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Abstract 

The use of either a permeable or semi-permeable barriers has been proven to be effective in 

minimizing cresting effects in oil reservoirs characterized by strong bottom aquifer, with 

the latter known to be more effective. Most research has been focused on coning control in 

vertical wells with little research existing for cresting control in horizontal wells, especially 

in use of barriers.  

Therefore, this paper sets out to numerically investigate the effect of an impermeable barrier 

orientation in an oil reservoir characterized by a strong bottom aquifer. The orientations 

considered in this study were horizontal and inclined (step-like) in terms of placement in 

the oil reservoir, modeled with similar thickness and width. 

From the results, it was observed that a horizontally-placed impermeable barrier is more 

effective than inclined impermeable barriers in bottom water cresting scenarios. A 

horizontal impermeable barrier closer to the perforation of the horizontal well, 0.08x in 

thickness to the reservoir height and 0.45x to reservoir width was the most effective, 

although the effect of impermeable barrier width was found to be inconsistent with the 

performance of impermeable barriers. The study shows that the closer the entire top surface 

of the inclined impermeable barrier, the more effective the inclined impermeable barrier in 

minimizing bottom water cresting effect. The value of Reynolds number was found to be 

dependent on the orientation, thickness, position, and width of an impermeable barrier. 
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1 Introduction 

For over a decade, cresting in horizontal wells or coning in vertical wells has been a major 

problem in oil reservoirs characterized by strong gas cap and or strong bottom aquifer. 

Cresting in horizontal wells is often described as the protruded, crest-like movement of 

effluent(s) (unwanted water and or gas) in an oil reservoir towards the perforation of the 

horizontal well as a result of the imbalance of gravitational and viscous forces [1-4]. This 

results in displacement of oil by the effluent(s) towards the perforations of the well [1], until 

a breakthrough is experienced.  At post-breakthrough, the effluent(s) dominate production, 

posing adverse effects in terms of overall oil productivity, operating and handling the cost 

of the water and/or gas produced and possibly the early shutting-in of wells [1]. Although 

cresting and coning are governed by similar principle, its effect in Horizontal wells is less 

detrimental due to the massive exposure of its laterals in the reservoir compared to vertical 

wells, resulting in a lower pressure drop and hence a preferred candidate in cresting 

scenarios [1]. 

For more than a decade, researchers have focused on coning/cresting control and 
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prevention methods [5-33], gravity segregation [34, 35] and ICDs [36, 37]. Despite the wide 

research focus on coning control and prevention in vertical wells, little research exists for 

cresting control in horizontal wells [38]. Akangbou et al. [39] presented a novel 

experimental procedure to proactively control cresting in horizontal wells using an 

electromagnetic valve and effluent(s) breakthrough time. Yue et al. [28] numerically studied 

the effect of position and size of an impermeable barrier on bottom water cresting. They 

concluded that increase in impermeable barrier size (width and thickness) and vertical-

displacement from the Water-Oil-Contact (WOC), yielded a higher critical rate. Yue et al. 

[38] investigated the effects of well, reservoir parameters, horizontally-placed semi-

permeable and impermeable barriers on bottom water cresting. Yue et al. [27] numerically 

studied the effect of position and size of an assumed horizontal-placed, semi-permeable and 

impermeable barriers on bottom water cresting. They noticed that increase in semi-

permeable barrier size, thickness and vertical position of the barrier resulted in a higher 

critical rate, hence a delay in bottom water breakthrough time. Although they stated that 

impermeable and semi permeable barriers can prevent or delay bottom water encroachment, 

they observed that the impermeable barrier performed better than the semi- permeable 

barrier but neglecting the effect its orientation in the reservoir for optimization purposes. 

Therefore, this paper sets out to numerically investigate the effect of impermeable barrier 

orientation, its vertical position, width and thickness in a homogeneous reservoir faced with 

bottom water cresting problem.  

