participant was asked to respond to the four questions/requests shown here;

1. How familiar are you with this song?

2. How much do you like this song?

3. How highly do you rate the quality of this sample?

4. Choose two words to describe the attributes on which you assessed the audio quality

One clip was used at the beginning of each test to serve as a trial and from there on the order

of playback was randomised. An optional break was automatically suggested when 40% of the

trials were completed. Four questions were presented for each audio sample. The test interface for

questions 1, 2 and 3 is shown in Figure 3.2a and for question 4 in Figure 3.2b. The interface also

contained a play/pause button for controlling audio playback. The like and quality ratings were

provided using a 5-star scale, as also used in other contemporary studies [119]. When assessing

the familiarity of the sample, a ‘not familiar’ option was included for samples which were not

familiar or previously unknown to the participant.

While quality was not strictly defined in this context, the request for a like rating in the same

answer pane forces the participants into a deliberate distinction between the two. To investigate

how quality was interpreted, the participant was asked for two words to describe attributes of the

sample on which quality was assessed.

Audio was delivered via Sennheiser HD 800 headphones, the frequency response of which

was measured using a Brüel & Kjær Head and Torso Simulator (HATS). Low-frequency rolloff in

the response below 110 Hz was compensated using an IIR filter designed using the Yule-Walker

method. As this compensation boosted the response at low frequencies, the addition of a notch

filter at 0Hz was required to ameliorate the increased DC offset. To avoid clipping, audio was

attenuated prior to equalisation.

The reproduction system consisted of the test computer, Focusrite Scarlett 2i4 USB interface

and the headphones. The loudness of all audio samples was normalised according to BS.1770-3

[120], after the previously described headphone compensation had taken place. The target loud-

ness for normalisation was −22 LUFS, providing ample headroom. The presentation level to

participants was set to 82 dB LAeq, considered to be a suitably realistic level for headphone

reproduction. This level was set by recording a 1 kHz calibration signal at 94 dB through the

HATS microphone, onto the test computer. The loudness-normalised programme material was

then played back over headphones situated on the HATS and recorded through the same signal

chain.
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Please listen to the audio clip and answer the following questions.

Not familiar
Somewhat familiar

Very familiar

Q1. How familiar are you with this song?

1* 2* 3* 4* 5*

Q2. How much do you like this song? (5=highest)

1* 2* 3* 4* 5*

Q3. How highly do you rate the quality of this sample? (5=highest)

Proceed

Enter one word to describe an aspect of the sound on which you assessed the 
quality of this sample

Enter another word...

Proceed

(a) GUI with questions 1 to 3

Please listen to the audio clip and answer the following questions.

Not familiar
Somewhat familiar

Very familiar

Q1. How familiar are you with this song?

1* 2* 3* 4* 5*

Q2. How much do you like this song? (5=highest)

1* 2* 3* 4* 5*

Q3. How highly do you rate the quality of this sample? (5=highest)

Proceed

Enter one word to describe an aspect of the sound on which you assessed the 
quality of this sample

Enter another word...

Proceed

(b) GUI with question 4

Figure 3.2: Illustration of the graphical user interface which was used in the listening test

The total number of participants was 22 (4 female, 18 male), tested over a period of five

consecutive days. Each participant was asked to choose their level of expertise, based on partic-

ipation in previous listening tests. From this self-reported response, there were 13 experts and 9

non-experts. The median age of the participants was 23 years, ranging from 19 to 39 years. No

participant reported any serious hearing impairment. Each participant chose two preferred musi-

cal genres as an open question — from these responses it was observed that the participants had

diverse preferences, as the categories proposed by Rentfrow et al. [121] were represented (mellow,

unpretentious, sophisticated, intense and contemporary). The overall test duration varied by par-

ticipant, with median duration of 38 minutes, ranging from 22 to 69 minutes. As the test contained

the option of a break, any effects of fatigue on the reliability of subjective quality ratings were con-

sidered to be negligible, in line with guidelines suggested in recent literature [122]. Participants

were monitored from outside the room but were able to request assistance if needed.
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3.3 Results of experiment
The data obtained from this experiment falls into one of two categories: subjective data gathered

from test participants and signal features extracted from the audio stimuli. These are subsequently

referred to by the shorthand “subjective parameters” and “objective parameters”.

3.3.1 Effect of subjective parameters
With 63 audio samples and 22 subjects, these 1386 auditions were gathered and analysis was

performed on this dataset. In order to ascertain the importance of subjective measures in the as-

sessment of quality and like, a 3-way multivariate analysis of variance (MANOVA) was performed

(using IBM SPSS Statistics V.20), with independent variables of music sample, expertise and fa-

miliarity. The results are shown in Table 3.1. The assumptions for MANOVA were tested using

Box’s test of equality of covariance matrices and using Bartlett’s test of sphericity [123]. Box’s M

value of 686.15 was associated with a p-value of 0.802, which was interpreted as non-significant.

Bartlett’s test yielded a significant result.

χ
2(2,N = 1386) = 88.346, p < 0.001

These two test results indicate that the basic assumptions required for MANOVA are satisfactorily

met. Using Wilks’ Λ, there was a significant effect of sample,

Λ = 0.597,F(124,2144) = 5.082, p < 0.001

familiarity,

Λ = 0.721,F(4,2144) = 95.313, p < 0.001

and expertise

Λ = 0.991,F(2,1072) = 4.694, p = 0.009

on the ratings of like and quality. For Wilks’ Λ, the effect size is calculated as

η
2
p = 1−Λ

1/s

where s = (the number of groups−1) or the number of dependent variables, whichever is smaller.

Effect sizes are shown in Table 3.1. None of the interactions were deemed to have a significant

effect.

The multivariate test was followed-up by univariate analysis of variance (ANOVA), the results

of which are shown in Table 3.2. For ANOVA, effect sizes are calculated according to the usual

conventions [124]. Both η2
p and η2 were calculated, using Eqns 3.1 and 3.2, and are shown in

Table 3.2.

η
2
p =

SSeffect

SSeffect +SSerror
(3.1)

η
2 =

SSeffect

SStotal
(3.2)

In ANOVA, as in MANOVA, none of the interactions were found to be significant, while all
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Table 3.1: Results of 3-way MANOVA. Significant p-values (<0.05) are highlighted by an as-
terix.

Effect Wilks’
Λ

F Hyp. df Error df p η2
p Obs.

power

Sample .597 5.082 124 2144 .000* .227 1.000
Familiar .721 95.313 4 2144 .000* .151 1.000
Expertise .991 4.694 2 1072 .009* .009 .788

S×F .808 1.009 220 2144 .162 .101 1.000
S×E .879 1.151 124 2144 .127 .062 1.000
E×F .997 .672 4 2144 .611 .001 .221

S×F×E .884 .937 146 2144 .689 .060 1.000

Table 3.2: Results of 3-way ANOVA follow-up. Significant p-values (<0.05) are highlighted by
an asterix.

Source df F p η2
p η2 Obs.

power

Sample Like 62 4.418 .000* .203 .127 1.000
Quality 62 5.542 .000* .243 .201 1.000

Familiar Like 2 201.927 .000* .273 .187 1.000
Quality 2 20.360 .000* .037 .024 1.000

Expertise Like 1 4.126 .042* .004 .002 .528
Quality 1 7.532 .006* .007 .004 .783

S×F Like 110 1.170 .121 .107 .060 1.000
Quality 110 .977 .551 .091 .063 1.000

S×E Like 62 1.167 .181 .063 .033 .998
Quality 62 1.027 .422 .056 .037 .992

E×F Like 2 1.230 .293 .002 .001 .269
Quality 2 .230 .794 .000 .000 .086

S×E×F Like 73 .907 .697 .058 .031 .990
Quality 73 .992 .498 .063 .042 .995

Error Like 1073
Quality 1073

Total Like 1386
Quality 1386
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Figure 3.3: Scatterplot showing the correlation between like and quality ratings. Each point
represents the mean rating for each audio sample.

main effects were significant. While the MANOVA test showed a correlation between raw like

and quality ratings of R2 = 0.26, when mean like and mean quality values are evaluated for each

song, the value of R2 = 0.03, a non-significant correlation. The mean like and quality ratings for

each audio sample are shown in Figure 3.4, arranged in order of ascending quality illustrating

the non-existing correlation. Figure 3.3 indicates the correlation between mean like and quality

ratings for each sample.

Expertise does not appear to be as important a factor in this study as evidenced by the lower

η2 and observed power in Table 3.2. There is a large effect of the variable familiarity on like

ratings (which will be discussed later) and a small effect of familiarity on quality ratings.

3.3.2 Effect of objective parameters
Features extracted from the signal were compared against quality and like ratings gathered by the

subjective test. A linear function was fitted using the mean like and quality ratings for each song

and the goodness-of-fit is shown by the coefficient of determination R2 and associated p-values in

Table 3.3. Features for which a significant correlation was found (where p < 0.05) are highlighted

in bold. Since the value shown is R2, which spans the range 0 to 1, arrows indicate positive (⇑) or

negative (⇓) correlation, as determined by the polarity of Pearson’s r.

From this data it can be seen that there is a difference between the quality and like ratings

in terms of responsible parameters. Like ratings were generally correlated with spectral features

while quality ratings were correlated with amplitude features. The correlations with emotion fac-

tors support this. Quality was correlated with both RMS and roughness while like was correlated

with spectral spread. Spectral flux serves as both an indicator of amplitude and spectral character-

istics — higher values indicate greater amplitudes and were negatively correlated with quality. In

this study, there was no significant correlations found between spatial features or rhythmic features

and either like or quality ratings.

In order to reduce the dimensions of the feature space, Principal Component Analysis (PCA)

was used. This process attempts to construct a set of orthogonal features which are algebraic

sums of the input vectors and explain as much variance as possible. This process can reduce the
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Table 3.3: Correlation of features with subjective results. Significant correlations (where p <
0.05) are highlighted in bold and considered for PCA. Features with KMO < 0.6, marked with

an asterix, are not included in the PCA.

Type Feature
Quality Like

KMO
R2 p R2 p

A
m

pl
itu

de

Crest factor .125⇑ .004 .000 .842
Loudness [120] .160⇓ .001 .002 .915
Top1db [125] .078⇓ .028 .000 .833
Gauss [107] .201⇑ .000 .000 .835
PMF Kurtosis .108⇑ .009 .000 .646
PMF Flatness .081⇓ .025 .001 .951
PMF Spread .155⇓ .002 .002 .837

Sp
ec

tr
al

Spectral Centroid .000 .061
Rolloff85 [126] .008 .137⇓ .003 .732
Rolloff95 .039 .086⇓ .024 .663
Harsh [107] .058 .201⇑ .000 .363*
LF Energy [107] .065⇑ .046 .016 .489*

Sp
at

ia
l

Width-all (all freq.) .000 .027
Width-band (200Hz-10k) .013 .035
Width-low (0-200Hz) .000 .006
Width-mid (200Hz-2kHz) .037 .047
Width-high (2kHz-10kHz) .008 .028

R
hy

th
m Tempo .000 .037

Event density .000 .005
Pulse clarity .021 .005

E
m

o.
Fa

ct
or

s
[1

27
] RMS .166⇓ .001 .004 .829

Max. summarised fluctuation .065⇑ .045 .079⇓ .027 .493*
Spectral spread .143⇑ .002 .076⇓ .030 .804
Avg. HCDF .001 .068⇓ .040 .471*
Roughness .289⇓ .000 .036 .826
Std.dev. roughness .153⇓ .002 .006 .812

Sp
ec

tr
al

Fl
ux

[1
28

]

Band 1 (<50Hz) .067⇓ .043 .014 .858
Band 2 (50-100 Hz) .053 .002
Band 3 (100-200 Hz) .221⇓ .000 .024 .910
Band 4 (200-400 Hz) .132⇓ .023 .844
Band 5 (400-800 Hz) .153⇓ .013 .884
Band 6 (800-1600 Hz) .222⇓ .000 .009 .900
Band 7 (1.6-3.2 kHz) .277⇓ .000 .049 .938
Band 8 (3.2-6.4 kHz) .274⇓ .000 .038 .851
Band 9 (6.4-12.8 kHz) .179⇓ .003 .886
Band 10 (12.8-22.05 kHz) .071⇓ .031 .831
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Table 3.4: Calibration of Kaiser-Meyer-Olkin measure of sampling adequacy, from Dziuban and
Shirkey [129], based on Kaiser and Rice [134].

KMO Interpretation

Above .90 Marvellous
In the .80s Meritorious
In the .70s Middling
In the .60s Mediocre
In the .50s Miserable
Below .50 Unacceptable

dimensions of the feature space to a small number of principal components which together explain

most of the variance in the problem. In order to remove features which do not reveal information

about the subjective parameters, only the statistically significant features from Table 3.3 were

initially considered for use in the PCA. The appropriateness of PCA was tested as follows, based

on a scheme proposed by Dziuban and Shirkey [129], and using R, a language and environment

for statistical computing and graphics [130]. Using Bartlett’s test of sphericity (using the psych

package [131]), the null hypothesis that the correlation matrix of the data is equivalent to an

identity matrix was rejected.

χ
2(325,N = 62) = 2674, p < 0.001

This indicates that factor analysis can be performed. The Kaiser-Meyer-Olkin measure of sam-

pling adequacy (KMO, see Eqn. 3.3 [132]) was calculated for the full feature set and returned a

value of 0.837, above the recommended value of 0.6 suggested by Hutcheson and Sofroniou [133],

and by Kaiser and Rice [134], who suggested a calibration of the index, shown in Table 3.4. This

result suggested that such a factor analysis would be useful. The value of 0.6 was chosen as the

cut-off, as it was both a more conservative and more contemporary value. The communalities were

all above 0.3, further indicating that each variable shared some common variance with others. The

KMO for each of the significantly correlated variables is shown in Table 3.3. Only variables with

KMO > 0.6 were used as input variables for PCA.

KMO =

∑∑
j 6=k

r2
jk

∑∑
j 6=k

r2
jk +∑∑

j 6=k
q2

jk
(3.3)

In Eqn. 3.3 q2
jk are the squares of the off-diagonal elements of the anti-image correlation ma-

trix SR−1S, where R−1 is the inverse of the correlation matrix and S2 is the diagonal matrix

(diagR−1)−1, and r2
jk are the squares of the off-diagonal elements of the original correlations

2.

PCA was performed using R and the FactoMineR package [135]. Quality and like ratings

were considered as supplementary quantitative variables, meaning that they were not used as in-

puts for the calculation of principal components, only that they were included in the output data

2R code for the calculation of KMO can be obtained from http://eric.univ-lyon2.fr/~ricco/tanagra/

fichiers/en_Tanagra_KMO_Bartlett.pdf

http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/en_Tanagra_KMO_Bartlett.pdf
http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/en_Tanagra_KMO_Bartlett.pdf
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Figure 3.6: Scree plot with non-graphical solutions indicating two components be retained.
These first two components account for 80.2% of the total variance of the input.

and compared against the components (see Figure 3.7).

In order to determine the number of components to retain from the analysis, a typical ap-

proach is to inspect the scree plot of eigenvalues and determine the “knee” in the curve by visual

inspection. For a more quantitative approach, the following method was used. Using the nFactors

package [136] a variety of methods were employed in order to determine the number of dimen-

sions to keep for further analysis, shown in Figure 3.6. Kaiser’s rule [137] suggests retaining those

dimensions with eigenvalues greater than 1, which in this case was the first two components. The

acceleration factor (AF) [136] determines the knee in the plot by examining the second derivative.

This method would retain only the first dimensions but is known to underestimate [138]. The

optimal coordinates (OC) method [136] suggested that the first two dimensions be kept. Parallel

analysis (PA) [139] also suggested that the first two dimensions were suitable to retain. Addi-

tionally, these two components have eigenvalues >1. Based on agreement suggested by three of

the four methods, two dimensions were kept for the subsequent analysis. As all variables were

significantly correlated with at least one of these two principal components, there was no reason

to exclude any additional variables at this stage.

From Figure 3.7 it can be seen that the first principal component (dim. 1) represents variables

associated with amplitude features, such as crest factor, loudness, PMF kurtosis and all spectral

flux bands. The second principal component (dim. 2) describes high-frequency spectral features,

such as rolloff85 and rolloff95, along with the highest bands of spectral flux, all related to the

positive values. The projection of quality along the negative direction of dim. 1 indicates that

higher ratings were associated with recordings with greater dynamic range, such as high crest

factor or PMF kurtosis. Quality is also projected along the positive axis of dim. 2, although its

loading on this dimension is comparatively low. Like ratings show no noteworthy correlation with
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Figure 3.7: Correlation circle, showing components 1 and 2. Dim. 1 can be explained by
amplitude-based features and dim. 2 by mostly spectral features.

dim. 1, indicating that amplitude-based features do not appear to play a strong part in listener

hedonic preference. There was however, a preference for less treble frequencies, indicated by the

low values of rolloff features. This negative correlation to rolloff (as shown in Table 3.3) supports

the relation between like ratings and a peak in mid-range frequencies, or a simple disliking of

samples with too great an emphasis on high-frequencies, also seen in other related studies (see

§ 6.2). These results for like are not surprising since the rating of how much a listener likes a song

seems to be dependent on aesthetic and musical content and ultimately, familiarity, as indicated

by Fig. 3.4 and discussed later.

Table 3.5 shows the R2 values of linear fits of both quality and like ratings to the dimensions

of the principal component analysis. From this it can be seen that quality is significantly and neg-

atively correlated to dim. 1 (R2 = 0.212) but not dim. 2 (R2 = 0.021), and that like is significantly,

but negatively, correlated to dim. 2 (R2 = 0.129) but not dim. 1 (R2 = 0.004).

Figure 3.8 shows the 63 audio samples plotted against the first two principal components.

As the release year of each sample is known, the samples can be grouped by decade. The group
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Table 3.5: Correlation of subjective response variables to principal components. Value shown is
R2. Significant correlations highlighted in bold.

Dim. 1 Dim. 2

Like .004 .129
Quality .212 .021

centroid and 95% confidence ellipses for the population centroid are shown for the four categories

of 1982-1989, 1990-1999, 2000-2009 and 2010-2013. The data shows that, even with relatively

few audio samples per decade, there is an observable difference between the centroid of the 1980s,

1990s and 2000s categories along the first dimension. Due to the smaller size of the 2010s cate-

gory, the confidence ellipse is relatively large.

The location of each decade centroid on dim. 1, which is negatively correlated to quality,

increases chronologically. This result suggests that, according to the test panel and their definition,

quality seems to have decreased over the decades, mainly due to a change in features associated

with dynamic range, as addressed in other studies [108, 140]. This should be considered as an

indicative result due to the relatively low number of audio samples and it is important to stress that

like ratings were not influenced by this trend.

It should be noted that the use of the decade of release as a discrete qualitative variable is not

without problems. Release date, as a variable, is effectively continuous and so one would expect

to find little difference between 1989 and 1990 but a noticeable change from 1980 and 1999.

Consequently, we see that the four decade categories in this study would not be easily separable

in a multi-dimensional feature space, implying an upper limit to the success of decade-prediction

tasks, and helping to explain why such attempts to categorise audio by decade have had limited

success [125].
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3.4 Words used to justify ratings
For each audition, each participant was asked to provide two words to describe attributes on which

quality was assessed (see Fig. 3.2). This allowed for a larger corpus to be gathered than if a single

word had been requested. This section describes the analysis methods which were applied to this

data in an attempt to further understand the perception of quality.

3.4.1 Methodology
Once all data had been gathered, missing values were replaced with the term ‘blank’ which could

then be removed from further analysis. Spelling was corrected and terms deemed to be equivalent

were collated (such as ‘compressed’ and ‘over-compressed’). This resulted in 255 unique terms,

over 2669 instances. A term-frequency matrix was generated using the R statistical computing

environment along with the tm package [141]. From this term-frequency matrix it can be seen

that the 3 most frequently occurring words account for approximately 14% of all instances, while

the top 20 terms account for approximately 54% of all instances. This shows that many terms are

only used a small number of times. This relation between term-frequency and term-rank is found

in larger examples of linguistic corpora [142] and will be exploited later to determine the most

relevant words to analyse further.

In order to inspect the relationships between the words used and the individual audio samples,

participants and quality ratings, a series of network graphs were constructed as follows. For each

desired network a list of nodes and edges was created. This data was saved as a .CSV file and

imported into Gephi, an open-source software for exploring and manipulating networks [143].

Graph layout, as shown in Fig. 3.9, 3.10, 3.11 and 3.12, used the ForceAtlas2 algorithm [144] to

position the nodes relative to one another. Three types of graph were generated. For each graph,

the size of each node is proportional to the degree of the node (the number of connections) and

the thickness of lines between nodes indicates the weight of the edges (the number of times that

connection is made by participants).

3.4.1.1 Term Network

Here edges are drawn between individual terms and so the list of edges is simply the list of the

participants’ responses. In other words, for a given audition, a certain participant may have used

the terms ‘compressed’ and ‘loud’ to justify their quality rating. This is described by a single edge,

between two nodes, labelled ‘compressed’ and ‘loud’. As the complete graph contains 255 nodes

(one node for each of the 255 terms, shown in Figure 3.9), a subset of this graph is shown in Fig.

3.10. This smaller graph displays only the nodes with degree greater than 10.

3.4.1.2 Term-Quality Network

Here edges are drawn between pairs of terms (as above) and also between terms and any of the

five quality ratings which were awarded. For example, if the term ‘distorted’ is used to describe a

sample which was rated 2/5 by one participant and used to describe a sample rated 1/5 by another,

or for another sample, then edges are drawn from the node labelled ‘distorted’ to the nodes labelled

‘1’ and ‘2’. In Figure 3.11 the quality ratings are shown in red, while words are shown in blue.

3.4.1.3 Term-Participant Network

This network shows the words used by each of the 22 participants. The users considered to be

experts are shown in yellow, the non-experts are shown in red and the words are shown in blue.
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Figure 3.9: Term network, with 255 nodes (some are cropped out to fit on this page). By using
the ForceAtlas2 layout algorithm, terms which are frequently used together are located closer to

one another than terms which are rarely used together.

Edges are drawn between a participant and a word, the weight of the edge referring to how many

times that participant used that word.

3.4.2 Metrics

In order to characterise each of the terms used in an objective manner, a series of metrics were

introduced. Each term is scored based on the properties of each network allowing insights into

how the terms were used in the experiment, and how the terms were organised by the participants.
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Figure 3.10: Term network, with nodes where degree >10. By using the ForceAtlas2 layout
algorithm, terms which are frequently used together are located closer to one another than terms

which are rarely used together.

3.4.2.1 Normalised quality-score

The normalised quality-score, Zquality, of each word is given by the Eqn. 3.4, where NQ is the

number of times the word is used to describe a quality rating equal to Q and Ntotal is the total

amount of times the word is used. All ratings are normalised to the range 1 to 5, the same range

as the quality ratings.

Zquality =
5

∑
Q=1

(
NQ

Ntotal
.Q
)

(3.4)

3.4.2.2 Normalised expertise-score

Similarly, the normalised expertise-score, Zexpertise of each word is given by Eqn. 3.5, where Si = 1

for expert listeners and Si = −1 for non-expert listeners. An expertise score of 1 indicates that a

word has only been used by the expert group while a score of −1 indicates that a word has only

been used by members of the non-expert group.

Zexpertise =
22

∑
i=1

(
NSi

Ntotal
.Si

)
(3.5)
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Figure 3.11: Term-Quality network. Terms used to describe specific quality ratings (in red) are
shown close to those ratings.

3.4.2.3 PCA-score

This score investigates how certain words were used to describe certain songs, and determines a

score based on the objective parameters of those audio signals. For all audio samples, a set of

objective signal features was extracted which was then subject to PCA (see § 3.3.2). The first

two dimensions explain 80.2% of the total variance in the extracted features. Dimension 1 can be

described by amplitude-based features, with positive values referring to louder, more compressed

samples and negative values referring to quieter, more dynamic samples. Dimension 2 describes

signal bandwidth, where positive values have greater high-frequency extension.

For each term used, a score is obtained for each of these two dimensions, similar to the

previous metrics. This allows all words to be positioned in the same feature-reduced space used

for audio analysis, using the scores of all audio samples on each principal component. Here NA is
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Figure 3.12: Term-Participant network, showing all words and participants. Experts are shown
in yellow and non-experts in red. Frequently used terms are located towards the centre of the

graph and infrequent terms are located at the exterior.

the number of times a word is used to describe sample A, and Ntotal is the total number of times

the word is used. From the earlier PCA, dim1A and dim2A are the scores for sample A on each of

the first two dimensions of the PCA space (see Fig. 3.8). For each word, the scores are determined

as follows.

Zdim1 =
62

∑
A=1

(
NA

Ntotal
.dim1A

)
(3.6a)

Zdim2 =
62

∑
A=1

(
NA

Ntotal
.dim2A

)
(3.6b)
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Table 3.6: Frequency count (Chi square test analysis) of 20 most used words

.

Quality rating
1? 2? 3? 4? 5? TOTAL

Distorted 31> 43> 37 13< 2< 126
Punchy 1< 11< 37 63> 13 125
Clear 1< 4< 24< 77> 18> 124
Full 0 4< 21 41> 21> 87

Harsh 15> 38> 23 9< 0 85
Wide 3 5< 28 35> 10 81
Loud 10> 18 25 22 4 79
Clean 0 0 13< 36> 20> 69
Fuzzy 7 28> 28 4< 0 67

Synthetic 1< 18> 21 20 4 64
Spacious 1< 0 20 30> 10> 61

Thin 6 21> 29> 5< 0 61
Bright 1< 9 26> 17 7 60
Dull 8> 25> 20 7< 0 60
Deep 0 4< 15 29> 9 57

Narrow 2 25> 23 6< 0 56
Smooth 0 3< 18 27> 7 55
Crunchy 0 10 23> 9 2 44
Strong 0 2< 10 21> 9> 42

Aggressive 2 5 8 18> 5 38
...

...
...

...
...

...
...

TOTAL 197 528 876 856 212 2669

3.4.3 Results
For all these metrics, words which are infrequently used would achieve scores heavily weighted

by the few instances on which they were used. Therefore, the following discussion displays only

a subset of the total set of words.

3.4.3.1 Quality scores

The 20 most frequently used words are shown in Table 3.6, along with the number of times used to

describe each quality rating. A Chi-square test is used to determine whether there was significant

variation in the usage of words across these five categories. The result of this test indicated that

there were significant variations present, as different words were used to describe different quality

ratings.

χ
2(76,N = 1441) = 2131.26, p =< .001

Zquality for each of the top 20 words is shown in Table 3.7. This data shows the importance of

distortion in the perception of quality, as audio samples described as distorted are awarded low

ratings of quality.

3.4.3.2 Expertise scores

Zexpertise for all words was obtained. Words which were used by only a single participant were

removed, leaving 96 words out of the initial 255. When used by only one participant a word has

a score of either 1 or −1 and therefore would bias the interpretation of the following results. In
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Table 3.7: Quality score of the 20 most frequently-occurring words.

Word Quality score

Clean 4.10
Full 3.91

Strong 3.88
Clear 3.86

Spacious 3.79
Deep 3.75

Smooth 3.69
Punchy 3.61
Wide 3.54

Aggressive 3.50
Bright 3.33

Synthetic 3.13
Crunchy 3.07

Loud 2.90
Narrow 2.59

Thin 2.54
Dull 2.43

Fuzzy 2.43
Harsh 2.31

Distorted 2.30

order to keep the most agreed-upon words, all words used by only 2 or 3 participants were also

removed, leaving 60 words which account for approximately 84% of all instances. The histogram

in Fig. 3.13 shows the distribution of counts among the 60 remaining words. This distribution

shows a skew towards higher scores, which suggests that the most agreed-upon terms are mostly

used by the expert group, while the non-experts used more individual terms, with less agreement.

3.4.3.3 Feature-based scores

Figure 3.14 shows the 60 most agreed-upon terms positioned in the first two dimensions of the

PCA space. The words ‘compressed’, ‘distorted’, ‘clipped’ and ‘loud’ have positive values on

dimension 1 while ‘dynamic’ and ‘gentle’ have negative values. The words ‘bright’, ‘brittle’ and

‘harsh’ have positive values on dimension 2, which is related to high-frequency characteristics,

while ‘dark’, ‘warm’ and ‘dull’ each have negative values. This shows agreement with the objec-

tive descriptions (see § 3.3.2).

The Euclidean distance between pairs of words in the full 22-dimensional PCA space is

obtained (refer back to Fig. 3.6). These distances are used to perform multi-dimensional scaling,

in which words are positioned to minimise the total strain in the graph. Positions of words in a

two-dimensional MDS solution are shown in Figure 3.15.

3.4.4 Interpretation of scores
3.4.4.1 Quality ratings

The word ‘distorted’ is the most frequently occurring word and is used significantly more often

than chance in describing audio samples that were rated 1 or 2 stars, while significantly less often

than chance for 4 and 5 stars. This suggests that the participants very often judged the quality of
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Figure 3.13: Histogram of normalised expertise score. When the words used by three or fewer
participants are omitted, most remaining words have positive expertise scores, indicating they

are favoured by experts.

audio samples based on the level of perceived distortion. Similarly, the word ‘clean’ is never used

to describe ratings below 3 stars and achieves the highest quality score. The words ‘punchy’ and

‘clear’ are also frequently-occurring, suggesting that these words were familiar to participants and

can be used to describe sound attributes of musical recordings which relate to audio quality. This

result helps to justify recent research into the objective characterisation of these terms by Fenton

et al. [145, 146].

3.4.4.2 Expertise

The distribution of the expertise scores suggests that the two expert groups used a different set

of words to one another when assessing audio quality. The expert groups used a smaller, more

agreed-upon set of words, while the non-experts used a larger variety of individual terms. This

suggests that expert users have been trained to identify certain aspects of an audio signal and

describe them in a way that is understandable to other expert users. The word-usage patterns of

the non-experts shows that these participants were more likely to use words which were not used

by other participants, terms for which the meaning may not be as universally understood. Only two

words were used by all participants at least once — ‘distorted’ and ‘clear’ — further suggesting

that this subjective dimension is generally important to listeners. Of the words used by over four

participants, the five most associated with high expertise are ‘dynamic’, ‘muddy’, ‘cluttered’,

‘compressed’ and ‘tinny’. The five words most associated with low expertise are ‘busy’, ‘messy’,

‘mellow’, ‘brittle’ and ‘light’. While open to interpretation, the expert group appears to employ

a subjectively more technical language, while, in contrast, the non-expert group refer to similar

properties in a more abstract fashion. For example, one can consider ‘tinny’ to be equivalent to

‘brittle’ and ‘light’ as well as ‘busy’ to be comparable to ‘cluttered’ or ‘compressed’.
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Figure 3.14: PCA scores of the top 60 words.
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Figure 3.15: MDS of PCA scores of top 60 words.
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3.4.4.3 Words in PCA space and MDS
The words were scored based on the principal components of the samples’ signal features in

order to gain insight into the meaning of each word. Figure 3.15 suggests that, when based on

objective features, the differences and similarities between pairs of words can be seen, for example,

‘cluttered’ and ‘busy’ are similar, as are ‘distorted’, ‘crunchy’ and ‘compressed’, among other

pairings. The words ‘punchy’, ‘clear’, ‘full’ and ‘smooth’, which all have high quality scores, are

closely located in Fig. 3.15 which suggests that these words were used to describe songs which

shared similar values of the objective features relating to high quality.

Of course, this does not mean that an absolute mapping between words and subjective vari-

ables exists, for example, that negative values of dim.2 are associated with high “like” scores (see

Fig. 3.7). Recall that the correlation between like ratings and dim.2 is R2 = 0.129 (see Table.

3.5) and so an absolute mapping between these words and the subjective variables would not be

advisable.
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3.5 Discussion

These results are now discussed in light of the initial research questions, RQ.1-5. Results indicated

that the samples used in this test elicited different ratings and that, overall, the effect of sample was

the largest contributor to the variance found in the subjective ratings, shown in Table 3.1, where

η
p
2 = 0.227. The effect size of the audio sample was large (η2 = 0.201) for quality and medium

(η2 = 0.127) for like. This confirmed that the corpus of audio samples used was successful in

triggering significant perceptual variation in ratings from the participants for both concepts.

There appears to be a stronger correlation between quality ratings and the objective features

extracted from the signal than that found for like ratings (see Table 3.5). This suggests the former

is a more reliable concept for the subjective evaluation of technical quality, related to modifications

of the signal and distinct from hedonic perception. A meaningful correlation was found between

like and quality ratings (R2 = 0.26) using raw results pertaining to individual ratings of songs. This

however, became non-significant when values were averaged over all participants (R2 = 0.02),

removing inter-subject variation. If the two concepts of like and quality are plotted in the space

resulting from reducing signal features to a two dimensional space (see Fig. 3.7), they are nearly

orthogonal, further supporting the idea that there is low correlation between them. Each concept

is found to describe a different percept in the minds of listeners, where quality refers to technical

aspects of the recording and production and like refers to hedonic perception that might be rooted

in the musical style/genre or the actual song content itself. This is perhaps the most insightful

finding in this study, that quality and like ratings can be considered as two percepts, explained

by different factors. Participants elected their own definitions of quality in the experiment by

justifying their ratings

3.5.1 Effects of expertise

While expert listeners, on average, provided slightly lower quality ratings than non-experts, the

effect of expertise is observed to be small for both quality (η2 = 0.004) and like (η2 = 0.002).

It appears that expertise is not a key factor in the appraisal of either technical quality or hedonic

preference, under the conditions investigated here, although, after further investigation, it was

observed that experts and non-experts typically used different words to justify their ratings (see

Fig. 3.12).

3.5.2 Liking and familiarity

Participants were significantly more likely to award greater ratings of like and quality when they

were more familiar with the music. However, it is clear that this effect is greater for like ratings,

explaining 18.7% of the variance (see Fig. 3.5a), whereas for quality ratings it explains only 2.4%

of the variance (see Fig. 3.5b). This relationship between familiarity and hedonic preference could

be explained by two factors; one may like a song, subsequently choose to listen to it many times,

becoming familiar with it, or one may hear a song many times, become familiar with it and grow

to like it. This result suggests a clear differentiation between the concepts of preference (how

much someone likes a song) and technical quality (how well a song has been produced), since

familiarity does not seem to play a strong part in the latter.
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3.5.3 Predictive power of signal features
Objective features extracted from the signal were reduced to two components: component 1

mainly describing aspects of amplitude and explaining 67% of the variance in the features consid-

ered, while component 2 describes aspects of the spectral content and explains 13% of the vari-

ance. Significant correlations were found between features and the subjective response variables

(see Table 3.3 and 3.5).

Perceived quality is significantly correlated to amplitude features. Samples with higher dy-

namic range seem to elicit higher ratings of quality, while those with higher loudness seem to be

associated with lower ratings. Recall that all samples have been presented at a normalized loud-

ness level, thus effectively removing the differences in loudness but retaining the effect of reduced

dynamic range that often ensues from production techniques which maximize loudness. This can

explain why “louder” samples are perceived as lower quality in this context.

Measures of spectral flux and some of the underlying features in the MIRtoolbox used to

develop emotional predictions are also found to be correlated to quality. Metrics for spectral

content do not appear to have a significant effect on quality ratings.

Like ratings do not seem to be affected by amplitude features. As the presentation of au-

dio to participants was normalized according to perceived loudness, as in modern on-line music

streaming services such as Spotify and iTunes Radio, these results suggest instead that the effects

of dynamic range compression arising from efforts to increase loudness do not appear to affect

hedonic perception despite their degrading effects on perceived audio quality.

Like ratings appear to be correlated to spectral features although the strength of the corre-

lation is about half of that observed between quality and component 1 (see Table 3.5). This low

correlation suggests that ratings of like are more strongly affected by a listener’s familiarity with

a song than with objective features describing it.

These results further reinforce the idea that like and quality are separate aspects of an overall

“preference” paradigm. When one simply asks participants for one of these concepts, like or

quality, the result may be coloured by the participants impression of the other, which is not asked

for, a phenomenon known as “dumping bias” [147].

3.5.4 Temporal variation in loudness/dynamics — the “loudness war”
The sample that scored the lowest mean rating for quality (see Fig. 3.3) was taken from an album

whose perceived audio quality, due to production techniques, received negative attention in main-

stream media at the time of release [148, 149]. Participants were possibly aware of this criticism

and therefore open to bias. As shown in Fig. 5b, there is a difference in the mean value of dim. 1

for samples from each decade between the 1980s and 2000s. While the “loudness war” has been

well-documented [108, 115, 150, 151] and has been observed by plotting individual amplitude-

based variables over time, one can now see that the effect is visible on a factor level in a feature

reduced space. The samples from the 1980s display more variation across dim. 2 than dim. 1, i.e.,

more variation in spectrum/timbre than loudness/compression. There is a greater range of loud-

ness/compression in the 2000s since it is then possible to make louder but more compressed pro-

ductions, while some content producers still choose to create dynamic productions. The greatest

variation in loudness/compression in one decade is during the 1990s. This particularly significant

period of the “loudness war” has been previously referred to by the term “loudness race” [108].
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Table 3.8: Coefficients for fit shown in Eqn. 3.7.

