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Abstract.The majority of the convential mining 
algorithms treat the mining process as an isolated  
data-driven procedure and overlook the semantic of 
the targeted data. As a result, the generated 
patterns are abundant and end users cannot act upon 
them seamlessly. Furthermore, interdisciplinary 
knowledge could no be obtained from domain-specifi 
silo of data. 
The emergence of Linked Data (LD) as a new model for 
knowledge representation, which intertwines data with 
its semantics, has introduced new opportunities for 
data miners. Accordingly, this paper proposes a 
Semantic-Aware Bayesian network (BN) model, which 
exploits the semantic aspectes of the LD structure.It 
integrates five semantic relations in the mining 
process. 
In contrast to the exisiting mining algorithms, the 
proposed model do not transform the original format 
of the LD set. So, it not only accomodates the 
semantic aspects in LD,but also caters to the need of 
connecting different data-sets from different 
domains.  

Keywords: Linked Data (LD). Actionable Knowledge 
Discovery (AKD). Bayesian Network (BN).  

1 Introduction 
The term Data Mining (DM) refers to methods that aim to extract useful information 
and knowledge from data. Fayyad et al. have defined these methods as the non-trivial 
process of identifying valid, novel, potentially useful and ultimately understandable 
patterns in a database [1,2]. 
Despite the fact that the ultimate goal of DM is to identify useful and understandable 
patterns, the existing mining algorithms are confined to generating frequent patterns 
and do not illustrate how to act upon them. Accordingly, the concept of Actionable 
Knowledge Discovery (AKD) has been introduced to overcome the shortages on tra-
ditional mining algorithms. The goal of AKD techniques is to bridge the gap between 
the output of the current mining algorithms and the needs of the real life applications 
[3,4,5]. 
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This gap has appeared as a result of two major drawbacks, namely, quantity and 
quality; the former states that the generated patterns are abundant while the latter 
indicates that they cannot be integrated seamlessly into the business domain [3], [6]. 
Upon further investigation, it appears these drawbacks have been caused as a result of 
viewing the mining process as data driven trial and error practices and ignoring the 
surrounding knowledge [3], [7]. Consequently, the mining philosophy has faced a 
paradigm shift from a data-centered to a knowledge-centered process, which aims to 
integrate the surrounding knowledge such as data intelligence into the mining process 
[3], [8]. Even though the data intelligence could be represented using various tech-
niques, recently LD introduced a new technique to intertwine the data and its seman-
tics in one package. Coupling the data with its semantics not only brings new oppor-
tunities for data miners but also raised some challenges; for example, how to identi-
fied the interesting transactions in heterogeneous data sets, which has been built based 
on the description logic and used the triple (subject-predicate-object) format [9,10]. 
To this end, this paper proposes a semantic-aware Bayesian network model, which 
exploits the semantic nature of LD and implicitly accommodates the data intelligence 
in the mining process. The proposed approach consists of the following steps:  

1. Convert the original LD file into BN, which preserves the semantics of the LD file. 
2. Initializes the Conditional Probability Tables (CPT’s) with default values. 
3. Calculate set of probabilistic constraints using the concept of Maximum a Posterior 

estimation (MAP) in such a way that it reflects the semantic relations between 
nodes in the constructed BN. 

4. Approximate the CPT’s initial values to comply with the set constraints calculated 
in the second step using the concept of Iterative Proportional Fitting Procedure 
(IPFP).  

The contributions of this paper are twofold. Firstly, the model integrates five semantic 
relations in the mining process, namely, equivalent to, complement of, disjoint with, 
intersection of and union of. Secondly, it does not change the original format of LD 
set and consequently, it caters for the need of linking various data-sets from multidis-
ciplinary domains using the design principles of LD. The proposed model tested using 
five sets of synthesis data and the initial results are promising.  
The remainder of this paper is organized as follows: In section 2 the notion of con-
verting LD file into BN is explained in detail, while the probabilistic constraints esti-
mation methods are illustrated in  section 3. IPFP is briefly discussed in the section 4, 
and section 5 discusses in detail the empirical implementation and the initial results. 
Finally, the paper is concluded in section 6.  

