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ABSTRACT 

This thesis describes the development of real-time flood forecasting models at selected 
catchments in the three countries, using rain gauge and radar derived rainfall estimates 
and time-series analysis. 

An extended inter-comparison of real-time flood forecasting models has been carried out 
and an attempt has been made to rank the flood forecasting models. It was found that an 
increase in model complexity does not necessarily lead to an increase in forecast accuracy. 

An extensive analysis of group calibrated transfer function (TF) models on the basis of 

antecedent conditions of the catchment and storm characteristics has revealed that the use 

of group model resulted in a significant improvement in the quality of the forecast. A 

simple model to calculate the average pulse response has also been developed. 

The development of a hybrid genetic algorithm (HGA), applied to a physically realisable 
transfer function model is described. The techniques of interview selection and fitness 

scaling as well as random bit mutation and multiple crossover have been included, and 
both binary and real number encoding technique have been assessed. The HGA has been 

successfully applied for the identification and simulation of the dynamic TF model. Four 

software packages have been developed and extensive development and testing has 

proved the viability of the approach. 

Extensive research has been conducted to find the most important adjustment factor of the 
dynamic TF model. The impact of volume, shape and time adjustment factors on forecast 

quality has been evaluated. It has been concluded that the volume adjustment factor is the 

most important factor of the three. Furthermore, several attempts have been made to relate 
the adjustment factors to different elements. The interaction of adjustment factors has also 
been investigated. 

An autoregressive model has been used to develop a new updating technique for the 
dynamic TF model by the updating of the B parameters through the prediction of future 

volume adjustment factors over the forecast lead-time. An autoregressive error prediction 
model has also been combined with a static TF model. Testing has shown that the 

performance of both new TF models is superior to conventional procedures. 

xvii 



Chapter I Synopsis and Introduction I 

CHAPTER 1 

SYNOPSIS AND INTRODUCTION 

1.1 Introduction 

The United Nations designated the 1990s as the International Decade for National 
Disaster Reduction. Flooding is one of the major causes of such disasters (WMO, 1992). 
Floods represent natural hazards to human beings and livestock and can cause large scale 
damage to property, agriculture, flora and fauna, the environment, communication 
networks, etc. Furthermore, floods can cause loss of earnings, services and business 
disruption. In the United States, floods are responsible for injuries to approximately 
75000 people and livestock and result in over $2 billion in property damage every year 
(Yapo and Sorooshian, 1993). In the `Great Flood' of 1993 of the United States 50000 
homes were damaged, 54000 persons were evacuated and economic losses of $15-20 
billion have been estimated (Krzysztofowicz, 1995). It is believed that, in the hundred 

years between 1870 and 1970, flooding has caused an average of $1500 million worth of 
damage and more than 5000 deaths in the world per year (Nemec, 1986). Perhaps the 
flash flood of August 15th 1952, at Lynmouth and Lynton, Devon, was the most well 
known and catastrophic floods in UK. In total 34 people were killed or went missing, 
and 93 houses, 28 bridges and 132 vehicles destroyed (Delderfield, 1953). Hagget et al., 
(1993) have estimated that potential flood damage exceeds £20 million in Greater London 

and 90000 properties are at risk from flooding in the Thames catchment alone. 

At the time of writing more than 80 lives have been lost at a campsite in Northern Spain 
due to a flash-flood in the Pyrenees. 

An hydrological forecast can be defined as the prior estimate of the future state of 
hydrological phenomena in real-time. Real-time itself is execution of the forecasting 

procedures using the currently available data. Hence real-time forecasting is different 
from prediction which is for design purposes (WMO, 1992). A real-time data collection 
network and telemetering system are prerequisite to any real-time forecasting exercise. 



Chapter I Synopsis and Introduction 2 

A World Meteorological Organisation (WMO) survey of European hydrological 
forecasting systems indicated that by far the most common purpose is the forecasting of 
floods. Over 70% of the systems had forecasting periods of up to a week, with half of 
them being for 24 hours or less. Therefore the most frequently required forecast was a 
short-term flood forecast (WMO, 1992). Although flood forecasting has received the 

continued attention of researchers over the years it still remains one of the unsolved 
problems of operational hydrology. In addition to flooding, hydrological forecasts can be 

used to support low flow and water quality studies. 

In essence flood forecasting is difficult because it is involved with a complex rainfall- 
runoff phenomena which is stochastic, non-linear and non-stationary. This thesis 

presents some aspects of real-time flood forecasting. 

1.2 Thesis structure 

Chapter 2 consists of three sections. The first section provides a brief literature review 
and discussion about the classification of flood forecasting models. The second section 
reviews techniques for the calculation of net rainfall and their complexities. The final 

section of the chapter provides a review of existing flood forecasting models and 
describes the models submitted to the WMO `Simulated Real-time Inter-comparison of 
Hydrological Models' project. It also presents a detailed discussion of transfer function 
(TF) rainfall-runoff models which are used in this thesis. 

Chapter 3 presents the results of an extended inter-comparison of real-time flood 
forecasting models, with particular emphasis on the TF models. The data sets and 
catchments are the same as those of used in the WMO project. A comparative analysis is 

presented whereby the forecasting results of average TF models both in static and 
dynamic form are assessed by direct comparison with results from the WMO project 
models. A relatively new technique for objective comparison, the randomness-dispersion 
diagram is included and an attempt is made to rank the flood forecasts, both on an event 
basis and overall. 

Chapter 4 presents the research undertaken to extend the capabilities of TF models. The 

chapter includes a simple technique to calculate average pulse responses. The main body 

of the chapter is allocated to develop an event classification and grouped calibration 
procedure. Group models are constructed on the basis of storm characteristics and 
catchment conditions. The final part of the chapter presents an expert system-based 
approach for further investigations of the grouped model. 
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System identification has a major impact on model forecast accuracy, and a range of 
parameter estimation techniques including neural networks and recursive ordinary least 

squares algorithm are reviewed in chapter 5. They are also assessed within the specific 
context of rainfall-runoff modelling. 

The research described in chapter 6 is based on the application of a genetic algorithm 
(GA) approach as a methodology both for the identification and adjustment (updating) of 

physically realisable TF model parameters. A new combined parameter estimation 
technique (Hybrid Genetic Algorithm, HGA) has been developed. The effectiveness of 
HGA is demonstrated, some new aspects of GA are included and the robustness of the 
HGA is investigated using several case studies. 

Neither the models nor the data used in flood forecasting are perfect. Consequently, 

estimated flows, will rarely, if ever, be exactly equal to observed flows. Therefore, it is 

necessary to update the model in the light of recent model performance. Updating 

techniques are investigated in chapter 7. Some newly developed methods to improve 

updating procedures in TF models (both in static and dynamic form) are proposed and 
their performance are assessed using several case studies. 

The ability of weather radar to measure rainfall intensity with high spatial and temporal 

resolution has made available an alternative data source for flow forecasting. In chapter 8 

radar techniques to measure rainfall intensity are presented. Particular attention is focused 

on the use of radar derived precipitation data in updating techniques developed in chapter 
7. 

Conclusions and the main points of the investigation are presented in chapter 9. Areas 
deserving further research are also outlined. Important information is included in the 
Annexes at the end of thesis. 



CHAPTER 2 

HYDROLOGICAL MODELS CLASSIFICATION 

AND WMO INTER-COMPARISON PROJECT 

2.1 Introduction 

In order to evaluate the flood forecasting procedures a prior general knowledge of them is 

necessary. This chapter begins with a brief literature review and discussion about the 

classification of flood forecasting models. Generally, due to complexities involved in the 

separation of rainfall to determine effective rainfall, total rainfall is used in most of the 
models. The second part of the chapter provides a relatively comprehensive review of 

calculation of net rainfall and their complexities. The final section of the chapter describes 

the details of the models submitted to the WMO project in title of 'Simulated Real-time 
Inter-comparison of Hydrological Models' together with a comprehensive discussion of 
transfer function rainfall-runoff models. 

2.2 Flood forecasting models 

2.2.1 Introduction 

Various kinds of flood forecasting models have been developed. There are so many 
models that one cannot clearly identify which model is most suitable for a specific 
hydrological problem. Classification of hydrological flow forecasting models is a 
complex procedure and different researchers classify flood forecasting models in different 

ways. The WMO (1975) in a comparison study referred to by Correia and Seytoux 
(1985) observed that none of the models seemed to perform clearly better than the others 
although they were significantly different in structure and conceptualisation. It looks very 
different models may lead to similar result. Some comprehensive reviews of flood 
forecasting models are due to Reed (1984), Bishop et al. (1989), Todini (1988), 
Anderson and Burt (1985) amongst others. 
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One criteria which may be used to classify flow forecasting models is on the basis of : 

i. Whether they use flood routing procedures. 
ii. Whether they attempt to apply a relationship between rainfall and runoff. 

Flood routing involves the inference of river level at a downstream station on the basis of 
stage at a point upstream. Rainfall-runoff techniques relate river flow (model output) to 
the causal process of rainfall (model input ) (Reed, 1984). 

A second way of classifying models is according to : 

i. Whether they try to model the actual physical processes. 
ii. Whether they use the cause and effect relationship between input and output (I- 
0 models). 

Physically based models are formed around a simple arrangement of a number of 
components, each of which represents a simplified version of one process in the system 
being modelled. The 1-0 models apply statistical relationship between input (rainfall) and 
output (discharge) (Anderson and Burt, 1985). In the other words, every model can be 
divided into two sections (Todini, 1988). The first section consists of prior knowledge 
that can be referred to as the physical component and the second part is a stochastic 
component which is included in statistical form and cannot be explained by the degree of a 
priori knowledge. 

In addition, the various models may be classified on the basis of whether they are 
considered to be spatially lumped, semi distributed, or fully distributed. In the lumped 
system all inputs and characteristics of the basin are considered to be spatially 
homogeneous and only varying in time. In the distributed system the spatial distribution 

of the input data is considered and incorporated into the forecasting models. Semi- 
distributed models partially account for spatial inheteorogenities in input data by 

subdividing a catchment into smaller units and modelling each with a separate model. 
Furthermore, models can be implemented on the basis of continuous or isolated-event 
data (WMO, 1992). 

Todini (1988) concluded that one possibility for developing flood forecasting in future is 
to use simplified models combined with stochastic models of their residuals in order to 
allow for updating. The details of updating procedures are presented in chapter seven. 
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2.2.2 Flood routing models 

Principles of flood routing have been introduced by Reed (1984), Dooge (1986), Murthy 

et al. (1989), and Moore (1993) amongst others. 

Flood routing methods can be classified into four categories namely experience models, 

correlation models, multiple correlation and river routing models. In the experience 

methods river flows at one location are estimated by reference to an upstream gauging 

station using the personal judgement of an experienced duty officer. In correlation 

methods flow at the downstream station is related to an upstream station. Although both 

flow and river level can be related, flow correlation method is preferred, because river 
level is affected by local characteristics of the channel and may vary between the upstream 

and downstream, whilst the flow grows and decays almost the same pattern as each 
tributary. Multiple correlation methods follow same pattern as simple correlation methods 

except that the downstream river level (or flow) is now correlated to two (or more) 

upstream gauging stations sited on different tributaries. River routing models generally 
are divided into hydraulic and hydrological methods. Hydraulic methods usually attempt a 
full numerical solution of the St. Venant equations for progressively varying flow in open 

channels. Two broad classes of hydraulic methods are kinematic wave and linear 

diffusion equation methods. Hydrological routing models usually are based on 
Muskingum family of methods (McCarthy, 1938) and (Reed, 1984). 

2.2.3 Rainfall-runoff models 

Although some researchers believe that real-time flood forecasts, obtained by channel 
routing especially in large catchment where the catchment response time is long enough, 
are more accurate than those obtained by rainfall-runoff models, rainfall-runoff methods 
are preferred in some cases (Reed, 1984). These cases may be summarised as 1) when a 

greater forecast lead time is necessary and 2) when an upstream gauging station does not 

exist (head water basins) (Bertoni et al., 1992). 

As previously mentioned, the principle of rainfall-runoff models is to increase the lead 

time of the forecasts by using rainfall data. Rainfall-runoff flood forecasting models could 
be investigated through four different categories: unit hydrograph methods, non-linear 
storage models, transfer function models and conceptual models. 
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2.2.3.1 Unit hydrograph 

The unit hydrograph theory developed by Sherman (1932) remains one of the most 
practical and widely used tools for making flood estimates as well as forecasts (Chow et 
al., 1988). The unit hydrograph is a lumped, linear, time-invariant model. The discrete 

convolution of the unit hydrograph takes the form : 

N 
Yt = Y, ht ur-i (2.1) 

i=O 

Where : 
yt =f low forecast for time t (direct runoff). 
hi = hydrograph ordinate at time i. 

ut = effective rainfall at time t. 

This represents an infinite series which is arbitrarily truncated to a memory of N. 
Introducing the backward shift operator, Z, where: 

Z_'U, = ut-n (2.2) 

then : 

N 
H(z) _ Y, h1z (2.3) 

i=o 

which leads to the expression: 

Yý = H(z)u, (2.4) 

the equation (2.1) can be written in matrix form as y= uh (equation 2.5) 

Plate et al., (1988) quoted unit hydrograph will yield results as good as any physically 
based model, although this conclusion is debatable. The derivation of the unit hydrograph 

requires effective rainfall and direct runoff to be identified. Effective rainfall separation 
methods and their complexities are extensively investigated in section (2.2.4). 
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y(1) 
y(2) 

Y(P) 
y(p + 1) _ 
y(P+2) 

y(m -1) 
Y(m) 

u(1) 0000 

u(2) u(1) 000 

h(O) 
u(p) u(p - 1) u(p-2) 0 0 

h(1) 
0 u(p) u(p-1) 0 0 
0 0 u(p) 0 0 

h(n) 

0 0 0. u(p) u(p -1) 
0 0 0 0 u(p) 

(2.5) 

In real-time flood forecasting, determination of base flow is less important because the 
base flow during floods is a small part of the total flow and it is often adequate to assume 
base flow to be uniform and equal to the runoff at the beginning of the event (Reed, 
1984). In addition, the unit hydrograph is less reliable when applied to forecast runoff 
generated from complex situations such as multiple storms, as well as rain-and-snow 
storms (Kuhnke and Nguyen, 1977). Further, a large number of parameters have to be 

estimated. However, the unit hydrograph has some advantages such as simplicity and 
ease of operation. There are different views related to the catchment area that unit 
hydrograph theory can be applied to. The Flood Studies Report (NERC, 1975) 

recommends an upper limit equal to 500 km2, while Corradini et al., (1986) stated that it 

can be applied to basins whose area is less than 1000 km2. Plate et al., (1988) Pointed 

that for obtaining the accurate results unit hydrographs can be used for areas up to 10-20 
km2. 

2.2.3.2 Non-linear storage models 

In non-linear storage models, a relationship between outflow, quantity of water stored 
within the catchment and inflow to storage is used. Two of the best known simplified non 
linear storage models in the UK are the inflow-storage-outflow model (ISO) and the 
isolated event model (IEM). Reed (1984) summarised the main characteristics of 
procedures as follows. It is believed that at time t the outflow from the catchment qt is 

uniquely related to the quantity of water stored within the catchment, s. 

4, = q(s) (2.6) 

On the other hand, a consideration of the water balance equation along with time delay by 
lagging the rainfall prior to storage routing L yields: 
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ds / dt = pt-L - qt 

Equation (2.7) can be rewritten as : 

dq/dt = (pl_L -gt)dq/ds 

(2.7) 

(2.8) 

Net rainfall nt can be computed by multiplying total rainfall in runoff proportion (ROP) 

according to : 

n, = ROP. P, (2.9) 

The runoff proportion itself is determined from the initial soil moisture deficit (SMD) for 

example by : 

ROP = PERC. e-PER, SM° (a. i o) 

where the PERC and PERI parameters determine the volume of runoff. It is possible to 

relate storage to outflow using a routing coefficient AC according to : 

s=AC. g112 (2.11) 

Combining equation (2.11) with the continuity equation (2.7) and considering net rainfall 
yields the differential equation: 

dq / dt = (n'_L - g1). 2q1/2 1 AC (2.12) 

Different non linear storage models can be obtained by choosing different values for ROP 

and dq/ds. There are briefly defined by Reed (1984 ). 

2.2.3.3 Transfer function models 

Transfer function models (sometimes termed stochastic, black-box or grey-box models) 

are now quite popular in hydrological systems modelling. They are used to relate output 

to input. Transfer function models have been applied in both rainfall-runoff and runoff- 

runoff models. In the former, the input and output are rainfall and runoff respectively, 

whilst in the latter they are discharge at the upstream and downstream locations 

respectively. TF models are more flexible and involve few parameters and can be 

formulated in state-space (see section 2.5.1.3). Compared to UH in addition to rainfall, 
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TF introduces a feedback element, in the form of past observed flows. TF models are 
covered in greater detail in section (2.5). 

2.2.3.4 Conceptual models 

Conceptual models (physics based or deterministic models) use some kind of soil 
moisture or water balance calculation. Here, physical equations are used to define 
different components of the models. Furthermore, catchments are represented by a 
network of nodes so that these models are usually spatially distributed. Conceptual 

models offer an advantage over transfer function models in better representing the non- 
linearity of hydrological systems. Conceptual models also require relatively little historical 

calibration data because initial parameter estimates can be based on available information 

such as soil type and topography (Hendrickson and Sorooshian, 1990). Another 

advantage of physically based models is that they provide the users with a better 

understanding of the hydrologic behaviour of the catchment (Marino and Crawford, 
1990). 

However, the application of conceptual models is often restricted, for reasons may 
include: 

" large number of parameters 
" large field data requirements such as soil moisture, infiltration, and evaporation (Ede 

and Cluckie, 1985) 

" dependence on the skill and expertise of the model builder (Anglian Radar Information 
Project, 1988) 

" lack of versatility (Fernando and Fernando, 1989) 

" difficulty in relating theoretical equations to spatially heterogeneous and time-varying 
systems (Chiew et al, 1993) 

" overall complexity and computational requirements (Ibbitt et al, 1990) 

In addition, the large number of parameters means there is no simplified way of using 
telemeter flow data to improve short-term forecast via an updating procedure. 

A typical conceptual model is illustrated in figure (2.1). 

2.2.4 Different procedures of effective rainfall computation 

The non-linear relationship between rainfall and runoff is due to several reasons including 

soil profile, infiltration, vegetation cover, antecedent catchment condition, seasonal 

evapotranspiration rates and climate. Therefore the term of effective rainfall is introduced, 
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which is linearly related to direct runoff. Effective (net) rainfall is that part of precipitation 
that produces surface runoff (Linsley et al., 1983). The estimation of the effective rainfall 
is an important and difficult task in rainfall-runoff modelling. Different procedures for 

estimating effective rainfall have been suggested by researchers and some of these are 
described. 

Precipitation/temperature 

rainfall snowfall 

Interception Snow Model 
Storage 

rain reaching ground snowmelt 

Surface store 
rapid runoff 

infiltration 

interilow 
Soil Moisture --- 

percolation capillary rise 

Groundwater slow runoff 

Channel Routing deep percolation I 
Mod 

runoff 

Figure (2.1) Typical structure of a conceptual model (adapted from Reed, 1984) 

One of the primary approaches used to determine the effective rainfall is the loss rate 
method. Loss can be related to soil infiltration, evaporation, transpiration, and 
interception. Loss rate methods themselves can be divided into two different methods: 
constant loss and variable loss. 

In the constant loss rate, a constant and pre-defined loss of rainfall throughout the event is 

applied (O-index) (Reed, 1984). In the variable loss method which is based on 
Hortonian theory (Horton, 1935) it is accepted that the loss follows a curve which 
exponentially decreases during the event (infiltration curve). If the rainfall is greater than 

the infiltration rate then rainfall contributes to direct runoff, otherwise it infiltrates into the 
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soil (see for example Reed, 1984 and Chow et al., 1988). The drawback of these two 

methods is that the heterogeneity of soil, vegetation cover and topography of the 

catchment are neglected. At present, loss rate methods are very rarely used. 

The Flood Studies Report (NERC, 1975) introduces two different methods based on 

proportional loss rates. In these two approaches soil type, land use, topographic slope, 

rainfall rate, and catchment wetness index are considered. In the first approach, namely 

constant proportional loss a fixed proportional loss is applied to rainfall. The runoff 

coefficient PR is calculated based on storm depth p (mm), catchment wetness index CW, 

and standard percentage runoff as follow : 

PR = SPR+0.22(CWI-125)+0.1(P-10) (2.13) 

Standard Percentage Runoff SPR dependent up on the soil type, topographic slope and 
land use. Catchment wetness index is calculated according to : 

CWI = 125 - SMD + APIS (2.14) 

where : 
SMD = Soil moisture deficit (mm) 

API5 =5- day antecedent precipitation index 

In the second approach (variable proportional loss), the percentage runoff varies from 

time to time according to : 

PIS =Kx CWI, (2.15) 

K is a rainfall separation parameter which is determined by trial and error using a 

recursive least squares algorithm in the calibration phase of rainfall-runoff model. As 

referred to by Reed (1984), Simpson (1980) determined values of K for a number of 

events and related the variation in K to the initial CWI for each event. He concluded that 
the higher values of initial CWI yielded higher values of K. 

Another method to determine effective rainfall on daily basis has been suggested by 

Jakeman and Hornberger (1993) reported by Chiew et al. (1993) as follows. Effective 

rainfall in each time period is calculated by a non-linear relationship: 

ER, = Z. R;. S; (2.16) 
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Where ER (mm) is effective rainfall and Z is a factor to guarantee the transformation of 
rainfall dimension to runoff unit, finally S is a catchment wetness index calculated by 

exponentially decaying weighting of the rainfall: 

Si = A. +(1-'r)-'S, 
-, 

(2.17) 

t; is dependent upon temperature and storage on the previous day : 

z; =, r exp. A(20 - Tem; ). exp(- W. S, 
_1) 

(2.18) 

Where Tem is temperature in °C and T, A as well as W are model parameters. Z is 

inversely proportional to the rate of the catchment wetness decline at 20 °C. 

In the same way effective rainfall can be obtained by multiplying the measured rainfall by 

an exponentially weighted index of past rainfall input. The procedure is well illustrated 
for example by Young and Beven (1994) and Jakeman et al. (1990) which can be briefly 

presented as follows: 

This procedure involves three simple operations. The first is a modulation of measured 
rainfall rk at time step k by a temperature dependent evapotranspiration factor such as: 

rk _ tm-1 (tm , tk)rk (2.19) 

Where tm is a reference temperature greater than the recorded maximum for the location 
in question (overall maximum temperature), tk is the mean monthly air temperature and rk 
is modulated rainfall at time step k. 

The second operation is presented the antecedent precipitation effects on the soil moisture 
as: 

Sk = Sk_I +Z-I( *rk 
- Sk-() (2.20) 

If a backward shift operator is used, (2.20) can be written as: 

Sk = 
1Z-1 /[1- (1- z-1)Z-1 ]}* rk (2.21) 

Which is a linear equation. typ and T are determined by trial and error. 
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Sk is the soil moisture content (or antecedent precipitation index) and 'C is the time 

constant. It is assumed when there is no rainfall, the soil moisture content decays 

exponentially. When *rk is higher than sk_1, there will be a net increase of soil moisture 

content. The higher t, the slower the catchment response in soil wetting and drying 

processes. 

Finally in the third step, the effective rainfall uk is computed by multiplying *rk by sk. 

. Sk Uk = C. rk (2.22) 

c is a normalising factor and chosen in a way such that the volume of effective rainfall uk 
is equal to the volume of surface runoff over the calibration period. After a long dry 

period, sk because of exponential weighting will reach a low value, and hence, produce 
less effective rainfall. In contrast when rainfall continues, the soil will be wetter, sk 
becomes higher, and consequently more effective rainfall will be produced. 

Hino and Kim (1986) introduced an inverse estimation of effective rainfall. They stressed 
that in the rainfall-runoff model, the past effective rainfall can be estimated from the 

runoff: true if the system is linear. They divided the main system into several (usually two 

or three) linear subsystems. If the effective past rainfall is inversely estimated from the 

runoff data, the future runoff can be forecasted using the estimated effective past rainfall 
and future forecasted rainfall. 

Novotny and Zheng (1989) used the Soil Conservation Service SCS empirical formula 
(see for example Chow, 1988) presented below to calculate effective rainfall Rt : 

J, = (P - 0.2S)2 /(P + 0.8S) (2.23) 

Where S= 25400 / CN - 254 (if R and P are in mm) and where P= daily precipitation 
series and CN is equal to a dimensionless runoff curve number. 

The effective rainfall uk can be defined as the product of the observed rainfall rk at time 

step k, and the observed flow y(k_ r) at time step k_t (see for example Tsang et al. 
1995, Young, 1992 and Young and Beven, 1994). The overall relationship between uk 

and yk is then given by: 

Uk %Yk-t (2.24) 
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Where 'L is a pure time delay usually considered to be zero. It can be seen that when flow 
is low, effective rainfall is low as well, while it is high when the flow is high. The main 
assumption of this method is that the down streamflow of the catchment reflects the soil 
moisture condition of the catchment. Young and Beven (1994) modified the method by 
introducing a power function ß to the discharge component. Therefore the equation 
(2.24) can be written as: 

Uk = rk(Yk-T) (2.25) 

The power /3 is a constant value between zero and one depending upon the catchment 

wetness condition and the catchment characteristics and can be optimised by trial and 
error technique during the calibration process. One advantage of this approach is that it 
does not require on-site measurements of catchment properties. 

From above discussion it can be concluded that due to the complexities involved in 

calculation of effective rainfall, attempts to incorporate effective rainfall in real-time 
forecasting are generally inappropriate. 

2.2.5 Assessment of model development and model suitability 

It is difficult to judge which kind of flood forecasting model should be selected for a 
given area. As mentioned earlier, hydrologists working in flood forecast modelling can 
roughly be divided into two main groups: those using the physical laws and those using 
the statistical laws. Usually each group has rejected the methods of the opponents. On 

one side physicists believe that all knowledge of the physical processes must be used. 
They also claim that physics based models represent better the non-linearity of 
hydrological systems. On the other hand, statisticians think that physical problems are too 

complicated and difficult to run in a real-time mode (Lundberg, 1982). The advantages 
and disadvantages of each kind of model are discussed mainly in section (2.2.3.4). 

A number of references claim that simpler, less data intensive models provide as good or 
even better forecasts than a more physically based model (see for example Jakeman and 
Hornberger, 1993 and Manley et al. 1980). 

Consequently it is impossible to present a definite conclusion in the selection of flood 
forecasting models. Therefore the remainder of section introduces the characteristics of an 
appropriate model. A wide range of characteristics will affect the suitable choice of a 
forecasting methodology for a particular catchment with a specific purpose. These 

variables may be summarised as follow: 
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" Accuracy of forecast is most important because if a forecast of a peak flow is in error 
then a false alarm may be raised. In the other word the predictability of the model should 
be high. 

" For a forecast to be useful, timeliness is important. A system which warns either too late 
(regardless of accuracy) or too early (and is inaccurate) is undesirable. In practice, a 
compromise between timeliness and accuracy is made (Tilford, 1987). 

" The model should be designed in such a way that users other than the designer are able 
to apply and to understand it (Ede and Cluckie, 1985). It can be concluded that the model 
must remain simple enough to understand and use, yet at the same time complex enough 
to be representative of the characteristics of catchments and event (Anderson and Burt, 
1985). 

" The model should produce results quickly. This means the time available between the 
preparation of the forecast and flooding taking place should be long enough (Pearse, 
1993). 

" The model should be robust. That is, it must be applicable to a wide range of catchment 
and event types especially when extrapolated beyond the limits of calibration (Dobson, 
1993). 

" The model should contain the minimum number of parameters. For the physically based 

models the values of the parameters should be measurable or be related to easily 
measurable catchment characteristics (Bergstron and Forsman, 1973). 

Furthermore, several other factors should be considered including physical characteristics 
of catchment, availability of data; such as meteorological data; availability of local 

expertise and computer resources, presence or lack of telemetry network (Bishop and 
Watt, 1989). 

2.3 Historical perspectives, objectives and performance of the WMO 

project 

The importance of effective forecasting of hydrological events has been recognised by 

most researchers and much activities has been concentrated in this area. The WMO 

realised the importance of hydrological forecasting a long time ago. During the last twenty 
five years it has undertaken a series of projects to assess forecasting techniques and has 
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successfully implemented three projects for the inter-comparison of flood forecasting 

models (WMO, 1975,1986,1992; Serban and Askew, 1991). 

Numerical inter-comparison of the performance of the various models has been included 
in each of these projects. The first project completed in 1974 attempted to compile 
conceptual models and compare their basic structure, computational requirements and 
accuracy of simulation (WMO, 1987). The second project implemented during 1976 to 
1983 was exactly same as the first one, except that input data included not only rainfall 
but also snow cover, temperature and the like. 

Both projects tested the models more in a simulation mode rather than a forecasting mode 
and almost all of the models were run without any possibility of updating (Askew, 1989). 
Therefore it was realised that to include updating procedures, implementation of another 
project was necessary. The third project was implemented from 1985 to 1992 under the 
title `Simulated Real-time Inter-comparison of Hydrological Models' (WMO, 1992). 

The main aim of the third project was to compare the abilities of hydrological models to 
forecast streamfiow under real-time conditions. Both rainfall-runoff and snow melt- 
runoff models were included in the project. Reporting the results of the study and 
transferring the material prepared to interested countries and organisations were other 
aims of the project. 

The major event of the project the WMO workshop on the Real-time Inter-comparison of 
Hydrological Models, was held in the Department of Civil Engineering at the University 

of British Columbia (UBC) Vancouver, from 30 July to 8 August 1987. 

The project involved the inter-comparison of fourteen models submitted by eleven 
countries. Canada submitted two models, Denmark presented two models with the same 
conceptual component but with two different updating procedures, The United States 

submitted three models which included one joint model with Switzerland and 
Czechoslovakia, Hungary, Ireland, Italy, Japan, Romania, and Sweden each submitted 
one model. 

The project was implemented in different stages, including preparation, inter-comparison, 

and evaluation of the results. The preparatory stage was composed of collection of 
information relating to models, updating procedures as well as information on data sets 
necessary for the inter-comparison of models. In the second stage several activities were 
organised including : 
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1) In order to model operators could calibrate their models, standard calibration 
data sets were distributed eight months prior to the workshop. 
2) One third of the real-time data as well as detailed instruction on the procedure 
for inter-comparison were distributed five months before the workshop, provided 
facilities for model operators to run their models using their computing systems. 
The results of these stage, defined as warm-up results were submitted at the 
workshop by each participant. 
3) The remaining real-time data were distributed at the workshop under simulated 
real-time conditions in order to enable the model operators to run their models 
according to the workshop regulations. 

The final stage was composed of analyses evaluation and comparison of the test results, 
preparation of conclusions and recommendations, and preparation of the final report 
(WMO, 1992). 

Chapter three of this thesis describes the application of transfer function rainfall-runoff 
models (both static and physically realisable transfer function forms) using the same data 
sets and catchments as those used in the 1987 inter-comparison. This has enabled the 
comparison of TF model results with those of the fourteen above mentioned models. The 
TF models described have been developed in the Department of Civil Engineering, 
University of Salford (Tilford, 1990a and 1990b and Han, 1992), and previously at 
Birmingham University (Owens, 1986, Powell, 1985). 

2.4 Introduction of the models submitted to the WMO project 

This section introduces each of the models used at the inter-comparison. It should be 

noted that the different updating procedures utilised by the models are extensively 
investigated in chapter seven. Only a brief description of these are presented here. 

2.4.1 University of British Columbia Catchment model (UBC) 

The UBC catchment model was first developed for the Fraser river in British Columbia 
for daily streamflow forecasting. In addition, it was tested in several other catchments 
(Quick and Pipes, 1977a). 

The UBC model is a deterministic model and mathematically represents the physical 
processes that control the catchment system. Because it was originally designed for 

mountainous catchments the model is divided into area-elevation bands. It is assumed that 

runoff characteristics also tend to be distributed by elevation. The model uses daily 
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maximum and minimum temperatures and a constant lapse rate for each of them as well as 
precipitation. The model output is daily streamflow which is obtained from snow melt 
and rainfall. The main structure of the model is shown in figure (2.2). The model uses 
unit hydrograph and storage routing techniques. Resultant flow consists of rain, ground 
water and snow components. The most important variable in the model is the soil 
moisture deficit. It is calculated from potential evapotranspiration which itself is estimated 
using maximum temperature. It is accepted that percentage of the basin which contributes 
to direct runoff is exponentially related to soil moisture (Quick and Pipes, 1976 and 
1977a). As can be seen from figure (2.2), the precipitation is distributed into snow or rain 
according to the maximum and minimum temperatures. The ground water flow 

component is composed of the slow components of rain and snow melt. The fast 

component of snow melt is obtained by using a fast unit hydrograph. Similarly using 
another unit hydrograph the fast component of rain is obtained. The flow at the outlet of 
the basin is calculated by summing each of the components (Quick and Pipes, 1976 and 
1977a and 1977b and Assaf and Quick, 1991). A list of the parameters used in the model 
and the general specification of this model are presented by Fleming (1975). 

In the UBC model both the state variables and output are updated. In the former, manual 
interaction is used whilst in the latter automated updating is applied (Quick and Pipes, 
1977a). Water equivalence of the snow pack as a state variable is updated based on an 
assessment of cumulative error over the preceding time period. Adjustments are applied 
on the snow-course data until the cumulative error is brought within normal. An 

autoregressive model is used to model the errors between the measured and simulated 
flow (WMO, 1992). 

In the most recent version of UBC model, the Kalman filter technique (see sections 5.3.4 
and 7.3.2) is used to update the weighting factors of snow component, ground water 
component, and rain component (Assaf and Quick, 1991). 

2.4.2 Soil Moisture and Routing model (SMAR) 

SMAR is a lumped, continuous general purpose model applicable to catchments of any 
shape and size. It is well known that the storage volume s(t) in a reservoir is proportional 
to its flow y(t) as: 

s(t) = k. y(t) (2.26) 

where k is a constant. The rate of storage change ds/dt can be calculated as: 
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ds / dt = 'r. u(t) - y(t) (2.27) 

where: 
s is the storage volume in m3; 
u is rainfall input in mm/h; 

z= apA (p is the percentage runoff over a unit area, A is the catchment area in km2, and 
a is a constant to convert the unit of input to m3s-1 ). 
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SNOWMELT 
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SNOW 

GROUND WA'] 
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RAIN 

RAIN 
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Figure (2.2) A general flow chart of the UBC watershed model (source Assaf and Quick, 
1991). 

Substitution of equation (2.26) into equation (2.27) yields: 

dI dt = Ilk (2.28) 
.7 

[TU(t) - Y(01 

The pulse response of system can be calculated as (Chow et al. 1988): 

h(t) =/k. e-` /k (2.29) 

PRECIPITATION 

ESTIMATIOt 
OF 

RAIN/SNOW 

Nash (see for example Nash and Sutcliffe, 1970) generalised the concept as: 
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where: 

IF(n) = (n - 1) != Gamma function; 
1 is the lag time and n is the number of linear storage reservoirs. 

(2.30) 

In fact the Nash model is derived by routing a lumped unit pulse input through n 
homogeneous linear reservoir with equation (2.29). It can be seen that it is analogous to 
the Gamma probability distribution (see also Yuan, 1994). 

In the model the following systematic procedure is applied: 
1) Assume a simple model. 
2) Optimise the parameters and study their stability. 
3) Measure the efficiency R2. 

4) Modify the model. 

Only the discharge is automatically updated using an autoregressive model which is fitted 
to the errors between the simulated and measured hydrographs (WMO, 1992). 

2.4.3 Rainfall-runoff model with Gamma distributed API (GAPI) 

The GAPI model is a lumped model based on gamma distribution function. It is designed 
for navigation, flood control as well as power generation applications. The model has 

almost the same structure as SMAR model (see section 2.4.2). The model is divided into 

area-elevation bands and is restricted to no reservoirs or glaciers in basin. It can be 

applied to basins with an area between 100 km2 to 30000 km2 and time steps of 1 to 24 
hours (WMO, 1991). The forecasted discharges are updated automatically using a fifth 

order autoregressive model which is fitted to the forecasting error. The parameters of the 
error model are updated as new data become available. Furthermore, modellers stated that 
the original model parameters can be updated by fitting a new gamma distribution 
function to new set of API (WMO, 1992). 
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2.4.4 CEQUEAU model 

CEQUEAU is a distributed water balance model for continuous use. It is designed for 

short-term forecasting and can be used for hydropower, floods and droughts. The model 
is used for catchment areas in the range 10 km2 to 100000 km2. In the model, the basin is 

subdivided into squares, the area of which depends on the size of the basin and the 

number of meteorological stations. There are three options for distribution of temperature: 

a) A regression relationship between the daily temperature and altitudes of the 

meteorological station is obtained. The temperature of each square is then 

calculated using the altitude of the square and above mentioned regression 

relationship. 

b) Thiessen polygons are constructed, and the temperature of each square is 

represented by the temperature of the nearest meteorological station in the 

polygon. If the altitude of the square is different from the station, the temperature 
is modified according to model lapse rates. 

c) The temperature is a weighted average of the three nearest stations. If the 

altitude of square is different from the mean of three stations, the temperature is 

modified according to the lapse rates are used. 

The form of precipitation on each square depends on the temperature of the square. 
Distribution of precipitation may be defined as the same as either of options b and c of 
the previous paragraph. The precipitation is corrected using the lapse rates of the 

precipitation in the same way as described in b and c of the previous paragraph. The 

structure of the model is described in figure (2.3) (WMO, 1986 and 1991). 

Both inputs (rainfall and snow melt) and output (discharge) are automatically updated. At 

each time step the differences between the forecasted and the observed discharge are 
calculated and named as a model error. If the model error is less than an accepted 
threshold, no corrections are made on the precipitation and snow melt. If computed error 
exceeds the threshold error, the precipitation and snow melt are modified, and the 

procedure iterated until the model error is less than the threshold error. 

In order to update output of the model, a first order autoregressive model is fitted to the 

model error. The predicted error is then added to forecasted output (WMO, 1992). 
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2.4.5 Constrained Linear System (CLS) 

The CLS model is designed for flood warning, flood control and reservoir operation. It is 

a lumped, continuous model which can be applied to catchments with different shapes 

and sizes. During a storm, precipitation is divided into two parts. Some of the 

precipitation infiltrates the ground (the values of infiltration mainly depend on soil 

system) whilst the remainder produces surface runoff. Some part of infiltrated rainfall 
finally reappears at the outlet of the catchment. Both the surface flow and ground flow 

can be considered as a linear system, but the overall relationship between rainfall and 

runoff is non-linear. In the simplest form of CLS model, the system can be split into two 
linear systems depending on the value of the antecedent precipitation index. If the value of 
API is equal to or less than a threshold value, rainfall will then be transformed into runoff 
by the first linear model. If the soil is wet, that is the API is larger than threshold value, 
the second linear model is used to transform the rainfall to runoff. Overall flow at any 
time can be calculated by sum of the output from the two linear systems (Todini, 1978 

and Nemec, 1986). The logic of the CLS model is illustrated in figure (2.4). 

At each time step when the new precipitation and discharge become available, the 

ordinates of the unit hydrograph are recalculated. The forecast runoff is updated using the 

new calculated values of the UH ordinates. The updating procedure is automatic. 
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Figure (2.3) Flow chart of CEQUEAU model (source WMO, 1986) 
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Figure (2.4) CLS model scheme (adapted from Todini, 1988) 

2.4.6 HBV model 

HBV is a simple conceptual rainfall-runoff model developed at the Swedish 

Meteorological and Hydrological Institute. It is a lumped model that includes soil 

moisture storage, an upper zone storage and a lower zone storage. The model time 
interval used is one day. Data requirements are precipitation and potential evaporation, the 
latter generally being computed by Penman's formula, using values of total radiation, air 
temperature, air humidity, wind speed and duration of sunshine. The albedo of the 

catchment surface also has to be estimated. Evaporation data from evaporimetric pan can 
be used if available. Finally the streamflow records are used. 

The main components of the model are a soil moisture zone and two reservoirs. The soil 

moisture zone feeds the upper zone storage. Water percolates at a constant rate from the 

upper to the lower zone storage when available. Runoff is produced in these two storages 
in proportion to their contents. That part of the lower zones which includes lakes, rivers 

and outflow areas is affected directly by precipitation and by potential evaporation. When 

the upper zone storage is not empty, recharge of the lower zone is possible as: 

NR = PERC- KZLZ (2.31) 

Where : 
NR = net recharge of the lower zone 
PERC = percolation 
K2 = storage-discharge constant for the lower zone 
LZ = lower zone storage 

Finally discharges from the two reservoirs are added and a simple time-lag procedure 
between rainfall and runoff is adopted. 
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The precipitation in the soil moisture zone consists of two parts. One part remains in the 

soil moisture storage and finally evaporates, whilst the second part enters the upper zone 
and contributes to runoff or evaporation from the lower zone storage. The value entering 
the upper zone, Lu 

z depends on the soil moisture content. The relation between soil 

moisture content and the Auz /p ratio (P= precipitation) is in the form of (SM / Fe )ß 

limited to one (SM = soil moisture content, Fc = maximum soil moisture content, 
corresponding to field capacity minus wilting point and ß= numerical parameter). This 

procedure means that after a long dry spell, the contribution of rainfall to runoff is small 
because the soil moisture content SM is low. In contrast after a wet period more rainfall 

contributes to runoff. 

The structure of the HBV model and the relationship between soil moisture content and 
Auz are shown in figures (2.5) and (2.6) respectively (Bergstrom, 1975 and 1978 and 
Bergstrom and Forsman, 1973). 