Coefficient Value 95% conf. interval

a0 1.181 (0.6643, 1.698)
a1 2.748 (-34.34, 39.84)
b1 -3.511 (-33.05, 26.03)
a2 -0.1323 (-2.962, 2.697)
b2 0.1495 (-3.04, 3.339)
a3 0.6051 (-13.28, 14.49)
b3 0.4349 (-18.49, 19.36)
w 0.09484 (0.0896, 0.1001)

A more detailed investigation was carried out in order to reveal more information about this

trend. Rather than simply using the audio samples from the subjective test, an equivalent analysis

was undertaken on the entire dataset of 404 samples. Figure 3.16 shows the value of the first

PCA dimension for all audio samples 3 Again, as in Figs. 3.1a and 3.1b, the smoothed lines

were determined using Matlab’s smooth function. Rather than using numerical differentiation

techniques, the smoothed line is represented by an analytical expression. This was obtained using

the curve-fitting tool in Matlab. A Fourier series was used to fit a curve to the smoothed line.

Three terms were used. This provided a near-perfect fit to the smoothed line, with R2 = 0.9999.

The general form of the equation is shown in Eqn. 3.7 and the coefficients are displayed in Table

3.8.

y = a0 +a1 cos(wx)+b1 sin(wx)+a2 cos(2wx)+b2 cos(2wx)+a3 cos(3wx)+b3 sin(3wx) (3.7)

The first and second derivatives of this expression are found using the symbolic math toolbox in

Matlab. These functions are shown in Fig. 3.17. The minimum value of f ′ shows the point where

f moves from concave to convex. The minimum and maximum values of f ′′ show the points of

inflection. These points are used to describe the start and end of a specific period of time, when the

change in loudness was most rapid. From the data, the period can be dated as 1989 to 2002. This

has been indirectly referred to by Deruty [115], who stated that loudness levels reached a peak in

2007 and described “pre-1990” levels as being a target to return to in the future. By Fig. 3.17,

there is no signs of change since 2007. This result may be more accurate as it used a factor-based

approach rather than analysis of features in isolation.

3As with the subset used in the subjective test, the first component of this PCA explains loudness variables, in a
highly similar fashion to what is shown in Fig. 3.7.
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Figure 3.16: Fit of PC1 to 404 songs. Lower values indicate reduced dynamic range / increased
loudness.
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Figure 3.17: Derivatives of fit of PC1 to 404 songs. This result indicates that 1995 was the year
in which loudness values were increasing at the greatest rate. It is also suggest that loudness

values have not undergone any notable changes since 2002.
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3.6 Chapter summary
The analysis of the experiment described in this chapter revealed that the perception of quality in

mastered, commercially-released music samples is related to the perception of dynamic range and

amplitude. The perception of the more hedonic qualities, which relate to liking of a music sample,

do not relate to these measures in a significant way. These ‘like’ ratings were, however, strongly

influenced by song-familiarity, implying instead that aspects of preference and liking are distinct

from the interpretation of quality and might not be the best descriptors for studies where technical

quality is the percept being sought.

The expertise of listeners, although significant, had a weak effect on the ratings of quality and

like, suggesting, somewhat counter-intuitively, that a participant’s expertise is not a strong factor

in assessing audio quality or musical preference (see Figs. 3.5a and 3.5b).

It has been observed that the words used to describe sonic attributes of the audio signal

on which quality was assessed were typically those words that describe perceived timbre, space,

and defects. The frequency of word usage varied significantly depending on the rating being

awarded, with words such as ‘clean’ and ‘full’ strongly associated with high ratings of quality,

while ‘distorted’ and ‘harsh’ were associated with low ratings.

In summary, quality in music production is revealed as a perceptual construct distinct from

hedonic, musical preference, which is more likely influenced by familiarity with the song. Audio

quality can be predicted from objective features in the signal and be adequately and consensually

described using verbal attributes. The work presented has implications in the music industry, par-

ticularly if issues such as the “loudness war” are being rendered moot by new loudness normalised

broadcast standards. However, as this study dealt only with one particular dataset, containing mul-

tiple songs and only one mix per song, this separation of the two concepts may not be the case in

other scenarios, such as music mixing (see § 6.2.4).

This chapter has introduced a number of concepts that will be re-visited later, such as audio

signal feature extraction and a detailed procedure for principal component analysis. From this

point onwards, the content of the thesis deals with music-mixing processes in a more explicit

manner.



4
Exploring the “mix space”

In the process of mix-engineering, many complex actions are undertaken, such as level-balancing,

equalisation, dynamic range compression and expansion, or the use of time-based effects such

as delay and reverberation. Each of these types of processing can utilise a number of different

parameters and can be applied in any particular sequence on any individual audio element in the

project. Consequently, there exist a large number of possible mixes that can be produced from a

given set of audio elements and tools, and the problem quickly becomes intractable.

This chapter deals with the fundamental question of “what is mixing”, or, more explicitly,

“what can be achieved by mixing”? The mixing of music can be considered as an optimisation

problem, as described by Terrell et al. [152], albeit one with a large amount of variables and a

target which is not well defined. Two approaches can be taken.

1. maximise ‘quality’, ‘preference’ or some other concept or percept.

2. minimise technical issues/faults, the absence of which is believed to benefit the production.

This latter approach was discussed in Chapter 2 as a means of automating music production tasks.

The former may be preferable but requires an in-depth understanding of what constitutes ‘qual-

ity’. Rather than to rely on “best practice” rules determined from interviews and other qualitative

methods, the work presented in this Chapter used quantitative methods in the observation of music

mixing practice. Beginning with a trivial example of the mixing of two audio elements and moving

on to the study of more realistic mixing scenarios, this chapter presents representations of simple

mixing practices and the analyses of data gathered by experiment. Thus far, one publication has

been published based on portions of the work described in § 4.1, § 4.2 and § 4.3 [153].

63
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4.1 Basic theory
Consider the trivial case where two audio signals are to be mixed, where only the absolute levels of

each signal can be adjusted. This can be considered the most simple mixing exercise (it is shown

later that, for tasks referred to as ‘mixing’, the number of signals must be more than one). In Figure

4.1, the gains of the two signals are represented by x and y. Assume both are positive-bound.

Consider the point p as a configuration of the signal gains i.e. (px, py). From this point, the values

of x and y are both increased in equal proportion, arriving at the point p′. The magnitude of p is

less than that of p′ (‖p‖ < ‖p′‖) yet since the ratio of x to y is identical, the angles subtended by

the vectors from the y-axis are equal (∠p = ∠p′). In the context of a mix of two tracks, what this

means is that the amplitude of p′ is greater than p, yet the blend of signals is the same.

At this point, consider what is meant by a ‘mix’. Recall from § 2.3.1 that often-used def-

initions consider a mix as a sum of input channels. This definition is too broad, as numerous

“mixes” are copies of one another but at different loudness levels. In the gain-space, if all the

points on a line from the origin at a fixed angle are the same blend of tracks then they are per-

ceptually very similar, just louder or quieter. Quite likely this would create a ridge or valley in

the fitness landscape. Ridges and valleys are challenging obstacles for hill-climbing algorithms

although gradient-descent can perform better. Since gradient descent requires the function be

differentiable, it may not be the best approach for perceptually motivated fitness evaluations.

Alternately, a ‘mix’ can be thought of as the specific blend/balance/ratio of audio signals.

From this definition, the point p and p′ are the same mix, only p′ is being presented at a greater

volume. If the listener has control over the master volume of the system, then any difference

between p and p′ becomes ambiguous. From p, the level of fader y can be increased by ∆y such

as to arrive at the point r. In this particular case, the value of ∆y was specifically chosen such that

‖r‖ = ‖p′‖. However, for any |∆y| > 0, ∠r 6= ∠p′. Therefore, the vector r clearly represents a

different mix to either p or p′. Consequently, the definition of a ‘mix’ is clarified by what it is not:

when two audio streams contain the same blend of input tracks but the result is at different overall

loudness levels, these two outputs can be considered the same mix.

Definition 5. mix: an audio stream constructed by the superposition of others in accordance with

a specific blend/balance/ratio

For this mixing example, where there are n = 2 signals, represented by n gain values, the mix is

dependant on n−1 variables, in this case, the angle to the vector. The norm of the vector is simply

proportional to the overall loudness of the mix. Figure 4.2 shows a similar structure, with n = 3.

Here, the point p′ is also an extension of p. As in Figure 4.1, r is located by increasing the value

of y from the point p and ‖r‖ = ‖p′‖. Here, the values of each angle are explicitly determined

and displayed. All three vectors share the equatorial angle of 60°. The polar angle of p and p′

is 50°, while the polar angle of r is less than this, at ≈ 37°. As in the two-dimensional case, it is

the angles which determine the parameters of the mix and the norm of the vector is related to the

overall loudness. While Figures 4.1 and 4.2 show a space of track gains there is redundancy of

mixes in this space. What is ultimately desired is a space of mixes.

Definition 6. Mix-space: a parameter space containing all the possible audio mixes that can be

achieved using a defined set of processes.
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It becomes apparent that a euclidean space with track gains as basis vectors is not an efficient

way to represent a space of mixes, according to Definition 6. If, in Figure 4.2, a set of m points

randomly selected on R3 was chosen, the number of mixes could be less than m, as the same mix

could be chosen multiple times at different overall volumes. A set of m randomly selected points

on a 1/8th sphere of any radius (S2) would result in a number of mixes equal to m. This surface is

represented in Figure 4.3, which shows the portion of a unit-sphere in positively-unbounded R3,

upon which exist all possible mixes of three tracks. This surface is a mix-space for the problem

of three-track mixing, where the only available tool is gain adjustment. Figure 4.4 represents two

mixes in this space using a ternary plot.

While both the 2-content of S2 (the ‘surface area’) and the 3-content of the enclosing R3,

(the ‘volume’) both, strictly, contain an infinite amount of points, the reduced dimensionality of

S2 makes it a more attractive content1 to use in optimisation, as S2 is a subset of R3. As a con-

sequence, the ‘mix-space’ is a more compact representation of audio mixes than the ‘gain-space’.

Such an optimisation is discussed in Chapter 8.

While the examples so far have used polar and spherical coordinates, for n = 2 and n = 3

respectively, to extend the concept to any n dimensions, generalised hyperspherical coordinates

are used. The conversion from cartesian to hyperspherical coordinates is given below in Equations

4.1. The inverse operation, from hyperspherical to cartesian is provided in Equations 4.2 [154].

Here, g j is the gain of the jth track out of a total of n tracks. The angles are represented by φi.

By convention, φn−1 is the equatorial angle, over the range [0,2π) radians, while all other angles

range over [0,π] radians.

r =
√

gn
2 +gn−12 + · · ·+g22 +g12 (4.1a)

φi =arccos
gi√

gn
2 +gn−12 + · · ·+gi

2
, where i = [1,2, . . . ,n−3], i ∈ Z (4.1b)

...

φn−2 =arccos
gn−2√

g2
n +gn−12 +gn−22

(4.1c)

φn−1 =

arccos gn−1√
g2

n+gn−12 gn ≥ 0

2π − arccos gn−1√
g2

n+gn−12 gn < 0
(4.1d)

g1 =r cosφ1 (4.2a)

g j =r cosφ j

j−1

∏
i=1

sinφi , where j = [2,3, . . .n−2], j ∈ Z (4.2b)

gn =r
n−1

∏
i=1

sinφi (4.2c)

Figure 4.5 represents a comparable 4-track mixing exercise. The four audio sources are specifically

1In this context, content can be considered as “hypervolume”. See Weisstein, Eric W. "Content." From MathWorld–
A Wolfram Web Resource. http://mathworld.wolfram.com/Content.html

http://mathworld.wolfram.com/Content.html
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Figure 4.1: Points p, p′ and r, in 2-track gain space. Note that the audio output at points p and
p′ are the same ‘mix’.
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Figure 4.4: Ternary plot, where each point is a sum of three properties such that the sum is
100%. The square indicated the point where the mix is an equal blend of the three tracks. The

circle has a higher level of vocals.
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Figure 4.5: Schematic representation of a four-track mixing task, with track gains g1,g2,g3,g4,
and the semantic description of the three φ terms, when adjusted from 0 to π/2.

chosen for this example, vocals, guitar, bass and drums, and assigned to g1,g2,g3,g4 respectively.

Consequently, the set of mixes is represented by a 3-sphere of radius r. The coordinates φ1,φ2

and φ3 represent a set of inter-channel balances which have musical importance. The value of

φ3 determines the balance of bass to drums, the rhythm section in this case. φ2 describes the

projection of this balance onto the g2 axis, i.e. the blend of guitar to rhythm section. Finally, φ1

describes the balance of the vocal to this backing track.

From herein, the parameter space comprising the n − 1 angular components of the hy-

perspherical coordinates of a (n − 1)-sphere in a n-dimensional gain-space, is referred to as a

(n− 1)-dimensional mix-space. More simply, this can be stated by saying the mix-space is the

surface of a hypersphere in gain-space. In the case of music mixing, only the positive values of

g are of interest. Subsequently, the interesting region of the mix-space is only a small proportion

of the total hypersurface. This fraction is 1/2n. For this 4-track case in Fig. 4.5 the mix-space is

3-dimensional. However, as it represents a 3-sphere, it is not a Euclidean space. Consider the case

of a world map. This map is a common 2-dimensional representation of the surface of the globe,

a 2-sphere. A map displaying longitude and latitude coordinates will stretch the North and South

poles from a single point on the 2-sphere to a line on the map. A variety of map projections have

been proposed in order to represent the surface of the Earth as a flat map however each introduces

some degree of distortion.

Figure 4.7 indicates the limitations of a Euclidean representation for the mix-space for the

example in Figure 4.5. The ‘north’ pole of the 3-sphere is where φ1 = 0, the φ2-φ3 plane. In each

subplot, the surface shown represents the mixes where a specific track is set to −3 dB. Figure

4.7a shows that half of the map has φ1 < π/4 and therefore g1 > 1/
√

2. This surface area, and the
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enclosed volume decreases as j increases, as shown in Figures 4.7b, 4.7c and 4.7d. It is clear that

a randomly selected point in this R3 would most likely contain loud vocals compared to drums

and bass. This limitation is re-visited in Chapter 8, and is further discussed. For the purposes

of visualising a 4-track mixing process, this representation can be useful. While a sphere is a

non-euclidean space, locally, euclidean geometry is a good approximation.
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4.2 Mix-space concepts
As each point in this space represents a unique mix, the process of mixing can be represented as

a path through the space. For example, consider a random walk in the mix-space. This path can

be used to determine a random time-varying gain for each track. It is hypothesised that real mix

engineers do not carry out a random walk but a guided and informed walk, from some starting

point (“source”) to their ideal final mix (“sink”).
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Figure 4.8: Random walk in mix-space

In Fig. 4.8 a random walk begins at the point marked ‘◦’ in the 2D mix-space (the origin [0,0],

which corresponds to a gain vector of [1,0,0]). The model for the walk is a simple Brownian

motion 2. After 30 seconds the final point reached is marked ‘×’. The gain values for each of the

three tracks are shown and it is clear that the random walk is on a 2-sphere. The time-series of

gain values is also shown. Note that g ∈ [−1,1], so for positive g the region explored is as Fig.

4.3.

4.2.1 The ‘source’
In a real-world context, on receiving a multitrack session and first loading the files into a DAW,

each engineer will initially hear the same mix, a linear sum of the raw tracks 3. This has been
2http://people.sc.fsu.edu/~jburkardt/m_src/brownian_motion_simulation/brownian_motion_

simulation.html
3Here it is significant that a DAW typically defaults to faders at 0 dB, while a separate mixing console may default

to all faders at −∞ dB. This allows an experimenter to ensure that all mixers begin by hearing the same ‘mix’.

http://people.sc.fsu.edu/~jburkardt/m_src/brownian_motion_simulation/brownian_motion_simulation.html
http://people.sc.fsu.edu/~jburkardt/m_src/brownian_motion_simulation/brownian_motion_simulation.html
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referred to in previous studies as a ‘sum’ or ‘unmixed sum’ [60, 81, 155]. While the term ‘un-

mixed’ can be misleading, it does reflect the fact that the artistic process of mixing has not yet

begun. While each of these raw tracks can be presented in various ways, if we presume each

track is recorded with high signal-to-noise ratio (as would have been more important when using

analogue equipment) then, with all faders set to 0 dB, the perceived loudness of those tracks with

reduced dynamic range (such as synthesisers, electric bass and distorted electric guitars) would

be higher than that of more dynamic instruments (such as percussion or vocals). Much like the

final mixes, this initial ‘mix’ can be represented as a point in some high-dimensional, or feature-

reduced, space. It is rather unlikely that a engineer would open the session, hear this mix and

consider it ideal, therefore, changes will most likely be made in order to move away from this

location in the space. For this reason, this position in the mix-space is referred to as a ‘source’.

Definition 7. Source: A point in the mix-space representing the initial configuration of tracks

which is deemed not to be ideal by a significant proportion of mix engineers.

In practice, the session, as it has been received by the mix engineer, may be an “unmixed sum”

or may be a rough mix, as assembled by the producer or recording engineer. In a real-world

scenario, the work may be received as a DAW session, where tracks have been roughly mixed.

Alternatively, where multitrack content is made available online, such as in mix competitions 4,

the unprocessed audio tracks are usually provided without a DAW session file. The latter approach

is assumed in this study, in order for mix engineers to have full creative control over the mixing

process. If mixers were to make unique changes to the initial configuration then that source can be

considered to be radiating omni-directionally in the mix-space. However, it is possible that, for a

given session, there may be some changes which will seem apparent to most mixers, for example,

a single instrument which is louder than all others requiring attenuation. For such sessions, the

source may be directional, or if a number of likely outcomes exist, there may exist a numerous

paths from the source.

4.2.2 Paths in the mix-space

The path from the source to the final mix could be represented as a series of vectors in the mix-

space, henceforth named ‘mix-velocity’, and defined in Eqn. 4.3, for the three dimensions shown

in Fig. 4.5. In this case the values of Φ are sampled at regular intervals.

ut = φ(1,t)−φ(1,t−1) (4.3a)

vt = φ(2,t)−φ(2,t−1) (4.3b)

wt = φ(3,t)−φ(3,t−1) (4.3c)

If all mixers begin at the same source then a number of questions can be raised in relation to

movement through the mix-space, which help understand the nature of multi-track mixing.

• Moving away from the source, at what point do mix engineers diverge, if at all?

4http://www.cambridge-mt.com/YoungGriffoCompetition.htm

http://www.cambridge-mt.com/YoungGriffoCompetition.htm
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• How do mix engineers arrive at their final mixes? What paths through the mix-space do they

take?

• Do mix engineers eventually converge towards an ideal mix?

4.2.3 The ‘sink’
Complementary to the concept of a source in the mix-space, a ‘sink’ would represent a configura-

tion of the input tracks which produces a high-quality mix that is apparent to a sizeable portion of

mix engineers and to which they would mix towards. This is similar to the goal displayed in Fig.

2.11.

Definition 8. Sink: A point in the mix-space representing an ideal final configuration of tracks, as

perceived by a significant proportion of mix engineers

As the concept of quality in mixes is still relatively unknown there are a number of open ques-

tions in the field which can be addressed using this framework of sources, paths and sinks in the

mix-space.

• Is there a single sink, i.e. one ideal mix for each multitrack session? In this case the high-

est mix-quality would be achieved at this point and this would be agreed upon by all mix

engineers.

• Are there multiple sinks, i.e. given enough available mixes, are these mixes clustered such

that one can observe a number of possible alternate mixes of a given multitrack session?

These multiple sinks would represent mixes that are all of high mix-quality but audibly

different, for example, the same song could be mixed in a number of different styles.

• Are there no sinks, i.e. does each mix engineer produce a unique mix, such that there is no

discernible clustering of final mixes in the mix-space.
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4.3 Mix-space experiment 1 — Mono
In order to examine how mix engineers navigate the mix-space a simple experiment was con-

ducted. In this instance the mixing exercise was to subjectively balance the level of four tracks,

using only a volume fader for each track, such that the participant achieves their own ideal mix.

Importantly, the participants all began with a predetermined balance, in order to examine the in-

fluence of the source. This experiment aims to answer the following research questions:

RQ-6. Can the source be considered omni-directional or are there distinct paths away from the

source?

RQ-7. Is there an ideal balance (single sink)?

RQ-8. Are there a number of optimal balances (multiple sinks)?

RQ-9. What are the ideal level balances between instruments?

4.3.1 Set-up
The multitrack audio sessions used in this experiment have been made available under a creative

commons license5 6. These files are also indexed in a number of databases of multitrack audio

content [156, 157]. Three songs were used for this experiment, which consisted of vocals, guitar,

bass and drums, as per Fig. 4.5, and as such the interpretations of Φ from here on are those in Fig.

4.5.

The following is a description of the audio stimuli used. The four tracks used from “Borrowed

Heart”7 are raw tracks, where no additional processing has been performed apart from that which

was applied when the tracks were recorded 8. The tracks from “Sister Cities”9 also represent

the four main instruments but were additionally processed using equalisation and dynamic range

compression 10. These can be referred to as ‘stems’, as the 11 drum tracks have been mixed down,

the two bass tracks (a DI signal and amplifier signal) have been mixed together, the guitar track is a

blend of a close and distant microphone signals and the vocal has undergone parallel compression,

equalisation and subtle amounts of modulation and delay. In the case of “Heartbeats”11, the

tracks used are complete ‘mix stems’, in that the song was mixed12 and bounced down to four

tracks consisting of ‘all vocals’, ‘all music’ (guitars and synthesisers), ‘all bass’ and ‘all drums’.

For testing, all audio was further prepared as follows:

• 30-second sections were chosen, so that participants would be able to create a static mix,

where the desired final gains for each track are not time-varying.

• Within each song, each 30-second track was normalised according to loudness. In this

case, loudness is defined by BS.1770-3, with modifications to increase the measurements

5http://weathervanemusic.org/shakingthrough
6http://www.cambridge-mt.com/ms-mtk.htm
7https://weathervanemusic.org/shakingthrough/hezekiahjones
8This information can be found at https://s3.amazonaws.com/tracksheets/Hezekiah+Jones+-+Tracksheet.xlsx
9https://weathervanemusic.org/shakingthrough/hopalong

10This processing was performed by the author as part of a mix that was created prior to the conception of this study.
That DAW session was opened and the four tracks to be used were exported.

11http://www.cambridge-mt.com/ms-mtk.htm#JulietsRescue_Heartbeats
12This mix was created by the author prior to the conception of the experiment.
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suitability to single instruments, rather than full-bandwidth mixes [158]. This allows the

relative loudness of instruments to be determined directly from the mix-space coordinates.

• For each song, two source positions were selected. The value of the vector Φ was selected

using a random number generator, with two constraints:

1. to ensure the two sources are sufficiently different, the pair of sources must be sepa-

rated by unit Euclidean distance in the mix-space.

2. to ensure the sources are not mixes where any track is muted, the values were chosen

from the range π/8 to 3π/8 (see Fig. 4.5).

4.3.2 Procedure
The experimental interface was designed using Pure Data, an open source, visual programming

environment 13. The GUI used by participants is shown in Fig. 4.9. Each participant listens to

the audio clip in full at least once, then the audio is looped while mixing takes place and fader

movement is recorded. The participant then clicks `stop mix' and the next session is loaded.

For each session the user is asked to create their preferred mix by adjusting the faders. Since

the number of dimensions in the mix-space is one less than the number of dimensions in the

gain-space, by definition, more than one track must be active for a mix to exist. Consequently,

the range of the faders was limited to ± 20dB from the source, to prevent solo-ing or muting

any instrument, due to the uniqueness of the mix-space breaking down at boundaries. An initial

trial was provided in order for participants to become familiar with the test procedure, after which

the six conditions (3 songs, 2 sources each) were presented in a randomised order. The real-time

audio output during mixing was recorded to a .WAV file at a sampling rate of 44,100Hz and a

resolution of 16 bits. Fader positions were also recorded to .WAV files using the same format. As

shown in Fig. 4.9, the true instrument levels were hidden from participants by displaying arbitrary,

unmarked fader controls — the faders add ± 20 dB offset to the source position. This prevented

participants from simply mixing ‘visually’, by recognising patterns in the fader positions.

4.3.3 Cohort A — Headphones
The first experiment using the mix-space concept and Fig. 4.9 took place in April 2015. This

experiment was conceived as a pilot test and to collect data which could be used to verify the

mix-space concepts before proceeding. In total, eight participants (two female, six male) took

part in this mixing experiment. As staff and students within Acoustics, Digital Media and Audio

Engineering at University of Salford, each of these participants had prior experience of mixing

audio signals. The mean age of participants was 25 years and none reported hearing difficulties.

The mean test duration was 14.2 minutes, ranging from 11 to 17 minutes.

Rather than use loudspeakers in a typical control room, the test set-up used a more neutral

reproduction. The experiment was conducted in a semi-anechoic chamber at University of Salford,

where the background noise level was negligible. Audio was reproduced using a pair of Sennheiser

HD 800 headphones, connected to the test computer by a Focusrite 2i4 USB interface. Due to

the nature of the task and the wide loudness range of the experiment, each participant adjusted

the playback volume as required. Reproduction was monaural, presented equally to both ears.

13https://puredata.info/

https://puredata.info/


4.3. MIX-SPACE EXPERIMENT 1 — MONO 76

Figure 4.9: GUI of mixing test. The faders are unmarked and all begin at the same central value,
which prevents participants from relying on fader position to dictate their mix.

While the choice between loudspeakers and headphones is often debated [46, 159], in this case,

particularly as reproduction was mono, headphones were considered to be the choice with greater

potential for reproducibility. Some results of this initial experiment were analysed and reported in

[153].

4.3.4 Cohort B — Loudspeaker
A follow-up experiment was conducted in October 2015, after [153] was written, peer-reviewed

and presented. One notable difference between the pilot test and the follow-up was the change in

environment and reproduction system, from headphones to a single loudspeaker. The environment

also changed from a semi-anechoic chamber to a BS.1116 listening room at the University of

Salford, however, since the first test used headphones, the acoustic effect of that experiment’s

environment should be considered negligible. The decision was made to repeat the experiment

with a loudspeaker in order to prepare for the stereo experiment, which is described in § 4.5. The

loudspeakers used were Genelec 8020a, positioned in an LCR set-up, as shown in Fig. 4.11. While

only the centre loudspeaker was used, playing back the mono signal, the left and right speakers

were so positioned to provide continuity (both visual and acoustic) with the (future) experiment

with stereo playback (see § 4.5). The measured room response is displayed in Fig. 4.10. A new

test panel was recruited, consisting of 17 subjects who had not taken part in the pilot test. The

median age of these participants was 27 years, ranging from 18 to 42. There were three female

participants and 14 male participants.

4.3.5 Results
For each participant, song and source, the recorded time-series data was downsampled from 44.1

kHz to 10 Hz (an interval of 0.1 seconds), then transformed from gain to mix domains using Eqn.

4.1, with r = 1. From this data the vectors representing mix-velocity, described in Section § 4.2.2,

were obtained using Eqn. 4.3.
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Figure 4.10: Magnitude of the frequency response at the listening position for mix-space after
all furniture and equipment had been placed. Audio produced by Genelec 8020a in a BS.1116
listening room. Shown are the third-octave band levels, where 0 dB is the geometric mean from
50 to 20,000 Hz. The dips at ≈ 600 Hz may be caused by placement of furniture used in test

(see Fig. 4.11).

Figure 4.11: Mix-space test set-up in BS-1116 listening room.
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Table 4.1: Median levels per group

System Song Vox Guitar Bass Drums

Headphones S1-Borrowed Heart -3.51 -9.01 -7.68 -8.81
S2-Sister Cities -3.13 -7.66 -9.26 -7.63
S3-Heartbeats -2.13 -7.63 -11.69 -8.14

Loudspeaker S1-Borrowed Heart -3.28 -8.92 -6.40 -8.36
S2-Sister Cities -2.30 -8.89 -10.43 -8.33
S3-Heartbeats -2.66 -8.52 -12.66 -7.38

4.3.5.1 Instrument levels
Investigating research question RQ.9, the ideal loudness levels of each instrument in the mix was

determined from the experimental data. In the boxplots which follow the median is marked at the

central position and the box covers the interquartile range. The whiskers extend to extreme points

not considered outliers and outliers are marked with a dot. Two medians are significantly different

at the 5% level if their notched intervals do not overlap.

Since the experiment is concerned with relative loudness levels between instruments and not

the absolute gain values which were recorded, normalised gains can be calculated from Eqn. 4.2,

with r = 1. When all songs, sources and participants are considered, the distribution of normalised

gains at the final mix positions is shown in Fig. 4.13, expressed in LU relative to the total mix

loudness. Fig. 4.13 shows good agreement with previous studies, particularly a level of ≈−3 LU

for vocals [36, 40] and ≈−10 LU for bass (see Fig. 1 of [36], which is shown in § 2.2.1 as Figure

2.4).

There was subtle variation in the levels of instruments over songs, summarised in Table 4.1.

Figure 4.14 shows the variation in vocal level for each cohort and song. For each song there is

no significant difference between headphone and loudspeaker groups. For the loudspeaker cohort

there is no significant difference between songs. For the smaller cohort of headphone users there

is a significant difference between the median level set for song 1 and song 3, although the sample

size (n = 8) is a likely cause of this variation. The data in Fig. 4.15 indicates no significant

difference in the median level set for the guitar track across cohort or song.

Figure 4.16 shows the distribution of final levels set for the bass track. Here, the median

levels set are significantly different for song 1 and song 3. There is no significant effect of cohort

in the median levels, although the variance is notably greater for the loudspeaker cohort, for songs

2 and 3. This could be partly explained by the larger sample size (n = 17) although room acoustics

and reproduction system are expected to have played a part. In the loudspeaker group, the posture

of the participant could have contributed to the perception of bass frequencies, due to room modes.

The distribution of drums level in the final mixes is displayed in Fig. 4.17. There is little

variation observed across these six groups, although, as in Fig. 4.13, there are a number of outliers

in the loudspeaker cohort who set the level of the drums quite low in the final mix.
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Figure 4.13: Boxplot of G for all songs and sources, grouped by cohort
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Figure 4.14: Boxplot of vocal level for all sources, grouped by cohort and by song.
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Figure 4.15: Boxplot of guitar level for all sources, grouped by cohort and by song
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Figure 4.16: Boxplot of bass level for all sources, grouped by cohort and by song
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Figure 4.17: Boxplot of drums level for all sources, grouped by cohort and by song
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4.3.5.2 Source-directivity

Since each participant was required to listen to the audio before mixing began, it was hypothesised

that participants would make similar initial changes to the mix, such as when one instrument

required a clear change in level. Movement away from the source is characterised by the first

non-zero element of the mix-velocity triple u,v,w (see Eqn. 4.3). The displacement and direction

of this step is used to investigate the source directivity. For each song and source, these vectors

are plotted in Fig. 4.18 to 4.23. These vectors indicate the direction and step size of the first

changes to the mix. As the participant had control over four faders there are only 2× 4 possible

initial actions that could be taken — to increase or decrease the level of each fader. However, this

can produce a number of vectors in the mix space. One would not expect to observe anything

approaching spherical radiation from the source with such low number of dimensions, only that

each of the possible outcomes is equally likely. Figures 4.18 to 4.23 show the normalised vectors

leaving the source for each participant. The similarity matrix is also shown, computed using the

cosine distance metric. In each example there are at least two opposing vectors, which produces

the maximum cosine distance of 2. Subsequently, darker similarity matrices indicate many similar

vectors.

4.3.5.3 Mix-space navigation

Fig. 4.24 to 4.26 show the probability density function (PDF) of Φt when averaged over all

25 participants, where the solid line is from trials where the source was at position A and the

dashed line, position B. The function is estimated using Kernel Density Estimation (KDE), using

100 points between the lower and upper bounds of each variable. This plot displays the mix

configurations which the participants spent most time listening to and it is seen that all distributions

are multi-modal. There are peaks close to the initial positions, the final positions and other interim

positions that were evaluated during the mixing process.

There are a number of different approaches to multitrack mixing of pop and rock music, one

of which is to start with one instrument (such as drums or vocals) and build the mix around this by

introducing additional elements. Some participants were observed mixing in this fashion, shown

in Figs. 4.24 to 4.26, where peaks at extreme values of φn show that instruments were attenuated

as much as the constraints of the experiment would allow. For Song 1, φ1 is reasonably well

balanced and centered close to π/4. This indicates that mixers tended to listen in states where the

relative loudness of the vocal and backing track were similar. This is also observed for song 3 but

less so for song 2.

There are notable differences due to the source. The distributions for φ3 in Song 1 suggest that

exploration depended on the initial source configuration, with Source A leading to louder drums

than Source B. Note that a value of π/2 for φ1 or φ2 simply indicates that the vocal or guitars were

muted and so it is a frequently-occurring state. A value of 0 indicates that this track was solo-ed.

For φ3, π/2 indicates drums were muted and 0 indicates bass was muted.

In order to quantify the variation in mixes as they explored the space, the pairwise distance

between mixes was calculated at each point in time. This data was used to create a dissimilarity

matrix. The sum of all distances was used as a metric relating to mix-variation at a point in time.

By converting the φ terms back to gain, using Eqn. 4.2, the normalised gains were obtained (where

the norm of the G is equal to 1 at each point in time) when setting r = 1. The distance metric used
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Figure 4.18: Source directivity — Song 1 Source A. This results shows good agreement between
many participants.
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Figure 4.19: Source directivity — Song 1 Source B.
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Figure 4.20: Source directivity — Song 2 Source A. Note the region of the space (−w) in which
there are no vectors.
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Figure 4.21: Source directivity — Song 2 Source B. Due to one corrupted entry only 24 data
points are shown here. Note the region of the space (−u) in which there are no vectors. Good

agreement among many of the first 17 participants.
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Figure 4.22: Source directivity — Song 3 Source A. High agreement between the first 7 partic-
ipants.
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Figure 4.23: Source directivity — Song 3 Source B. The result shows a lack of agreement.
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Figure 4.24: Estimated probability density functions of φ terms, for song 1, averaged over all
mixers. Sources positions are highlighted with A and B.

was the cosine distance metric. This is standard for determining the distance between points on a

sphere (in this case, a 3-sphere) 14. The plots in Fig. 4.27a, 4.27b, and 4.27c, show the sum of this

dissimilarity matrix at each point in time. Note that, for the sake of clarity in plotting, the number

of points is reduced by a factor of 4, using the decimate function in MATLAB. A logarithmic

axis scale is used, since most of the coarse mixing takes place in the earlier time periods, before

settling down to fine adjustments towards the end.

As all participants begin at the same point, the initial value is equal to zero. In all three songs,

the maximum levels of inter-participant variation take place after approximately 10-15 seconds, at

which time a large region of the space is spanned by the 25 mixes. After this point, there is a slow

convergence for the remaining duration. Note that, as mixing duration varied by participant, the

final gain values for each mix was held until the final participant had completed mixing.

For songs 1 and 3, the amount of variation between mixes is less for source B. This suggests

that this source was closer to an ideal mix than source A and, as a consequence, less exploration

of the space was deemed necessary.

14Strictly speaking, it is not necessary to use the normalised gains when using the cosine distance metric. This metric
is concerned with the difference in the angles between vectors. The length of these vectors is not important. Identical
results are achieved when using the raw gain values or the normalised gain values.
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Figure 4.25: Estimated probability density functions of φ terms, for song 2, averaged over all
mixers. Sources positions are highlighted with A and B.

0 π/8 π/4 3π/8 π/2
0
2
4
6
8

·10−2

AB

φ 1

Pr
ob

ab
ili

ty

0 π/8 π/4 3π/8 π/2
0
2
4
6
8

·10−2

A B

φ 2

Pr
ob

ab
ili

ty

0 π/8 π/4 3π/8 π/2
0
2
4
6
8

·10−2

A B

φ 3

Pr
ob

ab
ili

ty

Figure 4.26: Estimated probability density functions of φ terms, for song 3, averaged over all
mixers. Sources positions are highlighted with A and B.
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Figure 4.27: Diversity in the set of mixes over time. As all trials begin at the same point, the
value is zeros. Diversity then increases as each participant explores different regions in the space.

Diversity then decreases over time, indicating a degree of convergence.
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4.3.5.4 Sink convergence
Figures 4.27a, 4.27b, and 4.27c indicate that after an initial exploration phase, mixes begin to

converge, with the distribution of final instrument levels already shown in Section 4.3.5.1. Final

mixes created by participants show notable clustering due to the source position. For each song,

the final mixes created after starting at source A can be clearly distinguished from those created

after starting at point B. This is shown in Figures 4.28, 4.30 and 4.32. While these figures display

the final mixes in the mix-space the clustering is determined differently, on the 3-sphere in the

gain-space. Spherical k-means clustering [160] was used after the gains had been normalised onto

the sphere (convert Φ back to G, using Eqn. 4.2, with r = 1, as shown in Fig. 4.13).

