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ABSTRACT 

     The word ‘Sirtuin’ or Sir2 proteins are a class of proteins that possess either mono-ADP-

ribosyltransferase, or deacylase activity, including deacetylase. SIRT1 is the most studied 

mammalian Sirtuins and predominantly localised in the nucleus and cytoplasm. Many Sirtuins 

targets are involved in cancer and in many types of cancers, SIRT1 is found to be 

overexpressed. Recent observations support SIRT1 being both an oncogene and a tumour 

suppressor, depending on the cancer etiology and type of tissue. To answer the question “How 

can SIRT1 behave as a tumour suppressor?”, highly selective ligands (aptamers) were 

developed against SIRT1 enzyme as the first step towards the development of an alternative 

chemotherapy for cancer diseases. The objectives of current study are to: (i) produce by in vitro 

SELEX procedures, SIRT1 binding single-stranded DNA (ssDNA) aptamers; (ii) characterise 

the interactions between selected aptamers and SIRT1 in vitro and determine their equilibrium 

dissociation constant (KD) values and; (iii) investigate the effects of selected aptamers on 

cancer cell lines. To achieve these objectives, ssDNA aptamers capable of binding SIRT1 

enzyme were generated in vitro using a sequential approach known as SELEX. A total of eight 

novel SIRT1 aptamers (circular and linear), four circular aptamers from 8 rounds of 

circularisation-SELEX procedure, and the other four linear aptamers from 12 rounds of a basic-

SELEX procedure were generated. 

     The initial screening using the Fluor de Lys-SIRT1 assay for SIRT1 enzymatic activity in 

vitro indicated that an activator SIRT1 enzyme (circular3, circular4, linear3 and linear4) were 

obtained, these aptamers showed acceptable values of Km and Vmax to SIRT1 enzyme in kinetic 

characterisation studies. After equilibrium binding characterisation study of both linear and 

circular aptamers by SPR, it was show that circular3 and linear3 aptamers are good binder to 

SIRT1 enzyme, with the low KD constant (27.07± 0.959 nM and 48.3± 0.986 nM) respectively 

with highly exhibited stability for circular3 in human plasma. 

     To investigate the effects of aptamers in cancer cell lines, it has been found that the lung 

cancer epithelial model A549, the colorectal adenocarcinoma model Caco-2, the liver hepatic 

model HepG2 were very sensitive with an IC50 (0.32, 0.67, 0.2µM) respectively. Both breast 

cancer models (MCF-7 and MDA-MB-468) were highly sensitive with an IC50 (0.14 and 0.13 

µM), the very difficult to treat MCF-7 and the extremely challenging oestrogen negative MDA-

MB-468 proved to be substantially sensitive with the longer exposure. A special mention 

should be the osteosarcoma model U2OS, this cancer is very prevalent as bone cancer in 

children and adults over 60 years of age, with prognosis being related to the cancer stage and 
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current treatment leaving extremely non-desirable side effects, the aptamer was very effective 

on this cell line with IC50 = 0.06 µM. Notably, pre-treatment of adult human keratinocyte 

HaCaT cells with aptamers resulted in markedly decreased cell viability and the IC50 = 0.123 

µM. The most interesting point who that the aptamer was very safe on normal cell line Beas-

2b, which indicated that it is safe to non-cancerous tissue.  

     In conclusion, a pharmacological activation of SIRT1 enhanced cell death suggesting a 

tumour suppressive function of SIRT1 and the high-affinity SIRT1- aptamers identified in this 

study may be used in the future for cancer treatment.
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1 INTRODUCTION 
 

1.1 Cancer: a Historical Perspective 
 

     The earliest known descriptions of cancer appear in several papyri from Ancient Egypt 

(American Cancer Society, 2009). The Edwin Smith Papyrus was written around 1600 B.C and 

contains a description of cancer, as well as a procedure to remove breast tumours by 

cauterisation. It wryly observed that the disease had no cure. The great Greek physician, 

Hippocrates, recognised as the Father of Medicine, described cancer using the terms karkinos 

“carcinos” and “carcinoma”. Even though this suggests physicians were aware of cancer, it 

wasn’t until the 17th century when the origin and progression of cancer become clear. 

Developments in science and technology have enabled the understanding of a portion of the 

molecular mechanisms that regulate cancer initiation and progression, which in turn has 

facilitated developing several therapies for its management and treatment (Kabra, 2010). 

However, treatment options remain side effects off target effects and deaths attributed to cancer 

are still a major cause of mortality throughout the world.  

     Cancer is the second leading cause of death in economically developed countries (following 

heart diseases). 1 in 3 men in the United Kingdom while 1 in 4 women are at risk for cancer 

throughout their life time, according to data collected by the National Cancer Research 

Institutes (NCRI, 2013). To fully combat cancer, continued research into the molecular causes 

and novel therapies must be completed. Undertaken this task which seems to become more 

tangible with each passing day as new technologies for this research becomes available. 

 

1.1.1 Carcinogenesis 
 

     Carcinogenesis is the formation of a cancer, whereby normal cells are transformed into 

cancer cells (Hanahan and Weinberg, 2000). While cells in a body undergo a tightly regulated 

cycle of generation, division and death, cancer cells typically evade cell death and are capable 

of constant multiplication and expansion (Barrett et al., 1999; Rabindra et al., 2012). 

Independence in growth signals and insensitivity to growth-inhibitory signals, evasion of 

apoptosis, sustained replicative ability and angiogenesis, tissue invasion and metastasis are the 

prominent features of cancerous cells that separate them from normal cells as shown in figure 

1.1 (Hanahan and Weinberg, 2000). 
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Figure 1.1: Characteristics of Cancer, (Adapted from Hanahan and Weinberg 2000). 

 

     Evidence suggests that a single unregulated and genetically unstable cell can cause cancer 

by multiplying indefinitely and forming clones (Kabra, 2010). After formation of clones, they 

expand and accumulate genetic mutations, facilitating Darwinian Selection programmed for 

neoplastic progression of cancer cells in the micro-environment, where they are present (Barrett 

et al., 1999). 

     In most cases, cellular transformation is a result of activation of oncogenes or suppression 

of tumour suppressor genes (Vineis et al., 2010). Cellular oncogenes, also called proto-

oncogenes, are normal genes required for important functions in the cell. These genes, 

however, can be transformed into oncogenes by retroviruses resulting in abnormal cellular 

proliferation (Lodish et al., 2000). On the other hand, tumour suppressor genes limit cellular 

transformation. These genes encode proteins that inhibit cell cycle progression, promote DNA 

damage repair and bring about cell death in the event of mutations or stress (Sherr, 2004). 

Knudson, (1971) presented the ‘two-hit hypothesis’ according to which carcinogenesis is 

carried out in a bi-step mutational event, and is valid for a majority of tumour suppressor genes. 
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According to Maroni et al., (2013) in order for cancer to progress, it needs to lose, mutate or 

inactivate both alleles of tumour suppressor genes. 

     Siddiqui et al., (2015) established that initiation, promotion and progression are the three 

basic steps of carcinogenesis as shown in figure 1.2. During initiation, irreversible changes in 

the cell which are generally an insult to the DNA of the cell. The most common carcinogens 

that promote initiation of cancer include aromatic hydrocarbons, radiation (ionising and 

ultraviolet), retrovirus and other biological substances. These carcinogens can cause multiple 

mutations in the DNA of the cells such that the DNA repair machinery is impaired. As a result, 

cell cycle checkpoints are deregulated and the cell divides and proliferates despite the 

mutations. Tumour promotion involves the proliferation and expansion of the mutant and 

genetically unstable cell and accumulation of further mutations with each round of cell division 

such that the resulting population of cells is capable of surviving in normally unsuitable cellular 

environments (Loftus and Finlay, 2017). The progression step comprises of tumour cells that 

have attained malignant properties, invasiveness and metastatic capabilities. Mutations that 

occur during the process of carcinogenesis do not just involve the genetic alteration (deletion, 

translocation, point mutation, duplication or amplification) of oncogenes or tumour suppressor 

genes, but can also be epigenetic changes such as modifications of gene promoters by 

acetylation/deacetylation or methylation/demethylation (Feinberg et al., 2002; Feinberg and 

Tycko, 2004). Considering the complexity of cancer, it is of utmost importance to investigate 

the genes that are involved in its manifestation and the molecular mechanisms which explain 

their deregulation in order to find a cure to the disease. 
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Figure 1.2: Basic steps of carcinogenesis: initiation, promotion and progression. (1) Initiation involves the 

alteration, change, or mutation of genes arising spontaneously or induced by exposure to a carcinogenic agent. 

Genetic alterations can result i in dysregulation of biochemical signalling pathways associated with cellular 

proliferation, survival, and differentiation, which can be influenced by a number of factors, including the rate and 

type of carcinogenic metabolism and the response of the DNA repair function. (2) The promotion stage is a 

relatively lengthy and reversible process in which actively proliferating paraneoplastic cells accumulate. 

Progression is the phase between a premalignant lesion and the development of invasive cancer. (3) Progression 

is the final stage of neoplastic transformation, where genetic and phenotypic changes and cell proliferation occur. 

This involves a fast increase in the tumour size, where the cells may undergo further mutations with invasive and 
metastatic potential. Metastasis involves the spread of cancer cells from the primary site to other parts of the body 

through the bloodstream or the lymph system, (Adapted from Siddiqui et al., 2015).  

 

1.1.2 Tumour Promotion and Tumour Suppression 
 

     Tumour genesis is highly influenced by the role of oncogenes and tumour suppressor genes 

(Avalos et al., 2014). Cells contain many normal genes that are involved in regulating cell 

proliferation. Some of these genes can be mutated to forms that promote uncontrolled cell 

proliferation. The normal forms of these genes are called proto-oncogenes, while the mutated, 

cancer-causing forms are called oncogenes. Oncogenes actively promote proliferation 

(analogous to the gas pedal of cell cycle). Mutations that convert proto-oncogenes to oncogenes 

typically increase the activity of the encoded protein or increase the expression of the normal 

gene. Such mutations are dominant or gain-of-function mutations. Therefore, only one copy of 

the gene needs to be mutated in order to promote cancer. Posttranslational modifications of the 
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protein such as phosphorylation can contribute to its stability and constitutive expression which 

may lead to enhanced cell cycle progression and proliferation. (Seth, 2006), figure 1.3 

demonstrates the cell cycle. 

 

 
Figure 1.3: Cell cycle. The cell cycle is composed of four phases: G1 phase (Gap 1), in which the cell grows and 

prepares to synthesis DNA; S phase (DNA Synthesis), in which the cell synthesises DNA; G2 or second gap (Gap 

2), in which the cell prepares to divide and; M phase (Mitosis), in which cell division occurs, (adapted from 

Murray, 2004). 

 

 

     Alterations in tissue specific expression profiles can also cause the gene to behave as an 

oncogene. Some examples of oncogenic protein products include RAS, SRC, MYC. Milburn 

et al., (1990) established RAS is a small GTPase switch, which is activated only when bound 

to the GTP and remains inactive while bound to GDP (Lu et al., 2016). The mitogen activated 

protein kinase (MAPK) pathway is one of the most important pathways whose signal 

transduction is regulated by the RAS. The MAPK is involved in cellular processes such as 

proliferation, migration, adhesion and apoptosis. When a constitutively active mutant RAS is 

overexpressed the signal transduction pathways are deregulated consequently promoting 

invasion and metastasis. Thus, activating RAS mutations are found in several types of cancers 

(Prior, 2012). 
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     The action of the tumour suppressor genes is found to be anti-oncogenic (Milburn et al., 

1990). Tumour suppressor genes have a repressive role towards the cell cycle progression and 

cell division. Their role is to repair the damaged DNA; however, in case of extensive damage 

they may also initiate apoptosis. Two of the well-known and important tumour suppressors are 

retinoblastoma susceptibility gene (RB) and p53, they commonly exhibit inactivating 

mutations and loss of heterozygosity (LOH, is a common genetic event in cancer development) 

in the manifestation of most cancers (Knudson, 1971). TP53 gene encodes p53 as a 

transcription factor (Lane, 1992). p53 is found in cells in low quantities, however, upon DNA 

damage or stress, it is secreted in large quantities and activated to transcriptionally induce 

various genes that take part in cell cycle check-points or cell death e.g. WAF1/CIP1 and BAX 

(Giono and Manfredi, 2006). RB is a cell cycle inhibiting protein, which undergoes alterations 

after translation for regulation of its activation. RB would efficiently bind to E2F1/DP1 

inhibiting their transcriptional function in its hypophosphorylated state (between M and G1); 

hence, is considered in such a state (Neganova and Lako, 2008). The cyclins and CDK proteins 

hyperphosphorylate RB during cell transition from G1 to S phase, the RB is inactivated and 

dissociates from the E2F1/DP1 complex. Consequently, transcription of genes having 

functional roles in cell cycle progression and division starts. Throughout S, G2 and M phases 

RB is hyperphosphorylated (Fattaey et al., 1993; Henley and Dick, 2012). Histone deacetylases 

(HDACs) is recruited by Rb-E2F1 complex as promoters of E2F1 target genes for silencing 

their transcription (Lai et al., 1999). 

     There is a need for continued research in tumour promotion and suppression, as its causes 

are still unclear. Progress in biological research has helped discover and analyse new genes for 

role in tumourigenesis. 

1.2  Histone Deacetylases 
 

     Enzymes which can remove the acetyl group from the ε-amino group of lysine residues on 

histones are known as histone deacetylases (HDACs) (EC 3.5.1.98) (Glawson, 2016). They act 

as antagonists to histone acetyltransferases (HATs) (EC 2.3.1.48), which are responsible for 

transferring an acetyl group to the lysine residues (Hannah Wapenaar and Dekker, 2016). DNA 

condensation and supercoiling is promoted by the histones, which are positively charged 

proteins and act by tightly binding to the negatively charged DNA. When lysine residues are 

acetylated the positively charged histones are neutralised talking in terms of charge relaxing 
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the DNA-histone interaction as shown in figure 1.4. An actively transcribing region, where 

transcription factors and other proteins can bind to the DNA, is marked by this relaxation. 

HDACs increase the positivity of the histones by removal of acetyl groups, which makes their 

bond with DNA strong and consequently transcription is stopped. The ‘Histone Code’ is a 

combination of histone modifications like methylation, phosphorylation, ubiquitination and 

acetylation, the histone code greatly impacts Histone-DNA and Histone-protein interactions 

(Strahl and Allis, 2000; Jenuwein and Allis, 2001).  

 

 
Figure 1.4: Histone modification: acetylation, (adapted from Mau and Yung, 2014). 

 

     All the acetylated Lys9 on histone H3; acetylated Lys16 on histone H4 and methylated lys4 

on histone H4 are closely related to the transcriptionally active DNA. Gu and Roeder, (1997) 

discovered that some non-histone proteins were also acetylated by HATs, proposing that the 

HATs and HDACs are not restricted to modifications of histones. Numerous transcription 

factors having an important role in cancer are found to be regulated by HDACs and HATs. 

 

1.2.1 Classification and Function of Histone Deacetylases 
 

     Human histone deacetylases are classified into four classes: Class I, Class II, Class III and 

Class IV, depending on sequence homology to the yeast original enzymes and domain 

organisation (Dokmanovic et al., 2007) as demonstrated in table 1.1. Class I, II and IV are 

considered "classical" HDACs whose activities are inhibited by trichostatin A (TSA) and have 

a zinc dependent active site, whereas Class III enzymes are a family of NAD+-dependent 

proteins known as Sirtuins and are not affected by TSA (Imai et al., 2000). Homologues to 
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these three groups are found in yeast having the names: reduced potassium dependency 3 

(Rpd3), which corresponds to Class I; histone deacetylase 1 (hda1), corresponding to Class II; 

and silent information regulator 2 (Sir2), corresponding to Class III. Class IV contains just one 

isoform (HDAC11), which is not highly homologous with either Rpd3 or hda1 yeast enzymes 

(Yang and Seto, 2008), and therefore HDAC11 is assigned to its own class. The Class III 

enzymes are considered a separate type of enzyme and have a different mechanism of action; 

these enzymes are NAD+-dependent, whereas HDACs in other classes require Zn2+ as a 

cofactor (Barneda-Zahonero and Parra, 2012). 

 

Table 1.1: Classification of histone deacetylases depending on sequence homology to the yeast original enzymes. 

y = yeast, h = human, m = mouse, d = drosophila, c = C. elegans, ch = chicken, ma = maize. (adopted from 

Marmorstein, 2001). 

Class Members Properties 
I. yRdp3-like 

 

y, ma RPD3; y, h, m, d, c, ch HDAC1 -TSA-sensitive 

y, h, m, d, c, ch HDAC2; -Tightly associated with regulatory proteins 

y, h, m, d, c, ch HDAC3; yHOS3 -N-terminal deacetylase domain 

II. yHda1-like 

 

yHDA1; hHDAC4; hHDAC5; -TSA-sensitive 

hHDAC6 h, ch HDAC7; -Tightly associated with regulatory proteins 

h, ch HDAC8; mHDA1; -C-terminal deacetylase domain 

m, d HDA2; yHOS1; yHOS2 -Shuttles between nucleus and cytoplasm 

III. ySir2-like 

 

Ia - ySIR2, hSIRT1, yHST1 -NAD+-dependant 

Ib - yHST2, hSIRT2, hSIRT3 -Different members are nuclear or cytoplasmic 

Ic - yHST3, yHST4  

II - hSIRT4 

III - hSIRT5 

IV - hSIRT6, hSIRT7 

 

       ̋Sirtuin ̏ is an alternate name for Class III and consists of SIRT1, 2, 3, 4, 5, 6, 7, which pose 

close resemblance to yeast Sir2 gene. Class IV consists of HDAC11, which is similar to Class 

I and Class II (Gregoretti et al., 2004; Glozak and Seto, 2007). Class I and II share sequence 

similarity and are called the classical HDAC enzymes.  Zn2+ is required for the catalytic activity 

of these enzymes. Sirtuins do not share any sequence similarity with the classical HDACs and 

require NAD+ to carry out the enzymatic reaction (Blander and Guarente, 2004). Figure 1.5 

illustrates the classification of all classes of HDAC clarifying the catalytic domain for each 

class. While table 1.2 demonstrates the classification of HDAC depending on members, 

catalytic sites, subcellular localisation, tissue distribution, substrates, binding partners and 

knockout phenotype. 
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Figure 1.5: Classification of HDAC Class I, II, III and IV, The Bars depict the length of the protein. The catalytic 

domain is shown in green for class I and II, red in class III and blue in class IV. (adapted from Shiratawa et al., 

2013). 
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Table 1.2: Classification of HDAC depending on members, catalytic sites, subcellular localisation, tissue 

distribution, substrates, binding partners and knockout phenotype, (adopted from Dokmanovic et al., 2007). 

Class Members Catalytic 

sites 

Subcellular 

localisation 

Tissue 

distribution 

Substrates Binding 

partners 

Knockout 

phenotype 

I 

HDAC1  1 Nucleus Ubiquitous Androgen 
receptor, SHP
,p53, MyoD,  
E2F1, STAT3 

– embryonic 
lethal, increased 
histone 
acetylation, 
increase 
in p21 and p27 

HDAC2  1 Nucleus Ubiquitous Glucocorticod 
receptor, YY1
BCL6,  
STAT3 

– Cardiac defect 

HDAC3  1 Nucleus Ubiquitous SHP, YY1,  
GATA1, 
RELA,  

STAT3, 
MEF2D 

– – 

HDAC8  1 Nucleus/cytoplasm Ubiquitous? – EST1B – 

IIA 

HDAC4  1 Nucleus / cytoplasm heart, skeletal 
muscle, brain 

GCMA,  
GATA1, HP1 

RFXANK  Defects 
in chondrocyte 
differentiation 

HDAC5  1 Nucleus / cytoplasm heart, skeletal 
muscle, brain 

GCMA,  
SMAD7, HP1 

REA,  

oestrogen 

receptor 

Cardiac defect 

HDAC7  1 Nucleus / cytoplasm 
/ mitochondria 

heart, skeletal 
muscle, 

pancreas, 
placenta 

PLAG1, 
PLAG2 

HIF1A,  
BCL6,  

endothelin 
receptor, 
ACTN1, 
ACTN4, 

 androgen 
receptor, 

Tip60 

Maintenance of 
vascular 
integrity, 
increase 
in MMP10 

HDAC9  1 Nucleus / cytoplasm brain, skeletal 
muscle 

– FOXP3 Cardiac defect 

IIB 

HDAC6  2 Mostly cytoplasm heart, liver, 
kidney, 
placenta 

α-Tubulin, 
 HSP90, SHP,
 SMAD7 

RUNX2 – 

HDAC10  1 Mostly cytoplasm liver, spleen, 
kidney 

– – – 

III 

Sirtuins in 
mammals 
(SIRT1,  
SIRT2, 
 SIRT3,  
SIRT4,  

SIRT5,  
SIRT6,  
SIRT7) 

Details in 
table 1.3 
page19 

Details in table 1.3 
page19 

Details in 
table 1.3 
page19 

Details in 
table 1.3 
page19 

Details in 
table 1.3 
page19 

– 

Sir2 in the 
yeast  
S. cerevisiae 

– – – – – – 

IV 

HDAC11  2 Nucleus / cytoplasm brain, heart, 
skeletal 
muscle, 
kidney 

– – – 
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     Class I Histone Deacetylases HDAC 1, 2, 3 and 8 are the members of Class I of histone 

deacetylase having an N-terminal deacetylase domain and a C-terminal tail. The first histone 

deacetylase that was identified and then characterised is HDAC1 having an N-terminal 

deacetylase domain and a C-terminal tail which contains tandem CK-2 phosphorylation sites 

along with a sumoylation motif (Taunton et al., 1996; Sengupta and Seto, 2004). The function 

of HDAC1 is improved by its phosphorylation, the mutation of the phosphorylation sites 

prevents the enzymatic activity and disables the protein to form complexes with other 

corepressors (Pflum et al., 2001). HDAC1 and 2 are usually a part of protein complexes that 

are recruited to the DNA by DNA binding proteins and these protein complexes enhance the 

enzymatic activity of HDACs. Three such complexes have been identified, namely, Sin3 (is an 

evolutionarily conserved corepressor that exists in different complexes with the histone 

deacetylases HDAC1 and HDAC2) (Grzenda et al., 2009), NuRD (Nucleosome remodeling 

deacetylase complex, is a group of associated proteins with both ATP-dependent chromatin 

remodeling and histone deacetylase activities) (Denslow and Wade, 2007) and CoREST (is 

encoded protein binds to the C-terminal domain of REST (repressor element-1 silencing 

transcription factor)) (Grozinger and Schreiber, 2002; You et al., 2001) which mediate 

chromatin modification and transcription repression by deacetylation and methylation and 

hence play a significant role in maintaining cell cycle progression, genomic stability and 

homeostasis. Retinoblastoma protein (RB) is another protein to which HDAC1 would associate 

and inhibit the cell cycle (Luo et al., 1998). Another example of proteins associated with 

HDAC1 includes DNA methyltransferase1 (DNMT1), a complex is formed by RB and E2F1 

(a key transcription factor necessary for cell growth, DNA repair, and differentiation) to repress 

the transcription from E2F1 target genes (Robertson et al., 2000). However, disruption of both 

HDAC1 alleles results in embryonic lethality due to proliferation defects. Cyclin-dependent 

kinase inhibitors p21 and p27 are upregulated in HDAC1-deficient embryos resulting in 

reduced cellular proliferation and histones H3 and H4 are hyperacetylated thereby causing 

changes in other histone modifications (Lagger et al., 2002) as shown in figure 1.6.   
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Figure 1.6: HDAC inhibition targets cell cycle progression. Cell cycle progression is dependent on the 
orchestrated expression, activation and holoenzyme formation of cyclins and CDK. HDAC inhibition blocks cell 

cycle progression through repression of cyclin D1. Impaired activation of cyclin-CDK complexes inhibits 

mitogen-induced Rb phosphorylation and downstream activation of E2F-regulated genes, resulting in 

G1 arrest. (Findeisen et al., 2011). 

 

     Halkidou et al., (2004) identified evidence of HDAC1 upregulation in prostate cancer and 

relatively a decrease in p21 levels, which promote cellular proliferation. Posttranslational 

modifications such as sumoylation by SUMO-1 may be used to regulate HDAC1, which would 

increase the transcriptional repression function of this enzyme (David et al., 2002). Figure 1.7 

illustrates the comparison of HDAC1 regulation in normal cells and tumour cells. 
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Figure 1.7: The schematic diagram depicts the HDAC1 regulation in normal in vitro. (A)Normal cells, (B) 

Tumour cells and (C) Normalised cells.AC: Acetyl group, TF: Transcription factors, (Adapted from Alzoubi, 

2013). 

 

     The sequence of HDAC2 is substantially similar to that of the HDAC1. The HDAC2 can be 

found in combination with HDAC1 in several protein complexes. It promotes transcriptional 

repression by interaction with YY1 (Yang et al., 1996). It also carries out transcriptional 

repression by interactions with DNA methyltransferase DNMT1 (Rountree et al., 2000). The 

transcriptional function of NF-κB via association with HDAC1 can be down regulated by 

HDAC2 (Ashburner et al., 2001). HDAC2 is overexpressed in polyp stage of colorectal 

carcinoma (Huang et al., 2005). This overexpression is stimulated by loss of the Adenomatous 

Polyposis Coli (APC) gene (Zhu et al., 2004). The HDAC2 is similar to the HDAC1 in yet 

another area as its decreased levels are also associated with increased p21 levels and apoptosis 

(Huang et al., 2005). 

     The identification and cloning of the HDAC3 was carried out based on its similarity with 

HDAC8, the fourth member of Class I HDACs, was cloned and characterised based on DAC1 

and 2 (Seto1 and Yoshida, 2014). It also binds to YY1 and acts as a transcriptional repressor, 

similar to HDAC2. The characteristic that differentiates the HDAC3 contains both nuclear 
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import and export sequences which enable its presence both in the nucleus and in the 

cytoplasm; whereas both HDAC1 and 2 are only present inside the nucleus (Takami and 

Nakayama, 2000; Yang et al., 2002). HDAC3 has also been shown to form a stable complex 

with nuclear hormone receptor corepressor, NCoR (nuclear receptor co-repressor 1, is a 

transcriptional coregulatory protein which contains several nuclear receptors interacting 

domains): this interaction improves the repressive activity of the NCoR and the deacetylase 

activity of HDAC3 by confirming the NCoR (Wen et al., 2000). 

     HDAC8, the fourth member of Class I HDACs, was cloned and characterised based on 

sequence similarity to the other Class I histone deacetylases. It is localised within the nucleus 

like HDAC1 and 2 and its gene encoding is located on the X-chromosome (Buggy et al., 2000; 

Hu et al., 2000; Van den Wyngaert et al., 2000). Protein kinase A is involved in the 

phosphorylation, which inhibits the deacetylase activity of HDAC8 and consequently the 

hyperacetylated histones H3 and H4 are formed (Lee et al., 2004; Yang and Seto, 2008). Its 

phosphorylation also activates CREB (cyclic AMP-response element-binding protein), which 

is an important activator of genes for metabolism and survival (Japasia et al., 2009). HDAC8 

has the ability to form a complex with CREB and PP1, (a dephosphatase enzyme) to inactivate 

the CREB transcriptional function. The role of HDAC in transcription regulation is proved to 

be rather significant (Gao et al., 2009). The cancerous activity in lung, colon and cervix is 

inhibited by reducing HDAC8 with the help of the siRNA, indicating the role of this enzyme 

in tumour cell proliferation (Vannini et al., 2004). 