2 Reservoir and horizontal well models  

The reservoir model and reservoir phases used in this investigation are illustrated in Figure 

1. The reservoir model was assumed to be rectangular, homogeneous and consisted of 35 

grid-blocks in the x-direction, 20 grid-blocks in the y-direction and 12 grid-blocks/layers in 

the z-direction with a total of 8400 active cells. Each grid block from layers 1-11 measured 

40 ft in the x-direction, 60 ft in the y-direction and 5 ft in the z-direction while each grid 

block in layer 12 measured 40 ft in the x-direction, 60 ft in the y-direction and 10 ft in the 

z-direction. The reservoir fluids consist of water and oil phases. For sensitivity analysis, the 

adequate Fetkovich aquifer was connected to the entire base of water cell on Layer 12, to 

simulate the constant pressure of bottom water. The reservoir data and fluid properties are 

summarized in Table 1 while the data for Fetkovich aquifer is illustrated in Table 2. The 

initial aquifer pressure for the Fetkovich aquifer was defaulted, thereby placing the aquifer 

as close as possible to equilibrium with the reservoir pressure.  

 The horizontal well and its lateral placement in the in the reservoir is illustrated in Figure 

2. As shown in Figure 2, the horizontal well model was located at i = 4-35 (opened to liquid 

production from i = 6-35), j = 11 and k = 2, far away from the WOC or layer saturated with 

water (Layer 12) due to the presence of strong bottom aquifer.  
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Figure. 1. Reservoir model showing oil and water saturations. 
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Figure. 2. Horizontal well in reservoir. 

 

Table 1.  Reservoir and horizontal well data  

Parameter Value 

Reservoir thickness (ft) 65 

Reservoir length (ft) 1400 

Reservoir width (ft) 1200 

Reservoir Pressure (psia) 2500 

Horizontal well Datum depth (ft) 6164 

Permeability in x, y and z directions (mD) 7000 
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Horizontal well production rate (stb/day) 9000 

Reservoir Water Compressibility (1/psi) 3.0e-6 

Reservoir oil Density (ρo), lb/ft3 58 

Reservoir water Density (ρw), lb/ft3 64.2 

Reservoir water Viscosity (μw), cP 0.48 

Reservoir oil Compressibility (1/psi) 1.5e-5 

Reservoir oil viscosity (μo), cP 3.8 

Porosity (oil zone) 0.35 

Porosity (water zone) 1e10 

Horizontal well diameter (ft) 0.41667 

 

Table 2. Data for Fetkovich aquifer 

Parameter Fetkovich aquifer 

Datum depth (ft) 6209 

Aquifer Productivity Index (stb/day/psi) 5 

Thickness of aquifer (ft) 10 

Lower i connection 1 

Upper i connection 35 

Lower j connection  1 

Upper j connection 20 

Lower k connection 1 

Upper k connection 12 

Face K+ 

Initial volume of water in aquifer (ft3) 1.0e-5 

Total compressibility of the aquifer (1/psi) 1.0e-5 

 

3 Impermeable barriers 

A conceptual design of the different orientation of impermeable barriers used in this 

investigation on the x-z axis and y-z axis are illustrated in Figure 3. The impermeable barrier 

effective permeability was modeled by setting the effective permeability for the region of 

interest or grid blocks to zero (0 mD). In Figure 3, a1 and a2 represent the distance of 

horizontal well to inclined (step-like) impermeable barrier, c represents the distance of 

horizontal well to horizontal impermeable barrier, hw represents the height/thickness of the 

aquifer, ho represents the height of the oil/pay zone, ht represents the height/thickness of the 

reservoir, b1 and b2 represents the distance of inclined impermeable barrier to the WOC, d 

represents the distance of horizontal impermeable barrier to the WOC, w represents the 

width of the impermeable barriers while e and f represents the thickness of the inclined and 

horizontal impermeable barriers respectively. The values of nomenclature used to describe 

the impermeable barriers in Figure 3 are summarized in Table 3. For close comparison 

between the horizontal and inclined impermeable barriers, the same number of impermeable 

reservoir grid blocks in the x-z and y-z axes were simulated for each case. A detailed 

summary of all simulation cases used in this investigation for horizontal and inclined 

barriers are shown in Tables 4 and 5 respectively. For this investigation, it was assumed that 

the modeling of the Impermeable barrier has no effect on the Overall Oil in Place. 
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Figure. 3. Orientations of impermeable barriers on the x-z axis and y-z axis in the reservoir. 