Clustering due to reproduction system was also investigated yet no apparent difference was

determined between the loudspeaker and headphone cohorts. The greater variance in the loud-

speaker cohort, as shown in Figure 4.12, is also observed in Figures 4.29, 4.31 and 4.33.
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Figure 4.28: Final mixes, grouped by source position, for song 1
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Figure 4.29: Final mixes, grouped by experimental group, for song 1
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Figure 4.30: Final mixes, grouped by source position, for song 2
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Figure 4.31: Final mixes, grouped by experimental group, for song 2
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Figure 4.32: Final mixes, grouped by source position, for song 3
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Figure 4.33: Final mixes, grouped by experimental group, for song 3
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4.4 Further Theory
In order to extend the mix-space concept to a more realistic mixing scenario, equalisation and

panning were added to the model. While only track gain has been considered thus far, equalisation

is merely a frequency-dependent gain and panning a channel-dependent gain.

4.4.1 Equalisation
Similarly to how the mix can be considered as a series of inter-channel gains, when the frequency-

response of a single audio track is split into a fixed number of bands, the inter-band gains can be

used to construct a “tone-space” using the same formulae. With the gain of the low, middle and

high bands in the filter being gL, gM and gH respectively, then the problem is comparable to the

3-track mixing problem shown in Figure 4.2. Again, one can convert this to spherical coordinates

(by Equations 4.1) and obtain [rEQ,φ1EQ,φ2EQ], yet, in this case, the values of φnEQ control the EQ

filter applied, and rEQ is the total loudness change produced by equalisation. As before, if all three

bands are increased or decreased by the same proportion, then the tone of the instrument does not

change apart from an overall change in presented loudness, rEQ. Analogous to its use in track

gains, the value of φ2EQ adjusts the balance between gM and gH , while φ1EQ adjusts the balance of

gL to the previous balance.
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Figure 4.34: Example of a 3-band crossover filter, using 4th order Linkwitz-Riley filters, which
can be used as a basic 3-band EQ

In Fig. 4.35, five points are randomly chosen in the “tone-space”. These co-ordinates are converted

to three band gains as before, except that, in order to center on a gain vector of [1,1,1], rEQ =
√

Nbands, which is
√

3 in this example. Of course, for this to work, one must assume an audio

track has equal loudness in each band and this is rarely the case. When gL is increased on a hi-hat

track there may be little effect, compared to a bass guitar. Therefore, the loudness change rEQ is a

function of the spectral envelope of the track, prior to equalisation (it is shown later that this effect

is negligible and so it is not considered herein).

4.4.2 Panning
Thus far, only mono mixes have been considered, where all audio tracks are summed to one

channel. In creative music production, it is rare that mono mixes are encountered (although notable

exceptions can still be found). The same mathematical formulations of the mix-space can be used
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Figure 4.35: Five randomly-chosen examples of a 3-band EQ, chosen from 2D tone-space. As
φEQ,2 goes to zero, the gain of the high band decreases. As φEQ,1 goes to zero, the gain of the

low band increases at the expense of the other two bands, their balance determined by φEQ,2.

to represent panning. Consider Fig. 4.8, which shows track gains in the range [−1,1]. Should

these be replaced with track pan positions pn then the mix-space (or “pan-space”) can be used to

generate a position for each track in the stereo field.

However, the mix-space for gains takes advantage of the fact that a mix (in terms of track

gains only) is comprised of a series of inter-channel gain ratios, meaning that the radius r is

arbitrary and represents a master volume. In terms of track panning one would obtain a series of

inter-channel panning ratios, the precise meaning of which is not clear. Additionally the radial

component would still be required to determine the exact pan position of the individual track.

For a simple example with only two tracks, the meaning of rpan and φpan are simple to understand.

Consider the unit circle in a plane where the cartesian coordinates (x,y) represent the pan positions

of two tracks, as shown in Fig. 4.36. Mix A is at the point (0.707,0.707): both tracks are panned

at the same position. As this is a circle with arbitrary radius, rpan, then the radius controls how far
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Figure 4.36: Panning of two tracks

positive (right) the two tracks are panned, from 0 (centre) to +1 (far right). Mix B does the same

but towards the left channel. Is this the same mix? Are A and B identical “panning-mixes”, as p

and p′ were identical “gain-mixes”?

Now consider mix C, where one track is panned left and the other right. Mix D is simply the

mirror image of this. Are these to be considered as the same mix? Here rpan adjusts the distance

between the two tracks, from both centre when rpan = 0, to(−1,1) when rpan =
√

2 (as indicated by

mix C′). Does a change in rpan change the mix, or is it simply the same mix only wider/narrower?

Here the term mix applies to panning mix (not a mix of gains, as it was in earlier sections). Overall,

the angle φpan adjusts the panning mix and rpan is used to obtain absolute positions in the stereo

field, at a particular scale (i.e. to zoom in or zoom out).

Alternatively, if two points in the mix-space are chosen, one to represent the balance of

instruments in the left channel and one for balance of instruments in the right channel (or as

many as needed for a multi-channel system), then a stereo mix can be created. Figure 4.37a

shows a 2-sphere representing all the mixes of three tracks. This space is discretised according

to icosahedral subdivision [161]15. The 297 points in the positive region of this space are shown

in Fig. 4.37b along with the convex hull of the points. The precise number of points depends on

the number of subdivisions used (here, Nsubdiv = 4). Figure 4.37c shows these points in the 2D

mix-space (as in earlier figures). Two points, marked L and R are chosen as the left and right

mixes respectively.

It can be shown, however, that not all possible combinations of pan positions can be achieved.

For example, given three tracks, a vocal, drums and guitar, then it would not be possible to pan the

vocal centrally while simultaneously panning both other instruments hard left. This is due to the

15Using RBFSPHERE package for Matlab, available from http://math.boisestate.edu/~wright/

montestigliano/index.html

http://math.boisestate.edu/~wright/montestigliano/index.html
http://math.boisestate.edu/~wright/montestigliano/index.html
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Figure 4.37: Creation of a stereo mix by choosing two points in the mix-space. With 297 points,
there are 2972 (88,209) possible stereo mixes.
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Table 4.2: Parameters of the mix selected from Fig. 4.37c

Vox Gtr Drums

gL (dBFS) -6.6212 -3.9978 -4.1569
gR (dBFS) -0.0329 -26.8935 -22.5907
p -0.3621 0.8663 0.7861

fact that, to be panned centrally, the vocal must be presented at the same level in both channels.

While the right channel would contain only vocals, the introduction of other instruments in the left

channel would necessitate a reduction in vocal level in order for both ‘mixes’ to be presented at

equivalent loudness. As a result, the vocal would be louder in the right channel and appear panned

towards the right. To pan centrally, either the right channel would need to be attenuated or the left

channel amplified. Table 4.2 shows the gain and resultant pan positions of each of the three tracks,

based on the points chosen in Fig. 4.37c.

The pan position pi of a track i is a function of the left and right gains of that track, as shown

in Equation 4.4. Figure 4.38 displays a plot of this equation.

pi =
(gL,i −gR,i)

(gL,i +gR,i)
(4.4)
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Figure 4.38: Pan position as function of left and right gains. Note that the function is not defined
when both gains are set to zero.

As a mix is generated by choosing a pair of points in the mix-space, the pan positions gener-

ated by each pair of points can be obtained. A boxplot of all possible panning vectors is displayed

in Fig. 4.37d, showing that all tracks have equal distributions of pan position, distributed about

the centre position. Using this method, it would however be possible to achieve a panning vector

of (0, -0.707 -0.707) as the L2 norm (the “radius”) of that vector is equal to 1. Increasing this

to
√

2 would result in a panning vector of (0, 1, 1), in a similar fashion to mix C′ in Fig. 4.36,

but if exact pan positions are required then these methods may not be suitable: they only show

relative pan positions. As such, there would need to be separate hyperspheres for each of the two
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reproduction channels, which could have different radii. The ratio of radii would be required to

recreate a desired stereo mix using exact pan positions.

Ultimately, one must consider what panning operations are robust to “mixing”. For gains, one

can consider scaler multiplication of all track gains an operation which does not change the mix,

according to definition 5. With panning, it is not so clear. As an example, consider two tracks, one

panned hard left and the other hard right. If they are swapped is the result the same mix, from a

panning perspective? If the width of the panning is reduced, is this result the same mix?
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4.5 Mix-space experiment 2 — Stereo w/ EQ
As adjusting track gains alone, and only having four tracks, are both highly simplified mixing sce-

narios, an experiment was devised in which participants could use panning, EQ and gain controls,

of eight tracks. The experimental set-up of this experiment, which took place in April 2016, was

identical to the earlier, mono experiment in terms of test location and audio reproduction (refer

back to Fig. 4.11). The GUI for this experiment is displayed in Fig. 4.39. Each section of the GUI

is subsequently described.

Figure 4.39: GUI used in mix-space test (stereo w/EQ). For this experiment, the initial listening
phase was controlled by the experimenter rather than the participant.

Again, the mixer was implemented using Pure Data, using a similar patch. Each audio file is first

processed by EQ, the overall track gain is adjusted according to the GUI fader and the audio is

placed in the stereo image according to the chosen pan position. A limiter was placed at the end

of the signal chain, before the dac object, in order to prevent clipping. Care was taken to ensure

the system had enough headroom such that the limiter was rarely engaged.

An equal power panning law was used to position each signal in the mix. The equaliser used

in this patch is based on the patch shown in Fig. 4.40. This patch implements a low latency

filter using minimum-phase FIR and partitioned convolution 16. The patch was used to create a

three-band EQ and the response was made to match that shown in Fig. 4.34.

4.5.1 Set-up
The experimental set-up is identical to that described earlier (see § 4.3.4), only this time the left

and right loudspeakers were used while the centre loudspeaker was unused. Again, this allowed

visual and acoustic continuity between the two experiments. In contrast to the mono experiment,

for the listening phase of each trial the GUI was hidden from participants. This was done as some

16http://www.katjaas.nl/minimumphase/minimumphase.html — this page describes the filter design pro-
cess, and cites the work of Damera-Venkata et al. [162].

http://www.katjaas.nl/minimumphase/minimumphase.html
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Figure 4.40: Patch used for EQ

participants in the previous experiments used the ‘start listen’ and ‘stop listen’ controls incorrectly.

For the stereo experiment, these controls were hidden on a second monitor and controlled by the

experimenter. Once the listening phase was completed, the GUI was revealed to the participant,

without the ‘start listen’ and ‘stop listen’ controls.

4.5.2 Audio stimuli
Four songs were used. For each, only eight specific tracks were used, corresponding to the follow-

ing instruments: drum overheads (split into two mono tracks), kick drum, snare drum, bass guitar,

guitar 1, guitar 2 and lead vocals. Since the source hypothesis no longer needed to be tested, each

song was tested one time only. This allowed the addition of a fourth song within the same approx-

imate test duration. The songs used were as follows: “Borrowed Heart”, “Fighting, We Were”17,

“New Skin”18 and “Sister Cities”. All of these sessions had more than two guitar tracks recorded.

The choice of what should be “guitar 1” and “guitar 2” was based on choosing two similar tracks,

e.g. two recordings of the same part, with different performers/guitars/amplifiers etc. In the case

of “Borrowed Heart”, the guitar 2 track was in fact a banjo recording, as it was that track which

best matched guitar 1, an acoustic guitar.

The audio from these sessions was as processed as little as possible, since participants would

have control of a basic equaliser. In order to reduce the many raw tracks to a usable 8-track session

it was necessary to merge some of these raw tracks, for example, bouncing the multiple snare

drum channels to one, or combining overheads with room microphones and even close-mic’ed

tom channels. These bounces and submixes were created by the author, using MATLAB rather

than a DAW, for continuity and repeatability.

17https://bookclub.bandcamp.com/track/fighting-we-were
18https://weathervanemusic.org/shakingthrough/torres
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4.5.3 Test panel
Fifteen participants (5 female, 10 male) were recruited for the stereo experiment. Eight of these

participants had previously taken part in either one of the mono experiments. The median age was

25 years, in the range of 18 to 42. Again, none reported hearing difficulties.

4.5.4 Results
In the mono experiments (see § 4.3.5) the fader values were stored at the same sampling rate as

the audio and later downsampled to 10 Hz. Since the number of controls in the stereo experiment

was 10 times greater (and it was expected participants would take longer to mix each session on

account of the increased level of control) these control values were saved directly to a .CSV file

at a rate of sampling rate of 10 Hz. Figure 4.41 reveals that the time taken to complete each song

did not appear to differ. There were, however, differences between participants. For example,

participants 3, 11 and 13 took, on average, much less time to mix than most other participants.
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Figure 4.41: Boxplot showing time taken to complete mixes in stereo mix-space experiment.
The distribution is similar for each song, while it is clear that different participants spend various

amounts of time on the test.

4.5.4.1 Instrument levels

Figure 4.42 shows the distribution of relative loudness levels of each instrument within the final

mix. Note that the level shown ignores both EQ and panning, and was simply determined using

a method identical to the mono experiments with four tracks. One notable difference is that the

level of vocals was lower. This is believed to be due to the spatial unmasking that takes place

when the competing sounds (mostly guitars) can now be panned away from the vocals — vocals

no longer need to be presented at such a high level. These instrument levels, shown in Table 4.4

can be compared against the results from the 4-track, mono experiment, as displayed in Fig. 4.13.

The exact values cannot be compared, since the number of tracks is different in both experiments,

however, by grouping the 8 tracks into the same 4 as the mono experiment (vox, guitars, bass

and drums), comparisons can be made. When the levels of all four drums tracks are summed for

each participant, and likewise for the two guitars, the results can be more easily compared to the

4-track mono experiment. This comparison is summarised in Table 4.3. In order to incorporate

the loudness changes that are caused by the use of EQ, the following process was implemented.
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Figure 4.42: Levels of instruments, ignoring EQ. The four variables marked in bold are compa-
rable to the four tracks shown in Fig. 4.13.
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Figure 4.43: Levels of instruments, with EQ considered. The four variables marked in bold are
comparable to the four tracks shown in Fig. 4.13.

Instrument Median Level (LUFS)
stereo mono difference

DRUMS -5.17 -7.96 +2.79
BASS -7.51 -11.05 +3.48
GTRS -6.63 -8.87 +2.24
VOX -5.74 -2.85 -2.89

Table 4.3: Median values - mono/stereo comparison. Mono results are taken from the LS groups
in Fig. 4.13
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Instrument Median Level (LUFS)
with EQ without EQ difference

OH1 -13.2535 -12.9870 - 0.2665
OH2 -13.1480 -12.9295 - 0.2185
KICK -10.1527 -9.8416 - 0.3111
SNARE -11.7547 -11.5837 - 0.1710
BASS -7.3708 -7.5059 + 0.1351
GTR1 -9.1465 -9.1760 + 0.0295
GTR2 -10.1537 -10.3300 + 0.1763
VOX -5.6845 -5.7406 + 0.0561

Table 4.4: Instrument levels, with and without EQ. The differences are small (< 0.33 LU)

• For each track, calculate inter-band Φeq and req first

• then adjust track gains according to req, giving req ×G

• then work out inter-channel Φtracks, using req ×G

• Final mixes are based on the values of Φtracks at tmax, the time when mixing stopped. The

gains of the final mixes are referred to as gfinal.

• Final pan positions, gfinal were also found. From this gfinal,L and gfinal,R were determined

using Eqn. 2.1c.

The following is a brief summary of results, as displayed in Table 4.4. Typically, both overhead

tracks are set to comparable loudness levels. This indicates that these two tracks are associated

with one another and treated similarly by participants, possibly due to the high correlation between

the two signals. The result is a balanced stereo image when the tracks are panned. The two guitars

are set to similar levels. Again, these two signals are highly correlated, as both were (in 3 out

of 4 songs) different recordings of the same musical part. The median level of the kick drum is

1.6 LU greater than the snare drum. However, as the snare drum can be heard in the overhead

tracks (as too can the kick drum but to a lesser extent), the perceived loudness of the snare drum

is based on the loudness of the overheads tracks in addition to the close-mic’ed signal. The vocals

are quieter in the mix when mixing in stereo, due to spatial unmasking. Relatively speaking, all

other instruments are louder, as seen in the boxplot.

4.5.4.2 EQ
The use of equalisation can be observed using a bagplot in the “tone-space”. Extending the fa-

miliar concept of the univariate boxplot, the bagplot can be used for bivariate data (and also for

multivariate data). The interested reader is referred to Rousseeuw et al. [163] for the precise details

of the bagplot production. In summary, a ‘bag’ is drawn which contains 50% of the data points,

a ‘fence’ (which has three times the area of the bag) separates inliers from outliers and a ‘loop’

region which contains points inside the fence but outside of the bag. The Tukey median is the

point at which the minimum halfspace depth is found, analogous to a univariate median. It is the

same point in each of the plots below, the starting point where g = [1,1,1], and this simply shows

that the space is appropriately normalised as desired.
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In Fig. 4.44 and 4.45, each of these plots shows the distribution of EQ settings applied to

each track. As there were 15 participants and four songs, there are 60 examples of EQ use for each

of the eight different instrument tracks. The following is a brief interpretation of each plot, where

the skewness of the distribution generally dictates the typical EQ applied. Plots were generated

using the LIBRA matlab library [164].

Vocals (see Fig. 4.44a) The bag and fence both extend rather evenly in all directions. This sug-

gests that the EQ applied to vocals was varied and there was no consensus as to a typical

vocal EQ. It is worth noting that there were two male voices and two female voices and,

with this variation, a lack of consensus is perhaps not surprising.

Guitars (see Figs. 4.44c and 4.44b) Both guitar 1 and guitar 2 display similar EQ use, i.e., a

reduction in the low band, but alterations to the EQ of guitar 1 were, on average, more

varied, while adjustments to guitar 2 were typically small reductions in the low band. Both

plots show a relatively large number of outliers when compared to vocal EQ.

Bass (see Fig. 4.44d) The use of EQ on bass was typically to reduce the gain of the high band

relative to the middle band, while boosting the low band, although there are notable outliers.

However, in interpreting this result it is important to consider the spectrum of the instrument

— most of the spectral energy would be contained in the lower two bands. There are outliers

where the high band has been boosted but perhaps this did not produce enough of an audible

difference for the participant to observe it as unpleasant and turn it back down.

Snare drum (see Fig. 4.45a) The snare drum EQ can be characterised as a less bass and more

treble. As with the kick drum, boosting of the mid band was relatively rare and is indicated

by outliers.

Kick drum (see Fig. 4.45b) Here, the bag and fence lean to the left of the graph, indicating higher

bass, but also to the top of the graph, indicating greater treble. This can also be the result of

reducing the middle band, and low-mid cuts are often used when equalising a kick drum.

Overheads (see Figs. 4.45d and Fig. 4.45c) Both overhead tracks showed similar use of EQ,

namely a reduction the in low band. The shape of the bags are similar in both plots and the

pattern of outliers was similar. This suggests that individual participants produced matching

EQ for the two tracks.
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Figure 4.44: Tone-space of vocals, guitars and bass



4.5. MIX-SPACE EXPERIMENT 2 — STEREO W/ EQ 106

0 π/8 π/4 3π/8 π/2
0

π/8

π/4

3π/8

π/2

φ EQ,1

φ
E

Q
,2

Tone-space of Snare

(a) Snare EQ — increase in high band
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0 π/8 π/4 3π/8 π/2
0

π/8

π/4

3π/8

π/2

φ EQ,1

φ
E

Q
,2

Tone-space of OH1

(d) OH1 EQ — quite even but with general de-
crease in low band

Figure 4.45: Tone-space of drum tracks
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4.5.4.3 Pan positions

Figure 4.46 shows the distributions of the final pan positions of each instrument, for each of

the songs. It is immediately clear that the vocals are never panned far to either side. To further

investigate the nature of the panning distribution, the density functions were estimated using KDE.

The resulting estimations are displayed in Figures 4.47a to 4.47d. In each of Figures 4.47a to

4.47d, the kernel width used is a fraction of the default value, h, which is considered optimal for

normal distributions. As there was no prior assumption of normality, this narrower kernel width

results in more modal values being revealed. The width used was 1/5th of the default.
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Figure 4.46: Distribution of pan positions in final mixes of each song. Any instance where
vocals were panned off-centre is marked as an outlier.

In the case of kick drum, snare drum, bass guitar and vocals, the resulting density estimate is not

dissimilar to a normal distribution. Guitar panning decisions are the most multi-modal: −1,0 and

1 are commonly occurring values but there are also a number of modal values in-between. This

shows that guitar panning is highly subjective and depends on the specific song (see Fig. 4.46).

For the song “Borrowed Heart” the median pan position of Gtr1 is central, however, as mentioned
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Figure 4.47: KDE of pan positions for each track. Kernel width = h/5, in order to reveal multiple
modes, where they exist. Guitar and drum overhead panning functions were multi-modal, while

kick, snare, bass and vocals followed more simplistic distributions.

in section § 4.5.2, Gtr1 and Gtr2 were most dissimilar in this song. This may explain why, in Fig.

4.47b, the density function indicates that Gtr2 was hard-panned more often than Gtr1, since Gtr2

was a banjo in the song ‘Borrowed Heart’, and it was likely to be hard-panned while the acoustic

guitar remained close to the centre position, as indicated by the median positions in Fig. 4.46.

There was an effect of the track ordering on the pan positions, in the case of drum overheads

and guitars. For both of these track groups, individual tracks were typically panned according to
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Figure 4.48: Distribution of final mix gains, taking into account pan positions.

the left-to-right positions of the tracks in the GUI. OH1 was panned left and OH2 was panned right,

in most cases. The effect is less for the guitars but, in many cases, Gtr1 was panned left-of-centre

and Gtr2 was panned right-of-centre.

Note that the position alone can only reveal so much information about the mix, as a track

can be panned but at such a low volume as to not be heard. The data showed that one participant

panned a single of the overheads far to one side but then greatly reduced the volume, giving a

sense of space, without resorting to the conventional technique of hard panning both tracks. It is

important to look at the final mix levels of both left and right channels, not just the combined sum.

This is shown in Fig. 4.48, which is a recreation of Fig. 4.43 but where left and right gains are

determined from the final pan positions, using Eqn. 2.1c.
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4.6 Discussion
Since these experiments gathered data for only five songs, the results should be considered as

specific rather than general. It is not known at this time how many songs would need to be studied

to be able to generalise to mixing as a whole, however, these five songs are considered to be typical

within pop/rock styles, due to their conventional instrumentation.

4.6.1 Effect of source position
The final mixes created depended on the initial mix presented, as when beginning with source A or

B the final mixes are typically closer to this position (see Figs. 4.28, 4.30 and 4.32). This may be

an example of an anchoring effect, in which the initially presented stimulus biases an individuals

perception of the alternatives. A literature review of this effect is provided by Furnham and Boo

[165]. This suggests that music mixing is influenced by the rough mix that is first presented.

In mixing experiments care should be taken in choosing the initial conditions. Previous work had

used randomised initial conditions [166], although this does make comparison difficult when one is

interested in the precise mixing process, as in this chapter. This effect may also have implications

in subjective testing of alternate mixes, as that which is presented first may be favoured, or those

similar to that which is presented first. Subjective evaluation of alternative mixes is one of the

main themes of this thesis and is discussed further in Chapters 6, 7 and 9.

4.6.2 Differences due to reproduction system
King et al. [46] had previously reported a statistically significant difference between the mixes

created on headphones and loudspeakers. In that case, the task involved mixing only in one

degree-of-freedom (balancing a lead instrument with a backing track). Additionally, that study

reported on the 10 participants who took part in both the loudspeaker and headphone sessions and

difference in these participants’ mixes. In this chapter, with three degrees-of-freedom (see Figs.

4.12 and 4.13), there was not any statistically significant difference in the levels of the instruments

within the mix, when comparing loudspeaker and headphone groups. The small sample size of

the headphone group should be noted (n = 8), as well as the change in location. However, since

the loudspeaker group was tested in a standardised room, this is not thought to be an important

factor. It is hypothesised that the main factor explaining the difference between these two studies

is the additional complexity and realism of the mixing process presented herein. Additionally,

King et al. [46] found the largest inter-group difference for a classical music sample, which is a

style of music not represented in this chapter.

4.6.3 Equalisation
The data gathered suggests that, when applying equalisation to a track, it was typical to boost

frequencies that are salient in that track, i.e. boosting the low band on bass and kick drum, as

shown in Figs. 4.44d and 4.45b. Recall that the crossover to the low band was set to ≈ 180 Hz:

this band was generally attenuated for guitar tracks and drum overheads. Vocal EQ application did

not appear to follow any particular pattern and has an even spread about the starting position with

little observed skewness. These results also suggest that the use of equalisation on the individual

channels within a mix does not have a notable effect on the inter-channel loudness differences (see

Figs. 4.42 and 4.43). When EQ is applied to a signal, any loudness changes are compensated for

by the main track fader.
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4.6.4 Panning
Many suggest the panning of low-frequency instruments centrally [53, 61, 167, 168]. This pattern

of behaviour was observed in these experiments, as kick drum, bass guitar and snare drum were

typically panned close to centre. Panning decisions may have been influenced by track ordering,

as similar tracks (drum overheads, two guitars) were typically panned opposite to one another as

the tracks were read (the fader to the left was panned left and the fader to the right was panned

right). No participant defied this convention (by panning the left track right and the right track

left). This indicates the importance of GUI elements on music mixing, as in order to pan a pair

of similar tracks far apart, their panning faders were moved to a greater visual displacement. The

influence of visual information on music mixing is a topic of recent research, for both software

[169] and hardware [170] user interfaces. There is evidence of an interaction between panning

on level. Panning the guitars far from the centre position, while the vocals remain in the centre,

results in a spatial unmasking effect. Consequently, the vocals do not need to be set so loud in

order to compete with the guitars. The reduction in vocal level in Fig. 4.13 compared to Fig 4.42

illustrates this.

4.6.5 Importance of vocals
In both mono and stereo experiments, with 4-tracks or 8-tracks, vocals were typically set at the

loudest level of all instruments. Additionally, the variance in the panning of vocals was smaller

than any other track. Participants chose to place the vocals near the centre of the stereo image.

These results highlight the importance of vocals within popular music. The spoken voice has great

communicative power, which can be modified by singing. The recorded singing voice therefore

has great affective potential and this can be exploited in the mixing process [171].
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4.7 Chapter summary
The work in this chapter introduced the concept of the mix-space and a formulation for track gains,

equalisation and panning. The formulation is based on representing the normalised track gains,

band gains or pan positions, using hyperspherical coordinates. This parameter space contains all

of the mixes that could be created with these tools and forms the basis for the efficient analysis of

mixes. In this chapter, mixes were created by test participants in the conventional manner: with

individual track faders for gain, 3-band EQ and panning. These mixes were then converted to the

mix-domain for comparative analysis. It is perhaps a more simple task to directly generate points

in this domain. This topic is explored in Chapter 5 as a means of creating random mixes for Monte

Carlo simulation of music mixing and in Chapter 8 as a basis for automated and semi-automated

music mixing. There is room for further work. The EQ analysis (“tone-space”) was generated

based on a 3-band volume adjustment. While this is generalisable to any number of bands, fur-

ther work would be to incorporate more conventional EQ structures, such as parametric EQ. As

illustrated in Fig. 4.6 and 4.7, most of this chapter considers a map of the mix-space, rather than

the mix-space itself, i.e., the mix-space is a hypersphere in a gain-space but this chapter creates a

Euclidean space from the angular components of the hyperspherical coordinates. It is possible to

solve these problems directly on the sphere but this would increase the number of dimensions by 1

and circular statistics would be used in place of linear statistics. Some of these issues are explored

in greater detail in Chapter 5 and 8.



5
Analysis of randomly-generated mixes

The previous chapter described a series of experiments in which participants used traditional mix-

ing interfaces to generate mixes. These were constrained in such a way that their mixes could be

then transformed into a simple mix-space, so that they could be compared to one another. Could

mixes not simply be generated in the mix-space, directly? It would be advantageous to do so, as

asking test participants to generate data is time-consuming and would be unlikely to create a large

enough dataset for a robust statistical analysis. The ability to quickly generate a large set of mixes,

covering the whole range of mixes that it is possible to make, has a number of uses.

a) Typically, feature-extraction is performed on only one mix of a given song, since only one

mix exists. Having a set of alternate mixes for each song allows for a more in-depth testing

of the robustness of a feature-extraction algorithm. Rather than gathering a large number of

real mixes, which is not always possible, the distribution of features within mixes of a song

can be estimated on an artificial dataset of random mixes.

b) Creating a population of mixes for use in optimisation (see Chapter 8).

While Chapter 6 discusses the variation in mixes created by real mix-engineers, a highly infor-

mative insight into the process of mix-engineering, it is also necessary to understand the baseline

conditions to which these real distributions can be compared. To achieve this, the work presented

in this chapter uses randomly generated mixes. These will be compared to the real-world mixes in

Chapter 6. The research questions pertaining to this chapter are as follows.

RQ.10 Do mix engineers, collectively, produce mixes with feature distributions similar to randomly

generated mixes? If not, how do mixes by real engineers differ from the randomly generated

mixes?

RQ.11 Can randomly generated mixes be used to help test the performance and accuracy of feature

extraction algorithms, such as onset detection and tempo estimation?

113
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5.1 Generating randomised track gains
As described in § 4.1, for a given n tracks, all the unique mixes exist on a hypersphere in Rn, i.e.

an (n−1)-sphere. To generate random track gains, random points in this space were determined.

For n tracks, and m mixes, m points on a unit (n− 1)-sphere (denoted as Sn−1) were generated.

The n tracks were first normalised according to perceived loudness, as defined in BS.1770-3 [32]

and modified by Pestana et al. [158]. A number of methods can be used to generate a distribution

of mixes. Two such methods are detailed here.

5.1.1 Method 1: uniform mixes

An easy way to pick random points on a hypersphere of arbitrary dimension is to generate n

Gaussian random variables x1,x2, ...,xn. Then the distribution of the vectors g, as defined by

Equation 5.1, is uniform over the surface Sn−1 [172, 173].

g =
1√

x2
1 + x2

2 + . . .+ x2
n


x1

x2
...

xn

 (5.1)

For sufficiently large number of points m, this method will return virtually all possible mixes

of the n tracks. However, are uniformly generated mixes representative of real mixes? It was

hypothesised that the generation of uniformly distributed mixes would likely produce many mixes

that would not realistically be created by real mixers (see Chapter 6). As a consequence, the value

of m would have to be very large in order to be comparable to the number of real mixes listed in

Table 6.1 and constraints would need to be implemented in order to ensure that all instruments are

presented with sufficient gain as to be audible.

5.1.2 Method 2: mixes close to arbitrary point

There are advantages to generating track gains according to some parametric distribution. For

example, the value of m can be lower, greatly reducing the computation time required for feature-

extraction and analysis. This method requires explicit parameters to be chosen. From § 2.2, as-

suming that the better mixes are generally the ones where the tracks are roughly equal in perceived

loudness, this method can be used to generate mixes distributed about the equal-loudness mix. The

equal-loudness mix is determined as follows. When the gains of all n tracks are equal, what g gives

a point on Sn−1, i.e. where the L2 norm of g is equal to 1?

r = 1 =|g| (5.2a)

1 =

√
n

∑
i=1

g2
i (5.2b)

12 =
n

∑
i=1

g2
i (5.2c)

1 =ng2 (5.2d)

n−2 =g (5.2e)
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For example, when n = 16,g = 0.25. Applying this linear gain g to all n loudness normalised

tracks would result in the equal-loudness mix, where the L2 norm is equal to 1.

In selecting a suitable parametric distribution it is important to note that linear distributions,

such as the normal distribution, are not appropriate as the domain in question is not linear but a

spherical surface. Recall that a linear domain extends over the range [−∞+∞], while a circular

domain is wrapped over a smaller range such as [0,2π). The statistics of such distributions are

described by a number of equivalent terms in the literature, such as circular, spherical or directional

statistics. In order to generate random points close to the desired position on the (n− 1)-sphere,

points are generated from a von-Mises-Fisher distribution (vMF). The probability density function

of the vMF distribution for a random n-dimensional unit vector x is given by

fn(x; µ,κ) =Cn(κ)eκµT x (5.3)

where κ ≥ 0, ||µ||= 1,n ≥ 2 and the normalisation constant Cn(κ) is given by

Cn(κ) =
κn/2−1

(2π)n/2In/2−1(κ)
(5.4)

Here Iv is the modified Bessel function of the first kind at order v. The parameters µ and κ are

called the mean direction and concentration parameter, respectively, and µT is the transpose of

µ . The greater the value of κ the higher the concentration of the distribution around the mean

direction µ . The distribution is unimodal for κ > 0 and is uniform on the Sn−1 for κ = 0. Further

details can be found in Fisher [174] and Mardia and Jupp [175]. To generate points according to a

vMF distribution the SphericalDistributionsRand1 code was used based on the work of Chen et al.

[176]. In the context of audio mixes, µ represents the mix about which others are distributed, akin

to the mean in a normal distribution. The κ term represents the diversity of mixes generated.
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Figure 5.1: Boxplot of gain values for 1,000 mixes of 16 tracks, generated from vMF distribu-
tion, designed to produce mixes around the equal-loudness mix.

For n = 8 tracks, as in § 4.5, the gains required for the equal-loudness mix are distributed around

1https://github.com/yuhuichen1015/SphericalDistributionsRand

https://github.com/yuhuichen1015/SphericalDistributionsRand
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the following point, µ . This calculation is based on Equation 5.2.

µ = [0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536]

Previous studies have indicated that, while a good initial guess, presenting each track at equal

loudness is not an ideal final mix. As discussed in the literature review (see § 2.2.1) and also was

shown in Chapter 4, vocals are often the loudest element in a mix (in particular, see Fig. 4.13 and

Table 4.4). To this equal loudness configuration, a vocal boost is added according to p.157 of [61],

i.e. a boost of 6.54 dB. A sanity check was performed by audition of mixes generated with this

boost and it was decided that, while it may be more than the authors’ own taste, such a boost is

not unrealistic. This addition of 6.54 dB to the vocal track produces the following vector, where

track 8 is vocals.

µ = [0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.7507]

If the previous vector was, then it is clear that this point is no longer on the unit 7-sphere. To

project the point back onto the unit 7-sphere, the vector is divided by it’s L2 norm, resulting in the

following.

µ = [0.2948 0.2948 0.2948 0.2948 0.2948 0.2948 0.2948 0.6259] (5.5)

This vector is the new µ on the unit 7-sphere about which mixes will be generated. The result is

shown in Figure 5.2. Each mix generated draws a gain value for each track such that the L2 norm

is equal to 1. Note that the median values closely match the vector µ , as expected. Of course,

there may not exist a mix which has these median values. This specific value of κ was chosen

to avoid generating negative gains, achieved through trial and error. Ignoring phase, a gain of g

is perceptually equal to −g, meaning that the nature of the distribution would change if negative

gains were included. Of course, for a distribution which produces negative gains the absolute

value could be taken to avoid inverting the phase of the tracks.
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Figure 5.2: Boxplot of gain values for 1,000 mixes, generated from VMF distribution, with 6.54
dB boost to vocals (µ = Eqn. 5.5, κ = 200)
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5.2 Generating randomised equalisation
As the tone-space, introduced in § 4.4.1, only modelled a very simple equalisation method, an

alternate method was used for this chapter. In order to achieve as wide a range of equalisation as

possible, using as few processing stages as possible, equalisation was applied as follows.

1. Analysis of how an equaliser is used

2. Create a random EQ curve

3. Create a filter from this curve

5.2.1 Principal component analysis of EQ
In order to determine an efficient way to represent the use of a realistic equaliser, the raw data2

from the Social EQ study [37] was analysed. Briefly described in § 2.2, this raw data consists of

731 terms and a 40-point EQ curve describing the term, from 20 Hz to 19,682 Hz. Of the 731

examples there are 324 unique terms. For the purposes of the study presented herein, it is not

particularly important that the EQ examples describe qualitative terms but merely that they are

realistic examples of equalisation that is applied to individual instruments. The instruments in

question are not always known, since participants had the ability to upload their own sounds, but

most are likely to be guitar, piano and drums, as these were the default sounds supplied, according

to Cartwright and Pardo [37].

With a 731× 40 matrix of data, i.e. 731 observations of 40 variables, PCA was used to

determine a set of basis vectors. Since the 40 variables are individual bands of an equaliser, the

assumption can easily be made that there is correlation between all variables. This is confirmed

by the data shown in Fig. 5.3, where it can be seen that nearby bands are positively correlated and

distant bands are negatively correlated. The data was standardised prior to PCA. Since all data

was in units of dB, and spanning a similar range, this standardisation may not be critical, but was

done to provide consistency with other uses of PCA in the thesis. PCA revealed that the first two

dimensions can be approximately described as a spectral tilt (with centre point near 850Hz) and

a mid-boost (wide Q, around 1 kHz). These two components account for ≈ 70% of the variance

in a 10-band EQ. The Pareto chart is shown in Fig. 5.4. The first six components are required to

explain over 95% of the variance. These first six basis functions are shown in Figure 5.5. Since the

aim was the represent close to 100% of the variance in a reasonably low number of components,

choosing 95% variance as the reason to keep six components is justifiable.