     Class II Histone Deacetylases are homologous to yeast HDA1 or Histone deacetylase1 and 

are further classified into two groups: Class IIa and Class IIb which include HDAC 4, 5, 7 and 

9 and HDAC6 and 10 respectively. There are extended N-terminus present on the HDACs of 

Class IIa which contains sites for 14-3-3 and myocyte enhancer factor2 (MEF2, is important 

regulators of cellular differentiation and consequently play a critical role in embryonic 

development) binding. The MEF2 binding motif is conserved from C. elegans to mammals 

(Yang and Gregoire, 2005). 

     The first histone deacetylase to be identified and characterised from this group is the 

HDAC4. The HDAC4 has the ability to move between the nucleus and cytoplasm by means of 

active nuclear export. In the nucleus, HDAC4 can associate with MEF2A and repress its 

transcriptional activation thereby repressing skeletal myogenesis (Miska et al., 1999). The 

deacetylase activity of the HDAC4 may be regulated by manipulation of its differential 
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localisation. This enzyme consists of an N-terminal nuclear import sequence and C-terminal 

nuclear export motif and binds to 14-3-3 facilitating it cytoplasmic localisation (Wang et al., 

2000; Wang and Yang, 2001). This histone has a role in the MAPK (mitogen-activated protein 

kinase, is a type of protein kinase that is specific to the amino acids serine, threonine, and 

tyrosine) pathway; it is phosphorylated after forming a complex with ERK1/2 (extracellular 

signal-regulated kinase 2) (Zhou et al., 2000b). Increased levels of nuclear HDAC4 and 

decreased MEF2-mediated transcription leads to expression of oncogenic RAS. 

     The HDAC5 is a histone deacetylase that takes part in chromatin modelling during cell 

differentiation (Verdel and Khochbin, 1999). HDAC5 is also able to move between the nucleus 

and the cytoplasm like HDAC4. Its cytoplasmic localisation is facilitated by the interaction of 

enzyme with 14-3-3, which also regulates the enzymatic effect of HDAC5 (Grozinger and 

Schreiber, 2000). It can inhibit the transcriptional function of MEF2 by interacting with it 

(Lemercier et al., 2000). However, the deacetylase activity of HDAC5 does not directly 

influence the interaction with MEF2 and the consequent repression, which is facilitated by N-

terminal non-deacetylase domain of the HDAC even though a fully functional deacetylase 

domain is also present. The recruitment of other HDACs (HDAC3 and 4) may be responsible 

for the repressive function of HDAC5 on MEF2 (Kabra, 2010). 

     The sequence similarities with the HDAC4 and 5 led to the identification and 

characterisation of HDAC7 (Fischle et al., 2001). In half of the protein there is a deacetylase 

domain in the C-terminal while the other half contains NLS (nuclear localisation signal) 

sequence in the N-terminal. HDAC7 becomes enzymatically active upon interaction with the 

HDAC3. The interaction is facilitated by the co-repressors SMRT (silencing mediator for 

retinoid and thyroid receptors) and NCoR as both the HDACs cannot bind directly (Fischle et 

al., 2001). This enzyme is also able to shuttle between nucleus and cytoplasm; however, the 

evidence of enzymatic activity is only associated with the nuclear HDAC7 (Fischle et al., 

2001). It is phosphorylated by calmodulin kinase I (CAMK I). The cytoplasmic localisation 

and stabilisation is facilitated by the interaction of the phosphorylated HDAC7 with 14-3-3 (Li 

et al., 2004). 

     The sequence similarity with HDAC4 other Class IIa histone deacetylases forms the basis 

of cloning and characterisation of HDAC9 (Zhou et al., 2001). This enzyme has splice variants 

9a, 9b and 9c also known as Histone deacetylase-related protein, HDRP. There is no nuclear 

localisation sequence in HDAC 9a and 9b but have deacetylase domain in the N-terminal half 



CHAPTER 1                                                                  INTRODUCTION 

16 
 

of the protein whereas there is no deacetylase domain at all in the 9c or HDRP (also called 

MITR, is MEF2-interacting transcription repressor) only the NLS sequence (de Ruijter et al., 

2003). In order to make up the deficiency of its deacetylase domain HDRP can form a complex 

with HDAC1 and HDAC3 (Zhou et al., 2000a). In order to repress the MEF2 activity it can 

form complexes with co-repressor CtBP (COOH-terminal-binding protein) and the other 

HDACs (Zhang et al., 2001). However, it is interesting to note that there are sites present for 

binding of MEF2, and it has been discovered that HDAC9 can be transcriptionally activated 

by MEF2 at the event of muscle cell differentiation. Thus, a negative feedback loop can be 

speculated between HDAC9 and MEF2 (Haberland et al., 2007). 

     The HDAC6 and 10 make up the Class IIb. These histones deacetylases are similar to one 

another but quite different from that of Class IIa. Two tandem catalytic domains are a unique 

character of HDAC6 (Verdel et al., 2000). HDAC6 is the first histone of the Class to be 

identified; it is readily available in cytoplasm but may also be found in the nucleus (Verdel et 

al., 2000). The lack of nuclear localisation is the strong nuclear export signal located N-

terminal to the first catalytic domain. There exists a tetra deca peptide repeat domain C-terminal 

to the second catalytic domain of this HDAC.  SE14 (photoperiod-sensitivity gene) is a set of 

eight repeats, demonstrates the capability of the HDAC to target acetyl microtubule and shows 

the unique structure which is required for leptomycin-B –resistant cytoplasmic localisation of 

HDAC6 (Bertos et al., 2004). 

     The cytoplasmic anchorage of HDAC6 is facilitated by the NES (a nuclear export signal) 

and SE14.  Another unique domain of HDAC6 includes C-terminal to the SE14 repeats, which 

is a cysteine and histidine-rich domain named ZnF-UBP (zinc-finger ubiquitin binding 

domain), mostly found in different ubiquitin-specific proteases. Due to this domain HDAC6 

can bind with mono- and poly-ubiquitin chains (Seigneurin Berny et al., 2001; Boyault et al., 

2006). The proteasomal degradation of the ubiquitinated proteins is highly effected by strong 

bond between HDAC6 and ubiquitin. For the continuation of processing of ubiquitinated 

proteins, p97/VCP (valosin-containing protein) can bind to HDAC6 and break its bond from 

the ubiquitin complex (Boyault et al., 2006). HDAC6 has not been found to deacetylate any 

histones in vivo but there are other substrates of HDAC6, which are non-histone in nature. The 

α-tubulin in assembled microtubules can be deacetylated by HDAC6 (Hubbert et al., 2002; 

Matsuyama et al., 2002). Acetylated alpha-tubulin are required by proteins like kinesin-1 for 

transport of proteins such as JIP1 (a member of the JNK-interacting protein group of scaffold 

proteins that selectively mediates JNK signaling by aggregating specific components of the 
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MAPK cascade), the deacetylation of alpha-tubulin proteins disrupts this transport (Reed et al., 

2006). The molecular chaperone Hsp90 (heat shock protein 90) is also deacetylated by 

HDAC6, which mediates the assembly of protein complexes involved in cell signalling 

(Kovacs et al., 2005). Lack of HDAC6 would cause hyperacetylation of Hsp90, which would 

cause it to detach from its co-chaperone and loses its ability to form the chaperone complex. 

     In some cases, there is evidence that the HDAC6 can also be localised in the nucleus 

deacetylation nuclear targets but mostly it is only present in cytoplasm. The runt-related 

transcription factor 2 (RUNX2) from the cytoplasm recruits it for promotion of WAF1/CIP1 

(cyclin-dependent kinase inhibitor p21) to encode p21 protein in differentiating osteoblasts 

(Westendorf et al., 2002), establishing that it regulates tissue-specific gene expression.  

     The sequence similarity with HDAC6 led to the identification of HDAC10 (Fischer et al., 

2002; Guardiola and Yao, 2002). Similar to HDAC6 it has two catalytic domains; however, C-

terminal catalytic domain is functionally inactive, it is localised both within the nucleus and in 

the cytoplasm and contains alternatively spliced variants (Fischer et al., 2002; Guardiola and 

Yao, 2002; Kao et al., 2002). There is evidence of its role in transcriptional repression as it is 

able to interact with HDAC2 and SMRT complexes (Fischer et al., 2002). 

     The structure, enzymatic activity, localisation and function of the Class I and II histones 

differentiate them from Sirtuins, which are homologous to the proteins encoded by the yeast 

SIR genes as shown in figure 1.8 and table 1.3. 
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Figure 1.8: Schematic representation of the class III HDACs (Sirtuins). The Sirtuins are highly conserved 

nicotinamide adenine dinucleotide (NAD+) dependent protein deacetylases (DAC) or ADP-ribosyltransferases 

(ART) which can be subdivided into four classes based on their phylogenetic lineage. The subcellular localisation, 

DAC or ART binding domains (green) and zinc binding domains (dark grey) are depicted. “aa” is amino acid 

(adapted from Michan and Sinclair, 2007). 
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Table 1.3: The mammalian Sirtuins (McGuinness et al., 2011). 

 Enzymatic activity Localisation Substrates/targets Function 

SIRT1 Deacetylase Nuclear/cytoplasmic p53, FOXO, 

NFκB, MyoD, 

Ku70, LXR, 

PPARγ, p300, Tat, 

PCAF, ERα, AR, 

SMAD7, PCAF, 

p73, Sox9, HES1, 

PGC1α, HEY2, 

NcoR/SMRT, 

E2F1, RelA/p65 

Glucose 

metabolism, 

fatty-acid and 

cholesterol 

metabolism, 

differentiation, 

insulin 

secretion, and 

neuroprotection 

SIRT2 Deacetylase Nuclear/cytoplasmic α-tubulin, FOXO Cell-cycle 

control, tubulin 

deacetylation 

SIRT3 Deacetylase Mitochondrial AceCS2, GDH 

complex1 

ATP production, 

regulation of 

mitochondrial 

proteins 

deacetylation, 

and fatty-acid 

oxidation 

SIRT4 ADP-

ribosylotransferase 

Mitochondrial GDH, IDE, ANT Insulin secretion 

SIRT5 Deacetylase Mitochondrial CPS1 Urea cycle 

SIRT6 Deacetylase ADP-

ribosylotransferase 

Nuclear NFκB, Hif1α, 

helicase, DNA 

polymeraseβ 

Telomeres and 

telomeric 

functions, DNA 

repair 

SIRT7 Deacetylase Nuclear RNA polymerase 

type I, E1A, 

SMAD6 

RNA 

polymerase I 

transcription 
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     Kobayashi et al., (2004) stated the function of the yeast Sir2 gene was to suppress the 

recombination between copies of tandem repeated rDNA. Aparicio et al., (1991) added that 

Sir2 was also responsible for silencing genes near the telomeres in S. cerevisiae. Later, it was 

elucidated that the hypoacetylation of the histones at the ɛ-amino group of N-terminal lysine 

residues caused the silencing of the mating-type loci and telomeres; however, the histone 

deacetylation in vivo is a consequence of overexpression of Sir2 (Meijsing and Ehrenhofer-

Murray, 2001). Sir2 and its homologs are found in various organisms, from bacteria to humans, 

which indicate its relation to an evolutionarily conserved family of genes. 

     Research on bacterial homolog CobB (bacterial protein that belongs to the sirtuin family) 

suggested that Sir2 may carry out NAD+ -dependent mono-ADP-ribosyltransferase activity 

(Tsang and Escalante-Semerena, 1998). Up to five human cDNAs that shared close 

resemblance to yeast Sir2 were discovered by 1999, which enable the scientists to furnish that 

NAD+ can be metabolised by the Sirtuins and they function via mono-ADP-ribosylation of 

proteins (Frye, 1999). Tanner et al., (2000) demonstrated nicotinamide, deacetylated lysine and 

1-O-acetyl-ADP-ribose as the end products as products of Sir2 catalysed the deacetylation 

reaction of an acetylated lysine residue in presence of NAD+.   

     Hence, it can be said that Sir2 is linked with 2 enzyme mechanisms i.e. deacetylation and 

NAD+ metabolism. This is basis of differentiation between the members of Sir2 family, 

Sirtuins, and the other two classes of HDACs. First two classes of HDACs require Zn2+ for 

their catalytic function while Sirtuins require NAD+. 

     Sirtuins have been linked with aging in different studies (Sack et al., 2012; Watroba and 

Szukiewicz, 2016). Poole et al., (2012) found that presence of ERCs (Extra-chromosomal 

Circles) in yeast cells accelerates aging. The recombination of rDNA repeats leads to the 

formation of ERCs. Sinclair and Guarente, (1997) concluded that the replication machinery 

from genomic DNA is balanced down by amplification of ERCs, shortening the life-span of 

the yeast cells. Fritze et al., (1997) found that transcriptional silencing at the rDNA locus can 

be induced by Sir2.  The life-span of a yeast cell can be increased up to 30% by introducing an 

extra copy of Sir2, which is done by suppression of rDNA recombination (Kaeberlein et al., 

1999). Other scientists also reported increase in life-span of different species by introduction 

of Sir2, for example C. elegans (Tissenbaum and Guarente, 2001) and Drosophila (Rogina and 

Helfand, 2004). Increased life-span upon calorie restriction (CR) has been demonstrated in a 

variety of organisms from yeast to mammals. (Rogina and Helfand, 2004). Sir2 was found to 
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play a role in increasing life-span upon CR in yeast. In Sir2 deleted genotypes, CR did not 

increase life-span in yeast or Drosophila suggesting the importance of Sir2 in CR-mediated 

longevity (Lin et al., 2000; Rogina and Helfand, 2004). Previous studies suggested that CR 

promoted respiration instead of fermentation which increased the NAD+/NADH ratio by 

decreasing NADH levels thereby stimulating the activity of Sir2 (Lin et al., 2002). However, 

Riesen and Morgan, (2009) demonstrated that the CR alone can increase the life-span of the 

yeast cell by reducing the extent and frequency of rDNA recombination without requiring 

rDNA silencing done by Sir2. Research is being carried out on human Sirtuins-mediated-CR-

induced longevity of life-span (Lin et al., 2002). 

     There are seven members of the mammalian sirtuin family i.e. SIRT 1-7. Each sitruin is 

unique with its conserved 275 amino acid catalytic core domain and, particular N and C-

terminal sequences and unique cellular localisations, SIRT1, 6 and 7 are predominantly located 

in nucleus, while Sirtuin3, 4 and 5 are found in mitochondria (Huang et al., 2010). SIRT1 and 

2 are also found in cytoplasm (North and Verdin, 2007; Tanno et al., 2007) as illustrated in 

figure 1.9. Qihuang Jin et al., (2007) were found that SIRT1 was able to partially localise in 

cytoplasm in certain cell lines and this investigation showed that localisation of SIRT1 in 

cytoplasm led to increased cell sensitivity to apoptosis. SIRT1 contains two nuclear localisation 

signals as well as two nuclear exportation signals (Tanno et al., 2007). The balanced 

functionality of these signals determines the presence of SIRT1 in either the nuclear or the 

cytoplasmic compartment and explains why SIRT1 location may differ depending on the cell 

type or tissue evaluated (Canto´and Auwerx, 2012). For instance, while SIRT1 is mainly found 

in the nuclear compartment in COS-7 cells (McBurney et al., 2003; Sakamoto et al., 2004), it 

is abundantly found in the cytosol of rodent β-cells, myotubes and cardiomyocytes (Moynihan 

et al., 2005; Tanno et al., 2007). While the implications and regulation of SIRT1 shuttling are 

still largely unknown, some experiments indicate that SIRT1 shuttles from the nuclei to the 

cytosol upon inhibition of insulin signalling (Tanno et al., 2007). The latter observations 

suggested a link between SIRT1 activity and the sensing of the metabolic status of the cell 

(Canto´and Auwerx, 2012). Research is still being carried on the function of these Sirtuins and 

this field is still being explored. 
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Figure 1.9: The Sirtuins family of histone deacetylases is a family of 7 proteins that all of them except SIRT 4 
have been shown to have deacetylase activity (adapted from David, 2013). 

 

     HDAC11 is belongs to the Class IV Histone Deacetylases that was unravelled when 

similarities were seen in both class I and II HDACs in the core catalytic domain (Gao et al., 

2002). It is also located within the nucleus and is only seen in some tissues that suggested that 

have tissue-specific functions. It is also found to be overexpressed in various cancer cells lines 

and because of that studies on its role in tumourigenesis are being performed. It is normally 

located in protein complexes that possess HDAC6 (Gao et al., 2002). HDAC11 is linked to 

CDT1 (DNA replication factor) that is a rereplication licensing factor. HDAC11 deacetylates 

CDT1 located at lysine residues assisting with ubiquitinylation and degradation. It also 

maintains the stability of CDT1 (Glozak and Seto, 2009). It is also responsible for immune 

activation and is linked with Antigen Presenting Cells (APCs) and functions to inhibit the 

expression of IL-10 while inducing inflammatory APCs which can prime naïve T cells and re-
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establishes responsiveness of tolerant T cells (Villagra et al., 2009). As HDAC11 histone 

deacetylase has been discovered recently, its functions are still unclear. 

1.2.1.1 SIRT1 
 

     SIRT1 is the first classified member of human Sirtuin family. Frye, (2000) declared it to be 

the closest homolog of yeast Sir2 gene, researchers have been focusing on this particular 

Sirtuin. It is localised in Nucleus and cytoplasm, which then works as a protein deacetylase and 

acts as an NAD+ -dependent histone. 747 amino acids combine to form human SIRT1 which 

can be split into four chief portions (figure 1.10). Amino acids 1-182 constitute the N-terminal 

domain, amino acids 183-243 constitute the allosteric site, amino acids 244-498 constitute the 

catalytic core and amino acids 499-747 constitute the C-terminal domain (Autiero et al., 2009). 

A single amino acid in SIRT1, Glu230, located in a structured N-terminal domain, was critical 

for activation by all previously reported of Sirtuin Activating Compounds STAC scaffolds and 

a new class of chemically distinct activators (Hubbard et al., 2013). The amino and carboxyl 

terminal domains have non-α, non-β structure and these disorganised regions of the protein 

work as flexible linkers with its substrate proteins. It has been determined through anchor 

analysis that 14 disorganised binding regions for specific substrates are present in SIRT1 

(Hubbard et al., 2013).  
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Figure 1.10: Structure of SIRT1 (Autiero et al., 2009). 

     

     Knockout experiments in mice have shown that SIRT1 is important for embryonic 

development (McBurney et al., 2003). It was found that the severity of the phenotype of SIRT1 

null mice depended on the genetic background of the mice but in most cases, the loss of SIRT1 

was embryonic lethal. However, a very small proportion of SIRT1 null mice were born viable 

but failed to survive more than a few months beyond birth (Cheng et al., 2003; McBurney et 

al., 2003). These viable mice had obvious phenotypic abnormalities including smaller size, 

sterility and eye and heart development defects. 

     SIRT1 represses transcription by deacetylate histone H3 lys9, histone H4 lys16 and histone 

H1 lys26, which in their deacetylates form facilitate the condensation and compaction of 

chromatin (Vaquero et al., 2004). Some of the earliest studies on SIRT1 were carried out on 

p53, the results showed the deacetylating ability of SIRT1, which led to inhibition of the 

transcriptional function of p53 (Luo et al., 2001; Vaziri et al., 2001; Langley et al., 2002). 

Repressing the transcription of p53 gives way to a tumour growth. Recent research, however, 

has shown that while SIRT1 deacetylates p53, there is no biological outcome of this 

deacetylation (Kamel et al., 2006; Solomon et al., 2006). SIRT1 is found to regulate and 

deacetylate other transcription factors such as (i) forkhead family (FOXO) are a family of 
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transcription factors that play important roles in regulating the expression of genes involved in 

cell growth, proliferation, differentiation, and longevity (Motta et al., 2004), (ii) Ku70 is a 

protein that, in humans, is encoded by the XRCC6 gene (Cohen et al., 2004), (iii) Nuclear 

factor kappa-light-chain-enhancer of activated B cells (NFκB) is a protein complex that 

controls transcription of DNA (Yeung et al., 2004), cytokine production and cell survival, (iv) 

E2F1 a key transcription factor necessary for cell growth, DNA repair, and differentiation 

(Wang et al., 2006)  and, (v) Nibrin (NBS1) is a protein which in humans is encoded by the 

NBN gene (Yuan and Seto, 2007). SIRT1 regulates some major proteins like Peroxisome 

Proliferator Activated Receptor γ (PPARγ) and Peroxisome Proliferator-Activated Receptor 

Gamma co-activator 1-alpha (PGC-1α) and hence has a crucial role in the metabolic pathways 

(Picard et al., 2004; Nemoto et al., 2005). Mitochondrial biogenesis and metabolism depend 

upon SIRT1 in case of calorie restriction. Evidence has shown that SIRT1 levels also influence 

the insulin signalling pathway (Kloting and Bluher, 2005). In the insulin, resistant cells, low 

levels of SIRT1 were found, whereas the insulin sensitivity is improved in the cells where 

SIRT1 is overexpressed, which shows that these genes can be employed in management of 

Type 2 diabetes (Sun et al., 2007).  

1.2.1.2 SIRT2 
 

     The molecular mechanism behind SIRT2 cell cycle is poorly understood. A recent study 

suggested that SIRT2 possesses the ability to localise to the nuclei when the cell is in G2/M 

phase of mitosis and can deacetylate histone H4 lys16 (Vaquero et al., 2006).  It is proposed 

that it assists with the chromatin condensation before the process of cell division takes place 

(Inoue et al., 2007). It was also suggested just like SIRT1, SIRT2 also has regulatory 

capabilities and is known for the regulation of FOXO3 by the process of deacetylation when in 

stress or when there is calorie restriction (CR). Because of deacylation caused by SIRT2, it 

promotes FOXO to bind to the DNA which later causes transcription of FOXO target genes to 

express proteins like manganese superoxide dismutase, p27kip1 and pro-apoptotic BIM. SIRT2 

also reduces the production of reactive oxygen species (ROS) in the cell and increases the 

process of apoptosis when the cell is in stress (Wang et al., 2007). SIRT2 is also cytosolic and 

has the tendency of preserving deacetylase activity to control various cellular metabolic 

functions occurring within the body. 
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     SIRT2 lies within the cytoplasm (Perrod et al., 2001). It has both NAD+ dependent 

deacetylase and mono-ADP-ribosyl transferase activity. It causes α-tubulin deacetylation 

leading to a decrease in the assigned microtubular function within the cell. SIRT2 either works 

alone or in conjugation with HDAC6 by forming a complex to perform this function (North et 

al., 2003). Not only that, it is also responsible for providing microtubular stability and 

producing cell movements. SIRT2 also influences homeobox transcription factor HOXA10 

suggesting its effect on mammalian growth by the functions by acting on its proteins by 

mechanisms that are unknown till now (Bae et al., 2004). SIRT2 overexpression also lengthens 

the mitotic phase of the cell cycle and a reduction in SIRT2 protein levels helps limiting the 

period of mitotic cell cycle (Dryden et al., 2003). 

1.2.1.3 SIRT3 
 

     SIRT3 possesses both NAD+ dependent deacetylase as well as ADP-ribosyl transferase 

activity. It stays within the mitochondria because of N-terminal mitochondrial localisation 

sequence (Onyango et al., 2002). It was seen that SIRT3 is present within the inner 

mitochondrial membrane and its levels peak in brown adipose tissues as compared to the white 

adipose tissues. The levels of SIRT3 mRNA were seen to be increased because of 

environmental temperature stress and CR within the brown adipose tissues of rodents 

establishing a role in adaptive thermogenesis (Shi et al., 2005). SIRT3 promotes the expression 

of the master metabolic regulator PGC-1α, ATP synthetase and uncoupling protein UCP1 

within the inner membrane of the mitochondria leading to activation of mitochondrial genes, 

oxygen consumption and respiration (Shi et al., 2005). New studies performed established that 

SIRT3 is both mitochondrial and nuclear Sirtuin. Usually it resides in the nucleus where 

deacetylation of histone H3 lys9 and histone H4 lys16 take place because it causes inhibition 

of gene transcription but remains within the mitochondria when stress signals such as UV or 

etoposides are generated. It is thought that under stress, the nuclear exit of SIRT3 is necessary 

for rapid activation of nuclear genes that react when in stress (Scher et al., 2007). A study 

demonstrated functional polymorphism of SIRT3 which is linked to a longer life-span in 

humans, thus making this the only Sirtuin directly associated to human longevity (Bellizzi et 

al., 2005). 
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1.2.1.4 SIRT4 
 

     SIRT4 is also located within the mitochondria (Michishita et al., 2005). It acts as an ADP-

ribosyl transferase instead of a histone deacetylase (Ahuja et al., 2007). Its expression in 

pancreas is greatly linked to insulin secretion (Haigis et al., 2006). ADP ribosylation of 

glutamate dehydrogenase (GDH) occurs when NAD+ is utilised by SIRT4 for converting 

glutamate to α-ketoglutarate within the mitochondria of pancreatic β-cells. ADP ribosylation 

decreases the enzymatic activity of GDH leading to inhibition of glutamate metabolism utilised 

to produce ATP (Haigis et al., 2006). Since ATP promotes insulin secretion, SIRT4 represses 

the secretion of insulin from pancreatic β-cells in response to glutamate. 

1.2.1.5 SIRT5 
 

     SIRT5 is also a mitochondrial deacetylase (Michishita et al., 2005) that is expressed in 

various tissues (Frye, 1999). SIRT5 has the tendency to deacetylate locally acetylated 

cytochrome C lying within the mitochondrial inter-membrane space which influences the 

process of respiration or formation of the apoptosomes (Schlicker et al., 2008). The incomplete 

knowledge of SIRT5 functions also suggests the deacetylation of CPS1 (carbamoyl phosphate 

synthases 1) that is an important enzyme in the urea cycle for detoxification of ammonia 

(Nakagawa et al., 2009). CPS1 (Carbamoyl Phosphate Synthetase I) is regulated by SIRT5. 

This is seen in cells in fasting conditions when elevated NAD+ levels increase the breakdown 

of amino acids leading to increased blood ammonia levels. SIRT5 is thus responsible for 

ammonia detoxification. 

1.2.1.6 SIRT6 
 

     SIRT6, exhibits ADP-ribosyl transferase activity as it is a nuclear enzyme (Liszt et al., 

2005). It is greatly linked to heterochromatic regions of the nucleus (Michishita et al., 2005). 

SIRT6 influences base excision repair (BER) and loss of this gene results in age- associated 

degenerative processes (Mostoslavsky et al., 2006). Latest studies put forward the idea that 

SIRT6 levels get elevated when the cell gets deprived of nutrients which is because of 

stabilisation of the proteins. The gene p53 increases the levels of SIRT6 in normal conditions 

as compared to the stress conditions where it is inhibited (Kanfi et al., 2008). SIRT6 also 

deacetylates histone H3 lys9 located on telomeric regions of the gene leading to a stabilised 
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chromatin state in an area where telomeres are located. Mutation of SIRT6 leads to premature 

senescence and telomeric fusion (Michishita et al., 2008). Furthermore, SIRT6 works in 

association with the RelA subunit of NFκB and deacetylate histone H3 lys9 located at the NFκB 

target gene promoters leading to silencing of transcription genes that regulate cellular 

senescence and apoptosis (Kawahara et al., 2009). Various studies are being carried out on 

SIRT6 because it is seen to be an important regulator of cellular processes. 

1.2.1.7 SIRT7 
 

     SIRT7 also is localised within the nucleolus (Michishita et al., 2005). It is a recently 

discovered Sirtuin, the functions of which have not yet been known. SIRT7 is thought to be a 

part of the RNA polymerase I transcriptional machinery that causes Pol I transcription. The 

substrate that acts on the transcriptional machinery is however unknown. Deacetylase activity 

of SIRT7 and ADP-ribosyl transferase action is also unknown. NAD+ is thus required by the 

cell to activate Pol I machinery by an unknown mechanism (Ford et al., 2006). 