2 Bayesian Network Topology Construction 
BayesOWL consists of a set of construction rules, which convert ontology files into 
BN directed acyclic graphs (DAG), which preserve the semantics of the original on-
tology file [11,12]. Likewise, the model proposed in this paper follows the same rules 
to convert the given LD file into BN DAG.  
The construction of BayesOWL graph has two main phases. In the first phase, the 
BayesOWL graph structure is built and the associated CPT’s are initialized with de-

2 
 



 

fault values. Then, the integration of the given probabilistic constraints is implement-
ed in the second phase [13,14]. 
The process of construction BN DAG from the given ontology file is governed by a 
set of rules. The conventions underpinning these rules can be summarized in the fol-
lowing points [12], [15]: 
1. Every primitive or defined class is mapped into binary variables.  
2. Connect each parent superclass with its child subclass by an arc. 
3. For each concept class C is defined as the intersection of a set of classes Ci ={ C1, 

….., Cn}; a subnet is created in such a way that there is a link from C and each 
class in the set Ci  toward the class C. Furthermore, there is a link from C and each 
class in the set Ci moves toward a logical node called LNodeIntersection. Figure 
1.a depicts the creation of the intersection subnet. 

4. For each concept class C is defined as the union of classes Ci ={ C1, ….., Cn}; a 
subnet is created in such a way that there is a link from C to each class in the set Ci. 
Furthermore, there is a link from C and each class in the set Ci moves toward a log-
ical node called LNodeUnion. Figure 1.b illustrates the creation of the union sub-
net. 

 
Fig. 1. LNodeIntersection & LNodeUnion [11] 

5. For each two concept classes C1 and C2 are defined as complements of, equivalent 
to, disjoint with each other logical nodes (LNodeComplement, LNodeEquivalent, 
LNodeDisjoint) are created, which take two input links from C1 and C2. Figures 
2.a, 2.b and 2.c depict the creation process for LNodeComplement, LNodeEquiva-
lent and LNodeDisjoint respectively.  

 
Fig. 2. LNodeComplement & LNodeEquivalent & LNodeDisjoint [11] 

 
 



 

It clearly can be seen that the generated DAG contains two types of nodes, namely, 
regular nodes, which represent classes and logical nodes, which show the logical rela-
tion among classes [11], [15]. The combination of these two types of nodes forms the 
structure of the BN. 
The second component of BN is the conditional probability table. As discussed in the 
previous paragraph, the generated DAG contains two types of nodes, logical and 
regular. Consequently, the CPT’s for each type should be calculated. The following 
subsection explains in detail the CPT’s calculation process [11], [16, 15]. 

2.1 CPT’s calculation for logical nodes 

It has been stated that the generated DAG caters for five different types of logical 
nodes, which are associated with five logical operations in ontology. The CPT for 
each logical node is determined by its logical relations. The following subsections 
explain the CPT creation process for each logical node.  

CPT creation for Complement of logical relation.  
The complement relation between two concepts classes C1 and C2 is true IFF 
𝑐𝑐1𝑐𝑐2˅𝑐𝑐1𝑐𝑐2 is true. Table 1 describes the CPT for complement of relation. 

CPT creation for Disjoint with logical relation.  
The disjoint with relation between two concept classes C1 and C2 is true IFF 
𝑐𝑐1𝑐𝑐2˅𝑐𝑐1𝑐𝑐2˅𝑐𝑐1𝑐𝑐2 is true. Table 2 describes the CPT for disjoint with relation. 

CPT creation for Equivalent to logical relation.  
The equivalent to relation between two concept classes C1 and C2 is true IFF 
𝑐𝑐1𝑐𝑐2˅𝑐𝑐1𝑐𝑐2 is true. Table 3 describes the CPT for equivalent of relation. 