5.2.2 Choose random point in PCA space
For each track, a random EQ filter was generated as follows. A random position in this six-

dimensional PCA-space was determined by generating a vector of six Gaussian variables. This

resulted in an equalisation curve, by combination of the six basis functions. With units in dB,

the mean of the distribution was chosen as 0 and the standard deviation σ = 6. The greater the

value of σ , the greater the variance in gain, resulting in a greater chance of more pronounced and

noticeable equalisation. The chosen value was the result of an informal trial in which a number of

values were used and the results subjectively compared. A value of σ = 6 produced a noticeable

amount of variation in the tone of individual instruments.
2Available from http://socialeq.org/data/

http://socialeq.org/data/
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Figure 5.3: Correlation of EQ bands in “Social EQ” raw data
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Of course, applying equalisation at random is only an approximation to how equalisation

would be used by a human operator. For example, instruments with greater energy at low frequen-

cies may not require any equalisation at the higher frequencies, and vice-versa. The application

of random EQ in this case was intended to produce randomised variations in the measured audio

signal features, consistent with the variations that would occur when equalisation is applied by a

human operator under realistic circumstances.

5.2.3 Approximate EQ with IIR filter
With a randomised EQ curve generated, a filter with this approximate curve shape was determined

using the Yule-Walker method [177]. Note that only data up to 19,682 Hz was available from the

original study [37], and so the gain at this point is held until fs to generate the target curve used

to generate the filter coefficients. For each track in a mix, such a filter was produced and applied

to the audio signal. Examples of these filters are shown in Figure 5.6. In order to generate 1,000

mixes of an 8-track session, 8,000 EQ settings were generated. Figure 5.7 shows the mean and

standard deviation of a set of 8,000 such filters. This shows that the mean value is close to zero at

all frequencies, as desired. There are a number of reasons why the standard deviation is not equal

across all frequencies.

1. The filter produced by the Yule-Walker method is an approximation to the desired filter (see

Figure 5.6), and so there is some error.

2. The first six dimensions of the PCA do not explain the entire variance (see Figure 5.4).

3. The participants in the original study [37] did not perceive equalisation equally across all

frequencies. While they were not using an equaliser in an explicit sense, simply listening to

generated EQ curves, the point is still valid.

The first and second points here are most likely to be trivial while it is expected that the third point

contributes most to the result. Since the spectral distribution of music is not flat and given that we

perceive different frequencies at different loudness levels, there is little reason to expect EQ usage

to be equal across all frequencies.
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Figure 5.6: Random EQ filter chosen from PCA space
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5.3 Analysis of mono mixes
In order to create the random mixes, songs were split into 8-track sessions, featuring the same

eight tracks as in § 4.5, namely two drum overheads, kick drum, snare drum, bass guitar, two

similar guitars and one track of vocals. In order to achieve this, and for the sake of simplicity,

only three songs were used. These were the three songs for which the most real-world mixes were

available (see Table 6.1) and could easily be represented in this 8-track form. These three songs

were “Burning Bridges”3, “I’m Alright”4 and “What I Want”5. For each song, the eight tracks

were normalised according to loudness [32, 111], just as in § 4.3 and § 4.5.

For each song a set of 1,000 random mixes were generated. The same set of 1,000 gain

vectors were used for each song, to set the levels of the eight tracks. These are shown in Fig. 5.2.

Similarly, when EQ was applied, the same 1,000 EQ settings were used for each song (see Fig.

5.7). The ith gain vector is paired with the ith set of 8 filters, to generate the ith mix. By generating

the settings first and then applying these settings to each song, the 1,000 mixes of each song are

comparable to one another, especially given that the tracks are loudness-normalised. A number of

signal features were extracted from each set of random mixes. These included features previously

used in Chapter 3 as well as additional signal features describing aspects of rhythm not addressed

previously. These include the three related concepts of onset detection, tempo estimation and pulse

clarity (which has also been referred to as “beat strength”[178]).

Table 5.1: Table of features — random mixes

Name Description

Loudness [32]
Spectral Centroid [114]
LF energy [107]
Pulse Clarity [114, 179]
Onset detection [114]
Tempo [114]

5.3.1 Loudness/Amplitude
According to Eqn. 5.5, as each mix is on a unit hypersphere, the L2 norm of the gain vector is

equal to 1, for each mix. Theoretically, any variations in perceived loudness are due to differences

in the spectral content of each track, limitations in the applicability of the modified BS.1770-3 to

narrowband signals [111] (as used in the initial normalisation) or inaccuracy in the application of

BS.1770-3 [32] to broadband signals (in the measurement of the mix loudness). The estimated

probability density function of loudness values is shown in Fig. 5.8, estimated using KDE. From

this result it was possible to confirm that the perceived loudness of all mixes is equal, to a small

margin of error. Recall from Chapter 4 that h is the default kernel width, a width that assumes

a normal distribution, and h/3 is used here to gain greater insight into modal values. The value

of h/3 was considered as a compromise value that would allow for sufficient detail, based on

informal experiments.

3http://www.cambridge-mt.com/ms-mtk.htm#DarkRide_BurningBridges
4http://www.cambridge-mt.com/ms-mtk.htm#AngelsInAmplifiers_ImAlright
5http://www.cambridge-mt.com/ms-mtk.htm#TheBrew_WhatIWant

http://www.cambridge-mt.com/ms-mtk.htm#DarkRide_BurningBridges
http://www.cambridge-mt.com/ms-mtk.htm#AngelsInAmplifiers_ImAlright
http://www.cambridge-mt.com/ms-mtk.htm#TheBrew_WhatIWant
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Figure 5.8: KDE of perceived loudness, for 1,000 vMF-distributed mixes of ‘Burning Bridges’,
with vocal boost, before and after random equalisation and two different kernel smoothing val-

ues. vMF distribution: µ = Eqn. 5.5, κ = 200
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Figure 5.9: KDE of perceived loudness, for 1,000 vMF-distributed mixes of three songs, with
vocal boost, before and after random equalisation. Each curve is drawn with the default kernel

width. vMF distribution: µ = Eqn. 5.5, κ = 200

Figure 5.8 also shows that the process of adding random equalisation adds, on average, 0.51

LUFS to the perceived loudness of the mix, for “Burning Bridges”. This value was obtained by

measuring the difference between the peak of each h/3 curve. The variance in loudness values

when EQ is added is greater than without EQ. However, since the majority of mixes lie within

-25.5 and -24 LUFS, this can still be considered a small variation in perceived loudness. Note that,

when using a more narrow kernel width of h/3, the presence of modal values is move evident. The

overall shape of the curve is however well-estimated using the default kernel width of h.

Some additional insights were obtained by comparing the KDE curves for three different

songs. Without EQ being added there are differences between the peak values, although they

exist within a small range of less than 0.5 LU (see dashed lines in Fig. 5.9). The peak values

for each song are at loudness values of -25.34, -25.56 and -25.83 LU and the variance is low, at

0.59, 0.30 and 0.37 LU respectively. Perceptually, this range of loudness values would be difficult
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to discriminate. Numerically, these differences are likely to be due to small inaccuracies in the

loudness measurement algorithm. For all three songs, Fig. 5.9 indicates that the addition of EQ

adds loudness to the mix but also broadens the range of loudness values in the set of 1,000 mixes

(refer to solid lines in Fig. 5.9). This is not surprising as the addition of EQ increases the degrees

of freedom in the mix. When EQ is added in a random fashion it may boost or attenuate the salient

frequencies of a given track, giving rise to changes in perceived loudness.

5.3.2 Spectral features

Making changes to the spectral content of individual instruments is one of the primary tasks of a

mix engineer, as identified during the literature review. This has been shown elsewhere in the thesis

(see Chapter 6, where “brightness” and “bass” were two of the primary dimensions uncovered). It

is therefore expected that alternate mixes vary greatly in terms of spectral characteristics, such as

spectral centroid. While this is shown in Fig. 6.5, for real mixes, the extent of the variability in

this feature is of interest and can be found in the study of random mixes.

Figure 5.10 shows the results of spectral centroid measurements on the random mixes, with

and without the random equalisation being applied, for the song “Burning Bridges”. For both

cases, two plots are shown: one at the default kernel width and one at 1/3 the default width. The

default width of h makes a good estimate and is therefore used in Fig. 5.11. It is clear that a

wider range of values is attained after the equalisation has been applied. There is no noticeable

difference in the peak value (≈ 4200 Hz), indicating that the random equalisation process is fair,

equally likely to raise as to lower the value of the spectral centroid. Figure 5.11 indicates that this

effect is also true for the two other songs, as there is little difference in the mean spectral centroid

before and after EQ.

While 1,000 mixes were generated, how can one be sure that this was a sufficiently large

amount? The effect of sample size of the spectral centroid estimation is shown in Fig. 5.12.

Note that when only 100 samples are generated, the modal value is over-estimated. Increasing

past 300 samples does not seem to increase the accuracy of the estimation, for this default level

of kernel smoothing. Interestingly, this is not much larger than the greatest amount of human

mixes obtained for Chapter 6, which is 373, as shown in Table 6.1. Since the distribution does

not change noticeably after N = 300, it is possible to state that 373 human-made mixes was a

significant amount. Most of the songs did not have this many mixes (the mean amount was 150

and the median 127), however, it is also shown that when EQ was added the distribution did not

change noticeably after N = 100. A sample size of 1,000 is therefore assumed to be an adequately

large sample for the purposes of evaluating spectral features in a Monte Carlo simulation of music

mixes.

5.3.3 Rhythm

Referring to Chapter 6, since the analysis of real mixes did not include features related to rhythm,

a number of these features were included for the study of random mixes. In this analysis, since all

of the mixing parameters are known, the variation of the features describing rhythm can be better

examined, without confounding factors introduced by the mix engineers.
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Figure 5.10: KDE of spectral centroid, for 1,000 vMF-distributed mixes of ‘Burning Bridges’,
with vocal boost (µ = Eqn. 5.5, κ = 200), before and after random equalisation. h is the default

kernel width.
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Figure 5.11: KDE of spectral centroid, for 1,000 vMF-distributed mixes of three songs, with
vocal boost (µ = Eqn. 5.5, κ = 200), before and after random equalisation.

5.3.3.1 Note onsets

Onset detection is an active area of research seeking to identify when a note occurs in a piece of

music and also to characterise the onset of the note according to parameters such as attack slope

[180–182]. In the MIRtoolbox, onset detection can be performed using either an envelope-based

method or spectral flux-based method. The envelope method was used here. Polyphonic onset

detection is a greater challenge, particularly if multiple instruments are involved, where these

different instruments have varying envelope characteristics, such as attack time and attack slope.

Bello et al. [180] compared the performance of five methods of onset detection on a number of

audio clips. The result showed that accuracy is reduced for a “complex mix” when compared

to individual instruments, with the lowest true positive rate and highest false positive rate being

achieved on this particular audio clip. As each of the instruments in a mix can have a different

number of onsets, an onset detection algorithm should return varying results for a mixture of these
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Figure 5.12: Effect of sample size on spectral centroid KDE, for “Burning Bridges”

instruments, depending on the relative volume of each instrument in the mix and the ease at the

algorithm can pick out the individual onsets of quieter instruments.

5.3.3.2 Tempo

If the tempo of a song is 100 beats per minute (bpm) it follows that all mixes of the song are

also at 100 bpm. This is to say that it is trivial to obtain the ground truth tempo values for all

mixes of a song. However, current tempo estimation algorithms are imperfect. Classic methods

of tempo estimation relied on detecting periodicities in the onset detection curve by means of

autocorrelation. This method, and some derivatives, can be prone to “octave errors”, where the

estimated tempo is twice, or half the correct tempo. This can also produce other fractional errors.

The MIRtoolbox includes two tempo estimation methods: ‘classical’, as above, and ‘metre’ [183].

The latter tracks the metrical structure of the audio, allowing a more consistent estimation of

tempo. Of course, tempo estimation is a frequently attempted task and the subject of competitions,

such as the annual MIREX (Music Information Retrieval Evaluation eXchange) challenges. Many

of the more contemporary, and high-performing, algorithms have been entries/winners of these

competitions [184, 185]. The issue of estimation accuracy has been addressed in some recent

publications [186, 187].

By measuring the estimated tempo over the set of random mixes, for a number of songs, the
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Figure 5.13: KDE of note onsets, for 1,000 vMF-distributed mixes of ‘Burning Bridges’ with
random equalisation. Onset detection used the envelope method from MIRtoolbox.
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Figure 5.14: Histogram of estimated tempo for 1,000 random mixes of “Burning Bridges” with
random equalisation

Table 5.2: Tempo estimation accuracy results. Shown is the proportion of the 1,000 mixes for
which the correct tempo was estimated.

Song Ground truth mirtempo(classic) mirtempo(metre)

Burning Bridges 100 bpm 0.223 0.997
I’m Alright 96 bpm 0.098 1.000

What I Want 99 bpm 0.976 1.000
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accuracy of a tempo estimation can be assessed. The results of the tempo estimation accuracy

investigation are shown in Table 5.2. Only three songs were used, as this was enough to show the

level of disagreement that can exist between algorithms and across songs, despite these songs have

similar tempi (“Burning Bridges” is arguably performed at 200 bpm but 100 bpm is considered

correct due to octave error confusion). From the results it is clear that the metre-based method is

more robust to changes in the mix than the classic method. While the classic method did perform

very well for “What I Want”, detecting the true tempo in almost 98% of mixes, the performance

for “I’m Alright” was a very poor 9.8%.

5.3.3.3 Pulse clarity measurement in alternate mixes
Figure 5.14a indicates the inaccuracy of the mirtempo(classic) tempo estimation algorithm, on the

set of 1,000 mixes of “Burning Bridges”. In order to better understand the reasons for this type

of inaccuracy, other features must be investigated. Pulse clarity is defined as the ease with which

listeners can perceive the underlying rhythmic or metrical pulsation in a piece of music [179].

Subsequently, it was hypothesised that the measured pulse clarity would vary for different mixes

based on the relative contributions of the varying instruments. For example, louder drums may

make tempo estimation easier if that drum pattern is one with clear note onsets being played in a

predictable and stable pattern. Figures 5.15, 5.16 and 5.17 each show the relationship between the

measurement of pulse clarity and the gains of each individual track in that specific mix. The track

with which pulse clarity is most strongly correlated is vocals and this correlation is negative. This

suggests that an increased level of vocals (and therefore a relative decrease in the level of all other

instruments) results in an increased difficulty in a listener recognising the underlying pulse of the

song as a whole. This is a logical finding, as the rhythm of a lead vocal is often less regular than

an instrument such as a drum kit and a vocal performance may contain frequent periods of silence

between phrases. Additionally, due to the reduced transients compared to drums, onset detection

can be a greater challenge in vocals, which can add inaccuracies to tempo estimation. Supporting

this conclusion is the positive correlation between both drum overhead tracks and pulse clarity,

especially considering that the correlation is not strong for either kick drum or snare drum. This

indicates that when listening to the drum kit as a whole the pulse of the music can be perceived

with greater ease than individual components in isolation. This finding was observed in all three

songs investigated.
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Figure 5.15: Variation in measured pulse clarity (before EQ) when compared to individual track
gains, in dB, for the song “Burning Bridges”. The track gain with which pulse clarity is most

strongly correlated is vocals, followed by drum overheads.
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Figure 5.16: Variation in measured pulse clarity (before EQ) when compared to individual track
gains, in dB, for the song “I’m Alright”. The track gain with which pulse clarity is most strongly

correlated is vocals, followed by drum overheads.
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Figure 5.17: Variation in measured pulse clarity (before EQ) when compared to individual track
gains, in dB, for the song “What I Want”. The track gain with which pulse clarity is most strongly

correlated is vocals, followed by drum overheads.
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5.4 Mixes informed by experimental results
Of course, equal-loudness mixes with boosted vocals is a simplification of what levels real mix

engineers actually use. From Chapter 4 we know that there is some degree of consensus when

it comes to setting levels in a pop/rock mix. Consequently, a new distribution was made, with a

value of µ directly informed by experiment. The results from § 4.5 were used, specifically the

result shown in Fig. 4.43. By using the median levels for each track as a starting point for a new

distribution, the new, informed, value of µ was as follows.

µinformed = [0.2174 0.2201 0.3107 0.2584 0.4280 0.3489 0.3107 0.5197] (5.6)

Since the median values do not represent an observed data point, the L2 norm of µinformed is not

necessarily equal to 1 (in fact, it is approximately 0.96 in this case). In order to use this as a mean

direction in a vMF distribution, µinformed was divided by the L2 norm, resulting in the following.

µinformed = [0.2254 0.2282 0.3221 0.2679 0.4437 0.3616 0.3221 0.5387] (5.7)

A concentration parameter κ = 200 was used. The result was a set of 1,000 mixes, the gains of

which are shown in Fig. 5.18. Feature extraction was then undertaken in a manner identical to

the naïve approach. The perceived loudness was not extracted for this set of informed random

mixes, as the normalisation of the mixes was sufficiently demonstrated by the result in Fig. 5.9.

When the spectral centroid of all mixes in this set had been obtained, the estimated probability

density function was determined using KDE. The resultant distributions are shown in Fig. 5.19,

for “Burning Bridges” (equivalent figures for the other songs are shown in Chapter 6). The mean

value is approximately 3950 Hz, before and after EQ, as indicated by the peaks in the h/3 curves

for “no EQ” and “w/EQ” conditions. As the informed mixes have proportionally higher vocal

levels than the naïve mixes, as well as other characteristics such as attenuated drum overheads and

boosted bass guitar, the distribution of given features was influenced by the feature values of these

instruments and how they interact in the generated mixes. For example, drums overheads typically

have a relatively high spectral centroid compared to the other instruments and so an attenuation

results in a lower spectral centroid. The same effect is generated by an increase in the bass guitar.

Consequently, it is expected that, when following µinformed, the spectral centroid distribution of a

set of generated mixes is lower than in the naïve case.
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Figure 5.19: KDE of spectral centroid, for 1,000 vMF-distributed mixes of ‘Burning Bridges’,
with gains informed by Fig. 4.43 (µ = Eqn. 5.7, κ = 200), before and after random equalisation.

h is the default kernel width.
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Figure 5.20: KDE of note onsets, for 1000 vMF-distributed mixes of ‘Burning Bridges’ with
random equalisation and gains informed by Fig. 4.43 (µ =Eqn. 5.7, κ = 200).
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5.5 Generating randomised panning
Up to now, all mixes considered were single-channel mixes, i.e., mono. For generating stereo

mixes, a number of methods were trialled in attempting to create random panning.

5.5.1 Method 1 — separate left and right gains
The method for random gains was used to create separate mixes for the left and right channels of

a stereo mix. Recall that hard panning only exists when the gain in one channel is zero. Since the

vocal boost prevents any zero-gain on vocals, the panning of the vocals is much less wide than the

other tracks. Additionally, since κ = 200 was chosen to prevent any negative gains, there are few

zero-gain instances, therefore, a lack of hard panning. Fig. 5.21 shows the gain settings produced

and a boxplot of the resulting pan positions — the inter-quartile range extends to ±0.4 for the

seven instrument tracks and about ±0.2 for the vocals. The estimated density of pan positions for

each track is shown, illustrating the relatively narrow vocal panning. As expected, these estimated

density functions are Gaussian, to a good approximation.

5.5.2 Method 2 — separate gain and panning
This method involved generating random mono mixes as section § 5.1 and then generating pan

positions separately. A µpan was created for a vMF distribution. This vector was based on the

experimental results shown in Fig. 4.46. They showed that overheads and guitars were panned

while kick, snare, bass and vocals were positioned centrally.

µ = [−0.5 0.5 0 0 0 −0.4 0.4 0] (5.8)

This then needs to be a unit vector for it to be used in creating vMF-distributed points. Conse-

quently, the precise values are not critically important, as it is the relative pan positions that are

reflected in the normalised vector.

µ = [−0.5522 0.5522 0 0 0 −0.4417 0.4417 0] (5.9)

Three different values for κ were used, which illustrates how this parameter controls the distribu-

tion of panning. The results are shown in Fig. 5.22.

5.5.3 Method 3 — informed left and right gains
While method 2 was informed by the general pan positions of the tracks, method 3 was informed

by the median stereo gains which produced those pan positions, as shown in Fig. 4.48. Therefore,

method 3 has the advantage that different instruments can have different variance of pan positions,

with κ acting as a scaling variable for each variance. The vectors used are shown in Eqns. 5.10

and 5.11. To avoid negative track gains and resulting phase inversions, the absolute magnitude of

the gain was used.

µL = [0.27414 0.13544 0.33612 0.26565 0.4401 0.37959 0.25659 0.5651] (5.10)

µR = [0.11886 0.25966 0.31617 0.26118 0.4683 0.29354 0.37265 0.55311] (5.11)
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Figure 5.21: Panning method 1 — separate vMF distributions for gL and gR.
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Figure 5.22: Panning method 2 — vMF distribution in panning space
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Figure 5.23: Two random mixes generated using panning method 2, shown as squares and
circles. Each mix has a different gain vector and different pan vector (based on Eqn. 5.9).
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5.6 Analysis of stereo mixes
For each of the three methods, 1,000 stereo mixes were generated using the audio tracks from

three songs, as was done for mono mixes. From these mixes the width was measured using the

stereo panning spectrogram [188].

5.6.1 Method 1
When method #1 was used to create 1,000 random mixes with random stereo panning, Fig. 5.21

suggested that the range of pan positions would be relatively small, compared to the other two

methods. Figure 5.25 shows the distribution of measured stereo width (using stereo panning spec-

trogram) from the 1,000 mixes, confirming that the perceived width is relatively low, generally

below 0.1. Mixes of ‘I’m Alright’ typically produced wider mixes. This is possibly due to the fact

that the two ‘guitar’ tracks, for this song, were actually guitar and piano — being that these two

instruments are less similar than two guitars playing the same part, when they are panned left and

right, the impression is that less of a phantom centre is created. For all three songs, the application

of equalisation does not appear to significantly change the distribution of width measurements.

5.6.2 Method 2
For creating random mixes for measurement, the following parameters were used. This is in

contrast to the example in § 5.5.2 but ensures that drum overhead panning is wider than guitar

panning, on average.

µ =[−1 1 0 0 0 −0.5000 0.5000 0] (5.12a)

µNRM =[−0.6325 0.6325 0 0 0 −0.3162 0.3162 0] (5.12b)

κ =100 (5.12c)

This method produces a reasonably narrow range of pan positions for each instrument (as shown

in Fig. 5.22) and a relatively narrow range of measured pan values when random mixes are created

(see Fig. 5.26). As the variance is low it is clear that the central values are quite dependent on the

song in question. Unlike method #1, the application of equalisation does broaden the distribution,

as clearly indicated by the lower values of maximum density, although the central values are only

slightly increased.

5.6.3 Method 3
The use of method 3 to generate random stereo mixes results in the widest distributions of mea-

sured width, shown in Fig. 5.27, although the precise width, as in all methods, depends on the

value of κ . As indicated by the two other methods, the mixes of “I’m Alright” are measured as

wider than the two other songs. The addition of equalisation has results in no noticeable change

in the distribution.



5.6. ANALYSIS OF STEREO MIXES 139

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

Width

D
en

si
ty

WIW
WIW EQ
BB
BB EQ
IA
IA EQ

Figure 5.25: Method 1 — KDE of Width (all freq.), of 1000 mixes — GAIN vMF: κ = 200,µ =
Eqn. 5.5
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Figure 5.26: Method 2 — KDE of Width (all freq.), of 1000 mixes — GAIN vMF: κ = 200,µ =
Eqn. 5.5, PAN vMF: κ = 100,µ = Eqn. 5.12b
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Figure 5.27: Method 3 — KDE of Width (all freq.), of 1000 mixes — GAIN L vMF:κ =
200,µ = Eqn. 5.10, GAIN R vMF: κ = 200,µ = Eqn. 5.11
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5.7 Chapter summary
In this chapter, a method for generating random mixes was proposed, using a parametric model to

populate the mix/tone/panning space described in Chapter 4. This model is based on a von-Mises-

Fisher distribution, with a mean vector µ specifying a target mix, and a concentration parameter

κ which specifies the variance in the distribution (uniform distrubitions can be achieved when

κ = 0). By generating a large set of random mixes, these mixes can be characterised by audio sig-

nal features and the distribution of these features gives a good indication of their tolerance ranges

when mixing.

How many random mixes are needed to fill the space? This study suggests that a value

of 1,000 may have been much more than necessary, as feature distributions did not vary much

in going beyond 300 mixes. The application of equalisation tends to broaden the distribution

of features, unsurprising considering the additional degrees-of-freedom being introduced by this

process.

The robustness of two tempo estimation methods to changes made during mixing was inves-

tigated by measuring the estimated tempo over all 1,000 mixes of three songs. This revealed that,

even when a method fails to estimate the correct tempo for a given song, there is likely to be an

alternate mix for which the correct tempo can be accurately measured. Additionally, it was shown

that pulse clarity is increased when vocals are mixed at lower levels. These two findings could

be useful for music information retrieval, as it suggests that various complex tasks, such as genre

prediction, could be aided by re-mixing, where possible.

The techniques proposed in this Chapter are utilised later in this thesis, as the creation of a

set of (pseudo-)random mixes is the first step in many evolutionary algorithms. Chapter 8 will

continue where this chapter leaves off, in detailing such an example system.

It is important to challenge the idea that a particular song has specific values of signal features:

all values are only specific to the mix of that song. This means that the analysis of signal features

in sets of mixes can reveal novel insights. This is re-visited in Chapter 6, where a set of real-world

mixes are subject to the same feature-extraction. The distributions can then be compared to the

distributions of the random mixes in order to infer the motivations and actions of mix engineers in

real-world conditions.



6
Analysis of real-world mixes

The diversity existing among music mixes has been discussed in previous literature, both qual-

itatively [189–191], quantitatively [33, 192, 193] and increasingly, both [37, 82] (refer back to

literature review). Previous attempts to examine mixes using audio signal features have been lim-

ited to datasets which are too small to allow a detailed statistical analysis. One of the purposes of

the work in this chapter is to make use of larger datasets in order to perform such analyses. The

specific aims are as follows (aim #4 is addressed in Chapter 7):

1. To identify a source of audio mixes and create a large dataset for academic use

2. To objectively characterise such a dataset by means of audio signal feature extraction

3. To investigate the variation across all audio mixes

4. To investigate the variation across all mix engineers responsible for creating theses mixes

Portions of this chapter were published in 2015/2016 [194–196].
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6.1 Variance in a large dataset of mixes
6.1.1 Dataset #2 — 1501 mixes
The data used in this study was collected directly from Cambridge Music Technology1, which

hosts multitrack content along with a forum where members can publicly post their mixes of that

content. The database categorises multitrack content by genre. Of the ten most mixed sessions,

eight belong to the “Rock/Punk/Metal” category. Table 6.1 shows the multitrack content which

is used for the study in § 6.1.1. These mixes were gathered in late 20152. The songs which

have attracted the most mixes were specifically favoured. Due to the “Rock/Punk/Metal" category

being preferred, this study focusses on these genres. Often-mixed songs from other categories

are omitted in place of slightly less-often mixed songs from within this category. This allows the

creation of a dataset which contains a consistent selection of instruments and sounds, including,

but not limited to, drums, electric bass, guitars and vocals, as in Chapters 4 and 5.

Table 6.1: Audio samples obtained for this study.

Artist Title Tracks Mixes

Angels in Amplifiers I’m Alright 13 373
Dark Ride Burning Bridges 32 183
Actions Devil’s Words 27 138
Young Griffo Blood To Bone 23 135
The Brew What I Want 37 129
Johnny Lokke Promises and Lies 23 125
Hollow Ground Ill Fate 21 118
Street Noise Revelations 11 103
The Doppler Shift Atrophy 22 100
Hollow Ground Left Blind 16 97

TOTAL 1501

The majority of the mixes were only available in MP3 format, at bit-rates between 128kbps and

320kbps. All downloaded files were converted to PCM WAV format, at a sampling rate of 44.1kHz

and a bit-depth of 16 bits. While lossy encoding, such as MP3, would have an effect on certain

objective measures of the signal, such as reducing the value of Spectral Centroid and Rolloff

features by the removal of some high frequency information (usually > 16 kHz but dependent on

settings 3), this effect can be demonstrated to be negligible. Furthermore, Lee et al. [197] indicated

that, for individual instrument tones, MP3 compression at 128 kbps “caused almost no change in

the timbre-space”, with relatively small changes in their spectral attributes (centroid, irregularity

and incoherence).

For a given song, each mix was of a different length, due to varying amounts of silence at the

start and end of each file and also occasional acts of creative re-arrangement such as the removal

or duplication of certain bars. This made it difficult to use the entire audio in the analysis. To

normalise the choice of audio segment, the audio was cut to short segments containing the second

1http://www.cambridge-mt.com/ms-mtk.htm
2Consequently, the number of available mixes is likely to have increased since that time.
3MP3 compression removes some high frequency content, although there is not typically a great deal of spectral

energy above this point

http://www.cambridge-mt.com/ms-mtk.htm
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chorus of the song, as in previous chapters. Each of these segments was then time-aligned, which

was achieved by determining the peak in the cross-correlation vector when comparing one mix to

all others. All of the mixes but one were zero-padded to align the files accordingly. Each mix was

then trimmed to a 30-second length containing the chorus. This ensures that feature extraction

tasks can be performed fairly on all mixes. This process was applied to each batch of mixes of

each song. This processing assumes that tempo does not vary across mixes of the same song, as,

if it were to vary, choosing the peak in the cross-correlation vector would not ensure that all mixes

are in sync at all times. However, it was demonstrated by the success of this method that the tempo

of all mixes of a particular song were identical. This was confirmed by audition.

6.1.2 Research questions
This dataset of mixes can be used to address a variety of challenges, a number of which are

explored herein.

RQ-12 Which audio signal features vary most across mixes?

RQ-13 What are the dimensions of mix-engineering practice, across all songs and for a particular

song?

RQ-14 How are the values of low-level features distributed in the dataset? What are their typical

means and variance?

Direct subjective appraisal of these mixes, in the conventional sense of controlled listening tests,

is not included in this thesis due to the overwhelming size of the dataset. However, as all mixes

were created in real-world conditions, we assume each engineer produced their mixes to the best

of their abilities and towards their desired targets. In this sense, subjective evaluation is implicit in

the data itself. Additionally, a subset of this dataset forms the audio mixes that were entered into

an on-line mix competition. Therefore, this subset does have some limited subjective evaluation

and this is analysed in greater detail in § 6.2.

6.1.3 Feature-extraction
As many established audio signal features have been designed for Music Information Retrieval

(MIR) tasks such as instrument recognition or genre classification, it is not widely understood

which features would be best suited to categorising mixes of a given song. Features relating to the

perception of polyphonic timbre were thought to be important (based on a chronologically earlier

experiment which is described in Chapter 3) and so the sub-band spectral flux was determined,

based on the work of Alluri and Toiviainen [128]. The statistical moments of the sample amplitude

probability mass function (PMF) have been shown to categorise different types of distortion in

mixing and mastering processes [108]4 and so these features are also used. Spatial features were

derived from the stereo panning spectrogram (SPS) by Tzanetakis et al. [188]. Table 6.2 contains

a full list of features. At this stage, features related to rhythm are not included, since the structure,

form and meter of varying mixes should be identical if they are mixes of the same multitrack

audio. Further discussion of rhythm can be found in Chapter 5.

4This paper reports on the experiment described in Chapter 3 but is not included in that chapter, as it is slightly
outside the scope of this thesis.
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Table 6.2: Audio signal features used in analysis. Features with KMO < 0.6, marked with an
asterix, are not included in the PCA.

Feature Label Ref. KMO

Spectral Centroid SpecCent [114] 0.758
Spectral Spread SpecSpr [114] 0.797
Spectral Skew SpecSkew [114] 0.851
Spectral Flatness SpecFlat [114] 0.898
Spectral Kurtosis SpecKurt [114] 0.852
Spectral Entropy SpecEnt [114] 0.639
Crest Factor CF 0.967
LoudnessITU LoudITU [32] 0.834
Top1dB Top1dB [108] 0.900
Harsh Harsh [107] 0.633
LF Energy LF [107] 0.631
Rolloff85 RO85 [126] 0.819
Rolloff95 RO95 [126] 0.677
Gauss Gauss [107] 0.965
PMF Centroid PMFcent [108] 0.938
PMF Spread PMFspr [108] 0.890
PMF Skew [108] 0.534*
PMF Flatness PMFflat [108] 0.962
PMF Kurtosis PMFkurt [108] 0.907
Width (all) W.all [110, 188] 0.966
Width (band) [110, 188] 0.591*
Width (low) W.low [110, 188] 0.778
Width (mid) [110, 188] 0.540*
Width (high) [110, 188] 0.567*
Sides/Mid ratio 0.593*
LR imbalance [36] 0.518*
Spectral Flux sbflux1-10 [128] All > 0.8

For these 1501 mixes, outlier detection was performed in the 36-dimensional feature-space

(see Table 6.2). The Z-score of each point was determined by the Euclidean distance to the three

nearest neighbours. Samples for which Z > 2.5 were deemed to be outliers. 35 such samples were

found and once omitted there were 1466 audio samples remaining for further analysis.

6.1.4 Factor analysis

Principal Component Analysis (PCA) was used in order to reduce the dimensions of the feature-

space. The appropriateness of PCA was tested as follows, based on a scheme proposed by Dziuban

and Shirkey [129], and using R [130]. Using Bartlett’s test of sphericity (using the psych package

[131]), the null hypothesis that the correlation matrix of the data is equivalent to an identity matrix

was rejected.

χ
2(630,N = 1466) = 97162.75, p < 0.001

This indicated that factor analysis was a suitable analysis method. The Kaiser-Meyer-Olkin mea-

sure of sampling adequacy (KMO) was evaluated [132]. KMO for the full set of variables was

0.845. This value is above the value recommended by Hutcheson and Sofroniou [133] (0.6), and
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Table 6.3: Eigenvalues of revised PCA.

1st 2nd 3rd 4th

Eigenvalue 14.00 5.45 2.34 1.42
% variance 46.68 18.15 7.80 4.72
Cumulative % variance 46.68 64.83 72.62 77.34

by Kaiser (1974), who suggested a calibration of the index, shown in Table 3.4. The value of

0.6 was chosen as the cut-off, as it was both a more conservative and more contemporary value.

Additionally, as there were no values below 0.5, such a cut-off would have had no extra benefit.

This suggested that factor analysis would be both appropriate and useful. KMO for each individual

variable was determined and any individual variables with a value less than 0.6 were excluded from

analysis (see Table 6.2). Consequently, PCA was conducted with the remaining 30 variables. Each

variable was standardised prior to PCA, i.e. rescaled such that mean µ = 0 and standard deviation

σ = 1. This initial PCA was not rotated and there was no limit on the number of components. The

plot of eigenvalues is shown in Fig. 6.1.
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Figure 6.1: Scree plot for initial PCA, 1466 mixes. Also shown are the results of the nFactors
analysis, demonstrating non-graphical solutions to the scree test.

As in Chapter 3, using the nFactors package [136], a variety of methods were employed in

order to determine the number of dimensions to keep for further analysis, shown in Figure 6.1.

This process was described in detail in § 3.3.2. Based on agreement suggested by three of the four

methods, four dimensions were kept for the subsequent analysis. As before, 30 variables were used

for a revised PCA, now limited to four dimensions and rotated using the varimax method [198].

This rotation was applied so that the resultant factors were easier to interpret, by ensuring variables

had high loading on one dimension and low loadings on those remaining. The eigenvalues of this

PCA are shown in Table 6.3, four dimensions accounting for ≈ 77% of the variance. The aim
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Table 6.4: Loadings of each variable to each component

Feature Loadings
Comp1 Comp2 Comp3 Comp4

SpecCent 0.01825 -0.41606 0.09135 -0.017301
SpecSpr 0.21584 -0.16955 -0.12701 0.017751
SpecSkew -0.25442 0.03050 0.04976 0.028781
SpecFlat 0.00963 -0.35029 -0.09688 0.000936
SpecKurt -0.24626 0.03427 0.08393 0.016198
SpecEnt -0.00800 -0.38014 0.22710 -0.066467
CF 0.25609 -0.01112 0.03358 -0.011442
LoudITU -0.25212 -0.02367 0.02752 -0.006826
Top1dB -0.18180 -0.01900 -0.10241 -0.058896
Harsh -0.06573 0.12549 0.42542 -0.168963
LF -0.00255 0.08740 -0.53723 -0.018975
RO85 0.02934 -0.41733 -0.03574 0.031890
RO95 0.02753 -0.40339 -0.09480 0.042657
Gauss 0.19914 -0.08094 -0.00757 -0.139339
PMFcent 0.10823 0.03238 0.15760 0.185700
PMFflat -0.23436 0.00419 -0.15328 -0.000961
PMFspr -0.26792 -0.01481 -0.08756 0.034592
PMFkurt 0.15104 -0.04328 -0.18015 -0.098049
W.all -0.00388 -0.03029 -0.05717 -0.632903
W.low 0.01018 0.03206 0.06539 -0.657681
sbflx1 -0.18995 -0.04765 -0.36453 -0.108325
sbflx2 -0.22874 -0.00734 -0.20145 -0.128154
sbflx3 -0.23235 -0.01270 -0.09440 -0.049030
sbflx4 -0.22985 -0.01283 -0.09780 0.112366
sbflx5 -0.23700 0.00060 -0.01615 0.115090
sbflx6 -0.23885 0.04095 0.08085 0.004930
sbflx7 -0.22849 0.00740 0.20578 -0.014960
sbflx8 -0.20757 -0.05893 0.24309 -0.051601
sbflx9 -0.18835 -0.21232 0.12865 -0.018308
sbflx10 -0.13856 -0.32082 -0.00461 0.031369

of PCA was to reduce the set of features extracted to a small set of components which described

the dimensions of the mixing process over which there was most variance. The following is an

interpretation of each of the first four dimensions, based on the loadings of the individual features,

as shown in Fig. 6.2a and 6.2b. This addresses research questions 12 and 13 from § 6.1.2.