1.3 Functions of Mammalian Sirtuins 
 

     SIRT1, the best characterised among of mammalian Sirtuins, is a nuclear deacetylase whose 

substrates include proteins primarily but not exclusively involved in transcriptional regulation, 

thus influencing diverse aspects of organismal physiology such as differentiation, cell survival, 

and metabolism (figure 1.11). 
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Figure 1.11: Interacting partners, substrates, and downstream effectors of SIRT1 (adapted from Dimitrios and 

Wilhelm, 2006). 

 

1.3.1 Gene Expression 
 

     Histone hypo-acetylation leads to the repression of gene expression (Gallinari et al., 2007). 

Histone hypo-acetylation by the action of SIRT1, leads to formation of heterochromatin 

(chromatin but relatively tightly packaged). The deacetylation locations for different proteins 

are histone protein H1 at the lysine residues 9 and 26, H3 at 14 and H4 at 16. SIRT1 is also 

responsible for gene expression by targeting transcription factors. TAFI68 [TBP (TATA-box 

binding protein) associated factor I 68], p300, PACF [p300/cAMP-response-element-binding 

protein-associated factor], GCN5, MyoD, MEF2 (MADS box transcription factor enhancer 

factor 2), p19ARF, p53, HIC1, NF-κB, PGC-1α, PPAR, aP2, FOXO1, 3a and 4, E2F1, p73, 

BCA3, Hes1 and Hey2, BCL11A, CTIP2, NCoR, SMRT, UCP2, HIV-Tat (Luo et al.,2001; 

Muth et al., 2001; Vaziri et al., 2001; Takata et al., 2003; Cheng et al., 2003; Senawong et al., 

2003; Fulco et al., 2003; van der Horst et al., 2004; Motta et al., 2004; Cohen et al., 2004; 

Brunet et al., 2004; Vaquero et al., 2004; Picard et al., 2004; Bae et al., 2004; Yeung et al., 

2004; Zhao et al., 2005; Bouras et al., 2005; Chen et al., 2005; Pagans et al., 2005; Senawong 

et al., 2005; Kobayashi et al., 2005; Chua et al., 2005; Ford et al., 2006; Bordone et al., 2006; 
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Gao et al., 2006; Nakae et al., 2006; Solomon et al., 2006; Wang et al., 2006; Dai et al., 2007; 

Gerhart-Hines et al., 2007) are some of the non-histone targets of the SIRT1. The TBP 

containing complex has constituent component known as TAF168. Transcription done by RNA 

polymerase I is regulated by a TIF (transcription initiation factor)-IB/SL. RNA Pol I-mediated 

transcription in vitro is repressed when SIRT1 deacetylates the TAF168 decreasing its ability 

to bind to the DNA (Muth et al., 2001). Acetyltransferase p300 is also inhibited when SIRT1 

binds and deacetylates it at lysine 1020 and 1024. Cell differentiation and metabolism are 

influenced by inhibition of p300, which acts as a limiting transcription cofactor (Wang et al., 

2006).  

     SIRT1 has been associated with epigenetic gene regulation in cancer cells (Liu and McCall, 

2013). The polycomb repressive complex 4 (PRC4) carries the SET domain (a protein domain) 

histone methyltransferase Ezh2 (Enhancer of zeste homolog 2) (Kuzmichev et al., 2005), 

SIRT1 has been found to be a part of the PRC4 and hence regulates the expression of its target 

genes as shown in (figure 1.12). There is some evidence that cancer specific epigenetic 

variations may be caused by PRC4-mediated histone modifications. The histone H1-K26 is 

also deacetylated by SIRT1, H1-K26 facilitates in spreading hypo-methylated histone H3-K79 

and in heterochromatin formation. This shows the importance of SIRT1 in epigenetic 

modifications of DNA (Vaquero et al., 2004). The cell having low levels of SIRT1 in mammals 

have reduced levels of H3 tri-MeK9, H4-MeK20 and H4-K16 hyperacetylation (Imai et al., 

2000). Reduced levels of H4-K16 acetylation and H4-K20 trimethylation indicate the 

epigenetic a modification in cancer cells and tumour-derived cell lines (Fraga et al., 2005). 

Notably, SIRT1 localises specifically to the promoters of tumour suppressor genes whose DNA 

is hypermethylated and silenced in many cancers (Ghosh, 2000). 
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Figure 1.12: Molecular interconnections between SIRT1 and pathways involved in tumour initiation/progression 

(adapted from Dimitrios and Wilhelm, 2006). 

 

1.3.2 Apoptosis and Cell Survival  
 

     SIRT1 plays a role in apoptosis by targeting multiple proteins such as p53, p73, E2F, HIC1 

and Ku70. SIRT1 binds the tumour suppressor p53 and deacetylates it at multiple lysine 

residues, thereby inhibiting p53 transactivation and suppressing apoptosis in response to 

oxidative stress and DNA damage (figure1.13) (Luo et al., 2001; Vaziri et al., 2001). SIRT1 

also binds HIC1 (hypermethylated in cancer 1) transcriptional repressor and mediates the 

bypass of apoptosis, potentially by promoting cell survival and tumourigenesis via p53. Since 

HIC1 can repress SIRT1 expression and p53 can trans activate HIC1 transcription, SIRT1, 

HIC1 and p53 are believed to act in a complex loop where HIC1 represses SIRT1, promoting 

p53 activity and apoptosis under stress. However, under conditions, where cells are to be 

recovered from DNA damage, p53 down-regulates HIC1, which induces SIRT1 transcription 

and promotes cell survival (Ghosh, 2000). 
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     Another mechanism by which SIRT1 regulates apoptosis is by binding and deacetylating 

the DNA repair factor Ku70. Ku70 acts as an inhibitor of Bax mediated apoptosis. Deacetylated 

Ku70 complexes with the proapoptotic factor Bax, sequestering it away from mitochondria, 

thereby blocking it from triggering apoptosis in human embryonic kidney (HEK) 293 cells in 

response to stress (Cohen et al., 2004). SIRT1 also binds the cell proliferation and cell-cycle 

regulator, E2F1, and inhibits the apoptotic function of E2F1. On the other hand, E2F1 binds 

directly to the SIRT1 promoter and induces its transactivation, forming a negative feedback 

loop between SIRT1 and E2F1 functions. This mutual regulation of SIRT1 and E2F1 protects 

against DNA damage (Wang et al., 2006). SIRT1 also targets p73, which is a protein involved 

in apoptosis. The mechanism of binds SIRT1 on p73 is similar to that on p53, as it inhibits p73 

mediated apoptosis in (HEK) 293 cells by binding to it and deacetylating it (Dai et al., 2007). 

 

 
Figure 1.13: SIRT1 and cell survival. Under different forms of stress, Sirtuins control cell fate through, among 

other mechanisms, modulation of apoptosis. The decision process before a situation is based as a result on a 

complex net of interactions and targets established by different Sirtuins. The main described mediators and 

pathways of this Sirtuin-dependent signalling are indicated (adapted from Bosh-Preseque and Vaquero, 2011). 

 

1.3.3 Stress Resistance and Cell Survival 
 

      Regulation of Forkhead transcription factors (FOXOs) by SIRT1 signifies its role in cell 

survival. FOXO1, FOXO3a and FOXO4 are the transcription factors of the forkhead family 

that can be deacetylated by SIRT1. The expression of DNA repair and cell cycle checkpoint 

genes is increased and stress induced apoptosis is reduced when FOXO3a in neurons and 
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fibroblasts is affected by SIRT1 (Brunet et al., 2004; Motta et al., 2004). SIRT1 also 

deacetylates FOXO4 and rescues its repression under oxidative stress, thereby increasing 

expression of growth arrest and DNA-damage-inducible 45 (GADD45) (van der Horst et al., 

2004; Kobayashi et al., 2005). GADD45 proteins serve as tumour suppressors in response to 

diverse stimuli, connecting multiple cell signaling modules. Defects in the GADD45 pathway 

can be related to the initiation and progression of malignancies. Moreover, induction of 

GADD45 expression is an essential step for mediating anti-cancer activity of multiple 

chemotherapeutic drugs and the absence of GADD45 might abrogate their effects in cancer 

cells (Tamura et al., 2012). In transformed cells deacetylation of FOXO4 through SIRT1 

suppresses the pro-apoptotic proteases caspase-3 and 7. SIRT1 is localised from nucleus to 

cytoplasm, by its regulation through caspase-9 and Bcl-xL (Ohsawa et al., 2006). 

     Action of SIRT1 on FOXO1 provides a defence mechanism for pancreatic β-cells against 

cytotoxicity induced by glucose (Kitamura et al., 2005). In diabetic patients, chronically high 

plasma glucose causes cytotoxicity leading to -cell degeneration. This is believed to be caused 

by increased mitochondrial oxidation rates, due to higher glucose levels, leading to increased 

ROS production. In order to prevent apoptosis under these conditions, SIRT1 must sustain 

FOXO1-mediated transcription of MafA and NeuroD for regulated expression of insulin gene2 

(Ghosh, 2007). 

 

1.3.4 Cellular Senescence 
 

     Cellular senescence refers to the essentially irreversible arrest of cell proliferation (growth) 

that occurs when cells experience potentially oncogenic stress (Campisi, 2013). However, there 

is no clear stance on the role of SIRT1 in cellular senescence. Some studies suggest that in 

certain cases SIRT1 is found in vicinity of PML (promyelocytic leukemia) inside nuclear 

bodies. PML proteins act as co-activator or co-repressor for many of the apoptotic transcription 

factors. Inhibition of the pro-apoptotic factor p53 by SIRT1 facilitates in saving primary mouse 

embryonic fibroblasts from PML-mediated premature cellular senescence (Langley et al., 

2002). On the other hand, evidence of SIRT1 promoting cellular senescence is also present, in 

SIRT1 null MEFs (mouse embryonic fibroblasts) extended replicative potential and increased 

proliferation during chronic stress specifically under sub-lethal stress is quite evident (Chua et 

al., 2005). The level of SIRT1 are seen to decrease in dividing tissue of older mice, such as 

testis and thymus or other serially passaged cells, however in immortalised cells or post-mitotic 
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organs no such thing could be observed (Sasaki et al., 2006). Thus, although SIRT1’s 

regulatory role in senescence is conflicting, SIRT1 mediated regulation of senescence may play 

a significant role regarding tumourigenesis in the elderly and aging. 

 

1.3.5 DNA Repair  
 

     The cells are constantly exposed to genomic insults caused by normal cellular processes or 

genotoxic agents such as ultra-violet (UV) and ionizing radiation (IR). To fight against 

genomic instability, eukaryotic cells have developed four major DNA damage response (DDR) 

pathways, including base-excision repair (BER), nucleotide-excision repair (NER), 

homologous recombination (HR) and non-homologous end joining (NHEJ) (Hoeijmakers, 

2001). BER and NER are two repair pathways preferentially for single-strand breaks (SSB) 

and repair the nucleotides by using the template sister strand. In contrast, for double-strand 

breaks (DSB), cells are prone to choose either HR or NHEJ. In HR a homologous DNA region 

from a sister chromatid is used as a template to reconstitute the damaged area (Thompson and 

Schild, 2001) while NHEJ modifies and ligates the broken DNA ends with little homology 

(Lieber, 2008). Sirtuins have regulated multiple DNA repair pathways and efficiently 

maintained genomic stability as shown in figure 1.14 (Zhen et al., 2016). 

 

 

 

 

 



CHAPTER 1                                                                  INTRODUCTION 

35 
 

 
Figure 1.14: Nuclear Sirtuins regulate genomic stability and their roles in the DDR (DNA damage response) are 

summarised. SIRT1 is implicated in diverse DNA repair pathways. SIRT1 promotes HR (homologous 

recombination) DNA repair by deacetylating WRN (is a multi-functional protein involving DNA replication, 

recombination and repair), a DNA helicase. It also regulates NHEJ (non-homologous end joining) and NER 

(nucleotide-excision repair) through Ku70 and XPA and XPC (xeroderma pigmentosum A and C) after genotoxic 

stimuli. Like SIRT1, SIRT6 modulates DNA repair pathways at multiple layers. SIRT6 affects BER in a PARP1-

depdendent manner and recruit’s DNA-PK (DNA-dependent protein kinase) to promote NHEJ. It interacts with 

two major BER enzymes (base excision repair) MYH (MutY homologue, is a DNA glycosylase) and APE1 

(Apurinic/apyrimidinic endonuclease 1) as well. Most recent study uncovered SIRT7 induce NHEJ by recruiting 
repair factor 53BP1. (adapted from Zhen et al., 2016). 

 

     Recent studies have highlighted a unique feature of SIRT1 in regulating DNA damage repair 

as well as its role in maintaining telomere length and genomic stability (Rajendran et al., 2011; 

Zhang et al., 2014; Yamashita et al., 2014). Upon genotoxic stress, SIRT1 moves from silent 

promoters to sites of DNA damage, deacetylating histones H1 (Lys26) and H4 (Lys16) and 

contributing to the recruitment of DNA damage factors (Vaquero et al., 2004; Oberdoerffer et 

al., 2008; Dobbin et al., 2013). SIRT1 is recruited to DSBs (DNA double strand breaks) in an 

ATM (Ataxia Telangiectasia Mutated) kinase-dependent manner (Jeong and Haigis, 2015). 

This recruitment is important for histone variant (γ-H2AX) foci formation and accumulation 

of the DNA damage response DDR-related proteins such as Rad51(is a eukaryote gene), NBS1 

(Nibrin is a protein associated with the repair of double strand breaks (DSBs) which pose 

serious damage to a genome) and BRCA1 (breast cancer 1) at the breaks. 



CHAPTER 1                                                                  INTRODUCTION 

36 
 

     Important role for SIRT1 in DNA damage repair includes DSB (DNA double strand breaks) 

repair by HR (homologous recombination) (Oberdoerffer et al., 2008; Uhl et al., 2010). SIRT1 

promotes HR by deacetylating WRN, a member of the RecQ DNA helicase family (In 

prokaryotes RecQ is necessary for plasmid recombination and DNA repair) with functions in 

maintenance of genomic stability. Another study has reported that SIRT1 interacts with 

telomere in vivo and SIRT1 overexpressed mice display increased HR DNA repair throughout 

the entire genome (Jeong and Haigis, 2015). Moreover, SIRT1 is also involved in non-

homologous end joining (NHEJ) DNA repair. Deacetylation of Ku70 by SIRT1 enhances 

Ku70-dependent DNA repair and inhibits mitochondrial apoptosis after genotoxic stimuli. 

SIRT1-dependent KAP1 deacetylation also positively regulates NHEJ (Lin et al., 2015). 

Results establish the functional significance of KAP1 (KRAB-associated protein-1, is a protein 

that in humans is encoded by the TRIM28 gene) deacetylation in the DDR, highlighting a 

potential SIRT1-KAP1 regulatory mechanism for DSB repair that is independent from 

modulating the infrastructure of the chromatin. Finally, SIRT1 can regulate NER (nucleotide-

excision repair) by deacetylating and activating xeroderma pigmentosum A and C proteins 

(XPA and XPC) upon UV damage. Deacetylated XPA and XPC recognise DNA SSBs and 

recruit other NER factors at the breaks for DNA repair (Jeong and Haigis, 2015). 

1.3.6 Inflammation 
 

     By regulation of NF-κB, SIRT1 also plays a role in inflammation. NF-κB (nuclear factor 

kappa-light-chain-enhancer of activated B cells) is a protein complex that controls transcription 

of DNA, cytokine production and cell survival. The activity of NF-κB is regulated by SIRT1 

by more than one mechanism (Yeung et al., 2004). The transactivation potential of NF-κB is 

inhibited by SIRT1 by deacetylation of its subunit RelA/p65 (Yeung et al., 2004). The pro-

inflammatory responses mediated by NF-κB may be increased by cigarette smoke extracts, it 

is done by decreasing the interaction between SIRT1 and RelA/p65 and subsequent increase in 

acetylation and activation of NF-κB (Yang et al., 2007). High levels of SIRT1 have been 

expressed in calorie restricted rodents, showing decreased inflammatory responses. Anti-

inflammatory properties like reduction of the pro-inflammatory cytokine ‘tumour necrosis 

factor (TNF) has been noticed in SIRT1 activating compounds via a high-throughput screen 

(Napper et al., 2005). 
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1.3.7 Development  
 

     SIRT1 has been found to have a role in development. McBurney et al., (2003) used a Sir2 

knockout transgenic mice model to demonstrate the significance of SIRT1 in embryogenesis 

and gametogenesis. Under this experiment only 50% of the expected number of off springs 

were born, out of which only 20% survived to adolescence. Phenotypic defects such as small 

size, slow development defects in eye morphogenesis and cardiac septation were prevalent in 

the mice that survived, they were sterile both male and female demonstrating low sperm count 

and inability to ovulate respectively, which is thought to be caused by hormonal imbalance 

(McBurney et al., 2003).  SIRT1’s regulation of the transcriptional repressors Hes1 and Hey2 

can help us understand the developmental defects in SIRT1 knockout mice, Hes1 and Hey2 are 

rather important in development (Takata et al., 2003). Additionally, SIRT1 is found to have a 

regulatory effect on BCL11A (mammalian protein), which is responsible for the 

haematopoietic cell development and malignancies (Senawong et al., 2005). The role of SIRT1 

in development is confirmed by a report showing markedly high levels of SIRT1 expression in 

the heart, brain, spinal cord and dorsal root ganglia of embryos (Sakamoto et al., 2004). There 

is evidence of involvement of other Sirtuins in development as SIRT2 interacts with the 

homeobox transcription factor, important for embryogenesis, HOXA10 (Bae et al., 2004). 

 

1.3.8 Metabolism 
 

     Induction of SIRT1 in fasting tissues such as the brain, fat, kidney, muscle and liver, led to 

the speculation of a role of SIRT1 played in metabolism (Cohen et al., 2004). SIRT1, SIRT3 

and SIRT4 are the three mammalian Sirtuins involved in regulation of metabolism (Nogueiras 

et al., 2012). SIRT1 plays a role in the regulation of hepatic gluconeogenesis by potentiating 

FOXO1 activity in hepatocytes to direct glucose metabolism towards gluconeogenesis (Frescas 

et al., 2005). Deacetylation of PGC-1α (Peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha) by SIRT1 leads to repression of glycolysis and promotion of 

gluconeogenic gene expression (figure 1.15). Up-regulation of PGC-1α is caused by high levels 

of NAD+ and pyruvate (Rodgers et al., 2005). Mitochondrial function and metabolic 

homeostasis are regulated by PGC-1α through SIRT1, increasing the oxygen consumption in 

muscle fibres and induces oxidative phosphorylation and consequently mitochondrial 

biogenesis (Rodgers et al., 2005; Lagouge et al., 2006). The mitochondrial membrane potential 
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is decreased by increase in cellular respiration and production of reactive oxygen species 

caused by SIRT3 (Shi et al., 2005). The mitochondrial genes such as PCG-1α, UCP2 

(Mitochondrial uncoupling protein 2) and COX (Cyclooxygenase) II and IV and ATP 

synthetises are also induced by SIRT3. AceCS1 (Acetyl-CoA synthetise) in the cytoplasm and 

AceCS2 in the mitochondria, convert acetate to acetyl CoA in mammalian cells (Hallows et 

al., 2006). Acetyl CoA is a micro molecule, which is essential in synthesis of fatty acids and 

amino acids. SIRT1 deacetylates and activates AceCS1 while SIRT3 is found responsible for 

deacetylating and activating AceCs2 (Hallows et al., 2006 and Schwer et al., 2006). In the 

pancreatic cells, amino-acid stimulated insulin secretion is regulated by SIRT4 (Haigis et al., 

2006). This Sirtuin is also involved in regulation of glutamate dehydrogenase (GDH) by mono-

ADP-ribosylation, which inhibits GDH and decelerates the conversion of ketoglutarate from 

glutamate. 

 

 
Figure 1.15: Function of SIRT1 in tissues relevant to organismal energy homeostasis (adapted from Dimitrios 

and Wilhelm, 2006). 
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     In fasting condition, up-regulation of SIRT1 in white adipose tissue (WAT) indicates the 

potential role of SIRT1 in synthesis and release of fat. The interaction of SIRT1 with PPAR-γ 

proved its role in in fat metabolism by regulating adipogenesis and fat storage (Picard et al., 

2004). Moreover, SIRT1 also regulates the levels of the adipocyte derived hormone 

adiponectin by acting through FOXO1 (Qiaoz et al., 2006). 

1.4 Role of SIRT1 in Regulating Mammalian Aging 
 

     The regulation of human longevity by Sirtuins has not been yet elucidated although SIRT1 

orthologs in lower organisms have been revealed to play a direct role in it. A positive role of 

SIRT1 in maintaining mammalian aging has been revealed by the cellular model for aging, 

which evaluates cellular senescence as a demonstration of aging (Vaziri et al., 2001). A central 

role in cellular senescence signifying a constructive role of SIRT1in slowing down cellular 

senescence is played by p53, which is inactivated and deacetylated by SIRT1 (Luo et al., 2001; 

Vaziri et al., 2001). P53 acetylation and early senescence induced by promyelocytic leukemia 

protein (PML) oncogene is repressed by over-expression of SIRT1 in mouse embryonic 

fibroblasts (MEFs) (Langley et al., 2002). Also, SIRT1 inhibitor, Sirtinol has been shown to 

trigger senescence in human breast cancer MCF-7 cells and non-small lung cancer H1299 cells 

(Ota et al., 2006). 

     Paradoxically, SIRT1 has also been shown to induce replicative senescence as shown in 

SIRT1 deleted MEFs that show extended replicative lifespan due to failure to upregulate 

p19(ARF) and p53 in response to chronic oxidative stress (Chua et al., 2005). These observations 

suggest that SIRT1 may regulate senescence differently depending on stress conditions and 

inducing agents. Recently, SIRT1 has been shown to protect against stress-induced senescence-

like phenotype in human endothelial cells by acting through p53 (Ota et al., 2007). Moreover, 

down-regulation of SIRT1 was shown to accelerate an aging-like phenotype in mouse (Sommer 

et al., 2006). The other positive role of SIRT1 in promoting longevity in the cellular model for 

aging has been shown to be through the Forkhead proteins. SIRT1 physically binds and 

deacetylates the FOXO proteins thereby regulating their activity. It has been shown that 

SIRT1’s regulation is required for FOXO mediated cellular stress response to protect cells from 

oxidative insults. 
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1.5 SIRT1 Activators 
 

     The apparent role of SIRT1 and its orthologs in extending longevity has prompted searching 

for compounds that can activate SIRT1 since such compounds can potentially extend lifespan 

in absence of CR or genetic alteration. Resveratrol, the first ever such molecule, a compound 

synthesised in plants as response to stress was discovered around 1999 (Howitz et al., 2003). 

Resveratrol, Butein, Quercetin, Piceatannol, and Myrcetin are some of the polyphenol 

activators of SIRT1 that have been discovered and called the Sirtuin Activating Compounds or 

STACs (Wood et al., 2004). Subsequently, much more potent and efficacious SIRT1 activators 

were reported as potential therapeutics for the treatment of diabetes (e.g. SRIT1720, SRT2183, 

and SRIT1460) (figure 1.16) (Milne et al., 2007; Venkatasubramanian et al., 2016). 
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Figure 1.16: Small molecule activators of SIRT1, (adapted from Stünkel and Campbe, 2011). 

 

     The catalytic activity of SIRT1 in vitro increased upon addition of resveratrol, a 

polyphenolic compound present in grape skin, and a diversity of plants products like fruits and 

nuts. Afterwards, imitation of the calorie restriction and extended lifetime in fruit flies, yeast, 

worms and fish was seen by it (Wood et al., 2004). The mechanism by which resveratrol 

functions is not yet clear. However, in S.cerevisiae, C. elegans and D. melanogaster, the effect 

of resveratrol is SIRT1 dependent and is not further extended by CR, indicating that it may act 

through CR pathway (figure 1.17). 
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Figure 1.17: Activation of SIRT 1 by the natural antioxidant resveratrol, (Markus and Morris, 2008). 

 

     A range of progressions in mammals including neuroprotection, differentiation, tumour 

suppression and inflammation are modulated by resveratrol (Anekonda, 2006; Baur et al., 

2006; Labinskyy et al., 2006). Consistently, cancer, heart diseases, brain damage, hearing loss, 

anorexia and damage to tissues are some of the diseases that are affected by resveratrol in 

mammals (Baur and Sinclair, 2006). Similar to lower organism, it also elicits CR mimicking 

physiological changes in mammals, for example it improves tissue pathology and endurance, 

increases mitochondrial biogenesis, insulin sensitivity and decreases fat accumulation, blood 

insulin and insulin-like growth factor 1 (IGF-1) (Baur et al., 2006; Lagouge et al., 2006). Lately, 

resveratrol has been shown to increase the survival of high calorie fed mice by shifting its 

physiology towards standard diet mice with increased mitochondria, lower blood glucose and 

insulin and a hepatic gene expression profile matching the lean mice. This is consistent with 

the fact that increased SIRT1 activity can increase PGC-1α activity. Also, mice fed with 

resveratrol show highly deacetylated PGC-1α in multiple tissue, indicating a role of SIRT1 

activity (Lagouge et al., 2006). 
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     It has been observed that SIRT1 mediated deacetylation of PGC-1α controls the resveratrol 

stimulated activation of mitochondrial function. Endorsing cell endurance by decetylation of 

p53, stopping adipocyte segregation by repressing peroxisome proliferator-activated receptor 

gamma (PPAR-γ), liberating cells polyglutamine toxicity and sensitising cells to tumour 

necrosis factor alpha (TNF-α) induced apoptosis by triggering nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) deacetylation are some of the other effects mimicking 

SIRT1 activation, brought about by resveratrol (Howitz et al., 2003; Picard et al., 2004; Yeung 

et al., 2004; Parker et al., 2005). Modulation of some pathways by resveratrol independent of 

SIRT1. On the other hand, a couple of recent reports have shown that resveratrol inhibits insulin 

response by disrupting insulin-induced (insulin receptor substrate1 IRS) protein complex and 

this action is independent of SIRT1. In another report resveratrol was shown to stimulate 

AMPK activity in neurons independent of SIRT1 and dependent on liver kinase B1 (LKB1) 

(Zhang, 2006; Dasgupta et al., 2007). New evidence supports that the indirect activation of 

SIRT1 by resveratrol is mediated by the activation of AMPK. AMPK acts as a primary initial 

sensor that increases NAD+ levels, thus inducing a higher deacetylation of SIRT1 targets, PGC-

1α and FOXO1, due to concomitant increases of SIRT1 activity (Canto et al., 2009; Canto et 

al., 2010). One study has demonstrated that metabolic effects of resveratrol can be accounted 

by elevation of cAMP levels both in skeletal muscle and white adipose tissue by inhibiting 

phosphodiesterase, because resveratrol competes with cAMP in its binding site. The elevation 

of cytosolic cAMP activates the cAMP effector protein Epac1 (Guanine nucleotide exchange 

factor), which increases levels of cytosolic Ca+2, thus inducing AMPK phosphorylation via 

calcium/calmodulin-dependent protein kinase II. The activation of AMPK increases NAD+ 

levels, thus leading to SIRT1 activation (Park et al., 2012). A diagram of this mechanism is 

shown in figure 1.18. 
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Figure 1.18: Mechanism of SIRT1 activation by resveratrol. The metabolic effects of resveratrol can be accounted 

for competitive inhibition of cAMP-degrading phosphodiesterase and the elevation of cytosolic calcium via the 

cAMP effector protein Epac1. This pathway activates the calcium/calmodulin-dependent protein kinase II which 

phosphorylates AMPK, which in turn increases of NAD+ levels, thus leading ultimately to SIRT1 activation 

(adapted from Jose and Francisco, 2012). 
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1.6 SIRT1 Inhibitors 
 

     The biological functions of SIRT1 have triggered interest in the development of SIRT1 

activators and inhibitors. As mentioned earlier, SIRT1 required NAD+ for its enzymatic activity 

and deacetylate the substrate along with metabolism of NAD+ to release nicotinamide, O-acetyl 

ADP-ribose and the deacetylated substrate. The deacetylation reaction involves an enzyme-

ADP-ribose intermediate (Landry et al., 2000). Physiological amounts of nicotinamide 

noncompetitively inhibit SIRT1 in vitro, as it was then revealed. In addition, the level of 

inhibition by nicotinamide (IC50 < 50μM) was found to be the same or more than the most 

effective known synthetic inhibitors of the same protein class. It was suggested that attaching 

to a preserved pocket neighbouring NAD+, nicotinamide inhibits deacetylation and NAD+ 

hydrolysis is blocked (Bitterman et al., 2002). It was confirmed in recent times that 

nicotinamide inhibition is the result of nicotinamide intercepting an ADP-ribosyl-enzyme-

acetyl peptide intermediate with regeneration of NAD+ (transglycosidation) (Jackson et al., 

2003). A number of chemical inhibitors of SIRT1 are also often employed. SIRT1 is repressed 

successfully by treatment with Sirtinol, Splitomicin, Suramin, NF023 and NF279 (figure 1.19) 

at a low micro molar scale level. A comparatively powerful inhibitor, being about 1000-fold 

more effective than nicotinamide, was in recently described, EX527 (Napper et al., 2005; Porcu 

and Chiarugi, 2005). 
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Figure 1.19: Small-molecule inhibitors of SIRT1, (adapted from Stünkel and Campbe, 2011). 