In addition, several other versions of the HBV model appear in the literature [see for 

example Gutierrez, 1995]. 
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actual soil moisture content 

Soil Moisture 
Storage 
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and soil moisture storage 
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storage 

Evaporation at potential 
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Figure (2.5) The structure of the HBV-2 model (from Bergstrom and Forsman, 1973) 
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Figure (2.6) The Relationship between soil moisture content and Duz in HBV-2 model 
(from Bergstrom and Forsman, 1973) 

To distinguish between rain and snowfall a critical temperature is used in each elevation 
band (WMO, 1986). Modification of air temperature and precipitation as inputs is done in 

a manual interactive manner to update the model performance. In addition, the soil 

moisture states of the simulation model can be manually updated (WMO, 1992). 

2.4.7 Streamflow System and Reservoir Regulation (SSARR) model 

The SSARR model is a conceptual (mathematical) rainfall-runoff model which comprises 
of a watershed, river system, and reservoir regulation model. It was developed in 1956 
by the U. S. Corps of Engineers for reservoir operation in the Pacific Northwest. It has 

been used for operational river forecasting on numerous watersheds with a wide range of 

characteristics and climates including in the Columbia River basin, in the upper Missouri 

River watershed and in the Alberta flow forecasting Branch (Kuhnke and Nguyen, 1977 

and Cundy and Brooks, 1981). The model is able to synthesise the streamflow conditions 
by continuously evaluating the snow melt and rainfall as well as the characteristics of 

watershed and rivers and reservoirs. The watershed part of the SSARR model has several 

multivariable relationship and parameters which create an obstacle for who want to use it 

(Cundy and Brooks, 1981). Calibration of the SSARR model is mainly a trial and error 

process of adjusting parameters until, on average, simulated flow matches observed 

streamflow (Cundy and Brooks, 1981). The original structure of the watershed model is 

presented in figure (2.7). 

0 FC 



Chapter 2 Hydrological models and WMO project 27 

The model combines basin runoff techniques which produce surface and subsurface flow 

with river routing techniques. As can be seen in figure (2.7) base flow, sub-surface flow 

and surface flow are independently routed into a hydrograph. Several subjective decisions 

are necessary. Inputs which are on daily basis can be summarised as: observed 
precipitation and streamflow, forecast precipitation and maximum air temperature. Snow 

conditions, soil moisture, and solar radiation can be included as inputs or can be 

computed from other parameters. Outputs consists of surface and sub-surface flow, 

percentage runoff, snow line elevation, snow water equivalent, soil moisture, river stages 
and discharge (Nemec, 1986). 

In the model used at workshop, the air temperature and precipitation inputs were 
automatically modified to update the model performance. Other procedures of updating in 
SSARR model are addressed in the literature [see for example WMO, 1992]. 
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Figure (2.7) Structure of SSARR model (from Cundy and Brooks, 1981) 
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2.4.8 Hydrologic Forecast System (HFS) 

The model used here is the modified Sacramento model, the original version of which 
was developed in the 1970s (Burnash et al., 1973). It is a conceptual, lumped, discrete- 

time model suitable for flood forecasting, water supply, low flow forecasting, and water 
management. The model inputs are mean areal precipitation and mean areal 
evapotranspiration, and its output is total channel inflow which is composed of direct 

runoff from impervious areas, surface runoff in cases of excessive rainfall rates, inter 
flow through the upper soil layers, and ground water flow. The upper soil layers supply 
water for evapotranspiration, percolation, surface runoff, and inter flow. The lower zone 
is the source of ground water storage. Figure (2.8) presents the various components of 
the model, and table (2.1) the model states, inputs and parameters. Further details of the 

model are presented by (Georgakakos et al. 1988 and Georgakakos and Smith, 1990). 

In the version used at the workshop, the amount of water available in the model 
reservoirs (upper zone, tension water, upper zone free water, lower zone supplemental 
free water, additional impervious area content) and channel conceptual reservoir as 
indicated in figure (2.8) were directly and automatically updated (WMO, 1992). 

2.4.9 NAM System 11 flood forecasting version ( NAMS11) 

NAMS 11 is a mathematical modelling system for real-time flood forecasting . 
The model 

is consists of four main elements: A hydrological rainfall-runoff model (NAM), a 
hydrodynamic model (system) for river routing and reservoir simulation, an updating 
model, and a data management model for data processing. The model has been applied to 

more than 50 catchments in different climatic regions throughout the world including part 

of the 22000 km2 Damodar River catchment located in Bihar and West Bengal in India, 

the Bird Creek catchment in the USA, and several other catchments in Borneo, Tanzania, 

Sri Lanka, Thailand, and Greenland. 

NAM is a lumped, deterministic rainfall-runoff model. The model operates by accounting 
continuously for the moisture content in five different interrelated storages representing 
physical elements in the catchment. The structure of model is presented in figure (2.9). 
The input data requirements are precipitation, potential evapotranspiration and temperature 
(only if snow occurs). 

System 11 is based upon a numerical solution of the general one-dimensional `Saint 
Venant' equations, that is, conservation of mass and momentum. 
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Table (2.1) Modified Sacramento model variables (after Georgakakos and Rajaram, 
1988) 

Symbol Description 
States: 

x1 upper zone tension water content (mm) 

x2 upper zone free water content (mm) 

x3 lower zone tension water content (mm) 

x4 lower zone primary free water content (mm) 

x5 lower zone secondary free water content (mm) 

x6 additional impervious storage (mm) 

Inputs: 
UP mean areal precipitation (mm/time interval) 

Ue mean areal evapotranspiration demand (mm/time interval) 

Parameters: 

x, ° upper zone tension water capacity (mm) 

X20 upper zone free water capacity (mm) 

X30 lower zone tension water capacity (mm) 

X40 lower zone primary free water capacity (mm) 

X50 lower zone secondary free water capacity (mm) 
du upper zone instantaneous drainage coefficient (1/time interval) 

d' lower zone primary instantaneous drainage coefficient (1/time interval) 
d" lower zone secondary instantaneous drainage coefficient (1/time interval) 

E parameter in percolation function 
9 exponent in percolation function 
Pf fraction of percolation water assigned to the lower zone free water aquifers 

µ fraction of base flow not appearing in river flow 
f1 fraction of basin that becomes impervious when tension water requirements are 

met 
/32 fraction of basin permanently impervious 

m, exponent of the upper zone tension water non-linear reservoir 
m2 exponent of the upper zone free water non-linear reservoir 
m, exponent of the lower zone tension water non-linear reservoir 
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Figure (2.8) Modified Sacramento model's structure (after Georgakakos and Rajaram, 
1988) 

The updating procedure is based on the predicted error between the computed and 
measured hydrographs using a first order autoregressive model. Updating is applied 
manually and automatically. Furthermore, another version of updating has been 
developed which distinguishes amplitude and phase error. The details of this procedure is 

presented in chapter seven. The interested reader is also referred to Clausen and 
Refsgaard (1984), Havno et al. (1985), Rungo et al. (1989a, 1989b) and Refsgaard et 
al. (1983) for a comprehensive discussion of the model structure and updating 

procedures. 

2.4.10 NAM-KAL man Algorithm (NAMKAL) 

The NAM rainfall-runoff model has been reformulated in a state space (see section 
2.5.1.3) form incorporating the Kalman filtering algorithm. This version of the NAM 
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model operates by accounting continuously for the moisture content in four different and 
interrelated storages representing physical elements in the catchment as indicated in figure 
(2.10). 

The states defining the system are as follows: Water content in surface storage, (u in 
figure 2.10); water content in lower zone storage, (L in figure 2.10); water content in 

ground water storage; water content in routing reservoir no. 1; water content in routing 
reservoir no. 2; time constant in routing (kl-1 in figure 2.10); parameter in overland flow 

equation, (cof in figure 2.10). The first three states describe the soil moisture conditions, 
the next two states define the routing into streamflow, and the last two states are related to 

model parameters. Two serially connected linear reservoirs no. 1 and no. 2 describe the 

routing. The shape of the hydrograph is determined by the two model parameters K and 
cof. The details of mathematical equations including the state-space formulation of NAM 

model are presented by Refsgaard et al. (1983). 

The upper zone storage, the lower zone storage, the ground water storage, and routing 
reservoirs are updated automatically using the extended Kalman filter (WMO, 1992). 
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Figure (2.10) Structure of NAMKAL model (after Refsgaard et al., 1983) 

2.4.11 TANK model 

The TANK model is an implicit moisture accounting model, designed for multipurpose 
use. Any shape and size of catchment can be used and time steps of less than one day are 
available. It is based on the hypothesis that runoff and infiltration are a function of the 
amount of water stored in the ground. Several methods have been examined and the 
method of the series storage-type model is applied more than others. In the case of Tank 
in series, the top tank represents surface storage and overland flow, the second, third and 
fourth Tanks describe intermediate runoff, ground water and base flow respectively. The 

number of side outlets is arbitrary. The relationship between the storage X and discharge 
Y is not linear. Infiltration I is proportional to the storage X. The limit of the increase of 
infiltration is saturation point Hs when I becomes Is = Hs = constant. This principle is 

valid if there is always a moisture supply to all the tanks (humid regions). The basin is 
divided in zones according to the distance of the river, the wettest zone being closest to 
river. The top tank in each zone simulates soil moisture which consists of primary and 
secondary moisture (Nemec, 1986 and Sugawara, 1961 and Sugawara et at., 1986). 
Movement is in both directions according to : 
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TZ = co + c(1- x, / cs) [infiltration action] (2.32) 

T= bo + b(1- xP / c. ) [velocity of capillary action] (2.33) 

co, c, bo, b= constants 
Xs, Xp = storage of moisture 
Cs, Cp = saturation capacity of soil 

Evapotranspiration is simple constant of potential one. One example of structure of model 
is presented in figure (2.11). 

A correction coefficient is computed on the basis of the observed discharge then is applied 
to rainfall and snow melt input to update the performance of the model (WMO, 1992). 

2.4.12 VIDRA model 

VIDRA is designed for flood control and reservoir operation and is a lumped and 

continuous model, applicable to small and large catchments. It is applicable in an 

appropriate selection of Muskingum coefficients. Data requirements include; precipitation, 
discharge [temperature, snow cover and wind speed (optional) in snow melt-runoff 

model], basin area and slope, river length and slope, forest cover, and dominant soil 
texture. The shape of the forecast hydrograph is modified by selecting one of three unit 
hydrographs which are generated by high, medium, and low intensity rainfall events. The 

model did not run at the workshop (WMO, 1992). 

2.4.13 Empirical Regressive Model (ERM) 

ERM is a lumped and continuous model, designed for water management, reservoir 
regulation, and flood protection. It can be applied to basins with elevation up to 2000 

meters above mean sea level and for areas between 100 km2 to 5000 km2. 

The structure of the transformation model is as follows: 

Q(N) = Q(N -1) x exp(A x Q(N - 1)) + 
(2.34) 

QB X tang{is/PMPI[1-exp(BxP(N-1)+DxP(N-1)2) }} 

Where: 
Q(N), Q(N-1) 

.............. are daily discharge on days, N, N-1, ........ respectively. 
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Figure (2.11) TANK model scheme (from Nemec, 1986) 
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QB discharge on the beginning of the flood wave (index of saturation of the basin), 
limited by the maximum value of QB = QL. 
A, PMPI, B, D, and QL are parameters (WMO, 1986). 

A base flow indicator of the simulation model is automatically updated as a function of 

observed discharge. Forecasted discharge is updated by substituting the measured 
discharge QMj in the simulation model at time j for the simulated discharge (WMO, 

1992). 

2.4.14 Snow melt runoff model (SRM) 

The SRM model was originally developed and tested on small experimental basins in 

Europe ranging in size from 2.65 to 43.3 km2and then applied to basin with size between 
0.5 km2 to 64000 km2. It is a lumped, continuous model which can be used for 

hydropower, irrigation, water supply, and reservoir operation. Daily discharges can be 

simulated by the snow melt-runoff model (SRM). Data requirements are just three 

measured input variables, namely: precipitation, temperature, and snow-covered area. 
The precipitation and temperature inputs are obtained from a meteorological station and 
the snow cover is provided from satellite monitoring, aircraft or ground-based 
measurements, separately for elevation zones. 

A simple form equation of (SRM) is: 

Qn+l 
- 

(c 
. a. TnSs + CR. pn)(A x 0.01 / 86400)(1- kn+l) + Qkn+i (2.35) 

Where: 
Q= average daily discharge (m3 s-1) 
Cs = runoff coefficient for snow 
CR = runoff coefficient for rain 
a= degree-day factor (cm °C-1. d-1) indicating the snow melt depth resulting from a 
degree day 
T= number of degree-days (°C. d) which is obtained from (TM". ' + TM, fl) / 2, TMax and 
TMin are Maximum and Minimum temperature respectively, if Thin < 0, then TMin 
9C 
S= ratio of the snow-covered area to the total area 
P= precipitation contributing to runoff (cm). Critical temperature Tcrit is used to 
discriminate between snow and rain. Tcrit is usually selected to be slightly above the 
freezing point. This value will vary from basin to basin and seasonally, depending on 
climatic condition. 
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A= area of the basin or zone (m2) 
0.01/86400= conversion from cm. m2. d'1 to m3 s'1 
K= recession coefficient indicating the decline of discharge in a period without snow melt 
or rainfall. On the daily basis K can be calculated from: 

K1=X (Q,, )' (2.36) 

Where X and Y are constants to be determined for the given basin. 

n= sequence of days. 

The measured variables, T, S, and P, are input to SRM on a daily basis. The parameters 
CS, CR, a, Tcrit, X, Y, and K as well as temperature lapse rate are predetermined for basin 

and usually input to SRM bimonthly (WMO, 1986 and Rango, 1980 and Martine and 
Rango, 1989). A flow chart for the snow melt runoff model is presented in figure (2.12). 

The recession coefficient and hence snow covered extent is updated as a function of 

observed discharge. The discharge itself is updated by substituting the forecasted 
discharge with the measured discharge (WMO, 1992). 

2.5 Transfer function models in detail 

2.5.1 Transfer function model structure 

In recent years a large number of stochastic models have been used to represent different 

aspects of the rainfall-runoff process. The transfer function model suggested by Box and 
Jenkins (1976) and further explained and applied by Vadaele (1983) has been adapted 
extensively and are quite popular. The TF models are flexible, involve few parameters, 

consequently are suitable for real-time applications. Further, they can be formulated in 

state-space (see section 2.5.1.3). The transfer function model including excess rainfall is 

a discrete-time equivalent of an approximation of the convolution integral through a unit 
hydrograph (Jakeman and Hornberger, 1993). It means that the TF models are a 

statistical framework of unit hydrograph with fewer parameters. 

Besides single-input systems, TF models may be used in multi-input systems. For 

example they can relate river-flow to rainfall, ground water levels and temperature. 
Further, they have been used for real-time runoff-runoff flood routing (see for example 
Wilke and Barth, 1991 and Lees et al, 1994 and Cluckie et al., 1989). 
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Calculation of Degree-Day 

, T, at base station 

Extrapolate T to appropriate 
elevation zone 

Apply T over the area of the zone 
covered by snow, Sa, to generate 

snowmelt 

Add incremental rainfall to I Plot historical runoff data during 
snowmelt volume hydrograph recession 

Sum melt water from each zone Derive formula for calculation of 
apply runoff coefficient (losses) 

recession coefficient K 
and convert to discharge 

Jse K to determine amount of me. 
to leave watershed on day n, n-l, 

etc., as streamflow 

dd previous days and current day 

flow fractions to determine total 
discharge 

Figure (2.12) Flow chart of SRM model (from Rango, 1980) 

Transfer function models have been developed for real-time flood forecasting purpose by 

researchers working with Professor I. D. Cluckie including Harpin (1982), Owens 
(1986), Powell (1985), Yu (1989), Han (1991), Tilford (1992), and Yuan (1994). Other 

researchers who have explored the time series approach include Young and Beven 
(1994), Moore (1980) and Moore and O'Connell (1978). More recent developments and 
applications of TF models have been made by Ramos et al., (1995), Jakeman and 
Hornberger (1993) and Nalbantis (1995). TF models have been applied operationally by 

the National Rivers Authority, North-West and Wessex Regions (Anglian Radar 
Information Project, 1988 and WRIP, 1994). 

The rainfall-runoff process may be considered as a mathematical transformation whereby 
a high frequency input signal (rainfall) is modulated to form a low frequency output 
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(runoff). Transfer function models can represent this kind of transformation. To do this 

several variants may be considered as follows: 

a) A linear relationship between runoff YY at current time and rainfall in previous time 

periods Ut_l, Ur_Z,....... can be constructed. If the Y and U is measured in a discrete time 

period then a linear relationship between them may be written as : 

yt = blut-1 + b2ut-2 . ............. 
+b ut-n + ýt 

Where: 

(2.37) 

bl, b2 
................... bn are parameters and can be related to ordinates of a finite-memory 

pulse response. 

ý' is an error term with zero mean white Gaussian noise and variance Q2(t), representing 

the effect of model inadequacy, and measurement noise in the Y' and Ui.. 

If YY and UU are considered as direct runoff and effective rainfall respectively then this 
kind of relationship can be refered to as an unit hydrograph. A pure time-delay between 

rainfall and runoff may be included. It can be concluded that the number of parameters of 
UH is equal to the numbers of ordinates of UH and are too numerous. 

b) A linear relationship between runoff at current time yt and runoff in earlier time 
intervals yt_I, yt_2, ..... can be written as : 

yt = a1y, + a2yt-2 + ................. + anyi-n + ýr (2.38) 

Although this kind of relationship has a natural self-correcting ability when telemetered 
streamflow is available, the natural lag between the occurrence of rainfall and the 

response of streamflow is not included, further, the model is not able to determine the 
time of peak flow. 

c) Finally a linear relationship between runoff at current time Y, and runoff and rainfall in 

previous time periods those are YY_l, Yt. 2 ......., Y1_,,, Uß_1, U, 
_Z, ....... 

U, 
-, n may be constructed 

as: 

yl = a1y, -1 
+a2Y1-2 + ................. +amy, 

-m 
+ 

(2.39) 
bau, 

-1-r + bzut-z-r + .......... + bnu, 
-n-1 + ý, 
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Here l is a pure time-delay between rainfall and runoff. Time delay occurs in catchments 
where flood producing rainfall is consistently confined to an area of the catchment 
upstream of the river gauging station (O'Connell and Clarke, 1981). Inclusion of a pure 
time delay means that flood forecasts up to l time steps ahead can be made without 
recourse to rainfall forecasts (Reed, 1984). This kind of relationship is hereafter called a 
transfer function (TF) model. m +n is named model order. 

By applying the Z- transform as defined for example by Poularikas and Seely (1991) to 

equation (2.39) and using the backward shift operator (equation 2.2) we get : 

A(Z)Yt = B(Z)Ut (2.40) 

giving, 

Y= 
B(Z) 

U (2.41) ` A(Z) ` 

H(Z) = 
B(Z) 
A(Z) 

(2.42) 

Where : 

B(Z) = bz-' + b2z-2 + ............................ + bnz-n (2.43) 

A(Z) - 1- a, z-' - atz-2 - ............................ - amz-M (2.44) 

A(Z) and B(Z) are related to the auto regressive (AR) and moving average (MA) parts 
respectively. The Pade' (1982) approximation states that an infinite series can be 

approximated by division of two finite series (Owens, 1986). Therefore (2.42) can be 

written as: 

H(Z) = 4z-1 +h2z-2 + ............................. (2.45) 

The operator H(Z) is called the transfer function of the filter. The weights hl, h2....... are 
called the pulse response function of the system. 

It is noted that the equation (2.39) has the advantages of both model (2.37) and (2.38). In 

addition, as is stated by Box and Jenkins (1976) the ordinates of the pulse response are 
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directly related to the parameters of (2.39). A general equation to describe the equivalent 
pulse response function is : 

h; = alh; _1 +a2h; _2 +. +amh, _m +b; for i<_n 

(2.46) 
h; = a, h, 

_, + aZh; _z + ................ + amh; _n, 
for i>n 

It can also be seen that equation (2.39) has many fewer parameters than the equivalent 
UH. The main shortcoming of this kind of relationship is that it uses a linear equation to 

explain non linear relationships between runoff and rainfall. There are a number of ways 
in which this can be overcome (see section 7.4). 

In order to explain above mentioned formula consider the transfer function model : 

y, = 0.52y, _, + 0.39u, _, + 0.21u, 
_2 

The pulse response is obtained by a unit input at time t=0. Substituting this input into 
the transfer function for t>_ 0, the pulse response may be calculated : 

at time t=0 ho = yo =0 
t=1 h, =y, =(0.39x1)=0.39 
t=2 hz = y2 = (0.52 x 0.39) + (0.39 x 0) + (0.21 x 1) = 0.41 
t=3 h3 = y3 = (0.52 x 0.41) + (0.39 x 0) + (0.21 x 0) = 0.21 

t=4 h4 =y4 = (0.52 x 0.21) + (0.39 x 0) + (0.21 x 0) = 0.11 

thus, 

H(Z) = 0.0+0.39z-' +0.412-z +0.212-3 +0.112- + 

The same equation can be also obtained by : 

H(Z) = 
B(Z) 

- 
0.39z-' + 0.21z-2 

A(Z) I- 0.52z-' 

It is worth mentioning that the main difference between TF models and regression 
models is that the error term ýt at time t in regression model affects only y, not y, l. 
Whilst in TF the model error continues to affect the system at subsequent times. From 
this point of view a regression model is static regression whereas a TF model is called a 
dynamic regression (Olason and Watt, 1986). 
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Jakeman et al. (1990) stated that many conceptual models are special cases of the transfer 
function model. In the same manner Yuan (1994) developed a conceptually parametrised 
transfer function model from a Nash model (see section 2.4.2). The Muskingum method 
of flood routing is a specific case of the TF model namely autoregressive moving 
average, ARMA (1,1) with zero lag. 

2.5.1.1 Steady state gain 

In the unit hydrograph, the output volume is in balance with input volume, however, the 

transfer function using total rainfall has a steady state gain analogous to percentage 
runoff. When a constant input is applied to a transfer function model, eventually the 

output will also be constant. The steady-state gain is the ratio of steady output to a 
constant input of unit magnitude. The steady state gain can be determined directly from 

the model parameters as shown in equation (2.47) below : 

SSG=cf b, +b2+.......... +b� (2.47) 
1-(a, +a2+....... +am 

Where cf is a unit conversion. In applying real-time updating the SSG (model percentage 

runoff) should reflect the variation of percentage runoff during the event. As mentioned 
previously the (TF) models described here relate flow to tots rainfall and a factor A is 

used to compensate for variations in the proportion of rainfall contributing to runoff (see 

section 2.5.1.5 and 7.4). Other researchers mentioned that total rainfall can also be used 
in (TF) models (see for example Novotny and Zheng, 1989 and Reed, 1984). 

2.5.1.2 Stability 

A finite input should produce a finite output, and that the output should decay with time 

when there is no rainfall. This stability requirement is difficult to formulate. One primary 
way to express the stability is the condition shown in equation (2.48): 

m 
Iai : 51.0 (2.48) 

Work by Han (1991) on physically realisable transfer functions (see section 2.5.2) 

showed that stability of the pulse response can be ensured if (and only if) the poles (see 

section 2.5.2.1) are constrained to be on the positive real axis of the Z- plane and outside 
the unit circle `x' on figure 2.13) 
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Tm 7 

Re z 

Figure 2.13- Ensuring stability of the pulse response 

A pole in any other location can result in an unstable pulse response. A pole outside the 

unit circle, on the real axis, but negative ('c' in figure 2.13) results in a fluctuating pulse 
response. When the pole location is moved inside the unit circle, `d' results in a 
fluctuating and unstable pulse response. To avoid an unstable pulse response, there 

should be no complex poles ('a' or `b' ) (in figure 2.13). For more detailed description 

of the poles and zeros on the transfer function readers should refer to Wyman et al., 
(1989). 

2.5.1.3 State-space formulation 

Models given by equation (2.39) can be written as: 

y(t) = 9T (t). R(t) + fi(t) 

with the notation: 

(2.49) 

R(t) = (y(t - 1), y(t - 2),....., y(t - m), u(t -1- l), u(t -2- 1), 
(2.50) 

..... u(t-n-l))T 

0(t) = (a, (t), a2 (t)...... a. (t), b1 (t), b2 (t), 
...... 

bn (t))T (2.51) 

Superscript T stands for the transpose of a matrix. In the lack of any information 

regarding parameter variation, a random walk model can be selected: 

0(t) = 0(t - 1) + w(t) (2.52) 
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where w(t) is white Gaussian noise with zero mean and covariance R1(t), and is 
independent of fi(t). 

The above formation, Equation (2.49) and Equation (2.52) is the state space 
representation, Equation (2.49) is the measurement and Equation (2.51) the state 
equation. For a comprehensive discussion of state-space technique see for example 
Kamen (1987). 

2.5.1.4 Identification of TF model (model structure) 

In order to construct the TF model two questions first should be answered: 

1) Given data as the two time series Uk, Yk for k=1,2........ N how can the interval of 
model as well as the most appropriate structure (i. e. the values of n, m and 1) for the 

model in equation (2.39) be identified. 

2) Given the model structure, how can the values of the parameters 
(aj, a2,....... a,,,, bl, b2,....... b�) be estimated (Young, 1986). 

The first question is considered here and second question will be examined in the next 
section and in chapter 5. 

A model interval is chosen before the model parameters can be estimated. One way to 

select the model interval is using the modified form of sample rules proposed by 
Isermann (1981), and extended to hydrological problems by Powell (1985). In order to 
obtain the optimum model interval, To, the time taken to achieve 90% of the steady state 
output level, T90 should be determined. Powell concluded that To should be between 
Tyo/20 and Tyo/10. The optimal interval depends on catchment response dynamics and the 

characteristics of the event, and will consequently vary from catchment to catchment, and 
even from event to event. Using too small an interval will result in overparameterisation 
whilst too large an interval will result in too few parameters. 

The choice of the most appropriate order is difficult and as mentioned by Tsang et al. 
(1995) it is possible that the `best' model order obtained during the calibration phase is 

not suitable for the forecasting phase. 

There are several methods which can be used to identify the model order and the time 
delay of the system, including using the cross-correlation function between input and 
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output data, Akaike's method (Akaike, 1970), the F-test (Norton, 1986), and Pole-Zero 

cancellation (Unbehauauen and Gohring, 1974). Owens (1986) reviewed all these 
methods and suggested the search method described below. Further, Young (see for 

example Young, 1986) developed a method based on the coefficient of determination 
(RT2) and the error variance. However, the best model in terms of ( RT2) will generally be 

of very large order and error variance is less sensitive to under-parameterisation. 

The following search technique is a combination of objective statistical criteria and 
subjective interpretation with physical (hydrological) meaning. The technique is the equal 
model order search commencing at n=m=1. In the search, parameters are sequentially 
estimated for a 1,1 model then a 2,2 model and so on (usually less than 8) until an 
increase in model order no longer results in a significant improvement in model accuracy. 
Once the optimum equal model has been identified, the number of a and b parameters can 
be varied and the effect on the model pulse response examined. 

It is noted that total reliance on objective statistics is undesirable and should be avoided. 
Instead, in order to select the best model order a number of complementary evaluation 
criteria are used including: 

" error statistics for the model convolution of the calibration data, together with visual 
evaluation of simulated and observed flow. 

" model pulse response. (The pulse should be `physically reasonable', that is, a relatively 
smooth curve without negative ordinates. Oscillations should not be apparent in the pulse 

response since they indicate over-parameterisation. The pulse response must be also 
stable. ) 

" parameter redundancy, that is higher order parameters with small values indicate that a 
lower model may be adequate. 

It is noted that the rainfall parameters largely determine the time and the magnitude of the 

pulse response peak. The number of b parameters (n) is approximately the number of 
time units to the peak of the response. The flow parameters control the response shape, m 
influencing the shape of the rising limb of the hydrograph less than recession part 
(Collier, 1994). Usually m is less than or equal to n (Owens, 1986). 

2.5.1.5 Parameter estimation and real-time updating 

Numerical estimation of model parameters has been extensively researched over the last 
few decades and is undergoing continued development with existing and new techniques 
such as Genetic algorithms, and Neural networks. A detailed and comprehensive review 
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of parameter estimation techniques and their advantages and disadvantages are presented 
in chapter 5. 

Percentage runoff usually varies through the duration of an event, and a model should be 

able to simulate this. In an attempt to match the percentage runoff (as represented by the 

model SSG) to the current event percentage runoff, Owens (1986) suggested a rainfall 
component scaling factor A. The form of TF model including the on-line updating is: 

yr = a, yr-1 + a2Y1-z + ..... + ayl-m + 
(2.53) 

'6k[blut-1-1 + bzu1-1-z + ....... + baut-l-n ] 

One-step ahead forecast errors are used to update A. Problems arising from the use of 0 

along with a full description of different updating procedures are presented in chapter 7. 

2.5.2 Physical realisable TF model (PRTF) 

Han (1991) developed a `physically realisable' TF model. This model is a refinement of 
the basic TF model structure which combines guaranteed stability with improved and 

more powerful updating characteristics. The PRTF model is introduced in the following 

sub-sections. 

2.5.2.1 Identification of PRTF model 

Equation (2.42) can be shown as a cascade factorisation as: 

H(z) = B(z) x1 A(z) 
(2.54) 

The pulse response function of TF model can then be derived from two parts B(Z) and 
1 

A(z) 

Rational functions can provide good approximations to polynomials (see for example 

Poularikas and Seely, 1991), therefore, the second part of equation (2.54), 
1 

can be 
A(z) 

written as: 
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1 (-1)"HK1(A)m' 
(2.55) 

``, 
(Z) HK, (Z-' - 

ß; )m' 

where ß is pole location and N is a positive integer representing the total number of poles 

and m; is the pole order. 

A simplified form of equation (2.55) for the practical use when it is supposed that only 

one pole is used can be written as: 

1 (-ß)N ZN 1 (2.56) 
A(Z) (Z-' - ß)" (z - 

1)N S(Z-' - ß)N 

1 
where S= 

The denominator of equation (2.56) can be extended as: 

S(Z-1 
- 

ß)N 
= sf (Z-1)N + N(Z-1 )N-1 (-'N) + 

N(N 1) 
('7-1)N-2 x (-ß)2 + 

... 

+ 
N(N -1).... [N - (K -1)] (-ß)K(Z-1)N-K +..... 

(2.57) 

... } K! 

The general form of the coefficient of equation (2.57) can be written as: 

k= N(N-1)(N-2) .............. [N-(K-1)] C 58 
n K! (2. ) 

The following expressions can be written using equations (2.44), (2.57) and (2.58): 

S{ N(N -1).... [N - (K -1)] (- f3)K }=SX CN x (-ß)K = -aN-K (2.59) 
K! 
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a1 = -s X CN-i X -ß)N-i X CN rX (-ß)N i= -CN ,x -ß)-, 
(2.60 

The pulse response of 
1 

can then be computed using inverse Z transform of equation A(z) 

(2.56), that is for N=1, 

Z1 
h(t) _ (1)` (2.61) 

Z- 

where t=1,2 ................ 

and for N >_ 2, 

ZN h(t) _ 
(N-l+t)(N-2+t)........ (1+t)(1)ß 

-Z 
-7 

1 ,v (N- I)! ß 
(2.62) 

The peak of h(t) can be derived as: 

dh(t) 
dt 

(2.63) 

so for N=2, 

'peak 
1- 

LnJ3 -1 (2.64) 

and if the peak time is given, a desirable fl will be: 

I /3 = efek,, (2.65) 
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For N=3, 

L2ß 
3+ 3- 

L2 

2 

ý -4(2 - Lný 
tpeak 

-2 

and if the peak time is given, a desirable /3 will be: 

2r, ß +3 

13 = e(P,,, +3r,, +2) 

(2.66) 

(2.67) 

The first part of equation (2.54), B(Z) is related to b; parameters determined using a 

Recursive Least Squares (RLS) technique (see section 5.3). 

Identification of the PRTF model is straightforward using the equations introduced 

above. The steps involved can be summarised as following: 

1-determine the model order: i. e. the number of a and b parameters (m, n). 

2-estimate the initial time to peak tpe. 

3-compute ß from tpeak using equations (2.65) or (2.67) according to the number of a 

parameters. 

4-estimate a(i) from equation (2.60). 

5-estimate b(j) using the least squares technique. 

6-compute residual error. 

7-determine the new tj according to error. 

8-go to 3. 

The whole procedure is repeated until the desired results are obtained. The procedure is 

illustrated by the flowchart in figure (2.14). 

2.5.2.2 Modification of PRTF model parameters (dynamic PRTF) 

In the real-time operation of a hydrological model, simulated runoff generally differs from 

the measured runoff. Thus, on-line updating of the model can be used to improve 
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subsequent forecasts. Catchment hydrograph response variation may be divided into three 

main types: variations related to volume a, time to peak-shape y and time delay-, r. The 

forecasting errors caused by these are summarised in figure (2.15). 

Estimate initial tp 

Compute beta from tp 

Use equation (2.60) to make initial 
eatimate of (a) parameters 

Use least squares to make 
initial estimate of (b) parameters 

Compute residual error 

I Determine new tp 
according to error 

Y 

END 

Figure (2.14) Flowchart for model parameter identification (adapted from Han, 1991) 

It can be seen that each factor only influences one aspect of the model. Generally 

speaking, the pulse response H(Z) of a PRTF model could be written as: 
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H(z) _ f(a, Y, Z, z) 

and the adaptive form of the PRTF model as: 

ny 
Q(t) _ A; Q(t-i)+I B; P(t-i) 

i=O 

(2.68) 

(2.69) 

It is noted that the model parameters a; and b; have been replaced by A; and B1 as the 

adaptive model will keep changing its parameters. Q and P are runoff and rainfall 
respectively. 

To include the volume factor, all the b; parameters are multiplied with a constant factor 

(1 + a), where a is the percentage of volume change. This means that A; will not be 

changed but B; will be changed according to: 

B; = (1+a)b; (2.70) 

A straightforward way to change the pulse response shape is to replace tKak by tpe(�CW 

in equation (2.60). However, one problem here is that the y factor also alters the volume 

of the pulse response and thereby conflicts with the a factor. Consequently, it is also 

necessary to modify the B; parameters at the same time in order to preserve the original 

pulse area and hence the mass balance of the system by applying the proportionality of 

areas: 

(2.71) areal = 
11 

area2 = 
I1 (2.72) 

(1 

IJnew 

)N 
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0 
Q 

Qm 

Time 

Flow data 

Time 

Volume error ( OQ = Qs - Qm ) 

(i) Incorrect volume a 

Qs 

Time 
Flow data 

Time 

Shape error (OQ = Qs - Q. ) 

(ii) Incorrect shape 'Y 

0 L, 
/7m Time 

Flow data 

Time delay 

Time 

Time error ( EQ = Q, - Q. ) 
(iii) Incorrect time t 

Figure (2.15) TF simulation error by incorrect volume, shape and time (after Han, 1991) 

Therefore B, will be: 

IN 1-- 
B. _ (I+ a) areal b; = (I+ a) b; (2.73) 

area2 1_ 
/'new 

The pulse response time of the PRTF model can be simply adjusted by a time shift 

operator applied to the rainfall terms. 

The final form of the adjustable PRTF will be : 
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ny 
Q(t) _ 2: A; Q(t - i) +1B; P(t -, r - i) 

i=O 

1N 
1-- 

B, = (1 + a)b; 
(ý ßnew 

Ai 
-CN_r(-Pnew)_` 

(2.74) 

(2.75) 

(2.76) 

Using the above equations and least square techniques, determination of the adjustment 

factors can be summarised as: 

1. -estimate the time delay-suppose an initial time delay, compute simulation error, change 

time delay and repeat the procedure. 

2. -estimate the shape adjustment factor-suppose an initial shape factor, compute 

simulation error, change shape factor and repeat the procedure as far necessary. 

3. -estimate the volume adjustment factor-determine an initial volume factor, compute 

simulation error, change volume factor and repeat the procedure as necessary. 

4. -suppose time delay=O, go to 1 and repeat the whole procedure two more times. 

For more detailed description of the PRTF model readers should refer to Cluckie and Han 
(1996 a, b, and c). 

2.6 Summary 

This chapter has presented a general literature review of flood forecasting models, with 
particular emphasis on the WMO simulated real-time inter-comparison of hydrological 

models. The basic structure and operational characteristics of the models has been 

presented in order to provide a foundation for the further improvement of them. Since so 
many models exist, it is impossible to investigate all of them in detail. Instead, a 
classification of flood forecasting models has been presented along with a relatively 
detailed introduction of those models used in the WMO project. 

The chapter began with a description of the criteria which may be used to classify flow 
forecasting models, followed by an introduction to flood routing and rainfall-runoff 
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models. Different procedures of effective rainfall calculation have been presented 
illustrating their relative complexity and suggesting why total rainfall is frequently used 
for real-time applications. Parameters affecting the choice of a suitable model have then 
been outlined. The chapter continued by introducing different aspects of the WMO project 
including perspectives, objectives, and performance assessment together with details of 
the fourteen conceptual flood forecasting models which participated at the workshop. 

Finally, transfer function models which are dominant in this thesis have been introduced 
in detail including their mathematical theory, structure, identification, as well as their 

advantages and limitations. The transfer function model is a flexible and versatile tool for 

real-time flood forecasting. It has a simple structure and only requires rainfall and flow 
data for modelling. TF models are readily updated in real-time and generate acceptable 
estimates of future discharge. To use the TF techniques detailed understanding of the 
hydrological system is not necessary. 



CHAPTER 3 

TRANSFER FUNCTION AND WMO PROJECT MODELS' RESULTS 

3.1 Introduction 

This chapter presents the results of an extended inter-comparison of real-time flood 
forecasting models, with particular emphasis on transfer function models. Reed (1984) 

stated that for assessment of different flood forecasting models, the following points 
might be considered : 

1) different approaches e. g. unit hydrograph, non-linear storage, transfer function 

and conceptual models. 
2) different real-time updating methods. 
3) different data sets and catchments. 
4) different criteria for model assessment. 

In addition, different rainfall forecasting methods and rainfall separation procedures 
should also be included. Items 1 to 4 of the above list are more or less considered in the 
present comparison. 

Chiew et al., (1993) pointed out that only a few references can be found in literature 
regarding the comparison of flood forecasting models. They conducted a comparison of 
six rainfall-runoff modelling approaches to eight catchments throughout Australia which 
was limited to annual, monthly, and daily flows. 

This chapter initially describes the data sets, catchments and assessment criteria applied at 
the WMO inter-comparison project (and used throughout this thesis). A comparative 
analysis is then presented whereby the forecasting results of average TF models both in 

static and dynamic form are assessed by direct comparison with results from the WMO 

project models. In addition, new techniques for objective comparison are included such 
as; the randomness-dispersion diagram, and an attempt is made to rank the flood 
forecasting models, both on an event basis and overall. 
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3.2 Data sets and catchments 

A meeting of experts selected three river catchments from climatologically and 
geographically varied conditions in three countries. These were Bird Creek, Illecillewaet 

and Orgeval. The first two basins were chosen because of modellers' experiences with 
the catchments through previous inter-comparison projects, whilst the later was selected 
because it is a small fast-response catchment with a good historic data archive. For the 

purposes of present study both Bird Creek and Orgeval catchments have been considered. 
The Illecillewaet is disconsidered because the prodominant type is snowmelt which does 

not include in the TF models. 

3.2.1 Bird Creek catchment 

The Bird Creek catchment covers an area of 2344 km2 and is located in Oklahoma (USA) 

close to the northern State border with Kansas. The outlet of the basin is near Sperry 

almost ten kilometres north of Tulsa. The catchment is relatively low lying with altitudes 

ranging from 175m up to 390m above mean sea level at the highest point in the 

catchment. There are no mountains or large water surfaces to influence local climatic 
conditions. Some twenty percent of catchment surface is covered by forest whilst the 

main vegetative cover is grass land. The storage capacities of the soils is very high 
(Georgakakos and Smith, 1990). The river basin and stream network is shown in figure 

(3.1). 

The catchment receives significant rainfall in most years, and the catchment can be 

classified as humid although extended periods with very low rainfall can occur. Well 
defined rainy seasons occur in the spring and summer with rain in the form of showers 
and thundershowers of convective origin. Snowfall remains on the ground for only a 

very short time. From the latter part of July to September air temperatures are high (38 °C 
is common) and as a result significant evapotranspiration occurs during this time. At the 

same time, relative humidity is low accompanied and southerly breezes are common 
(Georgakakos et al, 1988). 

The data set consists of two distinct periods :a calibration period and a verification 
period. Both comprised of 6-hour values of mean areal precipitation, daily values of mean 

areal potential evaporation, and 6-hour and daily values of outflow discharge. The rainfall 
data were derived from a spatial average of 12 rain gauges situated in the catchment area 

or outside the basin boundaries (see figure 3.1). Five of the stations were hourly 

recording gauges. The discharge values were obtained from a continuous stage recorder. 
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The period used for model calibration spanned the eight-years from October 1955 to 
September 1963, with an additional independent verification period of data from 
November 1972 to November 1974. Six hour discharge values were only available for 

high flow periods while daily discharge values were available for the whole period. 
During the calibration period the discharge at the basin outlet ranged from 0 to 2540 

m3/sec and the rainfall to 153.8 mm/day and 88.6 mm/6-hour (6.4 mm/hr and 14.8 

mm/hr respectively). The highest recorded discharge and rainfall during the verification 

period were 1506 m3s-1 and 38.2 mm/6-hour (6.4 mm/hr) respectively. 

3.2.2 Orgeval catchment 

The Orgeval basin is situated 40 km east of Paris in France and is a secondary tributary of 
the Marne river having first joined the right bank of the Grand Morin river. The drainage 

area of the Orgeval basin is approximately 104 km2. The catchment is almost entirely 

rural, with only one percent of the total surface area being occupied by urban areas and 

roads. The catchment elevation varies from 70 m at the outflow point to approximately 
182 m above mean sea level at the highest point in the catchment. The average elevation is 

around 148m with the elevation decreasing sharply below 130 m. The land use is mainly 

arable with 18% forest cover. Approximately 50 percent of the area is suitable for 

ploughing and for growing crops and has been artificially drained. Because of low 

permeability the ground water table is very close to the ground surface during wet periods 
and follows the topography (Askew, 1989). The river basin and stream network is 

shown in figure (3.2). 