1. Many of the input variables associated with signal amplitude, dynamic range and loudness

are strongly correlated with the first principal component. Negative values indicate high

amplitude mixes (see Fig 6.2a).

2. The second dimension can be described by the many strong correlations to spectral fea-

tures with negative values denoting mixes that have a greater proportion of energy in higher

frequencies (see Fig 6.2a).
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Figure 6.2: Results of PCA for 1466 audio samples. The variables factor maps, shown in (a)
and (b), indicate loadings of variables on the varimax-rotated principal components.
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Figure 6.3: PCA individuals factor map — each point represents a single mix in the dataset
and the colour/symbol represents which song it is a mix of. Group centroids are marked with a
larger, bold symbol. Ellipses are drawn representing 95% confidence in the centroid. Mixes of a
song vary more in dim.1 than dim.2, while songs differ from one another more along dim.2 than

dim.1. The mixes of all songs overlap greatly in this feature-reduced space.

3. Features associated with low frequencies are more strongly loaded onto dimension 3 in the

negative direction, while treble range features, such as “Harsh” and “sbflux” bands 7 & 8,

are loaded with positive values (see Fig 6.2b).

4. Dimension 4 can be explained by the correlation of the spatial features to this dimension.

As the value of this dimension decreases, the perceived width of the stereo image increases

(see Fig 6.2b).

Figure 6.3 and Figure 6.4 show the dataset of mixes placed in the varimax-rotated PCA space.

Each point represents a mix of a song, where the song is coded by a unique colour and symbol

combination. We can see significant overlap between the range of mixes for all 10 songs. The

estimated centroid of each group, and the 95% confidence ellipse of that centroid estimation, are

also indicated in Figures 6.3 and 6.4.

6.1.5 Distribution of audio signal features
The density of each extracted feature was estimated using the density function in R with a

Gaussian smoothing kernel. Figures 6.5, 6.6, 6.7 and 6.8 show the estimated density of four

particular features extracted, features considered to be representative of the principal components
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Figure 6.4: PCA individuals factor map — each point represents a single mix in the dataset
and the colour/symbol represents which song it is a mix of. Group centroids are marked with a

larger, bold symbol. Ellipses are drawn representing 95% confidence in the centroid.

due to their relatively high loadings. In each figure, estimated densities are shown for each song

and also for all songs. The plots indicate that the distribution of features shows central tendency,

whilst some curves display additional modes. A Shapiro-Wilk test of normality was carried out

[199]. As this test is known to be biased for large sample sizes [200], the test was carried out

not only on the raw data for each song but also the smoothed distributions shown in Figures 6.5,

6.6, 6.7 and 6.8, which contain fewer datapoints. The majority of these distributions tested were

determined to be significantly different from a normal distribution: p-values are shown in Table

6.5.

A Gaussian Mixture Model (GMM) was used to determine how well the distribution over all

mixes could be characterised by a sum of normal distributions. This was implemented using the

mixtools package [201]. The function normalmixEM uses expectation maximisation for mixtures

of normal distributions. The model parameters are shown in Table 6.6 and Figure 6.9, where λn

is the mixing proportion (thus summing to 1), µn is the mean and σn is the standard deviation of

each of the n Gaussian functions in the model. The coefficient of determination, R2, is shown in
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Figure 6.5: KDE of spectral centroid in 1466 mixes. The distributions shows distinct variation
from song to song.
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Figure 6.6: KDE of loudness in 1466 mixes. Many mixes were subject to mastering-style
processing, resulting in high values of perceived loudness. Some songs, such as “Revelations”

clearly show a bimodal distribution.
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Figure 6.7: KDE of LF energy in 1466 mixes. Notable inter-song differences in LF energy
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Figure 6.8: KDE of width in 1466 mixes. Most mixes occupy a narrow range of width values.
Here the feature used is the value of width over all frequencies. Note that a value of 0 represents

a mono mix.
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Table 6.5: Results of Shapiro-Wilk test, where p < 0.05 indicates that the distribution is not
normal. N is the number of samples in each group.

Group AT B2B BB DW IF IA LB P+L RV WI ALL

N 100 101 183 138 118 373 97 125 103 129 1467

SpecCent 0.067 0.011 0.000 0.045 0.000 0.000 0.017 0.000 0.000 0.091 0.000
SpecSpread 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.049 0.000 0.000
SpecSkew 0.013 0.000 0.050 0.055 0.148 0.000 0.051 0.000 0.002 0.003 0.000
SpecFlat 0.008 0.082 0.543 0.008 0.000 0.004 0.128 0.001 0.001 0.116 0.000
SpecKurt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SpecEnt 0.591 0.666 0.450 0.673 0.023 0.781 0.289 0.214 0.079 0.688 0.000
CF 0.452 0.015 0.000 0.000 0.010 0.062 0.033 0.014 0.580 0.001 0.000
LoudITU 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000
Top1dB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Harsh 0.030 0.000 0.001 0.248 0.470 0.001 0.675 0.002 0.250 0.013 0.000
Sub80 0.000 0.000 0.000 0.168 0.009 0.000 0.355 0.000 0.004 0.000 0.000
RO85 0.004 0.012 0.020 0.482 0.000 0.361 0.010 0.008 0.000 0.290 0.000
RO95 0.440 0.007 0.076 0.121 0.010 0.010 0.223 0.793 0.014 0.596 0.000
Gauss 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000
PMFcent 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PMFflat 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PMFspread 0.403 0.007 0.004 0.000 0.124 0.001 0.791 0.059 0.084 0.428 0.000
PMFskew 0.000 0.055 0.000 0.602 0.079 0.000 0.000 0.001 0.000 0.017 0.000
PMFkurt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
W_all 0.002 0.000 0.000 0.000 0.936 0.000 0.258 0.000 0.095 0.000 0.000
W_band 0.000 0.000 0.000 0.000 0.096 0.000 0.069 0.000 0.001 0.000 0.000
W_low 0.196 0.000 0.012 0.013 0.206 0.000 0.039 0.009 0.001 0.072 0.000
W_mid 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000
W_high 0.000 0.000 0.000 0.000 0.212 0.000 0.061 0.000 0.001 0.000 0.000
SMratio 0.000 0.003 0.017 0.000 0.061 0.000 0.000 0.049 0.000 0.000 0.000
LRimbalance 0.000 0.385 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
sbflux1 0.000 0.001 0.000 0.121 0.000 0.000 0.001 0.269 0.000 0.005 0.000
sbflux2 0.331 0.001 0.124 0.248 0.159 0.000 0.044 0.378 0.001 0.097 0.000
sbflux3 0.740 0.002 0.058 0.326 0.065 0.000 0.971 0.022 0.024 0.022 0.000
sbflux4 0.040 0.001 0.009 0.294 0.106 0.000 0.042 0.002 0.095 0.073 0.000
sbflux5 0.147 0.007 0.058 0.083 0.871 0.000 0.365 0.345 0.066 0.041 0.000
sbflux6 0.068 0.005 0.281 0.176 0.558 0.000 0.268 0.127 0.013 0.121 0.000
sbflux7 0.042 0.002 0.088 0.039 0.421 0.000 0.125 0.205 0.173 0.085 0.000
sbflux8 0.018 0.006 0.099 0.027 0.334 0.000 0.166 0.001 0.027 0.000 0.000
sbflux9 0.003 0.002 0.000 0.000 0.001 0.000 0.080 0.375 0.000 0.000 0.000
sbflux10 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.003 0.000 0.000 0.000

Table 6.6: GMM parameters for distributions of all 1501 mixes. R2 is the coefficient of determi-
nation describing the fit of (g1+g2) to the KDE curve. µ1,µ2,σ1 and σ2 are given in the units

of the variable.

Feature λ1 λ2 µ1 µ2 σ1 σ2 R2

SpecCent 0.945 0.055 3532 4880 659 794 0.998
LoudITU 0.526 0.474 -12.910 -8.511 3.672 1.801 0.993
LF 0.877 0.123 0.042 0.071 0.015 0.026 0.989
Width 0.118 0.882 0.223 0.281 0.073 0.037 0.995

Table 6.6, according to Equation 6.1.

R2 = 1− SSR
SST

(6.1)

This indicates the proportion of the estimated density that can be explained by the model where

n = 2. As this value is close to 1 in all cases it can be said that the sum of just two Gaussian

functions well-approximates the estimated densities.
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Figure 6.9: GMM parameters from Table 6.6. The filled, dashed curve represents the estimated
density and the solid curves represent the GMM. While Loudness shows a bi-modal distribution,
Spectral Centroid, LF Energy and Width are well characterised by a single Gaussian function.

6.1.6 Comparison with random mixes

For all three songs for which random mixes were created (see Chapter 5) the distribution of spectral

centroid spans a lower range when informed by the mix-space results (when using Eqn. 5.7 instead

of Eqn. 5.5). For “Burning Bridges”, as shown in Fig. 6.10a, the typical spectral centroid of the

real mixes is noticeably lower than the random mixes. The distribution for real mixes is positively

skewed, with a large number of mixes with higher spectral centroids. When informed by the

mix-space result, the distribution of spectral centroid closely approximates the distribution of real
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mixes. Conversely, for both “I’m Alright” and “What I Want”, shown in Figs. 6.10b and 6.10c, the

naive random mixes provide distributions closer to those of the real mixes, and it is the informed

result that underestimates the mean of the real mixes.

This varied result highlights one specific issue with the data collection; there is no clear

indication of mix-quality other than the assumption that all engineers created mixes in line with

their intent. This intent may not necessarily be “best-practice” in the case of many amateur mixers.

There is clearly a need for a specific study on the relationship between audio signal features in

mixes and the perception of quality in those mixes. In Chapter 7 it is shown that one characteristic

of mixes that are perceived to be low-quality is that they are also perceived to be particularly

bright. This particular result may explain some of the inconsistency in the results above — that if

there is a large number of poor mixes, or simply mixes of varying quality, then the distributions of

real mixes may be hard to consistently predict.

When comparing the KDE measurements, for all three different songs, it is clear that the

addition of EQ results in a more similar distribution of spectral centroid, in terms of the breath of

the distribution and the value of the maximum density, which, of course, are correlated since the

area under the curves are equal.

The stereo width measurements of real mixes are compared to those of random mixes in Figs.

6.11a, 6.11b and 6.11c. From these comparisons it is shown that the variance of the distributions

matches best for method #3. The central values of the distributions are, for all methods, lower than

the real mixes. This is likely due to the fact that the methods for generating random pan positions

do not readily allow for hard-panning of instruments.

6.1.7 Discussion
Before now there have not been any studies looking at feature variance over such a large number

of alternative mixes of the same songs, and so this chapter makes a significant contribution to

knowledge. In this study, the features extracted were amplitude-based, spectrum-based or spatial

features. Over all 10 songs considered, the dimensions of variation revealed by the PCA were

described as ‘amplitude’, ‘brightness’, ‘bass’ and ‘width’, in order of variance explained.

This shows that all songs, within their range of mixes, varied in terms of their perceived

loudness and dynamics. Figure 6.3 shows certain songs with distinct dynamic range values when

compared to other songs — the lowest values of dimension 1 (loud, low dynamic range) apply

to songs in hard rock or metal styles, whereas the soft rock styles attain higher values along this

dimension. As the data points in Figure 6.3 are spread out over the space, and not definitively

grouped by song, it is observed that any one song can be mixed with the overall loudness/dynamics

or brightness of any other song. Despite this, trends are apparent. The song ‘Revelations’ had the

highest average value of dim.2, meaning the least amount of brightness. This may be due to the

fact that the multitrack content was recorded in 1975, therefore the digital audio used here was

sourced from an analogue tape. While little is known about the precise recording conditions, it

is likely the reduced high-frequency content in mixes of this song was due to the limitations of

the recording technology used at the time. Additionally, when creating mixes of this song, it is

possible that engineers were inspired to use era-specific mixing techniques, either consciously

or subconsciously, similar to the anchoring effect demonstrated in § 4.6.1. The song with the

lowest values of dim.2 (the brightest mixes) is ‘I’m Alright’, which features acoustic guitars and
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Figure 6.10: KDE of spectral centroid for 3 songs. Five conditions are shown: naive, naive
w/eq, real mixes, informed and informed w/eq.
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Figure 6.11: KDE of width for all three methods. Three conditions are shown for each of the
three songs: without EQ, with EQ and real mixes.
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shakers, both instruments with emphasis on high frequencies. Dim.3 is difficult to interpret as

it represents emphasis on bass or treble frequencies depending on the value, and there is little

inter-song difference. Mixes of the song ‘Promises and Lies’ tended to have a higher concentration

of spectral energy between 2 kHz and 5 kHz than other songs, or a lack of spectral energy below

80 Hz. There is little observed difference in the group centroids along dim.4, which represents

stereo width, particularly at low frequencies, as expected.

Feature distributions suggest multi-modal behaviour, often dominated by one specific mode,

which is dependent on the song. This distribution holds well for the songs considered, providing

evidence for central tendency or even “optimal” values. In Figure 6.5, typical values of Spectral

Centroid differ from song to song, suggesting each song has a range of possible values which

can be tolerated, based on the arrangement, instrument timbre, key etc. The distribution of Loud-

ness values in Figure 6.6 is quite similar from song to song. This is a possible side effect of the

fact that many mixes were subjected to mastering-style processing, particularly heavy dynamic

range processing. Figure 6.7 indicates that the proportion of spectral energy below 80 Hz is rea-

sonably consistent from song to song, with some variation. This is possibly dependent on the

key of the song, the precise arrangement and the relationship between bass guitar and kick drum

performances. Width distributions shown in Figure 6.8 are similar for each song, occupying a

narrow range of values. It was found that songs were mixed with a very wide range of panning

conditions, from mono to wide stereo. However, central tendencies can be observed with clear

distributions around them. This result indicates that panning conventions are applied similarly in

all songs, restricted by the medium of two-channel stereo reproduction, and that a central tendency

is observed.

6.1.7.1 Implications for intelligent music production

By examining a large dataset of mixes, from hundreds of individual mix-engineers of varying skill

levels, the results here indicate the dimensions over which mixes vary and the amounts by which

they vary in these dimensions. This could help to inform targets and bounds for intelligent mixing

tools. For example, Figure 6.9 and Table 6.6 suggest that values of Spectral Centroid are normally

distributed with a mean of ≈ 3.5 kHz and standard deviation of ≈ 660 Hz. Consequently, and also

shown by Figure 6.5, few mixes would have a Spectral Centroid value below 2 kHz, although there

may exist specific, context-dependent productions where this is possible, such as when analogue

recording media are utilised. The results in Table 6.6 could inform a system which monitors the

mix, in an automatic or human-operated system, and offers advice when the values of certain

features deviate strongly from expected values (a version of this is described in Chapter 8).

Interestingly, while the average distribution of features for Spectral Centroid, LF and Width

were all well described by a single Gaussian distribution, Loudness was best described by a combi-

nation of two Gaussians. This might be explained by the fact that some engineers tend to maximise

the loudness of their mixes whilst others will be more concerned with maintaining a greater dy-

namic range. These differing strategies appear to be revealed by this GMM statistical analysis.

6.1.7.2 Implications for music information retrieval

In a number of tasks in Music Information Retrieval (MIR), feature-extraction is used as a means

of characterising audio data, so that each data point, representing a song or instrument, can be

described in a meaningful way. For example, when attempting to train a classifier to perform
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genre prediction, each song is labelled as belonging to a specific genre and features are extracted

from each song. The assumption is that the features can be used to represent useful attributes

of that song, and thus, its genre. However, perhaps the features only represent attributes of the

recording of the song and not the song itself.

In this study, where there are hundreds of alternate mixes of a given song, we can see that

these features do not clearly distinguish between songs. What are the implications then for tasks

such as genre prediction? If a classifier was developed with α songs in genre A and β songs in

genre B, how would the performance of the classifier change if alternate mixes were substituted for

all (α +β ) songs, or for all possible permutations of classifier that could be made from hundreds

of alternative mixes?

Of course, this problem is simplified should estimated tempo be included, as the tempo of a

song does not typically change with mix. However, as it has been shown in Chapter 5, the ability

to correctly estimate tempo can depend on the mix. A detailed study on rhythm in multitrack

mixes would be useful in furthering our perception of why certain music mixes are created. This

is left to further work.
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6.2 Case study: an on-line mix competition
Of the list of mixes in Table 6.1, a particular subset has been evaluated qualitatively. From this a

quantitative evaluation can be inferred. This section describes a dataset containing 101 mixes of a

multitrack session, which is Dataset #3 within this thesis.

6.2.1 Dataset #3 — 101 mixes
During March and April of 2011, an on-line mix-competition was held in which entrants were

asked to mix a provided 23-track session, for the song ‘Blood To Bone’ by the band ‘Young

Griffo’. Along with the one original mix, created with input from the artists, 100 submitted mixes

are currently hosted on-line1. In total, 73 individuals took part. When a contestant submitted

a mix, a review was provided by a mix-engineer who, having authored a number of texts on

the subject [190, 191], can be considered as an expert. After reading this review, a number of

participants then decided to submit a second mix. Once the deadline was passed, a number of

mixes were shortlisted, while others were given an honourable mention. From the shortlisted

mixes a poll was then created for forum members to vote on their favourite mix. The winner and

two runner-up mixes were chosen by the band. As a result, the 101 mixes can be classified into

five categories which represent the level of success the mix attained in the competition, shown in

the first group of Table 6.7. These 101 mixes make up 101 of the 135 mixes for this song that

are shown in Table 6.1. As such, pre-processing of the audio and subsequent feature-extraction is

described in § 6.1.1.

Table 6.7: Categorisation of 101 mixes, showing the number of mixes in each category

Category Number of mixes

Winner 1
Runner-up 2
Shortlisted 6
Honourable Mentions 18
Rejected 74

Original mix 1
Mixes with reviews 64
Mixes without reviews 36

Only mix 49
First mix 26
Second mix 26

Additionally, the spectrum of each segment was determined using a constant-Q transform

with q points per octave. Each spectrum was normalised with respect to energy, i.e. each mag-

nitude is divided by the euclidean norm (root sum of the squared magnitude). The mean and

standard deviation at each frequency along the vector F were determined. The standard deviation

of the spectra is shown in figure 6.12, along with a smoothed curve determined by a moving aver-

age filter with a length L calculated according to equation 6.2. The value of q was set to 24, which
1As of January 2017, the data can be found at http://www.cambridge-mt.com/YoungGriffoCompetition.

htm

http://www.cambridge-mt.com/YoungGriffoCompetition.htm
http://www.cambridge-mt.com/YoungGriffoCompetition.htm
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Figure 6.12: Analysis of frequency response. The standard deviation of the 101 spectra is
displayed, showing increased variance at lower frequencies.

produced moving average filter with a length L = 11 calculated according to equation 6.2.

L = d length(F)

q
e (6.2)

From Fig. 6.12 it can be seen that the variation in spectra is reasonably consistent from 200 Hz

and above, between 6 and 8 dB. There are a number of mid-range frequencies which show higher

variance — since the vocal melody is rather simple, containing very few notes, variation in vocal

level is likely to be the cause. The increased variance in the spectrum at lower frequencies is likely

to be due to variation in reproduction equipment and room acoustics.

6.2.2 Factor analysis
The mix competition acted as a qualitative and subjective analysis of the set of mixes, as reviews

were written and mixes were ranked as shown in Table 6.7. The following is a quantitative, objec-

tive analysis of the dataset. The methodology here is almost identical to § 6.1.4, however, only the

101 mixes of this one song are included in the analysis. This allows the resulting components to

be directly compared to the subjective rating (the competition outcome).

Outlier detection was performed in the 36-dimensional feature-space. The Z-score of each

point was determined using the Euclidean distance to the three nearest neighbours and those where

Z > 2.5 were deemed outliers. This led to the removal of three mixes, all members of the lowest

quality group. The total amount of signal features was 36, while there were 98 individual mixes

remaining after removal of outliers. The appropriateness of PCA was tested as follows, using

SPSS. Using Bartlett’s test of sphericity, the null hypothesis that the correlation matrix of the data

is equivalent to an identity matrix was rejected.

χ
2(561,N = 101) = 7002, p < 0.001

This indicates that factor analysis can be performed, while a Kaiser-Meyer-Olkin measure of sam-

pling adequacy of 0.808, above the recommended value of 0.6 [133], suggests that factor analysis

would be useful. The communalities were all above 0.3, further indicating that each variable

shared some common variance with others. As a result of these tests, PCA was conducted with all
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36 variables. Each variable was standardised prior to PCA, i.e. mean µ = 0 and standard deviation

σ = 1. This initial PCA is unrotated and there was no limit on the number of components. The

plot of eigenvalues is shown in Fig. 6.13. Using the nFactors package for R [136] a variety

of methods were employed in order to determine the number of components to keep in further

analysis. Kaiser’s rule [137] suggests retaining those components with eigenvalues greater than 1,

which in this case was the first seven components. The acceleration factor [136] determines the

knee in the plot by examining the second derivative — due to the fact that components 2 and 3

have similar eigenvalues much lower than component 1, this method chose to retain only the first

component. The optimal coordinates method [136] suggested that the first four components be

kept, as indicated by Fig. 6.13. Parallel analysis [139] agreed that the first four components were

suitable to retain, also shown in Fig. 6.13. Additionally, these four components have eigenvalues

greater than one. As a result, the first four components were considered in the subsequent analysis.
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Figure 6.13: Eigenvalues of first PCA. The first four components account for approximately
75% of the total variance

Any variables which were not significantly correlated with any of the first four components (where

p < 0.05) were removed from analysis. Subsequently, the features ‘Harsh’ and ‘LRimbalance’

were removed. This left 34 variables for a second PCA, this time with only four dimensions kept

and rotated using the varimax method [198]. The eigenvalues of this PCA are shown in Table 6.8.

Table 6.8: Eigenvalues of revised PCA, also displayed as percentage of explained variance. Four
components account for approximately 79% of the total variance.

1st 2nd 3rd 4th

Eigenvalue 15.46 4.95 4.26 2.31
% variance 45.48 14.55 12.52 6.79
Cumulative % variance 45.48 60.03 72.55 79.33
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Table 6.9: Loadings of each variable to each component

Feature Loadings
Comp1 Comp2 Comp3 Comp4

SpecCent -0.0230 0.4429 0.0188 -0.0068
SpecSpread -0.2239 0.1431 -0.0208 0.0619
SpecSkew 0.2529 -0.0361 -0.0221 -0.0054
SpecFlat 0.0128 0.3236 -0.1285 0.0734
SpecKurt 0.2485 -0.0454 -0.0234 -0.0033
SpecEnt -0.0153 0.4023 0.0207 -0.1091
CF -0.2350 -0.0157 -0.0129 -0.0087
LoudITU 0.2436 0.0073 0.0239 -0.0217
Top1dB 0.1971 -0.0154 0.0208 0.0906
LF -0.0318 -0.0022 0.0384 0.6032
RO85 -0.0143 0.4388 0.0109 0.0095
RO95 -0.0143 0.4251 0.0006 0.0698
sbf1 0.1611 0.0423 0.0214 0.4137
sbf2 0.2048 -0.0132 0.0588 0.2412
sbf3 0.2380 -0.0431 0.0236 0.0276
sbf4 0.2411 -0.0225 -0.0238 -0.0482
sbf5 0.2458 -0.0357 -0.0492 -0.0923
sbf6 0.2456 -0.0258 -0.0130 -0.1039
sbf7 0.2406 0.0160 -0.0061 -0.0720
sbf8 0.2298 0.0870 0.0164 -0.0054
sbf9 0.2038 0.1977 0.0028 -0.0285
sbf10 0.1784 0.2636 0.0167 0.0134
Gauss -0.1759 0.0476 -0.0188 -0.0182
PMFcent -0.1350 -0.0446 0.0926 0.0268
PMFflat 0.2129 -0.0119 0.0098 0.1467
PMFspread 0.2506 -0.0132 -0.0090 0.0658
PMFskew 0.0145 0.0571 -0.0977 -0.1931
PMFkurt -0.1466 0.0388 0.0473 0.3476
W-all 0.0066 0.0208 0.4554 0.0450
W-band -0.0091 -0.0197 0.4655 0.0659
W-low 0.0360 0.0281 0.2640 -0.2216
W-mid -0.0001 0.0096 0.4036 -0.0670
W-high -0.0110 -0.0262 0.4493 0.0944
SMratio 0.0201 0.0727 0.3014 -0.2990

The following is an interpretation of each of the first four components and is based on the

loadings of the individual features, as shown in Fig. 6.14a and 6.14b.

1. Many of the input variables associated with signal amplitude dynamic range and loudness

are strongly correlated with the first principal component, with positive values indicating

louder, more compressed mixes (see Fig 6.14a).

2. The second component can be described by the many strong correlations to spectral fea-

tures with positive values denoting mixes that have a greater proportion of energy in higher
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frequencies (see Fig 6.14a).

3. Component 3 can be explained by the correlation of the spatial features to this component:

as the value of this component increases, so to does the perceived width of the stereo image

(see Fig 6.14b).

4. Features associated with low frequencies are more strongly loaded onto component 4 (see

Fig 6.14b).

It can be seen from Figure 6.15 that, when the rotated principal components 1 to 4 are con-

sidered, the winning mix lies close to the centre of this space, at the position [0.72, 0.43, 2.14,

0.16]. This shows that the winning mix is, when compared to all other mixes, an example of a

mix in which the concepts of loudness and spectral balance are each well-balanced, while having

one of the widest stereo images. It is worth noting that one of the runner-up mixes is located very

close to the winning mix, having a similar balance between loudness, spectrum and width. This

suggests a consistency in the decision-making process which selected the “best” mixes.
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6.2.3 Ordinal logistic regression
It can be seen from Fig. 6.15 that the more highly ranked mixes have lower values of PC2 and

higher values of PC3. To test the influence of these dimensions on the competition outcome an

Ordinal Logistic Regression model was used. Rather than use the five categories shown in Table

6.7, the winning mix and the runner-up mixes were re-combined with the ‘shortlisted’ category.

This forms three groups, as shown in Table 6.10. Table 6.11 shows the β and p values of the

model, along with the Odds Ratio.

Table 6.10: Categorisation of 98 mixes into three groups

Quality Number of mixes

High (q=3) 9
Middle (q=2) 18
Low (q=1) 71

Table 6.11: Parameter estimates for ordinal logistic regression model, with significant results in
bold.

Type Var β p Odds Ratio

Threshold (q = 2)/(q = 1) .487
(q = 3)/(q = 2) 2.064

Location PC1 -.156 .569 0.856
PC2 -.786 .043 0.456
PC3 .659 .034 1.933
PC4 .757 .149 2.132
PC12 .141 .560 1.151
PC22 -.519 .179 0.595
PC32 .185 .276 1.203
PC42 -1.518 .023 0.219

Behind the OLR model is the proportional odds assumption, which can be summarised as follows:

the difference between groups is the same and the chance of moving from one group to the adjacent

group is the same. As the task of assigning each mix to a group is perceptual, it is difficult to test

this assumption. This assumption may limit the accuracy of the model. In addition to each of

the principal components, the squared components were also used in the model, which also tests

whether quality changes when moving away from a value of zero.

Components 2, 3 and 4 are shown to have significance in the model. As the Odds Ratio for

PC42 is ≈ 0.22 this suggests a 78% chance of a drop in quality being observed for each unit step

away from a value of 0. This suggests an optimal level at which to balance the low-frequency

content of this song. The values of PC2 and PC3 indicate an approximate halving or doubling of

the chance of a change in quality being observed with each unit increase of their respective values.

By considering these quality groups as ordinal categories, each point in the space can be assigned a

quality value by means of interpolation. Figure 6.16 shows the result of interpolating quality values

across the space of PC2 and PC3. These two dimensions were chosen for illustrative purposes as

they were both significant predictors in the OLR model. The interpolation is a two-dimensional



6.2. CASE STUDY: AN ON-LINE MIX COMPETITION 166

cubic interpolation, as such there are some regions where quality is less than 1.

Rather than simply looking at the individual dimensions of the PCA, additional insights were

obtained by reducing the four dimensions down to two by means of multi-dimensional scaling

(as in Chapter 3). This is displayed in a surface plot of the reduced, three-level model is shown

in Fig 6.17. These surfaces represent the fitness landscape for mixes of this song, as perceived

by the competition judge. There is a noticeable region of the landscape (positive values of both

dimensions) in which all mixes are of low quality. Yet there are multiple peak and ridges which

represent high quality, which have lower quality ‘valleys’ in between. Of course, as this surface

was generated using cubic interpolation, it is smooth and differentiable (with the exception of the

boundaries). Since the axes used are MDS dimensions it is difficult to directly interperate their

meaning. This is, however, not dissimilar to the nature of the psychological space in which mixes

are evaluated, which is a series of perceptual factors (see Fig. 2.11). Due to the subjective nature

of audio perception (refer back to Chapter 3) this is but one of many possible fitness landscapes.

Ultimately, when evaluating a series of possible mixes, one is performing the evaluation based on

one’s own personal fitness landscape — this task is the the focus of Chapter 8 and 9.

From this ordinal logistic regression model it is shown that a mix had greater chance of scor-

ing well in the competition if the spectral balance was not overly bright and the bass frequencies

were well-balanced in level. It is also clear that preference correlates well with the width of the

mix. Overall, amplitude-based features did not significantly influence the decision. At this stage

it is important to note the following comment from the competitions review-writer:

“I also stipulated that the loudness of the mix would not be a contributing factor

in the competition judgement.”

Further discussion can be found in Wilson and Fazenda [194].

6.2.4 Explicit ratings of Like/Quality
The ratings provided in this competition indicate a coarse categorisation of ‘quality’. A subjective

listening test was undertaken in order to obtain a finer grading of quality. As the total complement

of 101 mixes would make a listening test impractically long, only the highest-scoring 27 mixes

were used, by omitting the lowest-scoring category in Table 6.10. This experiment was designed

to be analogous to the experiment in Chapter 3. In this case, ratings of like and quality were

provided on a 5-star scale but short descriptions were requested for both like and quality ratings.

This test design forces participants to consider their responses, while allowing an experimenter to

examine the meaning behind the ratings provided. Similarly to the experiment in Chapter 3, it was

hypothesised that like and quality ratings are correlated yet explained by separate factors. For this

reason, in this experiment, descriptions of both like and quality ratings were obtained. The test

interface was designed to be similar to the interface used in Chapter 3 (see Figure 3.2). There was

no need to assess familiarity in this case, as all audio samples represent the same song. Here, for

each audio sample, four questions were posed.

Q1. How much do you like this mix?

Q2. Describe an aspect of the sample on which you assessed the LIKE RATING of this sample.

Q3. How highly do you rate the quality of this sample?
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Figure 6.16: Individuals factor map, with interpolated quality values.
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based on the 3-level model used in the ordinal logistic regression.



6.2. CASE STUDY: AN ON-LINE MIX COMPETITION 168

Q4. Describe an aspect of the sample on which you assessed the QUALITY RATING of this

sample.

The test location and audio reproduction system was identical to the experiment in Chapter 3. A

brief summary is as follows. The test took place in a BS.1116 listening room, while audio was

reproduced using headphones (Sennheiser HD 800) connected to the test computed by a Focusrite

2i4 USB audio interface. Headphone equalisation was as Chapter 3. One clip was used at the be-

ginning of each test to serve as a trial and from there on the order of playback was randomised. For

the listening test a one-second fade-in and fade-out were applied and each sample was loudness-

normalised, according to [32]. A break was automatically suggested when 40% of the trials were

completed. Ultimately, the median duration of the experiment was 44 minutes, not including the

scheduled break. As the test contained this option of a short break, any effects of fatigue on the

reliability of subjective quality ratings were considered to be negligible [122].

6.2.4.1 Test Panel
The total number of participants was 13 (5 of whom had participated in the experiment in Chapter

3, although 24 months had passed since that participation). The age of participants ranged from

19 to 41 years, with a median of 25 years. Participants were asked how many previous listening

tests they had participated in. From these responses seven participants were classed as experienced

listeners (having completed over 10 similar listening tests) and six participants as not-experienced

(having completed less than 10 similar listening tests). No participants reported any hearing diffi-

culties. In a post-test question, participants were asked if the playback level was “louder”, “about

the same” or “quieter” compared to the level at which they would normally listen to similar music

over headphones. From the responses (5 louder, 4 same and 4 quieter) it can be observed that the

playback volume was suitable for the test.

6.2.4.2 Results
The influence of the audio sample on the assessment of quality and like ratings was measured using

a multivariate analysis of variance (MANOVA). The assumptions for MANOVA were tested using

Box’s test of equality of co-variance matrices (the Box’s M value of 51.801 was associated with a

p-value of 0.996, interpreted as non-significant) and using Bartlett’s test of sphericity, which was

significant

χ
2(2,N = 351) = 173.978, p < 0.001

Using Wilks’ Λ, there was a significant effect of audio sample on the ratings of like and quality

λ = 0.745,F(52,646) = 1.974, p < 0.001

For Wilks’ Λ, the effect size is calculated as follows:

η
2 = 1−Λ

1/s

where s = (the number of groups−1) or the number of dependent variables, whichever is smaller.

The effect size is 0.137, which can be considered as a medium effect [202, 203]. The remaining

variance is accounted for by variables not measured. This may include musical taste or experience

as an audio engineer, however the small number of participants makes this further analysis difficult.
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In a follow-up univariate analysis of variance (ANOVA) the following results were obtained.

There was a significant main effect of the audio sample on like ratings

F(1,26) = 3.45, p =< 0.001,η2 = 0.217

and also on quality ratings.

F(1,26) = 2.09, p = 0.002,η2 = 0.143

These effect sizes can be considered to be medium. Figure 6.18 shows a scatterplot of the mean

like and mean quality ratings for each audio sample, when averaged over all participants. In this

experiment, it can be seen that there is significant correlation between these two ratings (R2 =

0.82). Furthermore, a significant correlation is found between the like and quality ratings of each

individual participant, as shown in Table 6.12.
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Figure 6.18: Correlation between like and quality ratings for 27 mixes of ‘Blood To Bone’.
Each point represents the mean like and quality rating of each audio sample.

In order to investigate the relative difficulty of each test question, the time taken to respond was

measured. Figure 6.19 shows a boxplot of the results, where the marker represents the median

value of the distribution while the whiskers extend to 1.5 times the interquartile range. Beyond

this, outliers are marked by circles. Based on Figure 6.19 there is strong evidence to suggest that

the time taken to provide a quality rating was less than the time taken to provide a like rating.

There are a number of possible explanations for this:

• The time recorded for Q1 included an initial period of listening, resulting in an overestima-

tion.

• Since quality was rated after like, the participants were familiar with the sample at this point

and already had an idea about the quality rating they would give. This could have been

avoided by randomising the order of the test questions, however, due to the similarity of

both questions, this may have led to confusion in the participant, introducing error.
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Table 6.12: Correlation between like and quality ratings, for each participant.

Participant Pearson r R2 p-val

1 0.757 0.573 <0.001**
2 0.875 0.766 <0.001**
3 0.680 0.462 <0.001**
4 0.690 0.476 <0.001**
5 0.480 0.230 0.011**
6 0.907 0.823 <0.001**
7 0.741 0.549 <0.001**
8 0.729 0.532 <0.001**
9 0.847 0.717 <0.001**
10 0.429 0.184 0.026**
11 0.459 0.210 0.016**
12 0.853 0.727 <0.001**
13 0.917 0.842 <0.001**
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Figure 6.19: Boxplot showing the time taken in answering each of the four questions

• Like and quality ratings were explained by similar concepts, and so having already rated

like, the participant could quickly rate quality.

The increased amount of time taken to provide descriptions, compared to ratings, suggests that

the task required a greater level of effort. However, the time taken to provide descriptions of like

ratings was comparable to the time taken to provide descriptions for quality ratings — there does

not appear to be any notable difference between the effort required in providing like and quality

descriptions.

The descriptions offered by participants were gathered into two corpora: one for like ratings

and one for quality ratings. Text mining operations were performed using the tm package for

R [141]. Punctuation and stopwords were removed, and stemming was performed. The word-

frequencies were determined from a term-document matrix. The relative frequencies of the top 10
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words, for both like and quality ratings, are shown in Figure 6.20. The terms used in the descrip-

tions of ratings were similar for both like and quality. This further suggests that the two concepts

are related, as they are explained using similar terms.