 

1.7 SIRT1 and Cancer 
 

     SIRT1 and its association with cancers have been the point of interest in the past. The 

controversial theories regarding cancer and Sirtuins are being tested for being tumour promoter 

or either tumour suppressor focusing on the cellular context and its targets in specific signaling 

pathways or related to specific cancers that are illustrated in figure 1.20. SIRT1 is a tumour 

suppressor gene that suggested by role it plays in maintaining stability of the genome via 

chromatin regulation and DNA repair (Saunders and Verdin, 2007; Stunkel et al., 2007; Fan 

and Luo 2010). Herranz et al., (2010) created a metabolic syndrome-associated liver cancer 

model in which (SIRT1- transgenic mice) were at a lower risk to establishing liver cancer and 

show an enhanced protection of hepatocytes from both DNA damage and metabolic damage 

as seen in wild type (WT) mice. These results support SIRT1 tumour suppression activity in 
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aging- and metabolic syndrome–associated cancer. Interestingly, a couple studies found that 

SIRT1 had a suppressive activity in tumour cell growth by suppressing NF-κB (Bosh-Preseque 

and Vaquero, 2011), whereas a transcription factor playing a central role in the regulation of 

the innate and adaptive immune responses and carcinogenesis, the dysregulation of which leads 

to the onset of tumourigenesis and tumour malignancy (Kiernan et al., 2003).  

 

 
Figure 1.20: SIRT1 as a tumour suppressor or/and tumour promoter. The evidence reported supports both an 

oncogenic and a tumour suppressor role for SIRT1. Here, we indicate the different functions described for SIRT1 

that support one role or the other (adapted from Bosh-Preseque and Vaquero, 2011). 

 
     SIRT1 also has a role in tumour suppression that was put forward by Firestein et al., (2008). 

It was seen that a higher rate of expression of SIRT1 in the APCmin/+ mice caused a decrease 

in development of colon cancer. The decrease was because of SIRT1 as it was thought to have 

caused deacetylation of β-catenin along with promotion of cytoplasmic restriction of oncogenic 

forms of β-catenin which is limited to the nucleus (Firestein et al., 2008). Other research 

performed by Yuan et al., (2007) established that SIRT1 behaves as a tumour suppressor. This 

action is because of involvement of c-Myc-SIRT1 feedback loop that causes cellular 

transformation and c-Myc activity. When c-Myc attaches to the promoter of SIRT1, it causes 

the expression of SIRT1. SIRT1 the results in deacetylation of c-Myc which decreases its 

stability that is established from figure 1.21. Thus, transformational activity of c-Myc is 
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vulnerable in presence of SIRT1 (Yuan et al., 2009). The association of SIRT1 as a tumour 

suppressor is confirmed from earlier studies. Thus, the risk of developing cancer has been 

decreased suggesting a lengthened lifespan causing a progressive improvement of SIRT1 

function in metabolic conditions (Deng, 2009).  

     On the other hand, SIRT1 also causes tumour initiation and progression by blocking 

apoptosis and senescence. SIRT1 overexpression can inhibit stress-induced apoptosis by 

chromatin structure modulation and by deacetylation of non-histone proteins, like p53, Rb, 

BCL6, Ku70, FOXO, E2F1 (Luo et al., 2001; Heltweg et al., 2006; Wang et al., 2006). SIRT1 

expression is greatly elevated in various cancers (Bradbury et al., 2005; Lim, 2006; Stunkel et 

al., 2007; Hida et al., 2007; Huffman et al., 2007). The activity and the expression of SIRT1 

are kept in place by a range of key factors in cancer. If deregulation results in SIRT1 

overexpression or activation, it is suggesting that increased levels of SIRT1 could be an 

outcome rather than a cause, of cancer (Bosh-Preseque and Vaquero, 2011). The reason behind 

this is because of the role of SIRT1 in preventing apoptosis and senescence as various tumours 

get dependant on SIRT1 overexpression, establishing its role in tumour development.  The 

association was seen in neuroblastomas, chemoresistant leukaemia ovarian and some breast 

cancer cells and in osteosarcomas. It was seen in biopsies taken from cancer patients who were 

previously treated with chemotherapeutic agents showed higher SIRT1 levels as compared to 

untreated samples (Chu et al., 2005). It was also seen that ectopic SIRT1   overexpression 

enhanced P-glycoprotein expression by deacetylating FOXO1 and causing chemotherapeutic 

drug resistance for drugs like doxorubicin in cancer cells while depletion of SIRT1 by siRNA 

prevents the occurrence of drug-resistant phenotype (Chu et al., 2005). Research as suggested 

that SIRT1 activator resveratrol possesses chemopreventive activity against various cancers, 

like leukaemia, skin cancer, DMBA-induced mammary tumours (in rats), and prostate cancer 

(Aziz et al., 2005; Whitsett et al., 2006; Harper et al., 2007; Li et al., 2007). 
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Figure 1.21: Activation and inhibition of many cellular processes by SIRT1 (adapted from Rahman and Islam, 

2011). 
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     SIRT1 is also associated with tumour promotion because it causes angiogenesis (Bosh-

Preseque and Vaquero, 2011). As SIRT1-mediated deacetylation decreases the functions of 

various tumour suppressors including p73, p53, and HIC1, it has been suggested that SIRT1 

causes tumour growth and development (Vaziri et al., 2001; Chen et al., 2005). Potente et al., 

(2007) saw an abnormal postnatal neovascularisation because of endothelial-restricted SIRT1 

mutantation in mice who lack the deacetylase domain of SIRT1 gene. SIRT1-deficient 

zebrafish also displayed vascular patterning defects and haemorrhages because of dysregulated 

endothelial sprouting, associated with regulation of the expression of various genes linked to 

vascular endothelial homeostasis and remodelling (Potente et al., 2007). Much remains to be 

established on how SIRT1 exerts its multiple functions in cancer and on how these functions 

affect tumourigenesis. Current knowledge suggests as shown in figure 1.22, that under normal 

conditions, in response to stress or to DNA damage, SIRT1 might promote cell survival via 

cell cycle arrest, DNA repair, or inhibition of apoptosis. If the stress signal becomes chronic or 

the levels of damage cross a certain threshold, then SIRT1 could induce cell senescence (Bosh-

Preseque and Vaquero, 2011). However, following chronic stress or DNA damage, the loss of 

a tumour suppressor or of any other checkpoint-related factor could cause an imbalance in these 

regulatory processes and induce SIRT1 overexpression beyond a critical limit (Kim et al., 2008; 

Zhao et al., 2008). This in turn would agree with the drastic reduction in the very high levels 

of SIRT1 protein in undifferentiated cells as differentiation progresses. As cancer development 

is involved in dedifferentiation of cells, it could imply restoration of SIRT1 protein to 

predifferentiation levels (Bosh-Preseque and Vaquero, 2011). These results give powerful 

proof that SIRT1 may be an important regulator of cancer development, whether SIRT1 

functions as an oncogene or as a tumour suppress remains to be determined. 
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Figure 1.22: Model for SIRT1 apparent duality in cancer. (A) Under stress conditions, SIRT1 promotes cell cycle 

arrest, DNA repair, and, ultimately, cell survival. In chronic stress conditions or under certain massive levels of 

DNA damage, SIRT1 induces senescence and apoptosis. (B) Under chronic stress and loss of tumour suppressors 

or checkpoints, SIRT1 promotes tumour formation and cancer. A feedback between tumour progression and 

SIRT1 levels is established, resulting in reinforced dedifferentiation, cell growth, and cell survival, (adapted from 

Bosh-Preseque and Vaquero, 2011). 

 

1.8 ROS and DNA Damage 
 

     ROS can be defined as chemically reactive molecules containing oxygen that cause 

conformational changes in cellular and genetic structures. Peroxides, superoxide, hydroxyl 

radical, and singlet oxygen are some common examples of ROS. ROS are natural by-products 

of the normal biological metabolism of oxygen and play a significant role in cell signalling 

pathways and maintaining homeostasis. The ROS levels in cancer cells are usually higher in 

comparison to the normal cells, however, ROS scavenging system of cancer cells is also 

stronger than the normal cells for the maintenance of homeostasis.  This particular biochemical 

property of cancer cells i.e. high ROS concentration can be used a potential therapeutic target 

because ROS are crucial to the development and progression of cancer, because they can induce 

mutations in DNA and hence cause genomic instability and release tumourigenic signals (Storz, 

2005). ROS are very dangerous to the DNA as they can cause DNA strand breakage, which is 

followed by alterations in purine and pyrimidine bases and sister chromatid exchanges which 

is very harmful as it can lead to the inactivation of tumour suppressor genes or even the 

activation of oncogenes, thus the malignant potential of the tumour becomes higher (Storz, 

2005). Nonetheless, these high levels of ROS may also be channelled to cause death of cancer 

cells (Dong et al., 2016). Many chemotherapeutic agents employ this mechanism of action i.e.  

cause cancer cell death or cell growth inhibition by up-regulation of ROS production 

(Kotamraju et al., 2002; Conklin, 2004). Oxygen radicals are cytotoxic and many anticancer 
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therapies like the chemotherapeutic agent doxorubicin, etoposide and cisplatin or radiotherapy 

and photodynamic therapy work on this principal and generate high concentrations of 

superoxide and oxygen radicals within carcinoma cells (Yokomizo et al., 1995; Brown and 

Bicknell, 2001). However, long term oxidative stress within carcinomas can also lead to 

resistance to these drugs by upregulation of defence systems against antioxidant rendering the 

therapy useless. The use of these agents as a monotherapy could cause harm rather than good, 

depending on the concentration in which they are administered, as ROS may induce tumour 

progression or even cell death. 

1.8.1 SIRT1 and ROS 
 

     The role of SIRT1 in mediating an oxidative stress response by directly deacetylating 

several transcription factors responsible for regulation of antioxidant genes has been 

established on the basis of evidence. It is noteworthy that many members of the FOXO family 

of transcription factors are activated by SIRT1. These factors promote the expression of stress 

response genes including Superoxide Dismutase 2, mitochondrial SOD2 (Brunet et al., 2004; 

Motta et al., 2004; van der Horst et al., 2004; Merksamer et al., 2013). SIRT1 functions 

regulates itself with the help of early growth response protein ERG1 (a member of the 

erythroblast transformation-specific family of transcription factors) for the regulation of SOD2 

for protection of contracting muscle cells from oxidative stress (Pardo and Boriek et al., 2012; 

Pardo et al., 2011). SIRT1 is also responsible for promotion of mitochondrial biogenesis 

through the activation of peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) 

(Rodgers et al., 2005). PGC-1α is involved in increasing the mitochondrial mass and 

upregulating the expression of oxidative stress genes such as glutathione peroxidase (GPx1), 

catalase, and manganese SOD (MnSOD) (St-Pierre et al., 2006). Additionally, the p65 subunit 

of NF-κB through direct deacetylation is also inactivated by SIRT1. NF-κB inhibits the 

suppression of the inducible nitric oxide synthase (iNOS) and nitrous oxide production and be 

held responsible for lower the cellular ROS load (Lee et al., 2009; Merksamer et al., 2013) as 

shown in figure 1.23. 
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Figure 1.23: Relationship between ROS and SIRT1 (adapted by St-Pierre et al., 2006). 

 

     Resveratrol has been tested as a prophylactic anti-cancer agent. The results showed that 

axonal protection and other cellular processes that are SIRT1-dependent (Araki et al., 2004), 

like fat mobilisation (Yeung et al., 2004) and inhibition of NF-κB-dependent transcription 

(Picard et al., 2004) were enhanced by resveratol. It also activates SIRT1 which is responsible 

for increasing DNA stability (Howitz et al., 2003; Wood et al., 2004). It also reduces the 

proliferation rate of different types of human malignant cell lines. Resveratrol shows preventive 

action against tissue-type plasminogen activator TPA-mediated mouse skin tumour formation. 

Resveratrol regulates apoptosis and it also induces delay in the cell cycle or accumulation of 

cells in S (synthesis) and G2 (Gap2) phase (Stivala et al., 2001; Bhat and Kosmeder, 2001; 

Bhat and Pezzuto, 2002). Resveratrol-mediated regulation of apoptosis occurs most likely by 

the suppression of NF-κB (Manna et al., 2000). NF-κB is implicated in development of cancer 

by increasing survival of cells. One mechanism by which resveratrol inhibits NF-κB includes 

the decreased phosphorylation of IκBa (nuclear factor of kappa light polypeptide gene enhancer 

in B-cells inhibitor, alpha) by the IKK complex (an enzyme complex that is involved in 

propagating the cellular response to inflammation). Resveratrol is known for suppression of 

the activated signalling kinases such as protein kinase C (PKC) and protein kinase D (PKD) 

(Stewart et al., 2000; Haworth and Avkiran, 2001; Storz et al., 2004). These enzymes are 

activated by oxidative stress and phorbol ester-and are related with cancer development and 

NF-κB activation (Stewart et al., 2000; Haworth and Avkiran, 2001; Stewart and Oˋ Brian, 

2004). It has also been shown that resveratrol suppresses the transcriptional activation of 

cytochrome P450 1A1 and that it is responsible for inhibition of activities of cyclooxygenase1 
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(COX-1) and cyclooxygenase 2 (COX-2) which are responsible for enzymatic inflammatory 

response (Subbaramaiah et al., 1998). Altogether, resveratrol is a natural antioxidant which is 

a potential chemopreventive agent and can be used to treat cancer the only limitation is side 

effect to normal cells because resveratrol is cytotoxic for the normal cells as well.  

     As ROS plays a dual role in cancer development, it has an application as pro-oxidant- and 

antioxidant- agent cancer prevention and therapy (Magda et al., 2001; Fruehauf and Meyskens, 

2007; Wang and Yi, 2008; Trachootham et al., 2009). Pro-oxidant-based anticancer agents 

increase the ROS production along with weakening the antioxidant defence system of cancer 

cells. The antioxidant-based agents perform by scavenging intracellular ROS, improving the 

ROS-scavenging enzyme activities, and inhibiting NOX (NADPH oxidases) activity. Both of 

these approaches in the right proportion make the perfect combination for treatment of cancer 

(Gupta et al., 2012). 

1.9 Investigating SIRT1 as a Target for Cancer Therapeutic 
 

     SIRT1 has emerged as a drug development target for treating age-dependent diseases such 

as cancer (Kim et al., 2008). An excessive amount of SIRT1 is expressed by primary cells, and 

these levels usually fall during cellular aging so that replicative senescence is avoided and one 

is secured from tumourigenesis (Chua et al., 2005). Replicative senescence is a kind of tumour 

suppression. SIRT1 is crucial for restricting replicative lifespan which suggests that SIRT1 

works as a tumour suppressor. Mouse embryonic fibroblasts (MEFs) derived from SIRT1-null 

mice are prone to spontaneous immortalisation, suggesting that SIRT1 behaves as a growth-

suppressive gene in culture (Chua et al., 2005). Furthermore, hematopoietic stem cells from 

SIRT1-null mice have increased proliferation potential, and shRNA knockdown of SIRT1 in 

human fibroblasts accelerates cell proliferation (Blethrow et al., 2007; Narala et al., 2008). 

SIRT1 has also been shown to inhibit androgen receptor-dependent cell proliferation in prostate 

tumour cells (Fu et al., 2006). Recent publications also showed that transgenic overexpression 

of SIRT1 in the intestine inhibited polyp formation in the ApcMin mice, as mentioned earlier 

(Firestein et al., 2008), whereas SIRT1 deficiency led to increased tumour formation in p53-

null mice (Wang et al., 2008). These observations suggest that SIRT1 may suppress tumour 

growth under certain conditions, and that SIRT1 activators could be used for cancer treatment 

or prevention (Saunders and Verdin, 2007). 
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     The SIRT1 activator may work as a beneficial chemopreventative agent in case SIRT1 

behaves as a tumour suppressor (Athar et al., 2007). Activation of SIRT1 will: (i) increase 

expression of PGC-1α with reduction of  reactive oxygen species (ROS), (ii) interaction with 

FOXO3 for antioxidants effect and arrest of cell cycle, (iii) interaction with NF-κB and Ku70 

reducing inflammation and leading to apoptosis, (iv) epigenetic modifications by modifying 

the expression of H3-TriMeK9, H4-MeK20, Ac-H4-K16, Ac-H3-K9, Ac-H1-K26, H3-MeK79 

and (vii) in neurogenesis increasing the expression of deacetylation RARβ, reducing the β-

amyloid plaques and increasing deacetylation of tau protein (T protein that stabilise 

microtubules), reducing the tangles. In addition, a recently identified endogenous activator of 

SIRT1 designated active regulator of SIRT1 (AROS) binds to the N-terminus of SIRT1 and 

potentiates its deacetylase activity toward p53 in the damage response (Kim et al., 2007) as 

shown in figure 1.24. 
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Figure 1.24: SIRT1’s anticancer activity (adapted from Kim and Um, 2008). 

 

     Studies have shown that the SIRT1 activator resveratrol, a polyphenol found in wines and 

thought to harbor major health benefits, induces apoptosis in response to Tumour Necrosis 

Factor (TNFα) via NF-κB inhibition, and has chemopreventive activity against various cancers, 

including leukemia, skin cancer, and prostate cancer (Yeung et al., 2004; Aziz et al., 2005; 

Suzuki et al., 2013). Resveratrol also induces autophagy, and it has been shown that this occurs 

in a SIRT1-dependent manner (Morselli et al., 2011). On the other hand, in a cell-culture model 

of rotenone-induced cell death, resveratrol was reported to protect against rotenone-induced 

apoptosis and enhance degradation of α-synucleins (a protein that is abundant in the human 

brain), which was shown to occur by induction of autophagy (Wu et al., 2011). The resveratrol 

derivative Longevinex (a product that activates 9 times more genes than plain resveratrol) has 

the curious effect of increasing autophagy after prolonged administration, and this correlates 

with increased SIRT1 levels, as well as FOXO nuclear translocation (Mukherjee et al., 2010; 

Kozako., et al.,2014).  
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     Subsequent studies in this field are going to make evident the exact function of SIRT1 at 

the cancer site and it is hoped that new chemotherapeutic functions of SIRT1 activators are 

going to be determined. In accordance with this, it is suggested that very selective ligands such 

as aptamers, should be created and investigated in various cancer cell lines for the regulated 

activity of SIRT1 as shown in figure 1.25. The purpose of which would be to find out the 

manner in which SIRT1 acts as a tumour suppressor. 

 

 
Figure 1.25: Diagram of aptamer binding to SIRT1 protein (adapted from Sun et al., 2014). 

 

1.10 Aptamers 
 

     The encyclopaedia of Analytical Chemistry (Aragonés et al., 2012) has defined aptamers 

as “Artificial nucleic acid ligands that can be generated against amino acids, drugs, proteins 

and any molecules. They are isolated from complex libraries of synthetic nucleic acid by an 

iterative process of adsorption, recovery and re-amplification”. Single-stranded DNA or RNA 

(ssDNA or ssRNA) molecules that can bind to pre-selected targets including proteins and 

peptides with high affinity and specificity are termed as Aptamers (Ellington and Conrad, 1995; 

Gold et al., 2002). Their 3D structure enables them to bind with a specific target molecule with 

considerable high specificity and affinity (Stoltenburg et al., 2005). The 3-D conformations of 

oligonucleotides, rather than the nucleotide sequence are the responsible for binding potential 

of aptamers (Sampson, 2003). The overall 3-D structure can be made up of quadruplexes, 

triplexes, pseudoknots, hairpins, bulges, loops and stems made by single strand of nucleic 

acids. Aptamers are capable of binding through a good fit with several different targets ranging 

from one single molecule to molecules in single organism. Formation of hydrogen bonds, van 

der Waals and electrostatic interactions, stacking of aromatic rings, compatibility of structures 

or combination of these contribute to this good fit (Hermann, 2000) as shown in figure 1.26.  
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Figure 1.26: Molecular recognition of targets by aptamers with defined three dimensional structures (adapted 
from Stoltenburg et al., 2007). 

 

1.10.1 Generation of Aptamers 
 

     Ligands which are capable of binding to target entities with high specificity and good 

affinity can be designed in two major ways i.e. through either combinatorial chemistry or 

rational design (Marimuthu et al., 2012). The approach of designing ligands through rational 

design is based on identification of molecules able to bind with the target using chemical 

wisdom and intuition. To some extent, the approach also relies on luck for identifying the 

desired molecule (Bowser, 2005). Combinatorial chemistry, on the other hand, involves the 

synthesis of a huge number of molecules giving rise to libraries followed by evaluation of 

molecules to determine the potential ligand molecules.   

     The approach of combinatorial chemistry is used to generate and select aptamers. During 

1990, a revolutionary technique of combinatorial chemistry namely in vitro selection (Ellington 

and Szostak, 1990), in vitro evolution (Joyce, 1989) or Systematic Evolution of Ligands by 

EXponential enrichment (SELEX) (Tuerk and Gold, 1990) was developed for the generation 

of aptamers.    
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1.10.1.1 SELEX 
 

     The technique of Systematic Evolution of Ligands by EXponential enrichment (SELEX) 

was developed in 1990. This technique has been extensively applied to evolve aptamers.  

    

1.10.1.2 General Principles 
 

     In 1990, two different research groups used the technique of SELEX for the first time to 

produce aptamers (Tuerk and Gold, 1990). A combinatorial nucleic acid library was used by 

Tuerk and Gold to identify aptamers, particularly RNA oligonucleotides, which can bind to 

non-nucleic acid entities with strong affinity and high selectivity (Stoltenburg et al., 2007). The 

researchers explored the binding of bacteriophage T4 DNA polymerase (gp43) to the ribosome 

binding site in the messenger RNA. Sequences of gp43 involved in this binding were selected 

using an RNA pool randomised at certain sites. This method of selection was named as SELEX 

(Tuerk and Gold, 1990). Ellington and Szostak also employed the same method to identify the 

RNA molecules which can form a 3D structure allowing it to bind with certain small ligands 

like Cibacron Blue and other organic dyes (Ellington and Szostak, 1992). SELEX has turned 

into an extensively used procedure in medical, pharmaceutical and molecular biological 

research.  

     The SELEX technique is represented in figure 1.27. The procedure begins with a random 

DNA library containing various sequence motifs ranging from 1013 to 1015 in number. These 

are developed chemically (James, 2000). The DNA library must be transformed into RNA 

library. However, if the procedure is aimed at evolution of DNA aptamers, the library does not 

need to be treated and is utilised directly. The sequence motifs are incubated with substrate for 

suitable time to allow binding. Following incubation, the oligonucleotides strongly bound with 

the substrate are separated from weakly bound or unbound ones. Next step is elution and 

amplification of substrate bound oligonucleotides. Amplification of DNA aptamers is executed 

through PCR and that of RNA aptamers is done through RT-PCR. In the case of evolution of 

DNA aptamers, the next step is conversion of newly synthesised double stranded DNA into 

single stranded DNA and after enrichment; this pool is utilised in the subsequent SELEX cycle. 

In this way, the starting random set undergoes successive rounds of selection and amplification 

to generate few sequences having strong affinity for binding with substrate (Stoltenburg et al., 

2007).            



CHAPTER 1                                                                  INTRODUCTION 

60 
 

     Usually, SELEX is performed with some modifications and some additional steps aimed at 

achieving highly specific aptamers. The additional steps mostly used include negative selection 

or subtraction. Through these steps, oligonucleotides capable of binding with the substrates 

with high specificity are isolated in an exceedingly selective way. In addition to this, extent of 

selection as well as target concentration can be altered to obtain efficient aptamers (Stoltenburg 

et al., 2007). The procedure completes after sufficient enrichment of the selected 

oligonucleotides. Usually the PCR products are added to vector molecules which are then used 

for transforming competent bacterial strains resulting in development of aptamer clones. Next 

step is the extraction of clones followed by sequence analysis to locate the aptamer sequences. 

However, since innovative sequencing techniques are now available, steps of cloning can be 

escaped and oligonucleotides can be sequenced directly with the help of primers (Bayrac et al., 

2011).         

     In the final step, the selected pool of aptamers is processed through certain post-SELEX 

modifications which are meant for various purposes like improving stability, reporting ability 

and for immobilisation. Even though different modifications are made in this technique for 

different purposes, some basic steps continue to be the part of the procedure (Stoltenburg et 

al., 2007).). These steps include: 

 1- Binding 

 2- Partition 

 3- Elution  

 4- Amplification  

 5- Conditioning 

     The methods of this technique are dependent on library, type substrate, selection, 

amplification and conditioning. Subsequent sections contain detailed description of the 

libraries, substrates and steps involved in the technique.  
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Figure 1.27: The principles of SELEX. In vitro selection of target-specific aptamers using SELEX technology 

(adapted from Stoltenburg et al., 2007). 
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1.10.1.3 Target Molecules 
 

     Researchers have carried out SELEX for various substrates since 1990 when it was first 

described (Ellington and Szostak, 1990). Substrates used for aptamer binding include simple 

inorganic molecules, small organic molecules, peptides, proteins, carbohydrates, antibiotics as 

well as complex substrates like whole cells, viruses and bacteria (Famulok, 1999; Wilson and 

Szostak, 1999; Gӧringer et al., 2003; Klussmann, 2006). Aptamers can be developed for 

substrates which possess innate ability to interact with nucleotides, nucleic acids, cofactors and 

nucleic acid binding proteins such as enzymes or regulatory proteins, but also for molecules by 

nature not associated with nucleic acids like growth factors (Jellinek et al., 1994; Green et al., 

1996). Ciesiolka et al., (1995) and Hofmann et al., (1997) described the selection of RNA 

aptamers with affinities for Zn2+ and Ni2+, respectively. In both cases an affinity matrix charged 

with those metal ions was used for the isolation of selective binding RNA molecules from a 

randomised RNA library, adopting a method for the purification of proteins with an extension 

of histidine. In few examples the SELEX technology was also applied to select aptamers 

targeting nucleic acid structures (Stoltenburg et al., 2007).  Tertiary RNA structures play an 

important role in several biological processes, e.g. as regulatory domains of gene expression. 

Aptamers could help to understand such structures. By interfering biological processes 

mediated by tertiary RNA structures, e.g. in pathogens, these aptamers could also function as 

therapeutic oligonucleotides (Duconge and Toulme, 1999; Toulme et al., 2003). According to 

the ratio among the publications concerning aptamers, most of the aptamers were selected for 

proteins or for peptides as special epitopes of a protein of interest. Proteins exhibit very large, 

multifunctional surfaces, which make them excellent aptamer targets (Bock et al., 1992). 