Table 1. CPT for 
LnodeComplementOF [11] 

 
Table 2. CPT for 

LnodeDisjointWith [11] 

 
Table 3. CPT for 

LnodeEquivalentTo [11] 
C1 C2 True False  C1 C2 True False  C1 C2 True False 
T T 0 1  T T 0 1  T T 1 0 
T F 1 0  T F 1 0  T F 0 1 
F T 1 0  F T 1 0  F T 0 1 
F F 0 1  F F 1 0  F F 1 0 

CPT creation for Intersection of logical relation.  
The class C, which is the intersection of C1 and C2 is true IFF 
𝑐𝑐𝑐𝑐1𝑐𝑐2˅𝑐𝑐𝑐𝑐1𝑐𝑐2˅𝑐𝑐𝑐𝑐1𝑐𝑐2˅𝑐𝑐𝑐𝑐1𝑐𝑐2 is true. Table 4 describes the CPT for the intersection of 
relation. 

CPT creation for Union of logical relation.  
The class C, which is the union of C1 and C2 is true IFF 𝑐𝑐𝑐𝑐1𝑐𝑐2˅𝑐𝑐𝑐𝑐1𝑐𝑐2˅𝑐𝑐𝑐𝑐1𝑐𝑐2˅𝑐𝑐𝑐𝑐1𝑐𝑐2 
is true. Table 5 describes the CPT for the union of relation. 
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Table 4. CPT for IntersectionOf [11]  Table 5. CPT for UnionOF [11] 
C C1 C2 True False  C C1 C2 True False 
T T T 1 0  T T T 1 0 
T T F 0 1  T T F 0 1 
T F T 0 1  T F T 1 0 
T F F 1 0  T F F 0 1 
F T T 0 1  F T T 1 0 
F T F 1 0  F T F 0 1 
F F T 0 1  F F T 0 1 
F F F 1 0  F F F 1 0 

2.2 CPT calculation for regular nodes 
The CPT‘s for regular nodes are computed by applying the Bayesian theorem as fol-
lows. P(C|⫪c) where C is the class of the regular node and ⫪c is the set of its parents. 
The P(C=True |⫪c) = 0 if any of its parents are false. Hence, the probability for any 
regular class C is calculated only when all of its parents are in true status. This scenar-
io is denoted as P(C|⫪c+) where ⫪c+ represents the set of parent classes in true status. 
This method is used to calculate the probability when probabilistic data is available. 
Otherwise, a default value (0.5) is assigned based on equation (1) [11], [13]. 

 P (C=True|⫪𝑐𝑐+) = P(C=False|⫪𝑐𝑐+) =0.5. (1) 

3 Probabilistic Constraints Estimation  
The process of converting OWL (i.e. LD) file into BN consists of two phases. In the 
first phase the BN structure is constructed and the associated CPT’s are initialized 
with default values. Then, the probabilistic constraints are integrated in the second 
phase. Hereafter, the process of probabilistic constraints estimation is covered in de-
tail. 
It has been argued that the two main approaches for probabilistic estimation in BN are 
the Maximum Likelihood Estimation (MLE) and Bayesian estimation [17,18,19]. 
Thus, these two approaches are discussed in the next subsections.  

3.1 Maximum Likelihood Estimation (MLE) 
MLE aims to find the value of Ɵ, which quantifies the maximum probability of the 
incoming event. In a data-set D, which consists of n instances of binominal random 
variable X then MLE aims to estimate the maximum likelihood of occurrence for n+1 
incoming event [17], [20]. 
It is assumed that, the random variable X represents the event of flipping a thumbtack, 
which has two possible outcomes, Head and Tail. Furthermore, the observed data 
consist of 5 observations, 3 of which are Heads and 2 Tails. Therefore, the MLE for 
the incoming event n+1 for X = Head is: 

 MLEx=Head = X=Head
X=Head+ X=Tail

+ 3
3+2

= 0.6 (2) 
It can be seen that the likelihood function is maximized by dividing the number of 
correct trials over the total number of trials. Although MLE has various advantages, it 
also has some limitations. For example, the size of the observed data-set has no effect 

 
 



 

in the estimation process. Additionally, MLE does not take the prior knowledge into 
consideration and entirely relies on the observed data. Therefore, Bayesian method, 
which integrates the prior knowledge in the estimation process, has been introduced 
[17,18], [20].  