Table 6.13: Frequency count (Chi square test analysis) of comments used to describe ratings.

Subject of comment Like Quality Total

Balance 116 152 268
Tone 103< 155> 258
Vocals 119> 100< 229
Drums 32< 57> 89
Bass 26 36 62
Panning 14< 38> 62
Guitars 27 33 60
Reverb 29> 24< 53
Dynamics 5< 27> 32
Pitch 11 9 20

There were, however, variations in how these terms were used revealed by a more detailed

analysis. All subject responses were coded as being either concerned with the following sub-

jects: “vocals”, “drums”, “guitars”, “bass”, “reverb”, “balance”, “tone”, “panning”, “dynamics”

or “pitch”. For example, the comment “the reverberation of the vocal is too much” is coded as a

negative comment concerned with vocals, reverb and balance.

Table 6.13 shows the number of comments which fell into each category, for justifications

of like and quality ratings. Frequencies highlighted in bold (with > or <) are either significantly

greater than (>) or less than (<) the expected counts. From this it can be seen that the number of

comments relating to “balance”, “tone” and “vocals” was far greater than other categories. This

data indicates that the reasons for awarding quality ratings were more likely to be due to issues of

tone, dynamics and panning when compared to like ratings. Additionally, like ratings were more

often influenced by the perception of vocals and reverb than quality ratings. While not conclusive,

this does appear to suggest an association of quality ratings with technical parameters and an

association of like ratings with more aesthetic considerations.

6.2.5 How do features relate to subjective ratings?

With the subjective evaluation of the mixes available at a more fine grading than the simple five-

level classification, it was possible to check the correlation of the subjective responses to the audio

signal features. The Pearson r and coefficient of determination of a linear fit R2, for each variable,

are shown in Table 6.14. With 72 correlations (36 features and 2 subjective responses) only three

are significant — Spectral Centroid to both Like and Quality, and RO85 to Like. Note that Spectral

Centroid and RO85 are generally correlated in music mixes, with a Pearson r of 0.9648 over these

27 specific mixes. Of these 27 mixes evaluated here, considered the best 27 mixes in the competi-

tion, all have relatively central values of spectral centroid compared to the full set of mixes, which

had a central value close to 2900 Hz. Consequently, if explicit subjective ratings were found for

all 101 mixes in the competition, or all 135 mixes analysed in § 6.1.1, this relationship between

Spectral Centroid and Like/Quality would likely be upheld. This suggests that the plots in Fig. 6.5
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(a) Top 10 most frequently used words, when describing like ratings. The presence of both ‘clear’ and ‘clarity’
highlights a limitation in this word-stemming based approach.
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(b) Top 10 most frequently used words, when describing quality ratings

Figure 6.20: Most frequent words for Like and Quality ratings. In both cases, the importance of
vocals is indicated.
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Figure 6.21: Correlation between like and quality ratings for 27 mixes of ‘Blood To Bone’ and
features.

can be considered a good approximation of quality over mixes of each song.

As the KDE of spectral centroid values was well approximated by the sum of Guassian func-

tions, the same technique was tested for the spectral centroid vs. like/quality relationships. This

was achieved using the curve-fitting toolbox in Matlab. For like, shown in Fig. 6.22a, the use

of two Gaussian functions produces a local maximum point near 3.6 kHz. However, this may be

due to the influence of the few points in this region, which are possible outliers. Nonetheless, the

global maximum near 2.8 kHz is based on more reliable data. For quality, a single Gaussian func-

tion performed better (as the Gauss2 fit was overfitting to the data), although Fig. 6.23a indicates

that it is close to linear over the range of datapoints.

This finding can be related back to the PCA results for the 10-song analysis (see Fig. 6.3

and 6.4). In that case, as the points in the individuals factor map for mixes of this song (‘Blood

To Bone’) overlap considerably with the other songs, we know that the mixes of this song have a

varied range of feature values. This is also demonstrated by the distrubutions of features, shown

in Figures 6.5, 6.6, 6.7 and 6.8, and the fact that the curves shown overlap. However, from a

perceptual basis, it is clear that two mixes will sound more different if they are from two different

songs, as opposed to two mixes from the same song, even if the values of features are identical in

both cases. This is to say that feature values alone do not explain why mixes sound different. This

also relates back to the overall competition judgement and the nature of PC2, where it was shown

that brighter sounding mixes were less preferred (see Figs.6.15 and Table 6.11.)

6.2.6 Discussion
The results and discussion from § 6.1.7 can be further interpreted with the addition of subjective

evaluation. For example, while Fig. 6.5 shows the distribution of spectral centroid for 135 mixes

of ‘Blood To Bone’, it is now clear that the best mixes are not necessarily at the central value.
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Table 6.14: Linear fit of features to mean subjective ratings, for 27 mixes and 13 subjects’
ratings. Entries in bold are statistically significant.

Feature Like Quality
Pearson r R2 Pearson r R2

SpecCent -0.409 0.167 -0.468 0.219
SpecSpread -0.048 0.002 -0.091 0.008
SpecSkew -0.036 0.001 -0.046 0.002
SpecFlat -0.281 0.079 -0.331 0.110
SpecKurt -0.038 0.001 -0.052 0.003
SpecEnt -0.294 0.086 -0.338 0.114
CF -0.004 0.000 0.023 0.001
LoudITU -0.055 0.003 -0.041 0.002
Top1dB -0.211 0.045 -0.284 0.081
Harsh -0.176 0.031 -0.232 0.054
LF -0.230 0.053 -0.318 0.101
RO85 -0.348 0.121 -0.416 0.173
RO95 -0.287 0.083 -0.347 0.121
sbflux1 -0.221 0.049 -0.290 0.084
sbflux2 -0.114 0.013 -0.175 0.031
sbflux3 -0.086 0.007 -0.153 0.023
sbflux4 0.028 0.001 0.009 0.000
sbflux5 -0.015 0.000 0.019 0.000
sbflux6 -0.027 0.001 0.016 0.000
sbflux7 -0.122 0.015 -0.090 0.008
sbflux8 -0.223 0.050 -0.247 0.061
sbflux9 -0.283 0.080 -0.291 0.085
sbflux10 -0.272 0.074 -0.302 0.091
Gauss -0.115 0.013 -0.108 0.012
PMFcent 0.254 0.065 0.170 0.029
PMFflat 0.011 0.000 -0.090 0.008
PMFspread -0.070 0.005 -0.087 0.008
PMFskew -0.073 0.005 -0.034 0.001
PMFkurt -0.134 0.018 -0.115 0.013
W-all 0.152 0.023 0.174 0.030
W-band 0.185 0.034 0.210 0.044
W-low 0.166 0.026 0.193 0.037
W-mid 0.195 0.038 0.214 0.046
W-high 0.181 0.033 0.207 0.043
SMratio 0.088 0.008 0.164 0.027
LRimbalance -0.179 0.032 -0.228 0.052

The spectral centroid values of the 27 most highly-rated mixes are all below the central value.

This discussion is of interest since spectral centroid was the only audio signal feature extracted

which was correlated to quality and like ratings in mixes of that song. The amount of variance

explained is greater for like ratings than quality. In contrast to the results from Chapter 3 (as shown

in Fig. 3.3), this investigation did not reveal any meaningful difference between like and quality

concepts. This is suspected to be due to the absence of any inter-song variation and, therefore, any

differences in song-familiarity, which was seen to be a predictor of like ratings in that study.
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Coefficients: (with 95% confidence bounds)
a1 -0.7297 (-1.553, 0.09376)
b1 3254 (2975, 3532)
c1 200.3 (-128.3, 528.9)
a2 3.176 (2.82, 3.533)
b2 2825 (2122, 3528)
c2 1920 (134.4 3706)

Goodness of fit:
SSE 3.769
R2 0.3209
Adjusted R2 0.1592
RMSE 0.4237

(b) Fit result: like ratings vs. spectral centroid

Figure 6.22: Relationship between like ratings and spectral centroid for 27 mixes of ‘Blood To
Bone’.

Datasets of alternate music mixes are scarce in the literature. Evaluation of these datasets is

perhaps even more so. On-line mix competitions provide an opportunity to examine an evaluated

dataset of mixes. Since this analysis was undertaken, a second mix competition has also taken

place, using the same format of winner, runner-up, shortlisted, honourable mentions and others
5. In this case, the total number of mixes was 57. This presents an opportunity for a second case

study, although too late for inclusion in this thesis. Additionally, the audio mixes of the CMT

community have been indexed in the Open Multitrack Testbed [156], which will hopefully lead to

subjective evaluations of these mixes becoming available in the future.

5http://www.cambridge-mt.com/Diesel13Competition.htm

http://www.cambridge-mt.com/Diesel13Competition.htm
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Coefficients: (with 95% confidence bounds)
a1 3.361 (0.4189, 6.302)
b1 1588 (-5234, 8409)
c1 3256 (-4728, 1.124e+04)

Goodness of fit:
SSE 4.716
R2 0.2221
Adjusted R2 0.1573
RMSE 0.4433

(b) Fit result: quality ratings vs. spectral centroid

Figure 6.23: Relationship between quality ratings and spectral centroid for 27 mixes of ‘Blood
To Bone’.
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6.3 Chapter summary
A dataset was prepared containing 1501 audio files representing the mixes of 10 songs. The num-

ber of mixes of each song ranged from 97 to 373. A variety of objective signal features were

extracted and principal component analysis was performed, revealing four dimensions of mix-

variation for this collection of songs, which can be described as ‘amplitude’, ‘brightness’, ‘bass’

and ‘width’. Feature distribution suggests multi-modal behaviour dominated by one specific mode.

This distribution appears to be robust to the choice of song, with variation in modal parameters.

This has provided insight into the creative decision making processes of mix engineers.

Subjective quality ratings were obtained for subsets of this dataset in order to examine the

relationship between audio signal features and the perception of audio quality and mix-preference.

This was done for 101 mixes of one song, with evaluation in the form of the mix’s ranking in an

on-line competition, and the highest ranking 27 mixes were evaluated under laboratory conditions.

In contrast to the results from Chapter 3, like and quality ratings were strongly correlated.

For future work, as the study presented here only considered features relating to amplitude,

spectrum and stereo panning, an in-depth study using rhythmic and metrical features is required.

It is anticipated that this dataset of mixes can be used to test the robustness of algorithms used in

MIR, for tasks such as tempo estimation, genre prediction and music structure analysis.

Real mix engineers do not apply random EQ or random track gains. The distribution of real

mixes is also wider. This suggests that, in real mixes, the engineers choose from a wider variety

of values than the random methods which were employed. When combined with the results from

the mix-space experiments, this suggests that real mix engineers have intentions which they can

realise. As trivial as this may sound this is an important point, since it is these intentions that

an engineer will want to realise in any automated/intelligent mixing system, and these intentions

relate to their own impression of quality.

Consequently, furthering the understanding of mix-variation will be necessary for the design

of future intelligent/automated music production systems. However, this incipient study shows that

relatively basic measures of central tendency and distribution are useful targets for such systems.

Under higher level human supervision, this concept could be used to achieve sonic qualities which

approximate current accepted practices, or as a creative contrast, to challenge current trends and

exploit results which may lie at the boundaries of the feature spaces studied. This is explored in

Chapters 8 and 9.



7
Analysis of mix engineers

Chapter 6 dealt with the variation in a set of mixes, analysing how hundreds of examples of a given

song could vary, in terms of audio signal features, and how these variations were related to quality

in specific case studies. The following chapter expanded on these findings and investigated the

effect of individual mix engineers on the variation in audio signals. This chapter is divided into

two main sections, § 7.2 and § 7.3, covering two experiments on the same dataset: one investigated

the objective variation in signal features across six mix engineers and one study which sought to

measure the subjective preference listeners had for the mixes of each engineer.

178
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7.1 Introduction
In addition to the variation across mixes, it is important to understand that the mixes created by an

individual mix engineer may vary compared to the mixes created by another. How can differences

between mix engineers be explained? They may be using different DAWs, different reproduction

equipment, different rooms etc. Some of these factors may ‘leave an impression’ on the mix,

which can be measured using certain audio signal features. This impression can be referred to as

a sonic signature.

Definition 9. Sonic signatures are the audible traces of particular types of social activity involved

in the production of recorded music, where social activity is interaction between people or between

a person and a form of technology [204].

In audio engineering, this term has been applied to a number of systems, such as dynamic range

compressors [205]. By extension of Definition 9, and for the purposes of the investigation in this

Chapter, “sonic signature” is specifically defined as follows.

Definition 10. The audible traces of a mix engineer‘s creative and technical decisions on their

produced mix, as observed over a series of their productions.

7.1.1 Research questions
After considering the work of mix-engineers and the definition of a sonic signature, the following

research questions were formed and are addressed in this chapter.

RQ-15 Is there a measurable difference in signal features between the mixes of mix engineers?

RQ-16 Can the mix engineer be predicted from the audio signal?

RQ-17 Is there a measurable subjective difference between the mixes of mix engineers?

RQ-18 Are the samples from one engineer typically preferred to those of another?

These four research questions pertain to this dataset of mixes. Questions 1 and 2 are addressed in

§ 7.2, while questions 3 and 4 are addressed in § 7.3.

7.1.2 Dataset #4a — 190 mixes
In order to investigate the measurable objective variation from one mix engineer to the next, it

was necessary to compile a dataset of mixes by various mix engineers. As in § 6.1.1, the mixes

used here were gathered from the CMT database 1. In addition to being a collection of multitrack

sessions, this website also functions as a forum where registered members can discuss a variety of

topics. By retrieving the list of all members and arranging by amount of posts and threads started

it was possible to determine which individuals have contributed the most mixes in total. This is

due to the fact that when a member has created a mix and wishes to share it with the community,

he/she most often starts a new discussion thread. Subsequently, a list of the contributed mixes from

the most prolific members was compiled. By cross-referencing the entries for each mix engineer

there were found to be 18 songs which six engineers had each mixed (as of October 2015 when

this search was undertaken). In some cases, the mix engineer had contributed more than one mix

1http://www.cambridge-mt.com/ms-mtk.htm

http://www.cambridge-mt.com/ms-mtk.htm
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of a given song and, as such, the total number of audio samples is greater than 6× 18, with the

final number of samples in the dataset equal to 190. The number of audio samples belonging to

each mix engineer ranges from 21 to 44. The specific number of mixes produced for each song by

each mix engineer is shown in Table 7.2.

Table 7.1: List of songs used in Sonic Signatures dataset

Index Artist Title

S1 Moosmusic Big Dummy Shake
S2 Young Griffo Blood To Bone
S3 Bill Chudziak Children Of No One
S4 The Abletones Big Band Corine
S5 Banned From The Zoo Encore
S6 James Elder & Mark M Thompson English Actor
S7 Ben Carrigan Hey Carrie Anne
S8 Angels In Amplifiers I’m Alright
S9 Bruks Kak Tvoi Dela, Vova?
S10 Selwyn Jazz Much Too Much
S11 The Wrong ’uns Rothko
S12 Arise Run
S13 Jokers, Jacks & Kings Sea Of Leaves
S14 Sven Bornemark Stop Messing With Me
S15 Rod Alexander Tears In The Rain
S16 Signe Jakobsen What Have You Done To Me
S17 The Brew What I Want
S18 Street Noise You Are The One

7.2 Variation in audio signal features across mix engineers
In order to objectively characterise the audio signals a number of signal features were extracted.

The choice of features was identical to those used in Section § 6.1.1 (see Table 6.2). This analysis

is conducted in order to answer the first and second research questions in Section § 7.1.1.

7.2.1 Preliminary investigations

As an initial investigation into the data, the distribution of four particular features was plotted and

is shown in Fig. 7.1. These particular features were chosen as they are representative of the first

four dimensions of the PCA in Chapter 6, as in Table 6.6. The distribution of individual signal

features reveals some significant differences between mix engineers. For example, half of the mix

engineers exhibit high loudness levels, compared to the other half, presumably due to the use of

dynamic range compression applied to the overall mix. This is interesting as it recalls the result

shown in Table 6.6, that among 1,501 mixes, the distribution of loudness values followed two

Gaussian functions, with means of approximately -13 and -8.5 LU. This behaviour is replicated in

Fig. 7.1, with similar values.

However, these differences only indicate limited, low-level, effects. The more high-level,

perceptual differences between the mix engineers is not clear from these summary statistics. With

190 samples, over 6 classes, there was not a sufficient number of samples for machine learning.
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Table 7.2: Sonic signatures dataset: table of mixers and songs

Mixers
TOTAL

M1 M2 M3 M4 M5 M6

So
ng

s

S1 3 1 2 1 1 2 10
S2 5 1 2 2 2 4 16
S3 1 1 1 1 2 2 8
S4 1 1 4 1 3 1 11
S5 1 1 2 1 1 1 7
S6 2 2 1 1 1 2 9
S7 1 1 5 1 1 1 10
S8 2 2 1 1 3 1 10
S9 1 2 1 1 1 2 8

S10 2 2 3 1 1 1 10
S11 1 1 1 1 2 2 8
S12 1 1 4 1 1 3 11
S13 3 2 2 1 1 1 10
S14 2 1 3 3 1 2 12
S15 6 1 1 1 1 1 11
S16 3 2 4 1 1 1 12
S17 3 2 4 1 3 1 14
S18 6 2 1 1 1 2 13

TOTAL 44 26 42 21 27 30 190

A number of statistical classifications were attempted. Figure 7.2 shows these 190 samples posi-

tioned in the PCA space from Fig. 6.2a and 6.2b, which was derived from the larger study of 1,501

samples. While it was shown that there was some clustering due to song, there does not appear to

be any noticeable effect due to the mix engineer that is visible in this space.

7.2.2 Optimised linear projection
In multivariate data analysis, one often encounters the so-called “curse of dimensionality”, which

describes how higher-dimension spaces become increasingly sparse [206]. One way to overcome

this is to reduce the number of dimensions, omitting those which do not offer the power to dis-

criminate between the different class. Consider the artificial data shown in Fig. 7.3. Each data

point has an X , Y and Z coordinate. The images shown are both clearly only two-dimensional, as

they are projected onto the page, yet both images show different ‘views’ of the data. As the two

classes only differ along the X-axis, then the X-Y or X-Z axis view reveals the difference.

This is the principal behind projection pursuit, wherein an interesting linear projection of the

dataset is sought. For the current dataset, there are 190 audio examples, across a class variable with

six discrete values, measured over 36 audio signal features. Finding a linear projection of these

36 dimensions which shows the difference between the six mix engineers is non-trivial, assuming

a difference were to exist at all. The remainder of this section describes a method of optimised

projection pursuit.

While all 36 of these features could be used, in order to generalise to any number of features

(which may be quite large) and not use too many variables and risk the curse of dimensionality,

the following algorithm aims to select a subset of the total feature set which creates an interesting
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Figure 7.1: Boxplots of features, grouped by mix engineer

projection (one which reveals the difference between the different mix engineers). To obtain such

a linear projection, a similar method to that of VizRank [207] was implemented. First, the ReliefF

measure [208] is obtained for all n features. The result is displayed in Table 7.3. Once ranked ac-

cording to ReliefF, a subset containing m of the n features was obtained by random sampling using

a gamma probability distribution. This distribution was created by generating a large number (106)

of gamma distributed random numbers, Xγ , using the shape parameter k = 1 and scale parameter

θ = 2. These parameter values were selected so that features with a high reliefF would be chosen

much more often than those which score lower (see thick line in Fig. 7.4a). Xγ is normalised to the

range [0,1]. A histogram is then obtained using n bins, which provides the probability of each of

the n features being selected according to this particular gamma distribution. The result is shown

in Fig. 7.4b. The first m probabilities are used as weights in the selection of m features.

This provides a subset of features which then must be scored according to its ability to distin-

guish between the various classes (the individual mix engineers in this case). The scoring metric is

based on a k-Nearest Neighbours classifier (kNN). As the class with the least amount of observa-

tions has 21, the value chosen was k = 20 (see Table 7.1). For each point, the k nearest neighbours

are discovered, based on the Mahalanobis distance metric in the m-dimensional feature space. This

metric was used as it is unitless, scale-invariant and considers the correlations of the features [209].

The proportion of the k nearest neighbours which are members of the same class was obtained.

This value was obtained for all points and the average proportion of same-class membership was

recorded as ‘kNN score’, or Sknn. Subsets of m out of n features are randomly selected, based
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Table 7.3: Results of Kruskal-Wallis test and ReliefF scores for 36 audio features

Name
Kruskal-Wallis test

ReliefF
p-value χ2 η2

SpecCent 0.0008 21.1332 0.1124 0.0107
SpecSpread 0.0000 62.0574 0.3301 0.0297
SpecSkew 0.0000 53.2415 0.2832 0.0506
SpecFlat 0.0000 56.9879 0.3031 0.0427
SpecKurt 0.0000 56.2966 0.2995 0.0584
SpecEnt 0.0011 20.3214 0.1081 0.0082
CF 0.0000 63.5265 0.3379 0.0524
LoudITU 0.0000 64.8359 0.3449 0.0423
Top1dB 0.0000 62.6229 0.3331 0.0161
Harsh 0.9316 1.3317 0.0071 -0.0026
LF energy 0.0001 27.0581 0.1439 0.0064
RO85 0.0027 18.1930 0.0968 0.0106
RO95 0.0012 20.1270 0.1071 0.0110
Gauss 0.0000 31.0596 0.1652 0.0240
PMFcent 0.0000 93.1469 0.4955 0.0579
PMFflat 0.0000 58.7915 0.3127 0.0911
PMFspread 0.0000 66.3267 0.3528 0.0535
PMFskew 0.0001 26.7394 0.1422 0.0152
PMFkurt 0.0000 50.2646 0.2674 0.0172
W-all 0.0150 14.0907 0.0750 0.0091
W-band 0.2626 6.4764 0.0344 0.0072
W-low 0.0000 34.7328 0.1847 0.0229
W-mid 0.0002 24.1631 0.1285 0.0110
W-high 0.6788 3.1377 0.0167 0.0072
SMratio 0.0237 12.9632 0.0690 0.0103
LRimbalance 0.0623 10.4989 0.0558 0.0056
sbf1 0.1811 7.5771 0.0403 -0.0008
sbf2 0.0351 11.9740 0.0637 0.0027
sbf3 0.0004 22.8772 0.1217 0.0126
sbf4 0.0040 17.2536 0.0918 0.0046
sbf5 0.0160 13.9407 0.0742 0.0044
sbf6 0.0460 11.2853 0.0600 0.0027
sbf7 0.0748 10.0149 0.0533 0.0007
sbf8 0.0694 10.2121 0.0543 0.0039
sbf9 0.0032 17.8301 0.0948 0.0068
sbf10 0.0120 14.6378 0.0779 0.0023

on the probabilities in Fig. 7.4b, and subsequently scored up to a maximum number of iterations

(which was set to be 500). The subset with the highest Sknn is the subset to be optimised.

To investigate the objective variation between different mix engineers, and determine how

best to classify them, the method of projection pursuit is used. This method transforms an

m-dimensional system to a 2D map. With a matrix p×m, containing p observations of m vari-

ables, we seek the matrix containing the X-anchors and Y-anchors, such that the resulting x and y

coordinates separate the different classes (mix-engineers) as best as possible.
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Figure 7.6a shows a set of initial anchors. For simplicity, the anchors are equally spaced around

a unit circle. Figure 7.6b displays the datapoints in this linear projection. Each mix engineer,

referred to as M1,M2, . . . ,M6, is indicated by a colour/symbol combination. It is clear that the

individual classes are not easily separable in this plot. We seek such a projection wherein the

classes are most clearly distinguished from one another.

To find the matrix of anchors by optimisation a genetic algorithm was used. This has pre-

viously been referred to as evolutionary pursuit [210]. The goal was to determine the choice of

anchors such that a high Sknn is achieved on the transformation result (the 2D representation) which

those anchors yield. Consequently, the number of variables to optimise is nvars = 2×naxes, and the

fitness function to be minimised is 1−Sknn.

For this chapter, the genetic algorithm was implemented using the global optimisation toolbox

in Matlab. The initial population of solutions was uniformly chosen within the range [-1, 1], for

all dimensions. The algorithm used rank fitness scaling and roulette selection. The mutation

function used was “Adaptive Feasible”, which is the default mutation function when constraints

are implemented 2. A more complete discussion of genetic operators is presented in Chapter 8,

wherein that work required the algorithm to be written from scratch.

This process was completed a total of ten times. The mean and best fitness value at each

generation and each run is shown in Fig. 7.5. This indicates that, perhaps due to the complexity

of the problem and its high dimensionality, that the fitness of the optimal solution found after each

run varies — there are a number of possible optimal solutions and the algorithm does not converge

2https://uk.mathworks.com/help/gads/genetic-algorithm-options.html#f6633

https://uk.mathworks.com/help/gads/genetic-algorithm-options.html#f6633
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Table 7.4: Settings used in the following example of IGA mixer

Parameter Description Value

Nfeatures Number of audio signal features 10
Nvars Number of variables/dimensions in so-

lution space
2×Nfeatures

Population
size

Number of candidate solutions per gen-
eration

100

Elite fraction Proportion of children generated as
clones of fittest parents

0.025

Crossover
fraction

Proportion of children generated by
crossover of two parents

0.90

Stop condi-
tion

Condition which, when met, causes
evolution to cease

100 generations

towards a best solution. In all ten runs, it takes, at most, 75 generations for population diversity

to become fatally low, from which point the population no longer evolves. Fig. 7.7a displays

one such optimised set of anchors where the fitness function has a value of 0.4288 (and, as such,

Sknn = 0.5712), meaning that, on average 57.12% of the 20 nearest neighbours to a given point are

members of the same class.

In Fig. 7.7a, the anchors with the greatest length, and therefore most influence on this 2D

projection, are PMFcent, Spectral flatness, RO85 and Spectral Skewness. These also roughly

align with the X and Y axes. Therefore one can interpret mixes with high X-coordinates as hav-

ing greater values of Spectral Flatness, often considered a measure of the amount of correlation

structure existing in the audio signal, i.e. whether it is more tone-like or noise-like [211]. Since

all mixers mixed the same songs, we cannot simply say that the more noisy songs are at one end

of the graph. This “noise” or broadening of the spectrum, must have been caused by the mixing

process. It is hypothesised that this is a result of increased distortion, caused, for example, by

dynamic range compression.

It is important to note that this is not a factor map in the sense of what is produced by

exploratory factor analysis or PCA. This is simply a map of anchors which produces an interesting

linear projection. The result, from genetic optimisation, is of course based on the randomness

inherent in that method of optimisation and, as shown in Fig. 7.5, multiple optimal solutions are

possible. The point being, it is not a contradiction for Crest Factor (greater values representing

greater dynamic range) and Spectral Flatness (greater values representing reduced dynamic range,

in the context of mixes) to be pointing in the same direction. Neither does it mean that opposing

vectors must represent opposing percepts, such as brightness and lack of brightness. Care must be

taken when interpreting the resultant scatter plots.

In order to ascertain the degree of separation between the six classes, the centroid of each

class was determined along with the 95% confidence ellipses. This calculation is made using the

FactoMineR package [135] in R, as in earlier chapters. Note that this ellipse is a confidence

estimate in the centroid itself and not an ellipse containing 95% of the data points in that class.

The group centroids and confidence ellipses are plotted anew in Figure 7.8. This shows that the

degree of separation between classes that might be expected with a much larger dataset (provided



7.2. VARIATION IN AUDIO SIGNAL FEATURES ACROSS MIX ENGINEERS 187

100 101 102
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Generation

Fi
tn

es
s

(1
-S

kn
n)

Mean fitness
Best fitness
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found.

the same projection was used).

7.2.3 Discussion
When ranked according to the value of the ReliefF measure (see Table 7.3), the most salient fea-

tures in this classification strategy appear to be those associated with the sample amplitude PMF.

More generally, it is seen that the most highly ranked features are associated with the loudness of

the audio sample, both in terms of perceived loudness and the dynamic range of the signal.

As it is possible to measurably distinguish the output of some mix engineers from others,

as shown in Fig. 7.7b, it can be suggested that this analysis has provided evidence in support of

the sonic signature concept being applied to mix engineers. When an engineer creates a mix they

invariably leave traces in the signal which can be used to identify them later. Figure 7.7b suggests

that this may not be the case for all mix engineers, or that the style of some mix engineers is more

identifiable from the signal features than others. In particular, the result in Fig. 7.8, which shows

that the confidence ellipses of M2 & M6 overlap, as do M1 & M4 and M3 & M4, suggests that of

these six different mix engineers, five belong to one of two groups. From inspecting the anchors it

can be observed that the group of M1, M3 and M4 typically produces mixes that are subjectively

brighter, as the have higher values along the RO85 variable. This group also produces mixes that

are less loud and more dynamic, compared to the other three. M5 may be considered an outlier,

as the values of the PMF centroid is notable different for this mixer only. This suggests there may

have been some asymmetrical clipping of the output signals, or some slight DC offset.

This analysis has been completely based on audio signal features. While some of these may

be perceptually-based features there is no explicit measure of subjective response. Section § 7.3

will focus on this topic — the subjective perception of quality in music mixes.
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Figure 7.6: Initial configuration of anchors, after feature selection but before optimisation
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Figure 7.7: Final configuration, after optimisation. Note that the value 1−0.57119 = 0.4288 is
better than any other of the 10 runs shown in Fig. 7.5, since those were only performed after this

result was obtained.
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7.3 Sonic Signatures
In § 7.2 a dataset containing multiple mixes of multiple songs was described. Importantly, the

same six engineers mixed every song. This allowed an investigation into the audio signal features

of the mix engineers. What was absent at that point was any explicit rating of quality/preference, of

how good the mixes are in comparison to one another. As such, only two of the research questions

posed were answered. The following section of the thesis aims to answer the final two questions,

namely,

RQ.17 Is there a measurable subjective difference between the mixes of mix engineers?

RQ.18 Are the samples from one engineer typically preferred to those of another?

An important aspect of the “sonic signature” of a mix engineer are these subjective and perceptual

attributes of their mixes. While the feature-based analysis reported that different engineers pro-

duced mixes with significantly different audio signal features, in order to address these final two

questions, explicit subjective evaluations of the audio stimuli were required.

7.3.1 Dataset #4b — 108 mixes
Recall that most engineers produced multiple mixes of each song. The final mix, chronologically,

from each mix engineer was chosen for evaluation. This assumes that the final mix created by an

individual is the one which they would be most happy with and most in-line with their vision for

the song. This creates dataset #4b, a subset of dataset #4a, containing 108 (6×18) audio samples.

7.3.2 Test design
The listening test was designed as a multi-stimulus task, with all sliders co-located, as shown in

Fig. 7.9. This test was deployed using the Web Audio Evaluation Tool [212], which allowed the

test to be conducted in a web browser using the Web Audio API. All of the audio samples used in

the test were normalised in perceived loudness, according to BS.1770-3 [32]. In order to reduce

the duration of the test to a manageable length, each participant evaluated mixes of only four

songs, chosen at random from the entire set of 18 songs. The order of playback was randomised.

The initial positions of all sliders were randomly chosen.

7.3.3 Results
The test was launched in June 2016. Test results were compiled after a period of 6 months.

Incomplete trials, where participants did not complete all tasks were excluded. Also excluded were

trials in which participants only made minimal moves to the sliders, in order to simply advance the

test. After unusable data was excluded there remained data from 56 individual participants. Each

of these trials was saved as a separate .XML file. These files were combined and the data parsed

using the scores_parser.py script from Web Audio Evaluation Tool [212]. This resulted in 18

.CSV files being created, one for each of the 18 songs used. Each of these files contained an n×6

matrix of scores: n is the number of participants who encountered and evaluated that song, and

the columns are the six different mix engineers. The data from these .CSV files was imported into

Matlab where it was reshaped to form a 224×6 matrix of scores (56 participants × 4 songs each

= 224). Alongside this were created a 224×1 vector for each of the following labels: song titles,

participant names and engineer names.
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Figure 7.9: Sonic Signatures on-line test shown in Google Chrome. The mix being played is
highlighted in red and this slider should then be dragged to the appropriate position on the scale.
In each test the participant completes four such screens, representing a random four out of the

total 18 songs.

Table 7.5: Table of Kruskal-Wallis test results, over all songs

Source SS df MS Chi-sq Prob>Chi-sq

Groups 1.2999e+06 5 2.5999e+05 8.6294 0.1248
Error 2.0101e+08 1338 1.5023e+05
Total 2.0231e+08 1343

In the test design, each screen consisted of six mixes of a given song. Those mixes were rated

on a scale from 0 to 1. Since there was no reference sample or anchor sample, nor the requirement

that samples be placed at extreme ends of the scale, it was possible for various methods of rating

to be employed. For example, a participant may, for one song, rate all mixes on the lower end of

the scale, while, for the next song, rate all mixes at the higher end. Consequently, the scores were

normalised. Considering the scores from one particular screen as a six-dimensional vector, these

vectors were normalised according to their L2 norm. This ensures that the contribution of each

vector, to the total matrix, is equal.

For the combined data for each song, a Kruskal-Wallis (KW) test was performed. This is a

test for non-parametric data, similar to ANOVA, which checks the medians of grouped data for

equivalence [213]. The result of this test is shown in Table 7.5 and Fig. 7.10. Since p > 0.05 it

can be said that was no significant effect of mix engineer on the ratings of preferences, across all

songs.

Consequently, a KW test was undertaken for each song. For individual songs, the results

are shown in Figs 7.11, 7.12 and 7.13. Each of these boxplots shows the distributions of the

normalised preference ratings for each mix engineer. The number of participants who rated the
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Figure 7.10: Boxplot of Kruskal Wallis test results, on entire dataset

song is indicated, as is the p-value of the KW test: where p < 0.05 this suggests that the null

hypothesis, that the data for the different groups are drawn from the same distribution, be rejected.

Ten out of 18 songs have p < 0.05 indicating that, in the remaining eight songs, there was

no consensus as to any observable difference between mix engineers. In some cases, this is likely

due to the low number of times a particular song appear in trials. Data relating to songs for which

non-significant results were obtained were removed and a KW test performed on this reduced

dataset. These results are shown in Table 7.6, for the normalised scores. With p < 0.05, this

indicated that, for songs where differences were observed, there was an observed effect of the mix

engineer on the preference ratings. The effect size was calculated as follows:

η
2 =

χ2

dftotal −1
=

17.03
833−1

= 0.021

This indicates that, for a collection of 10 songs for which an effect could be perceived, the amount

of the variance in preference ratings that could be explained by the mix engineer was 2.1%.

Table 7.6: Kruskal-Wallis test results, for 10/18 songs

Source SS df MS Chi-sq Prob>Chi-sq

Groups 988517.4 5 197703.5 17.03 0.0044
Error 47352555.1 828 57189.1
Total 48341072.5 833

The results of a multiple comparison test are shown in Table 7.7. Each row shows a compar-

ison of one mixer (grp1) to another (grp2). The difference in the mean ranksum of the groups is

denoted by ∆µ . The range of the ±95% confidence interval is also shown. Where this range in-

cludes zero, there is a high probability that there is no significant difference between groups. The

rightmost column displays the p-value of a hypothesis test that the corresponding mean difference

is equal to zero. As two rows have p < 0.05 it can be said that the mean ranksum of M1 differs

significantly from both M3 and M6. Refer back to Fig. 7.8, where the confidence ellipses of M1

and M3 do not overlap and nor do M1 and M6. What can be seen here is that there are notable

subjective and objective differences between these pairs of mix engineers.
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Figure 7.11: Kruskal-Wallis test, for songs 1 to 6
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(a) S7, n = 16, p = 0.382
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(b) S8, n = 8, p = 0.093
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(c) S9, n = 12, p = 0.002
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(d) S10, n = 12, p = 0.069
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(e) S11, n = 13, p = 0.307
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(f) S12, n = 11, p = 0.306

Figure 7.12: Kruskal-Wallis test, for songs 7 to 12
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(a) S13, n = 12, p = 0.044

M1 M2 M3 M4 M5 M6
0

0.2

0.4

0.6

0.8

(b) S14, n = 11, p = 0.013
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(c) S15, n = 5, p = 0.376
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(d) S16, n = 16, p < 0.001
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(e) S17, n = 12, p < 0.001
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(f) S18, n = 19, p < 0.001

Figure 7.13: Kruskal-Wallis test, for songs 13 to 18
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Figure 7.14: Results of Kruskal Wallis test, on subset of 10/18 songs

Table 7.7: Table from multiple comparisons test. Bold type indicates where p < 0.05. There is
a significant difference between the preference scores of M1 and both M3 and M6.

grp1 grp2 −95%ci ∆µ +95%ci 1− p(∆µ = 0)

1 2 -105.4713 -20.6547 64.1619 1.0000
1 3 -174.1763 -89.3597 -4.5431 0.0298
1 4 -117.2626 -32.4460 52.3706 1.0000
1 5 -154.4569 -69.6403 15.1763 0.2393
1 6 -173.6439 -88.8273 -4.0107 0.0317
2 3 -153.5216 -68.7050 16.1116 0.2614
2 4 -96.6080 -11.7914 73.0252 1.0000
2 5 -133.8022 -48.9856 35.8310 1.0000
2 6 -152.9893 -68.1727 16.6439 0.2747
3 4 -27.9029 56.9137 141.7303 0.7333
3 5 -65.0972 19.7194 104.5360 1.0000
3 6 -84.2842 0.5324 85.3490 1.0000
4 5 -122.0108 -37.1942 47.6224 1.0000
4 6 -141.1979 -56.3813 28.4353 0.7656
5 6 -104.0037 -19.1871 65.6295 1.0000

7.3.3.1 Relationship to features

Once subjective ratings were obtained from the test participants, these preference scores were

compared against the audio signal features of the mix, in order to examine whether or not the

features can explain why one mix engineer may be preferred over another. First, for each of the

36 extracted audio signal features, a linear fit to preference scores was made. The Pearson r and

associated p-values of these fits are shown in Table 7.8. this indicates that only Spectral Flatness

and sbflux7 were significantly correlated to preference, in this way.