 
Table 3. Input data for Impermeable barrier sensitivity simulations 

Parameter Horizontal barrier(s) Inclined barrier(s) 

Thickness of barrier (ft) f = 5, 10, 15 e = 5, 10, 15 

Width of barrier (ft) w = 420, 540, 660 w = 420, 540, 660 

Length of barrier (ft) 1200 (grid block 6-35) 1200 (grid block 6-35) 

Distance of horizontal well to impermeable barrier (ft) c = 10, 15 a1 = 10, 15;  

a2 = 15, 20, 25, 30 

Distance of impermeable barrier to WOC (ft) d = 15, 20, 25, 30 b1 = 15, 20, 25, 30; 

b2 = 0, 5, 10, 15, 20, 25 

 

Table 4. Detailed description of cases used for horizontal impermeable barrier simulations 

Cases f (ft) c (ft) w (ft) d (ft) 

Case 1 - - - - 

Case 2 5 10 420 30 

Case 3 5 10 540 30 

Case 4 5 10 660 30 

Case 5 5 15 420 25 

Case 6 5 15 540 25 

Case 7 5 15 660 25 

Case 2A 10 10 420 25 

Case 3A 10 10 540 25 

Case 4A 10 10 660 25 

Case 5A 10 15 420 20 

Case 6A 10 15 540 20 

Case 7A 10 15 660 20 

Case 2B 15 10 420 20 

Case 3B 15 10 540 20 
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Case 4B 15 10 660 20 

Case 5B 15 15 420 15 

Case 6B 15 15 540 15 

Case 7B 15 15 660 15 

 

Table 5. Detailed description of cases used for inclined (step-like) impermeable barrier simulations 

Cases e (ft) a1 (ft) a2 (ft) w (ft) d1 (ft) d2 (ft) 

Case 1 - - - - - - 

Case 2C 5 10 15 420 30 25 

Case 3C 5 10 15 540 30 25 

Case 4C 5 10 15 660 30 25 

Case 5C 5 15 20 420 25 20 

Case 6C 5 15 20 540 25 20 

Case 7C 5 15 20 660 25 20 

Case 2D 10 10 20 420 25 15 

Case 3D 10 10 20 540 25 15 

Case 4D 10 10 20 660 25 15 

Case 5D 10 15 25 420 20 10 

Case 6D 10 15 25 540 20 10 

Case 7D 10 15 25 660 20 10 

Case 2E 15 10 25 420 20 5 

Case 3E 15 10 25 540 20 5 

Case 4E 15 10 25 660 20 5 

Case 5E 15 15 30 420 15 0 

Case 6E 15 15 30 540 15 0 

Case 7E 15 15 30 660 15 0 

 

4 Results and discussion 

Sets of simulation cases defined in Tables 4 and 5 were used to carry out sensitivity analyses 

in an oil reservoir affected by bottom water cresting problem. The simulation for each case 

was run from May-2017 to December-2023. From Table 3 in section 3, the total number of 

impermeable barrier grid block(s) simulated ranged between 0-990.  