3.2 Maximum a Posterior Estimation (MAP) 
An alternative method for parameters estimation, which injects the prior knowledge in 
the form of prior distribution in the estimation process, is MAP. MLE aims to maxim-
ize the likelihood function. Likewise, MAP aims to maximize the posterior of Ɵ given 
in the observed data. This hypothesis can be formalized in the following equation 
[17], [20]: 
 𝛳𝛳 �𝑀𝑀𝑀𝑀𝑀𝑀 = argmax P(Ɵ|d) (3) 
Equation (3) could be reformulated using Bayes rule.  
                            𝛳𝛳 �𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 p(d|Ɵ)𝑝𝑝(Ɵ)

p(d)
 Where p(d) ≠ ⨍(Ɵ) (4) 

                                𝛳𝛳 �𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (log 𝑝𝑝(𝑑𝑑|Ɵ) + log 𝑝𝑝(Ɵ)) (5) 

Equation (5) shows that the posterior probability 𝑝𝑝(Ɵǀ𝑑𝑑) is Beta distribution, which is 
obtained by summing the likelihood in form of Bernoulli distribution and prior 
knowledge in form of Beta distribution. Hence, the posterior probability is Beta dis-
tribution with (⍺ + 𝑟𝑟) correct trials out of (⍺+𝛽𝛽+ 𝑛𝑛) total number of trials. According-
ly, the prior and posterior statistics for Beta distribution could be summarized in the 
following table [19], [21]. 

Table 6. Prior and posterior statistics for beta distribution [19] 
Statistics Prior Posterior 

Law Beta(⍺,𝛽𝛽) Beta(⍺+r,𝛽𝛽+(n-r)) 
Mean ⍺/⍺+𝛽𝛽 ⍺+r/⍺+𝛽𝛽+n 
Mode ⍺-1/⍺+𝛽𝛽-2 ⍺+r-1/⍺+𝛽𝛽+n-2 
variance ⍺ 𝛽𝛽/(⍺+𝛽𝛽)2 +(⍺+𝛽𝛽+1) (⍺+r)(𝛽𝛽+n-r)/(⍺+𝛽𝛽+n)2 +(⍺+𝛽𝛽+n+1) 

4 Iterative Proportional Fitting Procedure (IPFP) 
The concept of Iterative Proportional Fitting Procedure (IPFP) was first introduced by 
Deming and Stephan in 1940. It used to estimate the probability in contingency table, 
which is subject to given marginal constraints. In 2000, Cramer proposed an exten-
sion to the traditional IPFP to accommodate the conditional probability constraints. In 
fact, the statistical application for probability models with marginal and conditional 
distributions are comprehensive, such as, Bayesian statistic, contingency table, long-
linear models etc. [22, 23]. 
This paper is concerned with the capability of IPFP to approximate a set of probabil-
ity tables according to a given set of marginal and conditional probabilistic con-
straints. The full mathematical and theoretical background of IPFP is beyond the 
scope of this paper. The reader may refer to the following reference [24] for compre-
hensive studies on IPFP. 
5 Empirical Implementation and Initial Results 
The proposed model has been tested using five sets of synthesized data. Each data-set 
highlighted the significance of one logical relation. The process sequence is designed 
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in such a way that it shows the effects of integrating the logical relations between 
random variables in BN. As a matter of fact, it compares the output of the Loopy 
Believe Propagation (LBP) inference algorithm using two different sets of probabilis-
tic constraints. The first set ignores the logical relations between random variables 
while the second set accommodates these relations. Consequently, each data-set is 
processed in two different ways and the final results have been compared. Figure (3) 
shows the process sequence and the actions taken in each approach.  