The calibration and verification data composed of hourly values of mean areal 

precipitation and hourly-averaged discharge. The rainfall consisted of a spatial average of 
three rainfall recording stations (see figure 3.2) situated at elevations of 130m, 146m, and 
174m. The periods used for model calibration were the six-years period from October 
1972 to September 1978, while the verification events were in the period from December 
1978 through July 1980. The hourly-averaged discharge during the calibration period 

varies up to 21m3s-1. During this period the highest hourly averaged rainfall was 11.4 

mm. The highest hourly averaged discharge and rainfall of the verification period were 

about 29 m3/sec and 10.4 mm/hour respectively. 
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3.2.3 Summary information of the catchments 

Table (3.1) summaries some of more important characteristics of catchments. 

Table (3.1) Summary description of the catchments and data sets 

Catchment Bird Creek Orgeval 

Country United States 
Catchment area 2344 km2 
Data interval 
Forecast lead time 
Forecast prepared 
Predominant type 
Flow threshold 
Climate 

I day 
4 days 

every day 
Rainfall 
262 m's-' 
moderate 

Topography Rolling terrain 

Vegetation Grassland (app. 80%) and 

France 
104 km' 
1 hour 

9 hours 

every 3 hours 

Rainfall 
12 m's` 
humid 
Flat 
Arable (app. 80%) and 

forest forest (18%) 

3.3 Criteria for model comparison 

There are several criteria that can be used to measure model performance and it is not 
reasonable to use a single measure to judge the performance of a flood forecasting system 
(Nemec, 1986). Whilst model may forecast peak flows satisfactorily, it may be poor in 
forecasting low flows. A model may be able to predict flow over longer time periods 
adequately, but it may not be able to simulate daily streamflows satisfactorily. In fact the 
criterion chosen depends on the purpose of modelling. A meeting of WMO experts was 
held to select a range of assessment criteria. It was agreed that the criteria should be most 
appropriate for testing the ability of a model to provide accurate and timely forecasts of 
floods, including for the purpose of updating. The Root Mean Square Error (the 
differences between forecasted and recorded flow) (RMSE) was selected to assess the 
forecast results. The criteria has the advantage of simplicity and ease of comprehension. 
Furthermore, it is one of the most commonly used criteria for analysis of forecasting 

residuals. The criterion puts more weight on large discharges and is useful in reflecting 
the ability of the models to estimate catchment yields. Probably the major drawback of 
this criteria is that its dimensionality renders it unsuitable for comparing the forecasting 

performance of different models with different dimensions, catchments or record lengths. 
It is noted that RMSE results used along with graphical displays allow a better assessment 
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of a model's performance. For the purpose of the project the RMSE can be formulated 

according to : 

N 
0.5 

RMSE 1/N 
N/ 2 

n- \yn, j yn, j) 
j=1 

Where: 

n is the lead time; 
N is the number of forecasts made, j=1,2,........., 7; 
Y,,, j is the forecasted flow for lead time n for forecast j; 

Yn, j is the actual observed flow for lead time n for forecast j; 

k is the maximum forecast lead time; and 
J is the number of the forecast. 

(3.1) 

Hence, for each model and each event, RMSEI....... RMSEj . ............ RMSEk were 

computed. A perfect model will produce an RMSE of zero. 

For the purpose of comparison of performance of the TF model in this thesis a 
randomness-dispersion diagram is used in addition to RMSE. The randomness- 
dispersion diagram (Cavadis and Morindate) is a novel and relatively little used method to 

evaluate model performance. Here model performance is assessed on the basis of the 
magnitude and the auto-correlation of the forecast errors. This method is thereby able to 

consider simultaneously both forecast error properties through the same visual image. 

The ordinate of the diagram is the ratio of portmanteau statistic Q (Box and Jenkins, 1976; 

also Appendix 1) to critical chi-squared (X2) value. This ratio is an indicator of the 
`randomness' of the forecast error. A value of zero means total randomness whilst a value 
greater than unity indicates that the auto-correlation of the error for a given confidence 
level is bigger than zero, the errors are not random and hence the model performance is 

sub-optimal. Consequently the model may be inappropriate for the data. 

The NTD is a variance statistic used to evaluate the magnitude of the forecast errors. A 

normalising function obtained from a `naive' model (i. e. flow forecasted for time t+1 

equals flow observed at time t) is included, thereby providing the ability to compare the 

performance of the model under evaluation with a naive model. An ideal value is one and 

a negative value shows that the performance of naive model is better than the model under 

evaluation. A comprehensive description of the technique along with an example are 

presented in Appendix 1. 
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3.4 Procedures of the forecasting adopted 

In order to make unbiased assessments of the real-time performance of the models, it is 

necessary to select individual flood events not used in calibration. For each catchment, six 
flood events were selected to test the real-time performance of each model. Different 

scenarios related to future meteorological input, in particular precipitation were considered 
including perfect foresight, no future precipitation, and average seasonal conditions. Due 
to difficulties in logically defining the later two scenarios and interpreting the results, 
perfect foresight of rainfall was used as the future input variable. 

Seven forecasts were prepared for each event with a lead time (Tf in figure 3.3) for Bird 
Creek daily data and for Orgeval hourly data of four days and nine hours respectively. A 

schematic presentation of procedures applied in real-time forecasting workshop is 

provided in figure (3.3). 

During the simulated real-time test, in order to let the model operators establish initial 

conditions for the event, precipitation and other input data as well as observed discharge 
data until the beginning of the day's test event (time to) were disseminated. Furthermore, 

only input data including precipitation were distributed until the end of the forecast lead 

time Tf and with forecasts being made by the modellers. Once the forecasts had been 

submitted to the workshop moderator, another batch of input data were provided up to the 

end of the next current forecast lead time, that is TO+ Tu+Tf, starting from Tp+Tu where 
Tu is the state update of one day and three hours for Bird Creek and Orgeval respectively. 
Along with the input data the observed discharge data for period Tp, Tp+Tu was given, 
therefore enabling state updates to be made up to and including time Tp+Tu. Then 
forecasts were be made for the second forecast period Tp+Tu, Tp+Tu+Tf and so on 
(WMO, 1992 and Georgakakos and Smith, 1990 and Georgakakos et al, 1988). 

The graphical results of seven forecasts were presented as shown in figure (3.4) (Orgeval 
basin). The solid line shows observed discharge data and the shorter lines indicate the 
results for forecasts made at specific times during the event. For example, the line with 
the open square is the fourth forecast made at hour 10 for hours 11-20. The last observed 
discharge value for this forecast was for hour 10 and precipitation data were available to 
hour 20. A similar presentation of results for each of the six events are provided by each 
model. The same approach is applied to transfer function models. 
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3.5 Application of TF and PRTF models to the WMO data set 

3.5.1 Data processing 

The first step in the analysis procedure was to select appropriate storms both for 

calibration and validation of ordinary (OTF) and PRTF models for the Orgeval and Bird 
Creek catchments. As mentioned in section (3.2) hourly rainfall and streamflow for 

Orgeval catchment are available from October 1972 to July 1980. In Bird Creek, daily 

rainfall and outflow discharge data set consisted of two distinct periods including eight 

years from October 1955 to September 1963 and another two years from November 1972 

to November 1974. In order to select the appropriate and wide range of storms a 

computer routine was written in VAX FORTRAN to display the variation of rainfall and 
discharge with time simultaneously. Events were chosen so as to provide a broad cross 
section of events that occurred for the catchments, thereby providing the opportunity for 

the designated models to obtain as much information about the catchment as possible. In 

this manner 32 separate events were chosen for calibration in Orgeval catchment. Two 
individual events are also chosen, which in conjunction with a further six isolated events 
chosen by the WMO team of experts provide the data for the verification and forecasting 

phases in the Orgeval catchment. In the Bird Creek catchment, six notable storm events 
were selected from the available data for model calibration with a further six independent 

events for validation and forecasting. The main characteristics of each event are 
summarised in the tables (3.2) and (3.3) for Orgeval and Bird Creek catchments 
respectively. Rainfall hyetographs and discharge hydrographs used in the catchments 
rainfall-flow analysis are shown in Appendix 2. 

3.5.2 Identification of average OTF and PRTF model 

The pulse response function of a TF model calibrated using only one event shows that 

catchment response depends on the characteristics of the storm event and the soil 

conditions. It is possible to define a relatively reasonable TF model if a priori knowledge 

of the event and catchment are available. It is also practicable to calibrate an average 
model from several historical events. In this case as the number of events used for 

calibration increases, the accuracy of forecasts on average also improves. On the other 
hand, it should be stressed that the performance of an average calibrated model for those 

events which have antecedent catchment conditions or rainfall profiles which significantly 
differ from the `norm', falls. Owens (1986) found an average pulse response can be 

obtained from a sequence of storm events which cover a range of storm type. A similar 
approach has also been used by other researchers (see for example Wilke and Barth, 
1991). 
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Table (3.2) Main specification of the events studied, Orgeval catchment 

Event no. Start time End time Duration 
(hours) 

Maximum 
rainfall 
(mm/hour) 

Peak flow 
(cumecs) 

Average 
percentage 
runoff 

Calibration 
1 01: 05/11/73 09: 06/11/73 33 7.8 1.5 3.3 
2 10: 07/12/73 09: 09/12/73 48 1.9 2.0 16.9 
3 03: 13/12/73 07: 15/12/73 53 1.2 1.2 19.7 
4 19: 21/12/73 11: 26/12/73 113 2.3 3.5 27.7 
5 15: 08/01/74 11: 11/01/74 69 3.9 4.5 25.8 
6 13: 28/01/74 21: 30/01/74 57 2.5 5.4 26.8 
7 06: 05/02/74 06: 07/02/74 49 2.0 3.7 29.4 
8 15: 15/03/74 23: 22/03/74 177 3.5 6.5 42.0 
9 19: 18/10/74 13: 21/10/74 67 2.8 3.2 13.0 
10 01: 23/10/74 13: 24/10/74 37 1.9 5.0 19.4 
11 16: 03/1 I/74 22: 04/1 I/74 31 1.5 1.1 7.6 
12 23: 21/11/74 19: 24/11/74 69 1.3 1.8 24.6 
13 13: 16/12/74 08: 19/12/74 68 1.1 3.7 38.1 
14 07: 27/12/74 05: 29/12/74 47 2.3 2.3 25.5 
15 19: 07/01/75 08: 09/01/75 38 2.1 3.9 24.6 
16 14: 22/01/75 01: 24/01/75 36 1.0 3.1 31.6 
17 07: 25/01/75 13: 26/01/75 31 1.2 2.6 23.9 
18 06: 27/01/75 14: 29/01/75 57 1.6 5.8 39.3 
19 06: 11/01/78 17: 13/01/78 60 3.3 4.7 30.3 
20 17: 23/01/78 04: 26/01/78 60 2.0 11.9 53.9 
21 05: 28/01/78 24: 30/01/78 68 1.4 2.6 21.4 
22 18: 31/01/78 04: 04/02/78 83 2.9 11.7 59.8 
23 05: 07/02/78 09: 08/02/78 29 2.4 3.4 25.3 
24 04: 16/03/78 14: 17/03/78 35 3.6 6.3 31.8 
25 18: 19/03/78 15: 22/03/78 70 3.2 19.5 55.4 
26 23: 29/03/78 13: 31/03/78 39 3.1 9.4 34.7 
27 01: 19/02/77 17: 21/02/77 65 5.1 10.2 36.6 
28 24: 19/03/75 24: 09/04/75 494 1.8 2.8 30.4 
29 17: 06/05/75 24: 12/05/75 152 3.6 5.0 15.4 
30 20: 29/09/75 24: 03/10/75 101 8.0 4.7 12.2 
31 21: 02/04/77 24: 08/04/77 148 3.6 6.0 33.6 
32 22: 09/05/77 08: 15/05/77 120 2.4 3.9 21.0 
33 04: 11/12/74 19: 13/12/74 64 1.2 1.6 20.8 
Average - - - - - 27.9 

Verification 
1 (wmo1) 01: 31/12/78 04: 01/01/79 28 4.6 9.5 20.4 
2 (wmo2) 01: 02/02/79 04: 03/02/79 28 1.8 6.4 51.1 
3 (wmo3) 10: 10/03/79 13: 11/03/79 28 1.9 7.5 27.7 
4 (wmo4) 11: 13/03/80 14: 14/03/80 28 3.4 24.4 52.7 
5 (wmo5) 17: 13/07/80 20: 14/12/80 28 10.4 15.0 16.7 
6 (wmo6) 10: 20/07/80 19: 21/05/80 28 5.7 13.6 30.8 
7 (vl) 17: 15/11/73 11: 17/11/73 43 4.4 2.4 11.9 
8 (v2) 04: 30/11/74 23: 01/12/74 44 0.9 3.0 28.4 
Average - - - - - 30.0 
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Table (3.3) Main specification of the events studied, Bird Creek catchment 
Event 
no. 

Start time End time Duration 
(days) 

Maximum 
rainfall 
(mm/day) 

Peak flow 
(cumecs) 

Average 
percentage 
runoff 

Calibration 
1 24/09/59 09/10/59 16 153.8 1731.1 49.5 
2 30/04/61 14/05/61 15 50.5 491.8 51.5 
3 12/07/61 25/07/61 14 51.3 499.2 31.1 
4 11/08/61 19/08/61 9 64.8 440.8 29.4 
5 03/09/61 06/09/61 4 65.7 186.0 16.6 
6 11/09/61 16/09/61 6 65.3 741.9 59.6 
Average - - - - - 39.6 

Verification 
1 11/11/72 21/11/72 11 52.1 316.7 39.9 
2 03/03/73 13/03/73 11 34.8 332.1 56.8 
3 09/04/73 19/04/73 11 57.3 527.7 56.4 
4 19/11/73 29/11/73 11 59.6 435.2 43.9 
5 07/03/74 17/03/74 11 87.8 1103.1 72.3 
6 28/10/74 07/11/74 11 63.3 1287.3 71.2 
Average - - - - - 56.8 

In the WMO workshop a model interval of one hour and one day were selected for 
Orgeval and Bird Creek catchments respectively. The same model intervals are also used 
for the present study. 

In order to construct an average static TF model for the Orgeval catchment, the search 
procedure described in section (2.5.1.4) was used. Eight equal order models were 
considered in the search, from 1,1 to 8,8. The model parameters, model percentage 
runoff, root mean square error (RMSE), and pulse response characteristics of each 
structure in each selected event, were considered. The search indicated a 3,3,0 model 
structure to be the optimum equal order model. The model order reduction technique was 
then used to reduce the order of the model. The number of a and b parameters were 
reduced from 3 down to 1. This procedure again confirmed a 3,3,0 structure to be 

optimal for almost all the events considered. Therefore it is concluded that for the Orgeval 

catchment a model with (3,3,0) structure is most appropriate. 

Some statistical characteristics of the model identification procedure for the Orgeval 
catchment TF model are presented in table (3.4). Only the pulse responses of the average 
static TF as an example for investigated model order are shown in figure (3.5). It should 
be stressed that some ordinates of PR of orders (2.2) and (2.3) are negative. 

A similar procedure, especially in varying the rainfall parameters is used to identify the 
optimal model structure of the PRTF model. Error statistics along with visual 
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considerations of convoluted rainfall as well as shape of pulse responses culminated in a 
model with (3,2,0) order, that is a model with three a and three b parameters. 

The same search technique was used to identify a static TF model for the Bird Creek 

catchment. A TF model of order (1,2,0) is found adequate in almost all the events. 

It should be noted that current software (Tilford, 1990a and Han, 1992) have been 

modified to make them suitable for the WMO workshop data formats. 

3.5.3 An investigation of initial 0 values 

The initial A (see sections 2.5.1.5 and 7.4) value has a major impact on the model 
forecast accuracy, particularly in the early stages of an event. The minimum and 
maximum range of A usually can be calculated from 0.05/gain and 1/gain (an exception 
would be due to a release of water from storage, for example a sudden thaw releasing 
melt water into the river system). In order to investigate the different initial A, four initial 
A namely (Amin = 0.05 / gain, A, =1, OMean = 0.5251 gain, A, =1 /gain) are 

considered. It also is important to know whether the initial value of A is variable or 

constant. Thus eight combinations of A variant are investigated. 

Using the OTF model parameters found during calibration, the one to nine step (hours) 

ahead forecasts were issued for each of eight Orgeval validation events. Error statistics 
including RMSE, Q/4% and NTD I for different variants of initial A are calculated. 

Summarised graphical results of this investigation are presented in figure (3.6). It can be 

seen that in each category (i. e. ýMinO>>ýMeun+OM) an updated variable 0 provides 
better forecasts than a constant value. Further, when all three statistics 
(RMSE, Q/2,5%, WD, ) are considered together, '6k O 

Min var iable (i. e. initial 0 =A Minimum and 

variable with time) provides the best overall and average choice. However, if only the 

RMSE results are considered different conclusions can be obtained. This is investigated 

further in section (4.3.1). As the percentage runoff varies during the event and usually is 

small at the beginning of the event this conclusion is reasonable. It should be stressed that 

the results obtained may differ from catchment to catchment. 
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Table (3.4) Parameters, reconvolution and pulse response statistics of different order 
models (AOTF model, Orgeval catchment) 

a parameters 
Model al a2 a3 a4 a5 a6 a7 a8 
order 
(a, b) 
(1,1) 0.993 
(2,2) 1.857 -0.867 
(3,3) 2.350 -1.862 0.057 
(4,4) 2.364 -1.946 0.619 -0.044 
(5,5) 2.360 -1.923 0.560 0.022 -0.025 (6,6) 2.361 -1.914 0.580 -0.089 0.116 -0.061 
(7,7) 2.357 -1.903 0.575 -0.110 0.176 -0.126 0.024 
(8,8) 2.357 -1.899 0.569 -0.106 0.168 -0.077 -0.033 0.023 
(2,3) 1.843 -0.853 
(1,3) 0.985 
(3,2) 2.351 -1.864 0.508 
(3,1) 2.400 -1.950 0.540 

Table (3.4) continued 

b Parameters 
Model bl b2 b3 b4 b5 b6 b7 b8 
order 
(a, b) 
(1,1) 0.146 
(2,2) 0.024 0.058 
(3,3) 0.025 0.032 0.001 
(4,4) 0.022 0.034 -0.011 0.022 
(5,5) 0.022 0.034 -0.011 0.019 0.005 
(6,6) 0.023 0.033 -0.009 0.015 0.017 -0.019 
(7,7) 0.023 0.032 -0.009 0.016 0.016 -0.014 -0.008 
(8,8) 0.023 0.033 -0.010 0.016 0.016 -0.014 -0.009 0.000 
(2,3) 0.024 0.046 0.020 
(1,3) 0.015 0.067 0.178 
(3,2) 0.025 0.033 
(3,1) 0.004 

Table (3.4) continued 

Model characteristics 
Model Gain run RMSE Peak time of 
order (%) off (%) (m3 pulse 
(a, b) /sec) response 

(hours) 
(1,1) 67.90 28.14 0.234 1 
(2,2) 29.20 28.14 0.080 12 
(3,3) 37.41 28.14 0.066 8 
(4,4) 37.80 28.14 0.066 9 
(5,5) 37.63 28.14 0.066 9 
(6,6) 35.32 28.14 0.065 8 
(7,7) 35.35 28.14 0.065 8 
(8,8) 35.78 28.14 0.065 8 
(2,3) 30.52 28.14 0.079 11 
(1,3) 59.00 28.14 0.204 3 
(3,2) 37.33 28.14 0.066 8 
(3,1) 35.20 28.14 0.068 8 
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Figure (3.5) pulse response for average static TF, different orders, Orgeval catchment. 
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In an attempt to relate the initial A value to initial flow, the variation of base flow versus 
percentage runoff in all the investigated events are examined. The result of this study, 
presented in figure (3.7), indicates that no strong positive relationship between initial 
flow and percentage runoff is apparent. Owens (1986) also failed to find a well-defined 
relationship between base flow and average percentage runoff for a number of events for 

catchments in North West England but stated the possibility of identifying this kind of 
relationship if more event data were available. However, despite these comments it will 
be seen in section (4.3.1) that some reasonable relationship between base flow and 
percentage runoff and hence initial A value can be extracted through a classification of 

events. 

3.5.4 Results of OTF and PRTF models 

In this section, forecasting results from average OTF and PRTF models (both in static 
and dynamic form) derived from the WMO project data are presented graphically for the 
Orgeval catchment. The results of the average OTF models are also given for the daily 
data of the Bird Creek catchment. The RMSE results of the OTF and PRTF models and 
other models also first presented for each step ahead forecast, and a comparison is then 

made to evaluate the relative performance of the different models. In addition to the 
RMSE, the portmanteau statistic Q and the NTD criterion are also presented for different 
TF models for the Orgeval catchment. 

3.5.4.1 Ordinary TF model results in Orgeval catchment 

Using the OTF model parameters found in the calibration phase, one to nine steps (hours) 

ahead forecasts are issued at times 1,4,7,10,13,16 and 19 for each of the six test 

events. The RMSE for each step ahead forecast for all of the models in the inter- 

comparison project and the TF models are provided in tables (3.5) to (3.10) for events 1 

to 6 respectively. In addition, the NTD and portmanteau statistics for the TF models only 
are also provided in the same tables. Furthermore, a model performance ranking table has 

also been provided for each event on the basis of the RMSE statistics. Ranking , have 
been provided for 1 step ahead, and 9 step ahead forecasts, and also for all the forecasts 

taken as a whole (average). Average rank of a given model is obtained by averaging its 

ranks on the whole step aheads. Some notable results are discussed below. Hydrographs 

and hyetographs both for the events and pre-events are shown in appendix 2. For the 

sake of conciseness graphical forecasts are given in section 4.3.1. 
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Figure (3.7) Scatter diagram of percentage runoff versus initial flow, Orgeval catchment. 
(33 events) 

Event number one (31st December 1978) 

This event was a double peaked flood hydrograph with maximum flow of 7.23, and 
14.61 m3 s-1 respectively. The reason for the first peak is rainfall started to fall 15 hours 
before the beginning of the event. During these 15 hours, 1.5 mm of rain fell in each hour 

on average. Discharge started to increase slightly, 12 hours prior to the event. The second 
increase in flow was caused by a distinct fall of rain of about 11-hours duration with a 
peak intensity of 4.6 mm/hour. 

The values in table (3.5) indicate that the NAMKAL model clearly gives the best results 
and the TANK model gives, by far, the worst results. NTD and portmanteau values 
confirm that the OTF model constructed in the calibration phase is also suitable for this 
validation event (reason can be extracted from section 3.3). The table also shows that the 
forecasting capability of the OTF model decreases with increasing lead time; the rank of 
the model falling from 7 in first step ahead to 12 both on average and nine steps ahead 
forecast. In addition, OTF model's RMSE are smaller than those of average model in first 

and second step ahead forecast, but larger than average of the models for the longer lead 
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times. This is probably because calibration minimises convolution errors of one step 
ahead errors. 

Event number two (2nd February. 1979) 

This is a relatively low flow event (maximum flow is 10.25 m3 s-1), which fails to reach 
threshold level status. The single peaked hydrograph is caused by a relatively long period 
(about 20 hours) of rainfall starting 11 hours prior to the event. Total rainfall prior to the 

event was about 10 mm. The water level started to increase about 5 hours before the 
beginning of the event. 

Table (3.6) indicates that the model found in calibration phase is also applicable for this 
validation event. Once again the absolute and relative RMSE of OTF model increase with 
lead time, so that the RMSE of the OTF model are less than those of average of all models 
up to three steps ahead but they are larger for longer lead times. The rank of the OTF 

model is 5 for one step ahead forecasts but overall and for nine steps ahead is 12th and 
13th respectively. 

Table (3.6) also shows that the HBV model in contrast to event number one produces the 
best result, while the TANK model once again gives by far, the worst result. 

Event number three (10th March 1979) 

The event is unique in that it is the only one where the discharge falls sharply 10 hours 

prior to beginning of the event. The decrease in discharge was continued even 10 hours 

after the start of the event. It was a single peaked flow hydrograph with a maximum flow 

of 12.94 m3 s-1. The increase in flow was caused by falls of rain of 15- hours duration. 

According to table (3.7) the RMSE of the OTF model are the largest for all forecasts. 
Reference to the characteristics of this event (such as percentage runoff 27.66%) show 
there is not a significant difference between this event and other events except for a sharp 
fall in flows at the start of the event. One possibility was thought to be inappropriate 

selection of initial 0, but as figure (3.6c) shows, selection of any initial 0 leads to 

similar RMSE. Further investigation revealed the cause to be due to incorrect pre-event 
flow data being used by the model for this particular event. 

Table (3.7) shows that the event is also unique in that it is the only one where the 

performance of a simple naive model is superior to the transfer function model (as 
indicated by the NTD <0). This criteria indicates that the model found in the calibration 
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phase is not appropriate for this event. Indeed amongst the 32 calibration events there are 
no other events where the initial discharge decreases with time. Such a situation (decrease 

of discharge in the start of event for such a long time) will not occur in reality. It can be 

said that the start of the event is in fact at time 9. Therefore probably this is the main 
reason for a very poor quality of the forecasts. 

Table (3.7) shows that the SSARR model presents the best result on average. 

Event number four (13th March 1980) 

This is a large single peaked event with the maximum observed flow of 28.79 m3s'1 
resulting from a long duration of rainfall falling on a catchment wetted by heavy rainfall 
during 13 hours prior to the event. The discharge started to increase 7 hours before the 
beginning of the event. 

Table (3.8) indicates that the calibration model is appropriate for this verification event. 
As with previous events the forecasting accuracy of the OTF model decreases with lead 
time, so that the rank of OTF model in first step ahead is 3 but it falls to rank 9 and 12 on 
average and for the nine step ahead forecasts respectively. In addition, the OTF model's 
RMSE are smaller than those of average models for first and second step ahead forecasts 
but larger than the models' average for the bigger lead times. 

The UBC and TANK models produce the best and the worst results respectively. 

Event number five (13th July 1980) 

This event has at least three peak flood hydrographs with maximum flows of 14.56, 
15.32, and 13.08 m3s-1 respectively. Rain started to fall almost 15 hours prior to 
beginning of the event and continued 9 hours after start time of the event. Water level 

started to increase 7 hours before the start time of the event. Although the amount of 
rainfall exceeds many of the other events, the value of maximum flow is less (average 

percentage runoff is 16.70%). The reason for this is that the first spell of rain served to 

satisfy the catchment soil moisture deficit which had accumulated through July. The third 
increase in flow was caused by falls of rain of about 5-hours duration. 
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Table (3.9) indicates that the calibrated model is appropriate to this event. With respect to 
forecast RMSE, the best model differs according to the number of steps ahead. While the 
TANK model gives the worst results for all step ahead, the OTF model presents the best 

results for one and two step ahead forecasts although its ranking falls to rank 6 overall 
and 8 for nine step ahead forecasts respectively. On the other hand, OTF model's RMSE 

are lower than those of average models up to 5 step ahead forecasts but higher for the 

other lead times. 

Event number six (20th July 1980) 

The event occurring on the 20th July 1980 had a double peaked flood hydrograph with 

maximum flows of 11.18 and 15.45 m3s-1 respectively. The increase in flows was 

caused by two distinct falls of rain each of about 10-hours duration. Despite the relatively 
large amount of rain, the increase in discharge is not comparable with other events, 

notably with event number three. As with event 5, this probably is because of the soil 
moisture deficit. 

Table (3.10) indicates that the best model differs for different step ahead forecasts. The 

best model on average is the SMAR model, and again the TANK model produces the 

worst results for all steps ahead. The rank of the OTF model is second best for one step 

ahead, but falls to 10th and 12th for average and nine step ahead forecasts respectively. 
The OTF model RMSE's are smaller than those of average and up to three steps ahead but 

are larger than average compared to the other models in the other lead times. 

Finally although the portmanteau statistic is a little greater than 1, the table confirms the 

suitability of OTF model found in calibration phase for forecasting. 

3.5.4.2 Ordinary TF model results in Bird Creek catchment 

As mentioned in section (3.5.2) a (1,2,0) model is identified in the calibration phase 

using the daily data of the catchment. In this section the same model is used to issue one 
to 4 step (days) ahead forecasts at times 1,2,3,4,5,6 and 7 for each of the six test 

events. Here graphical forecasts as well as RMSE results of the OTF are presented. (The 

event hydrographs and hyetographs are shown in appendix 2). 
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Event number one (11th November 1972) 

This is a double peaked flood hydrograph with maximum flow of 322.82, and 43.68 

m3s-1 respectively. The first peak derives from rain falling for two days prior to the peak 
totalling 60 mm and causing the discharge to increase from negligible flow to 322.82 m3 
s-1. The second increase in flow was caused by a fall of rain of four days duration with a 
maximum of 14.6 mm day. 

The diagram in figure 3.8 (top) shows that the first forecast is in close agreement with the 

observed flow for both rising and recession limbs and that the magnitude and time of 

peak forecasted are reasonably well. The second to fourth forecasts fit the first 
descending limb perfectly. The fifth forecast is reasonably accurate for the first three steps 
but overestimates the second rising limb. The sixth and seventh forecasts both 

overestimate the actual flow. Overall the OTF model produces acceptable forecasts with 
good agreement between observed and forecasted discharges. At the same time as shown 
in figure 3.8 (bottom) the RMSE for one and two step ahead forecasts are the smallest of 
all models. The OTF model ranks first both for one step ahead forecasts and on average. 
In order to calculate the average RMSE without extreme values, two models with the 
biggest and lowest RMSE are eliminated and the average RMSE is calculated based on the 
RMSE of the remaining models. 

Event number two (3`d March 1973) 

This event has a three peak hydrograph with maximum flows of 219.17,353.96, and 
390.67 m3 s'1 respectively. The first peak was due to rain falling three days previously, 
whilst both the second and third peaks were attributable to rain occurring just one day 
before. It is interesting to note that in each case the total amount of antecedent rainfall is 

the same, and the peak discharges are very similar in both cases. 

Figure 3.9 (top) shows that the first two forecasts parallel the observed discharge, and 

successfully predict the peak time, although the peak flow is underestimated. The same 
situation exists for the third forecast, although it overestimates the fourth turning point a 
little more. The fourth forecasts exceed the actual recession limb whilst underestimating 
the observed flow at the latest steps. The fifth forecast exceeds the recession limb at the 

two first steps, but is lower than the final rising limb at the two last steps. The sixth and 
seventh forecast both underestimate actual flow. Although the OTF model results are not 

as good as those of event one, they are still acceptable, being more or less average (see 
figure 3.9 bottom). The GAPI model gives the biggest RMSE. The rank of OTF model in 

all of the models for one step ahead forecasts is third. 
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Event number three (9th April 1973) 

This is a double peaked event with a maximum observed flow of 540.86 m3 s-1. The 
first peak was caused by a distinct fall of rain about 60 mm which occurred two days 

prior to peak discharge. Almost the same amount of rain fell before the second peak but it 

was distributed over four days. 

As shown in figure 3.10 (top), the first three forecasts all parallel but underestimate the 

observed discharge. The turning points are forecasted well. The fourth and fifth 
forecasted discharges cross the actual hydrograph, indicating that on some occasions 
flows are overestimated and on others flows are underestimated. The sixth and seventh 
forecasts are a little below the rising limb, whilst they are greater for the recession limb. 

According to figure 3.10 (bottom) the RMSE of OTF model is the smallest amongst all 
models for one to three step ahead forecasts. The SMAR model provides the biggest 
RMSE. 

Event number four (19th November 1973) 

This event also has a double peak hydrograph, the total rainfall prior to the first and 
second peak are 55.0, and 66.6 mm whilst the peaks themselves are 232.48 and 436.08 

m3s-1 respectively. 

Figure 3.11 (top) indicates that the first two forecasts overestimate the actual flow, even 
though the observed peak is lower than the alarm level the forecasted hydrograph crosses 
the threshold level. The third forecast again exceeds the first recession limb, but 

accurately forecasts the second rising limb. The fourth forecast is in close agreement with 
actual flow. The fifth forecast follows the observed hydrograph, although the second 
recession limb is underestimated. The same scenario exists for the sixth and the seventh 
forecasts except that the observed flows are overestimated more for the latest steps. 

Figure 3.11 (bottom) emphasises that the RMSE of the OTF model is always smaller than 
those of average model. The TANK and CEQUEAU models present the biggest and the 
smallest RMSE results respectively. 

Event number rive (7th March 1974) 

This event has a large single peaked flood hydrograph with maximum flow of 1110.03 

m3s-1 resulting from a three days rainfall totalling 139.9 mm. 
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According to figure 3.12 (top) the first forecast closely corresponds to the observed flow. 
The second forecast is in agreement with actual flow for the first three steps but is very 
poor for the fourth step. Likewise the third forecast closely fits the flow in first two steps, 
but significantly underestimates flow for the next two steps. The fourth forecast also 
significantly underestimates flows for all but the first and last steps. The fifth forecasts 

underestimates flow for the first two steps but are quite accurate for the last two steps. 
The sixth forecast again underestimates the observed flow at the first step, but 

nevertheless, produces good forecasts for the last three steps. The seventh forecast is in 

close agreement with the observed flow. Overall the peak flow forecasts are very poor; in 
the best case the differences between observed and estimated peak flow is about 30%. 

Figure 3.12 (bottom) indicates that the other models also failed to produce reasonable 
forecasts and the RMSE of the OTF model are always smaller than those of the average of 
other models. The CLS model produces the worst results in comparison with other 
models. 

Event number six (28th October 1974) 

This is a large flood event with a three peak flood hydrograph all exceeding the flow 

threshold. The increases in flow were caused by three large falls of rain of one, two and 
three days duration during which time 33.6,60.7, and 124.1 mm of rain fell. Peak 
discharges were 308.66,540.86 and 1370.55 m3s-1 respectively. 

Figure 3.13 (top) shows that the first forecast underestimates the first and second peaks. 
There is a significant difference in flow between the estimated and actual low flow in 

second forecast. The third to the seventh forecasts underestimate the recorded discharge 
for both rising and recessing limbs. All forecasts failed to predict the main flow peak. 
However, in each case the observed and estimated hydrographs are in parallel, meaning 
that the time of peak flow is forecasted well. 

Figure 3.13 (bottom) indicates that RMSE of the OTF models are larger than average, and 
consequently the TF model results in this event are not as good as for the other events. 

Referring to the results of these two last events it appears that the calibrated model cannot 
produce accurate forecasts for very large events of this catchment. Referring to table (3.3) 
it can be seen that the percentage runoff of the calibration events varied between 16.6 to 
59.6 (with an average of 39.6%) whilst the percentage runoff of these last two events is 
72.3 and 71.2% respectively and are too far from the average percentage runoff of the 

calibration events. However, amongst the five models presented forecasting results for all 
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six events of the Bird Creek catchment, on the average, the rank of TF model is the 
second best both in one step ahead forecast and in average of all step ahead forecasts. 

3.5.4.3 Summary of observations relating to ordinary transfer 
function models and WMO project models 

The following general comments are made in relation to the application of average OTF 

model for the Orgeval and Bird Creek catchments. 

The absolute forecast error increases with lead time for all 14 models evaluated. 
However, the relative increase of the RMSE in different models is not similar. The OTF, 

and SMAR models usually perform better for short lead times and when the lead time is 
increased the relative RMSE of these two models also increases. For the TF model it may 
be said that, it is because the one step ahead forecast error is considered to select the best 

calibration model. In contrast, the relative performance of the HBV, NAMS1 1, HFS, 
SSARR, and UBC models improves with lead time. Thus, whilst a given model may be 

ranked sixth in the primary steps its ranking may improve to two for the longer lead 
times. The same general conclusion does not apply to the remaining models. 

There is no consistent pattern in the performance of the models on an event basis. A given 

model may rank first in one event and last in others. Therefore, no comment can be made 

concerning that a particular model always presents the best results. However, it appears 
that the TANK model usually presents the worst results for the Orgeval catchment, 

probably it may be because of miscalibrating of the model. 

An increase in model complexity does not necessarily lead to an increase in forecast 

accuracy. It may be said that the accuracy of the forecasts is highly dependent on the 

updating method. 

It appears that the calibrated TF model cannot produce accurate forecasts for very large 

events with a large percentage runoff in Bird Creek catchment. This is because the 

average percentage runoff of the calibration events (39.6%) is too far from the events 
with large percentage runoff (more than 70%). Therefore, it looks in large events, 
calibrated model obtainable from event with large percentage runoff will improve the 

quality of the forecasts. 

Transfer function models can satisfactorily simulate the discharge in the catchments in 

most cases, as this model directly relates discharge to rainfall. 
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RMSE of different models (bottom) Bird Creek catchment, event no. 5. 
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Transfer function models can be easily used and require minimal training in modern 
estimation theory, whereas the application of the some of the other models requires 
detailed knowledge both in modelling and in hydrology. 

The computing times of the TF model is short. 

TF models use only the rainfall as an input while some of the other models require a 
number of additional parameters. 

3.5.5 The dynamic and static PRTF models: Orgeval catchment 

3.5.5.1 Static PRTF model results 

As mentioned in section (2.5.2) although in principle they belong to same family of 
modelling approaches, OTF and static PRTF (SPRTF) models are different in some 
respects. Firstly, to ensure stable, non-oscillatory and non-negative responses the SPRTF 

model uses a different identification procedure (see section 2.5.2.1). Further, the OTF 

model uses a linear relationship between runoff at the current time and rainfall in previous 
time periods whilst the SPRTF model considers both current and previous rainfall. Once 

the SPRTF model has been identified the forecasting procedure for the two different TF 

models is the same, with both using A updating. 

As with the OTF model, using the parameters found in the calibration phase, one to nine 

step (hour) ahead forecasts are issued at times 1,4,7,10,13,16 and 19 for each of the 

six Orgeval test events. Graphical results of the forecasting are presented in figures (3.14) 

to (3.16). In addition, the comparison of RMSE's of the SPRTF model with those of the 

other models are given in tables (3.5) to (3.10). As the events used for forecasting are the 

same as those used in the previous section, the characteristics of the events are not 

mentioned again here. Instead, some detailed observations of the performance of the 

SPRTF model are made. 

Event number one (31st December 1978) 

Figure 3.14 (top) shows the forecasted discharges along with observed discharge and 
threshold level. It can be seen that the variation of the first forecast for different lead times 
is very slow. The reason for this is probably the initial A, which is chosen to be the 

smallest one at the beginning of the each event. Although as concluded in section (3.5.3) 
the use of smallest 0 as the initial A, overall and average may be the best choice when 
three criteria considered together, but as it has been seen in this event the use of 
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Lminvariable produced a very poor forecast for first forecast when only the RMSE 

criterion is considered (this is the case for other events). From figure (3.14) it can be seen 
that if the first forecast is disregarded the ranking of the TF model will improve 

considerably. The second forecast overestimates the discharge. The third forecast is in 

agreement with observed discharge up to four steps ahead, but fails to predict the rising 
limb for other steps. The fourth forecast is totally wrong. The fifth forecast more or less 
fits the observed discharge at least up to 3 step ahead and is able to predict reaching of the 
threshold reasonably well. Although this forecast provides a good prediction of the time 

of peak flow 9 hours in advance, values of observed discharge from the fourth step ahead 

are underestimated. The sixth forecast parallels the observed discharge but underestimates 
the actual flows. In contrast, the seventh forecast overestimates the recession limb. 

The NTD 1 and portmanteau statistics in table (3.5) both indicate that the calibration model 
is appropriate for this event. Further, the RMSE of the SPRTF are smaller than those of 
average of other models up to three steps ahead, but are bigger for the remaining steps 
As with the OTF model, the absolute values of the RMSE of the current model increases 

with lead time, but the relative increase is less than those of the OTF model. 

Event number two (2nd February 1979) 

The NTD and portmanteau statistics (table 3.6) show that the calibrated model can be 

used for this event. Figure 3.14 (bottom) shows that the first three forecasts fail to predict 
the ascending limb, but the second and the third forecast are able to show the time of peak 
flow relatively well 8 hours in advance. The estimated discharge at the fourth forecast 

only fit the observed data up to two steps ahead. Fitness of estimated and actual flow in 

the sixth and seventh forecast are perfect. 

Again here the absolute and relative RMSE of model increases with lead time, but as with 
event one the relative increase of RMSE in comparison with the OTF model is smaller. 

Event number three (10th March 1979) 

Figure 3.15 (top) shows the seven forecasts of this event. Unlike previous events the 
discharge falls sharply prior to start of the event and continues to decrease hours after this 
time. The first forecast increases very rapidly with time, despite the fact that the six other 
forecasts are in close agreement with actual flow, the large differences between estimated 
and observed flow for the first forecast causes the SPRTF model to be worst model 
overall. The values of the second and the third forecast closely fit observed flow at least 

up to four steps ahead but fail to adequately represent the rising limb. The fourth forecast 
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significantly underestimates the actual values. Although the fifth forecast follows the 

same pattern as the observed values, it also underestimates the discharge. The sixth 
forecast clearly fits the actual values up to three steps ahead and then overestimates the 
recession limb. Finally the seventh forecast also overestimates the observed values of 
discharge. 

Table (3.7) indicates that the RMSE's of the SPRTF model are always larger than the 

other models and are only comparable with its OTF counterpart. 

Event number four (13th March 1980) 

Figure 3.15 (bottom) shows the forecasted and observed discharges and threshold level. 
It can be seen that the second forecast is in close agreement with observed discharges up 
to four steps ahead and is able to forecast the reaching of the threshold. The third and 
fourth forecasts underestimate the discharge. The fifth forecast parallels but 

underestimates the actual flow. The time of the peak value is forecasted very well. Finally 

the sixth and the seventh forecasts estimate the recession limb reasonably well. 