Figure 4 illustrates the permeability results of simulated impermeable barriers for 

different cases. Figure 4(a) represents the permeability results on the y-z axis for case 7B 

while Figure 4(b) represents the permeability result for Case 2A on the y-z axis. Figure 5 

depicts the simulation result of water cresting occurring in a formation with no defined 

impermeable barrier (Case 1/base case) on the y-z axis. Figure 5(a) shows the reservoir at 

static condition (Time, T = 0 days) while Figure 5(b-d) illustrates water cresting process at 

T = 300, 600 and 900 days respectively. Figure 6 shows the simulation result of water 

cresting occurring in a formation with a defined horizontal impermeable barrier for Case 

2A (f = 10 ft, c = 10 ft, w = 420 ft and d = 25 ft) on the y-z axis. Figure 6(a) shows the 

reservoir at static condition (T = 0 days) while Figure 6(b-d) illustrates water cresting 

process at T = 300, 600 and 1500 days respectively. Figure 7 shows the simulation result of 

water cresting occurring in a formation with a defined horizontal impermeable barrier for 

Case 7B (f = 15 ft, c = 15 ft, w = 660 ft and d = 15 ft) on the y-z axis. Figure 7(a) shows the 
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reservoir at static condition (T = 0 s) while Figure 7(b-c) illustrates water cresting process 

at T = 300, 600 and 1500 days respectively. 

From the simulation results presented in Figures 5-7, it can be clearly seen that an 

impermeable barrier impedes the rise of bottom water during cresting and distorts the crest-

like shape. More so, the bottom water height can be seen to be closer to the horizontal well 

in Case 1 compared to Cases 2A and 7B at about 300 days, reaching the perforations of the 

horizontal well in layer 2 at about 600 days. 
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Figure. 4. Formation with impermeable barriers (a) Case 7B, (b) Case 2A.  
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Figure. 5. Water cresting process for Case 1 at (a) static condition (T = 0 day), (b) simulation at T= 300 

days, (c) simulation at T = 600 days, (d) simulation at T = 900 days. 
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Figure. 6. Water cresting process for Case 2A at (a) static condition (T = 0 day), (b) simulation at T = 300 

days, (c) simulation at T = 600 days, (d) simulation at T = 1500 days. 

 

 

P1

P1

P1

z-axis

y-axis y-axis

z-axis

y-axis

z-axisz-axis

y-axis

(a) (b)

(c) (d)

P1

 
Figure. 7. Water cresting process for Case 7B at (a) static condition (T = 0 day), (b) simulation at T = 300 

days, (c) simulation at T = 600 days, (d) simulation at T = 1500 days. 

4.1 Effect of impermeable barrier thickness on oil and water production cumulative  

Figures 8 and 9 illustrate the effect of impermeable barrier thickness on oil and water 

production cumulative for horizontal and inclined impermeable barriers respectively, in 

standard cubic meters (sm3). In Figure 8, Cases 1, 2, 2A, 2B, 3, 3A, 3B were simulated to 

determine the effect of horizontal impermeable barrier thickness on oil and water production 

cumulative. To determine this effect, Tables 4 and 5 in section 3 were considered. Hence, 

Cases 2, 2A, 2B (scenario 1) and Cases 3, 3A, 3B (scenario 2) were compared separately. 
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As expected, Figure 8 shows that Case 1 had the lowest oil production cumulative and 

highest water production cumulative when compared with all cases. More so, it was 

observed that the thicker the impermeable barrier, the lower the oil production cumulative 

and the higher the water production cumulative, contradicting the results presented by Yue 

et al. [28]. In scenario 1, highest oil production cumulative was observed in Case 2 

(383956.62 sm3) and least in Case 2B (358798.31 sm3) while the highest water production 

cumulative was observed in Case 2B (343699.63 sm3) and least in Case 2 (315334.53 sm3). 

In scenario 2, highest oil production cumulative was observed in Case 3 (384677.22 sm3) 

and least in Case 3B (355229.97 sm3) while the highest water production cumulative was 

observed in Case 3B (347722.78 sm3) and least in Case 3 (314521.72 sm3). 

In Figure 9, Cases 1, 2C, 2D, 2E, 5C, 5D, 5E were simulated to determine the effect of 

inclined impermeable barrier thickness on oil and water production cumulative. Scenario 3 

(Cases 2C, 2D and 2E) and Scenario 4 (Cases 5C, 5D and 5E). A similar trend to Figure 8 

was observed in Figure 9. In scenario 3 and 4, highest oil production cumulative was 

observed in Cases 2C and 5C respectively while highest water production cumulative was 

observed in Cases 2E and 5E respectively.  