 
Fig. 3. Process sequence 

 
 



 

5.1 Preliminaries and Notations 

Figure 3 shows that each data-set has been process in two differnt approaches. The 
first approach ignor the semantic relations between random variables while the second 
approach integrate these relations. Table (7) explains in details the steps on each 
approach. 

Table 7. Proces walkthrough  

Steps 1st approach 2nd approach 

1 Convert the LD file into BN using the construction rules explained in section 2 
and initialized the associated CPT’s with default value (i.e. 0.5). 

2 

Calculate the probabilistic con-
straints using the MLE techniques 
base on the following equation.  

𝑀𝑀𝐿𝐿𝐸𝐸= M1 /M1+M2   (6)                   
  

Where: 

• M1 is the number of true trial. 
• M2 is the number of false trial. 

• Process the o observed data in such a 
way that reflect the superclass-subclass 
relations. In simple words, an instance 
of each class is observed as an instance 
of its superclass. 

• Calculate the probabilistic constraints 
using the MAP techniques based on the 
following equation. 

𝑀𝑀𝐴𝐴𝑃𝑃= (M1 +⍺−1) / (M1+⍺+M2+β−2) (7) 
Where: 
• M1 is the number of true trial. 
• M2 is the number of false trial. 
• ⍺ is the number of true trail in the se-

mantic data-set. 
• β is the number of false trial in the 

semantic data-set. 

3 Approximate the CPT’s initial values using the concept of IPFP and the set of 
constrains calculated in step 2. 

4 Calculate the marginal probability for all random variable using the LBP infer-
ence algorithm. 

Table (7) clearly shows that steps 1, 3 and 4 are identical. However, the calculation of 
the probabilistic constraints in step 2 is differ . Hence, the input for steps 3 and 4 is 
changed accordingly. As a matter of fact, ⍺ and β hayperparameters in equation 7 
were used to cater for the semantic relation other than the superclass-subclass rela-
tions. These parameters utilized to inject the semantic relation into the estimation 
process.  

5.2 Examples 
This section is divided into five subsections. Each subsection gives an example, 
which covers one logical relation. Furthermore, the generated result is compared and 
discussed.  
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Example One (Equivalent of logical relation).  
Figure 4.a indicates that class D is equivalent to class E. Hence, any instance of D is 
an instance of E and vice versa. Furthermore, it shows the superclass-subclass rela-
tions between variables (i.e. classes) in example one. Table 8 illustrates the calcula-
tion of the probabilistic constraints for the 1st and 2nd approach.  

Table 8. Example one 1st approach Vs 2nd approach constraints calculations 

Example 1 1st approach 2nd approach 

Class Subclasses Observed 
data 

MLE 
(M1/M1+M2) 

Processed 
observed 

data 

MAP 
(M1 +⍺−1) / 

(M1+⍺+M2+β−2) 
R {A, B} 1 1/(1+15)=0.063 16 (16+1-1)/(16+1+0+1-2)=1.000 
A {C, D} 1 1/(1+15)=0.063 10 (10+1-1)/(10+1+6+1-2)=0.625 
B {E, F} 1 1/(1+15)=0.063 5 (5+1-1)/(5+1+11+1-2)=0.313 
C {} 2 2/(2+14)=0.125 2 (2+1-1)/(2+1+14+1-2)=0.125 
D {} 7 7/(7+9)=0.438 7 (7+9-1)/(7+9+9+7-2)=0.500 
E {} 2 2/(2+14)=0.125 2 (2+9-1)/(2+9+14+7-2)=0.333 
F {} 2 2/(2+14)=0.125 2 (2+1-1)/(2+1+14+1-2)=0.125 