As with the OTF model the forecasting accuracy of the SPRTF decreases with lead time 
(see table 3.8). The rank of SPRTF is 6th amongst the events evaluated in first step ahead 
but it falls to 10th and 11th for average and nine steps ahead forecast performance 
respectively. 

Event number five (13th July 1980) 

As shown in figure 3.16 (top) the second forecast predicts the threshold exceedance three 
hours in advance but underestimates the main rising limb. On the other hand, the third 
forecast overestimates the observed discharge. The fourth forecast parallels but 

overestimates the recession limb of the observed hydrograph. In contrast, although the 
fifth forecast follows the ascending limb, it underestimates the observed flow. The sixth 
forecast closely follows actual flow up to four steps ahead but the errors are large for 
longer lead times. The final forecast fails to predict both the final rising and recession 
limbs. 

As regards RMSE, table (3.9) indicates that the performance of SPRTF model for all 
steps ahead is better than those of the average models. As with the other events, the 
forecasting capability of the SPRTF model decreases with lead time. 
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Figure (3.14) Seven multiple step ahead forecasts by SPRTF model for the Orgeval 
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Event number six (20th July 1980) 

Graphical results of forecasting are presented in figure 3.16 (bottom) while the RMSE 

results are given in table (3.10). According to the figure, the differences between the 
values of the second forecast and observed flow are large. The third forecast is in 

agreement with actual flow for two steps ahead but the values of forecasts for other steps 
are larger than those of both recession and rising limbs. The fourth and fifth forecasts 

errors are unacceptably large. The sixth forecast predicts the peak part of actual 
hydrograph reasonably well. The final forecast overestimates the recession part of 
hydrograph. 

3.5.5.2 Dynamic PRTF model results 

In order to provide the same pattern of forecasts as the WMO workshop using the average 
Dynamic PRTF (DPRTF) model mentioned in section (2.5.2.2), an average DPRTF 

model was constructed. Then at any time of forecast, the adjustment factors ((X, t, and 
'y) were calculated in such a manner that the best agreement between the simulated and 

actual available (up to forecasting time) flows is obtained. The simulated hydrograph is 
then extended to the forecast lead time using the future rainfall scenario. Finally the 

simulated hydrograph is shifted proportional to the differences between actual and 
simulated flow at the time of forecasting. The same procedure is repeated independently 
for each of seven forecasts at each of time 1,4,7,10,13,16 and 19 to provide forecasts 
for up to nine steps ahead. A schematic representation of the forecasting procedure 
applied for the DPRTF model is given in figures (3.17) to (3.19). The automatic updating 
of the model reduces the need for human intervention. It also provides the transferability 
of the procedures. 

Graphical results of seven forecasts along with observed and threshold flow for six 
events investigated are presented in figure (3.20). In addition, the RMSE of the forecasts 

are given in tables (3.5) to (3.10). 

Figures (3.17) to (3.19) show that the characteristics of the average model (i. e. (6, t, 
and 'y) dominate the characteristics of current event if an average DPRTF is used for 

forecasting because duration of the current event is very short compare with very long 

period of average model data. Therefore, if the condition of the current event differs 

significantly from the average condition the quality of forecast will fall. 
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Figure (3.16) Seven multiple step ahead forecasts by SPRTF model for the Orgeval 

catchment (top, event 5; bottom, event 6). 
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The graphs in figure (3.20) indicate that the overall, quality of forecasts are not 
significantly different from those of the SPRTF model. The DPRTF model forecasts are 
superior to SPRTF 19 times but inferior 17 times. In 6 cases both the DPRTF and 
SPRTF models provide the same results. In general, the SPRTF model better forecasts 

the recession limb than the DPRTF model but the DPRTF model usually better predicts 
the rising limb than SPRTF. 
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Figure (3.17) Flow simulation (adapted from WRIP, 1994) 
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Figure (3.19) Flow forecasting based upon flow simulation (adapted from WRIP, 1994) 

3.5.5.3 Summary of observations relating to PRTF model 

With respect to RMSE results for all six events forecasted by SPRTF model it can be 

concluded that as with the OTF model the relative and absolute values of RMSE increase 

with lead time. Therefore performance of the SPRTF model in lower steps is better than 
for larger lead time. In comparison, the OTF model forecasts both for one step ahead and 

on average are superior to the SPRTF forecasts. In contrast, the model produces better 
forecasts than the OTF model's for the longer lead times, especially 9-hours ahead. 

The forecast quality of the DPRTF model is not significantly different from the average 
static transfer function model. 

As the use of A minvariable as initial A usually produces poor forecasts in first forecast, 

if the first forecast of each event under evaluation is disregarded the ranking of the 
SPRTF model will improve remarkably. 

As it mentioned in section (3.5.4.3) there is no consistent pattern in the performance of 
the models on an event basis. In table (3.11) the RMSE results of ATF models are 

compared with those of WMO project models. Note as the TANK and NAMKAL models 
did not attempt to model all the events, they are not considered in ranking comparison. 
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Figure (3.20) Seven multiple step ahead forecasts by DPRTF model, Orgeval catchment 
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It is shown in section (4.3) that the forecasting capability of TF model can be improved 
by considering the antecedent condition of catchment and the characteristic of events 
through an appropriate classification scheme. 

Table (3.11) Rank of models investigated (from best to worst) 
, Orgeval catchment and average transfer function models. 
One step ahead: 
GAPI TF SMAR CEQUEAU NAMSII SSARR SPRTF CLS HBV UBC HFS DPRTF 

On average: 
GAPI SMAR NAMSII HBV CEQUEAU HFS CLS SSARR UBC TF DPRTF SPRTF 

Nine step ahead: 
HBV NAMSII GAPI HFS CEQUEAU SSARR SMAR CLS UBC DPRTF SPRTF IF 

3.6 Conclusion 

Major section of the chapter has been concerned with an inter-comparison of the TF 

model forecasting results (both for ordinary (OTF) and physically realisable (PRTF) 
forms in static and dynamic modes) with those of models used in a WMO workshop, 

using the same data sets, catchments and procedures used in the WMO workshop. 

A cross-validation scheme consisting of RMSE, NTD and portmanteau statistics has been 

used to evaluate TF model performance. This chapter described the application of an 
average TF model. Average TF models were identified for the Orgeval and Bird Creek 

catchments either for static and dynamic forms. In each catchment at least six events were 

used for verification and forecasting. AA factor is used to compensate for variation in 

the proportion of total rainfall contributing to runoff. A study of the influence and 
importance of initial A indicated that use of a small A varying during the event is an 

appropriate choice for the Orgeval catchment. The results of the application of the average 
TF model indicate that there is no strict rule in the performance of models on an event 
basis. A model may have the first rank in one event and the last rank in other. As 

expected, absolute forecast error increases with lead time. However, the relative increase 

of the RMSE for different models is not consistent, so that the OTF, SPRTF and SMAR 

models generally perform better for short time steps, whilst the relative performance of 
the HBV, NAMS 11, HFS, SSARR, DPRTF and UBC models increases with lead time. 
If only the performance of the OTF and SPRTF are concerned, the quality of forecasts in 

OTF model both in one step ahead and on average are superior to SPRTF. In contrast the 
SPRTF model provides better forecast than those of OTF for longer lead times. With 

respect to comparison of the performance of static and dynamic form of TF models, it is 
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concluded that there is not a significant difference between the quality of the forecasts 
derived from the static and dynamic TF models. 



Chapter 4 Further Development of TF models 103 

CHAPTER 4 

FURTHER DEVELOPMENT OF TF MODELS 

4.1 Introduction 

This chapter begins with an introduction to a simple technique to calculate average pulse 
responses. Further research has been done to extend the capabilities of TF models 
through an event classification and grouped calibration procedure. Group models are 
constructed on the basis of storm characteristics and antecedent catchment conditions. 
This study is followed by an evaluation of single event TF models. Finally an overall 
comparison of average, grouped, and single event TF models as well as the WMO project 
models is presented. In the last part of the chapter an expert system-based approach for 
the further investigation of the grouped model is proposed. 

4.2 Improving TF model simulation 

Sometimes there is a need to estimate a single average pulse response (APR) from several 
pulse responses associated with a number of events. This section deals with the 
evaluation of different approach of calculating APR. 

4.2.1 A simple model to calculate the average pulse response 

One way of calculating the APR is to combine all the events into one continuous data set 
and calculate the corresponding pulse response (method 1). A second estimate can be 

obtained through a simple ordinate averaging technique: however, such an approach 
produces a flattened pulse response (method 2). A further novel approach is to estimate 
the average pulse response using a simple model of average characteristics (method 3). 

The proposed model computes the average of the time to peak, the peak, and the width of 
the pulse response at the 10,20,30,40,50,60,70,80, and 90% of the peak; and then 
draws a curve with unit volume through the resulting points. The details are summarised 
below. 

The first step is to calculate the pulse response ordinates of several events using the a and 
b parameters found in the model identification phase. Since each event has its own 
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percentage runoff (PR) it is necessary to normalise each PR to provide unit volumes. The 

peak and the time to peak of each normalised PR (NPR) are calculated. The peak and time 
to peak of normalised APR (NAPR) is simply calculated by averaging the peak and time 
to peak of all events. To find other points of the NAPR the following procedure is 

applied. 

Using a simple interpolation programme (also see Fritsch and Bultland, 1984 and 
Numerical Algorithm Group, 1990) the start time, the end time and its corresponding 
width of pulse response at the 10,20,.........., and 90% of the peak for each event are 
calculated. The mean width of a specified percent of the peak on the whole events is 

calculated simply by averaging the width of the same specified percent of the peak on the 
different events. This mean width is then used for the average pulse response. To find the 

start time and end time of a specified percent of the peak on the APR the following 

procedure is applied. 

First, the differences between the start time and time to peak in a specified percent of the 

peak in the individual event is calculated. This difference then is divided by the width of 
the same specified percent of the peak. A similar computation is applied to the end time. 
The sum of these two ratios is unity. The mean ratio of the all the event is then calculated 
by averaging the ratios of the different events in the specified percent of the peak. 
Finally, the resulting ratios are applied to the mean time to peak calculated in the previous 
steps. At this stage, the properties of twenty points of average pulse response have been 

calculated ranging from 0 to 100 percent of the peak. The ordinates of the NAPR are 
calculated using the same interpolation program. Adjustment is applied to the resultant 
ordinates to provide a unit volume for the NAPR. Finally the NAPR are denormalized to 
calculate the ordinates of average pulse response of the all events. 

Figure (4.1) illustrates the relationship between the pulse response function, input and 
output of a hypothetical example, computing of convolution amounts is straightforward. 

4.2.1.1 Comparison of APR achieved from three different methods 

Two events from the Orgeval catchment are used to evaluate the performance of the three 
different APR determination procedures. A graphical comparison of the resulting pulse 
responses and convoluted rainfall are presented in figures (4.2) and (4.3) respectively. 
Meanwhile some characteristics of the initial and resultant pulse response and RMSE of 
convoluted rainfall are given in table (4.1). It can be seen that overall, the use of the 

proposed method has proved to be encouraging. Although it needs more investigation, 

this method may be worth consideration. 



Chapter 4 Further Development of TF models 105 

11i I'll PI U IUD V, U, 

Impulse Response Function 

Iýý 

Inpu 
A; 

Output . 

Figure(4.1) Linear transfer from input X to output Y (adapted from Box and Jenkins, 
1976) 

Table (4.1) Summary description of the characteristics of different methods of 
calculation of average pulse response 

al a2 a3 bi b2 b3 pulse pulse RMSE 
response response of 
tpeak peak reconvo 

lution 
Event 1 1.935 -0.979 0.040 0.005 0.022 0.004 18 0.213 - Event 2 1.533 -0.689 0.125 0,005 0.299 0.006 4 0.514 - Methodl 1.936 -1.141 0.194 0.001 0.153 -0.058 7 0.330 0.553 
Method2 - - - - - - 5 0.304 0.525 
Method 3 - - - - - - 11 0.309 0.536 

4.3 Improving TF model forecasting performance- A group model 
approach 

As mentioned in section (3.5.2) the pulse response function derived from a sequence of 
storms reflects the average catchment response to those storms. However, every event 
has its own distinguishing features according to antecedent conditions of catchment and 
storm characteristics. This implies that if a sequence of storms with similar characteristics 
are selected for calibration, the resultant average TF (ATF) may provide better forecasting 

performance for future events with similar characteristics. Thus, a suite of several ATFs 

could be constructed, and used to forecasting flows for events whose characteristics 
closely matched. 

-3-2 1 II IY3456789 10 11 
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Figure (4.2) Comparison of average pulse response obtained from three methods. 
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In such a manner, Viner (1992) classified storms into three groups depending upon the 
gradient of the rising limb of an individual storm's pulse response (PR). He concluded 
that the `higher gradient event' could be related to higher intensity flashy rainfall events 
often corresponding to higher intensity showers. Similarly, the lower gradient events 
were often seen to correspond to low intensity, long duration rainfall often associated 
with low intensity frontal type precipitation. Finally an intermediate group was also found 

where no dominant precipitation type could be identified. 

The quantity of runoff from a storm depends on the storm characteristics and the moisture 
conditions of the catchment at the beginning of the storm. Therefore, this section 
develops a storm classification scheme based not only upon storm characteristics but also 
the catchment antecedent condition. The classification approach developed utilizes 
variables that can be easily available in real-time in the hope that a significant 
improvement in real-time flow forecasts can be realised. In order to implement this study, 
all 32 Orgeval events used in construction of an average TF (section 3.5.2) were 
considered. Further, another individual event as well as eight verification events also are 
included. 

In order to classify events according to the PR gradient, a model with same order was 
calibrated for each event. The ordinates of pulse response function of each event were 
then calculated. For the purpose of direct comparison the steady state gain of the model 
was kept constant. 

Events were divided into three groups according to the gradient of the rising limb of the 
pulse response. A listing of each group is given in table (4.3) and figures (4.6) and (4.7). 
Although 41 distinct events were available from the WMO data set compared to the 24 

available to Viner it has not been possible to produce the same definite conclusions as him 

regarding the relationship between the gradient of the PR and precipitation type. Despite 
this it was decided to include a gradient classification to evaluate the probable role of the 

gradient of PR on the quality of forecasts. 

There are several methods for determining the antecedent moisture conditions of a 
catchment ranging from direct measurements (e. g. Lysimeters (Shaw, 1994)) to 
mathematical estimation (e. g. antecedent precipitation index, Linsley et al., 1983). Since 
the aim of the current investigation is to provide an index of the antecedent moisture 
condition for classification of catchment wetness, a simple method introduced by the US 
Soil Conservation Service (SCS) has been used. 
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The SCS established three antecedent moisture conditions in computing abstractions from 

storm rainfall (Wanielista, 1990). The three conditions relate to five day antecedent 
precipitation as shown in table (4.2). It should be stressed that the actual initial moisture 
of catchment depends on the type of soil, topography, vegetation, season, climatological 
conditions, etc. Therefore this classification only approximates the moisture condition of 
the catchment and is best considered as an indicator of the initial moisture of the 

catchment. 

Table (4.2) (after Wanielisa, 1990) based on an analysis of 41 events 

Condition Description Five Day Antecedent 
Precipitation (FDAP) 

1A condition of drainage basin soils <12.7 mm. 

where the soils are dry but not to 

wilting point (Lowest runoff potential ) 
2 The average case (Average runoff 12.7 to 38.1 mm. 

potential) 
3 When heavy rainfall or light rainfall >38.1 mm. 

with low Temperature have occurred 

producing high runoff potential 

The five day antecedent precipitation (FDAP) in two different periods with same daily 

amount of rainfall but with reverse order is the same. Therefore, five day and thirty day 

antecedent precipitation indices (API5, API30) were also calculated for all the events 
evaluated. In order to classify the values of API5 and API30 as indicated in figures (4.4) 

and (4.5) relationships between these values and FDAP were constructed. Then the 

values of API5 and API30 each were classified into three group using same relationships 
and FDAP boundaries. 

Different data sets can be chosen either by individual or joint consideration of 

characteristics. As mentioned earlier, the final purpose of this study is to use the group 

calibrated model for forecasting eight verification events. Therefore, as shown in figures 

(4.6) and (4.7) some groups obtained from a consideration of either individual or 

combined characteristics are not appropriate for the current study. As a result, and 

according to table (4.3), thirteen different groups have been derived to construct different 

average transfer function models. Note that the group D and group E are obtained from 

five day antecedent precipitation index classification. 
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Table (4.3) Details of classification used in group investigation 

Groups Calibration series verification series MO MPR APR PTPR Base flow 
name runoff 

relationship 
II 10,14,17,18,21,22,25,26 wmo2, wmo4, v2 3,1 53.9 34.9 8 - III 1,13,15,23,24,30 wmol, wmo3, 3,2 19.6 22.6 6 - 

wmo5, wmo6, vl 
A 1,2,3,4,5,6,7,8,9,11,12,13, wmo2, v2 3,2 34.0 26.7 8 R=18.3+10.4B 

14,15,16,17,19,20,26,27, 
28,29,31 

B 10,18,21,22,23,24,25,30, wmo3, wmo4, 3,3 43.1 31.7 8 R=15.5+9. OB 
32 wmo5, wmo6, vl 

AM 1,9, v2,14,17,26 wmo2, v2 3,3 20.4 21.5 9 R=6.1+15.2B 
BIT 10,18,21,22,25,32 wmo4 3,3 53.2 36.0 8 R= 12.7+14.7B 
BIII vl, 23,24,30 wmo3, wmo5, 3,3 22.5 20.3 6 R=11.0+6.6B 

wmo6, v1 
D 2,3,4,6,7,8,11,12,13,14,15 v2 3,2 36.3 27.9 9 R=17.7+12. OB 

,16,17,19,20,26,28,29 E 1,5,9,10,18,21,22,23,24,25 wmol, wmo2, 3,3 37.1 28.4 8 R=14.6+10.6B 

, 27,30,31,32 wmo3, wmo4, 
wmo5, wmo6, vl 

X 2,3,4,5,6,7,8,12,13,14,15, v2 3,3 37.5 29.2 9 - 
16,17,18,19,20,28,29 

Y 1,9,10,11,21,22,23,24,25, wmol, wmo2,3,1 35.8 26.8 8 R=12.8+11.4B 
26,27,30,31,32 wmo3, wmo4, 

wmo5, wmo6, vl 
XII 14,17,18 v2 3,3 44.7 29.6 9- 
YIII 1,23,24,30 wmol, wmo3,3,2 18.6 18.2 6 R=7.8+8.0B 

wmo5. wmo6. v 1 
APR = Average percentage runoff, MPR = Model percentage runoff, PTPR = Peak time of pulse 
response, MO = Model order 

4.3.1 Ordinary TF group model results 

In order to carry out the group model classification study the same methodology as 
described in section (2.5.1.4) was used. For each of the grouped time series a search 
procedure was applied and models of increasing order, ranging from 1: 1 through 8: 8 

were constructed and the pulse response functions as well as convoluted rainfall and error 
statistics compared. Once the appropriate equal order models were selected, the model 
order reduction technique was used and the ideal model for each group selected. Some 

characteristics of the grouped models are presented in table (4.3). 
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Figure (4.4) Thirty day antecedent precipitation index, five day antecedent precipitation 
relationship, Orgeval catchment. 
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Figure (4.5) Five day antecedent precipitation index, five day antecedent precipitation 

relationship, Orgeval catchment. 
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Figure (4.6) Classification of selected events according to five day antecedent 
precipitation and gradient of the pulse response, Orgeval catchment. 
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Figure (4.7) Classification of selected events according to thirty day antecedent 
precipitation index and gradient of the pulse response, Orgeval catchment. 
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The models calibrated for each of the thirteen groups were compared to the previous 
average transfer function (ATF) model. Verification events include the same six events 
which were used in section (3.5.4) together with another two events (15th November 
1973,30th November 1974) both of which are introduced later in this section. For the 
assessment of the performance of the models, the rainfall of each verification event was 
inputted into the given group model and the forecasted flows for one to nine steps ahead 
at each hour were calculated. Note that here, for better assessment of the models, the 
number of forecasts is increased from seven to the duration of each event (hours). 

It was mentioned in section (3.5.3) no obvious relationship existed between percentage 
runoff and base flow for the 32 events as a whole although the possibility of a grouped 
relationship was introduced. Figure (4.8) indicates that the extraction of such a 
relationship in some of the groups investigated is possible. The equations relating runoff 
to base flow for each event group are presented in table (4.3), and where applicable, these 

were used to estimate the initial A for use in forecasting. 

In order to evaluate the performance of the models, a direct subjective comparison was 
made of the forecasted hydrographs as well as an objective comparison of the RMSE of 
the flow forecasts at each time step ahead. This approach has been applied to all 
verification events and all groups where relevant. 

Only the best forecasting performances for each verification event are presented 
graphically. In order to allow a direct comparison with the forecasts produced in figures 
(3.14) to (3.16) and (3.20) only the same seven forecasts are included. Further, in each 
verification event, grouped forecasted flow hydrographs for one, four and nine hours 

ahead are compared to those forecasts produced by the ATF model. Finally for objective 
comparison the RMSE's of each event-case obtained from all the forecasts, together with 
the randomness-dispersion diagram (see appendix 1) are presented. The following 

paragraphs describe the symbols used in these figures giving a brief outline of the 

methodology used to compare the performance of different models. Thirteen cases are 
included in each figure represented by letters A to M. 

In section (3.5.3) when Aminvariable was selected as the initial 0, it was noted that if 

only the RMSEs are considered, the best initial A may be different. Here, for 

comparison, this initial A (Abest) is also used. Letter A represents the performance of 
ATF model resulting from all 32 events using Abest as the initial A. As with 
A urinvariable, A best is time variant. Letter B is allocated to the performance of the ATF 

model in which the initial A is A minvariable 



Chapter 4 Further Development of TF models 113 

60 

50 

40 

30 
0 

20 

to 

0 

25 22 
20 
G 

8 
11 18 

13  
027 

31 13 D 
119 

28 26 
+24 

4 a 
13 11 672 14 23 

120095 17013 
+ 

3 ao33 
*2 

2902 
10 

4 
3009 

+vl 

G 
11 

131 

0.0 1.0 2.0 3.0 
Initial flow (cumecs) 

a Zone Al 

o Zone All 

  Zone AIII 

* Zone BU 

+ Zone Bill 
Event 8 Number 

Figure (4.8) Percentage runoff and initial flow relationship in different classified zones. 

Letter C represents the performance of a group obtained from five day antecedent 
precipitation. Initial A is the smallest one and time variant. Letter D is related to the same 
group of models but the initial A is now calculated from the runoff and base flow 

relationship. A is again time variant. 

Letter E is concerned the ability of the thirty day antecedent precipitation index time series 
group, with the smallest A and variable with time. Letter F is the representative of the 

same group except the initial A is estimated from the runoff and base flow relationship. 

Letter G is related to a group consisting of the classified gradient of the pulse response. 
Initial 0 is again the lowest one and time variant. Note that here it was not possible to 

construct a relationship between runoff and base flow. 

Letter H is the representative of a group obtained from the thirty day antecedent 
precipitation index and gradient of the pulse response data sets. The smallest A is 

selected as the initial A. Letter I is used to show the forecasting performance of same 
group but the initial A is calculated from runoff and base flow dependency. 
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Letter J is selected to introduce the forecasting ability of a group which is composed of 
events with similar classified five day antecedent precipitation indices. The value of initial 
A is the lowest. Letter K represents the same group but the initial 0 is estimated from 
the runoff and base flow relationship. Finally letter L is selected to represent the 
performance of a group obtained from five day antecedent precipitation and gradient of 
the pulse response data sets. Initial A is again the lowest one and variable with time. 
Finally letter M is for forecasting ability of same group except initial A is estimated from 

runoff and base flow equation. 

Randomness-dispersion diagrams of each event group are presented at the top left of each 
graph. Some of the more notable results of the group evaluation for each eight verification 
event are described below. 

Event number one (31st December 1978) 

The graphs in figure (4.9) compare the RMSE's of the flow forecasts produced by the 
grouped models (GTF) and the original ATF model along with the randomness- 
dispersion diagram. For this event 7 out of the 13 cases listed previously can be 

evaluated. As an example, and because the FDAP of the event has a unique value, the 
evaluation of FDAP and its combination with other groups is not possible. 

Compared to the performance of Aminvariable in different groups only the API5 

outperforms the average model. At the same time in each model when initial A is 

extracted from the runoff-base flow equation, the model performed better. Figure (4.9) 

also indicates that at least from an RMSE point of view, the average model which used 
the best A provides the best result. However, firstly because of shortage of models 
evaluated and secondly because determination of the 0 best is not possible prior to 
analysis of the event, the extension of this conclusion is neither applicable nor useful for 

real-time application. The group which consisted of the API30 provides the second best 
forecasts, nevertheless, and as with the average model, its portmanteau statistic is greater 
than one. The group model which is composed of API5, from the RMSE point of view 
performs the third best model and is the first valid model both from portmanteau and 
RMSE statistics points of view together. 

Figure (4.10) shows the forecasting results of the best group model in which only the 
same seven forecasts as figures 3.14 (top) and (3.20) are presented. It can be seen that 
the quality of group models' forecasts is much better than those of ATF model. At the 
same time figure (4.11) compares the forecasted flow hydrographs for one, four and nine 
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hours ahead produced by the GTF and ATF models. In all three cases the GTF 

outperforms the ATF. 
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Fig. (4.9) Comparison of the RMSE, NTDI and Q/Ä ,7 of flow forecasts in different 
cases, Orgeval catchment, event no. 1. 
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Event number two (2nd Feb. 1979) 

In figure (4.12) the comparison of the RMSE of eleven cases are presented. As regards 
the comparison of the performance of 0 minvariable in different cases, two group models 

provide better forecasts than the ATF model: the FDAP and PR gradient model and the 
PR gradient model. The figure shows that in each case as Aminvariable is replaced with 
0 estimated from the runoff-base flow equation, the quality of result improves. On the 

whole it may be concluded that the group model obtained from the FDAP provides better 

results than the other models. It can be seen that the RMSE of this model is considerably 
lower than those of ATF model. 
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Fig. (4.12) Comparison of the RMSE, NTD1 and Q/XS% of flow forecasts in different 
cases, Orgeval catchment, event no. 2. 
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In figure (4.13) seven forecasts of this group model are presented whilst Figure (4.14) 

compares forecasted flow hydrographs for one, four and nine hours ahead compared with 
those forecasts of the average model. Results again show a great improvement in the 

quality of the forecasts as the group model is used. 
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Figure (4.13) Seven multiple step ahead forecasts by GTF model, Orgeval, event no. 2. 
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Event number three (10th March 1979) 

As indicated in figure (4.15) eleven cases are evaluated. When comparing the 
performance of 0 minvariable in the different model-cases almost all of the cases perform 
better than ATF. This itself confirms that the classification of the events will increase the 
quality of forecasts. Here again if the runoff-base flow equation is used for estimating the 
initial A, the performance of each model will be better. The figure also shows that the 

same problem related to NTD<O still is remaining for all eleven models evaluated. The 

figure clearly indicates that the model which is constructed from the combination of the 
FDAP and PR gradient by far presents the best forecasting results. 
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In order to compare the forecasting ability of the best GTF with those of the SPRTF and 
DPRTF (figures 3.15 top and 3.20) in figure (4.16) seven forecasts of the best GTF are 

presented. In addition, figure (4.17) shows forecasted flow hydrographs for one, four 

and nine hours ahead compared to same forecasts resulted by the average model. These 

figures demonstrate that the group model can provide more accurate forecasts than the 
ATF model. 
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Figure (4.16) Seven multiple step ahead forecasts by GTF model, Orgeval, event no. 3. 
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Figure (4.17) Forecast hydrographs, Orgeval catchment event no. 3 
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Event number four (13th March 1980) 

Figure (4.18) details the objective comparison of the forecasting accuracy of eleven 
model-cases. When compared to the Amjnvariable model almost all of the model-cases 
provide more accurate forecasts than the ATF model, indicating that the classification of 
events may lead to better forecasting results. Here the group model which consisted of the 
thirty day antecedent precipitation is an exception where the application of ATF resulted 
the better forecasts. As with other events investigated, when A is extracted from runoff- 
base flow equation the forecasting quality of each model improved. In contrast with other 
events here the ATF model with the best A used as initial A performs at least better for 
higher lead times. However, this conclusion cannot be used in reality when the best A of 
the coming event is not predictable in advance. Although when comparing the 
Aminvariable influence, the group model which is constructed from the events with same 
class of API30 is inferior to the ATF, it is superior to ATF model when A is extracted 
from runoff-base flow equation providing the second best results. The third best model is 

composed of the FDAP. Considering above expressions it was decided to select the last 

mentioned model as the best group model. 

Figure (4.19) presents the seven forecasts of the best group model in the same format as 
the WMO workshop. Further, in figure (4.20) the forecasted flow hydrographs for one, 
four and nine hours ahead for the GTF model are compared to those forecasts produced 
by the average model. These two figures both indicate that the group model out performs 
the average TF model. 
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Event number rive (13th July 1980) 

Figure (4.21) compares all thirteen model-cases. The figure clearly shows that when 
Aminvariable is used almost all of the models out perform the ATF model. With respect 
to 0 derived from a runoff-base flow relationship, here again the quality of forecasts is 
considerably better than those model in which the A minvariable is used. According to the 
figure the group model constructed from the combination of FDAP and PR gradient 
classes is by far the best. 

Figure (4.22) presents seven forecasts of the best group model in the same format as the 
WMO workshop (cf. figures (3.16 top) and (3.20)). In addition, figure (4.23) compares 
forecasted flow hydrographs for one, four and nine hours ahead both for ATF and best 
GTF. From these figures it can be concluded that again the GTF out performs the ATF 

model. 

Event number six (20th July 1980) 

The graphs in figure (4.24) show the comparison of the RMSE of the flow forecasts 

obtained from all thirteen model-cases investigated along with the randomness-dispersion 
diagram. The portmanteau statistic in all cases exceeds unity, indicating significant auto 
correlation in the residuals. As regards the A minvariable similar to other events, with 
almost all of the models outperforming the ATF model. Consistent with previous events 
is that when the initial A value is derived from the runoff-base flow equation, the quality 
of forecasts improves dramatically. The figure clearly indicates that the group model 
constructed from the combination of FDAP and PR gradient classes is the best model. 
Figure (4.25) shows the forecasting performance of the best group model in which only 
the same seven forecasts as figures (3.16 bottom) and (3.20) are presented. It can be seen 
that the quality of group model's forecasts is much better than those of the ATF. At the 
same time, figure (4.26) compares the forecasted flow hydrographs for one, four and 
nine hours ahead to those of the average model. In all three cases the group model 
provides more accurate forecasts than the average model. 
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Fig. (4.21) Comparison of the RMSE, NTD 1 and Q/ A, ,y of flow forecasts in different 
cases, Orgeval catchment, event no. 5. 
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Fig. (4.24) Comparison of the RMSE, NTD 1 and Q/ , of flow forecasts in different 

cases, Orgeval catchment, event no. 6. 

E 
u 

oL 
R r 

Observed discharge 

-E- First forecast 

4. Second forecast 

X Third forecast 

0 Fourth forecast 

0 Fifth forecast 

Sixth forecast 

Seventh forecast 

Threshold 

Time(hours) 

Figure (4.25) Seven multiple step ahead forecasts by GTF model, Orgeval, event no. 6. 



Chapter 4 Further Development of TF models 130 

20 

15 
h 
U 
U 

E 
° 10 

ýý 

J\ 
-Lý -ý 

Jý 

/! 

3 
ID 

w5 

0 
05 10 15 20 25 30 

Time (hours) 
(i) One step ahead forecasts 

20 

u m 
E 
0 
u 

3 
c 
w 

0 

25 

20 

15 

3 10 

w 
5 

A 

t 

rý 

7 

05 10 15 20 25 30 

Time (hours) 

Actual flow 

Group model 

Average model 

(iii) Nine step ahead forecasts 

Figure (4.26) Forecast hydrographs, Orgeval catchment event no. 6 

05 t0 15 20 25 30 

Time (hours) 

(ii) Four step ahead forecasts 



Chapter 4 Further Development of TF models 131 

Event number seven (15th November 1973) 

The event occurring during the 15th November 1973 was a small single peaked flood 
hydrograph with maximum flow of 2.41 m3s-I resulting from a four hours of relatively 
heavy rainfall totalling 11.8 mm. The event hyetograph and hydrograph are presented in 

appendix 2. 

Figure (4.27) provides a comparison of the RMSE of all thirteen model-cases evaluated. 
All group models provide better forecasts than ATF model using Aminvariable. The 
figure also shows that in each case as the A minvariable is replaced with A estimated 
from the runoff-base flow equation, the quality of results is improved. According to the 
figure, it may be concluded that the model obtained from the FDAP provides better 

overall results than the other models. 
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Event number eight (30th November 1974) 

This event is also a small single peaked flood hydrograph with maximum flow of 2.99 

m3s'. The increase in flow was caused by long duration of light rainfall (18 hours) 

totalling 8.2 mm. As indicated in figure (4.28) eleven model-cases are evaluated. Most of 
the group model-cases outperform the ATF using 0 minvariable. Here again when the 

runoff-base flow equation is used for estimating the initial A, the performance of each 
individual model improves. As far as the selection of the best model is concerned, the 
figure shows that when the best 0 is used as initial 0 at least from RMSE point of view 
the ATF is the best amongst the models. However, firstly because the portmanteau of this 

model is bigger than unity and secondly as mentioned earlier the best 0 of coming event 
is not predictable in advance, it may be concluded that the FDAP model is the best one. 

u 
ar 

7 
U_ 

y 

u 
a L 
O 

c.. 
3 
O 

C 
w 
O 

:ý 

l 

x 

Time Steps ahead (Hours) 

A-Total Events -A best, B- Total Events -A Min variable, C- Five day antecedent rainfall 

-A Min variable- D- Five day amecedent rainfall- A from runoff baseflow equation. E- 
Tl irty days API-A Min variable, G- IF model gradient-A Min variable, H- TF model 
gradient & thirty days API-A Min variable, J- Five days API -A Min variable. K- Five 
days API-A from runoff baseflow equation, L- Five day antecedent rainfall & TF motet 
gradient-A Min variable. M- Five day antecedent rainfall At TF model gradient-A from 
runoff baseflow equation. 

-ý A 

-+B 
-" L 

p 
H 

ý_ M 

Fig. (4.28) Comparison of the RMSE, NTD 1 and Q/ % Sao of flow forecasts in different 
cases, Orgeval catchment, event no. 8. 

02468 10 



Chapter 4 Further Development of TF models 133 

4.3.2 PRTF model group results 

In order to include group based PRTF models, the 32 events used to calibrate an average 
PRTF model were classified into two groups according to their FDAP. Each group was 
then used to calibrate two group PRTF (GPRTF) models. These two group models were 
then used for forecasting the same verification events analysed in previous sections. Both 
the static and dynamic GPRTF are evaluated. 

For the purpose of assessment of the abilities of the GPRTF models an objective 
approach is used which compares the RMSE of the flow forecasts from both the average 
PRTF and GPRTF models. Table (4.4) shows the summary of this comparison at each 
time step ahead. 

It should be noted that because the FDAP of verification event number one did not fall 
within either group no assessment has been performed for this event. Secondly in the 

majority of the cases the group models outperform the average model. It should be 

emphasised that there is still room for improvement in the performance of the GPRTF 

model, especially in dynamic form. The improvement could be obtained firstly through 
the detailed classification of the events in a similar manner to the OTF model and secondly 
through manual tuning of the PRTF model. As mentioned in section (2.5.2.2), for 

adjustment of the PRTF model parameters, the automatic mode was used. Although the 
automatic mode has some advantages, it attempts to optimise the accuracy of the whole 
forecast hydrograph and may therefore lead to poor representation of the peak of 
hydrograph in order to better model the recession limb. 

4.3.3 Group model summary conclusions 

As presented in previous sections eight verification events were used to evaluate the 

group model performance. It can be seen that in cases the use of a group model produced 
improved perform once over an ATF model. The study clearly demonstrated that it is 

much better to calibrate a TF model using a sequence of storms with similar 
characteristics. Note that the classification of events should be based on a series of 
characteristics which are known or predictable prior to occurrence of event. Therefore in 

such a manner it will be possible to tailor an appropriate ATF model to a coming event 
using an expert system approach. 
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Table (4.4) RMSE result of average and grouped PRTF models in different events 
(Orgeval catchment). 

Even t number two Event number three 
step ati PRTF Dynamic PRTF Static PRTF Dynamic PRTF 
ahead APRTF GPRTF APRTF GPRTF APRTF GPRTF APRTF GPRTF 
1 0.145 0.144 0.332 0.350 0.396 0.390 0.382 0.331 
2 0.356 0.352 0.654 0.691 0.801 0.787 0.753 0.650 
3 0.607 0.603 0.959 1.016 1.225 1.200 1.109 0.952 
4 0.883 0.877 1.244 1.322 1.677 1.641 1.445 1.231 
5 1.64 1.158 1.506 1.604 2.159 2.110 1.754 1.486 
6 1.441 1.436 1.749 1.866 2.647 2.583 2.028 1.707 
7 1.708 1.704 1.972 2.105 3.133 3.053 2.265 1.892 
8 1.938 1.936 2.160 2.307 3.592 3.498 2.456 2.032 
9 2.117 2.117 2.305 2.462 4.025 3.920 2.605 2.128 
NTD1 0.883 0.885 0.391 0.323 0.454 0.470 0.493 0.619 
Q/ X2 0.852 0.828 4.903 5.003 0.416 0.445 7.211 6.282 

Table (4.4) Continued 

Event number km Event number f is 
step t tic PRTF D ny amic PRTF Static PRTF Dynamic PRTF 
ahead APRTF GPRTF APRTF GPRTF APRTF GPRTF APRTF GPRTF 
1 0.454 0.471 0.974 0.885 0.867 0.859 1.143 1.034 
2 1.069 1.123 1.897 1.706 2.026 1.991 2.155 1.965 
3 1.800 1.909 2.747 2.445 3.251 3.170 3.052 2.808 
4 2.597 2.775 3.514 3.093 4.431 4.296 3.792 3.488 
5 3.378 3.648 4.200 3.647 5.374 5.184 4.326 4.000 
6 4.212 4.580 4.873 4.191 6.074 5.811 4.607 4.303 
7 5.098 5.570 5.538 4.738 6.608 6.261 4.847 4.619 
8 6.025 6.600 6.203 5.295 7.099 6.677 5.131 4.987 
9 6.970 7.644 6.863 5.883 7.377 6.865 5.340 5.301 
NTDI 0.873 0.863 0.416 0.518 0.651 0.658 0.393 0.504 

Q/ X2 0.783 0.797 3.554 2.844 0.400 0.394 2.721 2.681 

Table (4.4) Continued 

Event number six 
step Static PRTF Dynamic PRTF 
ahead APRTF GPRTF APRTF GPRTF 
1 0.570 0.568 0.735 0.625 
2 1.288 1.276 1.370 1.212 
3 2.021 1.995 1.922 1.685 
4 2.809 2.765 2.396 2.082 
5 3.511 3.446 2.668 2.273 
6 4.085 4.002 2.798 2.327 
7 4.525 4.433 2.800 2.261 
8 4.800 4.714 2.656 2.060 
9 4.887 4.840 2.431 1.764 
NTD 1 0.651 0.653 0.419 0.580 

Q/ X2 0.693 0.682 1.837 2.417 
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In the current study events were classified according to the pulse response gradient of the 
event and antecedent precipitation characteristics. It has been shown that for all eight 
events the FDAP featured in the best group model. In verification events five and six, the 
best group model was one constructed from the events with a combination of FDAP and 
PR gradient. However, this study did not reveal a clear relationship between the PR 

gradient and the characteristics of the expected rainfall, and these findings are therefore of 
limited application in a real-time contest. It is possible that an extended event database 

might support the identification of a relationship between the PR gradient and the type as 
well as characteristics of coming rainfall 

As far as the five day antecedent precipitation characteristics are concerned, an expert 
system can be used to match the antecedent catchment conditions as closely as possible to 
those of a group model previously calibrated and then use it for forecasting purpose. 
However, since the amount of the runoff from a storm is related to a number of physical 
characteristics including topography, type of soil, vegetation, and climatological 
conditions, any expert system knowledge base should involve all of these variables. As 
the appropriate data were not available for this analysis, a detailed investigation of these 

variables could not be conducted. Instead, in section (4.3.4) a relatively comprehensive 
methodology for future work is proposed. 

In table (4.5) some statistics of observed flow and forecasted flow using the group 
models are presented. 

4.3.4 Proposed format for grouped models 

Earlier sections have demonstrated that group classification of events according to 
event/catchment characteristics improves the performance of TF models. In previous 
sections because of lack of data only a limited numbers of variables affecting the amount 
of runoff are considered. But there are other variables which also can affect the quantity 
of runoff. As discussed by Han (1991) and Suyanto et al. (1995) runoff response is 
determined by a large number of factors including: initial catchment wetness condition, 
the space-time distribution of rainfall; storm characteristics such as depth, duration, type, 

orientation and velocity, storm area; catchment geology and geomorphology; catchment 
characteristics such as size, physiography, and soil type. Furthermore, climatological 
conditions and vegetation cover should be considered. 
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Table (4.5) Performance of the grouped models in lead time of one hour in different 
events (Orgeval catchment). 