Thrombin was the first protein target used for an aptamer selection that normally does not 

interact with nucleic acids (Bock et al., 1992). The anti-thrombin DNA aptamer folds into a G-

quartet structure (figure 1.28) and can inhibit thrombin function (Ulrich et al., 2002).  
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Figure 1.28: Quadruplex structure of the thrombin binding aptamer, (Adapted from Cai et al., 2014). 

 
 

     This aptamer is one of the best studied aptamers and is widely used as model system for 

aptamer applications (Stoltenburg et al., 2007). In addition to defined single target molecules 

the SELEX technology can also be applied to complex target mixtures, whole cells, tissues, 

and organisms. In this case the final aptamer pool can be more complex dependent on the 

number and abundance of potential target molecules, but also on the affinity of the aptamers 

(Ulrich et al., 2002; Wang et al., 2003). In most of these SELEX experiments directed towards 

complex mixtures the selected aptamers are targeting cell surface molecules, often proteins. 

Aptamer selection can be for example directed at alterations in the cell surface structures caused 

by changes of the environmental conditions or by diseases (Blank et al., 2001; Ulrich et al., 

2002; Wang et al., 2003; Gӧringer et al., 2003). The multitude of different targets used in 

SELEX experiments implicates that the selection of aptamers is possible for virtually any 

target. However, there are some general prerequisites for a potential target to successfully select 

aptamers with high affinity and specificity (Stoltenburg et al., 2007). Defined single target 

molecules should be present in sufficient amount and with high purity. This helps to minimise 

the enrichment of unspecifically binding oligonucleotides and to increase the specificity of the 

selection (Stoltenburg et al., 2007). Some target features that facilitate an aptamer selection are 

positively charged groups (e.g. primary amino groups), the presence of hydrogen bond donors 

and acceptors and planarity (aromatic compounds) (Wilson and Szostak, 1999; Rimmele, 

2003). The aptamer selection is more difficult for targets with largely hydrophobic character 

and for negatively charged molecules (e.g. containing phosphate groups). These target 

requirements are caused by the basic principles of the intermolecular interactions in an 

aptamer-target complex. The aptamers bind to their targets by a combination of 

complementarity in shape, stacking interactions between aromatic compounds and the 

nucleobases of the aptamers, electrostatic interactions between charged groups or hydrogen 
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bonding (Patel et al., 1997; Hermann and Patel, 2000). In presence of the target, and on 

formation of the binding complex, the aptamers undergo adaptive conformational changes. The 

folding into defined 3-D structures permits the aptamers to completely encapsulate small target 

molecules by generating a specific binding pocket. In higher molecular weight targets like 

proteins, different substructures on the molecule surfaces are involved in aptamer binding 

(Stoltenburg et al., 2007). For example, side chains of basic amino acids (lysine, arginine) are 

often responsible for intermolecular hydrogen bonding. The binding complexes of aptamers 

targeting nucleic acids are mostly characterised by loop-loop interactions (kissing complexes) 

between two hairpin structures or involving internal loops and bulges. Triple-stranded 

complexes can also be generated by binding of a single-stranded domain or oligonucleotide to 

a double-stranded nucleic acid (Klussmann, 2006) as shown in figure 1.29. 

 

 
Figure 1.29: Triple-stranded complexes (Bacolla and Vasquez, 2014). 

 

1.10.1.4 Random DNA Library 
 

     The library to be used for SELEX is one of the most crucial aspects of the method (Marshall 

and Ellington, 2000). The SELEX begins with a random DNA library developed chemically. 

A standard DNA synthesiser is used to develop this oligonucleotide library. During this 

development, a central random sequence of 20-80 nucleotides with flanking regions of 18-21 

nucleotides that form the binding site for primers during PCR. As single strands of DNA are 

synthesised in the library, they can be used directly as they are for the SELEX experiment. 

However, in some cases, this oligonucleotide library is amplified on huge scale prior to next 

step of the technique i.e. selection. This is done for damaged DNA whose processing by PCR 

is useless (Marshall and Ellington, 2000). For RNA aptamers, the chemically synthesised DNA 
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library is converted into RNA library so that first step of the RNA SELEX technique can be 

performed. In contrast to the DNA library, sense primers are added with T7 promoter sequence 

in the RNA libraries (Stoltenburg et al., 2007).      

    For RNA aptamer SELEX, start with the single-stranded DNA as a template, double-

stranded DNA is formed using the PCR. Next step is transcription of DNA library into RNA 

library with the help of T7 RNA polymerase (Stoltenburg et al., 2007). This RNA library is 

now ready to be used for RNA SELEX as the starting library. It is worth mentioning that for 

every cycle of SELEX, reverse transcription and amplification of selected RNA pool is carried 

out through RT-PCR with the help of same primers. Moreover, new RNA pool for subsequent 

cycle is synthesised again via in vitro transcription using the same procedure discussed above. 

It appears that primer binding sites are involved in steps of PCR only; however, these regions 

are there in all sequences and play role in determining the overall shape of the oligonucleotides. 

Another crucial aspect of the procedure is the design of primer binding regions (Urak et al., 

2016). The primers to be used in the procedure should have appropriate annealing temperatures. 

It is also important to prevent formation of heterodimers and self-dimers. It can be stated that 

primer design, oligonucleotide library and efficiency of amplification through the PCR are 

crucial for successful execution of subsequent steps of the SELEX. For that reason, a library 

demonstrating significant interaction between constant regions should not be used (Sefah et 

al., 2010).            

     Besides the above mentioned aspects of the library to be used in the SELEX, size of 

randomised region must also be taken into consideration (Usually, oligonucleotides comprising 

20-80 nucleotides are employed for performing SELEX). The number of types of DNA in the 

library rises with the size of random regions thereby elevating the chances of identifying good 

binders. It has been reported that functionality of certain variants of aptamers are 20-30 mer 

only (Davis & Szostak 2002; Nutiu & Li. 2005). It implies that small randomised regions can 

suitably be used for the SELEX. Still, pools having large randomised regions demonstrate 

greater structural complexity and for that reason they have proved to be good for complex 

targets and substrates which do not bind with nucleic acids naturally.    
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1.10.1.5 Selection 
 

     Selection is an important step of the SELEX technology and involves incubation of the 

oligonucleotides with the substrates, separation of unbound and weakly bound sequences from 

strongly bound sequences and finally elution of the bound sequences so that they can be used 

in subsequent stages. As there are different kinds of sequences in the random library 

demonstrating varying specificities and affinities. An accurate approach for selection is to make 

sure that sequences with high affinities and specificities are sustained through subsequent 

cycles and sequences with low affinities are discarded (Bianchini et al. 2001).   

     Separation of oligonucleotides serves to be a critical step of the selection phase. Efficiency 

of the technique largely relies on the separation strategy for evolving good aptamers with 

suitable designs. In most of the employed protocols of SELEX, targets are immobilised 

(columns, tubes, etc.) to carryout separation of unbound and bound oligonucleotides (Liu and 

Stormo, 2005). Utilisation of affinity columns serve to be the most common technique for 

separation of oligonucleotides. In this procedure, the target is attached on a packed column 

(Stoltenburg et al., 2007). The oligonucleotide pool is then passed through the column. 

Sequences which are capable of binding with the substrate bind to them and hence remain 

attached with the column while other sequences which cannot bind with substrate pass straight 

through the column as well as elute. In this way, binding sequences get separated from others. 

Different kinds of affinity columns can be used for separation of oligonucleotides such as 

immobilised metals, polyhistidine tagging, glutathione S-transferase (GST) and biotin-

streptavidin type columns (Takagaki and Manley, 1997; Waybrant et al., 2012).  

     Initially, biotin-streptavidin affinity columns were used for SELEX protocols for separation 

(Low et al., 2009). Streptavidin demonstrates high specificity for biotin and value of affinity 

constant for biotin-streptavidin has found to be around 10-14 picomolar. First the substrate is 

tagged with biotin followed by incubation with streptavidin Agarose beads contained in a 

column. They offer some added advantages of easy handling, low cost and availability. In 

addition to these, polyhistidine tags have also been utilised by numerous researchers because 

of their convenient handling. They have good binding affinity for cobalt or nickel and for that 

reason an immobilised metal affinity column (IMAC) can be used for immobilisation of the 

substrate (Feng et al., 2011). Immobilised metals have been employed by researchers as 

substrates for selection of certain aptamers like arsenic aptamers (Kim et al., 2009).             
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     The glutathione S-transferase (GST) has also been increasingly used for SELEX procedures. 

In this case, substrate is tagged at amino terminal end of the GST fusion protein. This permits 

immobilisation onto a fixed support by attaching to its substrate i.e. Glutathione (GSH) (Weiss 

et al., 1997; Dobbelstein et al., 1995; Kim et al., 2002). In addition to affinity columns, the 

separation can be executed through other affinity surfaces. Furthermore, agarose beads and 

magnetic beads can serve as a good support for immobilisation of substrate proteins and may 

help in heterogeneous selection methods (Stoltenburg et al., 2005; Cox and Ellington, 2001). 

The same strategy is used in immobilisation of substrates on beads as that of affinity columns. 

Selection is aided by beads when a solution containing substrate molecule is incubated with 

them. The selected binding sequences can be eluted easily after the incubation with the help of 

magnet or spin column. Aptamers having binding affinity for influenza virus and oncostatin M 

(is a pleiotropic cytokine that belongs to the interleukin 6 group of cytokines) have been 

selected using microtitre plate, another affinity surface (Gopinath et al., 2006).   

     Several different microtitre plates are available which use the same rule for immobilisation 

as used by affinity columns. In case of microtitre plates, the substrate is first allowed to adhere 

with the surface of plate with the help of tags (Hall et al., 2001). After this, unbound sites are 

covered through a blocking agent like bovine serum albumin (BSA). Mixture of 

oligonucleotides is then introduced in the plate followed by incubation. After incubation, 

oligonucleotide mixture is washed off to remove the unbound oligonucleotide thereby selecting 

the oligonucleotides which can bind with the substrate (Ogasawara et al., 2007). An easy and 

rapid method of separation involves utilisation of nitrocellulose membrane filters (Hall et al., 

2001). These membrane filters allow selection of aptamers which bind specifically with 

peptides and extremely small molecules. Nevertheless, a considerable limitation of using 

nitrocellulose filters is its poor efficiency i.e. more than ten selection rounds are usually needed. 

Filtration method for separation using nitrocellulose membrane was used for the first time by 

Gold and Tuerck while selecting aptamers for organic dyes. Later, it has been used by 

researchers for selection of aptamers against proteins like protein kinase, human IgE and mouse 

prion protein (Conrad et al., 1994; Wiegand et al., 1996; Ogasawara et al., 2007).  

     Innovative methods for separation as well as modified versions of earlier methods have been 

developed. Geiger et al., described the method of negative selection in 1996 (figure 1.30) for 

removal of non-specific binding sequences (Geiger et al., 1996). In this method, the substrate 

is not immobilised but non-specific binding sequences remain attached to the fixed support or 

membrane and non-binding sequences are permitted to pass through. 



CHAPTER 1                                                                  INTRODUCTION 

68 
 

     Later Jensen et al., introduced counter SELEX in 1994 which involves evolving aptamers 

which are capable of distinguishing among closely related proteins (Jensen et al., 1995). The 

researchers altered the substrate of aptamers during subsequent rounds of SELEX. In this way, 

they selected aptamers which were unable to bind with the substrate. Increasing interest of 

researchers is in SELEX techniques through which it is possible to evolve aptamers capable of 

differentiating substrates contained in complex mixtures (Jiehua et al., 2012). For instance, 

Deconvolution-SELEX is a technique capable of selecting aptamers which can bind to its 

substrate in a complex environment (Morris et al., 1998). In this case, the selection procedure 

can be performed using the native form of the substrate and simple medium with no problems 

of validation (Morris et al., 1998). It also allows employment of aptamers at large scale. These 

days, researchers are interested in designing selection techniques which do not involve 

immobilisation of substrate.      
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Figure 1.30: The SELEX process. An initial DNA library is transcribed into RNA and the aptamers that bind to 

cells or beads with no target protein are eliminated. The remaining aptamers are applied to cells or beads with 

target protein and the bound aptamers are retrieved, amplified, and the SELEX process repeats (adapted from 

Jiehua et al., 2012). 
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     After immobilising the targets, unbound targets and oligonucleotides can be washed off 

conveniently. Initially, affinity chromatography with immobilisation of substrates on column 

made up of sepharose or agarose was employed (Liu and Stormo, 2005; Tombelli et al., 2005). 

Besides these, micro magnetic beads have also been used extensively since their surface to size 

ratio are high and they can be handled conveniently with low substrate concentration (Lupold 

et al., 2002; Kikuchi et al., 2003; Murphy et al., 2003; Stoltenburg et al., 2005). Besides 

immobilisation of substrates, some other methods are also available for separation of 

oligonucleotides. Ultra-filtration with nitrocellulose filters is one of the most extensively used 

methods in this regard (Schneider et al., 1993; Bianchini et al., 2001). Even though this method 

is easy to perform, a number of downsides of filtration have also been reported like non-specific 

interaction of the membrane with oligonucleotides. These undesired interactions of sequences 

can lead to non-specific enrichment of certain sequences during the SELEX.  

     Apart from immobilisation and ultrafiltration, several other techniques including capillary 

electrophoresis (Mendonsa and Bowser, 2004; Mosing et al., 2005; Tang et al., 2006), flow 

cytometry (Davis et al., 1996; Yang et al., 2003), electrophoretic mobility shift assay (Tsai and 

Reed, 1998), surface plasmon resonance (Misono and Kumar, 2005), and centrifugation 

(Homann and Goringer, 1999; Rhie et al., 2003) have also been used for separation. 

Quantification of bound and/or unbound sequences is also required for proceeding to 

subsequent steps of the SELEX. Radioactive nucleotides are usually utilised to determine the 

quantity of bound sequences. This tool is of high sensitivity since it is capable of detecting 

nucleic acids in small concentrations (Ellington and Szostak, 1990; Beinoraviciute-Kellner et 

al., 2000 and Shi et al., 2002). However, fluorescence labelling is now being employed to 

quantify nucleic acids since use of radioactive material has several limitations such as health 

risks and requirement of an isotope library (Davis et al., 1996; Rhie et al., 2003; Stoltenburg 

et al., 2005). Following removal of unbound sequences, elution of bound sequences is executed 

usually through denaturation. Treatment with heat or chemicals like EDTA, SDS or urea 

denatures the bound sequences. Still, competitive binding or affinity elution can also be used 

for elution (Stoltenburg et al., 2007).     
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1.10.1.6 Amplification 
 

     There is a direct correlation between number of selected sequences and number of substrates 

and population of sequence in the library during each cycle of the SELEX. With the help of 

PCR, enrichment of the selected binding sequence is done. As the library, which was used in 

the beginning contained a large number of different sequences with every sequence being rare 

in the library, PCR serves to be a useful tool for amplification of the selected sequences. 

Through the PCR, an exponential increment in the amount of eluted sequences is achieved. 

Apart from amplification, PCR proves to be helpful in other aspects as well. For instance, 

additional groups can be added to the sequences with no difficulty with the help of altered 

nucleic acids or attachment to primers. These additional groups can work for immobilisation 

or detection of desired sequences. Primers attached with fluorescent substance or biotin is 

widely used for this purpose. Fluorescent substance is used for quantification of binding 

sequences thereby allowing estimation of SELEX’s progress. On the other hand, biotin is used 

for immobilising the binding sequences on streptavidin beads allowing their elution 

(Stoltenburg et al., 2007).           

 

1.10.1.7 Cloning and Characterisation 
 

     Cloning and characterisation of aptamers serve to be the concluding phase of the SELEX 

technology. The process of selection is usually terminated after six to twenty rounds of 

selection, depending upon the efficiency of the procedure. Oligonucleotide pool of the final 

round is cloned and analysed to determine suitable aptamers with strong affinities (Conrad et 

al., 1995). Sequence analysis of over fifty clones is usually done. To identify similar and most 

common sequences, sequence alignment programs are employed. In general, most common 

sequences mostly prove to be the sequences with best affinity; however, other sequences must 

also be analysed in terms of specificity and affinity. Besides sequence analysis, determination 

of secondary structure provides useful data regarding binding domains of the sequences. 

Secondary conformations are usually determined through mfold (Zuker, 2003). This program 

calculates the possible configuration of single-stranded nucleic acids by energy minimising 

method considering stems, loops and bulges. The determined consensus motifs often are 

located in stem-loop structures (Jiang et al., 1997; Horn et al., 2004; Nishikawa et al., 2004; 

Lee et al., 2005), but they are even found in different secondary or tertiary structures. For 
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example, several authors describe conspicuous G-rich binding motifs which form G-

quadruplexes as shown in figure 1.31 (Macaya et al., 1993; Wilson and Szostak, 1998; 

Andreola et al., 2001). Others found pseudoknot formations that are responsible for target 

binding (Burke et al., 1996; Nix et al., 2000; Chaloin et al., 2002). 

 
Figure 1.31: Guanine-rich (G-rich) sequence that folds into a G-quadruplex structure (Millevoi et al., 2012). 

 

     These days, the above mentioned steps of cloning can be avoided while performing SELEX.      

This is because innovative technologies are being developed in where sequencing of 

oligonucleotide pools can be done without cloning. These technologies include SOLID, 

Illumina GAIIx and 454 (Stoltenburg et al., 2007). A pool which needs to be sequenced is first 

amplified with the help of primers having 454 flanks. In this case, it is possible to read up to 

10,000 sequences and the associated cost is only 1000$ approximately. It also ensures 

sequencing of all the selected oligonucleotides and provides statistical information for selection 

as well. When potential candidates for aptamers are identified through sequencing, aptamers 

having highest specificity and affinity is identified. Binding of these candidates with targets is 

tested for this purpose. An efficient measure of binding efficiency of aptamers is affinity 

constant (Kd). High affinities for substrate is indicated by small value of Kd. Researchers have 

identified aptamers with Kd in the range of picomolar to micro molars (Waybrant et al., 2012).   

     Specificity is also taken into consideration, besides binding while identifying the best 

aptamer. Specificity is determined by evaluating the binding affinities of an aptamer for similar 
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target molecules. An aptamer demonstrates superior folding structure having negative value 

for Gibbs free energy, high specificity and high binding affinity. 

          

1.10.2  Aptamers and Antibodies 
 

     A number of properties make aptamers typically dominant over antibodies and powerfully 

attractive therapeutic agents (Rusconi et al., 2002). Three-dimensional (3D) identification is 

used by aptamers to attach to their targets, just like antibodies. In the low picomolar to low 

nanomolar range, aptamers distinguished by their high specificity and elevated affinity to their 

targets respect to antibodies. Displaying minor to no immunogenicity, as compared to 

antibodies, aptamers are more stable, particularly DNA aptamer (Eyetech Study Group, 2003). 

Yet, aptamer research is novel but capable and its development is quicker in comparison with 

the antibody technology. 

1.10.3  Application of Aptamers 
 

   During the past twenty years, aptamers have been produced by different biotech companies 

and research groups for different applications. Aptamers have applications in environmental 

field, pharmaceutical industry and analytical chemistry. Researchers and industrialists are 

getting more and more interested in applications of aptamers such as: aptamers as detection 

reagents, use of Aptamers in affinity chromatography, aptamers for target validation, use of 

aptamers in diagnostics and aptamers as therapeutics (Klug et al., 1999; Hermann and Patel, 

2000; Thiel, 2004). 

1.10.4  Aptamers as Therapeutics 
 

     The functional blockage of the cell surface nucleolin represents a potential target for the 

development of anti-cancer therapeutics. AS1411 is a G-rich 26-nucleotide that contains only 

guanines and thymines (5′-GGTGGTGGTGGTTGTGGTGGTGGTGG-3′) and exists in 

solution as a guanine-quartetmediated dimer as shown in figure 1.32; it is thought to elicit its 

therapeutic effects through its interaction with nucleolin (Bates et al., 2009). AS1411 was 

discovered as part of a screen of antisense oligonucleotides for antiproliferative activity (Bates 

et al., 1999). In common with other therapeutics discovered by cell-based screening (as 
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opposed to screening or selection against individual protein targets) it is less certain what its 

exact mechanism of action is. AS1411 inhibits the proliferation of cells in a wide range of 

cancer cell lines. The suggested mechanism of action for the antiproliferative activity of 

AS1411 includes binding to, and subsequent internalisation by, cell-surface nucleolin followed 

by binding to cytoplasmic nucleolin (Bates et al., 2009). 

 

 
Figure 1.32: The molecular models (quadruplex) for the AS1411 aptamer. The quadruplex structure is believed 

to allow DNA aptamers to act as ligands at cell surface receptors in an interaction which is analogous to antigen-

antibody binding. (Adapted from Bates et al., 2009). 

 

 

     AS1411 is currently in phase II clinical trials for acute myeloid leukaemia with Phase I trials 

completed in 2008 (Shi et al., 1999; Bock et al., 1992. A number of features make them suitable 

candidates for application in therapeutics. In contrast to antibodies, aptamers demonstrate high 

stability and regain their native structure after being affected by extreme conditions, for that 

reason, they have long shelf life. Another beneficial aspect, for instance, they can be added 

with certain groups facilitating their transport (Keefe et al., 2010). Similarly, conjugation with 

polyethylene glycol or cholesterol improves bioavailability of aptamers (Bock et al., 1992; Wu 

et al., 2007). Modifications of their 3’ or 5’ ends result in improvement in then in vivo stability 

(Rusconi et al., 2004). Several other modifications have also been reported in the literature for 

different therapeutic purposes. Still therapeutic aptamers are challenged by few limitations. 

They can only be administered directly through injections at the target site or introduced to the 
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blood circulation (Burmeister et al., 2005; Sheehan and Lan, 1998). Owing to their size, 

aptamers demonstrate limited potential for passing through biological barriers in order to bind 

with intracellular substrates (Bock et al., 1992; Opalinska and Gewirtz, 2002). It has recently 

been reported that development of nanoparticles (Rong et al., 2010; Yang et al., 2011; Savla 

et al., 2011; Kurosaki et al., 2012) can help with an additional advantage of very extensive 

utilisation in aptamer therapeutics but they are toxic. Circular aptamers could be used in 

application of therapeutics and in the following sections we will explain it. 

 

1.10.5  Why is an Aptamer Validated to be a Good Therapeutic? 
 

     A wide range of applications is covered by aptamers including, employment of SELEX can 

recognise aptamers adjacent to therapeutically significant proteins for example thrombin, HIV 

and reverse transcriptase, aptamers show powerful inhibitory features in opposition to their 

protein targets. The reason why they are considered to be very effective is that they act against 

small molecules and monoclonal antibodies is their chemical nature because of their 3D 

arrangement for molecular identification are particularised by the nucleic acid sequence of 

aptamers (Bunka and Stockley, 2006). They squeeze into various small gaps situated on the 

surface (active site where enzymes act to produce an effect) of various proteins to cause an 

inhibitory action against various blockbuster drugs like Gleevec (Novartis), Viagra (Pfizer) and 

Tamiflu (Roche) (Bunka and Stockley, 2006). Aptamers also creates fissures that attach to 

various parts of the protein molecule (Nimjee et al., 2005). Aptamers can adhere firmly because 

of increased surface area of its targets leading to disruption in protein bonds (Bunka and 

Stockley, 2006). For example, of an anti-HIV reverse transcriptase (RT) aptamer which has the 

tendency of enveloping ~2600 A of the RT surface causing a decrease in production of resistant 

strains produced against the drug (Tuerk et al., 1992; Bunka and Stockley, 2006). Expensive 

robots and well-equipped libraries are helpful as they provide small molecule high-throughput 

screening leading to the synthesis of aptamers against the same target very easily. Aptamers 

are to be selected wholly from a test tube maintaining accuracy and attraction that should 

strongly be limited and should be specific against immunogenic or toxic targets (Nimjee et al., 

2005). When such drugs are administered at an elevated dose (beyond the therapeutic range) 

in humans, aptamers then lack their immunogenicity and toxicity (Nimjee et al., 2005). Along 

with that, aptamer antibodies against complementary base-pairing or anionic polymer, the 

strength of the aptamer can be reversed (Oney et al., 2009; Rusconi et al., 2004). 
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     A fine-tuning of aptamers which would not be accessible to an antibody-based therapy can 

be acquired by these approaches. Also, synthetic derivation, chemical stability, temperature 

antibodies and little molecules (Jayasena, 1999; Nimjee et al., 2005). Nucleases degrade 

natural phosphodiester oligonucleotides and hence for employment in cell studies, they would 

be inapt. Aptamers are frequently capped at their 5' and 3' end, and the phosphate backbone 

and nucleobases are frequently customised to make aptamers defiant to nuclease degradation 

(Mayer, 2009a; Nimjee et al., 2005). For therapeutic usefulness, 2' fluorinated pyrimidine and 

2' methoxy purine are general alterations (figure 1.33) (Keefe and Cload, 2008; Famulok, 

2009).  

 

 
Figure 1.33: Chemical structure of 2' fluorinated pyrimidine and 2' methoxy purine. 

 

     For the cure of inflammatory diseases and haematological complications, Noxxon Pharma 

is a biotech company with their centre of attention being the study and development of 

spiegelmers (L-aptamers). In phase 1 clinical pipeline is a spiegelmer aptamer, NOX-E36, 

employed to treat diabetic nephropathy (www.noxxon.com). At present, several aptamers have 

stepped into various levels of the drug development pipeline, or the method to bring to the 

market, a novel drug from the lab-bench (Bunka et al., 2010; Keefe et al., 2010). Vascular 

entry is a feasible approach to access these targets, without having to enter the aptamers to the 

cells. The therapeutic potential of cell surface targets such as membrane antigen, viral surface 

proteins is comparatively high. In addition to the therapeutic effect these aptamers are also 

useful otherwise (Keefe et al., 2010).  

     To sum up very concisely, aptamers are validated to be excellent therapeutics for three 

major reasons: 

http://www.noxxon.com/
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     1-Aptamers are easily selected by SELEX against any molecular therapeutic targets     

        including toxins. 

     2-Aptamers possess properties equivalent or even superior to antibodies and small  

        molecules in aspects such as affinity, specificity and ease of synthesis. 

     3-Aptamers are chemical in nature and can be modified.  

     4-Because their compose the nucleic acid which are nontoxic, this helps significantly   

        shorten the time in preclinical stage in the drug development process. 

 

1.10.6  In Vivo Stability of Nucleic Acid in Therapeutics  
 

     In vivo stability of nucleic acids is an important issue in investigations involving nucleic 

acids. It is quite established that nucleic acids, especially ribonucleic acids are prone to activity 

of nucleases found in the cell. Hence the issue of stability of nucleic acids in vivo must be given 

attention for efficient application of aptamers as entities capable of penetrating cells. In vivo 

stability of nucleic acids can be enhanced through different chemical modifications in the 

technique (Gu, 2011). To date, huge number of studies have been carried out on stabilisation 

of RNA molecules via modifying its 2’ end like 2`-O-CH3 and 2`-F, 2`-NH2 modifications. 