Discussions.  
Table 8 shows how the observed data has been process to reflect the subclass-
superclass relations. Additionally, it explains how the hayperparameters have been 
used to inject the semantic relations into the estimation process. For example, the 
value of ⍺ hayperparameter for class D and E is equal to 9, which is the sum of 
the D and E instance because they are equivalent.  
Figure 4.b clearly shows that the results of the second technique (i.e MAP) have re-
flected the semantic relations between the random variables in example one. For ex-
ample, the marginal probabilities for classes D and E, which were involved in the 
equivalent semantic relation, have increased compared to their marginal probabilities 
in the first approach. Likewise, the marginal probabilities for all classes involved in 
superclass-subclass relation were increased accordingly. 

Example two (disjoint with logical relation).  
Figure 4.c indicates that class A is disjoint with class B. The semantic interpretation 
of this relation is that an instance of class A and its subclasses could not be an in-
stance of class B and its subclasses and vice versa. Additionally, it shows the super-
class-subclass relations between classed in example two.  The observed data pro-
cessing and the calculation for the probabilistic constraints with and without integrat-
ing the semantic relations are explained in table 9. 
 
 
 

 
 



 

Table 9. Example two 1st approach Vs 2nd approach constraints calculations 

Example 2 1st approach 2nd approach 

Class Sub-
classes 

Observed 
data 

MLE 
(M1/M1+M2) 

Processed 
observed 

data 

MAP 
(M1 +⍺−1) / (M1+⍺+M2+β−2) 

R {A, B} 1 1/(1+24)=0.040 25 (25+1-1)/(25+1+0+1-2)= 1.000 
A {C, D} 3 3/(3+22)=0.120 9 (9+9-1)/(9+9+16+1-2) = 0.515 
B {E} 5 5/(5+20)=0.200 15 (15+15-1)/(15+15+10+1-2)= 0.744 
C {} 2 2/(2+23)=0.080 2 (2+2-1)/(2+2+23+8-2) = 0.091 
D {} 4 4/(4+21)=0.160 4 (4+4-1)/(4+4+21+6-2) = 0.212 
E {F,H} 6 6/(6+19)=0.240 10 (10+10-1)/(10+10+15+6-2)=0.487 
F {} 2 2/(2+23)=0.080 2 (2+2-1)/(2+2+23+14-2)= 0.077 
H {} 2 2/(2+23)=0.080 2 (2+2-1)/(2+2+23+14-2)= 0.077 

Discussion.  
Table 9 illustrates how the observed data has been processed to reflect the superclass-
subclass relations. Furthermore, it shows how the value of β changes to accommodate 
the disjoint relations. For example, for class C the value of β is equal to 8, which 
means, the possibility that an instance belong to class C workspace but not an instance 
of class C it only could be an instance of class R, A or D because class A is disjoint 
with class B and its subclasses. 
Figure 4.d compares between the marginal probabilities for all random variables in 
exampole two with and without considering the semantic relations between these 
variables. It can be seen that the marginal probability for classes A, B and their 
subclasses have accomodate the disjoint semantic relation.  
Example three (Complement of logical relation).  
This example simulates the complement of semantic relation. Figure 4.e shows that 
class A is complement of class B. The semantic effect of this relation is that an in-
stance of class A and its subclasses cannot be an instance of class B and its sub-
classes. Likewise, an instance of class B and its subclasses cannot be an instance of 
class A and its subclasses. Table 10 below explains the observed data processing step 
and the constraints estimation with and without injecting the semantic relation be-
tween classes in example three.  