In order to gain a greater insight, the now-familiar method from Chapters 3 and 6 was used, to

inspect the PCA dimensions and compare against the subjective rating. The dataset was inspected

for outliers using the Z-score method. This revealed two outliers, which left 106 audio samples

once removed. Using Bartlett’s test of sphericity, the null hypothesis that the correlation matrix of
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Table 7.8: Correlation of each variable to median preference scores. Bold type indicates where
p < 0.05.

Variable Pearson r p-val

SpecCent 0.119 0.221
SpecSpread 0.153 0.114
SpecSkew -0.062 0.522
SpecFlat 0.206 0.033
SpecKurt -0.078 0.424
SpecEnt 0.103 0.287
CF 0.091 0.351
LoudITU -0.081 0.405
Top1dB 0.073 0.451
Harsh -0.076 0.433
Sub80 0.076 0.434
RO85 0.138 0.153
RO95 0.135 0.164
sbflux1 0.116 0.232
sbflux2 -0.051 0.597
sbflux3 0.012 0.904
sbflux4 -0.056 0.564
sbflux5 -0.038 0.700
sbflux6 0.094 0.332
sbflux7 0.213 0.027
sbflux8 0.129 0.184
sbflux9 0.006 0.950
sbflux10 0.042 0.663
Gauss 0.141 0.146
PMFcent 0.067 0.491
PMFflat -0.090 0.355
PMFspread -0.052 0.593
PMFskew 0.017 0.865
PMFkurt 0.047 0.628
W-all 0.154 0.111
W-band 0.085 0.384
W-low 0.102 0.295
W-mid 0.052 0.593
W-high 0.014 0.884
SMratio -0.038 0.693
LRimbalance -0.093 0.340

the data is equivalent to an identity matrix was rejected.

χ
2(630,N = 106) = 5212.23, p < 0.001

This indicates that factor analysis can be performed, while a Kaiser-Meyer-Olkin measure of sam-

pling adequacy of 0.722, above the recommended value of 0.6 [133], suggests that factor analysis

would be useful. When the KMO of each variable was obtained, eight variables had values be-

low the cut-off value of 0.6. These eight features (Harsh, PMFcent, PMFskew, Wband, Wlow,
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Figure 7.15: PCA for 108 mixes rated in online test. This shows the importance of rotation.

Wmid, Whigh, LRimbalance) were therefore removed. PCA was performed with the remaining

28 variables. Using the nFactors package, three components were kept from this initial PCA result.

The revised PCA used only the first three components and varimax rotation was applied. These

first three components explains 64.78% of the variance in the features. The subjective preference

values were then compared directly to the rotated PCA scores.

While preference scores were significantly correlated to dim.2, it’s hard to say that, overall,

less bright mixes have lower preference. What may be happening is that they are lower preference

if less bright than what it considered typical for that particular song. Recall that different songs

can occupy different regions of the PCA-space (as in Fig. 6.2a). For each song, the mean value

along each dimension was calculated, then the difference from the mean was recorded form each

sample. This new variable is plotted against preference scores in Fig. 7.18. However, as are

only six mixes for each song, care must be taken in interpreting the data, as the mean may not be
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Figure 7.16: Preference plotted against rotated PCA dimensions. There is a statistically sig-
nificant linear fit for median preference ratings against dimension 2, indicating that brighter

sounding mixes were preferred.

reliable.

Figure 7.18b shows an increased level of correlation when compared to Fig. 7.16. Interest-

ingly, when the same principle is applied for dim.1, a relationship between scores and preference

is revealed. Figure 7.18a shows the fit of a fourth-order polynomial to the data. This suggests that

when mixes were louder and less dynamic than the average for that song they were preferred, up to

a point. However, the opposite is also true, that more dynamic than average mixes were preferred,

up to a point. Data for dim.3 is not shown here, as no additional insights were revealed by this

analysis. The finding that brighter-sounding mixes were preferred is at odds with other findings

within this thesis.

• Table 6.14 showed that mixes with greater spectral centroid and greater rolloff were less

preferred. However this was for just 27 mixes of one song.
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Figure 7.17: Individuals factor plot for sonic signatures data. The group centroids are plotted
along with the 95% confidence ellipses. This indicates that, among certain pairs of engineers,

there is evidence to suggest the mixes they create are significantly different, on average
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(a) PCA dimension 1 — a fourth-order polynomial is fitted to preference values. This indicates that
mixes benefit from being somewhat more or less dynamic than what is typical for that song but only

up to a point, before quality suffers.
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(b) PCA dimension 2 — a first-order polynomial is fitted to preference scores. This indicates that
mixes benefit from increased focus on high-frequency content.

Figure 7.18: Relationship between preference scores and PCA dimensions.
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• Table 6.11 showed that brighter-sounding mixes were less likely to do well in a particular

mixing competition. However this was for 98 mixes of the same song as above.

• Figure 3.7 showed that greater values of rolloff indicated songs that were less liked. How-

ever, this was not for mixes but for 63 different songs.

It is difficult to reconcile these seemingly-conflicting findings, however, the result in this chapter is

the only one which includes multiple mixes of multiple songs. As such, it is not critical that all of

these findings support one another. The preference for reduced brightness in mixes of “Blood To

Bone” may be song specific — mixes of this song did display some of the lowest spectral centroid

values when compare to nine other songs in Fig. 6.5. According to Table 6.6, the average spectral

centroid over all 1501 mixes was 3.5 kHz.

As shown in Fig. 7.1, only M2 and M5 had a median spectral centroid value close to this,

while the other four mix engineers had median values below this. Perhaps a reason why brighter-

sounding mixes were preferred here is that, in this dataset, brighter actually means closer to the

global average. Additionally, as these six mix engineers were some of the most regular contribu-

tors to the forum, we know that they have produced hundreds of mixes, while, in Fig. 6.5, many

of the mixes may have been created by less experienced mix engineers.

Of course, as these results come from a data-driven study, care should be taken when trying

to generalise the findings within this chapter to the art of mixing as a whole.
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7.4 Chapter summary
Out of six mix engineers, creating mixes for 18 songs, the results suggest that they can not strictly

be classified from one another at this stage but that they are arranged into two clusters: one group

of bright and “toneful” mixes and one group of darker, “noisier” mixes. In § 7.3, the subjective

nature of audio perception was incorporated into the model. A subjective test was undertaken

which revealed that the effect of the mix engineer on the preference score of a mix is only a small

effect (η2 = 0.021) and was only observed in 10/18 songs used. Of the two objective methods

(evolutionary pursuit and PCA) and the subjective test results, there was agreement that certain

pairs of mix engineers had sufficiently varied styles: M1 was measurably distinct from both M3

and M6.

In addition to variance among mixes, as shown in Chapter 6, variance among mix engineers

was also observed, in this chapter. Both of these findings are novel and important. We now know

that while mixes, on the whole, differ from one another in some predictable way, and that features

vary based on simple parametric models, additionally, individual mix engineers are shown to vary,

in a purely feature-based model. If it is true that the audio signal features can tell us something

interesting about the audio signal, then it can be said that quantifiable evidence now exists to

suggest that mix-engineers do have a measurable style, which has been suggested anecdotally for

some time.

While it is hard to draw definitive conclusions, this study has illustrated that a weak effect of

mix engineer can be measured using these methodologies. Further work is encouraged, exploring

alternate test methods and datasets. Ultimately, the differences between alternate mixes can be

subtle and further attempts to uncover the differences between mix engineers will benefit from

novel signal features, specifically developed for measuring these subtle variations.



8
Design of an evolutionary music mixing system

As introduced in § 2.4, an evolutionary algorithm can be described as a search or optimisation

algorithm which utilises mechanisms inspired by biological processes. Algorithms have been in-

spired by genetic reproduction and mutation [83, 84], bees searching for pollen [214, 215] and

animal flocking behaviours [216], to name a few. These methods, in general, are not determin-

istic, meaning a solution is rarely determined outright but rather it is approached from a variety

of directions. This makes such methods particularly suitable to problems related to design and

aesthetics and they have been used in a number of studies where aesthetic choices are to be made

by an algorithm, such as music composition [217], sound design [218] or the production of logos

and other graphical art [86].

Throughout these studies there is the notion that individual design problems have individual

design spaces of a defined topography. This is an idea upon which the mix space study is based.

If the creation of a mix from multitrack audio can be considered as a design problem, combining

aesthetic considerations with technical limitations, then the exploration of such a space using EC

methods could provide a novel contribution to the field.

Typically, in implementing evolutionary algorithms, a fitness function is required in order to

determine which solution (music mixes, in this context) should be considered as the best (as in

§ 7.2.2). By contrast, in aesthetic problems, the user often selects the best solutions in a given

generation. This second approach has been referred to as an interactive evolutionary algorithm

with a human-in-the-loop acting as the fitness function [86]. As this can be time-consuming,

especially for large populations of candidate solutions, automatic methods of establishing fitness

have been proposed for certain tasks [85, 88, 219].

For the task of comparing alternate mixes, a hybrid approach is proposed in this chapter: a

human evaluator offers explicit ratings for a subset of mixes and the fitness of the unrated popula-

tion is estimated using heuristic rules obtained from earlier studies (such as preference for mixes

205
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with certain spectral characteristics). It may also be possible for the system to be trained by the

user, so that over time, this estimation process is improved as the system learns the preferences of

that specific user.

In addition to providing a novel method for the study of music mixing such an algorithm

could also function as an interface for musical expression. Whereas many automated/intelligent

music production tools aim to conduct tasks in place of a user, the proposed system could require

human input to guide the mixing process; the goal is not to find the ‘best’ mix, but the best mix for

that specific user. Such a system could be of particular use to the visually impaired, or user with

reduced mobility, for whom the conventional approach to music mixing might be problematic.

In summarising the thesis thus far, the motivation for the work in this chapter becomes clear.

From Chapter 3 we know that the quality of a mix is dependent on subjective impressions as well

as objective measures. Additionally, from Chapter 7, there is evidence to suggest that listeners can

perceive the different styles of mix engineers. These points suggest that it is important to allow

the user to guide the system. The proposed intelligent mixing system must satisfy the following

requirements.

• Explore a space that is representative of the mixing process.

• Approach the solution from more than one direction

• Acknowledge that more than one optimal solution may exist

• That the optimal solution(s) may vary from user to user.

The theory from Chapter 4 provides a space in which to generate mixes. Chapter 5 describes

a method of generating a random population of mixes, which is the first step in an evolutionary

algorithm. Chapter 6 suggests that mixes exhibit central tendency, therefore providing some rules

to help guide the system, in addition to the guidance of the user. Consequently, all of the necessary

critical and theoretical framework in developing the proposed system has been outlined.
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8.1 Method
The flowchart in Figure 8.1 demonstrates the method used in the design of an IGA-based music

mixing program. The important steps in the flowchart are summarised as follows and are each

described further in the following subsections.

1. Import audio and normalise

2. Initialise population

3. Choose sub-population

4. Evaluate sub-population

5. Allocate fitness

6. Genetic operations

7. Stop criteria

8. Choose best mix

Genetic operators

Set-up

Clustering and fitness evaluation

Create mix

STARTImport Audio

Normalise loudness 
of files

Initialise population
Evaluate fitness of 

sub-population
Is stop condition 

met?

STOP YES

NO

Determine optimal 
solution

SelectionCrossoverMutationIncrease generation by 1

Infer fitness of 
those not evaluated

Choose sub-
population

Write file

Figure 8.1: Flowchart of IGA mixer

8.1.1 Import audio and normalise
The audio which was used for the developed system is of the form listed below: there are a total

of six tracks where each is a single-channel .WAV file, PCM encoded at a sampling rate of 44.1

kHz and a bit depth of 16-bits. The six tracks represent the following six instruments: vocals,

guitar, bass guitar, snare drum, kick drum, drum overhead. Most of this audio was prepared for

the experiments in § 4.5 and Chapter 5. This precise choice of track numbering allows the five
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coordinates in the mix-space to have some clear semantic meaning. As in Chapter 4, φ1 indicates

the balance of the vocal to the backing tracks, φ2 is the balance of the guitar to the “rhythm

section” of drums and bass, and so on, as displayed in Fig. 8.2. This ordering of tracks could be

also be random, or some arbitrary order. The ordering of tracks does have some influence on the

performance of the system, as will be discussed later in § 8.2.

φ1

1. Vocals φ2

φ3

3. Bass φ4

φ5

5. Kick 6. OH

4. Snare

2. Guitar

Figure 8.2: Representation of φ terms in a session of six audio tracks. Each of these terms
decribes a specific balance between instruments or sets of instruments, as illustrated here.

As before, in § 4.3, when dealing with narrowband content, such as the individual tracks in a

multitrack session, loudness was normalised according to a modified form of ITU-BS.1770 [158].

This ensures that the loudness of each track in a mix can be retrieved directly from the gain vector

and, more crucially, that all points in the mix-space have the same perceived loudness (as shown

in Fig. 5.9).

8.1.2 Initialise population
The initial population of mixes, the population that will be optimised, is created using the method

described in Chapter 5. Recall the two methods proposed:

• Uniform selection on unit (n−1)-sphere

• von-Mises-Fisher distribution around an assumed good mix (where assumption is based on

mix-space results).

Being points of the surface of a unit (n−1)-sphere ensures that the norm of the gain vector is equal

to 1. This has the advantages that each mix is presented at roughly equal loudness (as demonstrated

in Fig. 5.9) while also having sufficient headroom to avoid clipping.

While the vMF method proved to be useful in Chapter 5, in this case, it is desirable to begin

with no assumptions as to what mix would be the ideal mix. If this system is to be used to

create not only alternate mixes (mixes where all of the original mixes are present but with an
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alternative balance) but ‘remixes’ (mixes wherein some elements may be omitted in order to more

radically change the presentation of the song) then the system must begin as a blank slate, with no

assumptions. The equal-loudness with vocal boost, which formed the initial assumption behind the

random mixes in Chapter 5 (the vector µ in Eqn. 5.5) is therefore not used here. With no estimate

for µ in a vMF distribution, the first method is employed instead, and mixes are randomly chosen

from the unit (n−1)-sphere by uniform distribution 1.

8.1.3 Choose sub-population
Since the population may be quite large, direct evaluation of each point can be fatiguing to the

user. Rather than directly evaluate the entire population, the user only rates a sub-population of

size c. This greatly reduces the level of user burden. To achieve this, the total population is divided

into c clusters and a single representative mix is taken from each cluster. There are two questions

which need to be addressed.

• In which domain would it be best to create clusters — the mix-space (Sn−1) or the ambient

gain-space (Rn)?

• Knowing this, which clustering algorithm and/or distance measure is most suitable?

In k-means clustering, where c is the centroid and x is the feature vector, the aim is to minimise

some measure of distance between each point and a cluster centroid, for some chosen number of

clusters. A simple, common measure is a Euclidean or squared Euclidean distance.

d(x,c) = |x− c|2 (8.1)

To measure the similarity between two vectors the cosine similarity measure can be used. For use

as a distance measure Cosine dissimilarity is defined as follows. This is particularly useful for

clustering points on an hypersphere, as that surface is not Euclidean.

d(x,c) = 1− cos(x,c) = 1− 〈x,c〉
‖x‖‖c‖

(8.2)

A simple test was conducted to determine the most suitable clustering technique. The results are

shown in Fig. 8.3 and Fig. 8.4. The number of clusters was chosen to be five. The population

size is deliberately large so that the convex hull of the population approximates a sphere. Figure

8.3 shows the result of squared Euclidean-based clustering on S2. This outcome shows that the

clustering near the “north pole” (where g1 ≈ 1) is not correct, as two clusters merge approaching

this point. Figure 8.4 displays the clustering due to the cosine metric on S2. Since clustering is

based on distances between vectors projected from the origin, the resulting clusters do not translate

well to R3. It is clear that the mixes with high values of g1 and therefore low values of g2 and g3

are assigned to a variety of clusters, despite their obvious perceptual similarity.

Figure 8.5 and 8.6 show the results of clustering in R3, based on the squared Euclidean and

cosine metrics respectively. For both of these cases, the points close to each corner belong to a

unique cluster. The cosine metric, being based on the distance between vectors drawn from the

1A uniform distribution could also be obtained using µ as before and simply setting the concentration parameter
κ = 0
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Figure 8.3: k-means in mix-space, with squared euclidean distance metric
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Figure 8.4: k-means in mix-space, with cosine distance metric
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origin, is the more appropriate choice for spherical data. The use of this metric in k-means clus-

tering is often referred to as spherical k-means clustering [160]. The chosen domain for clustering

was therefore Rn and the cosine metric was used. It is worth noting, that for any sufficiently

large population of uniformly-distributed random points on Sn−1, the locations of the centroids

would be comparable, for a particular distance metric. Since the sub-population is comprised of

the individual solutions closest to the centroid, the initial sub-population can be well-predicted in

advance.

8.1.4 Evaluate sub-population
Once the sub-population is determined, the fitness of each solution is evaluated. How this is

achieved depends on the fitness function. In a standard EC approach, this function is well-defined.

For IEC applications, the fitness is evaluated by the user (see Fig. 2.11) but can be augmented by

an objective function [87]. In this system, each mix in the sub-population is generated and played

back to the user. The user then directly evaluates each mix, independently, according to the desired

criteria, and is prompted to assign an explicit rating that can be collected by the system.

8.1.5 Allocate fitness
Since only a sub-population is evaluated, the fitness of the remaining population must be estimated.

This was done based on the assumption that nearby mixes share many common attributes and are

perceptually similar. The primary method of inferring fitness of an unevaluated mix was to use

the distance to the evaluated mix (the mix closest to the cluster centroid). Each mix within a

cluster is awarded the same fitness as the evaluated representative and then an offset is subtracted,

proportional to the distance from the centroid. Refer to Lee and Cho [88] and Kim and Cho [85]

for a description of this approach. There are also a number of more recent papers which summarise

this type of fitness estimation, reviewed by Takagi [87].

Generally speaking, audio signal features of the mixes can also be used in the fitness estima-

tion of unevaluated mixes. This was not included in this working example program, which is the

feature of this chapter and the next, but is discussed in § 8.4.2.

8.1.6 Genetic operations
In this example, while clustering takes place in Rn, all genetic operations are performed in Sn−1.

This ensures that the offspring produced by crossover and mutation are always on the hypersphere

in Rn. Prior to genetic operations, the real-valued coordinates on Sn−1 were first converted to

binary strings as follows. When the values of g are positive, the range of Φ is from 0 to 2π . To

convert to a binary representation, first the range is re-scaled to [0, 1] then multiplied by 2q − 1,

where q is the number of bits used in the binary representation. This has a range of [0, 2q − 1].

These values are converted to binary strings using the Matlab function dec2bin. In this example,

q = 7, allowing 128 levels for each variable. As an individual in the population is comprised of

n−1 coordinates, the values of each individual dimension were converted to a q-bit binary string

and then concatenated. The individual is then represented, finally, as a q(n−1)-bit binary string.

8.1.6.1 Selection

To aid selection, fitness values were scaled according to their rank in the population [84]. Raw

fitness values are scaled according to Eqn. 8.3, where r is the rank of the individual, when sorted

by fitness. The results is a set of scaled fitness values in the range [0,1]. This has the following
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Figure 8.7: Example of a single-point crossover.

advantages.

• Ensures that fitness values are positive.

• Ensures that the range of fitness in each generation is equal.

• Prevents the emergence of “superindividuals”, whose fitness is so much higher than others

as to dominate the competition in breeding.

fscaled =
1√
r

(8.3)

8.1.6.2 Elites

A proportion of the population automatically survives to the next generation. These individuals

are referred to as ‘elites’ or ‘elite children’. In this case, the individuals with highest fitness are

carried forward. This ensures that high-fitness solutions are not lost by the processes of crossover

and mutation.

8.1.6.3 Crossover

The crossover function (XO) is important because it promotes diversity in the population of so-

lutions, helping to prevent the algorithm getting stuck in local minima. A number of alternative

crossover functions were tested in order to choose the most suitable for this problem.

Single-point XO: The single point XO is perhaps the most simple to visualise and implement.

A single point along the bitstring is selected at random and the strings of each parent are

spliced together at this point. This can be thought of as passing each parent string through

a binary mask and joining the resulting sections. In some implementations, a second child

is generated using the inverse mask. This is depicted in Fig. 8.7. For this application, with
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the strings typically being rather long (the length is q(n−1) bits, so roughly 35, assuming 7

bits and 6 tracks, as used herein), a single crossover does not provide enough diversity. This

can be thought of as a child having the left arm of the mother and the right arm of the father

and a sibling with the opposite — it is possible that neither child will adapt and survive. A

double-point XO is similar except two points are chosen at random and the mask alternates

from zeros to ones to zeros again. This type of crossover was not tested for this application.

Uniform XO: A uniform crossover works in a similar way to the single-point and double point

XO functions except the binary mask is generated as a random string. In this case, each bit

in each parent has an equal chance of being put forth to the child string. When using this

function, an inverse mask could be used to make a sibling or another random string could be

created instead. The latter approach was used here. In informal tests, the performance of the

uniform XO was improved over the single-point XO, as the diversity of the population was

greater. This allowed the population to better explore the space and increases the likelihood

of convergence towards an optimal solution.

Multi-parent XO: It is possible to expand the uniform XO to more than two parents. For exam-

ple, if creating a child string from three parent strings, what is needed is simply a random

ternary mask. This can be further expanded to an n-parent uniform XO, using an n-ary mask.

Other, more sophisticated, n-parent implementations of genetic algorithms are discussed in

the literature and show promise in multi-objective optimisation problems [220, 221]. For the

single-objective application in this chapter, uniform XO was deemed to provide sufficient

diversity.
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8.1.6.4 Mutation

Individual solutions also undergo mutation, which promotes diversity in the population. In this

case, a fraction of the total bits in each solution is randomly chosen to undergo mutation. The

greater this fraction the more noticeable the mutation. For each of these randomly-selected indices

in the bitstring the value is changed from a 0 to a 1, or vice-versa.

8.1.7 Stop criteria
A variety of stop criteria can be used in this type of genetic algorithm. The most simple would be to

stop after a fixed number of generations. Alternatively, evolution could cease once the population

has converged towards a sufficiently small region of the solution space. It was decided that it

would be more appropriate to use a fixed number of generations, as this would keep the duration

of subjective tests to a predictable timescale. It is also possible that, by using the latter method,

the system would not always converge.

8.1.8 Choose best mix
Typically, in evolutionary algorithms, the best solution is considered to be the solution with the

highest fitness. There are a number of reasons why this approach is not suitable here.

1. Since only a sub-population were directly evaluated, the fitness of the majority of the popu-

lation is only estimated. Since fitness was subtracted in proportion to distance from the eval-

uated individuals, the individual with the highest fitness will always be one of the directly-

evaluated sub-population.

2. Many problems that can be addressed by IEA are perceptual and as such do not require

exact solutions but rather seek to identify an area of the solution space in which many good

solutions exist which are perceptually similar [87]. In a music mixing problem there is a

limit to the precision required when determining gain values, as small adjustments in the

gain of individual tracks will not be perceived. To determine this precisely would involve

using the spectrum of each track to determine the inter-channel perceptual masking. This is

left to further work.

Assuming the population converges on a small region of the solution space, the centroid would

be the most appropriate choice for the optimal solution, or ‘best’ mix. Determining this point

employed kernel density estimation (KDE) methods. Two methods were tested here:

• Multiple univariate KDE, where the density of the population is evaluated for each dimen-

sion individually.

• Multivariate KDE, where the density of the population is determined in the multivariate

space.

The multivariate approach is more scientifically sound but also a more complex, thus slower,

calculation. The results from both methods were compared. Univariate KDE was determined

using the ksdensity function in Matlab, as used in previous chapters. Figure 8.9 shows the

univariate KDE result. The peaks in the density function are determined using the findpeaks

function in Matlab. It is important to recognise that there may be multiple peaks. Therefore, a
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Figure 8.9: Univariate KDE: the point of maximal density is estimated separately for each
dimension. As this example featured 6 tracks, there are 5 coordinates in the mix-space.

minimum peak value is set to 1/4 of the maximum value. The peaks are marked and labelled

with the function value at that point. This shows that, for this specific trial, the user had strong

preferences for certain values of φ2 and φ3 yet, for the remaining values, there are multiple peaks.

This suggests the possibility of multiple mixes, although, the relative strength of peaks suggests

that simply picking the maximum values should create the most preferred mix. For φ1 and φ5, the

two peaks found are closely located, indicating that switching from one value to the other would

create only a subtle change to the mix. The greatest variation exists for φ4 which sets the balance

of the close-mic’ed snare drum to the combined kick drum & overhead balance. Switching from

one peak value of φ4 to the other would result in a vastly different drum sound. It can be said, that

in the mixing of these tracks, the ambience of the drums was the main factor that varies between

this user’s preferred mixes, in this particular example.

Strictly speaking, one does not seek to find the peak by simply concatenating each of the

n − 1 peaks but rather the single peak in the n − 1-dimensional space. This can be achieved
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using multivariate KDE. Estimating the density of a multivariate sample is a challenging task

and has only recently reached a level of maturity on par with univariate density estimation. In this

implementation, the Maggot toolbox (v 3.5) was used [222, 223]. Of course, for the purposes of

visualisation, the univariate method was favoured within this chapter.
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8.2 Example of a human-guided genetic mixing session
This section describes a single mixing session using the developed IGA-based system. The settings

used are shown in Table 8.1.

Table 8.1: Settings used in the following example of IGA mixer

Parameter Description Value

Ntracks Number of audio tracks being mixed 6
Nvars Number of variables/dimensions in so-

lution space
Ntracks −1

Population size Number of candidate solutions per gen-
eration

100

Nclusters Number of solutions to be audi-
tioned/evaluated in each generation

5

Nbits Number of bits used to represent the
value of each variable

7

Elite fraction Proportion of children generated as
clones of fittest parents

0.05

Crossover fraction Proportion of children generated by
crossover of two parents

0.85

Mutation fraction Amount of bits to be mutated in the re-
maining children

b(Nbitss ×Nvars)/3c

Stop condition Condition which, when met, causes
evolution to cease

10 generations

The initial population was created by uniform selection of points on the hypersphere and the

distribution of gains is shown in Fig. 8.10, indicating a fair selection of random points. After

conversion to hyperspherical coordinates, the initial population is displayed in Fig. 8.11. After 10

generations of evolution the final population is shown in Fig. 8.12. At this stage it is apparent that

there is a region where many solutions lie.
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Figure 8.10: Gain values of initial population

Figure 8.13 shows the distribution of raw fitness scores at each generation. There were some neg-

ative fitness values, which were the result of an individual receiving fitness penalties which, when
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Figure 8.11: Population at generation 1

summed, had a greater magnitude than the fitness awarded to their cluster representative. Figure

8.13 illustrates the increase in fitness values as the evolution progressed. This is an indication that

the user perceived the quality of mixes to increase during the course of evolution, as per the desired

nature of the system. The median fitness appears to reach a plateau after the seventh generation.

Note that the peak fitness was achieved at generation #4 but that this value is not maintained

by the system. While the peak value is being passed on to generation #5, as one of the elite

children, the fitness value of this mix is being overwritten. Since only the cluster centroids are

evaluated and other members of that cluster are awarded reductions in fitness, it is clear that the

peak value in generation #4 was a cluster centroid (as are the peak values in all generations).

The fitness value assigned to this elite individual in generation #5 is not necessarily the same as

the value it was awarded in generation #4 as it is most likely no longer a cluster centroid. This

behaviour suggested modifications to the algorithm were necessary in order to pass on the fitness

ratings of the elite parents to the (identical) elite children. This is, of course, only a small correction

to implement.

Both univariate and multivariate KDE methods were employed. The result of the univariate

method is displayed in Fig. 8.14 and the comparison of the two methods is shown in Fig. 8.15.

From this it is clear that the two methods show a high level of agreement, in this specific example.

It can be shown that the ordering of tracks does affect the outcome of the mixing session.
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Figure 8.14: Univariate KDE result
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Figure 8.15: Comparison of mixes produced by each KDE method. The differences between
the two are deemed imperceptible, ranging from 0.01 to 0.3 dB.
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Consider that each variable is denoted by the same number of bits, 7 in this case. For each single

variable, there is the familiar concept of a least significant bit (LSB) and a most significant bit

(MSB) — that a change in state of the MSB has a much greater effect on the value of the variable

than any other bit, and an change in the LSB has very little effect. Now, we also have a most

different levels of significance for each variable due to the formulation of the mix-space, as φn

is a function of all φi when i > n. In other words, changing the value of φ1 changes the balance

between track 1 and the mix of all other tracks (see Fig. 8.2). This is the most significant variable

(MSV). As φn−1 is the balance between tracks n−1 and n, the effect on the total mix of changing

this variable is less than other variables. This is then the least significant variable (LSV). It is

partly for this reason that the tracks are ordered as they are, with vocals as track 1, signifying the

relative importance of vocals in the mixing process, as identified throughout the previous chapters.

This formulation also means, that while there are 27 discrete levels for each variable in isolation,

there exist various amounts of levels for different instruments: as few as 27 for track 1 (vocals)

and many more for track n− 1 and n (kick drum and drum overhead in this example). However,

even 27 levels for vocal gain is sufficient to allow the gain to be finely adjusted in a mix.

This issue is partially a consequence of what has been referred to as the “Hamming cliff”

problem, as the Hamming distance between binary-encoded values of adjacent numbers can be

large. One possible solution is the use of Gray-encoded binary values (more specifically a binary-

reflected Gray code). This method has been shown to improve performance in a number of studies

[224, 225] but these improvements are not guaranteed [226]: it is still necessary to tune the ge-

netic operators and parameters to the problem-at-hand. While Gray encoding can solve the issues

associated with MSB/LSB, the MSV/LSV issue remains.
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8.3 Example of IGA system used for panning
The IGA mixer was easily adapted to optimise pan positions instead of monaural track gains. In

this case the gain vector was fixed such that all tracks had equal perceived loudness. It is the pan

position P that was then optimised and then used to get gL and gR, using Eqn. 2.1c.

This system was trialled by the author. The aim was to create a mix wherein the vocal and

guitar were panned as far apart as possible (direction not important) and all other tracks were

panned centrally. From Fig. 4.36, it is clear that, on a unit circle, the maximum symmetrical

separation would be (0.707, -0.707).

To modify the IGA mixer to the task of panning, the range of Φ was changed from [0,π/2]

to [0,π]. All other GA parameters were the same. The Matlab implementation was identical,

although the fitness function had to be changed to create and output stereo mixes based on the

panning variables.

Figure 8.16 shows the distribution of the initial population, which is concentrated on the

central pan position (where gL = gR). As before, mixes were rated in terms of solution quality, from

1 to 10. A mix of 10 would be one where the objective is well satisfied, i.e. vocals and guitar are

panned far apart but other tracks panned centrally. Figure 8.17 shows that fitness increased notably

over the ten generations. The optimal solution is depicted in Fig. 8.18. A perfect result would be

φ1 = π/2 and φ2 = 0. The precise pan positions of each track are shown in Fig. 8.19 to be -0.57

for vocals and 0.81 for guitar. In the same way that the gain optimisation favours solo vox, the

panning system favours hard panned vox and central others. This is the most-significant-variable

effect, as discussed in § 8.2.
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Figure 8.17: Fitness distribution at each generation. The fitness generally improves over time,
as desired
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Figure 8.18: Univariate KDE result. To achieve the desired result of vox and guitar panned far
apart would require the following result — φ1 would be π/2 and φ2 would be 0. Other values

would have no impact.
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Figure 8.19: Bar graph showing pan positions of the optimal mix, after 10 generations, using
the maximum points from Fig. 8.18.
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8.4 Improved fitness estimation
This section describes improvements that can be made to the system but were not included in time

for the evaluation in Chapter 9.

8.4.1 Inferring fitness based on past populations
As noted in Fig. 8.13, the maximum fitness is being lost in subsequent generations. One possible

solution is to re-use the fitness of previous generations in the estimation of fitness of the current

generation. Currently, the fitness of an individual is estimated using its distance to the nearest of

the rated points. Of course, it may be closer to a previously rated point. The fitness of an individual

can then be represented as a weighted average of the fitness it would have been granted as a

member of each previous generation. This prevents previous rated points from being “forgotten”

in the process of evolution. The fitness of an individual i at generation G can be given by the

fitnessi,G =
∑

G
g=1 wgfitnessi,g

∑
G
g=1 wg

(8.4)

Here, fitnessi,g is the fitness the individual i would have recieved in generation g, i.e. of the

cluster centroids in generation g, the fitness of the closest minus the distance to it. Weights can

be normalised, making the denominator in Eqn. 8.4 equal to 1. Weights can be equal for all

generations, or could be greater for more recent generations.

Additionally, in this example, the number of explicitly rated solutions increases by five per

generation. This suggests that more accurate fitness estimation should be achieved over time. After

each generation, the rated subpopulation could be used to estimate a fitness landscape, by fitting

a simple surface, either by interpolation or polynomial fitting. For the remaining population, their

fitness could be estimated from the value of this fitted function. By the end of generation #10, 50

rated solutions exist. A surface could be fitted to these solutions, producing an estimated fitness

landscape. An example is shown in Fig. 8.20. Of course, the interpolation should be done over all

dimensions: only two are shown here. The maximum point on this surface could be chosen as the

optimal mix.

In Fig. 8.20 it is clear that mixes where φ1 is too high or low are rated poorly, as these

represent mixes where the vocal level either dominates the backing track, or is lost beneath the

backing track. Similarly, when φ2 → 0 the drums and bass tracks are almost muted and so there

are low fitness ratings here. As φ2 → π/2 the guitar is almost muted, resulting in low fitness. As

indicated by the KDE plots in Fig. 8.14, each variable has optimal points, rarely at the extremes.

8.4.2 Using features to help fitness evaluation
Figure 8.21 illustrates how a set of audio signal features can be used as an additional means

of inferring the fitness of the population. Consider a feature, X , with a known (or assumed)

probability distribution as shown. In this example it is a standard normal distribution but realistic

distributions are shown in § 6.1.5. For each mix the value of the feature is measured and located

on the curve. The distance from the mean value is indicated by δ . From § 6.1.5, the assumption

is made that the better mixes are found close to the mean values. Consequently, the greater the

value of δ the lower the fitness of that mix. By adding δ to the already-determined distance from

the evaluated mix, D, a combined fitness penalty can be found. This method can be used for a
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number of audio signal features, yielding δX ,δY , . . . for features X ,Y . . . etc. These distances can

be weighted as desired, using a series of weighting coefficients β , as shown in Eqn. 8.5 for m

features.

fitness penalty = αD+
m

∑
i=1

βi |δi| (8.5)

fitness = fitness of representative−fitness penalty (8.6)

It is possible to completely remove the user-evaluation from the system, and simply use the

audio signal features to guide the mixing process. For example, the user can specify properties

of the desired mix, such as values of the features. Figures 8.22 and 8.23 shows the result of a

purely-objective GA run, in which the fitness function to be minimised was the distance to a target

spectral centroid. Of course, there are many mixes which can have the same spectral centroid.

In fact, if any of the individual instrument tracks has a spectral centroid close to the target, then

this track will feature heavily in some of the optimal solutions found. As such, constraints would

need to be imposed on the system, or multiple features could be used, making it a multi-objective

genetic algorithm. Since even the measurement of the signal features, for so many mixes, can be

time-consuming, the advantages of this approach, over the interactive genetic algorithm, are not

clear.

Alternatively, the features can be used to aid evolution in a different way, using a hybrid

genetic algorithm, sometimes referred to as a memetic algorithm (MA) [227]. Such an algorithm

has a dual-phase evolution strategy, wherein both genes and memes are evolved. Similar to the

gene being the basic unit of biological information, a meme is a basic unit of societal information.

Take the example of two twins raised in opposite corners of the globe: while they will share a

lot of genetic information they will inherit a different set of memes. Unlike genes, which remain

constant over the course of a lifetime, memes can change, and allow an individual solution to

adapt, learn and better its position in the solution space.

A genetic algorithm is good at exploring a large solution space but has limited success in

“zooming-in” to the best solutions, according to Hart et al. [228]. This is where the hybrid ap-

proach can help. In the context of an interactive audio mixing system, the genetic part remains

the same but the societal/cultural layer of the algorithm could be based on audio signal features.