These approaches proved to be quite effective in improving RNA stability in media supplied 

with serum (Ulrich et al., 2006). In addition to this, locked nucleic acids also improve 

interactions between base pairs and make them resistant to nuclease activity (Veedu and 

Wengel, 2009). The approach of improving stability of nucleic acids through modifications is 

however challenged by the chances of adverse effects on the secondary structure which are 

responsible for functionality of aptamers (Gu, 2011). Yet, this problem can be avoided by 

adding chemical groups or making any other modification in the functional form of aptamer so 

that the functional properties are not affected by the modification. Another approach is to select 

aptamers which are inherently resistant to the nuclease activity. A number of different aptamers 

adopt G-quadruplex structure (Dapic et al., 2002; Choi et al., 2009). Stability of aptamers taken 

from G-rich libraries has recently been explored by a research group and it was determined that 

aptamers stability in serum and their penetration in cells is improved by development of G-

quadruplex structures (Dapic et al., 2002; Choi et al., 2010) which are extensively studied, 

highly stable secondary structures of DNA (Hardin et al., 2000). Moreover, these structures 

identify and replace cancerous cells on preferential basis (Choi et al., 2010). According to a 

proposition, G-quadruplex structures at AS1411 are naturally capable of binding with the 
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predominant nucleolin protein present on cancerous cells. This protein aids uptake of the 

aptamer by the cell (Teng et al., 2007).  

      In addition to these, circular nucleic acids have also proved to be stable since they have no 

3  ̀or 5  ̀ends exposed to be acted upon by exonuclease digestion (Gu, 2011). SELEX technology 

can make use of combination of the above mentioned methods for evolving aptamers which 

demonstrate good stability and internalisation potential.   

     To date, numerous aptamer constructs have been described that are able to modulate the 

immune response against cancer (Gilboa et al., 2013). They provide a similar or even superior 

activity to that of the corresponding monoclonal Ab, and their superior targeted delivery 

capacity confers on them less off-target side effects (Gilboa et al., 2015). Thanks to their 

plasticity, aptamers are a very promising tool as immune-modulatory ligands, since they can 

be engineered to either activate or block an immune-modulatory receptor (Pastor et al., 2013; 

Gilboa et al., 2013; Soldevilla et al., 2015). They can be customised to target this 

immunomodulation to the tumour site and can be engineered for delivering almost any kind of 

cargo as well (Keefe et al., 2010). In 2003 the development of first immune-checkpoint-

blockade RNA aptamer that binds CTLA-4 was published by Gilboa's group (Santulli-Marotto 

et al., 2003). The selection of these anti-CTLA-4 aptamers was the first being used with 

immunotherapeutic intentions and opened the door to a new platform in cancer 

immunotherapy. Furthermore, several aptamers have been described in an immunotherapy 

context towards some cytokine blockade. An aptamer known as R5A1 that binds to IL-10R has 

been selected and optimised to block the interaction between IL-10 and its receptor on the 

surface of immune-system cells. IL-10 is known to be secreted by tumour cells and promote 

immune-modulatory responses that favor tumour establishment and growth (Berezhnoy et al., 

2012). The aptamer bound to IL-10 receptor on the cell surface and blocked IL-10 function in 

vitro. Moreover, the aptamer sequence and therefore the structure were optimised by 

truncation, discarding putative steric domains increasing aptamer affinity (soldevilla et al., 

2016). 
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1.10.7 Circular Aptamers 
 

     Of most relevance for potential therapeutic applications, some common nucleic acid 

stabilisation strategies have encountered problems associated with toxic degradation products 

(Levin, 1999). In addition, modification performed post-selection can alter the subtle binding 

interactions of the selected natural aptamer (Boiziau et al., 1999; Blank et al., 2001). 

Circularisation of natural aptamers is an attractive alternative to chemical modification for 

improving aptamer stability. With the majority of nucleic acid degradation activity arising from 

plasma exonucleases (Shaw et al., 1991), modification of exposed termini often achieves a 

sufficient improvement in stability for use in vivo (Kurreck, 2003), and circular constructs 

eliminate this primary source of degradation entirely. Moreover, circularisation permits the use 

of natural nucleotides, which should avoid potential toxicity associated with chemical 

modification. In principle, circular aptamer constructs can be produced by either intra- or 

intermolecular ligation followed by exonucleolysis of unreacted products, a straightforward 

and efficient approach to their preparation (figure 1.34). With selected aptamers often forming 

a stem-loop structure, closing the stem into a duplex with a hairpin loop should not appreciably 

alter the binding loop structure and may confer added stability. Furthering this concept, two 

stem-loop aptamers with complementary overhangs can in principle be ligated to form a 

double-headed dumbbell aptamer linked by a duplex region. The key point in this regard that 

circularisation process should perform before and after SELEX in each round as shown in 

figure 1.35. The benefits of circular aptamers may lie in the development of aptamer 

therapeutics for diseases that require simultaneous binding of two or more targets, such as 

intravascular coagulopathy (Norman et al., 2003) and cancer (Zacharski, 2002).  

 

 
Figure 1.34: Circular aptamer synthesis. Oligonucleotide is (i) heated and slow cooled to form aptamer heads and 

duplex region, followed by (ii) ligation, and (iii) exonucleolysis to degrade any uncircularised oligonucleotide, 

leaving only intact circular aptamer (adapted from Daniel et al., 2006). 
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Figure 1.35: Circularisation of aptamer by ligation then start the first-round SELEX, after finishing the first round 
the circularisation was repeated to start the next round. 
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1.11 Aim of the Study 
 

     Many Sirtuins targets are involved in cancer and in many types of cancers, SIRT1 is found 

to be overexpressed. In more recent literature, it has been found that SIRT1 functions as an 

oncogene as well as a tumour suppressor, depending on the kind of tissue and cancer etiology. 

Although the SIRT1 deacetylase activity of SIRT1 toward p53 may firmly assign to the protein 

a specific function in tumour promotion, several studies including (i) expression studies in 

tumours, (ii) manipulation of SIRT1 levels in animals, and (iii) pharmacological approaches 

have challenged this hypothesis leading to the opposite view that SIRT1 may function as a 

tumour suppressor. This study aims to find answers to the question, “How can SIRT1 behave 

as a tumour suppressor?” In this regard, we propose to: 

1-  Develop highly selective ligands (circular and linear aptamers) against SIRT1 enzyme   

       as a therapy for cancer. 

2-  Study the interactions between selected aptamers and SIRT1 enzyme in vitro.  

3-  Study the interactions between selected aptamers and SIRT1 enzyme in a range of      

       cancer cell lines as the first step towards the development of an alternative     

 chemotherapy for cancer diseases.  
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2 MATERIALS & METHODS 
 

2.1 Materials 
 

1- DNA Oligonucleotide: 

 

DNA oligoes Sequence (5`-3`) Supplier 

-BAS Library TTCGGAAGAGATGGCGAC-N40-

CGAGCTGATCCTGATGGAA 

TriLink BioTechnologies 

-BAS P1 Primer TTCGGAAGAGATGGCGAC TriLink BioTechnologies 

-BAS P3 Primer ATGTCGTGCGTGCTA-SP18-

TTCCATCAGGATCAGCTCG 

TriLink BioTechnologies 

-BAS P3-notail Primer TTCCATCAGGATCAGCTCG TriLink BioTechnologies 

-BAS ligation splint  TCTCTTCCGAATTCCATCAGGA TriLink BioTechnologies 

 

2- Molecular biology: 

 

Materials Supplier 

-E. coli DH5α, Cat no. BIO-85027 Bioline, UK 

-EcoRI digestion, Cat no. ER0275 Thermo Scientific, USA 

-Exonuclease I, Cat no. EN0581 Thermo Scientific, USA 

-Gel Red Nucleic Acid Gel Stain, Cat no. BT41002 Biotium, UK 

-HyperLadder™ 25bp, Cat no. Bio-33057 BioLabs, UK 

-ISOLATE II PCR and Gel kit, Cat no. BIO-52059  Bioline, UK 

-Maxima Hot Start PCR Master Mix (2X), Cat no. K1052 Thermo Scientific, USA 

-Molecular biology reagents, water, nuclease-free, Cat no.     

 R0581 

Thermo Scientific, USA 

-Nucleospin® Extract II kit  Qiagen, Valencia 

-PreScission Protease, Cat no. 27-0843-01 GE HealthCare, USA 

-QIAEX II Gel Extraction Kit (150), Cat.no.20021 Qiagen, UK 

-QIAprep Spin Miniprep Kit, Cat no. 27104 Qiagen, Valencia 

-SIRT1, GST-tagged, Cat no. SIRT1-462H  Creative BioMart, USA 

-T4 DNA ligase, Cat no. 2011A Takara, Japan 

-T4 polynucleotide kinase (PNK), Cat no. EK00312  Thermo Scientific, USA 
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-TA-cloning kit, Cat no. K1213 Thermo Scientific, USA 

-VENT DNA polymerase  Biolabs, Ipswich, UK 

-X-Gal, Cat no. R0941 Thermo Scientific, USA 

 

3- Chemicals: 

Materials Supplier 

-10x TBE solution (Tris- borate, EDTA buffer)  Severn Biotech Ltd. UK 

-2ˋ, 7ˋ-dichlorofluorescein diacetate (DCFDA), Cat no.   

 ab113851 

Abcam, UK 

-Acrylamide: Bis-Acrylamide 29:1 solution 30% DNase  

 and RNase free, electrophoresis tested  

Fisher BioReagents Ltd. UK 

-Acrylamide: Bis-Acrylamide 29:1 solution 40% DNase   

 and RNase free, electrophoresis tested 

Fisher BioReagents Ltd. UK 

-Ammonium persulfate (APS) Fisher Ltd. USA 

-DAPI  Thermo Fisher Scientific, 

USA 

-Dimethyl sulfoxide (DMSO)  Fisher Scientific, USA 

-Dodecyl sulfate, sodium salt, 99% Sigma-Aldrich Ltd. USA 

-EDTA  Sigma-Aldrich Ltd. USA 

-Ethanol Fisher Ltd. USA 

-Fetal bovine serum FBS  Fisher Scientific, USA 

-Formalin 4%  Sigma-Aldrich, USA 

-MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-  

 diphenyltetrazolium bromide)  

Fisher Scientific, USA 

-PBS  Gibco, UK 

-Roswell Park Memorial Institute-1640 (RPMI-1640)   

 medium  

Gibco, Merelbeke, Belgium 

-SIRT1 fluorometric drug discovery kit, Cat no. AK-555 Enzo Life Science, UK 

-Sodium acetate, 99+%, a.c.s. reagent Sigma-Aldrich Ltd. USA 

-Sodium chloride NaCl  Sigma-Aldrich Ltd. USA 

-TBHP (Tert-Butyl Hydrogen Peroxide)  Abcam, UK 

-TEMED Fisher Ltd. USA 



CHAPTER 2                                                    MATERIALS & METHODS 

84 
 

-Tris-Cl  Sigma-Aldrich Ltd. USA 

-TritonX-100  Sigma-Aldrich, USA 

-Urea Sigma-Aldrich Ltd. USA 

 

4- Laboratory Equipment 

 

Equipment Company 

-A ProteOn™ GLM Sensor Chip  Bio-Rad GLM, USA 

-Acrylamide gel chamber EPS-300X C.B.S Scientific, Taiwan 

-Autoclave ST19T Dixons, UK 

-Concentrator plus Eppendorf, UK 

-Cool Centrifuge Hermle, Germany 

-Cytation™ 3 Cell Imaging Multi-Mode Reader  BioTek, USA 

-Dry bath Labnet, USA 

-Eppendorf Centrifuge MiniSpin® plus OrtoAlresa, SPANISH 

-Freezer –20ºC Biocold, UK 

-Freezer –80ºC Premium U410 

-Fridge 4ºC Biocold, UK 

-Gel Doc system Bio-Rad, USA 

-HPLC-UV  Agilent tech, USA 

-Incubator shaker Innova 40, USA 

-Luminometer Microplate Readers BMG Lab tech, Germany 

-Microwave Samsung, Korea 

-Nano drop Thermo Scientific, USA 

-PCR Apparatus Stratagene, USA 

-pH–Meter HI2211 HANNA, USA 

-Pipettes P2, P20, P200, P1000 Rainin Instrument, USA 

-Platform shaker STR6 STUART Scientific, UK 

-ProteOn™ XPR36 Bio-Rad, USA 

-UV Scan GiBox Syngene, USA 

-Vortex SciQuip, UK 

-Water Bath GFL, Germany 
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5- Buffers 

1. Laemmli–Loading Buffer (2×) 

0.5 M Tris–HCl (pH 6.8) 

2% (w/v) SDS 

20% (v/v) glycerol 

2% (v/v) 2–mercaptoethanol 

2% (v/v) bromophenolblue 

 

2. SDS–PAGE Running Buffer (5×) 

192 mM Tris–HCl 

1.9 M Clycin  

0.5% SDS 

 

3. Elution buffer (for extract the ssDNA) 

5 M NaCl 

1 M Tris-HCl (pH 7.5) 

0.5 M EDTA (pH 8.0) 

In 200 ml ddH2O 

 

4. Binding buffer (for cleavage GST) pH 7.3  

140 mM NaCl 

2.7 mM KCl 

10 mM Na2 HPO4 

1.8 mM KH2PO4 

 

5. PreScission cleavage buffer pH 7.5  

50 mM Tris-HCl 

150 mM NaCl 

1 mM EDTA 

1 mM dithiothreitol DTT 
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6. Coupling buffer pH 8.3 (Immobilisation of protein) 

0.2 M NaHCO3 

0.5 M NaCl 

 

7. Binding buffer TBS pH 7.5 (Immobilisation of protein) 

50 mM Tris-Base 

150 mM NaCl 

 

8. Equilibration buffer (Immobilisation of protein) 

1 mM HCl (ice cold) 

 

9. Aqueous buffer pH 7.0 (Immobilisation of protein) 

1.2 g NaH2PO4 

0.885 g Na2HPO4 

1 L ddH2O 

 

10. Binding buffer for SELEX pH 7.4 

100 mM NaCl 

5 mM MgCl2 

 

11. Washing buffer 1 for SELEX pH 7.4 

150 mM NaCl 

5 mM MgCl2 

 

12. Washing buffer 2 for SELEX pH 7.4 

300 mM NaCl 

5 mM MgCl2 

 

13. Washing buffer 3 for SELEX pH 7.4 

600 mM NaCl 

5 mM MgCl2 



CHAPTER 2                                                    MATERIALS & METHODS 

87 
 

 

14. Washing buffer 4 for SELEX pH 7.4 

900 mM NaCl 

5 mM MgCl2 

 

15. Elution buffer for SELEX pH 7.4 

1500 mM NaCl 

5 mM MgCl2 

 

2.2 Methods  
 

2.2.1 Introduction 
 

    The methodology described here the generation of aptamers for SIRT1 enzyme using 

SELEX strategy including: affinity matrix preparation, isolation, identification and 

characterisation of SIRT1 enzyme and selected aptamers sequences. The latter includes studies 

using FLUOR DE LYS® fluorescent assay for SIRT1 aptamers characterisation and kinetics, 

Surface Plasmon Resonance (SPR) binding assay to determine the KD values. To investigate 

the effects of aptamers on viability of cancer cell lines and the cellular redox state in vitro; 

MTT, ROS and fluorescent imaging assays were used with several cancer cell lines such as: 

A549 (human adenocarcinoma of alveolar basal epithelial cells), MCF7 (breast cancer cell 

lines, oestrogen positive and model for majority of breast cancers), MDA-MB-468 (breast 

cancer oestrogen negative), CaCo-2 (colorectal adenocarcinoma), HepG2 (children liver 

hepatocellular carcinoma) and U2OS (children human bone osteosarcoma), as a normal model 

Beas2b (normal human bronchial epithelial cells) and HaCaT (human keratinocyte cell line) 

were used. The susceptibility of natural nucleic acids to nucleolytic degradation is a serious 

hurdle for their applications. Plasma stability assays by HPLC-UV and gel electrophoresis were 

performed to evaluate the stability of the C3 aptamer in human plasma. 
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2.2.2 DNA Technology 
 

2.2.2.1 Library Preparation 
 

     The library used for selection was made up of a 40nt randomised region flanked by 18nt 

and 19nt fixed primer sites with a total sequence length of 77nt. The library was referred as the 

BAS single stranded DNA library with the nucleotide sequence of 5ˋ-

TTCGGAAGAGATGGCGAC-N40-CGAGCTGATCCTGATGGAA-3ˋ. The library was 

desalted and lyophilised by the manufacture (TriLink, San Diego, USA).  For the amplification 

of library BAS, the following two primers were used: BAS P1, 5ˋ-

TTCGGAAGAGATGGCGAC-3ˋ, and BAS P3, 5ˋ-ATGTCGTGCGTGCTA-SP18-

TTCCATCAGGATCAGCTCG-3ˋ. BAS ligation splint 5ˋ-

TCTCTTCCGAATTCCATCAGGA-3ˋ was used as a linker sequence to facilitate 

circularisation of the BAS library. BAS P3-notail primer 5ˋ-TTCCATCAGGATCAGCTCG-

3ˋ was used in a TA-cloning kit. BAS library was further purified using poly acrylamide gel 

electrophoresis (PAGE) on a 10% denaturing gel (8 M urea). Table 2.1 demonstrates the 

ssDNA library with primers. 

Table 2.1: Sequence of BAS library and primers that used in SELEX. 
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2.2.2.2 Denaturing Urea–Polyacrylamide Gel Electrophoresis (PAGE) 
 

     Denaturing secondary DNA structures is carried out by urea PAGE or denaturing urea 

polyacrylamide gel electrophoresis employing 6-8 M urea according to Summur et al., (2009). 

This method is utilised for the separation of polyacrylamide gel matrix fragments between 2 to 

500 bases. These fragments have extremely minute difference in lengths. The type of 

acrylamide solution decides the movement of the sample; a higher concentration helps in 

breaking up of the lower molecular weight fragments. The unstructured DNA molecules can 

also be separated by combining urea at a temperature of 45-55° C. The method helps to evaluate 

single stranded DNA fragments. 

     For BAS library, gels including 10% acrylamide, and 8M Urea were prepared with 77 nt. 

These gels were then run in 1xTBE buffer at 15 V/cm.  

Content for one gel: 

Materials ml 

Acrylamide concentration                           10% 

-UREA  4.8 g 

-30% Acryl (29:1)                                                        2.5 

-10x TBE                 1.0 

-Deionized water                                                    6.58 

 

     The solution was heated for 20s in the microwave and mixed, then added these materials: 

Materials µl 

-TEMED                   4.0 

-30% APS  33 

 

     The bands were visualised by UV transilluminators. 
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2.2.2.3 Determination of Nucleic Acids on Gels by Gel Red Staining 
 

     Gel Red is a sensitive, stable and environmentally safe fluorescent nucleic acid dye, which 

interacts with the bases of nucleic acids. It is an intercalating agent commonly used as a nucleic 

acid stain on polyacrylamide gels. The gels were stained by Gel Red solution (added 15 µl of 

Gel Red 10,000X stock reagent and 5 ml of 1 M NaCl to 45 ml H2O) for 30 min and visualised 

on an ultraviolet transilluminator at 302 nm. Bands of desired length were extracted from a 

polyacrylamide gel. 

2.2.2.4 Extraction of Nucleic Acids from Polyacrylamide Gels 
 

     To extract the ssDNA from a polyacrylamide gel, the gel was visualised on an UV 

transilluminator at 302 nm, and the desired band was cut out precisely from the gel. The gel 

was then chopped into small pieces and put into a 1.5 ml eppendorf tube. About two volumes 

of elution buffer (8 ml of 5 M NaCl, 2 ml of 1 M Tris-Cl, pH 7.5, 0.4 ml of 0.5 M EDTA, pH 

8.0; were added to 200 ml ddH2O) were added to the tube and incubated at RT with shaking 

for overnight. The sample was then centrifuged and the supernatant was recovered carefully. 

The purified nucleic acids could be obtained by ethanol precipitation. 

2.2.2.5 Ethanol Precipitation 
 

     Ethanol precipitation is a commonly used technique for concentrating and purify DNA 

preparations in aqueous solution. It was carried out according to Zeugin &Hartley (1985). The 

mechanism is that nucleic acids are polar and soluble in water, which is polar too, while 

insoluble in the ethanol. Before precipitation, the salt concentration of the sample was adjusted 

to 0.3 M by adding 1/10 volume of 3 M sodium acetate. Two volumes of cold 100% ethanol 

were added to the sample, and then placed at -20° C at overnight. The sample was spun at 

11,000g in a microcentrifugation for 30 min to harvest the precipitated DNA. The supernatant 

was decanted carefully. The pellet was washed by adding 1 ml of 70% ethanol and spinning 

for 5s. The supernatant was then decanted carefully. A working stock of BAS library was 

obtained by resuspending the purified pellet in 50 μl Milli-Q ddH2O and quantification by UV 

spectroscopy. The BAS library was prepared for circularisation by phosphorylation using T4 

polynucleotide kinase (PNK). 
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2.2.2.6 Phosphorylation of Linear BAS 
 

      Prepared the following reaction mixture: 

Material µl 

-Linear BAS stock (1660 pmol)             2.0 

-Reaction buffer A for T4 Polynucleotide Kinase (10X) 66.4 

-ATP (10 mM) 66.4 

-T4 Polynucleotide Kinase (332 U) 33.2 

-Water, nuclease-free  496.3 

 

     The total volume of 664 µl mixture reaction were mixed, spun briefly then incubated at 37° 

C for 1h. After incubation, heated at 75° C for 10 min. After this, phosphorylation reaction was 

directly used for ligation by T4 DNA ligase. 

2.2.2.7 Ligation of BAS by T4 DNA Ligation 
 

     Prepared the following reaction mixture: 

Material µl 

-Linker BAS (1660 pmol)                2.0 

-Phosphorylation reaction (500 nM) 664 

-T4 DNA Ligase Buffer (10X)    400 

-Water nuclease free 2920 

     The reaction mixture was heated at 90º C for 1 min then cooled at room temperature for 10 

min. The 14 µl of 4900 U T4 DNA ligase were added then mixed thoroughly and incubated at 

16° C overnight. Ligation reactions were ethanol precipitation and PAGE purification by using 

poly acrylamide gel electrophoresis (PAGE) on a 10% denaturing gel (8 M urea). 

    Circular bands were identified by UV transilluminators as the closest band with a decreased 

mobility versus a linear marker. Circular stock was purified and quantitated by the previously 

mentioned protocol. The circularised ssDNA product migrates slower (above) the linear 

ssDNA band; the adenylated-oligo intermediate can be seen as a band just above the linear 

ssDNA. 
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2.2.2.8 Confirmation of circularity of the BAS Library 
 

     Circularity of the BAS library was confirmed using EcoRI digestion by manufacturer 

recommended protocol and extending incubation time to overnight at 37º C.   

2.2.2.9 Removing the Linear ssDNA Template and Adenylated Intermediat 

from the Reaction 

 

     The circularisation reaction was terminated by ethanol precipitation, the remaining linear 

ssDNA substrate and linear single-stranded adenylated intermediate removed by treatment with 

Exonuclease I which digests linear ssDNA (Kuhn and Frank-Kamenetskii, 2005). The circular 

ssDNA is resistant to these exonucleases, while the linear ssDNA and adenylated intermediate 

are digested. The linear ssDNA and adenylated intermediate were eliminated by addition of 20 

U of Exonuclease I, followed by incubation at 37° C for 45 min. 

2.2.3 Protein Technology  
 

2.2.3.1 SIRT1 Enzyme 
 

     In this research study, recombinant human SIRT1, GST-tagged (SIRT1-462H) was used as 

an enzyme that binds with circular and linear aptamer. Before beginning the selection of 

circular and linear aptamer against SIRT1 enzyme, the GST tag was cleaved from the enzyme 

by PreScission Protease on-column GSTrap FF (GE HealthCare). 

2.2.3.2 Cleavage of GST-tag using PreScission Protease (PSP)  
 

     Pre-Scission protease used to remove the GST affinity tag from SIRT1 enzyme. The GST 

and human rhinovirus 3C protease are available in the PreScission Protease, which is a 

naturally obtained fusion protein. This protease cleaves GST fusion proteins generated from 

the pGEX-6P vectors pGEX-6P-1, pGEX-6P-2, and pGEX-6P-3 and through protease control 

at the same time. The Gly and Gln remain of the recognition sequence of 

LeuGluValLeuPheGln/GlyPro were split through the PreScission Protease. A syringe was 

filled with binding buffer and connect the GSTrap FF column (1 ml) to the syringe using the 

adapter supplied as shown in figure 2.1. 
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Figure 2.1: GSTrap FF connect with syringe by adapter supplied. 

 

     Equilibrated the column with five column volumes (5 ml) of binding buffer then washed 

the column with 10 (1 ml) column volumes of PreScission cleavage buffer. The following 

components were assembled in separate 1.5 mL tube: 

Material                   µl 

-PreScission protease (2 U)                   1.5 

-SIRT1 enzyme (0.09 mg/ml) 150µ g 

-Cleavage buffer (1X) 298.35 

-Total volume                   200 

 

 

     The PreScission Protease mixture was loaded onto the column using a syringe; incubated 

the column at 4° C overnight. In the next day 3 ml of PreScission cleavage buffer were loaded 

into the column and collected the elution (0.5–1 ml/tube). The elution solution was contained 

the SIRT1 enzyme, while the GST moiety of the fusion protein and the PreScission Protease 

were remained bound to GSTrap FF. The extent of cleavage of SIRT1 enzyme was determined 

by SDS- PAGE.  
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2.2.3.3 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS– 

PAGE) 

 

     Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) is a technique to 

separate proteins according to their electrophoretic mobility (Win and Craig, 1994). SDS, an 

anionic detergent, which denatures secondary and non–disulfide–linked tertiary structures, 

applies a negative charge to each protein in proportion to its mass. So SDS–protein complexes 

can migrate through the gel in accordance to the size of protein. A discontinuous buffer system 

with stacking gel and separating gel is used to increase the resolution of protein separation 

during SDS–PAGE. The stacking gel contains chloride ions, which migrate faster through the 

gel than the protein sample, while the electrophoresis buffer contains glycine ions, which 

migrate slower. The protein molecules are trapped in a band between these ions. As the protein 

enters the separating gel, which has a smaller pore size, a higher pH and a higher salt 

concentration, the glycine is ionised, the voltage gradient is dissipated and the protein is 

separated based on size. Gels were prepared in an Expedeon mini–gel set (Expedeon Ltd, UK) 

with 20% separating gel and 4% stacking gel. The samples were mixed with 2X Laemmli–

loading buffer and boiled at 95° C for 5min. The gels were run in SDS–PAGE running buffer 

at 8 V/cm. Proteins were visualised using Instant Blue stain. 

2.2.4 SELEX Methodology  
 

2.2.4.1 Affinity Chromatography In vitro Selection Method 
 

     An affinity chromatography based method was used for the in vitro selection of aptamers 

against the SIRT1 enzyme. 

 

2.2.4.1.1 Immobilisation of SIRT1 
 

   The method was based on the immobilisation of the SIRT1 enzyme to an NHS-HP SpinTrap 

column (1 ml) (GE HealthCare) with the functionality of the column dependent on the 

manufacturer’s recommendations. 
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   First step, prepare the media by adding 200 µl of 50% gel solution into the column, then 

removing the storage solution by centrifugation for 1 min at 150 g. 400 µl of ice-cold 1 mM 

HCL was added to the column and rotated in the container for a minute, at 150 g to stabilise 

the solution. The entire process was repeated thrice. 

   On reaching the equilibrium stage, 200 µl of protein solution, (0.5 to 1.0 mg/ml in coupling 

buffer) were added with the solution so form and suspend manually for incubation by slow 

mixing for around 30 min and centrifuged for 1 min at 150 g to remove excessive enzyme. Any 

remaining active groups were blocked with washing by alternating between high pH buffer and 

low pH buffer. Equilibration for the binding was achieved by adding 400 µl binding buffer, 

and stirring thrice for 1 min at 150 g.  