Table 10. Example three 1st approach Vs 2nd approach constraints calculations 
Example 3 1st approach 2nd approach 

Class Sub-
classes 

Ob-
served 
data 

MLE 
(M1/M1+M2) 

Processed 
observed 

data 

MAP 
(M1 +⍺−1) / (M1+⍺+M2+β−2) 

R {A, B} 1 1/(1+23) =0.042 24 (24+1-1)/(24+1+0+1-2) = 1.000 
A {C, D} 1 1/(1+23) =0.042 8 (8+8-1)/(8+8+16+1-2) = 0.484 

B {E,F} 10 10/(10+14)= 
0.417 15 (15+15-1)/(15+15+9+1-2)= 0.763 

C {} 2 2/(1+23) = 0.083 2 (2+2-1)/(2+2+22+7-2) = 0.097 
D {H} 4 4/(4+20) = 0.167 5 (5+5-1)/(5+5+19+4-2) = 0.290 
E {} 1 1/(1+23) = 0.042 1 (1+1-1)/(1+1+23+15-2) = 0.026 
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F {} 4 4/(4+20) = 0.167 4 (4+4-1)/(4+4+20+12-2) = 0.184 
H {} 1 1/(1+23) = 0.042 1 (1+1-1)/(1+1+23+8-2) = 0.032 

Discussion.  
The hayperparameter β used to reflect the effect of the complement relation between 
class A and B. For example, the value of β for class H is equals to 8 which means an 
instance which is belong to H workspace and not an instance of class H, it only could 
be an instance of R, A, C or D because class A is complement of class B. 
Figure 4.f shows the differences in marginal probabilities for all variables in example 
three when the semantic relations have been injected in the computation process and 
when they have been ignored.  It shows that classes A, B and their subclasses have 
reflected the complement of semantic relation.  

Example four (union of logical relation).  
This example explains the union of logical relation. Figure 4.g shows that class E is 
the union of class H and I. The semantic interpretation of this relation is that any in-
stance of H or I is an instance of E as well. Table 11 explains the probabilistic con-
strains calculation process with and without considering the union of the semantic 
relation between classes in example four.   

Table 11. Example four 1st approach Vs 2nd approach constraints calculations 

Example 4 1st approach 2nd approach 

Class Sub-
classes 

Observed 
data 

MLE 
(M1/M1+M2) 

Pro-
cessed 

observed 
data 

MAP 
(M1 +⍺−1) / (M1+⍺+M2+β−2) 

R {A, B} 1 1/(1+22)=0.043 23 (23+1-1)/(23+1+0+1-2) = 1.000 
A {C, D} 1 1/(1+22) = 0.043 4 (4+1-1)/(4+1+19+1-2) = 0.174 
B {E,F} 1 1/(1+22) = 0.043 18 (18+1-1)/(18+1+5+1-2) = 0.783 
C {} 2 2/(2+21) = 0.087 2 (2+1-1)/(2+1+21+1-2)=0.087 
D {} 1 1/(1+22) = 0.043 1 (1+1-1)/(1+1+22+1-2)=0.043 
E {} 2 2/(2+21) = 0.087 2 (2+15-1)/(2+15+21+8-2)=0.364 
F {H,I} 2 2/(2+21) = 0.087 15 (15+1-1)(15+1+8+1-2)=0.652 
H {} 5 5/(5+18) = 0.217 5 (5+1-1)/(5+1+18+1-2)=0.217 
I {} 8 8/(8+15) = 0.348 8 (8+1-1)/(8+1+15+1-2)=0.348 

Discussion.  
Table 11 shows how the ⍺ hayperparameter utilized to inject the union relation in 
the estimation process. For example, the value of ⍺ for class E is equal to 15 
which is the sum of the instances for classes H, I and E. This technique reflect the 
union relation which says that class E is the union of H and I. So, any instance of 
H and I is an instance of E as well. 
Figure 4.h compares the marginal probability for all random variables in exam-
ple four. It can be seen that the marginal probability for class E which involve in 

 
 



 

the union relation has reflect the effect of this relation. Additionally, the effect of 
the superclass-subclass relations has been accommodated as well.  