Event no. Name of model Peak flow Forecasted peak Absolute error Percent error 
(cumecs) flow (cumecs) (cumecs) 

OTF 14.61 14.66 -0.05 -0.3 
1 SPRTF --- 

DPRTF --- 

OTF 10.25 10.40 -0.15 -1.5 2 SPRTF 10.46 -0.21 -2.1 
DPRTF 10.34 -0.09 -0.9 

OTF 12.94 12.91 0.03 0.2 
3 SPRTF 12.99 -0.05 -0.4 DPRTF 13.05 -0.11 -0.9 

OTF 28.79 28.95 -0.16 -0.6 4 SPRTF 29.00 -0.21 -0.7 DPRTF 28.96 -0.17 -0.6 
OTF 15.32 16.71 -1.39 -9.1 

5 SPRTF 16.51 -1.19 -7.8 
DPRTF 16.44 -1.12 -7.3 
OTF 15.45 15.54 -0.09 -0.6 

6 SPRTF 15.58 -0.13 -0.8 
DPRTF 15.35 0.10 0.6 

It is clear that the storm depth is the most important variable amongst the list, but there are 
some difficulties in direct investigation of depth. The position of rainfall within a 
catchment is a major factor affecting the runoff response. Rainfall in the lower area of 
catchment will produce a fast and peaked response. On the other hand, rainfall 
concentrated over the upper zone of catchment can generate a smooth response with 
longer time to peak. Finally, rainfall occurring in the middle part of catchment will 
produce a response which falls between two extreme limits. A storm moving upstream 
will generate a lower flow discharge than one moving down stream. Similarly, storms 
moving across the catchment can provide more flow discharge than storms moving 
upstream. A high intensity rainfall produces peakier and shorter response than one with 
lower intensity. The dry initial catchment wetness condition will generate lower flow 
discharge, because some part of rainfall will be absorbed and infiltrate into the deep soil. 
In a similar way vegetated covered catchment produces lower flow discharge than one 
which is bare. 

Bishop and Watt (1989) presented an expert system knowledge based method to select 
appropriate forecasting method. The same classification procedure used to arrange factors 

affecting the runoff response. This is presented in figure (4.29). Upon examination it can 
be seen that some of the items are fixed factors for the particular catchment. For example, 
the size, physiography, soil type can be accounted for as fixed physical catchment 
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parameters. On the other hand, some other items are variable in the short term. Hence 

procedure suggested to classify the variables and to select an appropriate group model, 
requires a two-step approach. In the first step, fixed items are used to determine an 
essentially fixed hydrologically based category, and in the second step the other items 

which narrow down the choice of group model are used. For a given catchment the 

second step is most important. 

From the above discussion it can be concluded that it is possible to classify historical data 

according to some pre-defined boundaries which will be determined for each catchment- 
variable. The classification of the historical events could then be implemented to construct 

an appropriate group model for similar events. It is clear that the number of groups will 
depend on the number of variables considered and the number of boundaries identified 
for each variable. 

Once the appropriate classification of historical events has been implemented and proper 
models identified for each group, the choice of the best model for a future event could be 

made by an expert system approach using a series of IF/THEN rules in the form: 

IF this condition is true, THEN his action is appropriate 

Through such an approach it would be practicable to select a particular group model from 

a suite of forecasting models using a decision tree scheme. 

The implementation of such an approach is not easy and needs an extensive historical data 

base (knowledge base) as well as detailed consideration of meteorological and 
hydrological factors. Detailed classification of the variables is possible which depends on 
the facilities available. The variables used for model selection must be known or 

predictable prior to the occurrence of the storm. 
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no SMD (soil moisture deficit) clasification 

Is storm movement or some kind classification of antecedent 

no 
yes Is the rainfall in the Approperiate classification of storm 

whole catchment speed Jno 

yes 
Is the rainfall in the 

upper catchment Approperiate classification of average 
rainfall intensity 

no 

yes Is the rainfall in the 
middle catchment 

Rainfall type 
no 

yes Is the rainfall in the 
down catchment 

Frontal Shower Dominant 
precipitation 

Storm movement and storm area 
classification 

Figure (4.29) A semi detailed scheme to classify group events. 

4.4 Single event model investigation 

Occasionally modellers prefer model to operate without requiring a long memory of data 

prior to the flood event. In this case the model needs to be initialised with a short time 
data set before the main event. In order to investigate the forecasting accuracy of a model 
constructed from a single event, a study has been made using six verification events of 
the Orgeval catchment. In each case the data of the event immediately prior to main event 
was extracted and a model calibrated (the hyetographs and hydrographs of these pre- 
events are presented in appendix 2). The calibrated models were then used for forecasting 
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the six verification events. As usual the calibrated model was identified using the search 
and reduction technique described in section (2.5.1.4). This process has been applied to 
both ordinary TF model and PRTF model. 

For the evaluation of the performance of the single-based event, an objective approach 
was used by comparing the RMSE of the flow forecasts at each time step ahead between 
the average transfer function and single-based event transfer function models. The results 
of this study are given in table (4.6). 

From table (4.6) the following observation can be made. In verification event number one 
the average TF model outperforms the single-event based model in all of the OTF, 
SPRTF and DPRTF models. In event number two again the quality of the forecasts of 
both OTF and SPRTF in average mode is better than those of the single-based event 
mode. However, the DPRTF model provides better results for the single-based event. In 

contrast, in event number three all three models calibrated from the single-based event are 
superior to those of the average model. In event number four it was not possible to 
construct an appropriate calibrated model for the OTF case (because none of the resulted 
pulse response was valid from hydrological point of view), but an average model 
provided better forecasts than the PRTF model both in static and dynamic form. In event 
number five, static models constructed from the single-based event provided better results 
than an average model, whereas in dynamic form, the single-based event's result are 
inferior to the average model. Finally in event number six the PRTF models perform 
better in average mode than in the single-based event mode. At the same time OTF model 
resulted from the single-based event provide better forecasts. 

On the whole it is not possible to draw a definite consistent conclusion concerning the 
performance of the average and the single-based event transfer function models from 

these six events. In order to extract a definite conclusion many more events would need to 
be investigated. 

4.5 Overall comparison of the results of different models 

First it should be stressed that for flood forecasting the RMSE criteria is the most useful, 
since it provides a measure of the absolute forecasting error. Although the portmanteau 
statistic is invaluable criteria of when a model is adequately modelling the data set, and it 
is not, but it is less useful to show the quantity of the forecasting error. As a general 
evaluation of comparison of the results of different models, the following conclusions can 
be stated: 
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Table (4.6) RMSE result of average and single-based event models for different 
events (Orgeval catchment). 

Event number oae 
step Q. 'E SPRTF DPR F 
ahead average single average single average single 
1 0.254 0.288 0.279 0.307 0.433 0.803 
2 0.638 0.697 0.674 0.715 0.811 1.251 
3 1.096 1.156 1.127 1.165 1.118 1.600 
4 1.573 1.632 1.603 1.630 1.356 2.037 
5 2.034 2.111 2.076 2.103 1.537 2.547 
6 2.498 2.599 2.556 2.592 1.683 2.909 
7 2.988 3.090 3.042 3.080 1.805 3.085 
8 3.473 3.565 3.510 3.550 1.895 3.417 
9 3.961 4.017 3.951 3.995 1.959 3.639 
NTDI 0.850 0.806 0.819 0.780 0.561 -0.510 
Q/X2 0.726 1.313 0.884 0.947 1.683 4.315 

Table (4.6) Continued 

step Q. 
two 

ahead average single average single average single 
1 0.127 0.130 0.145 0.142 0.332 0.279 
2 0.317 0.327 0.356 0.352 0.654 0.554 
3 0.557 0.580 0.607 0.614 0.959 0.815 
4 0.842 0.884 0.883 0.916 1.244 1.061 
5 1.147 1.210 1.164 1.240 1.506 1.293 
6 1.445 1.529 1.441 1.575 1.749 1.515 
7 1.736 1.838 1.708 1.920 1.972 1.724 
8 1.991 2.104 1.938 2.250 2.160 1.905 
9 2.182 2.300 2.117 2.555 2.305 2.048 
NTD1 0.911 0.907 0.883 0.889 0.391 0.571 

Q/X2 0.541 1.038 0.852 0.760 4.903 3.443 

Table (4.6) Continued 

step Q'E 
three 

ahead average single average single average single 
1 0.610 0.566 0.396 0.383 0.382 0.325 
2 1.199 1.074 0.801 0.770 0.753 0.644 
3 1.773 1.546 1.225 1.174 1.109 0.961 
4 2.323 1.997 1.677 1.606 1.445 1.254 
5 2.851 2.442 2.159 2.064 1.754 1.537 
6 3.331 2.867 2.647 2.526 2.028 1.794 
7 3.758 3.269 3.133 2.982 2.265 2.038 
8 4.119 3.633 3.592 3.412 2.456 2.275 
9 4.426 3.969 4.025 3.821 2.605 2.513 
NTD1 -0.293 -0.114 0.454 0.490 0.493 0.632 

Q/ X2 0.225 0.278 0.416 0.499 7.211 3.916 
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Table (4.6 continued) RMSE result of average and single-based event models for 
different events (Orgeval catchment). 

Event number font 
step OTF SERI DPRTF 
ahead average single average single average single 
1 0.421 - 0.454 0.455 0.974 1.463 
2 0.998 - 1.069 1.073 1.897 2.853 
3 1.738 - 1.800 1.808 2.747 4.206 
4 2.629 - 2.596 2.608 3.514 5.384 
5 3.529 - 3.378 3.398 4.200 6.376 
6 4.488 - 4.212 4.239 4.873 7.249 
7 5.489 - 5.098 5.134 5.538 8.103 
8 6.519 - 6.025 6.070 6.203 9.004 
9 7.552 - 6.970 7.023 6.863 10.013 
NTDI 0.891 - 0.873 0.873 0.416 -0.316 
Q/X2 0.395 - 0.783 0.784 3.554 3.339 

Table (4.6) Continued 

Event number five 
step OTF SPRT D$TE 
ahead average single average single average single 
1 0.842 1.330 0.867 0.842 1.143 2.325 
2 2.096 2.342 2.026 1.909 2.155 4.118 
3 3.405 3.305 3.251 2.988 3.052 5.325 
4 4.620 4.064 4.431 4.006 3.792 6.295 
5 5.443 4.545 5.374 4.805 4.326 6.994 
6 5.999 4.672 6.074 5.317 4.607 7.266 
7 6.300 4.607 6.608 5.645 4.847 7.291 
8 6.443 4.606 7.099 5.969 5.131 7.239 
9 6.418 4.517 7.377 6.053 5.340 6.843 
NTDI 0.671 0.179 0.651 0.671 0.393 -1.509 
Q/X2 0.472 4.749 0.399 0.383 2.721 2.245 

Table (4.6) Continued 

Event number Lii 
step OTF PS RTF DPRTF 
ahead average single average single average single 
1 0.594 0.525 0.570 0.650 0.735 0.934 
2 1.429 1.175 1.288 1.657 1.370 1.799 
3 2.211 1.802 2.021 2.724 1.922 2.581 
4 2.989 2.453 2.809 3.894 2.396 3.273 
5 3.694 2.990 3.511 5.104 2.668 3.793 
6 4.258 3.404 4.085 6.234 2.798 4.222 
7 4.686 3.713 4.525 7.253 2.800 4.626 
8 5.027 3.920 4.800 8.162 2.656 5.024 
9 5.205 4.043 4.887 8.798 2.431 5.467 
NTDI 0.621 0.703 0.651 0.545 0.419 0.062 

Q/ X2 1.161 0.558 0.693 1.199 1.837 1.147 
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1 -PRTF model in static and dynamic form 
From the RMSE the dynamic form out performs the static form in 60% of cases. 
However, from the portmanteau statistic the static form results are superior in almost all 

cases. 

2-PRTF and OTF models 
If only the RMSE results are considered, the ordinary transfer function model 

outperforms the PRTF model in 70% of cases. From the portmanteau statistic the 

performance of the models is the same. 

3-Average and group PRTF models 
Group PRTF models are superior to APRTF models with regards to both the RMSE and 

portmanteau statistic. In 80% of the cases evaluated, the group PRTF forecasts are more 

accurate than those of the APRTF models. 

4-Group model and single-based event model 
4-1 OTF model 
From the RMSE and portmanteau statistics the group model performs better than the 

single event model in 90% and 80% of cases considered respectively. 
4-2 PRTF model 
The RMSE results of the group model are lower than the single event model for 60% of 

cases. However, for the portmanteau statistic the same figure is only 36%. 

If both the OTF and PRTF models are considered together, then in almost 75% of cases 
investigated, the group models performed better than the single event models. 

5-The group model performs considerably better than an average TF model. 

Finally, the RMSEs of the Orgeval group model and ATF are compared with those of 
WMO workshop models. A summary of this comparison is presented in table (4.7). 

The results of the group calibration approach are encouraging, with application of the 

group model increasing the quality of forecasts in all cases. 
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Table (4.7) Rank of models investigated, Orgeval catchment 

One step ahead: 
TF GAPI SMAR CEQUEAU NAMSII SSARR SPRTF CLS HBV UBC HFS DPRTF 
k-I 

On average: 
GAPI SMAR NAMSII HBV CEQUEAU HFS TF CLS SSARR UBCI DPRTF SPRTF 

Nine step ahead: 
A 

HBV NAMSII GAPI HFS CEQUEAU SSARR SMAR TF CLS UBC DPRTF SPRTF 

A 

Improvement in rank resulted from the group model 

4.6 Conclusion 

In the first section of the chapter a simple model to calculate the average pulse response is 
developed. The proposed model uses the average characteristics rather than average of the 

ordinates of pulse response. It has been shown that overall, the use of the proposed 

method is encouraging. 

Although theoretically better models can be identified using a long sequence of gauge 
rainfall and flow series, it does not guarantee better forecasts than a model calibrated 
using a single isolated event. In order to compare the quality of forecasts obtained from 

average and isolated event TF models, an individual calibrated model was identified for 

each of six verification events, using the data of the event immediately prior to main 
event. Calibrated models were used for forecasting of the six verification events. 
Unfortunately, it has not been possible to draw a definite conclusion concerning the 

performance of the two different methods at least from these six verification events. 

The chapter describes an extensive analysis of group calibrated TF models identified 
through the classification of similar events. Since the quantity of runoff from a storm 
depends on the storm and catchment characteristics, similarity should include both of 
these two variables. In such a manner, 33 calibrated events and eight verification events 
for the Orgeval catchment were classified into different groups on the basis of the gradient 
of the rising limb of an individual storm's pulse response (as an indicator of the rainfall 
type) and five and thirty day antecedent precipitation index as well as five day antecedent 
precipitation(all as an indicator of the antecedent moisture condition of the catchment). 
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This classification provided thirteen different groups which are used to construct thirteen 
individual models. Although the primary results of this classification revealed that there is 

not definite dependency between the type of rainfall and gradient of pulse response at 
least from the 41 events studied the benefits of calibrating a TF model using a sequence of 
storms whose characteristics are similar were demonstrated. Based on objective statistical 

results and subjective comparisons it is concluded that the use of group model resulted in 

a significant improvement on the quality of the forecasts. It is worth noting that for all 
eight events the five day antecedent precipitation was a feature in the best group model. 
Since the FDAP is known prior to event occurrence it would be possible to tailor an 
appropriate average transfer function model to forthcoming events using an expert based 

system approach. Finally since the amount of the runoff from a storm depends to the 

several other variables, an expert based system has been suggested, primarily as the basis 
for future work. 
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CHAPTER 5 

SYSTEM IDENTIFICATION (PARAMETER ESTIMATION) 

5.1 Introduction 

This chapter deals with parameter estimation techniques in general and the one used in the 

previous chapters of the thesis in particular. The estimation of model parameters has been 

widely researched over many years. Numerous parameter estimation techniques exist: a 
comprehensive review of techniques was made by Ljung (1987), and a number of 
estimation techniques were evaluated by Harpin (1982). Parameter estimation in rainfall- 
runoff modelling is not an easy task and the difficulty increases as the number of model 
parameters increases. Three major reasons may be mentioned for these difficulties (Chiew 

et al., 1993). First, because of discontinuities in the response of rainfall-runoff models 
due to use of constraints to prevent parameters from taking unrealistic values, an 
estimation run may be trapped in one of the discontinuities, consequently a local optimum 
set of parameter values will be selected. Second, usually various parameters of the 
models are interdependent. Third, the statistical assumptions of zero mean, constant 
variance, and normally distributed errors are rarely satisfied. Furthermore, in many cases 
misselection of the initial parameter values and criteria used to terminate the estimation run 
may be led to inappropriate parameters. 

The main body of this chapter details the ordinary least squares and recursive parameter 
estimation procedures including the stochastic, sequential learning algorithm, recursive 
ordinary least squares, and Kalman filter estimators. Instrumental variable and neural 
network techniques are also addressed. The application of another estimation technique, 
genetic algorithm is discussed in chapter six. 

5.2 Least squares batch estimation 

As showed in section (2.5.1) the relationships presented in equation (2.39) cannot be 

expected to represent river flow behaviour exactly and an error term will be required. The 

error term represents the effects of model inadequacy and measurement noise in the flow 

and rainfall variables. The system represented in equation (2.39) can be written as: 
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y=X/3+c 

where 

Y--'= (y, Y2 .......... ytyt+, 
) T 

=output vector 

0= (a, a2........ amb, b2....... bn)T =parameter vector 

_ 
(ý, ý2........ ý, )T 

=noise vector 

yo 0 0 uo 0 .0 
Y, yo 0 u, uo 0 

Y2 y, 0 U2 u1 0 

Xt = . . 
YO . . uo 

Y, u, 

yt yt-1 yt-m+l ut ut-1 ut-n+1 

The system is modelled by a set of parameter estimates ß: 

y=xQ 

An error vector e is defined such that: 

e=Y-Y 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

As both positive and negative errors contribute in a positive sense to its value, usually a 

quadratic error criterion is defined as: 

E =eTe=Cy-yýT ly-9ý 

therefore 

(5.5) 

E_(y-x%3)T(y-x, )=yTy+(xj)T(xp)-yT(X/3)-(Xß)Ty (5.6) 
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Differentiating with respect to ß gives: 

aE 
= 2XT X/ - 2XT Y 

as 
(5.7) 

The least squares estimate of the parameter is now obtained by equating 
aE 

to zero, 
as 

where E is a minimum. Therefore: 

xTxQ=xTY (5.8) 

13=(XTX)_'XTY (5.9) 

This type of estimator is termed a batch estimator and can be seen that it requires a matrix 
inversion. 

5.3 Recursive estimators 

In many cases, and in particular in real-time, it is desirable that the model uses all 
observations up to the current time. Consequently, model parameters should be calculated 
repeatedly as and when new data became available. Identification techniques that comply 
with this requirement are called recursive identification methods. Other commonly used 
terms for such techniques are on-line or real-time identification, adaptive parameter 
estimation, or sequential parameter estimation (Ljung, 1987). 

In batch estimation, all previously measured data are processed together. In recursive 
form, the previously estimated parameters and only newly available data are used, that is 
it considers the most recent observations, and disregards the old ones. 

The principle of the recursive technique can be illustrated through the following simple 
example. If the mean of the series at time t, based on t previous measurement, is given 
by: 

lr 
fir = -ý, Xi 

t j_l 
(5.10) 

then the mean at time t+1 is given by: 
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1 t+l 1t1 
j'r+l 

t+lExi t 
Yxi+t+lx�. 

i=l i=l 

therefore 

µt+1 = µ, +t+1 (x1+l -91) 

Similarly, other statistical properties of the series can be calculated. 

In all recursive estimation techniques, the form of the algorithm is: 

Qt+l =Qý+ 

(i. e. New parameter = old parameter + Gain x error) 

(5.11) 

(5.12) 

(5.13) 

where the term y, is the forecast value of yt. Differences between each type of recursive 

algorithm lies in the form of the gain term (Gt). 

5.3.1 Stochastic technique 

Perhaps the computationally simplest recursive algorithm is the stochastic approximation 

algorithm (Harpin, 1982): 

"ý 2 
Pt+I «t (5.14) 

where xt is the input vector xt = (Yr-lYt-2 
"""""""Yr-mUt-1Ut-2 """"""ur-n) and y, is 

the previous prediction of the output: 

= xT ß (5.15) 

Note the autoregressive-moving average model of equation (2.39) can be defined by 

using: 

= ä, äz...... ämb, bz...... bn)r and xt = (Yt-lYt-z....... yt-mut_, ut_z...... ut_�)T 

However, instability makes this technique of little practical use. 
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5.3.2 Sequential learning algorithm 

The sequential learning algorithm proposed by Nagumo and Noda (1967) is of the form: 

ýr+t 
- ßr +Y` (y, 

x, Txt (5.16) 

where 0<y<2. In order to obtain a small state gain and rapid convergence, the 
coefficient y must be less than unity. As the denominator of the gain, x'xt, is a scalar 
value, matrix inversion is not required. Harpin (1982) concluded that the gain can become 
infinitely large if there are no values in the input vector, xt, as often occurs in rainfall- 

runoff sequences. 

5.3.3 Recursive Ordinary Least Squares (ROLS) 

It can be seen from equation (5.9) that if there are (q) parameters, application of the least 

squares batch estimator, requires the inversion of an (q. q) matrix. In real-time, when an 
additional piece of information is received at the (t+l)`h time step, the recalculation and 
reinversion of the (q. q) matrix is necessary. Plackett (1950) derived a recursive technique 
to successively update the parameter estimates with the addition of new data, thus 

avoiding matrix inversion. 

If an additional pair of observations are received at time t+], equation (5.2) and (5.9) 
take the following form: 

Yo Uo . 
Y1 u, 

Yr ut 

Y, +J .. ul+I ". 

rTIT ýt+l 
- \X1+1 t+I) 

Xt+I yt+l 

Defining 

Xt 

T 
xr+t 

(5.17) 

(5.18) 

P-' = XT X, (5.19) 
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It can be shown that: 

_QP yr+l - xr+t I'r 
) 

r+l -rr ++1 xt+1 
T 

where 

P+l= ý' - YAP xI+I x +lP 

and 

1 

Yt = ýl+xT 
1Px1+1)- 

(5.20) 

As y, is a scalar there is no need for matrix inversion. The parameter estimate vector Q 

and P, are initialised as: 

/30 = (00.......... 0)T (5.21) 

Po =cxI (I= Identity matrix) (5.22) 

where c is a large number (for example 1000). 

Harpin (1982) concluded that the recursive least squares estimator is adequate for transfer 
function models in hydrological environments, despite the biased nature of the parameters 
away from the true values in the presence of coloured noise. 

5.3.4 Kalman filter estimation 

The following formulation are used in the Kalman filter approach: 

ßt+l _ /3t + wt (5.23) 

y, = xT ßt +V (5.24) 

where w, and Vl are the system model and measurement noise respectively. 

r T1 2 E`wkw; J=q 8kV 
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E[vkvf ]= 
r2Ukj 

E[wkvjT] =0 

E[Wk]=E[vk]=O 

8kj is the Kronecker delta which is defined as zero if j* k and unity if j=k. 

The recursive algorithm of Kalman filter is: 

+ kr+l (ýi 
` xt+, 

p =P-Px xT i +R)'x P+Q t+ t 1-t+l 
(-t+l 

t-t+l _t+l t 

T1 
+ RJ- ký+ý =P xt+l [: I IP xr+, 

(5.25) 

(5.26) 

(5.27) 

where kr+r is termed the Kalman gain. Pl is the covariance matrix of the estimation errors, 
e1i where 

et = yr+ý - xr+ý Qý (5.28) 

Q is the covariance matrix of the system noise and R is the covariance of the measurement 
noise. Q and R must both be known a priori and this is the major problem of the Kalman 
filtering approach. Although the determination of Q and R in real-time application is 
dubious, off-line determination is possible, for example by considering them as design 

parameters, and calculating them through simulation experiments on historic data. 

It can be seen if Q=0 and R=1 the algorithm is equivalent to the ROLS algorithm. 

5.3.5 The instrumental variables technique 

In the current approach an instrumental matrix, V, is defined such that E[VT C] = 0. 

Where ý as introduced in equation (5.1) is noise vector. Premultiplication of equation 
(5.1) by VT leads to: 

vT y- VT X/3 = VT c (5.29) 
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setting the left hand side to zero provides a simple derivation of the instrumental variable 
estimator: 

/ý-(VTX) 
1 VTY (5.30) 

The choice of a suitable instrumental matrix is the major problem of this method. Young 

used an auxiliary model algorithm (see for example Young, 1986) as: 

T 

I 
(5.31) ßt+l = Qt + P+, w<+l Yt+i - xtJ 

P+l =P -YtPxl+Iw +, P (5.32) 

Yl = (1 + x, +1P w +1)-' (5.3 3) 

where 

wt = 
(wt-1Wt_2....... 

Wt-mu(-1Ut-2....... Ut_n)T 5.34) 

and w, _; are the output from the auxiliary model: 

Wt = wt (5.35) 

The parameter of the auxiliary model is obtained from: 

ßý _ (1- a)(3ý_1 + aß, (5.36) 

a is chosen so as to prevent instability in the estimation, for example, a =0.03 to 0.05. 

Ede and Cluckie (1985) stated that the instrumental variables estimator, which produces 
unbiased estimates in the presence of coloured noise, does not necessarily produce better 

models for forecasting, and can on occasions produce worse. 

5.4 Neural networks 

The potential advantages of artificial neural networks have created considerable interest in 
the possibilities for engineering applications however, it can not be used for TF parameter 
estimation at current stage. Neural networks have been also used in water resources 
environments over the last ten years including by Karunanith et al., (1994), Cox (1994), 
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and Norreys and Cluckie (1994). Many researchers are considering the use of hybrid 

systems which integrate artificial neural networks with, in particular, knowledge-based 

expert systems. This section gives an overview of artificial neural networks. 

Based on biological models of the human brain's function, computation is modelled as a 
large network of interconnected simple processors and artificial neural networks (ANNs) 

can be trained to recognise input patterns and produce appropriate output responses. 

An artificial neural network can be described in terms of the individual neurones, the 
network connectivity that defines the interconnections of the neurones, the weights 
associated with the connections, and the activation or threshold functions associated with 
each neurone. Figure (5.1) depicts the structure of a single node or neurone from an 
arbitrary artificial neural network. The neurone in the figure, designated the kth neurone, 
occupies a position in its network that is quite general; that is, this neurone both accepts 
inputs from other neurones and sends its output to other neurones. Any neurone in a 
totally interconnected network has this generality. In a layered network, however, some 
neurones are specialised for either input or output; in such a network, it is only the 
interior or hidden nodes that maintain generality. The generalised neurone gets its inputs 
from interconnections leading from the output of other neurones. 

Following the biological terminology for the connections between nerve cells, these 
interconnections are also known as synapses. The synaptic connections are weighted. 
That is, when the jth neurone sends a signal to the kth neurone, that signal is multiplied 
by the weighting on the k, j synapse. This weighting can be symbolised as wok. If the 
output of thejth neurone is designated as xx, then the input to the kth neurone from thejth 

neurone is xlwk;. Summing the weighted inputs to the kth neurone: 

Uk =YX JWki 
(5.37) 

i 

This summing of the weighted inputs is carried out by a processor within the neurone. 
The sum that is obtained is called the activation of the neurone. This activation can be 

positive, zero, or negative. After summing its inputs to determine its activation, then the 

neurone's next job is to apply a signal transfer function to that activation, to determine an 
output. 

A neural networks consists of interconnected nodes or neurones. Many topologies for a 
neural network are possible. Figure (5.2a) shows a totally connected network, in which 
every node output is connected to every other node. In figure (5.2b) there are three layers 
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of nodes, with total connection between layers. This case shows a feed forwards 

network, with no feedback from higher to lower layers. A network of mixed connectivity 
is shown in figure (5.2c). 

TI w kl 

Activation 
function 

X2 WL2 

Input itk Output 

signals 
Summing 
junction 

XP wkp 
Bk 

Synaptic 
Threshold 

weights 

Figure (5.1) Structure of a single neurone from an arbitrary artificial neural network. 

(a) totally connected network (b) feedforward network (c) mixed connectivity network 

Figure (5.2) Some topologies for a neural network. 

Among neural network models, the feed forward network is described here. If a network 
has one hidden layer, as in figure (5.3) the structure is termed as a two layer network. 
The actual operation of a feed forward network can be effectively described in terms of 
algebraic equations. Pattern µ, hidden unit j receives a net input: 
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hj = wjkck 

and produces output: 

iý =g(h! 
)-g 

dWJkyk 

output unit I thus receives: 

hit 
= wijv = 

ýwijýk 

jj 

wij8 

k 

producing a final output: 

Oi' =g(hµ) =8Lx'%ivµ =81: N', i8y. x'isk 
ik 

where: 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

Oi = output units, Vj = hidden units, Ck = input terminals, wjk = connections from 
inputs to the hidden units, wl j= connections from hidden units to the output units, k= 

always refers to input, j= refers to a hidden unit, and I= refers to an output unit. 

41 

42 
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44 
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W jk uJ 
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of 

Figure (5.3) A two layer feed forward network detailing notation for units and weights. 
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5.5 Genetic Algorithms 

Genetic algorithms (GA) can be used to search for a set of model parameters. GA are 
very powerful algorithm which search a function space for an optimal solution. GA based 

on natural evolution, in which the `survival of the fittest' is the basis for the evolution of 
natural populations during many generations. 

GA and their applications in hydrological environments are investigated in full in chapter 
6. 

5.6 Summary 

There are several ways to fit models to a given set of observed data. Some procedures are 
only appropriate for off-line parameter estimation methods. In real-time applications it is 

necessary to use all observations up to the current time and repeat the procedure when 
new data become available, therefore some form of adaptive parameter estimation should 
be applied. 

Recursive algorithms, which are dominant in real-time system identification have been 
described. A recursive algorithm can be derived from its off-line counterpart. Several 

recursive algorithms including stochastic, sequential learning, Kalman filter estimator and 
instrumental variable techniques are briefly reviewed. The recursive ordinary least 

squares method which is used in previous sections has been introduced in detail. The 

neural network technique, a relatively new approach is also reviewed. 
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CHAPTER 6 

DEVELOPMENT OF A HYBRID GENETIC ALGORITHM PRTF MODEL 

6.1 Introduction 

The search for improved parameter estimation techniques has been an area of major 
activity during the last few decades. The research described in this chapter is based on the 

use of Genetic Algorithms (GA) as a methodology both for the identification and 
adjustment (updating) of PRTF model parameters. The effectiveness of a combined GA 

and conventional approach, named the Hybrid Genetic Algorithm (HGA) is demonstrated 
by simulation studies. Some new aspects of GA are included and the robustness of the 
HGA is investigated using several case studies. 

This chapter consists of two sections. The first section presents the genetic algorithm's 
general characteristics whilst the second section concentrates on the application of the 
HGA and its new aspects. The application of the HGA technique is illustrated with 
several case studies. 

6.2 Genetic Algorithm concepts 

6.2.1 Optimisation 

A genetic algorithm (GA) is a technique which can be used to search for a set of model 
parameters so that a defined performance index is maximised or minimised. There are 
many techniques related to optimisation including hill-climbing, random search, and 
iterated search. 

Hill-climbing, searches directly for local optima by moving in a direction related to the 
local gradient. However, once it finds a local optima, no further progress can be made 
(Goldberg, 1989). In the random search, objective function values at every point in the 

search space are examined randomly. Therefore, this technique is a very `unintelligent' 
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strategy (Goldberg, 1989). Iterated hill-climbing search is a combination of random 
search method and the hill-climbing method. In this method, hill-climbing is repeated 
with different randomly chosen starting points and provides better performance. 

Genetic algorithms are search procedures based on natural evolution, in which the 
`survival of the fittest' is the basis for the evolution of natural populations during many 
generations. GAs were proposed by John Holland in the 1970s' (Lawrence 1991) but 

only recently have been applied across a wide range of sciences. At present, genetic 
algorithms are being used for a range of applications including machine learning, artificial 
intelligence, neural networks, and operational research. Goldberg (1989) and Lawrence 
(1991) provide valuable information on genetic algorithms and this has been widely used 
here, especially to introduce GA concepts. 

6.2.2 Genes, chromosomes, parents and children 

GA are complicated and powerful algorithms which search a function space for an 

optimal solution of a non-linear system. 

The genetic algorithm uses a number of genes that are responsible for transferring some 

properties from parents to children. A number of genes make a chromosome and a 

number of chromosomes produce a population. Each chromosome is called a member of 
population. 

From an optimisation point of view, the number of genes is equal to number of 

parameters that should be computed. As an example suppose that the number of 
parameters (say a, ß, y) is three. Taking any of the three parameters in the three 
dimensional space as a gene, then any point [ a; , 

ß;, y; ] i=1,2,3 
............... N in the three 

dimensional space is a chromosome. The N chromosomes provide a population and is 

referred to as the population size. The objective of the genetic algorithm is to find the 

chromosome that is the best point in the three dimensional space. 

A simple description of the genetic algorithm approach to model identification is: 

1 Randomly initialise a population of chromosomes as initial parents. 
2 Evaluate each chromosome in the population using a `fitness factor'. 
3 Choose a number of initialised chromosomes as a couple and produce ̀ children' 

chromosomes by mating them by `mutation' and `crossover'. 
4 Evaluate the new chromosomes using the same fitness factor. 
5 Delete the worst parents to make room for the best children. 
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6 If time is over, select the best chromosome as the best estimation, if not go to 3. 

During the process, an initial population of unexceptional chromosomes will improve 
because the worst parents are sequentially replaced by better and better children. The best 

child in the final population, is the `best' point in the dimensional space which thereby 

provides the optimal solution to the problem. It can be seen that GA provide an iterative 

procedure which works with a pre-defined population of individuals instead of with a 
single individual, therefore reduces the chance of getting stuck on a false optimum. 

Some components of the simple description require further discussion. 

6.2.3 Fitness and fitness scaling 

For a genetic algorithm to work, a fitness factor which measures the goodness of fit is 

required. The fitness factor computed from simulated flow values using a PRTF 

forecasting model can be defined as: 

t[Q(t) 

- QS (t)]2 
(6.1) Fitness 

1[Qo(t)2 

t=I 
where Q0 is the observed flow 

Qf is the simulated flow (PRTF model output) 

n is the number of available flow data. 

It can be seen that the fitness factor is a dimensionless factor. The lower the value of 
fitness factor the better the match between measured and simulated flow. 

The objective of parent selection in a genetic algorithm has been defined to give more 
reproductive chance, on the whole, to the best members of population. The technique that 
has been used here is roulette wheel parent selection as below: 

1 Calculate the sum of the fitness factors of all the members; name the result total 
fitness. 

2 Randomly generate a number between 0 and total fitness; call it M. 
3 Select and return the first population member whose fitness factor, added to the 

fitness of preceding members, is greater or equal to M. 



Chapter 6 Development of a HGA PRTF model 160 

It can be seen that selection procedure is random, although, each parent's chance of being 
selected is directly proportional to its fitness. It is noted that fitness values of the 
chromosomes should be positive numbers. In the table (6.1), a classical example of 
roulette wheel parent selection is shown: 

Table (6.1) Examples of roulette wheel parent selection 

Chromosome 123456789 10 11 12 13 14 15 
Fitness factor 9 15 22 7 17 25 13 19 65 27 11 3 27 4 
Running total 9 24 46 53 70 95 108 127 133 138 165 176 179 206 210 
fitness 

Random number 96 169 49 207 133 

Chromosome chosen 6 11 3 14 9 

It can be seen that the first random number (the fourth row of the table) is 96 which 
indicates that the sixth chromosome should be chosen because its running total fitness is 
95. In similar manner because the second random number is 169 the 11th chromosome is 

chosen as the second chromosome. 

Fitness scaling is a technique which can be used to prevent premature convergence. 
Premature convergence occurs when the differences between the best fitness factor and 
other fitness factors are too great so that the chances of the member with the best fitness 
factor being selected is too high. It means that there is no chance for other members, and 
consequently, the selected population is very similar and lacking in diversity. It is easy to 
understand, since in this case the members are similar crossover cannot work thus system 
works using only random mutation. To overcome this problem, the fitness factors should 
be scaled. To do this, following relationship between scaled (new) and unscaled (old) 
fitness factors are used: 

AN = AO (6.2) 

ANMaX 
- 

CAO (6.3) 

'N=aAo+b (6.4) 
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where AN, '1o1 "Nm,,,, AN, and Ao are new fitness average, old fitness average, new 
fitness max, new fitness and old fitness respectively. 

Thus, the a and b coefficients will be computed as follows: 

Fir t case 
/ 

/ 
A Secom 

aý 

z 

Average 
Min in first case 

Min in second case 

to 

U 

Old fitness factors axis 

Figure (6.1) Relation between scaled and unscaled fitness factors (after Goldberg, 1989) 

If: 

AOMin 
>Cx 1o - AoM AC - 1) [first case in figure 6.11 (6.5) 

then: 

Y= AoMa - Ao (6.6) 

a=(C-1)xAo/y (6.7) 

b=(AoM(-Cxlo)xA, 
o/y (6.8) 

otherwise [second case in figure 6.1]: 

S I'O 
- A'OMin (6.9) 

a=Aol8 (6.10) 
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b= 
-AOMin X rO /8 ý6.1 1 

where the )oM, AQMin are old fitness max and old fitness min respectively. C is an 

arbitrary coefficient that could be varied among 1.2 -2.0. 

It should be stressed that the average of fitness factors both in new fitness and old fitness 
is the same and the new fitness factors are used only in parent selection and throughout 
other components of main programme the old fitness factors are used. 

6.2.4 Crossover and Mutation 

Crossover is an extremely important component of a genetic algorithm and acts to 

combine the good figures already present. In nature, crossover can cause two parents to 

exchange parts of their corresponding chromosomes. In a genetic algorithm, crossover 

recombines the genetic material in two parent chromosomes to make two children. In one 
point crossover, a point is randomly selected and some parts of two parent chromosomes 
are swapped according to this selected point. Table (6.2) shows one example of the 

application of one point crossover in real number application. A feature of one point 

crossover is that no differences are introduced where both parents have the same value. 

As indicated in table (6.2) in order to generate child1, the first part of parent1 (i. e. 25 32) 
is retained but its second part (i. e. 17 19 56) is swapped with second part of parent2 
(i. e. 26 15 7) therefore, child 1 determined as (25 32 26 15 7). 

Table (6.2) Examples of one point crossover 

Parentl 25 322 17 19 5f 

Parent2 73 11ý 26 15 7 

Child l 25 32 26 15 7 

Child2 73 11 17 19 5E 

Cross over point 

Mutation is applied to chromosomes and 'sweeps' down the genes, replacing each by a 
randomly selected gene. Mutation introduces diversity in to the population and is used to 

explore chromosomes that are similar. Mutation may cause the chromosomes of children 
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to be different from those of their parents. The mutation help to avoid the possibility of 
mistaking a local optimum for a global optimum. 

Crossover and mutation complement each other. If mutation is deleted, some important 
figures may be missed. If crossover is deleted, the system lacks the capability of 
combining the best features already present. 

6.2.5 Interview selection 

Interview is same procedure as the main program, except it works until a predefined 
fitness factor is obtained. The generation number of interview is also less than that of 
main programme. For interview to work, a population of desired parameters are 
randomly generated. The fitness of each member in the population is evaluated and the 
fittest member of the population is found. This provides the first member of the first 

couple of the next generation. The fitness factors of the last generation are scaled (see 

section 6.2.3) and specified couples selected using a roulette wheel mechanism. Mutation 

and crossover are used to produce new children. The procedure is repeated until the 
desired generation are produced. If the fitness factor of the best children is less than 
defined fitness factor (Fitlmt in figure 6.5) this member is taken in to account as a 
member of the next phase otherwise the procedure will be repeated. The whole procedure 
is repeated until population size of suitable members are generated. The fitness factor of 
each of these new members is less than desired fitness factor. These members provide the 
first generation of the next phase (main programme). 

6.3 Development of a hydrological Hybrid Genetic Algorithm (HGA) 

6.3.1 Introduction 

HGA is a combination of a GA and conventional technique. Yuan (1994) used some 
components of GA to identify a Conceptually Parametrised Transfer Function (CPTF) 

model. Furthermore, Liong et al. (1995) employed GA to a conceptual rainfall-runoff 
model. In the current study, some new aspects of genetic algorithms have been developed 

and incorporated into computer programs to increase the capability of HGA. 

6.3.2 Identification of PRTF model 

Whereas in section (2.5.2.1) a conventional identification procedure was used to 
determine the PRTF model parameters, this section describes the development and 
application of an iterative GA approach. 
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First, a sequence of Bi parameters plus time to peak will be generated randomly. The Ai 
parameters are then calculated according to the order of Ai and using formula (2.60) 
introduced in chapter 2. These provide a first generation individual. This procedure is 

repeated several times according to population size, say 20 times and these 20 individuals 

provide the total population of the first generation. Each individual in the population is 

evaluated by computing the fitness factor. The genetic algorithm then begins a series of 
cycles, replacing its current population of chromosome-Bi parameters and time to peak by 

a new population. Each cycle produces a new generation of chromosomes. 

In reproduction, the parent selection technique (see section 6.2.3) will be used to pick 
two parents. In each reproduction event, the reproduction module gets two parents from 
the population module, applies crossover and mutation to the parents and sends the two 
children created to the population module until enough children have been generated to fill 

a new generation of chromosomes. These new chromosomes are evaluated, and they 

replace the current chromosomes to form the next generation. These generational cycles 
continue until the requirement individual chromosomes produce. It is noted that when 
chromosome- Bi parameters and time to peak are changed, Al parameters will also be 

changed according to a new time to peak. It can be seen that if, for example, the order of 
Bi is 3 the objective of genetic algorithm searches five dimensional space. 