We believe that an impermeable barrier not only minimizes water cresting effect but 

also negatively affects the mobility of the reservoir oil around the impermeable barrier. 

Therefore, the thinner the barrier thickness, the better the performance of horizontal wells 

in reservoirs with strong bottom water. 

 

Figure. 8. Effect of horizontal impermeable barrier thickness on cumulative oil and water production 

cumulative. 
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Figure. 9. Effect of inclined impermeable barrier thickness on oil and water production cumulative. 

4.2 Effect of impermeable barrier width on oil and water production cumulative 

Figures 10 and 11 illustrate the effect of impermeable barrier width on oil and water 

production cumulative for horizontal and inclined impermeable barriers respectively. In 

Figure 10, Cases 1, 2, 3, 4, 5B, 6B and 7B were simulated to determine the effect of 

horizontal impermeable barrier width on oil and water production cumulative. As expected, 

Case 1 had the lowest oil production cumulative (320821.41 sm3) and highest water 

production cumulative (386515.56 sm3) when compared with all cases. From Table 4 in 

section 3, Cases 2, 3, 4 and Cases 5B, 6B and 7B were compared separately in terms of oil 

and water production cumulative. As shown in Figure 10, Cases 3 (0.45x the reservoir 

width) and 5B had the highest oil production cumulative of 384677.22 sm3 and 345857.25 

sm3 respectively while the highest water production cumulative was observed in Cases 4 

(322828.44 sm3) and 7B (372022.97 sm3). This inconsistency in results is contrary to that 

reported by Yue et al. [27]. Therefore, an increase in impermeable barrier width does not 

always result in higher oil and lower water production cumulative. We believe the reason 

for this inconsistent trend is due to an optimum impermeable barrier condition which 

involves the vertical position of the impermeable barrier in the reservoir and thickness 

which could influence the mobility of the reservoir phases. 

In Figure 11, Cases 2D, 3D, 4D, 5E, 6E, and 7E were simulated to determine the effect 

of inclined impermeable barrier width on oil and water production cumulative.  In Figure 

11, Cases 2D, 3D, 4D and Cases 5E, 6E, 7E were compared separately. Cases 2D and 5E 

had highest oil production cumulative and lowest water production cumulative when 

compared with the worst cases (4D and 7E). Hence for a reduction of barrier width by 36% 

(from 660 ft to 420 ft), an increment of 10579.03 sm3 in oil production cumulative was 

`observed between Cases 2D and 4D while an increment of 4959.19 sm3 in oil production 

cumulative was observed between Cases 5E and 7E. In addition, a decrement in water 
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production cumulative (11927.62 sm3) was observed between Cases 2D and 4D while a 

decrement of (5591.66 sm3) was observed for oil production cumulative between Cases 5E 

and 7E. 

 

 
Figure. 10. Effect of inclined impermeable barrier width on oil and water production cumulative. 

 

 

Figure. 11. Effect of inclined impermeable barrier width oil and water production cumulative. 
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4.3 Effect of impermeable barrier position (vertical) on oil and water production 

cumulative 

The effect of impermeable barrier vertical position on oil and water production cumulative 

for horizontal and inclined impermeable barriers are shown in Figures 12 and 13 

respectively. In Figure 12, Cases 2, 5 and Cases 3B and 6B were compared separately in 

terms of oil and water production cumulative. It was observed that Cases 2 and 3B had the 

higher oil production cumulative of 383956.62 sm3 and 355229.97 sm3 respectively at lower 

water production cumulative. 