Example five (intersection of logical relation).  
This example discusses the intersection of semantic relations. Figure 4.i shows that 
the class H is the intersection of class E and F. So, semantically this relation means 
that any instance of class H is an instance of class E and F. Table 12 compares be-
tween calculating the probabilistic constraints with and without considering the se-
mantic relations for random variable in example five.   

Table 12. Example five 1st approach Vs 2nd approach constraints calculations 

Example 5 1st approach 2nd approach 

Clas
s 

Sub-
classes 

Ob-
served 
data 

MLE 
(M1/M1+M2) 

Pro-
cessed 

observed 
data 

MAP 
(M1 +⍺−1) / (M1+⍺+M2+β−2) 

R {A, B} 1 1/(1+28)=0.034 29 (29+1-1)/(29+1+0+1-2) = 1.000 
A {C, D} 1 1/(1+28)=0.034 20 (20+1-1)/(20+1+9+1-2) = 0.690 
B {E,F} 1 1/(1+28)=0.034 8 (8+1-1)/(8+1+21+1-2) = 0.276 
C {} 2 2/(2+27)=0.069 2 (2+1-1)/(2+1+27+1-2) = 0.069 
D {H} 7 7/(7+22)=0.241 17 (17+1-1)/(17+1+12+1-2) = 0.586 
E {} 2 2/(2+27)=0.069 2 (2+12-1)/(2+12+27+17-2)=0.232 
F {} 5 5/(5+24)=0.172 5 (5+15-1)/(5+15+24+14-2)=0.339 
H {} 10 10/(10+19)=0.345 10 (10+1-1)/(10+1+19+1-2)=0.345 

Discussion.  
Table 12 explains the effect of the intersection of logical relation in the constraints 
estimation process. It can be seen that the value of ⍺ for E and F class has reflect this 
relation. For example, the value of ⍺ for class E is equal to 12 which is the sum of 
the instances for class H and E. Likewise; the value of ⍺ for class F is equal to 15.   
Fig. 4.j shows the differences in marginal probabilities for all random variables when 
the semantic relation is integrated into the calculation process and when they have 
been ignored. The effect of intersection of relation is appeared in the marginal proba-
bility for E and F. Furthermore, the marginal probability for all classes involved in the 
superclass-subclass relation has been altered as well.  
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Fig. 4. BN structure with the associated marginal probabilities 

 
 



 

6 Conclusions  
The integration of data semantics in the mining process is not a new concept. Howev-
er, exploiting the semantic relation in LD via the mining process is a new research 
area. LD not only intertwines the data and it’s semantic in one package, but also facil-
itates the integration of various data-sets from multiple domains.  

One major drawback of the conventional mining algorithms is transforming the LD 
original format into a format understandable by the mining algorithm. Accordingly, 
they cannot benefit from the semantical and structural features of the LD. To this end, 
this paper proposed a semantic-aware Bayesian network model which exploits the 
semantic nature of LD and implicitly accommodates the data intelligence in the min-
ing process. Furthermore, it does not change the original format of the LD. So, linking 
multiple data-sets is easily achievable.  

The proposed approach consists of the following steps: 

1. Convert the LD file into a BN which preserve the semantic of the original LD file. 
2. Initialize the Conditional Probability Tables (CPT’s) with default value. 
3. Calculate set of probabilistic constraints using the concept of Maximum a Posterior 

Estimation (MAP) in such a way that reflect the semantic relation between nodes 
in the BN. 

4. Approximate the CPT’s initial values using the concept of Iterative Proportional 
Fitting Procedure (IPFP) and the set of probabilistic constraints estimated in the 
third step. 

The proposed model has been tested using five sets of synthesized data. Each data-set 
highlight the significance of one logical relation. Initial results show that injecting the 
semantically aware probabilistic information into the Bayesian inference algorithm 
generates more realistic results.  

Taking into account the fast accumulation of LD, this paper has investigated the suit-
ability of Bayesian network for LD mining. Although synthesized data-set shows 
some promising results, the proposed model will be tested on real life data-set.  
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