6.3.2.1 Identification using real number representation 

In order to examine the different components of a genetic algorithm an extensive study 
has been carried out on selected rainfall-runoff events. The main aspects of study are 
summarised below in order of increasing complexity; 

a) Simple genetic algorithm without crossover: In this case, the initialisation and 
reproduction techniques are the same, the series of cycles of random generating of only 
one chromosome being repeated until the desired chromosome is obtained. 

b) Full genetic algorithm with duplicates: In this case, all components of the 
genetic algorithm have been used. However, there is the possibility of duplicates, and all 
or part of parents or children in the generation may be the same. To study the influence of 
different couples in the parent selection technique and the parent deleted number the 
following three cases have been studied: 

b-1 Number of selected parents is same as generation size : Here the 
population size is considered to be N= 10. Since the population size and the 
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number of parents are the same, the total couple will be Nx (N-1)/2=10 x 9/2=45. 
These couples produce 90 children in each generation. 

b-2 Number of selected parents and generation size are different: Here 
again the population size is considered to be 10, but the number of parents is 

assumed to be 5. Therefore the number of total couples is 5 x4/2=10 which will 
produce 20 children in each generation. 

In both cases a population size of members randomly is generated, then using the 
roulette wheel mechanism, the desired couples are selected and their children 
produced using the mutation and crossover techniques. Finally, the 'worst' 

member of the last generation is replaced by the best child of the generation if the 
fitness of the best child is better than the fitness of the worst parent. 

b-3 Full genetic algorithm with deletion of some of the less fit parents: 
In the current version of the genetic algorithm, deletion of some of the less fit 

parents was used instead of deletion one. The procedure is the same as the two 
last versions except that several worse members of the last generation are replaced 
by several better children in each cycle of running the programme. 

The study demonstrated that the differences between three variant described above were 
not significant. This means that the number of parents deleted and the number of 
members selected in couple selection can be arbitrary. 

c) Genetic algorithm without duplication: Children that are duplicates of current 
chromosomes in the population are discarded rather than inserting them into the 
population. When this reproduction technique is used, every member of the population 
will be different. This procedure allows much more efficient use of an allotted number of 
chromosomes by guaranteeing that reproduction never creates duplication in the 
population. 

d) Unduplicated genetic algorithm with elitism: In the previous versions of 
genetic algorithm, the best member of the population may fail to produce offspring in the 
next generation. This version uses an elitist strategy to ensure that the best member of last 

generation is copied into the succeeding generation. 

In order to determine suitable version of genetic algorithm for next phase of study, an 
extensive analysis has been carried out. Of these, only two of them are presented. In the 
first example, a number of events for the Orgeval catchment were selected and all the 
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genetic algorithms were run 50 times using different time steps. It should be mentioned 
that since genetic algorithms are stochastic, their performance usually varies from one run 
to another. Consequently, average performance is a more useful way to view the 
behaviour of a genetic algorithm than a representation of the behaviour of a genetic 
algorithm in a single run. The average performance of each GA variant is shown in figure 
(6.2) and some statistics summarising the behaviour of the different genetic algorithms 
are shown in table (6.3). 

As another example, a simple GA and an unduplicated GA with elitism were run 20 

times for a selected event from Orgeval catchment in different produced children. Average 

performance and some statistics of these two versions are shown in the figure (6.3) and 
table (6.4) respectively. It can be seen that the curves descend rapidly at the beginning of 
the run, and more slowly as the system nears a locally optimal solution, finally flattening 

at the end. Hence, most of the improvements come at the beginning of the run, with only 
small improvements in performance or no improvements at all tending to come at the end. 

On the whole the performance of unduplicated version with elitism is better than other 
versions. Therefore this version of genetic algorithm was selected for next phase of the 

study. 

A genetic algorithm using real number representation has been combined with a hill- 

climbing estimation method- and is called HGA. In order to guarantee that HGA always 
produces better estimation than hill-climbing method, the genetic algorithm is continued 
until better result is obtained. HGA for identification of PRTF model parameters using 
real numbers is illustrated in flowchart (6.4) and a numerical example illustrating the 

approach is given in appendix 3. 
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1.987 1.802 1.749 1.744 1.739 1.736 1.735 1.733 

ö 2.545 1.932 1.788 1.793 1.763 1.760 1.746 1.741 

rn 1.753 1.732 1.731 1.730 1.730 1.730 1.729 1.729 

0.171 0.051 0.013 0.014 0.008 0.007 0.004 0.003 

1.951 1.809 1.757 1.742 1.739 1.735 1.736 1.734 

2.923 1.989 1.861 1.785 1.762 1.755 1.749 1.754 

w"= s -2 1.738 1.732 1.730 1.730 1.730 1.730 1.730 1.730 
02 9 

vQ 0.237 0.057 0.030 0.012 0.008 0.005 0.004 0 005 
. 

av Z 
Z 

1.993 1.818 1.756 1.745 1.740 1.736 1.733 1.735 ä1 

'S 
. jý 2.836 2.074 1.886 1.785 1.773 1.760 1.745 1.754 

ä 1 734 730 1 1.729 1.730 1.730 1.730 1 730 1 730 . . . . 

0.228 0.085 0.030 0.014 0.010 0.006 0.003 0.006 
"0 c 

1.969 1.788 1.745 1.738 1.736 1.734 1.734 1.733 

2.874 2.018 1.804 1.775 1.770 1.746 1.748 1.746 
ö 1Z 

ö 1.731 1.730 1.729 1.730 1.730 1.730 1.730 1.729 

b? 0.242 0.050 0.016 0.010 0.007 0.004 0.004 0.003 

1.980 1.801 1.745 1.737 1.734 1 734 1.734 1.734 
. 

2.537 2.043 1.799 1.762 1.769 1.765 1.768 1.755 

1.733 1.730 1.730 1.729 1.729 1.730 1.729 1.730 

0.187 0.080 0.017 0.008 0.007 0.006 0.007 0.005 

2.012 1.801 1.745 1.734 1.734 1.733 1.733 1.732 

2.404 2.119 1.784 1.766 1.760 1.729 1.762 1.751 

1.747 1.730 1.730 1.730 1.730 1.754 1.729 1.729 

0.180 0.080 0.016 0.008 0.005 0.006 0.005 0.004 

Table (6.3) Some statistics of behaviour of different GA (RMSE, Orgeval catchment, 
average of 50 iterations) 
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° 0.1377 0.1344 0.1344 0.1342 0.1341 0.1341 0.1341 0.1341 

A 0.0320 0.0083 0.0021 0.0022 0.0013 0.0010 0.0007 0.0005 

0.1731 0.1468 0.1383 0.1361 0.1356 0.1350 0.1350 0.1349 

1443 
N 0.3831 0.1773 0.1553 0.1428 0.1392 0.1380 0.1371 0.1379 

ý'm f2 0.1354 0.1345 0.1341 0.1341 0.1341 0.1341 0 1341 0 1341 . . 

äo 0.0466 0.0093 0.0048 0.0019 0.0012 0.0008 0.0007 0.0009 
S. b 
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' G 0.1348 0.1342 0.1341 0.1341 0.1342 0.1341 0.1341 0.1341 

$ eu A 0.0444 0.0143 0.0049 0.0022 0.0016 0.0010 0.0005 0,0010 

0.1763 0.1434 0.1365 0.1354 0.1351 0.1348 0.1347 0.1346 

0. A9 0.3702 0.1825 0.1459 0.1413 0.1404 0.1366 0.1370 0.1366 

ö 0.1344 0.1341 0.1341 0.1341 0.1341 0.1341 0.1341 0.1341 

m5 0.0476 0.0083 0.0025 0.0016 0.0012 0.0006 0.0006 0.0005 

0.1773 0.1457 0.1365 0.1352 0.1349 0.1348 0.1348 0.1347 

o 
0.2885 0.1872 0.1451 0.1392 0.1403 0.1397 0.1400 0.1381 

.ý 

0.1346 0.1342 0.1341 0.1341 0.1341 0.1341 0.1341 0.1341 
vA 0.0344 0.0135 0.0027 0.0013 0.0011 0.0009 0.0012 0.0007 

0.1828 0.1456 0.1365 0.1354 0.1348 0.1347 0 1346 0.1345 . 

0.2590 0.2013 0.1427 0.1398 0.1388 0.1378 0.1391 0.1375 ö 

0.1367 0.1341 0.1341 0.1341 0.1341 0.1341 0.1341 0.1341 

"" A 
0.0330 0.0135 0.0025 0.0013 0.0009 0.0009 0.0008 0.0006 

Table (6.3 Continued) Some statistics of behaviour of different GA (Fitness factors, 
Orgeval catchment, average of 50 iterations) 
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Figure (6.2) Performance graphs for several GA (average of 50 times running) 
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Figure (6.3) Performance graphs for simple GA and unduplicated GA with elitism in 
different produced children (average of 20 times running) 
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Number of 
children 1000 5000 25000 51000 77000 102000 127000 154000 

2.164 1.786 1.594 1.563 1.557 1.549 1.548 1.544 

2.944 2.021 1.933 1.590 1.598 1.573 1.584 1.561 

1.568 1.552 1.534 1.533 1.535 1.534 1.534 1.533 

W A 0 360 0.156 0.087 0.020 0.020 0.012 0.015 0.008 . 

Cr 
1.989 1.595 1.562 1.551 1.550 1.539 1.539 1.538 

2.579 1.755 1.750 1.599 1.656 1.560 1.557 1.548 
g UU 

ä '«s- 1.542 1.534 1.533 1.533 1.533 1.533 1.533 1.533 

0.244 0.056 0.048 0.021 0.027 0.007 0.007 0.004 
Cn 

0 
2 

0.0365 0.0244 0.0193 0.0186 0.0184 0.0182 0.0182 0.0181 

0.0658 0.0310 0.0284 0.0192 0.0194 0.0188 0.0191 0.0185 

0.0187 0.0183 0.0179 0.0179 0.0179 0.0179 0.0179 0.0179 

° Q 0.0125 0.0042 0.0023 0.0005 0.0005 0.0003 0.0003 0.0002 U u 
Cn 

W 

B 0.0305 0.0193 0.0186 0.0183 0.0183 0.0180 0.0180 0.0180 

0.0505 0.0234 0.0232 0.0194 0.0208 0.0185 0.0184 0.0182 

ä-0r. 0.0181 0.0179 0.0179 0.0179 0.0179 0.0179 0.0179 0.0179 
-0 3 

0.0074 0.0014 0.0012 0.0005 0.0007 0.0002 0.0002 0.0001 

Table (6.4) Some statistics of behaviour of simple GA and unduplicated GA with elitism 
(Orgeval catchment, average of 20 times running) 
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Figure (6.4) Flowchart for HGA in identification of PRTF model using real numbers 

Start 

Establish names of rain, flow and output files, read input files 
(rain and flow), determine order of A and B parameter, calculate 

base flow and reduce base flow from all the flow 

Estimation of A and B parameter and time to peak using 
conventional method 

Determine initial time to peak and time step 
suppose lasterror=9000000 

No 

Yes 

Calculate A and B parameter according to conventional method 

Calculate simulation flow and simulation error 

New error Determine new 
time to peak and No 

new time step 
lasterror= last error 
9000000 

Determine new Yes 

time to peak 
lasterror= 

newerror 1- 

I Caculate the final A and B parameter, time to peak and simulation I 
error, calculate RMSE1 using simulation error; call the smallest 

fitness factor as Fitlmt, write results to output file. 

Countinued in next page 



Chapter 6 Development of a HGA PRTF model 172 

Figure (6.4) Continued 
Continued from previous page 
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Figure (6.4) Continued 
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6.3.2.2 Identification using binary representation 

Many genetic algorithm practitioners use a binary representation approach even though 
most applications involve numerical problems. Therefore in addition to numerical 
representation studied in the previous section, the current section considers the use of 
binary representation. 

Binary representation produces chromosomes composed of a list of binary digits, i. e. 
each position can be either 1 or 0. To produce one digit, a number is generated randomly, 
if this generated number is less than or equal to 0.5 (probability) the digit is considered to 
be 1 otherwise it will be 0. 

Decoding and multiple crossover as well as random mutation are other components of 
binary genetic algorithm which will be considered as following: 

Decoding: If the number of digits of each gene (variable) is N, its equivalent real 
number could range between (2N -1) and 0. Conversely if accumulated number 
(computed integer value associated with coded parameter) and the boundaries of real 
number are assumed to be accum, Max, and Min respectively, the decoded number is 

computed as: 

(Max - Min)accum l(2"ß - 1) + Min (6.12) 

and the accuracy of encoding will be: 

(Max - Min) /(2A- 1) (6.13) 

Multiple crossover: Multiple crossover is the same as one point crossover, except 
multiple cut points rather than one are selected as random. Here one point crossover is 

applied to each gene and the chromosomal material swapped between the one cut point. 
This crossover works on the parents with a certain probability rate, the higher the 
probability, the more quickly new children are introduced into the population. Table (6.5) 

shows three point crossovers applied to an example chromosome. 

Random bit mutation: Bit mutation sweeps down the list of bits, replacing each by a 
randomly selected bit if a probability test is passed. Here, as in nature, probability is quite 
low and the probability of implementation of random bit mutation is very low. An 

example of the operation of bit mutation is shown in the table (6.6). For random bit 



Chapter 6 Development of a HGA PRTF model 175 

mutation to operate, randomly, a number is generated for each bit. If the generated 
number is equal to or less than the mutation probability, the bit is replaced by a contrary 
bit (i. e. a0 bit is replaced by 1 and vice versa). If bit is not passed, the probability test it 

will be unchanged. 

Table (6.5) Examples of multiple crossover 

Genet Gene2 Gene3 

Parent l 1101 100 11011011 1000110 

Parent2 0001011 01111100 0110 11 

Childl 1101011 1111100 1000111 

Child2 0001100 0011011 011001¬ 

Cross over point i 

In the following example it is supposed that the mutation probability is 0.05. It can be 

seen that for the first chromosome, as will be the case for most of the time, the probability 
test is never passed, and so in this case the output of bit mutation is the same as the input. 
For the second chromosome, the probability test is passed for the third bit, and so, the 

chromosome is changed by the random bit mutation. 

Table (6.6) Examples of random bit mutation 

----------------------------------------------------------------------------------------------------- 
Old chromosome Random number New chromosome 
10011 0.981 0.520 0.250 0.332 0.258 10011 
10001 0.725 0.912 0.046 0.523 0.790 10101 

As mentioned earlier random bit mutation and crossover work together to produce new 
children. 

A combined genetic algorithm using binary representation is developed which is 
described in flowchart (6.5) and a numerical example is given in appendix 3. 
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Figure (6.5) Flowchart for HGA in identification of PRTF model using binary numbers 
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Figure (6.5) Continued 
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Figure (6.5) Continued 
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Figure (6.5) Continued 

Continued from previous page 
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6.3.3 Simulation (updating) of PRTF model using HGA 

Updating of the PRTF model involves determining the new values of the model 
parameters, via the a-volume, y-shape, and r-time adjustment factors. Here, the 

procedures are same as the identification phase except, since some shape adjustment 
factors produced by the genetic algorithm are not suitable (illegal number which makes 
pulse response being unstable) for the PRTF model, each shape adjustment factor 

generated must first be checked. If it is legal the procedure continues, otherwise another 
shape adjustment factor will be generated. This process is repeated until the best factor is 

obtained. 

After producing the parent members in a population of the desired size, the genes of the 
produced chromosomes are partially crossed over and mutated if a probability test is 

passed, to produce children's generation. The children are then checked from a generated 
shape factor point of view, with illegal members being rejected. By comparing the fitness 

of the parents and the children's generations the less-fit parent members can be replaced 
by fitter children members thus producing a second generation. This reproduction- 
evaluation process is repeated until the specified time limit is up or the desired member is 

produced. 

Further details of the hybrid genetic algorithm developed for updating the PRTF model 
both in real number and binary representation are included in the flowcharts figure (A3.1) 

and figure (A3.2) presented in appendix 3. 

6.4 Summary of results 

For HGA to work it is necessary to restrict the evolving space, using the parameters 
obtained from a hill-climbing method. The following constraints are defined to estimate 
the desired parameters. These can be changed according to the computer capacity and 
desired accuracy of computation: 

Identification phase 
Time to peak: from (time to peak of current method -5) to (time to peak of current 

method+5) 
B parameters: from (B parameters of current method -5) to (B parameters of current 

method +5) 

Updating phase 
Shape factor from -10 to 10 
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Volume factor from -0.95 to 3.0 
Time delay from 0 to 10 

In addition to the above specifications, some further assumptions are required before the 
genetic algorithm in binary representation can be applied. These are summarised below: 

" number of generation, 500 

" number of generation in each sub run of interview selection, 10 

" length of each variable (number of digit in each gene), 12 

" random mutation probability, 0.05 

" crossover probability, 0.80 

" population size, 20 

"C Coefficient in fitness scaling, 2.0. 

The estimation accuracy for time to peak and B parameters is 2.442 x 10-3 and for shape 
factor and volume factors are 4.884 x 10-3 and 9.646 x 10-4 respectively (see equation 
6.13). 

From all of the HGA variants considered, four have been used to investigate the 

capability of combined genetic algorithms for flood forecasting. In order to carry out this 
investigation an event from Orgeval catchment was chosen and a (3,2,0) PRTF model 
identified using both the conventional (MATH) procedure as described in section (2.5.2) 

and the newly developed HGA software. The RMSE of the actual and convoluted flow in 
HGA is smaller than that of MATH software, and also that the pulse response produced 
by the HGA model is more reasonable than that of the MATH PRTF model because it 
increases monotonically from 0 to the peak (figure 6.6). 

Next the parameters of both PRTF models were adjusted using the conventional 
approach. The simulated flow hydrograph of the HGA and MATH models along with 
observed flow are shown in figure (6.7). It can be seen there are no obvious differences 
between two different calibrated models except for a marginal improvement in the peak 
time estimation of the HGA model. 

As a final step, the parameters of the calibrated PRTF model were updated (adjusted) 

using the HGA approach. The simulated flows provided by the model are also shown in 
figure (6.7). The RMSE statistic of the HGA approach is smaller than that of the 
conventional method, and the simulated flow obtained from the HGA better fits actual 
flows. 



Chapter 6 Development of a HGA PRTF model 182 

0.4- 

0.3. 

u 

o, 0.2 

0.1 

0 10 20 30 40 50 60 70 80 90 100 

Time (hours) 

MATH 

HGA 

Figure (6.6) Comparison of pulse response obtained from MATH and HGA, Orgeval. 
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For further performance evaluation objective approach was used comparing the RMSE of 
the current method and HGA. To do this one event from the Bird Creek catchment and 
two events from the Orgeval catchment (a single event referred to as event number 6, and 
a composite event composed of a combination of six other individual events) were 
selected and HGA run 20 times both for identification and updating for real number and 
binary representations in each of selected event. 

The results of this objective comparison between the application of HGA and current 
method for the three catchment-events are presented in table (6.7). Although the software 
developed can use interview selection for real numbers representation HGA has been 

applied without this. 

The errors for each case are represented by the RMSE of simulated and actual flows 

averaged over 20 HGA runs. In addition, in order to compare the accuracy of RMSE, the 
maximum, minimum and standard deviation of RMSE for the 20 runs are also presented. 

The results show that for each event, a significant reduction in the RMSE's is achieved by 
the HGA compared to the current PRTF approach. Within the HGA further reduction in 

error arise from the use of a binary representation compared to a real number 
representation, and were conducted, binary representation with interview selection 
provided the best model calibration. The reason for this improvement is thought to be 
because binary representation uses the multiple crossover and random bit mutation. 

Furthermore, HGA has shown the ability to adapt to the variety of the catchments and 
events. This means that HGA is robust enough to be applied to various conditions. It 

should be emphasised there is scope for further improvements in HGA. This is because 
HGA is limited to cut off immediately after its fitness factor is lower than current method, 
it means if HGA continue to work better results will be obtained. 

These results led to conclusion that HGA is a powerful tool for application in PRTF 
model both in identification and updating. 

6.5 Conclusion 

In this chapter an extensive investigation the application of genetic algorithms to the 
Physically Realisable Transfer Function (PRTF) model developed by Han (1991) has 
been presented. A new parameter estimation technique (Hybrid Genetic Algorithm) has 
been developed by combining conventional procedures with a genetic algorithm. The 
Hybrid Genetic Algorithm (HGA) has been successfully used both in identification 
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(calibration) and simulation (updating) of the PRTF model. The new genetic algorithm 
techniques of interview and scaled procedures as well as random bit mutation and 
multiple crossover are included in HGA. Furthermore, both binary and real numbers 
encoding techniques have been used. Finally four software packages including two 

packages for the model identification phase both in binary and real number encoding and 
two packages for model updating phase have been developed. Extensive development and 
testing has shown that the performance of HGA is more accurate and powerful than 

conventional procedures and HGA guarantees that model estimation error will be less 
than current method because it is programmed that the RMSE of HGA to be less than 
RMSE of current method. 
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CHAPTER 7 

REAL-TIME UPDATING 

7.1 Introduction 

Due to the incapability of models to perfectly portray complex natural systems and due to 
faulty model input data, every forecast is subject to an error. Consequently, it is 

necessary to correct the forecast in the light of recent model performance to minimise the 
forecasting error. Updating is the technique of incorporating recent measurements of 
flow to improve flow forecasts (Nemec, 1986). 

Although a large number of models have been considered in the literature, updating 
techniques are not so widely discussed (Serban and Askew, 1991). However, some 
references investigated updating procedures including Bramley (1981), Serban and 
Askew (1991), Nemec(1986), Harpin (1982), Reed (1984) and WMO (1992). Indeed as 
referred to in WMO (1987) the final report of the Simulated Real-time Inter-comparison 

of Hydrological Models (WMO, 1992) was one of the first, if not the first, publication in 

which the updating procedures used by operational models were described in any detail. 

This chapter presents a general review of updating techniques and some newly developed 

procedures to improve updating procedures in transfer function models. 

7.2 What is updating ? 

Neither the models nor data used in flood forecasting are perfect. Consequently, 

estimated flows, will rarely, if ever, be exactly equal to observed flows, there always 
being some kinds of error between the estimated and observed flow. The error in 

estimated flow may be related to either inaccuracy in the measurement of input data or 
forecast procedure (model), whilst the error in observed flow can be due to inaccurate 

measurement of data only. One type of classification of errors is as follows: 

" random errors which are independent and difficult to clarify. These kind of errors 
can result from either failure of an measurement instrument, or erroneous of data 

processing. 



Chapter 7 Real-Time Updating 187 

" Correlated errors, occurring at least in a few sequential forecasting time steps. 
These errors can be obtained from systematic instrument error and unsuitability of 
the rating curve used amongst others (Nemec, 1986). 

As mentioned in section (2.5.2.2) and figure (2.15) errors between estimated and 
measured flow are generally of three types: 

" incorrect volume or amplitude, generally resulting from miscalculation of 
infiltration or errors in the model input data. 

" incorrect shape due to misrepresentation of model components. 
" time or phase errors, mainly introduced by time delay between rainfall input and 

flow. 
In practice different combinations of these three types of error can occur. 

Real-time hydrological forecasting models are composed of a simulation model and a 
technique for forecast updating. The simulation (process) model is a mathematical 
operation containing state variables and parameters which transforms a set of inputs to a 

set of outputs without reference to the measured outputs. Note that the state variables vary 
in time while parameters remain constant. 

As long as the differences between estimated and observed flow remain within acceptable 
bounds, there is no need to adjust estimated flow. However, once the differences become 

unacceptable one or more of the state variables should be adjusted, in order to minimise 
the magnitude of any further errors. To do this the observed flow should be taken into 

consideration. The use of current or recent measurements of river flow obtained via 
telemetry to improve model forecasting performance is called updating (Serban and 
Askew, 1991). It should be emphasised that updating procedures differ from the 

periodic, historic recalibration of model parameters which is necessary when the 

characteristics of a basin or of a river bed change in time (WMO, 1992). Figure (7.1) 

presents the principle of updating. 

7.3 Methods of real-time updating 

According to Bramley (1981), three main steps should be considered in each updating 
procedure. They are: 

" recognition of the feature to be updated. 
" collection of information on the performance of the system to date. 

" utilisation of information to forecast the future behaviour of the update feature. 
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QM 

QF 
QS 

j j+1 j+k Time 

QS simulated hydrograph, QM measured hydrograph, J time of preparation of forecast, 
QF forecasted hydrograph, e simulation error, f forecasting error 

Figure (7.1) The principle effect of updating (after Serban and Askew, 1991) 

There are four distinct forms of updating procedure in common use (Serban and Askew, 
1991 and Reed, 1984): 

" procedures which involve the model input variables; 
" procedures which involve the variables of state in the model of the system; 
" procedures which involve the parameters in the model of the system; 
" procedures which involve the model output variables. These procedures are 

often referred to as error prediction. 

Various combinations of these four types of updating procedures can be applied in real- 
time operational practice. 

Since parameter variability is often a reflection of an inadequate model structure, the use 
of parameter updating is often unattractive (Moore, 1993). Furthermore, the modification 
of one parameter would require the modification of other parameters because the 
parameters are not independent. 

Updating for real-time operation can be automatic or manual (interactive). In manual 
adjustment, the forecaster views some sort of machine-produced display and makes a 
subjective decision to adjust the estimated flow. In automatic adjustment there is no 
human intervention and adjustment can be applied through the programming the computer 
to make the decisions. Forecast updating procedures are presented in figure (7.2). Some 

Q (m3/s) 
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components of the figure, including Kalman filtering, trial-error procedure and 
autoregressive models and different updating procedures are described in next section. 

Type of updating procedure 

I Updating of model input I 

variable 

Manual II Automated 
Interactive 

I Trial - Error I 
procedure 

Updating of state variable Updating of model output 

of the modelled system variable 

jllý 
Manual Automated Manual Automated 

Interactive Interactive 

Kalman filter or F_-Autoregresive 

extended Kalman filter models 

Figure (7.2) Types of updating procedures (adapted from Serban and Askew, 1991) 

7.3.1 Input variables updating (trial and error) 

This updating procedure was a manual, subjective adjustment of input variables. Input 

variable updating procedures are interactive and use a trial and error approach to inversely 
determine the model input when the model output and parameters are given. A block 
diagram for a trial and error updating procedure is presented in figure (7.3). 

First the input variables to be adjusted, adjustment increment for each variable and 

maximum change allowed in any computation period should be selected. Then, at each 
forecasting moment j, the following stages are followed: 

" calculation of the error `ej' between the measured and simulated hydrograph. 

" comparison of the error with a pre-defined acceptable level of error TEj. If the 

error is less than the threshold value, the procedure terminates. 

" rerunning of the model using the adjusted input variables. 
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Current time step: J 

Model running 
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TEJ is the accepted error threshold 
I is on iteration counter 
NM is the maximum number of iterations 
K is the modelled system memory 

Figure (7.3) Block diagram of updating procedure of the trial-and-error type for input 

variables (adapted from WMO, 1992) 
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It can be seen that working on input data is complicated. Although in some cases a 
proportion of the forecast error may be due to poor data rather than any limitations in the 
model, in other cases there may be no direct link between input and output, meaning that 
inaccuracy in the output may not necessarily result from a corresponding error in input 
data (Bramley, 1981). Furthermore, the updating of input variables may affect the state 
variables of the model (WMO, 1992). 

7.3.2. State and parameter updating 

This technique systematically adjusts one or more of the state variables or model 
parameters until the best agreement between estimated and observed flow is obtained. 
Typical state variables that may be adjusted include the water contents of the soil, surface 
and ground water stores, and snow water equivalent. Coefficients describing the 
hydrograph shape may be updated as a model parameter. Parameters can be updated 
using a least squares optimisation technique. 

In order to update the state variables a set of linear operations can be applied through the 
Kalman filter (KF) algorithm. An extended KF may be used for non linear dynamics 

models. During last two decades the application of the KF within hydrology has 
increased considerably. The KF may be combined with a transfer function model 
(Harpin, 1982), or with conceptual hydrological models, such as the HFS model 
(Georgakakoas et al., 1988), the NAMKAL model (Refsgaard et al., 1983, and Assaf 

and Quick, 1991). KF algorithms are also described by Serban and Askew (1991) for the 

application of a linear KF to the study of a physical system - the prime requirements 
being: 

0a description of the system dynamics as a system of linear equations of the form: 

xi _ ox; 
_, + Irv; 

_, 
+ w,. 

_, 

"a definition of the measurement equation relating the measurements generally 
carried out on the system output with the variable of state: 

ZZ = HX, +V 

where: 
X is the vector of the state variables; 
Ua control vector containing the input variables; 
0 the transition matrix; 

(7.1) 

(7.2) 
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IF the input adjustment matrix; 
W the modelling error vector; 
Z the measurement vector; 
H the measurement selection matrix ; 
V the measurement error vector. 

The matrixes 0, IF and H defining the characteristics of the modelled system can be time- 

constant or variable in time. The V and W errors are considered independent and normally 
distributed. 

V= N(0, R); W= N(0, Q); E(VT , WT) =0 

Q is system noise covariance matrix, R is the measurement error covariance matrix. 

As the X state quantities at any time step are only estimates of the `true' X values, the 
covariance matrix for the estimation errors is defined as: 

= E{ (X. -X. l _1)(X l. -X. lj-l)1 Ti P/ j-1 ý 1j (7.3) 

Once the initial values for Xp and Pp are pre-established, the equations of the linear 
Kalman filter for the forecasting and the updating stages are the following: 

Forecast at moment j 

0 the vector of state: 

X; 
+,,; _ cX;,; + ruj (7.4) 

0 the matrix of estimation errors: 

P+Il; = 0p, T +Qf (7.5) 

Forecast updating using the measurement at moment j+l 

" the correction matrix kj+l 

(7.6) K; +l = P+l i; HT [HP+, ý; HT + RR+1 ]-l 
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" the vector of state 

X; 
+l/ ; +j = X; +l/ ;+ KK+l[ZZ+, - HXJ+111] 

0 the matrix of estimation errors 

P+l /; +l = P+i l; - KK+IHP+I i; 

(7.7) 

(7.8) 

The algorithm is repeated by substituting the estimated values of the state vector Xj+, 
/ ; +I 

and of the matrix of errors P+�j+, obtained through equation (7.7) and (7.8) into 

equations (7.4) and (7.5). 

The term HX 
j+1, j of relation (7.7) represents the estimation Zj+� 

j of the observed 

value, Zj+, using the equation: 

Z; 
+l ti= HXj+lIj (7.9) 

A schematic representation of Kalman filter updating is represented in figure (7.4) 

According to Rungo et al., (1989) KF techniques are more efficient in correcting 
amplitude errors than phase errors. 

KF algorithms have been successfully applied in parameter estimation (see for example 
Ramos et al., 1995). However, its application to the forecasting and updating of 
hydrological models as stated, for example, by Ahsan and O'Connor (1994), Reed 
(1984), Plate et al., (1988), Schultz (1988), Bramley (1981) and Wilke and Barth (1991) 
is dubious. From the above discussion it can be seen that KF needs a priori knowledge 

of the variation of the system noise and the measurement noise covariance matrix, as well 
as an estimate of initial state and the state error covariance matrix. However, these are 
never known for hydrologic system. Ahsan and O'Conner (1994) quoted that KF can be 

used in flow forecasting if the measurements errors in flow data are either ignored or are 
absent. However, even if this special condition is met, the KF algorithm simplifies to a 
representation that is identical with the time series approach. 
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Statistics Statistics 
of Noise of Noise 

Wj_l State V, 
Input Variables Output 
Uß_1 System Xj Measurement ZI 

X1 =4]X_1+r, u, _I+Wj_I ZI-HjXI+Vj 

Initial Conditions 
X(t, )=X, 

Figure (7.4) Schematic representation of Kalman filter updating (adapted from WMO, 
1992) 

7.3.3 Error prediction (blending method) 

The structure of forecasting errors can be analysed, predictors of future errors based on 
this developed and then predictions of the error added to the deterministic model 
prediction to obtain the updated model flow forecast (Moore, 1993). The purpose of the 
technique is blending the two pieces of information, that is, model prediction and 
telemetered flow observations, together (Reed, 1984). This procedure is a simple, yet 
very efficient technique and is used more than any other updating technique. The 

technique works very well if there is a tendency for errors to persist, otherwise it can 
make an already poor forecast even worse. This technique is not very effective in the case 
of phasing errors. 

Of the models that participated at the WMO workshop, the output variables of UBC, 
CEQUEAU, SMAR and NAMS 11 were updated using autoregressive models that were 
fitted to the errors `e' between the computed and measured hydrographs as follows 
(WMO, 1992): 

ei =O1ei-1 +0Zei_Z+..... +Oaei-v+ai (7.10) 

where 
o,, 02, ......., Op are coefficients of the auto-regressive model, aj are residual 
(uncorrelated) errors. 

The order and coefficients of the autoregressive model are determined by means of the `e' 

errors series over a relatively short period of time before the forecast time. The forecast 
error (e J+k, J) at time j+k using the AR model is given by: 
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ej+klj =YIej+k-1/j+02ej+k-2/j+03ej+k-3/j+""""" (7.11) 

The forecasted discharge at time j+k, QFj+k/j, will be 

QF+x 
if= QSJ+k + eJ+k iJ (7.12) 

where QSj+k is simulated discharge at time j+k in terms of the model. 

7.3.4. Simultaneous adjustment of amplitude and phase error 

As mentioned earlier, error prediction and KF procedure both assume that the deviations 

are amplification error only. Consequently, there will be a problem if there is a phase 
deviation between measured and simulated values. 

One solution for this problem, presented by Han (1991) was illustrated in section 
(2.5.2.2). Rungo et al., (1989) described another approach as follows: 

In current procedure the simulated curve is moved both along the time axis and along the 
discharge axis, until the best agreement between the simulated and measured curve is 

achieved. The best agreement is measured by the minimum of the sum of square deviation 
between simulated and measured values. 

According to figure (7.5) and on the assumption that the phase error is less than A,, the 
best agreement is found as: 

2 
ns -s 

MIN(; F,. M; - S; - Si + Ae -' At 
'+' Pe (7.13) 

Where Ae (m3/s) is the amplitude error, Pe (s) is the phase error, M (m3/s) is the 
measured discharge, S (m3/s) is the simulated discharge, F is the weighting factor, n is 
the number of values taken into account and A, is the time-step (s). 

By differentiating the equation with respect to Ae and Pe and then solving these two 
equations the values of Ae and Pe can be calculated. Similar calculation can be made for: 

/t<pe<20t, 2L<<pe<3A, etc. 

Therefore it is possible to have an estimate of the phase and amplitude errors at the time of 
forecast. 
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Time 

Figure (7.5) The need for real-time correction measured and ------- simulated 
discharge. 

7.3.5 Which updating method? 

The choice and correct application of an updating procedure can be as important as the 

choice of model. Although in general, updating procedure can increase the accuracy of the 
forecast over that of simulation, misselection and misapplication of updating procedure 
may lead to less accurate forecasts. 

The likely cause of errors can help to select an appropriate updating procedure. If it is 

known that a particular part of model is responsible for the errors, then a parameter- 

updating procedure may be useful. Where as if it is suspected that the cause of the error is 

related to either input data or misinitialization of the model, the state-updating technique 

could be the best choice. Finally if there is no evidence about the likely cause of the error, 

an error prediction method is probably the safest choice (Reed, 1984). Furthermore, the 

amount and quality of available past data and the reliability of the real-time data collection, 
transmission and processing may be affect the choice of updating procedure, because 

without sufficient data even the most advanced simulation model is of no use (Nemec, 

1986). According to Reed (1984) if good quality telemetered flows are available, a simple 

model plus sophisticated updating procedure is preferable to sophisticated model plus 

simple updating procedure. 

Serban and Askew (1991) summarised advantages and disadvantages of different 

updating procedures as follows: 
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In order to use KF the model should be linearized and re-written in state space form and 
in addition, a priori knowledge of the system and measurement errors is necessary. The 

programming of KF is difficult and needs quite a long time to run. The technique is more 
effective in amplitude error than phase error. KF makes it possible to determine 

confidence limits for forecast discharge. 

Standard time series models such as AR models are suitable for following the variation of 
forecast error through time. AR models are easy to program and to apply and take a quite 
a short time to run. However, their efficiency depends on the degree of error persistence 
between the measured and computed hydrograph. 

In terms of an overall updating strategy most researchers including Clausen and 
Refsgaard (1984), Bramley (1981), Serban and Askew (1991) stated that output updating 
procedures using time series models such as AR model are much more suitable than other 
procedures. Indeed among 14 models taking part in the WMO workshop, eight update 

process model outputs. Of these, one updates both input and output, two update state 

parameters and output, and one updates both parameter and output in combination. Both 

automated and manual interactive updating procedure are used. Among the same 14 

models submitted to the WMO inter-comparison project, seven models used automated 
updating procedures, six used manual-interactive ones and one employed automated 
procedures for discharge and manual-interactive procedures for snow cover extent. 

7.4 Current updating procedures in TF models 

As mentioned in section (2.5.1) the main shortcoming of TF models and the relationship 

expressed by equation (2.39) is that they use a linear equation to explain the non-linear 
relationship between runoff and rainfall. 

One technique to overcome this weakness is to incorporate the antecedent condition of the 
catchment (A) as an additional input in equation (2.39), following O'Connell and 

Clarke, (1981): 

yr = a, yt-t + a2yt-2 +....... + a, ny, -m 
+b, ut_1_, + b2ut_2_1 + ..... + braut-n-1 + CAI 

(7.14) 

C is an additional parameter. There are a number of ways to determine the variable A,. If 

only antecedent rainfall data are available, at each time point an antecedent precipitation 
index (API) could be computed as: 
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API, = KAPI, 
_, +P (7.15) 

Where K is a decay factor in the range of 0.85-0.98 (Linsley et al., 1983). If soil 
moisture deficit (SMD) data are available, then a catchment wetness index (CWI) could be 
computed using equation (2.14). Variables such as APIt or CWIt can then be used 
directly in equation (7.14) as the variable At. Although the resulting model is linear in the 

parameters it is non-linear in the system theory (O'Connell and Clarke, 1981). 

Todini (1988) used another approach to cope with the non linearity in basin response 
through a system split into two linear systems depending on the value of the antecedent 
precipitation index. For dry soil, that is value of API is equal to or less than a threshold 
value T, rainfall is transformed into runoff by the first linear model, but if the API is 
larger than threshold value, the second linear model is used. Therefore, rainfall input ut 
divided into two separate input series ult and u2t according to the value of API. 

API>T: u, =ul; u2t=0 
APIST: u,, =0; u2t=uu 

The resulting model is then a multiple input type of the form: 

m2n 

yt = aiyl-i +±±bkkui, r-1-k J=ý i=l k=0 
(7.16) 

It can be seen that the response of a basin to rainfall under "wet" and "dry" conditions can 
be represented by separate pulse responses (see figure 2.4) 

Instead of directly using Or such as in equation (7.14), 0, can be used to scale the 
rainfall component of the model. Owens (1986) used A, as a scaling factor of rainfall 

parameters to match the steady-state gain (section 2.5.1.1) of the model to the event 
percentage runoff. This method is analogous to the variable proportional loss method of 
defining effective rainfall. 

Since a posteriori knowledge is necessary to determine the average percentage runoff of 
an event, which is not available in real-time, one step ahead forecast error is used to 
update 0, The final form of transfer function model including the on-line updating and a 
time delay is presented in equation (2.53). The block diagram representation of the 
transfer function model in figure (7.6) highlights the structure of the model. Lees et al., 
(1994) suggested similar factor as 0, in their work on an adaptive flood warning scheme. 
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O1bz-' + b2z-2 +....... + b"z-" 
Rainfall input U, 1- 2 _m --> y, Flow output 1- a, z- a2z- - ....... - amz 

Figure (7.6) Block diagram representation of the final form of TF model 

Owens (1986) used following equation to update A: 

µ) 
Y, - [ay, 

-, + a2Yt-z + ...... + amyr-, n 
j 

(7.17) ( 

[b, uJ_, +b2ut-z +....... +b un] 

where t is a smoothing factor (0:! 9 A t: 5 1 usually u=0.5) which helps limit erratic 
behaviour in the value of 0 through time. Updating of 0 does not take place if runoff is 
below a present threshold (1.2 times the river base flow), and if the total amount of 
rainfall in the memory of the model is below a pre-defined threshold. In addition, A can 
be at most 1.5 times greater or less than previous A. 

Since A is concerned with the proportion of rainfall contributing to runoff, the initial 

value of 0 may be related to antecedent catchment conditions. Due to difficulties of 
estimating the initial value of the antecedent conditions, an initial value of 0=1 is 

normally used which corresponds to the average percentage runoff of the model 
calibration data. 

The updating procedure used by the PRTF model is described in section (2.5.2.2) and 
figures (3.17) to (3.19). 

7.5 Further improvement of updating procedures in TF models 

7.5.1 PRTF model 

7.5.1.1 An investigation to find the most important adjustment factor 

As a first step to improving the updating performance of the PRTF model an investigation 

was conducted to find the most important of the three adjustment factors a (volume 
adjustment factor), y (shape adjustment factor), and z (time adjustment factor) (see 

section 2.5.2.2). In order to carry out this investigation, several independent storm events 
were selected for the Orgeval catchment and were examined. Here only the results of the 
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same five events which used in previous chapters are presented. For each event the 

appropriate calibration model was identified. In each event, the rainfall and runoff data 

were divided into different data sets commencing at 3 then 4 and so on until n= available 
number of calibration data set. Different parameters including a, y, -r, simulated 
discharge, average rainfall intensity, cumulative rainfall and actual discharge were 
determined sequentially using the calibrated model and adjustment (updating) procedure 
(see section 2.5.2.1 and 2.5.2.2). 

The main relationships between the different parameters of the PRTF model summarised 
from section (2.5.2.2) can be described by the following equations: 

tpeaknew = tpeak +7 (7.18) 

N=2, Anew 
(7.19) 

N-3, ßnew -e 

2tpe,, 
Mew +3 

W) (tpeaknew + 3tpeaknew +2 

#N r1N 
C= \ýnew 

) 
(7.20) 

N 
I' news - I)N 

C(i) =Cx b(i) (7.21) 

B(i) = C(i)(1 + a) (7.22) 

N=2, A(1) =2 A(2) =- /ý1 (7.23) 
Nnew I'new 

N=3, A(1) =3 , 
A(2) = -3 , 

A(3) (7.24) 
p 

n23 ew 
p3 

new 

The investigation was conducted for the following cases: 

1- a, y and r can be different in different data sets. Referring to equations (7.18) to 
(7.23) it can be seen that in this case the A and B parameters can be different according to 
the values of a, y, and r. 