2.2.4.1.2 In Vitro Selection of Circular Aptamers Against SIRT1 Enzyme 
 

     For the initial round of selection, 100 pmol of circularised BAS library were added to 200 

µl of binding buffer in column containing SIRT1 and incubated for 2h at 37º C as shown in 

figure 2.2. A stringent system of buffers was designed to provide a highly specific ssDNA 

aptamers. The binding buffer was composed of 100 mM NaCl, and 5 mM MgCl2 at a pH of 

7.4 and selection were carried out at 37° C to obtain aptamers for use in physiological 

situations. Wash and elution buffers were formulated with the same 5 mM MgCl2 

compositions, but differing in concentrations of NaCl from 0.15 M-1.5 M respectively. A wash 

step with 5 columns (1 ml) volumes of binding buffer to allow for the washing out of weak 

binders due to increased stress on the interaction caused by the high volume and salt 

concentration of wash preceded an elution step of 1.5 column volumes. The DNA precipitated 

from the supernatant with 500 µl of 100% cold ethanol and was spun at 21,000 g at 4º C for 30 

min.                                 

     The pellet was washed once with 70% ethanol and repeated the centrifugation step then 

dried and re-suspended in 20 µl water and set up PCR in 100 µl volumes. 
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Figure 2.2: Scheme of selection of circular aptamer against SIRT1. 
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2.2.4.1.3 Conventional Polymerase Chain Reaction (PCR) 
 

        A primer mediated enzymatic amplification of precisely cloned or genomic DNA 

sequences is known as Polymerase Chain Reaction (PCR). The PCR process aims to amplify 

a template DNA through use of thermostable DNA polymerase enzyme which then catalyses 

the reaction where excess of an oligonucleotide primer pair and four deoxynucleoside 

triphosphates (dNTPs) are utilised for formation of millions of copies of the target sequence. It 

is automated for routine functions in the laboratories all over the world. A repetitive set of three 

significant steps that describe one PCR cycle is required for the PCR process. A denaturing 

process for the DNA at 94° C is the first step. Second step involves annealing of two 

oligonucleotide primers towards the single-stranded template. The enzymatic extension of the 

primers to generate copies that could be used as templates in ensuing cycles is the final step. 

In this experiment, Maximam Hot Start PCR Master Mix (2X) was utilised. All the PCR 

reactions were conducted at a volume of 100μl as presented below. 

 

     1 μM of BAS P1 and BAS P3 primers plus 20 μl of BAS purified from the first selection 

round were used for the of PCR amplification process. There are 18 atom hexaethyleneglycol 

spacer in the antisense primer BAS P3 (Integrated DNA Technologies) which connects the 

complementary primer region to a 15nt random sequence. This helps with strand separation of 

the PCR products by PAGE.  There was a 95° C-30 second denaturation step, a 50° C-45 second 

annealing step and a 72° C-10 second extension step run on a Robo Cycler Gradient 96 included 

in the 20 cycle PCR program. Urea PAGE was used in order to purify the reaction and band 

visualisation through UV transilluminators. DNA band was eluted by ISOLATE II PCR and 

Gel kit. The technique mentioned for formation of the initial library was used to phosphorylate 

and circularise the pooled PCR products. Around 8 rounds were repeated for all the steps of 

selection circular aptamers as against SIRT1 enzyme. To clone through the PCR protocol, the 

final population from the selection experiment was kept ready for the process. For this an un-

tailed variant, BAS P3-notail was used instead of BAS P3 primer. This led to double stranded 

DNA that is appropriate for utilisation in a TA-cloning kit. 
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2.2.4.1.4 In Vitro Selection of Linear Aptamers Against SIRT1 Enzyme 
 

     According the protocol of linear aptamer, it is the same protocol of the circular aptamer but 

without circularisation of BAS library and the initial round of selection, added 2.5 µl of 1000 

pmol BAS library as shown in figure 2.3. 

 
Figure 2.3: Scheme of selection of linear aptamer against SIRT1. 

 

2.2.4.2 DNA Cloning  
 

     The final population of the selection experiment was prepared for cloning by the secondary 

PCR protocol. Secondary PCR was used with 2 μl of purified primary PCR product as template. 

Additional reaction components consist of 200 μM dNTP, 1 μM each of BAS P1 and BAS P3 

primers, buffer and VENT DNA polymerase. PCR products of the 8th rounds of circular 

aptamer and 12th rounds of linear aptamer were purified for the cloning using the Nucleospin® 

Extract II kit, which removed unincorporated nucleotides, primers and polymerase. BAS P3 
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primer is replaced with an un-tailed variant, BAS P3-notail, resulting in double stranded DNA 

suitable for use in a TA-cloning kit.  

 

2.2.4.2.1 DNA Ligation 
 

     The ligation reactions were mixed by pipetting 2 µl of each purified PCR product (0.52 

pmol) and added to 6 µl of 5X ligation buffer with the addition of 3 µl of Vector Ptz57R/T 

(0.17 pmol ends) and 1 µl of 3 U T4 DNA ligase in a final reaction volume of 30 µl. Thereafter, 

the reaction mixture was stirred for 5 min and then kept on 4° C overnight. 

2.2.4.2.2 Transformation 
 

     E. coli DH5α high efficiency competent cells were used for transformation. The tube of 

frozen cells, removed from -70° C, and placed in an ice bath until it thawed. The cells were 

mixed by gently flicking the tube. For each transformation reaction, 50 μl of 10 pg/µl cells 

were mixed with 2.5 μl (100 pg) ligation products. The tubes were gently mixed and then placed 

on ice for 20 min. Then incubated the tubes for 1.5h at 37° C with shaking (~ 150 rpm). For 

each transformation, 100 μl cell cultures were plated onto duplicate LB/100 μg/ml ampicillin 

50 µg/ml/IPTG/X–Gal plates. Each colony containing solution was incubated overnight at 37° 

C with gentle shaking. 

2.2.4.2.3 Isolation of Plasmid DNA 
 

     Many of colonies were picked and inoculated into LB media supplemented with 50 μg/ml 

ampicillin and incubated overnight at 37° C with shaking. The preparation of the plasmid 

conducted using QIAprep Spin Miniprep Kit. Briefly, 2 ml cell culture were centrifuged for 

30s at 11,000 g to pellet the bacteria. Buffer A1 (resuspension buffer), A2 (a lysis buffer 

solution) and A3 (neutralisation buffer) were added to the pellet in turn to lyse the cell. The 

tube was centrifuged for 5 to 10 min at 11,000 g to clear the lysate. The supernatant, loaded 

onto a NucleoSpin® Plasmid column and centrifuged for 1 min at 11,000 g bound the plasmid 

DNA to the silica membrane. The membrane was washed with 600 μl buffer A4 (a washing 

buffer) and centrifuged for 5s. The plasmid DNA from each column was eluted using 50 µL of 

AE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 8.0) which was added carefully onto the column 

filter and incubated at RT for 1 min before centrifugation at 13,000 g for 1 min. Following 
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centrifugation, the columns were discarded and the eluted plasmid DNA from each column 

was quantified by measuring absorption spectra at 260 nm using a WPA Biowave II UV-visible 

Spectrophotometer. The purified plasmid DNA from each column was stored at -20° C until 

further use. 

2.2.4.2.4 Confirmation of Ligation 
 

     Before sequencing, successful insertion of the selected aptamers was confirmed by 

restriction enzyme digestion of the inserted-plasmid DNA. The digested products were 

separated by urea acrylamide gel electrophoresis, and visualised using the Gel Doc system. 

Briefly, 10 µl of each purified plasmid DNA was added individually into micro centrifuge 

tubes. This was followed by the addition of 1.5 µl of restriction digest buffer and 3.5 µl of 

EcoRI restriction enzyme (containing 10 U) into each tube. Thereafter, all tubes were incubated 

at 37° C for 30 mins. The digestion reaction was stopped by heating each tube to 65° C for 5 

mins to denature the restriction enzyme. Following denaturation, the digested DNA from each 

tube was stained using 2X gel loading and subsequently separated by electrophoresis using a 

10% urea gel. The 77 bp DNA bands containing the desired aptamer sequences were confirmed 

by comparison with a low range DNA ladder when visualised using the Gel Doc system. 

 

2.2.4.2.5 DNA Sequencing 
 

     For each clone, 0.6 μg purified plasmid DNA was mixed with 20 pmol forward primers in 

a 100 μl PCR tube. All aptamer samples were outsourced (Source Bio Science, UK). The Data 

of sequencing were analysed by DNAMAN 5.29 software (Lynnon crop., Quebec,QC, 

Canada). 

 

2.2.5 Aptamer Characterisation 
 

     SIRT1 aptamers identified from the SELEX procedure were characterised with respect to 

their [i] in vitro characterisation of activators and inhibitors of the SIRT1 enzyme, [ii] SIRT1 

kinetics as a function of the concentrations of Fluor de Lys®-SIRT1 Substrate and NAD+, and 

[iii] KD values using SPR. All aptamers utilised in the characterisation studies were 

commercially synthesised by Integrated DNA Technologies (California, USA) at a 100 nmol 
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scale at the 5ˋ- and -3ˋend of each oligonucleotide sequence and circular aptamer followed 

previous protocol of circularisation. 

 

2.2.5.1 In vitro Characterisation of Activators and Inhibitors of SIRT1  

Enzyme 

 

      SIRT1 fluorometric drug discovery kit (AK-555, Enzo Life Science, UK) was used to study 

the activity of SIRT1 activators and inhibitors with 10 aptamers (linear1, linear2, linear3, 

linear4, circular1, circular2, circular3, circular4, circular5 and circular6) as in table 2.2. The 

assay was done according to the manufacturer's instructions using a fluorescent emission at 

460 nm with excitation at 360 nm. Briefly, 10µl of (0.8 µM, 0.4 µM, 0.2 µM and 0.1 µM from 

linear1, linear2, linear3, linear4, circular1, circular3 and circular5 aptamers), (0.3 µM, 0.15 

µM, 0.075 µM and 0.0375 µM from circular2, circular4 and circular6 aptamers), 200 µM 

resveratrol, 200 µM suramin and 200 µM nicotinamid were incubated with 5 µl of 0.2 U/µl 

SIRT1 enzyme per well at 37° C prior to substrate addition. The reaction was initiated by 

adding 25 µl of 2X Substrates in assay buffer (40% Assay Buffer, 60% 3.33X Substrates), then 

stopped by adding 50 µl of 1X Developer II/2 mM nicotinamide. At this time 25 µl of 2X 

Substrate solution was added to “Time Zero” samples. Incubated plate at room temperature for 

at least 45 min, then samples were read using Luminometer Microplate Readers fluorescence 

measurement system with an excitation wavelength of 350-380 nm and detection of emitted 

light in the range 450-480 nm. SIRT1 enzyme activity was calculated after subtracting the 

background. The experiment included suramin, an inhibitor of SIRT1 activity and resveratrol, 

an activator of SIRT1 activity. 
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Table 0.2: Sequences of 10 aptamers, sequences of C2, C4, C6, L2, L4 the same sequences of C1, C3, C5, L1, 

L3 respectively, but with primers. 

Aptamers Sequences (5ˋ-3ˋ) 

Circular 1(C1)  TTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC  

Circular 2(C2)       TTCGGAAGAGATGGCGAC TTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC CGAGCTGATCCTGATGGAA 

Circular 3(C3) CGAGTGGGTTACATCGAAACTGGATCTCAACAGCGGTAAC  

Circular 4(C4)      TTCGGAAGAGATGGCGAC CGAGTGGGTTACATCGAAACTGGATCTCAACAGCGGTAAC CGAGCTGATCCTGATGGAA 

Circular 5(C5) CACTCCCTCTGCGTGCGAATTTTGCCTATGGCGCATATTC  

Circular 6(C6)       TTCGGAAGAGATGGCGAC CACTCCCTCTGCGTGCGAATTTTGCCTATGGCGCATATTC CGAGCTGATCCTGATGGAA 

Linear 1 (L1) CGGACTGCAACCTATGCTATCGTTGATGTCTGTCCAAGCA 

Linear 2 (L2)       TTCGGAAGAGATGGCGAC CGGACTGCAACCTATGCTATCGTTGATGTCTGTCCAAGCA CGAGCTGATCCTGATGGAA 

Linear 3 (L3) CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA 

Linear 4 (L4)       TTCGGAAGAGATGGCGAC CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA CGAGCTGATCCTGATGGAA 

 

 

2.2.5.2 SIRT1 Kinetics as a Function of the Concentrations of Fluor de Lys- 

SIRT1 Substrate and NAD+ 

 

     SIRT1 kinetics was validated using a SIRT1 Fluorimetric Drug Discovery kit. 2 µM, 1 µM, 

0.5 µM and 0.1 µM of linear3, linear4, circular3 and circular4 aptamers were added to SIRT1 

(2 U/well) and incubated (37° C) with the indicated concentrations of peptide substrate and 

100 µM NAD+. Reactions were stopped at indicated times (5 min,15 min,30 min and 45 min) 

with Fluor de Lys® Developer II/2 mM nicotinamide and fluorescence measured at a 

wavelength in the range, Ex. 360 nm and Em. 460 nm. 
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2.2.5.3 Characterisation of the SIRT1 Enzyme Interaction with Selected  

Aptamers using Surface Plasmon Resonance (SPR)  

 

     The affinity of the selected aptamers (linear3, linear4, circular3 and circular4) for their 

SIRT1 enzyme target was determined using ProteOn™ XPR36 protein interaction array 

system. The principle is based on the optical phenomenon of SPR. The system was operated at 

25° C in running buffer consisting of 100 mM NaCl, 5 mM MgCl2, pH 7.4, depending on the 

selection conditions. A ProteOn™ GLM Sensor Chip was conditioned using 1 M NaCl and 50 

mM NaOH for 1 min three times, according to the manufacturer’s instructions. A range of 

protein concentrations from 12.5, 25, 50, 100, 200, 400 and 800 nM were tested under different 

injection times and the optimum conditions used were 100 µl of 800 nM SIRT1 enzyme in 

running buffer perfused over each individual channel at the rate of 25 µl/min for 60s pulse. The 

ligands (aptamers) were prepared in their selection buffers (phosphate buffer containing 100 

mM NaCl, 5 mM MgCl2, pH 7.4) at 10 µM and were injected at a medium pace over the surface 

at 25 μl/min. After the injection was complete, the complex was washed for an additional 30s 

with 1X binding buffer. The chip surfaces were regenerated down to protein level by 

application 1.5 M NaCl, 5 mM MgCl2, pH 7.4 in 30s pulses. Determination of association (Ka) 

and dissociation constants (Kd) of the aptamer-SIRT1 complexes were evaluated using a 

ProteOn Manager™ software supplied by the manufacturer (ProteOn™ XPR36). 

 

2.2.6 Cell Culture 
 

    Human adenocarcinoma of alveolar basal epithelial cells (A549), breast cancer cell lines 

oestrogen positive (MCF7), breast cancer oestrogen negative (MDA-MB-468) and children 

human bone osteosarcoma (U2OS) were originally obtained from Sigma Aldrich and stored in 

the Cell Bank of the Biomedical Research Centre at the University of Salford. Colorectal 

adenocarcinoma (Caco-2) and children liver hepatocellular carcinoma (HepG2) were 

purchased from American Type Culture Collection ATCC (Middlesex, UK). A549, MCF-7, 

MDA-MB-468, U2OS, Caco-2 and HepG2 cell lines were used as model cancer cells for this 

study. Human keratinocyte cell line (HaCaT) was purchased from CLS Cell Lines Service 

(GmbH, Germany). Normal human bronchial epithelial cells (Beas2b) were also obtained from 

American Type Culture Collection ATCC (Middlesex, UK), Beas-2b cell line was used as 

normal model cell line.  



CHAPTER 2                                                    MATERIALS & METHODS 

104 
 

2.2.6.1 Cell Maintenance 
 

     A549, HepG2 and MDA-MB-468 cells were maintained in Roswell Park Memorial 

Institute-1640 (RPMI-1640) medium (Gibco, Merelbeke, Belgium) supplemented with 0.5% 

fetal bovine serum FBS (Fisher Scientific, USA) and 1% L-Glutamine (Lonza, UK) as well as 

to 1% Penicillin-Streptomycin-Amphotericin B 100X (Lonza, UK) as antiseptic. MCF-7, 

U2OS and CaCo-2 cells were maintained in DMEM medium (Lonza, UK) supplemented with 

0.5% fetal bovine serum FBS and 1% L-Glutamine (Lonza, UK) as well as to 1% Penicillin-

Streptomycin-Amphotericin B 100X (Lonza, UK) as antiseptic. Beas2b cells were maintained 

in BEGM medium containing all the recommended supplements (Lonza, UK). Cells were 

cultured in 75 cm2 flasks and incubated in 5% CO2/ 95% humidified air at 37° C. Once the 

cells reached 90% confluency, flasks containing A549, HepG2, MDA-MB-468, MCF-7, 

U2OS, CaCo-2 or Beas2b cells were passaged under sterile conditions. The cells were washed 

with 5 ml of phosphate buffered saline solution (PBS) and then incubated for 2 min in trypsin 

solution at 37° C to allow cells to detach from the bottom of the flask. An equal volume of 

complete growth media was added and the cell suspension was transferred into a 50 ml conical 

tube. Cells were then centrifuged at 1200 rpm for 3min. The supernatant was discarded and the 

cell pellet resuspended in fresh supplemented growth media. Cells were then counted under the 

microscope on a haemocytometer and used as required. 

 

2.2.6.2 Storage and Resuscitation of Cell Lines 
 

     Following trypsinisation of a confluent 75 cm2 flask, the cell suspension was centrifuged at 

1200 rpm for 3 min. The cell pellet was then resuspended in 4ml freezing medium (Life 

Technologies) and 1ml aliquots were added to cryovials (Thermo Fisher Scientific, 

Loughborough, UK). The cells were stored at -80° C for 24h and were stored under liquid 

nitrogen for long-term storage. Cells stored under liquid nitrogen were quickly thawed at 37° 

C and added to 10 ml fresh growth media. The cells were harvested by centrifugation and 

resuspended in 25 ml of fresh medium and transferred to a 75 cm2 flask and grown. 
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2.2.6.3 Cell Viability by MTT Assay 
 

     The MTT assay was used to assess the effects of aptamers (linear3, linear4, circular3 and 

circular4) on cancer cell viability. A 100 µl from all cells suspensions (A549, MCF7, MDA-

MB-468, CaCo-2, HepG2, U2OS, HaCaT and Beas2b) were dispensed into 96-well flat-bottom 

tissue culture plates (Falcon, USA) at concentrations of 5 x 103 cells per well and incubated 

24h under standard conditions; 4 x 103 cells/well for 48h incubation, and 3 x 103 cells/well for 

72h incubation. After 24h, the cells were treated with 2.5 µM aptamers (linear3, linear4, 

circular3 and circular4) then cells were exposed to 50 µM TBHP (Tert-Butyl Hydrogen 

Peroxide) before and after 4h from adding the aptamers as shown in figure 2.4. After a recovery 

period 24h,48h and72h, the cell culture medium was removed and cultures were incubated with 

medium containing 30 μl of MTT solution (3 mg/ml MTT in PBS) (3-(4,5-Dimethylthiazol-2-

yl)-2,5-Diphenyltetrazolium Bromide) for 4h at 37° C. After 4h this medium was removed by 

gentle inversion and tapping onto paper. Control wells received only 100 μl growth media. 100 

μl of dimethyl sulfoxide (DMSO) was added to each well, the plates were then kept at room 

temperature in the dark for about 15-20 min. The absorbance of each well was measured by 

multiscan reader at a wavelength of 540 nm and correcting for background absorbance using a 

wavelength of 650 nm. 
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Figure 2.4: 96-well plate template for MTT assay. Column 2 and 3 are duplicate of linear3 aptamers, whereas 

line 2B and 3B contains cells and 2.5 µM L3 aptamer; line 2D and 3D contains cells and 2. 5µM L3 aptamer then 

after 4h added 50 µM TBHP; line 2F and 3F contains cells and 50 µM TBHP then after 4h added 2.5 µM L3 

aptamer. Column 4 and 5 are duplicate of linear4 aptamers, whereas line 4B and 5B contains cells and 2.5 µM L4 

aptamer; line 4D and 5D contains cells and 2.5 µM L4 aptamer then after 4h added 50 µM TBHP; line 4F and 5F 

contains cells and 50 µM TBHP then after 4h added 50 µM L4 aptamer. Column 6 and 7 are duplicate of circular3 

aptamers, whereas line 6B and 7B contains cells and 50 µM C3 aptamer; line 6D and 7D contains cells and 2.5 

µM C3 aptamer then after 4h added 50 µM TBHP; line 6F and 7F contains cells and 50 µM TBHP then after 4h 

added 2.5 µM C3 aptamer. Column 8 and 9 are duplicate of circular4 aptamers, whereas line 8B and 9B contains 
cells and 2.5 µM C4 aptamer; line 8D and 9D contains cells and 2.5 µM C4 aptamer then after 4h added 50 µM 

TBHP; line 8F and 9F contains cells and 50 µM TBHP then after 4h added 2.5 µM C4 aptamer. Column 10 and 

11 are duplicate of controls, whereas line 11B, 12B,1-12C1-12E and 1-12G contains cells with media; line 10D, 

11D, 10F and 11F contains cells with TBHP. 
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2.2.6.4 Measurement of Reactive Oxygen Species ROS Production 
 

  
     Intracellular reactive oxygen species (ROS) production was measured in aptamers-treated 

and in control cells using 2ˋ,7ˋ-dichlorofluorescein diacetate (DCFDA). A 100 µl from all cells 

suspensions (A549, MCF7, MDA-MB-468, CaCo-2, HepG2, U2OS and Beas2b) were 

dispensed into 96-well flat clear-bottom dark sided tissue culture plates (Falcon, USA) at 

concentrations of 25,000 cells per well and incubated 24h under standard conditions. After 24h, 

the cells were treated with 2.5 µM aptamers (linear3, linear4, circular3 and circular4) then cells 

were exposed to 50 µM TBHP (Tert-Butyl Hydrogen Peroxide) before and after 4h from adding 

the aptamers as shown in figure 2.5. After a recovery period 6h, the cell culture medium was 

removed and washed the cells in 100μl/well 1x buffer, then 1x buffer was removed and cells 

stained by adding 100 μl/well of the DCFDA solution (10 μl of 20 Mm DCFDA solution with 

10 ml 1X buffer). The culture was incubated with the DCFDA solution for about 45 min at 37° 

C. After that, DCFDA solution was removed and 100 μl/well 1X buffer were added. 

Fluorescent units were measured in each well using luminometer microplate readers 

fluorescence measurement system with an excitation wavelength of 485 nm and an emission 

wavelength of 535 nm. 
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Figure 2.5: 96-well plate template for ROS assay. Column 2 and 3 are duplicate of linear3 aptamers, whereas line 

2B and 3B contains cells and 2.5 µM L3 aptamer; line 2D and 3D contains cells and 2.5 µM L3 aptamer then after 

4h added 50 µM TBHP; line 2F and 3F contains cells and 50 µM TBHP then after 4h added 2.5 µM L3 aptamer. 

Column 4 and 5 are duplicate of linear4 aptamers, whereas line 4B and 5B contains cells and 2.5 µM L4 aptamer; 

line 4D and 5D contains cells and 2.5 µM L4 aptamer then after 4h added 50 µM TBHP; line 4F and 5F contains 

cells and 50 µM TBHP then after 4h added 2.5 µM L4 aptamer. Column 6 and 7 are duplicate of circular3 

aptamers, whereas line 6B and 7B contains cells and 2.5 µM C3 aptamer; line 6D and 7D contains cells and 2.5 

µM C3 aptamer then after 4h added 50 µM TBHP; line 6F and 7F contains cells and 50 µM TBHP then after 4h 

added 2.5 µM C3 aptamer. Column 8 and 9 are duplicate of circular4 aptamers, whereas line 8B and 9B contains 
cells and 2.5 µM C4 aptamer; line 8D and 9D contains cells and 2.5 µM C4 aptamer then after 4h added 50 µM 

TBHP; line 8F and 9F contains cells and 50 µM TBHP then after 4h added 2.5 µM C4 aptamer. Column 10 and 

11 are duplicate of controls, whereas line 11B and 12B contains cells with media; line 10D, 11D, 10F and 11F 

contains cells with TBHP. 
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2.2.6.5 In Vitro Evaluation the Activity of SIRT1 Enzyme in Cells by Fluor  

de Lys Deacetylase  

 

     Deacetylase activity of SIRT1 was measured using the Fluor de Lys Deacetylase kit (BML-

AK500, Enzo Life Science, UK) according to the manufacturer’s instructions. Briefly, 4 × 104 

cells were plated in 100 μl of appropriate media in the presence of 2 µM of TSA in 0.1% (v/v) 

ethanol (to inhibit class I and II HDACs and all remaining activity can be attributed to SIRT1), 

after 24h the media were removed and 50 μl of medium containing 10 µl of (0.25, 0.5 and 1 

µM from C3 aptamer), 100 and 200 µM resveratrol, 100 µM suramin and 100 µM nicotinamide 

were incubated for 3h at 37° C prior to substrate addition. The reaction was initiated by adding 

25 µl of 2X Fluor de Lys substrate; the plate was incubated for 5h at 37° C, followed by addition 

of 50 μl of 1X Developer II/2 mM nicotinamide. After further incubation for 45 min at 37° C, 

the fluorescence was measured using microplate-reading fluorimeter capable of excitation at a 

wavelength in the range 350-380 nm and detection of emitted light in the range 450-480 nm. 

SIRT1 enzyme activity was calculated by subtracting the background in the presence of 

suramin, an inhibitor of SIRT1 activity and resveratrol, an activator of SIRT1 activity. 

 

2.2.6.6 The Half Maximal Inhibitory Concentration (IC50) Value    

Determination 

 

 

     The IC50 of the drug can be determined by constructing a dose-response curve and 

examining the effect of different concentrations of the antagonist on reversing agonist activity. 

IC50 values can be calculated for a given antagonist by determining the concentration needed 

to inhibit half of the maximum biological response of the agonist. IC50 values are very 

dependent on conditions under which they are measured. In general, the higher concentration 

of inhibitor, the more agonist activity will be lowered. IC50 value increases as agonist 

concentration increases. Furthermore, depending on the type of inhibition other factors may 

influence IC50 value. According to the in vitro MTT assay, the IC50 represents the concentration 

of the tested C3 aptamer that is required for 50% inhibition of the cell viability. Based on the 

obtained data using the in vitro MTT assay, the IC50 values for C3 aptamer at 72h after the cells 

http://www.enzolifesciences.com/BML-AK500/fluor-de-lys-hdac-fluorometric-activity-assay-kit/
http://www.enzolifesciences.com/BML-AK500/fluor-de-lys-hdac-fluorometric-activity-assay-kit/
https://en.wikipedia.org/wiki/Dose-response_relationship
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exposure to C3 aptamer. To determine the IC50 values, the concentration range used of C3 

aptamer was 0.0078 - 1.00 µM. 

 

2.2.6.7 Immunofluorescence Microscopy 
 

   Cells were seeded at approximately 10,000 cells per well in 96-well clear bottom imaging 

tissue culture plates. Eighteen hours later, cells were either treated with 1 µM C3 aptamer and 

incubated in 5% CO2/ 95% humidified air at 37° C overnight, after that the cells were washed 

3 times in PBS, fixed for 5 min at room temperature with Formalin 4%, washed 2 times in PBS, 

then permeabilised by 0.5% Triton X-100 for 5 mins, washed 3 times with PBS; nonspecific 

binding was blocked with 3% FBS for 1h at room temperature, then the blocking solution were 

removed, 100 μl/well of Anti-SIRT1 antibody (Abcam, ab104833) were added to cells and 

incubated overnight at 4° C in a wet tray. In the next day, cells washed 3 times in PBS, and 

incubated for 2h in dark at room temperature with 1:2000 Alexa Fluor 546 goat anti-mouse 

IgG (AF546) (Life Technologies-USA)/1% FBS in PBS, then cells washed 3 times in PBS. At 

the end, the preparations were treated with 10 µl mounting medium containing DAPI to stain 

cell nuclei left for 1hr before the microscopic examination using Cytation™ 3 Cell Imaging 

Multi-Mode Reader. 