In Figure 13, Cases 1, 4C, 7C, 4D and 7D were simulated to determine the effect of 

inclined impermeable barrier vertical position on oil and water production cumulative. At 

the stop of simulation, Case 1 can be seen to achieve the lowest oil production cumulative 

and highest water production cumulative when compared with all cases. In Figure 13, Cases 

4C, 7C, and Cases 4D, 7D were compared separately. Cases 4C and 5D can be seen to have 

higher oil production cumulative and lowest water production cumulative when compared 

with Cases 7C and 7D respectively. Therefore, an increase in depth of both inclined and 

horizontal impermeable barriers resulted in lower oil production cumulative and higher 

water production cumulative, which was in good agreement with Yue et al. [27],[28].  

Figure 14 illustrates the effect of vertical displacement of the horizontal well to the 

inclined impermeable barrier (a1≠a2), simulated between Cases 7C, 7D, and 7E. As shown 

in Figure 14, the closer a1 is to a2, the more effective the impermeable barrier. Hence highest 

oil production cumulative (352608.41 sm3) and lowest water production cumulative 

(350677.97 sm3) was observed compared to Cases 7D and 7E. A similar trend can be seen 

to occur between Cases 5C, 5D, and 5E. 

 

 
Figure. 12. Effect of inclined impermeable position width on oil and water production cumulative. 
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Figure. 13. Effect of inclined impermeable barrier position on oil and water production cumulative. 

 
Figure. 14. Effect of the vertical displacement of horizontal well to inclined impermeable barrier oil and water 

production cumulative. 
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4.3 Comparison on the effects of inclined and horizontal barriers on oil and water 

production cumulative 

Figure 15 illustrates a comparison between inclined and horizontal barriers in terms of oil 

and water production cumulative. The best cases (Cases 1, 3C, 3, 6, 2A, 5A, 2B, 5B, 6C, 

2D, 5D, 2E and 5E) from the effects of impermeable barrier width, thickness, and vertical 

positions are represented and compared graphically in Figure 15. As shown in Figure 15, 

Case 1 is seen to have the highest water production cumulative as well as the least oil 

production cumulative while Case 3 (horizontal impermeable barrier) achieved the highest 

oil production cumulative (384677.22 sm3) and least water production cumulative 

(314521.72 sm3). Therefore, in all cases, an optimum horizontal impermeable barrier is 

recommended in reservoirs with strong bottom water. 

 

 
Figure. 15. Comparison of inclined and horizontal barriers. 
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𝑅𝑒 =  
𝜌𝑜𝐷𝑖𝑄𝑜

𝜇𝑜𝐴
               

(1) 

Where 𝑄𝑜 is the oil flow rate in cubic meter per second, 𝐷𝑖 is the inside diameter of the 

horizontal well in meters, 𝜇𝑜 is the viscosity of the oil in Newton-second per square meter, 

𝜌𝑜 is the density of the oil in Kilogram per cubic meters, 𝐴 is the cross-sectional area of the 

horizontal well in square meters and 𝑅𝑒 is the Reynolds number in dimensionless unit. 

   
Figure. 16. Effect of impermeable barrier on Reynolds number (horizontal impermeable barrier cases). 

 

 
Figure. 17. Effect of impermeable barrier on Reynolds number (inclined impermeable barrier cases). 
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5 Conclusion  

A rigorous numerical study was performed on the effects of the orientation of impermeable 

barriers on bottom water cresting. From the analyses, it can be concluded that: 

1. The orientation of an impermeable barrier is important for minimizing bottom water 

cresting effect. An optimum horizontally-placed impermeable barrier was found to 

be more effective when compared with inclined impermeable barriers. For inclined 

impermeable barriers, the closer the height of a1 and a2, the more effective the 

impermeable barrier.  

2. The effectiveness of an impermeable barrier is insensitive to its width. The thinner 

the impermeable barrier and the closer the top of the impermeable barrier to the 

horizontal well the more effective the impermeable barrier. A horizontal 

impermeable barrier; 0.08x in thickness to the reservoir height and 0.45x to reservoir 

width was found to be most effective. 

3. The presence of an impermeable barrier results in an increase in Reynolds number. 

Water cresting is independent of Reynolds number and Reynolds number depends 

on the orientation, thickness, position, and width of an impermeable barrier during 

cresting. 
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