2- y= constant =0 but a and r can be different in separate data sets. In this case the A 

parameters are always constant but the B parameters can be different for separate data 

sets. 
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3- a= constant =0 but y and r can be different for separate data sets. In this case both 

the A and B parameters can be different for separate data sets. 

4- 7=z=0= constant but a can be different for separate data sets. The A parameters 
remain constant but the B parameters can be different for separate data sets. 

5- 'r = constant =0 but a and y can be different for separate data sets. In this case both 

the A and B parameters can be different for separate data sets. 

It is expected that the best simulated discharge (simul best) would obtained if the a, y, 

and r all differ in the separate data sets. Therefore, the accuracy of the simulated 
discharges resulting in each case, can be judged by comparison with simul best. To do 

this the simulated discharge hydrograph arising in the different cases are compared with 
simul best for each event under evaluation (see figure 7.7). The RMSE of differences are 
presented in table (7.1). 

The graphs in figure (7.7) and RMSE in table (7.1) show that the most dominant factor is 

the volume adjustment factor a. This is because when it is assumed to be constant the 

quality of the simulated discharge decreases significantly. Overall the second most 
important factor is the shape adjustment factor y. Therefore in order to gain better 

forecasting performance an updating procedure necessarily should include a volume 
adjustment factor. 

It is interesting to note that for all events investigated the simulated discharge when three 

adjustment factors are variable, do not differ greatly from the simulated discharge when 
the shape and time adjustment factors are constant. 

Table (7.1) Comparison of RMSE result of simulated discharge in different cases. 

Event T=y--0 a=0, i and i =0, a and 1=0, a and 
number a variable y variable y variable ti variable 
1 0.451 1.646 0.456 0.574 
2 0.770 0.443 0.195 0.770 
3 0.264 0.404 0.191 0.253 
4 0.547 3.818 1.068 0.993 
5 1.076 1.503 0.839 1.219 

7.5.1.2 Observations on relating adjustment factors to time and 

average rainfall intensity 

A further attempt was made to relate the adjustment factors to time and average rainfall 
intensity. Figure (7.8) shows the temporal variation of a for the same five events. The 
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graphs indicate that when y is constant the values of a differ significantly from the value 
of a when a, y, and r vary in time. (Variation of a with time in two cases is similar). 
Consequently, once again it can be concluded that the second important adjustment factor 
is the y parameter. 

In order to investigate the probable relationship of a, y, and r, the simultaneous 
temporal variation of all three has been examined. The graphs in figure (7.9) summarising 
this investigation for four selected storm events indicate that almost all various 
combinations of different variation of these parameters (27 combinations) can occur. 
However, the occurrence frequency of each varies. In more than 90% of cases the r 
parameter remains constant during two successive times. In almost 30% of cases all three 
parameters remain constant together during two successive time. In 18% of cases a and 
y parameter increase together. In 16% of cases both a and y increase whilst r 
parameter remains constant. In 13% of cases both a and y decrease but r parameter 
remains constant. Only in 2% of cases both a and r parameter increase together during 
two successive time. Finally only in 0.4% of cases do all three parameters increase 
together. 

The adjustment parameters vary rapidly with time and it is impossible to extract a 
persistent general relationship concerning the combined variations of a, y, and 
parameters. 

Further research attempted to construct a relationship between the adjustment factors and 
average rainfall intensity. To do this a scatter graph of each parameter against average 
rainfall intensity was prepared for each event under investigation. The results of this 
investigation are summarised in figure (7.10). As can be seen from the figure there is no 
reasonable and persistent relationship between the adjustment factors and average rainfall 
intensity. Furthermore, the same results were obtained in attempts to relate the adjustment 
factors to rainfall depth, accumulated rainfall and previous discharge. Variation of y and 
'r with a and y with z also did not show a comprehensive relationship. 
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7.5.1.3 New procedure for updating the (B) parameters in simulation 
of PRTF model 

As shown in section (7.5.1.1) the volume factor (a) is the most important parameter of 
the three adjustment factors. In order to develop a updating the simultaneous temporal 
variation of runoff and a (both when three adjustment factors are variable and when 
shape and time adjustment factors are constant) were examined. The graphs in figure 
(7.11) show that although there is not a consistent pattern related the volume adjustment 
factor, some dominant patterns are observed. 

During a significant event, a gradually increases and approaches a constant value. The 
turning points of a can be at the beginning or end of rainfall. After the peak a significant 
change in the volume factor is usually observed. The a -time curve exhibits a flattered top 

at time of flow peaks. Between peaks a invariably increases when flow is rising and 
often remains constant as flow decreases. In most of cases it is possible to divide the a- 
time curve into several straight lines, with each segment being expressed by a simple 
algebraic function. Consequently, prediction of a is feasible and relatively satisfactory 
forecasts of runoff can be made using the predicted rainfall and predicted volume factor 

using an adaptive PRTF model identified using `up-to-now' information. 

As can be seen in figures (3.17) to (3.19), the existing PRTF forecasting procedure 
determines a, y, and r using `up-to-now' information. Following this, the A and B 

parameters will be calculated using equations (7.18) to (7.24) and the adjustment factors 
determined. The simulated hydrograph is then calculated using past and forecasted rainfall 
up to the forecasting lead time and finally the simulated hydrograph is shifted proportional 
to the differences between the actual and simulated flow at the time of forecasting. The A 

and B parameters will be constant over the forecast lead time. 

In the proposed procedure, a, y and r are determined sequentially by dividing the 
available historical information as described in the previous two sections. A relationship 
between OC (volume factor) in the different data sets is constructed and used to predict 
future Ot over the forecast lead time. The predicted a is then used to calculate the future 
B parameters. Although the A and B parameters at the forecasting time are the same as in 
the existing procedure, the B parameters over the forecasting lead time differ. The final 

step of the new procedure is to calculate the simulated hydrograph over the forecast lead 
time and shifting the simulated hydrograph proportional to the differences between actual 
and simulated flow at the time of forecasting. 
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In order to find the best method of predicting the volume adjustment factor (a), three 
procedures: a simple correlation equation (see for example Arthanari and Dodge, 1993), 
an exponential function (see Janacek and Swift, 1993), and an autoregressive method 
(see section 7.3.3 and NAG library) have been considered. These preliminary 
investigations led to the adoption of the autoregressive model. 

In order to include a volume adjustment factor prediction technique in the PRTF model 
and to judge the forecasting performance of the `combined' model the same six storm 
events used during the WMO workshop and studied in section (4.4) were considered. 
For each event the order and coefficients of the autoregressive model were determined by 

means of the a series obtained by dividing the calibration data set sequentially as 
described in section (7.5.1.1). Order selection was made by considering both the residual 
sum of squares between the estimated and actual a and parameter redundancy (higher 

order parameters with small values indicate that a lower order model may be adequate). 
Forecasted a in time j fork step ahead (af+k, f) using the AR model is given by: 

aj+k/ 
j- alaj+k-1 /j 

+a2aj+k-2/ 
j 

+a3aj+k-3/j ...... (7.25) 

where al, a2, ........ are coefficients of the AR model. 

For the evaluation of the performance of the B parameter updating procedure, both 

objective approach and graphical comparison of the forecasting results were made. 
Objective comparison of the RMSE of the flow forecasts at each time step ahead between 
the current procedure and suggested procedure are given in table (7.2). In addition, in 
figure (7.12) graphical comparison of the forecasting results of event number four are 
presented as an example. 

It was observed from above comparison that for all events investigated, the suggested 
procedure outperforms the existing method for each step-ahead forecast, although the 
quality of the forecast depends on the persistence of temporal variation of a. The study 
clearly demonstrated that it is much better to use a combined PRTF model coupling the 
existing forecasting procedure with a volume adjustment factor prediction model. 

A further attempt was made by use of an adaptive volume adjustment factor prediction 
model. In the proposed method at each forecasting time, the coefficients of the OG 
prediction AR model are calculated separately using the newly available data. However, a 
comparison of the RMSE results, indicates that the simple AR model with constant 
coefficients is adequate, and that the adaptive AR model does not providing any additional 
advantages. 
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Figure (7.12) Comparison of the forecast hydrographs, Orgeval catchment event No. 4, 
PRTF model 
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Table (7.2) RMSE result of current and modified updating procedure of PRTF model 
for different events (Orgeval catchment) 

Event No. 1 Event No. Even No. 3 Even t No`4 
Step Current Modified Current Modified Current Modified Current Modified 
ahead model model model model model model model model 
1 0.803 0.792 0.279 0.276 0.325 0.325 1.463 1.236 
2 1.251 1.235 0.554 0.546 0.644 0.644 2.853 2.460 
3 1.600 1.582 0.815 0.803 0.961 0.961 4.206 3.677 
4 2.037 2.018 1.061 1.042 1.259 1.259 5.384 4.772 
5 2.547 2.524 1.293 1.268 1.537 1.537 6.376 5.746 
6 2.909 2.893 1.515 1.481 1.794 1.794 7.249 6.629 
7 3.085 3.081 1.724 1.682 2.038 2.038 8.103 7.516 
8 3.417 3.423 1.905 1.856 2.275 2.275 9.004 8.452 
9 3.639 3.660 2.048 1.992 2.513 2.513 10.013 9.418 
AR order - 4 - 1 - 1 - I 

Table (7.2) Continued 

Step Current Modified Current Modified 
ahead model model model model 
1 2.325 2.207 0.934 0.891 
2 4.118 3.856 1.799 1.730 
3 5.325 4.999 2.581 2.469 
4 6.295 5.922 3.273 3.101 
5 6.994 6.580 3.793 3.539 
6 7.266 6.829 4.222 3.846 
7 7.291 6.872 4.626 4.113 
8 7.239 6.832 5.024 4.406 
9 6.843 6.442 5.467 4.801 
AR order - 4 - 1 

7.5.2 Static TF model 

7.5.2.1 Searching for best smoothing factor 

Equation (7.17) shows how the value of µ (smoothing factor) affects the amount of 

adjustment of A. 

In theory, the smoothing factor can range from 0.01 to 1.00. However, large values 
cause the updated value of 0 to include a large percentage of the previous value resulting 
in aA that responds quickly to change in the previous values. This is undesirable if the 
changes in the A are irregular and affected by erratic noise. Conversely, when µ is close 

to zero, the new d will be similar to the y, - 
[a, y, -, + a2Y: -2 + The speed [b, u1-I+ b2UI-2 +...... +b�u, -�] 

at which past values of the A lose their importance depends on the value of u. For 

stability a small smoothing factor is appropriate whereas a rapid response to recent change 
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requires a large smoothing factor. Consequently the optimum choice of µ which has a 
major impact on forecasting performance is a compromise. 

In order to examine the performance of different values of smoothing factor a study using 
the five verification events described in section (4.4) has been made using data 
immediately prior to the main event. In each case a model is calibrated using its pre-event 
data and the same data is then used for forecasting. To find the best µ, an interative trial 

and error technique is applied, whereby for a range of t values. The value of u is 

selected when the best agreement between observed and forecasted flow hydrographs in 

the pre-event data is obtained. This value is then used to forecast the main event. 

Surprisingly, in four out of five events investigated, the best calculated µ is 0.5, the 

value used in equation (7.17). Only in pre-verification event number one was a different 

value found (0.9). At the same time when applied to the event, no improvement in 
forecast quality was observed. 

Although overall, 0.5 constitutes the best value for the smoothing factor analysis of more 
events is required to provide a firmer conclusion. 

7.5.2.2 Adapting an AR model using forecasting error 

No hydrological model provides a perfect forecast, there will always be some 
discrepancies (errors) between forecasted and observed river flows. TF models are no 
exception. Model errors may result from inaccuracy in the model structure, model 
parameters, and in the model inputs. If the cause of errors can be determined a priori the 
selection of an updating procedure is straightforward. However, usually this is not the 
case and the reason for the error is unknown. In such circumstances error prediction 
methods based on time series analysis can be used to model the forecast errors. 

Although in TF models inaccuracy in the rainfall input can to some extent be corrected by 
the A updating procedure, there are still some errors, mainly due to either inappropriate 
model structure or model parameters which t updating procedure cannot correct. In this 
section a statistical (autoregressive model) error model is utilised in conjunction with the 
original ordinary TF model. 

In order to implement this research, the same five storm-events of the Orgeval catchment 
studied in section (4.4) are considered and the performance of the combined model 
(original TF model + error prediction model) is compared with that of the original TF 

model. 
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Once again, in each case a calibrated model was identified using the data of the event 
immediately prior to main event. The calibrated model was then used for forecasting the 
same pre-event, and forecasting errors calculated for each step-ahead forecast. An 

autoregressive model was identified for each step ahead forecast, and these models then 
used in combination with the original TF models to forecast the main event river flows. 
As the variation of forecast errors through time may be different in separate step ahead 
forecasts, the parameters of the error prediction model in each step ahead forecast were 
determined independently. As in section (7.5.1.3) to determine the order and parameters 
of AR model both the residual sum square between estimated and actual error as well as 
parameter redundancy are considered. 

The results of an objective comparison of the performance of original TF model and the 
combined TF model are presented in table (7.3). It can be seen that in four out of five 

events, the combined model outperforms the original TF model and only in verification 
event number five does the original TF model provides better forecasts (although the 
forecast quality of original model also is poor). The reason of the poor performance of the 

combined model for event number five may be explained as follows. Table (4.6) showed 
that the ratio of portmanteau statistic to critical chi-squared of the original TF model in 

event number five was 4.749. This indicates that the original TF calibrated model which 
is obtained from pre-event data was inadequate for the original event. Consequently it 

may be said that the error prediction model obtained from the pre-event data is also 
inadequate for forecast residuals of main event. In figure (7.13) graphical comparison of 
the forecasting results of event number two are presented as an example. 

Overall it may be concluded that the combined model improves the forecasting quality, 
although more events need to be investigated in an extended study. 

7.6 Conclusion 

This chapter began with a comprehensive review of updating procedures of flood 
forecasting models. The sources of forecasting errors have been addressed and the basic 

structure and operational characteristics of the different updating procedures assessed. 
The parameters affect the choice of updating procedures outlined. The chapter continued 
by introducing the current updating procedures of TF models. 
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Table (7.3) RMSE result of current and modified updating procedure of TF model for 
different events (Orgeval catchment) 

Even No. 1 Event No. 2 Event No. 3 Event No. S 
Step Current Modified Current Modified Current Modified Current Modified 
ahead Model Model Model Model Model Model Model Model 
1 0.288 0.288 0.130 0.130 0.566 0.565 1.330 1.330 
2 0.697 0.681 0.327 0.318 1.074 1.070 2.342 2.344 
3 1.156 1.149 0.580 0.570 1.546 1.545 3.305 3.315 
4 1.632 1.627 0.884 0.813 1.997 1.976 4.064 4.085 
5 2.111 2.111 1.210 1.100 2.442 2.373 4.545 4.579 
6 2.599 2.601 1.529 1.393 2.867 2.787 4.672 4.713 
7 3.090 3.095 1.838 1.658 3.269 3.342 4.607 4.651 
8 3.565 3.569 2.104 1.890 3.633 3.679 4.606 4.656 
9 4.917 4.021 2.300 2.091 3.969 4.049 4.517 4.571 
AR order - 1 - 1 - 3 - 1 

Table (7.3) Continued 

Event 
Step Current Modified 
ahead Model Model 
1 0.525 0.525 
2 1.175 1.174 
3 1.802 1.801 
4 2.453 2.452 
5 2.990 2.984 
6 3.404 3.398 
7 3.713 3.706 
8 3.920 3.907 
9 4.043 4.026 
AR order - 4 

The remainder of the chapter was allocated to describing further improvements in TF 

model updating procedures. Extensive research has been conducted to find the most 
important adjustment factor of the PRTF model. The research evaluated the impacts of the 
volume, shape, and time adjustment factors on forecast quality and concluded that the 

volume adjustment factor is the most important factor of the three. Several attempts have 
been made to relate the adjustment factors to different elements including time, average 
rainfall intensity, accumulated rainfall, and discharge. Different interaction of adjustment 
factors are also investigated. 

A new updating procedure has been developed using an autoregressive model to 
determine the B parameters of the PRTF model through the prediction of future volume 
adjustment factor over the forecast lead-time. An autoregressive model has also been 

combined with an ordinary TF model to include error prediction model in the original TF 

model structure. Relatively extensive testing has shown that the performance of both new 
transfer function models are superior to conventional procedures. 
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CHAPTER 8 

REAL-TIME UPDATING OF TF MODELS USING WEATHER 
RADAR DATA 

8.1 Introduction 

Advances in technology over the last fifty years has made it possible to develop active 
microwave radars specifically to observe rainfall patterns such as: areally distributed 

rainfall, rainfall intensity, accumulated rainfall, system movement, storm structure, severe 
weather probability and vertically integrated liquid water (Gutierrez, 1995). This chapter 
is not intended to provide a comprehensive review of radar technology which have been 
detailed elsewhere (see for example Collier, 1989, Tilford, 1992, and Atlas, 1990). 
Instead a summary of the background and information necessary to gain an understanding 
of radar principles, basic theory, radar classification and problems associated with radar 
is given. The chapter continues by an application of real-time updating procedure of the 
TF models using weather radar data. 

8.2 Background 

Radar by definition is an electromagnetic system which performs the tasks of Radio 
Detection And Ranging on distant target objects. The more formal definition of radar as 
expressed by Battan (1973) is: `the art of detecting by means of radio echoes the presence 
of objects, determining their direction and range, recognising their character and 
employing the data thus obtained'. 

Radar was invented by Watson-Watt in 1936 (Atlas, 1990). During the Second World 

war when radars were first used for military purposes it was seen that rainfall was a 
significant source of noise and techniques were developed for its removal. Since then, the 
use of radars for meteorological application has expanded rapidly (Collier, 1989). Ligda 
(1951) as reffered to by Atlas (1990), stated that the first time rain was observed by radar 
occurred on the 20th of February 1941, somewhere on the south coast of England. 
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The Marshall-Palmer relationship between reflectivity and rainfall rate (equation 8.12) is 
still one of the most important equations in radar meteorology. This equation is the 
research product of a group established in 1943 and led by Stuart Marshall (the Stormy 
Weather Radar Group) in Canada. David Atlas in 1945 in the United States and R. F. 
Jones in 1946 in England set up research and operational centres for radar meteorology in 
their countries which quickly became the basic centres of radar meteorology. During the 
last two decades several countries extended their national meteorological radar network 
including USA, UK, Germany, Canada, Italy, New Zealand, China, India, Japan and 
Brazil amongst others. For a review of historic development of weather radar in different 
countries see Atlas (1990). 

In the UK at a practical level, several X-band (3cm wavelength) radar were placed at 
various locations on major air routes and one on the roof of the Air Ministry in London in 
50's (Collinge, 1987). In the mid 1960's the major movement is made from rainfall 
detection to rainfall measurement through the Dee Weather Radar Project (DWRP). 
DWRP resulted in the installation a S-band (10cm wavelength) on the Llandegla. In 1973 
the radar was converted to a C-band (5cm wavelength). 

Although research using weather radar in the UK continued since its discovery in 40's, it 

was not until the mid-70's that hardware advances enabled data to be processed in real- 
time, transmitted from the site and displayed remotely. 

A network of twelve, C-band radars were suggested as a national weather radar network 
by a group of experts to cover the British Isles (Bulman and Browning, 1971). 
Following the DWRP recommendations, a Plessey C-band radar was established at 
Hameldon Hill in May 1980 by a consortium including the Meteorological Office and the 
North West Water Authority. 

There are currently some 14 C-band weather radars (plus an S-band device at Shannon 
Airport) networked and in operation in the UK. Their distribution and coverage is shown 
in figure (8.1). An example of rainfall information of meteorological C-band radar is 

shown in figure (8.2). 

The development of weather radar and the advent of satellite sensor provide the 
appropriate sources of data for short period mesoscale rainfall forecasting. In the UK 
these two data sources were combined through the Short Period Weather Forecasting 
Pilot Project (SPWFPP) and its successor, Forecasting Rainfall Optimised using New 
Techniques of Interactively Enhanced Rainfall and Satellite (FRONTIERS) (Viner, 
1992). 
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Radar data are first collected in polar co-ordinates and are then converted to Cartesian co- 
ordinates at site of the original radar. Network data are, only available from 
Meteorological Office headquarters at Bracknell. In order to create the national network 
images at Bracknell radar data are composited with data from other UK radars. These data 

are also composited with European radar data to produce COST73 images and with 
Meteosat data to form FRONTIERS information. 

Salford University in a co-operation with Auckland University in New Zealand currently 
operate three vertically pointing X-band radars (VPR) (two mobile) and a low-power C- 
band device. This work is being beyond the scope of this thesis. 

8.3 Basic theory 

Radars provide an indirect measurement of rainfall by emitting electromagnetic energy 
and observing the nature of the energy reflected back. As shown in figure (8.3) radars 

utilise the microwave range of frequency (t) spectrum. For meteorological purposes 
usually radars are often described in terms of their wavelength (A) rather than the 
frequency. These two parameters are related by c=A. f, where c is speed of light. In 

general the smaller the size of the particles, the shorter the wavelength required to detect 

the particles. In meteorology most often the C-band (5cm) or S-band (10cm) wavelength 
are used. 

Microwave 
Frequency (GHz) 

3x106 3x105 3x104 3x103 3x102 30 3 0.3 3x10-2 3x10-3 3x10-4 

10-5 10-4 10-3 10-2 10-1 135 10 102 103 104 105 
Xcs 

Wavelength (cm) 

Figure (8.3) The Electromagnetic Spectrum Frequencies of 3x106 to 3x10-4 GHz 

A schematic of the hardware of weather radar operation is shown in figure (8.4). A 
transmitter emits an electromagnetic pulse at a known and given frequency. This energy is 

propogated through an antenna. When it intercepts an object (target), the pulse is partially 
reflected and returns to the same antenna. The antenna then directs any returned echoes to 

a receiver by means of a transmit-receive switch. The radar receiver directs the received 
echo to a so-called digital video processor and computer processor. Through these, the 
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signal is converted into meaningful information which can be displayed on a computer 
screen. The distance from the object also is determined by measuring the time interval 
between the transmission of the radio energy and the reception of the reflected signal. 

Waveguide 
(copper pipe) 

`( Aerial 

Trigger 

produces 
'pulse' 

T-R 

Echo returns here 
(protects receiver 
from transmission) 

Antenna 
Control 

Receiver 

Digital video 
integrator and 
processor 

Computer 
processor 

Display 

Figure (8.4) Main components of a weather radar system 

As indicated by Ruck et al., (1970) the power received, pr is a function of the transmitter 

system, the propagation path from the transmitter system to the target, the propagation 
path from the target to the receiving system, and the receiving system. The radar equation 
may be summarised as follows: 

p, = A. B. C. D. E. l a (8.1) 

where the terms represent: 
A= transmitting system = p1. G, /L 
B= propagating medium = 1/( 4acr2. L,,, ) 

C= propagating medium = 11(4. nr2. L., ) 

D= receiving system = G,. ß, 2 /(4x'L, ) 
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E= polarisation effects =1/ Lp 

Cr = radar cross section (also called back scattering cross section) 

and the parameters are defined as: 
Pt = transmitter power in watts; 
Gt = gain of the transmitting antenna in the direction of the target (the amount that antenna 
focusing increases power); 
Lt = numerical factor to account for losses in the transmitting system; 
Lr =a similar factor for the receiving system; 
Lmt, Lmr = numerical factors which allow the propagating medium to have loss; 
rt = range between the transmitting antenna and the target; 

r= range between the target and receiving antenna; 
Gr = gain of the receiving antenna in the direction of the target; 
X= radar wavelength; and 
Lp = numerical factor to account for polarisation losses. 

Usually it can be assumed that: 
Q= Gr =G and rt =r therefore, the equation (8.1) can be written as: 

P, X (4, C)sr4 
(8.2) 

The radar cross-section, ß, was defined by Ruck et al., (1970) as: ̀ given the target echo 
at the receiving system, ß is the area which would intercept sufficient power from the 
transmitted field to produce the gain echo by isotropic radiation. ' The amount of energy 
back-scattered from the hydrometers depends upon the number of particles within the 
pulse volume of the radar beam, their size, composition, relative position, shape and 
orientation. 

Mie (1908) expressed the back-scattering cross-section 6 as: 

Q= 
Z 

ýý 
2 

-1)n(2n+1)(an-bn) 

n=1 

(8.3) 

where D is the drop diameter, a= irD/A, and is called the electrical size, a, and b� are 
coefficients of the scattering field. If the drop diameter is small compared to the 
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wavelength (i. e. a< 0.13) then a simplification of equation (8.3) may be used in 
accordance with the theory of Rayleigh scattering as: 

;, 2a6 
m2 -12 

7r m+2 2 
(8.4) 

where m= n-ik (the complex index of refraction), n= the ordinary refractive index, k= a 
i 

coefficient of absorption. If K=m -1 then the equation (8.4) can be written as: 
IM 

2 +2 

4IK2ID6 (8.5) 

this shows that scattering cross-section is proportional to the sixth power of the drop-size 
diameter. 

Probert-Jones (1962) expanded the equation (8.2) to allow for the beam shape and other 
factors as: 

pG2A29OhL 1 
pr 512(2L,, 2)n2r2 x Ov 

IQ (8.6) 

where L is the sum of all the losses which includes the attenuation by atmospheric gases, 
precipitation and the radome; band 0 are the vertical and horizontal beam widths and h is 

the pulse length, and Ov is the pulse volume. An idealised radar beam, of width 8 and 
inclined at angle a under conditions of normal atmospheric propagation is shown in 
figure (8.5). 

Substitution of equation (8.5) into (8.6) gives: 

_ 
p1G29OhLn3 IKI2 1 

D6 (8.7) pr 
512(2L� 2)r ýiZ Ov vol 

If the radar constant (C) and radar reflectivity (Z) are assumed to be: 

C=p, G29cbhLn3 
(8.8) 

512(2L,, 2) A2 
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Figure (8.5) Geometry of an idealised pulse volume 

Z=1 D6 (8.9) 
AV , ýi 

then the equation (8.7) can be written as: 

P. _ 
CIZZ 

(8.10) 
r2 

Equation (8.10) is subject to numerous assumptions which are listed by Collier (1989), 

the principal ones being that: 

" Rayleigh scattering theory is applicable; 
" the pulse volume is completely filled by randomly distributed precipitation particles; 
"Z is uniform throughout the sampled pulse volume and is constant during the sampling 
interval; 

" 1K1 2 is the same for all of the hydrometers within the sample, i. e. they are either water 
drops or ice particles; 
" absorption of the transmitted signal by ground clutter in the beam is negligible. 

It should be emphasised that it is not practical to measure operationally I D6, therefore 

Z (radar reflectivity) may be calculated according to equation (8.10) if the range r and the 
average received power, p, are known. In order to calculate rainfall intensity Z then is 

related empirically to the rainfall intensity by the Z-R relationship as follows: 
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Z= aRb (8.11) 

where R is the rainfall intensity and a and b are empirically derived constants. The 

appropriate units for Z and R are mm 6m 3 and mmhr 1 respectively. The values of a and b 

parameters are a function of rainfall type, radar properties, and a range of values have 
been estimated for use in varying conditions. A wide range of values of a and b 

parameters have been identified by different researchers for different precipitation. Most 

widely used for homogeneous events is that of Marshall-Palmer as: 

Z=200R16 (8.12) 

There are a number of problems to use weather radar which are described in section 
(8.4.2). 

8.4 Operational utilisation of weather radar 

8.4.1 Radar information display types 

In order to interpret the returned signals the radar data which has been received should be 
displayed. The basic principles of radar information display can be expressed through the 
following example. Suppose that the radar is observing a storm that extends from range rl 
to r2 in a particular direction from the radar (figure 8.6). A pulse is emitted from the radar 
at time t=0 and encounters the storm, at time t1, the raindrops reflect some energy back 
toward the antenna so that at time 2t1 the antenna starts to receive meaningful signals. If it 
is assumed that at time t2, the pulse reaches the outer extent of the storm, antenna will not 
receive meaningful signal after time=2t2.. Therefore the signals would appear on an A- 

scope similar to second part of figure (8.6). If the antenna rotates in a circle at a fixed 
beam elevation the horizontal extent of a rainfall field within the operational range of the 
radar may be displayed on a polar co-ordinate system. This kind of display is called the 
Plan-Position Indicator (PPI). In the UK, data are converted to a Cartesian representation 
before being displayed. 

If a number of beam elevation are used a vertical profile of the storm can be examined. 
This kind of representation is called Range-Height Indicator (RHI). PPI and RHI 
indicators are shown in figure (8.7). 

Another radar display is the Constant-Altitude-Plan-Position Indicator or (CAPPI) in 

which data from various beam elevations is used to form a plan of the precipitation. In 
this procedure the altitude does not increase with range (figure 8.8). 
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Figure (8.6) Essentials of radar detection and measurement of precipitation (adapted from 
Grayman and Eagleso, 1970) 
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Figure (8.7) Common radar display modes (Battan, 1973) 

Radars in the current network in the UK operate on a five minute cycle producing 
successive 3600 scans at (usually) four different elevations (e. g. 0.5°, 1.5°, 2.5°, and 
4°). Each rotation takes approximately one minute, the fifth minute is allocated for at-site 



Chapter 8 Real-time Updating of TF Models using Weather radar data 227 

data processing (including conversion of polar to Cartesian co-ordinates, and correction 
and calibration of the data). An estimate of surface rainfall is usually made from the 
lowest beam, data from higher elevations being used when the lowest beam is obstructed. 

Lines of 
Beam 

A ,.:,,. A- Elevations 

h: 

'ý-° hl 

Figure (8.8) Compilation of a Constant-Altitude Plan-Position Indicator Domain. 

8.4.2 Problems associated with radar 

There are a number of difficulties in measuring precipitation by radar. Usually they can 
classified into two major groups: those originating from meteorological, atmospheric or 
topographical features, and those errors due to the radar installation itself, such as 

software or hardware reliability. The first group of errors includes: beam attenuation, 

clutter (permanent echo), anomalous propagation (anaprop), bright band, earth curvature 

effects, and Z-R relationship. The main problems associated with radar itself can be listed 

as: dynamic range, radar wavelength, beam width, and beam infilling. 

" beam attenuation: some portion of the radar beam is completely absorbed by 

atmospheric gases, liquids and solids, clouds and heavy precipitation causing attenuation 
of the radar beam. Attenuation is as the reduction of intensity of the electromagnetic wave 

along its path. Some attenuation is related to radome wetting. (A radome is used to protect 
the radar from pollutants and precipitation and eliminate wind stress on the mechanical 

equipment). Attenuation due to precipitation is inversely related to the wavelength of the 

microwaves. Although S-band radar does not attenuate appreciably even in high intensity 

rainfall, due to a relatively smaller and cheaper aerial, C-band radars are installed in the 

0 Range 
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UK network. Attenuation of C-band radar is negligible for all but the most intensive 
rainfall. 

" clutter (permanent echo): Permanent echo is caused from blocking of the radar beam by 

ground clutter or from ground-based objects such as towers, trees and radio masts; 
especially when they are close to the radar. One solution to this problem is to increase the 
beam elevation, however this may result in low-level rain being `overshot'. A widely 
utilised technique is clutter map constructed from returned signals on clear day scans 
when no rain is present. These maps have certain drawbacks because they assume a 
constant reflectance from the echoes which is not necessarily true when surfaces become 
wet. The ground clutter echo strength is almost independent of wavelength. 

" anomalous propagation (anaprop): In the normal conditions due to refraction of the 
radar beam by the atmosphere the beam follows a calculable curve path. Refractive index 

changes with altitude and can be determined considering the pressure, temperature and 
water vapour. However, if a strong temperature inversion or high hydrolapse (i. e. rapid 
increases in humidity) condition occurs, reflective profile follows an anomalous curve 
resulting radar beam to be deflected onto a circular path around the Earth and ground 
clutter appearing when not expected. To a certain extent this can be corrected, or at least 

recognised if the vertical profile of the density of the atmosphere is known. Anaprop is 
most common in anticyclonic or warm sector conditions especially during the night when 
the inversion is developed. Anaprop may also be observed, though less frequently, in 

cyclonic condition when very dry air is present above moist air at low levels. Anaprop 
may be occurred when the height of the inversion/hydrolapse is about 100m above the 
radar. Anarprop rarely occurs when the inversion is more than about 1200m above the 
radar. Anaprop will not occur when the radar beam is above the hydrolapse/inversion. 

" bright band (melting layer) is one of the most common (and severe) problems in 

measuring rainfall from radar in the UK. At cloud top level because of low temperature 
small ice particles are formed which produce low radar reflectivities. However, when 
these particles fall, they aggregate and begin to melt because of the temperature increase. 
As ice particles and snowflakes with a thin coating of water produce much higher 

reflected signal (approximately five times) then either the ice particles above or the rain 
droplets below, there is a large increase in the radar return followed by a decline as their 
size decreases and fall speed increases. A bright band is observed when the radar beam 
intersects the melting layer. The bright band is normally found some 200-300m below the 
0 °C isotherm. If the bright band formed at a low altitude and therefore able to fill the 
entire beam volume at short range, its effect on the radar signal became greatest and can 
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cause overestimation in the precipitation by a factor of 5 or 6. The thickness of melting 
layer is usually only a few hundred meters and can be located anywhere between ground 
level and some 4 or 5 km above sea level in the UK. Identification and correction of 
bright band is difficult, and in the UK adjustment is usually limited to implicit rain gauge 
adjustment procedures (section 8.4.3). 

" Earth curvature effects: As mentioned earlier the path followed by a radar beam depends 

on refractive index of the atmosphere and is a curve rather than a straight path. If the 
Earth curvature is also considered the combination causes the path of the beam to diverge 
from the earth's surface resulting with an area between the bottom of the beam and the 
earth's surface in which neither detection nor measurement is possible. In a standard 
atmospheric composition, the impact of refraction and of the earth's curvature can be 

calculated using the four-thirds earth approximation equation (8.12): 

h(r, 9) r 
3r 

cos 6+ sin 9 
SE 

] 
(8.12) 

where h is the height of the beam above site level in km, r is the range in km, E is the 

radius of the earth in km and 0 is the elevation of the radar beam axis in radians. It can be 

seen when the range and beam elevation are increased, the area which radar is unable to 
detect is also increased. It is clear that the divergence between the beam and the earth's 
surface is one of the most significant limiting factors of radar because the characteristics 
of low level precipitation may be missed. 

" Z-R relationship: A most common used relationship between the reflectivity and rainfall 
intensity is shown in equation (8.12). However, because the size and distribution of 
particles within a given volume of the radar pulse varies considerably, either temporally 
or spatially both within storms and from one kind of precipitation to another the a and b 

parameters can vary considerably. Therefore misselection of a and b parameters could 
lead incorrect assessment by a factor of 10 or more. Although some researchers have 

reported that generally with increasing convective intensity a increases and b decreases, it 

cannot provide a practical solution. Instead in the UK the Z-R relationship is updated in 

real-time with reference to a small number of ground-based telemetering rain gauges (see 

section 8.4.3). 

" dynamic range: The dynamic range of a radar system is the range of signals which can 
be detected. The range will be changed when the system's gain control is adjusted. If the 
dynamic range is too small, either heavy precipitation will be reduced in apparent intensity 

or light rainfall will not be detected. As the dynamic range is related to the physical 
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rainfall process of the region the dynamic range required in a temperate climate differs 
from that required in a tropical region. 

" radar wavelength: As mentioned earlier, radars can be classified according to 

wavelength. Usually five wave bands are considered: L-band (29cm), S-band (10cm), C- 
band (5.6cm), X-band (3cm), and K-band (1cm). L band radars have no 
hydrometeorological application because of their cost. S-band radars are much suitable 
for regions with heavy rainfall and attenuation. However, they need a large reflector to 
produce a small beam width and are consequently very expensive. C-band radars are 
often adopted as the best compromise between hardware costs and performance in 
estimating precipitation rates for most meteorological conditions in temperate regions. 
Although X-band radar can cost approximately one-tenth of a conventional C-band 

system it suffers from potentially severe attenuation problems which restricts its range in 
temperate latitudes to approximately 35km, or less. K-band radar is rarely used for 
hydrometeorological applications because of its excessive attenuation. 

" beam width: The received signal is directly proportional to the effective antenna aperture 
of the radar. Therefore the largest antenna will give the best results. However, for 

meteorological purposes operational and economic considerations dictate that the antenna 
diameter is limited to about 7m. In a circular parabolic reflector the beam width 9 (in 

radians), antenna diameter d, and wavelength A are related by 0 =1.2a, / d. If beam 

propagation arguments and practical and economical problems are considered for 
hydrometeorological applications a beam width of 1° is regarded as near optimal. 
Although it looks that the shorter wavelengths is preferable it should be considered that 
the shorter the wavelength, the more attenuation is a problem. The most important 
problems related to beam width is that two targets separated by less than the beam width 
in angle cannot be distinguished. As an example for a1° beam width and a range of 100 
km, individual cells must be approximately 1.75 km apart before they can be 
distinguished. 

" beam infilling: As mentioned in section (8.3) the Z-R relationship assumes that the radar 
beam is completely filled by precipitation. If the radar beam is not filled completely the 
reflected energy will be less than the rate of precipitation. The narrower the beam width 
the more accurate that the scattering particles uniformly distributed in size and number 
throughout the volume. The greater the range, the chance that the beam will be 
incompletely filled. 
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8.4.3 Local adjustment of radar 

As mentioned in previous section there are many errors inherent within raw radar data. 
Although rain gauges provide a ground-truth value of rain, they only measure rainfall at a 
point (a small fraction of one km2). On the other hand radar provides much better estimate 
of areal rainfall. A number of researchers have attempted to develop techniques which 
combine the point accuracy of rain gauges with the spatial information of radar, to 
provide a composite rainfall field more accurate than either used in isolation (Collier et 
al., 1983). 

In this section two techniques for adjusting radar rainfall estimates using rain gauge 
derived rainfall are described. These two techniques are the method employed by the UK 
Meteorological Office (domain-adjustment), and a technique developed by Tilford, 1992 
(local adjustment). 

In the domain-adjustment technique an assessment factor (AF) that is the ratio of hourly 

radar and rain gauge values is applied on radar values at the given domain (Collier, 
1989). At present between four and seven telemetering rain gauges are used for each 
radar site. The Meteorological Office procedure involves the calculation of the harmonic 

analysis of the continuous series of hourly mean assessment factors which provides an 
indication of the temporal uniformity of the event. A significant problem is the variability 
of the assessment factor both temporally and spatially. Rainfall type was recognised as a 
major factor in causing this variability. Therefore four synoptic types of precipitation are 
incorporated into two geographical domain sets: one set for bright band and shower 
conditions, and another for frontal and rain-shadow. If radar value is zero, a default 

assessment factor of unity is applied. 

A shortcoming in the domain procedure is that spatial discontinuities can exist at the 
domain boundaries. Also areas of temporal instability exist, particularly when bright band 
conditions are present. If the storm type is wrongly identified the adjustment factors may 
vary by a ratio of 50: 1 (Shepherd, 1987) causing large errors to be introduced. It is noted 
that assessment factor is much greater than unity in showers and bright band situation and 
variations in showers are rapid and slower in frontal rainfall and bright band situations. 

The local adjustment procedure which developed by Tilford (1992) utilises a locally 
operated (dense) rain gauge network and sophisticated two-dimensional surface fitting 

and consists of three phase process as: 
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" computation of assessment factors at each rain gauge location. 

" two-dimensional surface fitting of the scattered assessment factors to produce a 
regularly distributed assessment factor field on a grid coincident with the Cartesian grid 
used by the radar (5km grid). 
" node by node multiplication of the radar data by the `mapped' assessment factors to 

produce an adjusted rainfall field. 

Unlike the Meteorological Office domain procedure, no attempt is made to relate or 
modify the assessment factors by physically related factors. 

8.4.4 Radar data output 

On the completion of calibration and correction procedure, several formats of output can 
be obtained from the UK weather radar network including those described below: 

" digital radar data are available for two intensity resolutions. The highest resolution data 

are held in eight binary bits, the binary values therefore range from (00000000)2 to 
(11111111)2. Only 208 of the possible 256 (28) discrete values are used in practice. Low 
intensity resolution data are held in three binary bits providing binary values ranging from 
(000)2 to (111)2. In the high resolution data, the two high order bits of the byte are called 
the exponent and the other six bits are the mantissa. Since the units of 1/32 mm/hr are 
used the following equation is used for decoding (convert to decimal) purposes: 

R_ 
(22xx)xY 

32 
(8.13) 

where R is rainfall intensity in mm/hr X and Y are exponent and mantissa (in real number) 
respectively. The biggest number which can be identified is equal to (11111111)2, 

consequently the biggest intensity can be calculated as: 

R_ 
(22x3 x 63 

_ 
4032 

= 126mm / hr 
32 32 

Whilst 208 intensity levels can be obtained through the high resolution data, only eight 
slice colour ranges are used to display the data. The low resolution data provides only 8 
intensity levels. In order to derive the numerical corresponding three-bit values from two 
bounds of eight-bit representation, different assignment schemes can be applied including 
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arithmetic mean, geometric mean and harmonic mean. The numerical three-bit values 
resulting from each of these assignment schemes are shown in table (8.1). 

" There are two alternatives spatially resolution, a 2km Cartesian grid (256*256) which is 

obtainable for a range of 75km from a radar and a 5km Cartesian grid (128* 128) which is 
produced to a range of 2 10km. 

" The temporal resolution is limited by the time involved in completing a full set of scans 
in four beam elevation (one minute each) when processing time is also included (one 

minute) the maximum temporal resolution available from the existing radar system is 5 
minutes. Some data sets such as the subcatchment average are only produced every 15 

minutes. 