Often, in a hybrid algorithm, a proportion of the population can, after fitness evaluation, undergo

a heuristic-based local search. This allows individuals to move to more optimal solutions. For

example, after the user has auditioned and evaluated the subpopulation, these individuals could

undergo a local search based on the desired values of audio signal features. One potential issue

with this approach is that it relies on heuristics, which, as indicated in Chapter 2, are based on

fallible domain knowledge. Here, a variety of approaches are proposed, based on the findings

in Chapters 6 and 7. While the “genes” are the inter-channel balances between instruments, the

“memes” in the population could be any of the following strategies:

bright: mixes should sound “brighter”, which can be achieved by higher spectral centroid

warm: mixes should sound “warmer”, which can be achieved by lower spectral centroid
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Figure 8.20: Estimated fitness landscape of 50 explicitly rated mixes, obtained using cubic
interpolation
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Figure 8.21: Using features for fitness evaluation. Assuming a normal distribution of audio
signal features (see Fig. 6.9), the distance δ from the mean µ can be used to help infer the
fitness of the population. Here X and Y are two audio signal features and each shape depicts a
different mix. The mix indicated by � has a mean value of both X and Y and is therefore seen
as the fittest mix of the three. Similarly, 4 is considered the least fit. In the case of a memetic
algorithm, alternative points on these curves would be considered optimal, as indicated by the
point m. Under this meme, 4 is considered the fittest solution, as it is closest to the desired point

m, on both curves.
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Figure 8.22: Objective GA. Distribution of raw fitness scores at each generation
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Figure 8.23: Population after 10 generations, using spectral centroid based GA. It is clear that
the population has not converged on one optimal solution but that many optimal solutions exist.
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wide: mixes are considered better if they exhibit wide stereo impressions, achieved by panning

and equalisation, and measured using audio signal features such as the stereo panning spec-

trogram [188].

punchy: preference for mixes that are punchier (having short periods of significant change in

power), as determined by audio signal features [229].

The different symbols in Fig. 8.21 can be understood to represent different memes, i.e. different

target values of the signal features. This use of memes within the population allows certain as-

sumptions to be placed into the system initially, such as “brighter mixes are better”, only for the

user to validate or reject these assumptions by their fitness ratings. Any specific quality can be

introduced as a meme provided that quality can be measured or approximated from the mix. This

method shows great potential to be used in an improved version of the mixing system described in

this chapter and is left to further work beyond this thesis.
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8.5 Chapter summary
In this chapter, a novel mixing system was presented. The system is based on an interactive genetic

algorithm, an evolutionary optimisation method which relies on human evaluation. This inclusion

of the user at the very core of the algorithm is one aspect which makes this proposed system differ-

ent to earlier attempts at automated music mixing. Rather than being an expert system, operated

by a novice user (a listener with no particular music mixing experience), this system begins with

no prior knowledge of music mixing and learns from the user. Therefore, both experienced and

inexperienced users should be able to obtain satisfactory performance from the system, while also

allowing for it to improve over time. While section § 8.2 demonstrated one isolated instance of

the system being used to mix a 6-track session, the output of this instance could be used to in-

form future use of the system. Over time, the algorithm could adapt to a user in a more general

sense, predicting which mixes are likely to be rated highly by that specific user. There is no reason

that the system could not learn mixing generally enough to adapt to multiple users: this has been

referred to as collaborative evolutionary computation in recent literature [230–232].

With each mixing session, the system has the potential to adapt further. By associating the

evolution of the solution with the measured signal features of the input audio tracks, the system

could further learn general traits of music mixing. Whether or not this is desired is another issue.

In this chapter, the aesthetic proposed is one where the system makes no assumptions of the pro-

cess. Earlier technologies have perhaps had an over-reliance on prior assumptions and so-called

best-practice mixing techniques. Combining both strategies — adapting to a specific user while

also learning best-practice from a collection of users — will be a challenge in further development

of this and related systems.

Meanwhile, the system as it is proposed in this chapter, requires evaluation from a panel of

users. This evaluation forms the basis of Chapter 9.



9
Evaluation of an evolutionary music mixing system

With Chapter 8 having described the design of an interactive music mixing system, the aim of the

work in this chapter is to ascertain how users interact with the system and whether or not it can be

considered useful. The following are the research questions pertaining to this chapter.

1. What are the median loudness levels of instruments when mixed using this system?

2. How does this compare to a more traditional, fader-based approach, as in Chapter 4?

3. How is the user experience evaluated, qualitatively, by the user?

4. How well does the optimal mix of one song translate to other songs?

5. How do users rate their own mixes?

The first two questions relates to the results found in Chapter 4. What median levels are found

for this new system and how do they compare to a more traditional mixing interface? Should they

both yield similar levels and distributions of track gain then it could be said that the new system

does not prohibit the user from finding the type of mix they would create with a traditional system.

This was a desired outcome of the experiment.

In addition to finding the types of mixes that are created with the system, it is important to

determine the nature of the user-experience. The third question seeks to identify if a user is likely

to encounter difficulty with using the system, and establish the difficulty with which one creates

their desired mix.

The fourth question relates to the ability of the system to generalise to other songs, which

would be desired. In order for the system to learn the style of the user, and be useful over a

number of mixing sessions, an optimal mix for one song should be, at the very least, a good first

guess for other songs. The effectiveness of this approach may well depend on how similar the

style of music is, the instrumentation, and other factors.

231
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The final question relates to the psychoacoustics of the mix-engineer, specifically their im-

pression of their own mixes. Previous work by De Man et al. [82]suggested that a mix engineer,

in later subjective evaluation of their mixes and the mixes of their peers, has a preference for their

own mixes, even when presented blindly. Possible explanations for this effect are that they explic-

ity recognised a mix they had created or that they implicitly recognised their style of mix, thinking

“I like this mix — it sounds like what I would do”, not realising that it was.

Figure 9.1: Box plot of ratings per mixing engineer including their own assessment (red ‘X’) of
one song, reproduced from De Man et al. [82].

Herein, this has been investigated in a more indirect way. Since the output of the IGA mixer is

the gain vector that was applied to loudness-normalised tracks, this vector can be applied to another

song in that same form (same number of tracks, in the same order and loudness-normalised). In

this case, the mixes being evaluated later are of unfamiliar songs, with the mixes being created in

the style of the mix-engineers, using their previously made mix as a template.

To answer these questions, two experiments were devised. The first gave a number of par-

ticipants the chance to use the system to create their desired mix of a specific song, and to report

on their experience of the system. The second experiment took this mix and used it as a template:

the optimal gain vector generated in the first experiment is used to generate mixes of other songs

which were subsequently evaluated in the second experiment.
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9.1 IGA-Expt.1 — Gather mixes
This experiment provided participants with the opportunity to trial the system. Each participant

was asked to create a mix using the system, in accordance with their own preferences. The ex-

periment took place in October 2016, in the BS.1116 compliant listening room at the University

of Salford. The test set-up was comparable to that of experiments in previous chapters (see Fig.

4.11). Only a single loudspeaker (Genelec 8020a) was used, positioned centrally, at a distance of

1.4 metres from the listening position. Participants were free to adjust the playback level during

their evaluation of generation #1 but not thereafter.

Table 9.1: Set-up for IGA mixer evaluation

Audio stimuli Multitrack content with 6 mono tracks (PCM .WAV, 16-bit, 44100

Hz): Vox, Guitar, Bass, Snare, Kick, OH

Song for expt 1 Sister Cities

Songs for expt 2 (see

§ 4.3 and § 6.1.1)

Burning Bridges, Borrowed Heart, Fighting (We Were), Heart-

beats, I’m Alright, New Skin, Revelations, What I Want

Set-up 1 x Genelec 8020a, Focusrite 2i4 interface

The number of participants who took part in this experiment was 14 (13 plus the author), most

of whom had previously participated in at least one of the experiments in Chapter 4 and were

considered to be sufficiently familiar with the concepts of the task, namely the balancing of a

number of audio signals. Furthermore, all were either postgraduate or undergraduate students in

audio-based courses.

The task of each participant followed the same structure as the example in § 8.21. None of

the graphs were presented to the user, to prevent the introduction of a visual bias or the mixing of

the music based on the visual information displayed. Consequently, the user needed to rely solely

on audition. These graphs were saved to disk during each run in order to act as a diagnostic tool,

and were visible to the experimenter during the session, on a second monitor. The only visual

information presented to the user is a simple GUI to gather ratings of mixes (Fig. 9.2a) and to

provide a progress update at the end of each generation (Figs. 9.2b and 9.2c). This represented a

minimal amount of visual stimulus, however such a system could surely be implemented with no

visual stimulus, e.g. using a numeric keypad for data entry. When rating mixes, participants were

advised that a rating of 10/10 represented their ideal mix, while a rating of 1/10 is a mix most far

from ideal, in any of the many ways that this might be possible.

Upon completing 10 generations the optimal mix was estimated using the univariate KDE

method described in § 8.1.8. This mix was then played back to the user for qualitative evaluation

but was not rated quantitatively. At this stage, the user was provided with a questionnaire in order

to assess the interaction between the user and the system. The first 10 questions were those of the

System Usability Scale (SUS), a short survey designed to gather information of a systems usability

[233]. Additional questions were devised by the author as more directly related to audio mixing

systems and this particular experiment. The list of statements is shown in Table 9.2. For each the

1i.e. this algorithm does not include Gray coding or fitness estimation using previous generations or audio features
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(a) Screen used to gather fitness rating
of each mix within the subpopulation

(b) Screen shown after a generation was rated (c) Screen after final generation was
rated

Figure 9.2: Buttons used within IGA experiment.

user choose a response on a 5-point Likert scale, marked at the extremes by “strongly disagree”

and “strongly agree.”

Table 9.2: Survey questions for IGA mixer

number statement

1 I think that I would like to use this system frequently.
2 I found the system unnecessarily complex.
3 I thought the system was easy to use.
4 I think that I would need the support of a technical person

to be able to use this system.
5 I found the various functions in this system were well inte-

grated.
6 I thought there was too much inconsistency in this system.
7 I would imagine that most people would learn to use this

system very quickly.
8 I found the system very cumbersome to use.
9 I felt very confident using the system.
10 I needed to learn a lot of things before I could get going

with this system.

11 I felt in control of the mixing process.
12 I thought the loudness of samples was consistent.
13 I felt the mixes got better over time.
14 I found the interface to be physically demanding.
15 I thought the loudness of samples was suitable.
16 I found the interface to be mentally demanding.
17 I felt the test environment was comfortable.
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9.2 Results from IGA-Expt.1
Over all 14 participants, the median the amount of time taken to evaluate 10 generations (50 mixes)

was 11 minutes 17 seconds (see Fig. 9.3). This amounts to a mean of 13.34 seconds per mix (recall

that each mix was 30 seconds long and no repeats were possible). As a mix deemed to be poor

can be evaluated rather quickly, this short duration was not unexpected.

400 500 600 700 800 900 1,000

1

Time taken (s)

Figure 9.3: Time taken by participants to complete ten generations

Figure 9.4 shows the distribution of raw fitness scores per generation when all participant’s

data is combined. As desired, the fitness of the population typically increases as the system

evolves. A few additional observations can be made from this plot.

1. Decrease at gen 2 — as the initial population is uniformly distributed on the sphere, there

is likely to be a variety of mixes, rated good and bad. As mentioned in § 8.1, given a

large enough population, the position of the evaluated mixes (closest to the centroids of the

clusters) is predictable. Since gen #2 represents the first evolved generation, after a first

generation of random mixes, it is credible that the fitness may drop initially.

2. Increase from gen 3→7 — as anticipated, the fitness increases over the duration of the

session but mostly between generations 3 and 7. This indicates that once the system has

identified an optimum point based on user ratings, after a few generations of searching it

slowly begins to converge.

3. No significant change after gen 7 — the aforementioned convergence, however, seems to

reach a saturation point at generation 7, as no significant change is observed from here on.

It is important to note that while the best mixes in a given generation are passed on to the

next generation (as ‘elite’ children), they may not survive another generation. As mentioned in

§ 8.2, this is due to the fact that the inferred fitness is always based on subtracting an offset from

the rated subset. The best mix in a given generation is therefore one which was part of the rated

subset. It is unlikely that it would be form of the next generations subset, once the clusters are

re-calculated on the new population.

Once the system completed 10 generations of user-evaluation and evolution, the univariate

KDE method was used to determine that participant’s supposed ideal mix (see § 8.1.8). Figure 9.5

shows the distribution of gain levels for each track. As with similar experiments in § 4.3 and § 4.5,

vocals are set as the loudest track in the mix. This further justifies the use of a vocal boost in the

creation of random mixes in Chapter 5. Vocals were also considered one of the most important

elements in the mix as mentioned in § 6.2.4.
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Figure 9.4: Boxplot showing the raw fitness scores per generation, for all 14 participants’ ses-
sions (1,400 mixes per generation).
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Figure 9.5: Boxplot of gains in final mixes (14 participants)

Table 9.3: Comparision of levels. Fader results are from § 4.3.5, where Faders(all) pertains to
the entire experimental data and Faders(LS.sc) is the subset of results for the same conditions as

the IGA (using loudspeakers and the song “Sister Cities”)

Track Median Level (LUFS)

IGA Faders(LS.sc) Faders(all)

Vox -2.72 -2.30 -2.85
Gtr -10.84 -8.89 -8.56
Bass -10.37 -10.43 -10.46
Drums -7.62 -8.33 -8.11

Snare -14.57
Kick -16.69
OH -12.79
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9.2.1 Comparison with fader-based experiment
A comparison between median levels in various experiments is shown in Table 9.3. This reveals

that there are only small differences between experiments. The largest difference is the fact that

the guitar was typically set quieter using the IGA system, by about 2 LU. The level of the vocals in

the IGA experiment is closer to the Faders(all) level than Faders(LS.sc), indicating that this level

may generalise well to other songs, as is the basis for § 9.3. A precise match between experiments

would have been surprising, especially considering the IGA method only approximates the user’s

ideal mix in the final KDE stage. That said, the close match for vocals, bass and drums (to a

slightly lesser extent) indicates the success of the IGA method. From this it may be claimed with

some confidence that the IGA method is capable of creating a range of mixes similar to that which

would be created using the conventional fader-based approach.

9.2.2 Survey responses
Figure 9.6 shows histograms of the raw scores from the first ten questionnaire items. High scores

on odd numbered questions indicate a positive impression of system usability, as do low scores on

even-numbered questions. Scoring of the questionnaire results is as follows:

• For odd items: subtract one from the user response.

• For even-numbered items: subtract the user responses from 5

• This scales all values from 0 to 4 (with four being the most positive response).

• Sum the converted responses for each user and multiply the total by 2.5. This converts the

range of possible values from 0 to 100.

Table 9.4 shows the mean of the converted scores for each item. Note that in Table 9.4, the score

shown for items 1 to 10 is the mean positivity (from 0 to 4), not the mean of the raw scores (i.e. not

the level of agreement with the statement). For items 11 to 17 the score shown is the mean level of

agreement with the statement. The boxplot of overall scores for the system (from 0-100) is shown

in Fig. 9.8a. The median score is 90 while the range was from 75 to 95. This score by itself does

not offer much insight without other systems to compare to. Bangor et al. [234] analysed the SUS

scores from a variety of different systems and found the average SUS score from over 200 studies

to be 70. This score of 70 can therefore be considered an average score to which new studies can

be compared. Figure 9.8b shows a normalised curve from which SUS scores can be interpreted 2.

The statement which received the least positive response was #1 (“I think that I would like to

use this system frequently”). Initially, this particular observation seems to contradict the overall

high score that users awarded the system. However, while it is the least positive response, the

mean score is 2.92 on a scale of 0 to 4, suggesting a result that is still rather positive. However, it

is important to realise that the users would have been comparing the system to a more conventional

audio mixing system. The next least positive statement was #6 (“I thought there was too much

inconsistency in this system”). This indicates that difficulties experienced by users were due to

lack of direct, explicit control over the parameters of the mix, as also indicated by statement #11

(“I felt in control of the mixing process”). When asked whether the system was either physically

2http://www.measuringu.com/sus.php

http://www.measuringu.com/sus.php
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Figure 9.6: Histograms of raw responses to survey questions 1 to 10. SD and SA are “strongly
disagree” and “strongly agree” respectively.
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Figure 9.7: Histograms of raw responses to survey questions 11 to 17. SD and SA are “strongly
disagree” and “strongly agree” respectively.
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or mentally demanding, users typically responded that neither was the case. This indicates that the

system has a low level of user-burden. The system also achieves its goal of not being a physical

burden, suggesting a high level of accessibility. From the SUS items, the statement obtaining

the most positive response was #3 (“I thought the system was easy to use”). Importantly, users

generally felt that mixes got better over time, as desired. Overall, the impression of the system

was positive, considering the results shown in Fig. 9.8.

Table 9.4: Survey results for IGA mixer. This table summarises the results shown in Figs. 9.6
and 9.7 by showing the mean and standard deviation of the data.

number statement mean positivity std.dev

1 I think that I would like to use this system fre-
quently.

2.92 0.64

2 I found the system unnecessarily complex. 3.69 0.48
3 I thought the system was easy to use. 3.92 0.28
4 I think that I would need the support of a tech-

nical person to be able to use this system.
3.77 0.44

5 I found the various functions in this system
were well integrated.

3.54 0.66

6 I thought there was too much inconsistency in
this system.

3.15 0.99

7 I would imagine that most people would learn
to use this system very quickly.

3.54 0.66

8 I found the system very cumbersome to use. 3.38 0.65
9 I felt very confident using the system. 3.54 0.66
10 I needed to learn a lot of things before I could

get going with this system.
3.46 0.97

mean score

11 I felt in control of the mixing process. 2.69 0.95
12 I thought the loudness of samples was consis-

tent.
3.85 0.55

13 I felt the mixes got better over time. 3.62 0.77
14 I found the interface to be physically demand-

ing.
1.31 0.85

15 I thought the loudness of samples was suit-
able.

4.31 0.63

16 I found the interface to be mentally demand-
ing.

1.31 0.63

17 I felt the test environment was comfortable. 4.77 0.44
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(a) Boxplot of SUS scores. The median score is 90, with the range being 75 to 95. This result
indicates the system is highly usable.

(b) SUS curve. Based on this curve, a score of 90 suggests the system is highly usable.

Figure 9.8: Overall usability score of the system, based on SUS questionnaire
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9.3 IGA-Expt.2 — Subjective evaluation of peer mixes
After the first 12 participants completed experiment 1, their final mixes were used as a template

from which mixes of eight other songs were created (the eight songs listed in Table 9.1). All

96 of these mixes were evaluated by the author and the mixes of five users were chosen for use

in experiment 2. In order to decide which five were to be used, firstly a number of participants

mixes were excluded due to particularly noticeable, or song-specific, mix decisions (such as any

one instrument being especially low in the mix). Any participants who had previously notified of

their unavailability for experiment 2 were also excluded. Ultimately the five users whose mixes

were chosen were accepted as those mixes were considered to sound credible over all eight new

songs (they did not produce noticeable undesired effects such as near-muted instruments), as well

as sounding different enough from one another. These five participants are herein referred to as

MixerA to MixerE.

The experiment also took place in October 2016, in the BS.1116 compliant listening room

at the University of Salford, and overlapped with experiment 1, using an identical set-up. The

playback level was set to 79dB(A). There was no need to explicitly normalise the perceived loud-

ness of these audio stimuli as, being points in the mix-space, each mix was generated at the same

loudness (see Fig. 5.8).

Figure 9.9: GUI used for evaluation of IGA mixes.

This experiment utilised a multi-stimulus audio evaluation. Each screen, as shown in Fig. 9.9

represents one song and displays all five mixes, one in the style of each mix engineer. These mixes

are assigned to sliders randomly. Sliders range from 0 to 1 and the initial slider location is set to

0.5. Clicking the ‘NEXT’ button advances to the next song and songs are presented in a random

order. The ‘NEXT’ button is only made visible once four conditions have been met.
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1. All samples must have been played

2. All faders must have been moved

3. At least one fader must be set to the maximum value

4. At least one fader must be set to the minimal value

Only six participants took part in this experiment. While deliberate efforts were made to

have each of the participants from experiment 1 return for experiment 2, of the five participants

whose mixes were chosen only four completed experiment 2. Consequently, the aim of having

each participant evaluated their own mixes (mixes of other songs made from their experiment 1

result) was not met entirely.
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9.4 Results from IGA-Expt.2
Figure 9.10 displays the distribution of preference ratings awarded to the mixes by each mixer.

Recall that each participant evaluated five mixes each for eight different songs. From this data,

the mixes by MixerD were significantly preferred over those of MixerA, MixerB and MixerC. A

number of other significant differences also exist between mixers. Unfortunately, the one set of

mixes that was deemed to be most preferred (MixerD) was also the one participant not to return

from experiment 1. Consequently there is no knowledge of MixerD’s rating of their own mixes in

Fig. 9.10.
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Figure 9.10: Boxplot of preference ratings for each mixer. The red mark indicates the partici-
pants median rating of the mixes made with their own mix setting from expt1. MixerD was not

available to take part.

The initial hypothesis, formed from the result shown by De Man et al. [82], was that mix

engineers prefer their own mixes. The result in Fig. 9.10 suggests that this may not be the case

generally. That being said, in the earlier work of De Man et al. [82], not all participants preferred

their own mixes, as mix engineer ‘W’ in Fig. 9.1 appears to have been subject to the opposite

psychological effect and rated their own mix poorly. There are a number of differences between

these two studies and their results.

• Here, mix engineers were not told that their result from part 1 acted as a template for the

mixes in part 2, i.e. they did not necessarily recognise the mixes in part 2 as being “their”

mixes.

• Here, mix engineers rated “their” mixes of eight previously unknown songs.

The result from Fig. 9.10 is difficult to interpret. For two mixers, they rate the mixes in their style

to be better than average, and on-par with the highest rated mixer. However, MixerA rated the

mixes drawn from their template to be very poor (although close to the consensus rating). MixerB

considered their mixes to be average, as too did the other participants. The overall trend seems
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to be that an individual’s impression of their mixes is an exaggerated form of the consensus. As

shown in Fig. 9.11, the mixes in the style of MixerD achieved the highest median score for 5/8

songs, while the mixes in the style of MixerA achieved the lowest rating for 5/8 songs.
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Figure 9.11: Boxplot of ratings, shown for each song
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9.5 Features of generated mixes
Overall, the number of mixes created was equal to npar × npop × ngen, which is 14× 100× 10 =

14,000. As the population at each generation was recorded, audio signal features can be extracted

from the mixes of each participant. This allowed an investigation into the variation of certain

features over the duration of the trial.

Below, in Figs. 9.12a to 9.13c, the estimated PDF of spectral centroid is displayed at each

generation. To avoid unnecessary repetition, only data from these first six participants are dis-

played. In all cases shown, the maximum value is at a late generation, usually the final generation.

This indicates that the distribution of mixes converges. Some participants, like P1 and P5, consis-

tently created mixes with a variety of spectral centroid values, as evidenced by the multi-modal

nature of the estimated PDF. This suggests that some participants did not base their ratings purely

on this feature. In contrast, other participants, such as P2 and P4, show much smoother surfaces,

indicating that the degree of convergence was higher, at least in terms of spectral centroid values.

Note that the peak at each generation is always close to 2.4 kHz. Compared to the ten songs

analysed in Fig. 6.5, this is a relatively low value. Clearly, a purely objective GA, aiming for the

average value of 3.6 kHz (see Table 6.6), would produce overly bright-sounding mixes.
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Figure 9.12: Evolution of spectral centroid, in mixes of participants 1 to 3.
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Figure 9.13: Evolution of spectral centroid, in mixes of participants 4 to 6.
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9.6 Discussion
The following is a response to each of the research questions.

• The median levels of instruments in the mixes generated by the IGA method showed that

vocals were, once again, set as the loudest element in the mix. Other instruments were also

set to similar levels.

• The diversity of mixes compares well to the traditional fader-based approach. This suggests

that the system is working, as it is capable of creating the types of mixes desired by the

users.

• From the survey results one can see that the users were pleased with usability of the system.

Users rated the system as easy to use and that it was neither physically or mentally demand-

ing. They did, however, state that they did not feel so in control of the process. This might

be as expected, since the purpose of the system is to act as an assistant, thereby assuming

some level of control from the user. In the case of a user with particular disabilities, this

might be more welcome than an able-bodied user.

• Users rated the mixes of other songs, created by their template, in complex ways. Whether

or not the mix template, derived from the optimal mix of one song, can be applied to other

songs is still debatable. The results indicate that, perhaps, some users’ optimal mixes were

more generalisable than others.

• The users rate their own mixes in various ways, however, it is clear that there was not a

consistent preference for ones own mix.

9.6.1 Does the system make music mixing more accessible?
Part of the motivation behind the development of such a system (as described in Chapter 8) was

to imagine a music production system that could be operated by a user with severe visual impair-

ment. Many contemporary systems, such as the Digital Audio Workstation (DAW) present a large

amount of visual information to the user on a monitor, and the primary interface to this informa-

tion is through a mouse, trackpad or similar peripheral. These systems present accessibility issues

for the visually-impaired. A variety of solutions have been implemented over the years, such as

text-to-speech systems which help the user to navigate long menus. Often, a human assistant is

required. The IGA-based system could be used to take the place of this assistant. There is room

for further work in which the proposed system is evaluated by visually-impaired users and directly

compared to existing solutions.

9.6.2 What else can it be used for?
Creating mixes based on some perceptual dimension (such as warmth or brightness, for example)

can help our understanding of such concepts. The proposed system therefore has potential for

use in perceptual audio evaluation in general. Rather than a user comparing multiple pre-defined

stimuli and rating the value of each, the user could start with a “blank slate” and evolve the system

towards the optimal solution. Then the solution found, and the audio signal features of the solution,

can be used to learn about the perceptual characteristic. Ultimately, this is what has been done in

this chapter, with musical audio as the stimuli and “preference” as the perceptual dimension.
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This type of system can also be used for the deployment of object based audio broadcast, in

which audio objects need to be mixed at delivery stage. Such a system could learn quickly from

the user and be less based on fixed best practices, which may not meet the personal requirements

of each user. Furthermore, it has been shown that IEC is a suitable method for designing systems

based on subjective audio evaluation. For example, this can be used in designing rooms for a

specific level of subjective speech intelligibility (rather than using an objective approximation), or

designing products for a specific sound quality using virtual acoustic prototypes.
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9.7 Summary of chapter
When using the proposed IGA-based music mixing system, participants were able to create a range

of mixes comparable to those made using the conventional fader-based system. This suggests that

the system is not an obstacle to the creation of mixes, and does not impose noticeable limits on

what mixes can be created. The system was considered to be highly usable. Both physical and

mental demands were reported to be low. Consequently it is predicted that the system would be

suitable for a variety of applications where physical interaction is to be kept low.

In light of the participants ratings, certain improvements could certainly be made. The most-

significant-variable problem (see § 8.2) reduces the level of control the user has over the system.

Further work would include solving this problem and removing the bias it introduces. Recall that

only five mixes were presented to the user, per generation. If none of these five are especially

good then the system would experience a setback and may fail to evolve towards the desired goal.

Thus far, the system seems fairly robust to this problem, which has been referred to as the “ham-

ming cliff” problem. Gray encoding of the binary values is a potential solution which has shown

promise in previous studies [224, 225]. Although not formally tested, Gray encoding was added

to the IGA algorithm and shows promising results.

Participants were able to detect an effect of the mix engineer, as the mixes in the style of

MixerD were significantly preferred over those of all others. Participants’ preference for their

own mixes was varied: this suggests that the system generalises well for some users and less so

for others but also that, being trained on only one song, the training data may not have provided a

sufficiently general template for mixes.



10
Conclusions

The aims of this project were to address fundamental questions concerning music mixing and

to incorporate these at the heart of a novel framework for audio analysis and intelligent music

production. These questions were as follows:

• What is mixing, i.e. what can be achieved by mixing?

• What makes a good mix?

• How can good mixes be generated?

Each of these questions has been directly addressed within this thesis. As these questions are

fundamental, exhaustive answers would lie far beyond the scope of this thesis. In fact, it has been

shown that the answers to the first two questions are highly subjective and must take into account

aesthetic concerns.

This is one of the main contributions of the thesis — that if audio quality is to be a motivating

factor in the automatic creation of mixes, then the question must be asked, for whom is the mix

being created and what is their impression of audio quality? One simple way to address this

issue is to directly include this individual in the process, so they can specify to the system their

preferences, guiding the system towards the desired output.

252
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10.1 Main findings
10.1.1 Perception of quality
Based on the results of a listening test, using commercially available audio stimuli, it was indicated

that the perception of quality was a percept distinct from hedonic preference. However, in a test

comparing a set of alternate mixes, this distinction was no longer observed. From this, it can be

said that preference is a motivating factor in maximising the quality of a mix.

10.1.2 Mix-space
It has been indicated that previously-held definitions, wherein an audio mix is described as the sum

of individual input channels, have led to sub-optimal solution spaces for optimisation, leading to

varied levels of performance in applications relating to intelligent music production. This thesis

has proposed an alternative definition, that a mix can be considered as a series of inter-channel

balances. This solution space contains all possible mixes that can be created using a finite set of

tools, such as gain, panning and equalisation.

10.1.2.1 ...as a framework for analysis

This proves to be a useful framework for the comparative analysis of mixes created using conven-

tional means. Based on a series of experimental studies, it has been suggested that...

• ...there exists a consensus among test participants when choosing the loudness levels at

which to set instruments

• ...the rough mix presented to test participants influences their final mix, providing evidence

of an anchoring effect

• ...for mono mixes, there was little difference between the mixes generated via headphone

reproduction or loudspeaker reproduction

• ...for stereo mixes, the panning of instruments provides a degree of spatial unmasking,

changing the consensus on loudness levels.

• ...there exists a consensus on the choice of pan positions, with vocals, bass, kick drum and

snare drum being placed in the centre of the stereo field, while drum overheads and paired

guitars were panned much wider

• ...test participants were influenced by the layout of tracks, panning drum overheads and

guitars according to their relative positions on the mixing console.

• ...the application of equalisation typically boosted salient frequencies in the instrument

• ...there was no consensus on the application of equalisation to vocals.

10.1.2.2 ...as a means of generating mixes

In addition to providing a framework for mix analysis, the mix-space allows for the creation of

mixes. As it is costly to gather a large set of mixes, created by mix engineers as the basis of

experiment and analysis, the creation of a set of mixes, either randomly or in accordance with

parametric models, has allowed for the study of mix-diversity. For a number of songs, sets of
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1,000 mixes were generated according to various parameters and the audio signal features of these

mixes were obtained. This revealed tolerance regions beyond which such a feature is unlikely to

stray.

Generating a set of mixes in a defined solution space is the first step in a genetic algorithm,

and this was used to create a novel mixing system. Users of the system were able to generate mixes

in accordance with any perceptual property, such as “quality”. The mixes made were comparable

to those made using the conventional fader-based approach, in terms of consensus in instrument

level. Users found the system easy to use, in terms of physical and mental burden. Such a system

has applications in assistive technologies, allowing greater access to music production.

At the core of the mix-space concept is the notion that a creative task can be represented

using a design space and that this space can be explored, algorithmically, with an artist acting as

director. The great potential of this approach should be explored further in future work, in the

realm of audio production, acoustic design and beyond.

10.1.3 Analysis of real mixes
Typically, when listening to music, a listener is only ever exposed to one version of any given

recording session: to only one mix. The mix engineers themselves are, of course, exposed to

countless possible variations of the recording session. While the mix-space studies showed the

paths that engineers take through a limited but well-defined solution space, the mixes created

under real world conditions contain too many variables to study in detail.

While previous studies have gathered perhaps a dozen, or few dozen, mixes of a song, this

thesis has examined the variation in larger collections of mixes, up to 373. This has provided a

more detailed picture of the possible variation in mixes that mix engineer can explore.

This has indicated realistic upper and lower bounds for many audio signal features, features

often used to guide optimisation processes in automated mixing tasks. This knowledge can be

used to detect if an automatically generated mix is one that would be unlikely to have been created

by a real mix engineer. If so desired, it can then be downgraded, or vetoed, by the system.

Of course, only low-level features were obtained from the signals and there is an increasing

question as to whether or not the “bag-of-frames” approach is a useful representation for music

signals. The work in this thesis has indicated that while these signal features may be useful in

many information retrieval tasks up to now, when comparing different songs to one another, that

they are of limited practical use when analysing the often-subtle differences between multiple

mixes of the same song.

Gathering such a large set of real mixes involved scraping the largest known database of mix

content, the cambridge multitracks website. As the studies on this thesis only focussed on the ten

songs that were most often mixed, there exist thousands more mixes for further study.

In the majority of cases, such mixes lack any form of explicit subjective evaluation. Since

this form of direct evaluation would be practically impossible to gather for a set of thousands of

audio samples, the implicit subjective evaluation is of great importance. This is to say that, if a

mix has been created by an engineer, after some period of time exploring the many possible mixes

that exist, then this final mix can be considered to have value, and quality can be considered as

being related to the value of an object. This observation is important as it opens up such studies to

the world of big data, beyond the confines of a limited laboratory-based study.
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Where subjective evaluation is available, the data indicates that a good mix is one which

reaches a compromise between a number of factors, such as loudness/dynamics, brightness, stereo

width and bass. This has only been shown here for one song as vast resources would be required

to extend this study to other songs, for an unknown payoff in regards to this thesis. We invite other

authors to study mixes of other songs as further work. A second mix competition was carried out,

using a similar format, in November 2016.

10.1.4 Analysis of mix engineers
In addition to an investigation into mixes themselves, this thesis outlined an investigation into the

individual mix-engineers. When comparing six engineers, who had each created mixes for 18

songs, it was found that there were differences in terms of the audio signal features of their mixes

but only a very small perceptual effect of the mixers “style” on preference ratings.

After creating mixes using the IGA system, test participants then rated mixes of other songs

created in their style, using their initial mix as a template. In this subjective evaluation, the mixes

of one participant were clearly preferred. Interestingly, participants did not appear to identify

their own style of mixes, perhaps indicating that more than one initial mix is required to create a

template.

In regards to the variation in mixes and in mix-engineers, both of these findings are novel

and important, as trivial as they may appear. We now know that while mixes, on the whole, differ

from one another in some predictable way, and that features vary based on simple parametric

models, additionally, individual mix engineers are shown to vary, in a purely feature-based model.

If it is true that the audio signal features can tell us something interesting about the audio signal,

then it can be said that quantifiable evidence now exists to suggest that mix-engineers do have a

measurable style, which has been suggested anecdotally for some time.



10.2. FURTHER WORK 256

10.2 Further work
There is the possibility of the models presented in this thesis to be expanded to encompass more

complex music production tasks, such as time-varying fader control (which was briefly discussed

in § 4.2) and dynamic range processing. However, this section describes new projects which can

be undertaken as a consequence of the research presented in this thesis.

10.2.1 Emotion in mixes

Using the concept of a mix-space as a framework for testing, there are numerous further works that

can be undertaken as a consequence of this thesis. One recent project that was undertaken but not

included in this thesis investigated the psychoacoustics of emotions in music signals, specifically,

does the mix influence a listeners perception of the song’s mood? This used a set of alternate

mixes, created by different mix engineers, as audio stimuli. This project could be continued using

the mix-space framework, allowing for psychophysical time-series data to be mapped onto the

mix-space as the user creates their mix. Ideally, this would be expected to reveal regions of the

mix-space where highly emotional mixes exist. This aim could also be accomplished using the

IGA mixer, where instead of optimising the “quality” of a mix, one is asked to optimise the degree

of “happiness” or some other mood. This would be a challenging and ambitious project with

potential for unique applications in the music technology industries.

10.2.2 Audio evaluation methodology

Ultimately, it is hoped that this work could lead to new methods of psychoacoustic evaluation.

Often, in such a test, a participant is provided with a fixed number of ready-made audio stimuli

and these are rated on some scale. It would be interesting to develop methods where the audio

stimuli are generated as part of the test. Of course, this would require careful statistical analysis,

as no two participants will have taken the same test — although, already, no two participants are

the same, and so perhaps this type of subjective testing will become more commonplace in the

future.

10.2.3 Quality

The relationship between quality and audio signals is a broad topic with a vast amount of appli-

cations. Many studies have reported on technical issues in the recording of the signal, such as

wind noise or handling noise, or artefacts in the signal representation and storage, which can be

introduced by perceptual coding. What is still required is an ambitious study into the interaction

between subjective experience and audio signals in music.

10.2.4 Mix-analysis

In April of 2017, the audio attachments uploaded to the forums of the Cambridge Music Tech-

nology website were archived for further study. This archive contains over 15,000 mixes created

from the multitrack sessions of over 300 different songs.

Further work would included developing new metrics which approximate the quality of a

mix. One such avenue to explore would be relating to the musical structure of mixes. The quality

of mix may be related to how interesting it is to the user, which in turn may be explained by

entropy in the structure, i.e. a mix with contrasting verse and chorus may be more interesting

than one in which these sections are more homogeneous. With dozens or hundreds of available
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real-world mixes (or thousands of artificially generated mixes), a large-scale statistical analysis of

music structure could be undertaken.
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