The areal rainfall estimates are calculated from averaging the most appropriate grid data. 

Table (8.1) Data slice ranges and three-bit assigned values 

Intensity 
level 

Eight-bit slice 
range (mm/hr) 

Three-bit assigned values (mm/hr) 
Aritmetic Geometric Harmonic 

0 <0.125 0.00 0.00 0.00 

1 0.125-1 0.56 0.35 0.22 

2 1-4 2.50 2.00 1.60 

3 4-8 6.00 5.66 5.33 

4 8-16 12 11.31 10.67 

5 16-32 24.00 22.63 21.33 

6 32-126 79.00 63.50 51.04 

7 >126 319.00 180.00 150.00 

8.5 Application of weather radar data 

8.5.1 Catchment and data description 

In order to study the application of real-time updating of TF models using weather radar 
data, Blackford Bridge, a subcatchment of the Irwell, in North West England was 
chosen. This subcatchment, lying on the river Roch, is well within the coverage of the 
weather radar at Hameldon Hill. The drainage area of the subcatchment is approximately 
186 km2 and is predominantly elevated moorland with 8% urban coverage (Owens, 
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1986). The Hameldon radar coverage and the Blackford Bridge subcatcment is shown in 

figure (8.9). 

The Hameldon radar produces quantitative subcatchment rainfall totals at 15 minute 
intervals processed and calibrated at-site. Flow data for the catchment comes from the 

slightly insensitive weir at Blackford Bridge and is available also at 15 minute intervals. 

In figure (8.10) the location of the Blackford Bridge area in relation to the National Grid 

and the position of the flow measuring weir and rain gauge are shown. 

Radar Site 

0 Radar Coverage 

Black-ford Bridge 

i 

Figure (8.9) The North West region, showing Hameldon Hill radar with 75 km 

quantitative range at the Blackford Bridge catchment. 

Six storm events, in which there are flow and rainfall records, were chosen for 
investigation. In order to initialise the model for each event a short time data set before the 

main event is also chosen as pre-event data. Initial processing of radar data was carried 
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out to identify and remove any errors in the event record, such as missing frames, 

anomalous propagation and bright-band. Figure (8.2) shows one frame from a typical 
rainfall radar sequence. 

Runoff data was obtained in the form of river stage or height. In order to convert river 
data from stage to flow, the National Rivers Authority stage-discharge parameters in a 
rating equation is used as below: 

Q= 44.558(H + 0.173)'-'w 

where Q is discharge (cumecs) and H is stage height (metres). 

Blackford Bridge Sub-Catchment 

N 
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. 
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National Grid L Blackford Bridge Weir 

Figure (8.10) The Blackford Bridge subcatchment 

The main characteristics of each event and pre-event are summarised in the table (8.2). 
Rainfall hyetographs and discharge hydrographs used in the catchment rainfall-flow 
analysis are shown in Appendix 2. 
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Table (8.2) Main specification of the events studied, Blackford Bridge catchment 

Event no. Start time End time Duration 
(hours) 

Maximum 
rainfall 
(mm/hour) 

Peak flow 
(cumecs) 

Average 
percentage 
runoff 

Main event 
1 16: 00/03/01/82 04: 00/05/01/82 36 4.4 68.4 56.1 
2 05: 00/10/03/82 10: 00/11/03/82 29 2.9 30.2 31.2 
3 24: 00/08/11/83 11: 00/10/11/83 35 8.7 84.7 36.5 
4 20: 00/06/02/84 24: 00/07/02/84 28 2.2 31.6 78.4 
5 01: 00/30/10/86 01: 00/31/10/86 24 1.7 15.4 23.4 
6 02: 00/01/01/87 06: 00/02/01/87 28 4.4 57.7 43.5 

1 
Pre-event 
06: 00/02/01/82 15: 00/03/01/82 33 2.0 36.7 97.8 

2 15: 00/09/03/82 04: 00/10/03/82 13 3.7 27.0 12.8 
3 00: 00/08/11/83 23: 00/08/11/83 23 2.7 10.3 12.8 
4 21: 00/05/02/84 19: 00/06/02/84 22 8.3 80.7 27.8 
5 00: 00/27/10/86 00: 00/30/10/86 72 12.1 18.9 19.8 
6 15: 00/29/12/86 01: 00/01/01/87 58 8.2 130.8 56.6 

8.5.2 Identification of TF and PRTF model 

Owens (1986) using an empirical hydrological rule developed by Powell and Cluckie 
(1985) (see section 2.5.1.4) states that the use of hourly models for this catchment was 
sufficient, despite the availability of 15 minute data. Therefore, a time interval of 1 hour 

was accepted for this investigation. Owens also concluded that the reduction of rainfall 
intensity resolution from 208 levels to 8 levels was not detrimental to model estimation or 
forecasting. 

Table (8.3) Some statistical characteristics of the identified model for the pre-events 
studied, Blackford Bridge catchment 

8ää. Q TF model 
Event no Model order at a2 a3 bl b2 b3 
1 (2,2) 1.6437 -0.6654 - 0.4449 1.3066 - 
2 - - - - 
3 (2,2) 1.4238 -0.4638 0.0732 0.2139 
4 (3,3) 2.1945 -1.7509 0.5252 0.4552 -0.3511 0.5355 
5 (2,2) 1.6716 -0.7038 - 0.0817 0.4148 - 
6 (3,3) 1.4312 -0.3789 -0.0983 0.2736 1.1823 -0.0295 

Dynamic TF model 
Event no Model order al a2 a3 b0 b1 b2 
1 (2,2) 1.7597 -0.7741 - 0.1209 1.0803 - 
2 (2,3) 1.7349 -0.7524 - 0.6495 -0.9075 0.8783 
3 (2,3) 1.7349 -0.7524 - 0.1886 -0.1814 0.1862 
4 (2,2) 1.7349 -0.7524 - 0.6363 -0.0975 - 
5 (3,3) 2.3911 -1.9057 0.5063 -0.0955 -0.1443 0.1715 
6 (3,3) 2.2976 -1.7597 0.4492 0.3398 -0.1574 0.3205 

In order to identify the optimal model for each pre-event, the search procedure was used. 
The model parameters, model percentage runoff, root mean square error, and pulse 
response characteristics of each structure in each selected pre-event, were considered. 
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Some statistical characteristics of the identified model both for static and dynamic TF 
model for each pre-event are presented in table (8.3). It is noted in pre-event number two 
that it was not possible to construct an appropriate calibrated model for the static TF case, 
because none of the resultant pulse responses were valid from a hydrological point of 
view. 

8.5.3 Comparison of current and modified updating procedures of PRTF 

model 

In this section the performance of the updating procedure introduced in (7.5.1.3) using 
weather radar data is evaluated. Six storm events together with six pre-events described in 
table (8.2) were considered. Once again a series are determined sequentially by dividing 
the pre-event data sets. An autoregressive model is then fitted to a series and used to 
predict future a over the forecast lead time. Future B parameters of the PRTF model are 
then calculated using the predicted a. Simulated hydrograph over the forecast lead time 

are determined and shifted proportional to the differences between actual and simulated 
flow at the time of forecasting. 

Both RMSE statistic results and forecast hydrographs of existing and modified methods 
are compared. The RMSE results for all events studied are given in table (8.4) and an 
example of the forecast hydrographs are presented in figure (8.11). Table (8.4) shows 
that in five out of six events, the suggested procedure slightly outperformed the existing 
method for most forecast lead times and only in event number six does the original PRTF 

model provides better forecasts. The reason for this is the temporal variation of a series 
of the event. Overall this study revealed that combined PRTF model can improve the 
forecasting quality. 

8.5.4 Comparison of current and modified updating procedures of TF 

model 

The performance of the original TF model and the combined error prediction model 
introduced in (7.5.2.2) using weather radar data are compared in this section. The same 
five events and pre-events of the Blackford Bridge catchment described in table (8.2) 

were considered. As mentioned in section (7.5.2.2) for each event, an autoregressive 
model was identified for each step of forecasting lead time using the forecasting errors 
obtained from the application of the calibrated model on the same pre-event data. These 

models were then used in combination with the original TF models to forecast the main 
event hydrographs. 
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Figure (8.11) Comparison of the forecast hydrographs, Blackford Bridge catchment, 
event No. 1, PRTF model. 
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Table (8.4) RMSE result of current and modified updating procedure of PRTF model 
for different events (Blackford Bridge catchment) 

Step Current Modified Current Modified Current Modified Current Modified 
ahead model model model model model model model model 
1 2,945 2.952 1.234 1.235 5.448 5.364 0.608 0.607 
2 5.136 5.155 2.078 2.076 9.281 9.216 1.053 1.052 
3 7.540 7.567 2.918 2.914 12.407 12.373 1.395 1.393 
4 9.384 9.407 3.612 3.608 14.988 15.006 1.750 1.745 
5 10.846 10.856 4.469 4.461 17.293 17.337 2.058 2.053 
6 11.964 11.948 5.126 5.114 19.257 19.373 2.275 2.268 
7 12.713 12.665 5.642 5.628 20.803 20.910 2.372 2.361 
8 13.683 13.606 5.987 5.970 22.305 22.455 2.377 2.361 
9 14.695 14.594 6.107 6.089 23.663 23.834 2.368 2.345 
AR order - 3 - 3 - 3 - 3 

Table (8.4) Continued 

Step Current Modified Current Modified 
ahead model model model model 
1 2.007 1.909 3.804 3.804 
2 2.793 2.654 6.503 6.502 
3 4.086 3.864 9.059 9.060 
4 5.496 5.179 11.114 11.116 
5 6.569 6.197 12.677 12.680 
6 6.898 6.519 13.752 13.757 
7 6.574 6.222 14.357 14.364 
8 5.904 5.596 14.529 14.537 
9 4.973 4.719 14.221 14.229 
AR order - 3 - 3 

The performance of the combined TF model was evaluated using a combination of an 

objective approach, in which the RMSE of the flow forecasts at each time step ahead 
between the current and modified procedure are compared, and a graphical comparison of 
the forecasting results. The results of the objective comparison are given in table (8.5). In 

figure (8.12) graphical comparison of the forecasting results of event number three are 
also presented as an example. Table (8.5) shows that in four out of five events, in most 

steps of forecasting lead time the combined model slightly outperforms the original TF 

model and only in event number five in most steps of forecasting lead time the original TF 

model provides better forecasts. It is noted that the forecast quality of the original model 
also is poor. The reason for the poor performance of the combined model is the same as 
that for event number six in section (8.5.3) namely, the temporal variation of error series 

of event. 

8.6 Summary and conclusion 

This chapter consists of two sections. The first section provides a brief review and 
discussion about weather radar and its applications. The second section presents the 

results of extending the updating procedures of TF models developed in chapter 7 to an 
English catchment with weather radar data. 
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Table (8.5) RMSE result of current and modified updating procedure of TF model for 
different events (Blackford Bridge catchment) 

Step Current Modified Current Modified Current Modified Current Modified 
ahead model model model model model model model model 
1 1.618 1.580 3.735 3.734 4.088 4.075 1.123 0.980 
2 3.555 3.412 6.605 6.597 7.347 7.277 2.017 1.922 
3 5.964 5.765 9.713 9.707 8.828 8.854 2.401 2.335 
4 8.211 8.078 13.560 13.549 8.664 8.774 2.700 2.760 
5 10.063 10.026 16.823 16.813 7.529 7.620 2.966 3.503 
6 11.347 11.275 20.070 20.076 6.447 6.463 3.095 3.669 
7 12.090 12.086 23.116 23.109 5.667 5.508 3.143 3.178 
8 12.547 12.825 25.411 25.401 5.347 5.147 3.116 3.646 
9 12.769 13.201 27.773 27.750 5.171 4.969 3.083 3.133 
AR order - 3 - 3 - 2 - 3 

Table (8.5) Continued 

Step Current Modified 
ahead model model 
1 1.886 1.889 
2 3.173 3.173 
3 5.037 5.037 
4 6.585 6.576 
5 7.671 7.665 
6 8.296 8.290 
7 8.463 8.497 
8 8.474 8.554 
9 8.295 8.357 
AR order - 3 

It is well known, that two rain gauges, even if located a couple of kilometres apart, 
frequently show different records for the same precipitation event. Weather radar, 
however, can provide a more realistic spatial variability of the rainfall amounts at 
acceptable levels of accuracy, although there are some aspects of weather radar that 
deserve further investigation and improvement. Basic concepts of radar, including 
fundamental theory, radar classification, radar data products and its operational 
utilisation, problems associated to radar and areas affecting the calibration weather radar 
have been addressed. 

In order to examine the practical problems related to utilisation of weather radar data a 
catchment which is well within the cover of the weather radar was selected and all aspects 
of radar data processing including visual display, identification and elimination of errors 
in the event record, such as missing frames, anomalous propagation and bright-band and 
finally digital encoding of radar images have been applied. Twelve storm events were 
selected through this approach and were then used to investigate the updating procedures 
developed in chapter 7. 
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Figure (8.12) Comparison of the forecast hydrographs, Blackford Bridge catchment, 
event No. 3, TF model. 
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It has been shown that updating procedures of both static and dynamic TF model works 
just as well for radar derived rainfall as for rain gauge data. So that for the PRTF model, 
in 11 out of 12 events (rain gauge and radar derived rainfall) the suggested procedure 
outperforms the existing method. On the other hand, in static TF model the combined 
updating model provides better results in 8 of 10 events. However, it is noted that in a 
small number of events (14%) possibly because of inconsistency in temporal variation of 
the error, the original procedures outperform the suggested methods. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter outlines the main conclusions of the research and makes recommendations 
for future work. 

An extensive review into flood forecasting models with particular emphasis on the WMO 

simulated real-time inter-comparison of hydrological models has been conducted and is 

presented at the start of the thesis. The review introduces the basic structure and 
operational characteristics of the models and provides a foundation for their further 
improvement. 

A description of criteria which may be used to classify flow forecasting models and 
factors affecting the choice of a suitable model have been outlined. Different methods of 
effective rainfall determination have been reviewed; in particular the review identified the 
problems associated with trying to accurately define effective rainfall in real-time (one of 
the major reasons total rainfall is frequently used for real-time applications). 

An outline has been presented of the utilisation of transfer function (TF) models in 

representing the rainfall-runoff process, and the main problems associated with this class 
of model. It has been shown that TF models can be calibrated for a range of catchments 
and for any scale without the need for large amounts of data describing the catchment, 
because they are based solely upon the relationship between total rainfall (input) and a 
flow (output). TF models are relatively simple to identify and calibrate, easy to apply, are 
parametrically efficient and computationally fast. The implicit feedback mechanism of the 
TF model enables the model to self-correct, and the natural lag between the occurrence of 
rainfall and the response of streamflow is also included in the models. 

In order to carry out an extended inter-comparison of real-time flood forecasting models, 
the theoretical structure of TF models (both static and physically realisable) are combined 
and their forecasting results are compared with those of fourteen models used in the 
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WMO workshop for twelve case studies on two river catchments from climatologically 
and geographically varied conditions. 

Some statistical criteria that can be used to measure model performance are reviewed and 
a cross-validation scheme consisting of root mean square errors and the relatively new 
randomness-dispersion diagram have been used to evaluate the TF model performance. 
Objective statistical results used along with graphical displays of forecasted and observed 
flow facilitate the best assessment of a model's performance. The TF models use a factor 

(A) to compensate for variation in the proportion of total rainfall contributing to runoff. 
The influence and importance of the choice of initial 0 is demonstrated through an 
investigation for the one of the test catchments. 

The results of the comparison of the performance of different models indicate that there is 

no strict rule in the performance of models on an event basis. However, an attempt has 

been made to rank the flood forecasting models, both on an event basis and overall. It has 
been observed that a model may have the first rank for one event and the last rank in 

other, so that no particular model consistently provides the best result. The comparison 

revealed that an increase in model complexity does not necessarily lead to an increase in 

forecast accuracy. Absolute forecast error increases with lead time: however, the relative 
increase of the RMSE for different models with increasing forecast lead-time is not 

consistent. TF models generally perform better for short time steps probably because the 

one step-ahead forecast error is considered to select the best calibration model. It is 

concluded that there is not a significant difference between the quality of the forecasts 
derived from the static and dynamic TF models. 

A simple novel model to calculate the average response has been developed. The 

proposed model uses average characteristics rather than average of the ordinates of pulse 
response. The proposed method is encouraging, although more data are required to 

confirm this preliminary conclusion. 

Further research has compared the quality of forecasts obtained from average and isolated 
TF models. Since this was applied on a limited numbers of storm events it has not been 

possible to draw a definite conclusion concerning the performance of the two different 

methods. 

It is clear that the pulse response function derived from a sequence of storms reflects the 

average catchment response to those storms. However, every event has its own 
distinguishing features according to antecedent conditions of the catchment and storm 

characteristics. This implies that if a sequence of storms with similar characteristics are 
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selected for calibration, the resultant average TF may provide better forecasting 
performance for future events with similar characteristics. This would enable a suite of 
several average TF models to be constructed, and used to forecast flows for events whose 
characteristics closely matched. An extensive analysis of group calibrated TF models was 
carried out after classifying events on the basis of storm and catchment characteristics. In 
total 41 storm events have been chosen and were classified into different groups on the 
basis of the gradient of the rising limb of an individual storm's pulse response (as an 
indicator of the rainfall type) and five and thirty day antecedent precipitation index as well 
as five day antecedent precipitation (all as indicators of the antecedent moisture conditions 
of the catchment). This classification provided thirteen different groups. 

Suites of models are calibrated individually, representing the rainfall-runoff responses 
associated with different storm-catchment characteristics type. An attempt to relate the 
type of rainfall and gradient of pulse response did not reveal a definite dependency 
between them although it is possible that an extended event database might better support 
the identification of a relationship between the PR gradient and the type as well as 
characteristics of coming rainfall. 

The benefits of calibrating TF models using a sequence of storms whose characteristics 
are similar have been demonstrated. Objective statistical results and subjective comparison 
clearly revealed that the use of group model resulted in a significant improvement in the 
quality of the forecasts. Therefore it is much better to calibrate a TF model using a 
sequence of storms with similar characteristics. For all events investigated, the five day 

antecedent precipitation was a feature in the best group model. 

Since the amount of runoff from a storm depends on the several other variables, further 

work on group models requiring an extended database of flow and rainfall measurements 
as well as other corresponding information. An expert system approach has been 

suggested to automate the selection of the most appropriate pulse response during the 
course of an event. The classification of events should be based on a series of 
characteristics which are known or predictable prior to occurrence of event. 

Several methods of system identification both off-line and on-line have been assessed. 
Recursive algorithms for adaptive parameter estimation have been described. Recently 

new techniques like genetic algorithms and neural networks are being investigated. On the 
basis of this review, the recursive ordinary least squares method is used in most parts of 
thesis. 
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An extensive investigation into the application of genetic algorithm to the physically 
realisable transfer function model has been presented. A new parameter estimation 
technique known as the hybrid genetic algorithm (HGA) has been developed by 

combining conventional procedures with a genetic algorithm. The techniques of interview 

selection and fitness scaling as well as random bit mutation and multiple crossover have 
been included in HGA and both binary and real number encoding technique have been 

assessed. The HGA has been successfully applied in identification (calibration) and 

simulation (updating) of the dynamic TF model. Four software packages have been 
developed and extensive development and testing has proved the viability of this approach 
and has shown that the performance of HGA is more accurate and powerful than 

conventional procedures. 

Due to the incapability of models to perfectly portray complex natural systems, and due to 
faulty model input data, every forecast is subject to an error. Consequently, it is 

necessary to correct (update) the forecast in the light of recent model performance to 

minimise the forecast error. The sources of forecasting errors have been reviewed, and 
the basic structure and operational characteristics of the different updating procedures 
critically assessed. A description of the parameters affecting the choice of a suitable 
updating procedure have been outlined. In particular, the review indicated that a simple 
model plus sophisticated updating procedure is preferable to sophisticated model plus 
simple updating procedure. Furthermore, it is concluded that if there is no evidence about 
the likely cause of the error, an error prediction method is probably the best choice. 

In order to improve the current updating procedure of TF model, extensive research has 
been conducted to find the most important adjustment factor of the dynamic TF model. 
The impact of the volume, shape and time adjustment factors on forecast quality has been 

evaluated through a sequential determination of the different parameters which may affect 
the model. 

It has been concluded that the volume adjustment factor is the most important factor of the 
three. Furthermore, several attempts have been made to relate the adjustment factors to 
different elements including time, average rainfall intensity, accumulated rainfall, and 
discharge. The interaction of adjustment factors has also been investigated. 

An autoregressive model has been used to develop a new updating procedure for the 
dynamic TF model by the determination of the B parameters through the prediction of 
future volume adjustment factor over the forecast lead-time. 
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An autoregressive error prediction model has also been combined with a static TF model. 
Relatively extensive testing has shown that the performance of both new transfer function 

models are superior to conventional procedures. 

An inter-comparison of the dynamic TF updating procedures for an English catchment 
using radar rainfall data is also included. Weather radar is an alternative method of rainfall 
measurement to the use of rain gauges. Rain gauge records are only point measurement of 
rainfall whereas radar measures (in this case) rainfall in 2km x 2km pixels (up to about 75 
km range), and, hence, the spatial variation can be better assessed. 

The basic concepts of weather radar and the problems associated with it are reviewed. 
Although the qualitative information of the radar data is readily apparent the quantitative 
quality remains an open question. Nevertheless, some aspects of radar deserve further 
investigation, mainly those related to radar calibration. It is certain that even if radar could 
not improve on the absolute magnitude of the rainfall amount, it would still provide 
valuable information on the spatial variation and time evolution of the precipitation events. 

Recommendations for further work 

Following this study, a number of aspects requiring further investigation are identified. 
Listed below are topics where future research could be usefully directed. 

To extend the lead-time of forecasts especially in quickly responding catchments the most 
important information is the anticipated future rainfall, therefore, rainfall forecasting 

algorithms should be developed. As the spatial distribution, dynamics and type of the 
rainfall also influence the runoff generation process, these areas should also be 
investigated. 

One possible solution to decrease the relative increase of RMSE of TF models over larger 
forecast lead-times is through the calibration of the model using longer step ahead errors 
as the objective function. 

Certain areas of the study, for example development of a simple model to calculate the 

average response and comparison of average and isolated TF models, have been 
demonstrated with a limited number of events. A further extension of these works to a 
larger number of events is required. 

Genetic algorithms are implemented as an efficient tool for the minimisation of the 
modelling errors. However, the genetic algorithm field is changing rapidly, and an 
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extension of this work to incorporate the latest techniques to hydrological environments 
could be useful. In particular using genetic algorithm in a parallel-processing environment 
(connected computers) with the aid of powerful and fast computer facilities is 

recommended. 

In order to fully realise the benefits of group calibrated TF models, establishment of an 

extensive database of flow, rainfall and antecedent catchment conditions is necessary. 

The proposed updating techniques only use magnitude error to update the model forecast. 

Techniques which also consider the phase error and corresponding criteria should also be 

investigated. 

With regard to the forecasting algorithm of the dynamic TF model, it may be necessary to 

establish a relationship between simulated and observed flow instead of shifting the 

simulated flow. 
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APPENDIX 1 
ERROR ANALYSIS 

A. 1.1 Introduction 

Randomness-dispersion diagram (a valuable tool to comparison the model performance) 
is introduced in this appendix. In order to understand the principle of technique first some 
basic statistical concepts should be considered. 

A. 1.2 Auto correlation functions 

The correlation is an indicator of the degree of dependency of a variable to another 
variable. Sample auto correlation coefficient provides an important guide to the properties 
of a time series. Given N observations X1, X2,.......... , XN on a discrete time series, (N- 
1) pairs of observations exist (i. e. X1, X2, and X2, X3........ XN-1, XN)" 

The degree of dependency between each variable in a pair is obtained by: (see for example 
Chatfield, 1989) 

N-1 
Y, (x, 

-xl)(x, 1 -x2) 

rL r=1 

N-['(x 
2 

N-1 

t- 
XI) 

Y' (xr+l - x2 )2 

r=i r. l 

where: 

N-1 
Ix, 

N'` . is the mean of the first (N-1) observations. 

N-I 

IXt 
x2 = t=2 

N -1 
is the mean of the last (N-1) observations 

(A. 1.1) 

The coefficient rl measures correlation between successive values and is called an auto 
correlation coefficient or serial correlation coefficient. 
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It is supposed that z, = x2 and N/N-1=1 for large N, therefore equation A. 1.1 may be 

simplified to: 

N-1 

_ 
r=1 r N-1 

Lxr 
-. x)z 

r=1 

(A. 1.2) 

In same manner, the correlation between observation a distance K apart is given by: 

N-k 
E (xt 

-x 
)(xt+1 

-i 
) 

rk N_1 .d (xt _)2 

t=1 

which is the auto correlation at lag K. 

In practice, the auto correlation coefficients is calculated by computing the series of 
autocovarince coefficient CK. Covariance itself is same as variance except first the mean 

value is subtracted from the original variables. Therefore CK can be calculated as: 

1 N-k 

Ck -N 1(xt -x)(XI+k -x) (A. 1.4) 
=1 

then: 

rk=-k 
Co 

A. 1.3 The portmanteau statistic 

Besides the auto correlation coefficients individually, usually a series of autocorrelations 
of the variables taken as a whole is investigated. It is proved (Box and Jenkins 1976) that 
the model is appropriate if: 

Q=N. 1: rk 
k=t 

(A. 1.6) 

is distributed approximately as chi-squared (), 2) with (k-p-q) degrees of freedom. where p 

and q are the number of flow and rainfall parameters in the TF model and (Q) is the 

portmanteau static. An observed value of Q is compared with a table of the percentage 
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points of ), 2 (see table A. 1.1) to judge whether the model is appropriate. Ljung and Box 
(1978) introduced a modified version of formula (A. 1.6) as: 

k 
ýz 

Q=N(N+2)ý k 
k_, N-k 

A. 1.4 NTD criterion 

(A. 1.7) 

A standardised measure of the magnitude of the model errors can be provided by 

computing the NTD as: 

(Y. 
" - Yfa )z 

NTD, =1- 
(y0,, 

- YNf. I 
)2 

where 

yý, = observed flow at time t+1. 

yf,, = one step-ahead forecast for time t+1. 

y, f,, = one step-ahead for time t+l as computed by a ̀ naive' model. 

In a naive model flow forecasted for time t+1 equals flow observed at time t. 

A . 1.5 Example 

(A. 1.8) 

The randomness-dispersion diagram can be interpreted through the following example. 
Consider a data set comprising of 25 value which is modelled by say, a (3,4) (p=3, q=4) 
transfer function model. The number of degrees of freedom for the . a2 distribution is 
therefore [25-(3+4)]=18. This corresponds to a critical A. 2 value of 28.9 at the 5% 

confidence level. 

Point a on figure A. 1.1 represents perfect model performance. An NTD1=1 indicates zero 
forecast error, whilst aQ value of zero denotes a complete absence of auto correlation in 

the residuals. 

Consider the following two scenario for the data series: 



Appendix 1 Error analysis 262 

I. Q=23.1. Then =0.80 

Assume NTD1=0.71 

This point is marked b on figure A. 1.1. 

ii. Q= 5.8. Then Q 
=0.2 

Assume NTD1=0.30 

This point is marked c on figure A. 1.1. 

Point b represents smaller forecast errors (as indicated by the NTD criterion) and higher 

auto correlation of the model residuals-though still random (as measured by the 

statistic). 

It is noted that from hydrological point of view the NTD criterion is more crucial since the 

magnitude of the forecast errors in flood forecasting is the most important single factor. 

Point d indicates significant auto correlation of the forecast residuals. A non-random 
structure suggests inadequate model performance: it is likely that the model is 
inappropriate for the data. A negative NTD denotes superiority of forecasts derived by a 
simple naive model. 

Fil 
0.5 

O 

0.0 
I 

0.5 1.0 1.5 Q/ 
x5%z 

-0.5 
ý 

LI 

Random ýýý lg*- Non Random - 

Figure A. 1.1 : Example randomness-dispersion diagram 
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Table (A. 1.1. ) Distribution table 

TABLE F TAIL AREAS OF THE CHI-SQUARE DISTRIBUTION 

P 
0.995 0.99 0.975 0.95 0.9 0.75 0.5 0.25 0.1 0.05 0.025 0.01 0.005 0.001 

P 

1 -- -- - - 0.016 0.102 0.455 1.32 2.71 3.84 5.02 6.63 7.88 10.8 1 
2 0.010 0.020 0.051 0.103 0.211 0375 139 2.77 4.61 5.99 7.38 9.21 10.6 13.8 2 
3 0.072 0.115 0.216 0.352 0.584 1.21 237 4.11 6.25 7.81 9.35 11.3 12.8 163 3 
4 0.207 0.297 0.484 0.711 1.06 1.92 3.36 5.39 7.78 9.49 I1.1 13.3 14.9 18.5 4 
5 0.412 0.554 0.831 1.15 1.61 167 4.35 6.63 9.24 11.1 12.8 15.1 16.7 20.5 5 
6 0.676 0.872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 14.4 16.8 18.5 22.5 6 
7 0.989 1.24 1.69 2.17 2.33 4.25 6.35 9.04 12.0 14.1 16.0 18.5 203 24.3 7 
8 1.34 1.65 2.18 2.73 3.49 5.07 734 10.2 13.4' 15.5 17.5 20.1 22.0 26.1 8 
9 1.73 2.09 2.70 3.33 4.17 5.90 3.34 11.4 14.7 16.9 19.0 21.7 23.6 27.9 9 

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 23.2 25.2 29.6 10 
11 2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7 21.9 24.7 26.8 31.3 11 
12 3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 "18.5 21.0 23.3 26.2 28.3 32.9 12 
13 3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4 24.7 27.7 29.8 34.5 13 
14 4.07 4.66 5.63 6.57 7.79 10.2 131 17.1 21.1 23.7 26.1 29.1 31.3 36.1 14 
15 4.60 5.23 6.26 7.26 8.35 11.0 143 18.2 22.3 25.0 27.5 30.6 32.8 37.7 15 
16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3 28.3 32.0 34.3 39.3 16 
17 5.70. 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 30.2 33.4 35.7 40.8 17 
18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 31.5 34.8 37.2 42.3 18 
19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 32.9 36.2 38.6 43.3 19 
20 7.43 8.26 9.59 10.9 12.4 15.5 19.3 23.8 28.4 31.4 34.2 37.6 40.0 45.3 20 
21 8.03 3.90 10.3 11.6 13.2 16.3 20.3 24.9 29.6 32.7 35.5 38.9 41.4 46.8 21 
22 8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.3 40.3 42.3 48.3 22 
23 9.26 10.2 11.7 13.1 14.3 18.1 22.3 27.1 32.0 35.2 33.1 41.6 44.2 49.7 23 
24 9.39 10.9 12.4 13.3 15.7 19.0 233 28.2 33.2 36.4 39.4 43.0 45.6 51.2 24 
25 10.5 11.5 13.1 14.6 16.5 19.9 24.3 29.3 34.4 37.7 40.6 44.3 46.9 52.6 25 
26 11.2 12.2 13.8 15.4 17.3 20.8 25.3 30.4 35.6 38.9 41.9 45.6 48.3 54.1 26 
27 11.3 12.9 14.6 16.2 18.1 21.7 26.3 31.5 36.7 40.1 43.2 47.0 49.6 55.5 27 
28 12.5 13.6 153 16.9 18.9 -22.7 27.3 32.6 37.9 41.3 44.5 43.3 51.0 56.9 23 
29 13.1 14.3 16.0 17.7 19.8 23.6 28.3 33.7 39.1 42.6 45.7 49.6 52.3 58.3 29 
30 13.8 15.0 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.3 47.0 50.9 53.7 59.7 30 

Table ofýýp)SuchthatP{; ý-(p) > %E (p)} 

where: 
p is the number of degrees of freedom. 
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Rainfall hyetographs and runoff hydrographs 
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APPENDIX 3 

FLOWCHARTS AND EXAMPLES OF HGA IN PRTF MODEL 

A 3.1 Introduction 

In this appendix flow charts of HGA for simulation of PRTF model both in real and 
binary numbers are presented. Furthermore, two examples of applications of HGA to the 
PRTF model are illustrated. The first example is related to identification of PRTF model 
using real number representation, and the second to binary representation. It should be 

emphasised that because there is not enough room to present whole generations, only a 
few selected generations are presented here. 

A flowchart for the simulation (updating) of PRTF model using the developed HGA and 
real numbers is presented in figure (A3.1). 

A3.2 HGA using real numbers representation 

In order to illustrate the application of HGA in parameter estimation of PRTF model, one 
event from Bird Creek catchment is chosen. The aim is to estimate the time to peak and Bi 
PRTF parameters using a given rainfall hyetograph and its corresponding hydrograph. 
Once this has been done calculation of Ai parameters is straightforward. 

Only six generations of HGA are shown here including the first five generations and the 
last generation. Each panel gives the full information of a single generation of the HGA: 
time to peak, Bi parameters, Ai parameters and corresponding fitness. Since a2xI order 
PRTF model is used, the first column is the time to peak the second and third are related 
to the Bi parameters the fourth and fifth are Ai parameters and the last column is related to 
the fitness factor. The first five generation runs are provided to show the progression of 
the genetic algorithm towards an optimal solution. The reader is encouraged to examine 
the panels successively and gain reassurance that the algorithm is systematically moving 
the population towards minimum fitness and hence is optimising the fitness factors. 
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Figure (A3.1) Flowchart for HGA in simulation of PRTF model using real numbers 
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Figure (A3.1) continued 
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Figure (A3.1) Continued 
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Figure (A3.1) Continued 
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Here the population size is considered to be 10. It is also supposed that the number of 
selected parents in each step of algorithm to be same as population size so that in each 
generation 90 children are produced. 

Table (A3.1a) shows the initial population for HGA. It can be seen that there is no pattern 
for the population because they are generated randomly. 

Table (A3. lb) is related to second generation and illustrates the power of the GA. Here it 
is supposed that 30% of the best individuals of the previous generation remain in the next 
generation. Thus it can be seen that individuals 3,5 and 6 are remain in the second 
generation. The second generation also shows the mutation and crossover effects. Due to 
the roulette wheel parent selection mechanism, members of first generation with fitness 
factors which are too large do not appear in the second generation. 

Table (A3.1c) is related to generation 3. It shows that the average population fitness has 
decreased dramatically over that of generation 2. It should be noted that much of 
randomness of generations 1 and 2 has now gone. 

Similar pattern is observed in the remaining generations and the HGA continues until a 
lower RMSE is obtained. 
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Table (A3.1) List of population evolution in some selected generation, Bird Creek 

catchment. 

a 0 

Time to B parameter A parameter Fitness 
02 peak factor 
A3.1a Generation 1 

1 1 7.97 1.65 7.26 1.79 -0.80 112.81 
1 2 3.72 0.39 8.76 1.62 -0.65 42.65 
1 3 0.93 1.67 1.20 1.19 -0.35 0.34 
1 4 9.50 0.08 7.52 1.82 -0.83 93.45 
1 5 2.29 0.37 0.62 1.48 -0.54 0.58 
1 6 1.77 0.38 3.28 1.39 -0.49 1.49 
1 7 4.38 0.62 2.80 1.66 -0.69 6.81 
1 8 3.26 3.46 1.00 1.58 -0.63 7.64 
1 9 10.61 0.78 1.79 1.83 -0.84 11.63 
1 10 2.78 5.06 8.29 1.54 -0.59 60.59 

A3. lb Generation 2 

2 1 0.93 1.67 1.20 1.19 -0.35 0.34 
2 2 0.93 1.67 1.20 1.19 -0.35 0.34 
2 3 0.93 0.62 2.80 1.19 -0.35 0.39 
2 4 1.18 2.05 1.02 1.26 -0.40 0.48 
2 5 2.29 0.37 0.62 1.48 -0.54 0.58 
2 6 1.77 0.62 2.80 1.39 -0.49 1.27 
2 7 1.77 0.38 3.28 1.39 -0.49 1.49 
2 8 1.77 0.38 3.28 1.39 -0.49 1.49 
2 9 2.78 1.67 1.20 1.54 -0.59 2.12 
2 10 0.93 0.08 7.52 1.19 -0.35 2.62 

A3.1c Generation 3 

3 1 0.93 1.67 1.20 1.19 -0.35 0.34 
3 2 0.93 1.67 1.20 1.19 -0.35 0.34 
3 3 0.93 1.67 1.20 1.19 -0.35 0.34 
3 4 0.93 0.62 2.80 1.19 -0.35 0.39 
3 5 0.93 0.62 2.80 1.19 -0.35 0.39 
3 6 0.93 0.38 3.28 1.19 -0.35 0.44 
3 7 1.18 2.05 1.02 1.26 -0.40 0.48 
3 8 2.29 0.37 0.62 1.48 -0.54 0.58 
3 9 1.77 1.67 1.20 1.39 -0.49 0.86 
3 10 1.77 0.62 2.80 1.39 -0.49 1.27 
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Table (A3.1) Continued 

0 

Time to 
C7 peak 

B parameter A parameter Fitness 
factor 

A3. ld Generation 4 

4 1 0.93 1.67 1.20 1.19 -0.35 0.34 
4 2 0.93 1.67 1.20 1.19 -0.35 0.34 
4 3 0.93 1.67 1.20 1.19 -0.35 0.34 
4 4 0.93 1.67 1.20 1.19 -0.35 0.34 
4 5 0.93 0.62 2.80 1.19 -0.35 0.39 
4 6 0.93 0.38 3.28 1.19 -0.35 0.44 
4 7 1.18 2.05 1.02 1.26 -0.40 0.48 
4 8 2.76 1.61 -0.77 1.53 -0.59 0.54 
4 9 2.29 0.37 0.62 1.48 -0.54 0.58 
4 10 1.19 3.91 0.13 1.27 -0.40 0.86 

A3. le Generation 5 

5 1 0.93 1.67 1.20 1.19 -0.35 0.34 
5 2 0.93 1.67 1.20 1.19 -0.35 0.34 
5 3 0.93 1.67 1.20 1.19 -0.35 0.34 
5 4 0.93 1.67 1.20 1.19 -0.35 0.34 
5 5 0.93 0.62 2.80 1.19 -0.35 0.39 
5 6 0.45 2.30 3.69 1.00 -0.25 0.43 
5 7 0.93 0.38 3.28 1.19 -0.35 0.44 
5 8 0.91 3.45 -0.60 1.19 -0.35 0.44 
5 9 1.18 2.05 1.02 1.26 -0.40 0.48 
5 10 2.76 1.61 -0.77 1.53 -0.59 0.54 

A3. If Generation 16 (last one) 

16 1 0.06 0.35 4.94 0.78 -0.15 0.12 
16 2 0.28 0.95 3.57 0.92 -0.21 0.16 
16 3 0.20 0.92 3.25 0.87 -0.19 0.16 
16 4 0.20 0.23 3.11 0.87 -0.19 0.20 
16 5 0.01 1.05 2.87 0.74 -0.14 0.22 
16 6 0.30 1.27 2.10 0.93 -0.21 0.23 
16 7 0.47 0.04 2.91 1.01 -0.26 0.23 
16 8 0.35 1.50 4.04 0.96 -0.23 0.25 
16 9 0.45 1.67 1.20 1.00 -0.25 0.30 
16 10 0.45 2.05 1.02 1.00 -0.25 0.30 
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A3.3 HGA using binary representation 

A flowchart for the simulation of PRTF model using the HGA and binary numbers is 

presented in figure (A3.2). 

Here again one event from Bird Creek catchment is selected to examine the capability of 
HGA in the identification of a PRTF model using a given rainfall hyetograph and its 

related hydrograph. Details of the procedures are listed as following for a few selected 

generations. 

In the current example, the population contains 20 chromosomes and the algorithm has 
been run without interview for 500 generations. Here again a2x1 order PRTF model is 

used. Since the length of each gene selected is 12, and three variables- one for time to 

peak and two for the B parameters- has to determined, each chromosome contains 36 
bits. 

For the first generation a population containing 20 chromosomes was randomly generated 

as shown in table (A3.2a). The population of chromosomes are numbered from 1 to 20 
for the 20 individuals. It should be noted that since the 0's and l's are selected randomly, 
there is no special pattern in the initial generation. For each member of the population in 

addition to the binary representation of chromosome, equivalent encoded of chromosome 
is also presented. Therefore the first column of real numbers is time to peak, the second 
and third are related to Bi parameters, the fourth and fifth are allocated to the related Ai 

parameters, and the last column defines the fitness. It can be seen that member 20 is the 
best member of this generation and using the elitism mechanism is included to the second 
generation as well. To produce remaining members of the second generation, first using 
the roulette wheel two members of previous generation are selected then multiple 
crossover and random mutation is applied to them if the probability test is passed. Finally 
the two modified members are included in the second generation. This procedure is 

continued until all 20 members are obtained. The fitness of each member of the second 
generation is calculated and the best member (1) passes into the third generation. It should 
be noted that once two individuals are selected there is 80% probability for each gene 
(variable) of chromosome that a crossover will take place. However there is only 5% 

probability that each variable will be randomly mutated. The second generation is 

presented in table (A3.2b). The best member of third generation which (16) is included to 
the fourth generation. 

A similar procedure is applied to generations 4-500. It is worth noting that as the 
procedure progresses, the average of the fitness factors falls although due to the random 
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mutation, some diversity is fed on to the following generations. This sometimes causes 
the fitness factor to be worse than that of previous generations. The members of third, 
fourth and fifth generation are presented in table (A3.2c), (A3.2d), and (A3.2e) 

respectively. Finally, the members of last generation-generation 500 is shown in table 
(A3.2f). 
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Figure (A3.2) Flowchart for HGA in simulation of PRTF model using binary numbers 
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Figure (A3.2) Continued 
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Figure (A3.2) Continued 
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