 

2.2.7 In vitro Plasma Stability Assay of C3 Aptamer  
 

2.2.7.1 Plasma Stability Assay of C3 Aptamer by Urea PAGE 
 

     The susceptibility of natural nucleic acids to nucleolytic degradation is a serious hurdle for 

their therapeutic applications. Plasma stability assays were performed to evaluate the stability 

of the aptamer in human plasma (Sigma, UK). Assessment of stability was performed as 

described (Klussmann et al., 1996). 10 µl of C3 aptamer in 90% human plasma in 10X PBS, 

pH 7.2 was incubated at simulated body temperature for a series of times (0, 15, 30, 60, 120, 

240 min and 24h) at a concentration of 1 μM. To maintain conditions of constant pH and sample 

concentration, lengthy incubations were performed in an incubator at 37° C, 94.5% humidity 

and 5% carbon dioxide. Aliquots were mixed with equal volumes of stop solution (8 M urea, 

50 mM EDTA) and frozen at -20° C. The samples (1 μM C3 aptamers each) were separated on 

10% denaturing (8.3 M urea) polyacrylamide gels. The gels were stained in Gel Red staining, 

and visualised at 254 nm.  
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2.2.7.2 Plasma Stability Assay of C3 Aptamer by HPLC-UV 
 

     HPLC method carried out according to Shaw et al., (1995). 300 µl of C3 aptamer in 90% 

human plasma buffered in 10X PBS, pH 7.2 was incubated at simulated body temperature for 

a series of times (0, 15, 30, 60, 120, 240 min and 24h) at a concentration of 1 μM. C3 aptamer 

samples was purified using C18 RP column. 100 µl of C3 aptamer in water was incubated at 

Zero time and after 24h as a control. The HPLC-UV system used was G1329B. The mobile 

phases used were: A: HPLC grade water, B: Acetonitrile (HPLC grade, Fisher). The flow rate 

was 1.4 ml/min and the C18 RP column temperature was maintained at 37° C by a column 

oven. The gradient profile was linear to 100% B in 10min and held at 100% B for 2 min. The 

detection wavelength was 256 nm and the injection volume was 50 µl. Total cycle time between 

injections was 20 min. Data were acquired and stored by a Peak Pro data acquisition system 

(Agilent Chemstation software). 

2.3 Data Analysis 
 

     All statistical analysis of SIRT1 aptamers characterisation, kinetic and IC50 data were 

performed using the nonlinear curve fitting software Origin 9.1 software. Comparison between 

all groups within the same plate of MTT and ROS assay were evaluated by one-way ANOVA 

with Tukey (Origin 9.1 software), comparison between the same group within the same plate 

of MTT and ROS assay were evaluated by paired t-test using (IBM SPSS Statistics 20) 

statistical software. Values of p < 0.05 were considered statistically significant.
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3 IN VITRO SELECTION AND IDENTIFICATION OF 

CIRCULAR AND LINEAR ssDNA APTAMERS AGAINST 

SIRTUIN1 ENZYME BY SELEX METHODOLOGY. 

 

3.1 Introduction 
 

     Nucleic acids due to their ability to create Watson-Crick base pairing, have long been 

exploited as molecular recognition elements (MREs). This use has been to form detection tools 

for DNA and has developed from the classical Southern blotting approach (Southern, 1975) to 

the advanced microarray platforms (Schena et al., 1995). As a sensing material, the utilisation 

of nucleic acids has increased from nucleic acid detection to the recognition of non-nucleic 

acid targets. This comprises of proteins, small molecules, viruses, mammalian cells, bacteria, 

and parasites (Bunka et al., 2006). This has been improved through the formation of the process 

of in vitro selection or also referred as SELEX (Ellington and Szostak, 1990; Tuerk and Gold, 

1990).  The identification of extremely selective functional nucleic acid sequences referred to 

as aptamers is the concluding outcome of the SELEX process. Aptamers are single stranded 

DNA, RNA, and modified nucleic acid molecules having the capability to develop distinct 

tertiary structures and keep a particular target for the purpose of binding. In this chapter, a 

detailed approach for isolation of linear and circular ssDNA aptamers for a SIRT1 enzyme 

target taken from a random-sequence DNA library by using an affinity column-based SELEX 

procedure is explained. The work presented here outlines the results of experiments using a 

NHS-HP SpinTrap column-based SELEX strategy including affinity matrix preparation, 

isolation, identification of SIRT1 enzyme and selected aptamers sequences. These 

investigations included: [i] preparation of SIRT1 target-immobilised affinity chromatography; 

[ii] performing conventional PCR amplifications to enrich selected sequences; [iii] and cloning 

the sequences of aptamers. The reasons behind investigating each of the aforementioned 

methods are explained as followed.  

     Affinity columns play an important role in generating aptamers binding to protein, and there 

have been a reports (Ferreira et al., 2006) utilising affinity columns for producing aptamers 

against target. Ferreira et al. (2006) reported the isolation of a 25-base-long variable region for 

their ability to bind to the unglycosylated form of the MUC1 protein using a based SELEX 

methodology. This aptamer had KD value of 47nM. Based on this report, it was reasoned that 
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a similar strategy might be successfully applied for selecting SIRT1 specific aptamers. In the-

basic SELEX procedure, conventional PCR was chosen and the aptamer-bound elution from 

each cycle of selection were used as the template for PCR amplification.  

     In summary, the aim of this chapter was to establish a practical laboratory procedure for 

generating ssDNA aptamers capable of binding to SIRT1 enzyme with the objectives of 

development of a novel designing high affinity and selectivity ligands. 

 

3.2 Methods 
 

          All methods for selection aptamers were described in chapter 2 section 2.2.2.2–2.2.2.9 

for circular aptamers and section 2.2.2.2–2.2.2.5 for linear aptamers. 

 

3.3 Results 
 

3.3.1 Circularisation of BAS Library 
 

     Linear BAS of 77 bases was circularised by phosphorylation of linear BAS stock using T4 

polynucleotide kinase then directly used this reaction for ligation by T4 DNA ligase. The 

efficiency of circularisation reaction can be readily assessed by gel electrophoresis. When 

ligating oligos, approximately 3 μl of the 100 pmol circularisation reaction was loaded into the 

gel lane of a 10% acrylamide 8 M urea denaturing gel. The circularised BAS product migrated 

slower (above) than the linear BAS band (figure 3.1).  
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Figure 3.1: Circularisation of BAS library. 77-nucleotide BAS oligo was converted to a circular BAS. Lane 1, 

DNA markers 25bp; lane 2, circularisation proceeds through an adenylated intermediate. 

 

     In the figure 3.1 an adenylated-oligo intermediate can be seen as a band just above the linear 

BAS. This 5 ̀- adenylated intermediate consists in initial part of ligation, the remaining linear 

BAS and linear single-stranded adenylated intermediate were removed by treatment with 

ExonucleaseI (which digests linear ssDNA). The circular BAS is resistant to these 

exonucleases, while the linear BAS and adenylated intermediate are digested as shown in figure 

3.2. Figure 3.3 demonstrated the all steps of circularisation BAS Library.   



CHAPTER 3                                                  SELECTION OF APTAMERS 

115 
 

 
Figure 0.2: Circularisation of BAS library. 77-nucleotide BAS oligo was converted to a circular BAS. Lane 1, 

DNA markers; lane 2, closed-circular BAS reaction product. 

 

 
Figure 0.3: Circularisation of BAS Ligase converts linear BAS into closed circular ssDNA. A 77-nucleotide BAS 

oligo was converted to a circular ssDNA. Lane 1, DNA markers 25bp; lane 2, 77-nucleotide linear BAS oligo; 

lane 3, circularisation proceeds through an adenylated intermediate; lane 4, closed-circular BAS reaction product. 
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3.3.2 Cleavage of GST-tag from SIRT1 Enzyme using PreScission Protease  

(PSP) 

 

     SIRT1 enzyme has the GST-tag. GSTrap FF column was used to cleavage the GST tag 

using preScission protease enzyme. The purification stages and chromatographic profiles were 

evaluated by SDS–PAGE using 4–20% stacking polyacrylamide gel and stained with Instant 

Blue stain. Figure 3.4 demonstrated the SDS-PAGE analysis of cleavage GST tag from SIRT1 

enzyme, lane 4 shows the native SIRT1 enzyme after treated with preScission protease on 

GSTrap FF column.  

 

 
Figure 3.4: SDS-PAGE analysis of cleavage GST tag from SIRT1 enzyme. Lane1 marker protein; Lane2 

recombinant SIRT1, GST tagged Purity> 80%; Lane3 target enzyme in PreScission protease; Lane4 Native 

enzyme after cleavage GST; Lane5 Eluted GST from column. 

 

3.3.3 In Vitro Selection Circular BAS Aptamer Against SIRT1 Enzyme 
 

     In order to obtain circular ssDNA aptamers with specificity toward target SIRT1 enzyme, 

modification of the original SELEX protocol was required in order to increase selection 

pressure on the aptamer library. BAS library with a random sequence of 40 nt was used as 

precursor pool for the selection of aptamers for SIRT1 enzyme. The random region was flanked 

by primer binding sites of 18nt and 19nt to facilitate PCR amplification. 
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     For the first round of selection SIRT1 enzyme was immobilised on NHS HP SpinTrap 

column, 100 pmol circular BAS with 200μL binding buffer was incubated with the target 

enzyme. The binding buffer used for the selection was (100 mM NaCl, 5 mM MgCl2, pH 7.4). 

This buffer solution was chosen for in vitro selection experiment, because osmolality and ion 

concentrations usually match those of the human body (Eric et al., 2008).  

     N40 stands for a randomised sequence of 40 nucleotides, a region where the enzyme will 

bind and trigger a conformational change to elute DNA aptamers from the NHS HP SpinTrap 

column and unbound oligonucleotides were washed away. For each fraction a 100 second time 

interval was provided, giving a total elution time of 5 min. This time interval seems to be 

sufficient in that it did allow a fair quantity of aptamers to elute from the column, after a period 

of time the aptamers will eventually dissociate from the column. In this case, the main focus is 

to evolve and optimise specificity of DNA aptamers binding to a target enzyme and the 

concentration of the target enzyme. Thus, each round requires analysis of PCR products and 

repeated the original SELEX protocol mentioned previously. 

     The SELEX cycle was iterated 8 rounds, the analysis of washed unbound BAS and eluted 

of bound BAS of each round are shown in figures (3.5-3.12). In round one of SELEX, lower 

amount of DNA aptamers eluted from the column. The analysis of the washed and eluted BAS 

products after 1st round demonstrates in figure 3.5. 

 

 
Figure 3.5: 10% acrylamide gel analysis of aptamer selection against SIRT1 enzyme after 1st round. Lane1, 

HyperLadder 25bp; Lane2, the initial amount of circular BAS library; Lane3, the unbound BAS from the 1st 

washed; Lane4, the unbound BAS from the 2nd Washed; Lane5, the unbound BAS from the 3rd washed; Lane6, 

the unbound BAS from the 4th washed; Lane7, the elution of bound BAS after 1st round. 
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     As figure 3.6 suggests, the amount of aptamers that have eluted after 2nd round increased as 

compared with the eluted aptamer after the 1st round.  

 

 
Figure 0.6: 10% acrylamide gel analysis of aptamer selection against SIRT1 enzyme after 2nd round. Lane1, 

HyperLadder 25bp; Lane2, the circular BAS library from the PCR product of the 1st round; Lane3, the unbound 

BAS from the 1st washed; Lane4, the unbound BAS from the 2nd Washed; Lane5, the unbound BAS from the 3rd 

washed; Lane6, the unbound BAS from the 4th washed; Lane7, the elution of bound BAS after 2nd round. 

 

 

 

     As can be seen in figures (3.7-3.12), rounds (3rd to 8th) of SELEX selection reveals clearly 

visible elution product bands as compared to the previous round. This is indicated that the 

ssDNA aptamers have been well developed, in that the aptamers with higher specificity are 

eluting from the column and being amplified again thus increasing the concentration of DNA 

aptamers that elute from the column in response to the enzyme each round. 
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Figure 0.7: 10% acrylamide gel analysis of aptamer selection against SIRT1 enzyme after 3rd round. Lane1, 
HyperLadder 25bp; Lane2, the circular BAS library from the PCR product of the 2nd round; Lane3, the unbound 

BAS from the 1st washed; Lane4, the unbound BAS from the 2nd Washed; Lane5, the unbound BAS from the 3rd 

washed; Lane6, the unbound BAS from the 4th washed; Lane7, the elution of bound BAS after 3rd round. 

 

 

 

 
Figure 0.8: 10% acrylamide gel analysis of aptamer selection against SIRT1 enzyme after 4th round. Lane1, 

HyperLadder 25bp; Lane2, the circular BAS library from the PCR product of the 3rd round; Lane3, the unbound 
BAS from the 1st washed; Lane4, the unbound BAS from the 2nd Washed; Lane5, the unbound BAS from the 3rd 

washed; Lane6, the unbound BAS from the 4th washed; Lane7, the elution of bound BAS after 4th round. 
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Figure 3.9: 10% acrylamide gel analysis of aptamer selection against SIRT1 enzyme after 5th round. Lane1, 
HyperLadder 25bp; Lane2, the circular BAS library from the PCR product of the 4th round; Lane3, the unbound 

BAS from the 1st washed; Lane4, the unbound BAS from the 2nd Washed; Lane5, the unbound BAS from the 3rd 

washed; Lane6, the unbound BAS from the 4th washed; Lane7, the elution of bound BAS after 5th round. 

 

 

 

 
Figure 0.10: 10% acrylamide gel analysis of aptamer selection against SIRT1 enzyme after 6th round. Lane1, 

HyperLadder 25bp; Lane2, the circular BAS library from the PCR product of the 5th round; Lane3, the unbound 
BAS from the 1st washed; Lane4, the unbound BAS from the 2nd Washed; Lane5, the unbound BAS from the 3rd 

washed; Lane6, the unbound BAS from the 4th washed; Lane7, the elution of bound BAS after 6th round. 
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Figure 0.11: 10% acrylamide gel analysis of aptamer selection against SIRT1 enzyme after 7th round. Lane1, 

HyperLadder 25bp; Lane2, the circular BAS library from the PCR product of the 6th round; Lane3, the unbound 

BAS from the 1st washed; Lane4, the unbound BAS from the 2nd Washed; Lane5, the unbound BAS from the 3rd 

washed; Lane6, the unbound BAS from the 4th washed; Lane7, the elution of bound BAS after 7th round. 

 

 

 
Figure 0.12: 10% acrylamide gel analysis of aptamer selection against SIRT1 enzyme after 8th round. Lane1, 

HyperLadder 25bp; Lane2, the circular BAS library from the PCR product of the 7th round; Lane3, the unbound 

BAS from the 1st washed; Lane4, the unbound BAS from the 2nd Washed; Lane5, the unbound BAS from the 3rd 
washed; Lane6, the unbound BAS from the 4th washed; Lane7, the elution of bound BAS after 8th round.   
 

 

 

     Figure 3.13 demonsterates the analysis of the 20 cycle PCR products after the 8th rounds of 

in vitro selection aptamer. The initial products from the first round may not show significant 

amplification, while the analysis of the PCR products after 20 cycles PCR for the 3rd round to 

8th round demonstrates increased amount of DNA recovery.   
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Figure 0.13: 10% acrylamide gel analysis of PCR products during 8th rounds of in vitro selection. Lane1, 

HyperLadder 25bp; Lane2, the PCR product of the 1st round; Lane3, the PCR product of the 2ed round; Lane4, the 

PCR product of the 3rd round; Lane5, the PCR product of the 4th round; Lane6, the PCR product of the 5th round; 

Lane7, the PCR product of the 6th round; Lane8, the PCR product of the 7th round; Lane9, the PCR product of the 

8th round SELEX.  

 

 

     In summary, after 8th round SELEX, The results had been strongly suggested that we got a 

circular aptamer that can bind with SIRT1 enzyme.     

 

3.3.4 In Vitro Selection Linear BAS Aptamer Against SIRT1 Enzyme 
 

     To isolate linear aptamers that specifically bind to SIRT1 enzyme, we utilised SIRT1 

enzyme as a selection target. The random BAS library was used to screen ligands that bind to 

SIRT1 enzyme. Different pools of aptamers that bind to SIRT1 with high affinity and specificty 

were successfully obtained after 12th rounds of selection by SELEX. Each pool of aptamers 

was examined before and after PCR amplification on 10% urea gels. The aptamer pools 

migrated near the 77-bp bands of the HyperLadder, and their PCR products up to 80-bp bands 

of the HyperLadder as shown in figures 3.14 and 3.15. 
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Figure 0.14: 10% acrylamide gel analysis of linear elution aptamer of in vitro selection against SIRT1 enzyme 

for 12th rounds SELEX before PCR. Lane1, HyperLadder 25bp; Lane2, the elution of bound BAS library after 1st 

washed; Lane3, the elution of bound BAS library after 2ed washed; Lane4, the elution of bound BAS library after 

3rd washed; Lane5, the elution of bound BAS library after 4th washed; Lane6, the elution of bound BAS library 

after 5th washed; Lane7, the elution of bound BAS library after 6th washed; Lane8, the elution of bound BAS 

library after 7th washed; Lane9, the elution of bound BAS library after 8th washed; Lane10, the elution of bound 

BAS library after 9th washed; Lane11, the elution of bound BAS library after 10th washed; Lane12, the elution of 

bound BAS library after 11th washed; Lane13, the elution of bound BAS library after 12th washed. 

 

 

 
Figure 3.15: 10% acrylamide gel analysis of PCR products aptamers in vitro selection against SIRT1 enzyme for 

12th rounds SELEX. Lane1, HyperLadder 25bp; Lane 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 are negative 

controls (NC). Lane 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 are the PCR products of the 1st, 2ed, 3rd, 4th, 5th, 6th, 

7th, 8th, 9th, 10th, 11th and 12th round SELEX.  
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     To sum up, after 12th round SELEX, The results in figures 3.14-3.15 showed that we got a 

linear aptamer that can bind with SIRT1 enzyme. 

     

3.3.5 DNA Cloning and Sequencing 
 

     A total of 144 clones (for 72 circular and 72 linear) were sent for sequencing resulting in 

100 (50 for circular and 50 for linear) complete sequences used in class analysis.The 100 

sequences were sorted into 8 classes (linear1, linear2, linear3, linear4, circular1, circular2, 

circular3, and circular4) with sizes ranging from 6-19 frequency (Table 3.1). L3 and L4, 

represented by linear aptamers, composed the largest classes of linear aptamers representing 

38% and 30% respectively of total 50 linear sequences. C2, C3 and C4 represented by circular 

aptamers, composed the largest classes of circular aptamers representing 24%, 28% and 36% 

respectively of total 50 circular sequences. Then 10 aptamers were synthesised {(linear3= L1 

and L2), (linear4= L3 and L4), (circular2= C1 and C2), (circular3= C3 and C4) and (circular4= 

C5 and C6)}, 5 aptamers with primer (L2, L4, C2, C4 and C6) and 5 aptamers the primer 

regions were removed (L1, L3, C1, C3 and C5) as shown in table 3.2. L3, L4, C3 and C4 were 

selected for further study covering the most populous classes and a moderately populated class. 

While the goal of selection was to generate aptamers, the circular and linear sequences 

described herein have to be confirmed to function via a binding mechanism consistent with 

aptamers. 

 

Table 0.1: Nucleotide sequences of basic-SELEX round 12 linear aptamers (Clones L1- L4) and round 8 circular 

aptamers (Clones C1-C4) in the N40 random region within each aptamer. 

 Length(nt)             10                20               30                40                50              60               70 
           5ˋ. . . .|. . .  .| . . . .| . . . .|. . . .|. . . .|. . . . |. . . . |. . . . |. . . .|. . . .|. . ..|. . . . |. . . .|. . . . |. .3ˋ 
  

Frequency 
% 

 
Linear 

library  TTCGGAAGAGATGGCGAC…………………………………….N40…………………….………………CGAGCTGATCCTGATGGAA 

 

 

 

L1                                                     ACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTGCC                                            40nt 9 

L2                                                      CCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCCTGC                                             40nt 7 

L3                                                     CGGACTGCAACCTATGCTATCGTTGATGTCTGTCCAAGCA                                              40nt     19 

L4                                                          CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA                                              40nt                   15 

 
Circular 

 
 
 

 

C1                                                     CAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGC                                            40nt 6 

C2                                                       TTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC                                               40nt 12 

C3                                                    CGAGTGGGTTACATCGAAACTGGATCTCAACAGCGGTAAC                                             40nt 14 

C4                                                    CACTCCCTCTGCGTGCGAATTTTGCCTATGGCGCATATTC                                                40nt 18 
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Table 0.2: Nucleotide sequences of 10 aptamers with and without primers. 

 

Aptamers Sequences 

Circular 1  TTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC 

Circular 2       TTCGGAAGAGATGGCGAC TTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC CGAGCTGATCCTGATGGAA 

Circular 3 CGAGTGGGTTACATCGAAACTGGATCTCAACAGCGGTAAC 

Circular 4      TTCGGAAGAGATGGCGAC CGAGTGGGTTACATCGAAACTGGATCTCAACAGCGGTAAC CGAGCTGATCCTGATGGAA 

Circular 5  CACTCCCTCTGCGTGCGAATTTTGCCTATGGCGCATATTC 

Circular 6       TTCGGAAGAGATGGCGAC CACTCCCTCTGCGTGCGAATTTTGCCTATGGCGCATATTC CGAGCTGATCCTGATGGAA 

Linear 1 CGGACTGCAACCTATGCTATCGTTGATGTCTGTCCAAGCA 

Linear 2       TTCGGAAGAGATGGCGAC CGGACTGCAACCTATGCTATCGTTGATGTCTGTCCAAGCA CGAGCTGATCCTGATGGAA 

Linear 3 CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA 

Linear 4       TTCGGAAGAGATGGCGAC CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA CGAGCTGATCCTGATGGAA 

 

3.4 Discussion  
 

     “Sirtuin” (SIR) signifies Silent Information Regulator. One of the most commonly studied 

mammalian Sirtuin is SIRT1 which is mainly limited to nucleus and cytoplasm (Tanno et al., 

2007; North and Verdin, 2007). There is a significant role of SIRT1 in regulating key signalling 

pathways (Picard et al., 2004; Nemoto et al., 2005). SIRT1 is basically an NAD+-dependent 

deacetylase, with its activators having possible therapeutic applications in age-related diseases 

like cancer. For this reason, one essential area of investigation is the function of SIRT1 in 

handling the proteins that are part of these pathways (Kim et al., 2008). In the cancer disease, 

the role of SIRT1, either as a tumour promoter or suppressor is dependent on cellular context 

or the impact on a particular signaling pathway (Anastasiou et al., 2006). In order to prevent 

aging and cancer, it is important that SIRT1 activity is controlled. The basis for development 

of anti-aging drugs is provided through SIRT1 activators like small chemical activators 

(SRT2183, resveratrol, and SRT1460), and small ubiquitin-like modifier (SUMO) (Kim et al., 

2008). Moreover, the rate of cell viability in culture decreases due to the pharmacological 

activation of SIRT1. These results indicate that SIRT1 performs as a context-dependent tumour 

suppressor, whereas it could also lead towards cell death once treatment is given with 
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chemotherapeutic agents likely because of the increased sensitivity of the cells that are rapidly 

dividing to DNA damaging agents (Kabra, 2010).  

     Modification of SIRT1 activity protein could lead to a new platform opportunity for drug 

discovery. In this regard, we are developing highly selective ligands (linear and circular 

aptamers) in order to study the modulated activity of SIRT1 within the series of cancer cell 

lines. Aptamers have been indicated to be activator for different targets in vitro and in vivo. 

Aptamers can identify the marker on the tumour cells surface and, if adequately labelled 

provide exact doses of cancer treatment by killing of the tumour cells only. The unfavorable 

side effects through damage to the rest of the body would be avoided (Ferreira et al., 2008).  

     Ever since isolation of aptamers two decades ago, no significant studies have been 

conducted to analysis the circular or linear aptamers to bind SIRT1 enzyme as a target by 

SELEX methodology. No standard SELEX protocol has yet been development which is 

applicable to all targets. Length of the central random region is among the major elements for 

oligonucleotide library design. 30 nucleotides are required to construct simple single–stranded 

oligo-nucleotide motifs (Gold et al., 1995) which includes hairpins, protuberances within 

helices, pseudoknots, and G–quartets. Larger the length of the random region, greater will be 

structure complexity of library, which facilitates the unknown or unattached targets and thus 

better selection of aptamers (Marshall and Ellington, 2000). Nonetheless, various SELEX 

experiments have indicated reduced effectivity of aptamer selection in the presence a region 

longer than 70 nt (Legiewicz et al., 2005). In the light of this, an BAS library comprising of a 

40nt central block of random sequence was employed for the in vitro selection of aptamers 

against SIRT1 enzyme. This length of the random region provides adequate level of structural 

complexity, economical chemical synthesis, and easily managed being used in the library. 

ssDNA aptamers tend to remain stable in much broader range of conditions including 

biological fluids such as serum and plasma. This enhances their suitability for clinical 

applications. In this study, for the circular and linear selection the SIRT1 enzyme was 

immobilised by using an NHS HP Spin Trap, blocked by using “blocking buffer: 50 mM Tris-

HCL+ 1 M NaCl, pH 8.0” and then a chemically manufactured BAS library was included in 

addition to binding buffer. 

     Some researchers tend to employ a largely amplified random library before initiating the 

selection process. They do so to extract out the damaged DNA synthesis products, which 

cannot be augmented through by PCR (Marshall and Ellington, 2000). Hence, some of the 
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target–binding sequences are likely to be lost in the original library which consumes more time 

and material in the large-scale PCR process. In the original library, a large number of the 

oligonucleotides exhibited stable lengths on the denaturing gel. Owing to this, after finishing 

each step of PCR amplification process, an BAS library was employed to circularise a library 

with about 77 nt sequences by ligation. Exonucleases is used to eliminate any unligated aptamer 

before collecting the final product. An effective circular aptamer production depends upon the 

ligation efficiency of the PCR process. In the regular SELEX process, the production circular 

ssDNA preparation tends to consume most of the time, taking 7 days completing one round of 

circular aptamer selection, after optimisation of procedure.  

     Eight rounds of SELEX were completed to obtain circular ssDNA which specifically bind 

to SIRT1 enzyme (figures 3.5-3.13). The selection scheme was designed so that the ssDNA 

will bind to SIRT1 enzyme in solution high salt buffer. After eight rounds of selection, 72 

clones of the ssDNA molecules in the library were obtained for consensus sequence family 

analysis. Three sequences were chosen based on their inclusion in consensus sequence families 

(table 3.1). Those sequences, C2, C3, and C4 with and without primer were assayed for their 

binding affinity to SIRT1 enzyme.  

     For linear aptamer, the SIRT1 enzyme was immobilised by NHS HP SpinTrap, blocked by 

“blocking buffer: 50 mM Tris-HCL+1 M NaCl, pH 8.0” and the BAS library was included 

along with binding buffer. Then, the bound BAS containing the aptamers were extracted. In 

the next step of selection, an asymmetric PCR was employed to enhance the bound BSA. The 

process was repeated several times until the adequate level of affinity for bound BAS was 

achieved. 

     Twelve rounds of SELEX were completed to obtain linear ssDNA which specifically bind 

to SIRT1 enzyme (figures 3.14-3.15). The selection scheme was designed the same of circular 

aptamers so that the ssDNA will bind to SIRT1 enzyme in solution high salt buffer. After 

twelve rounds of selection, 72 clones of the ssDNA molecules in the library were obtained for 

consensus sequence family analysis. Two sequences were chosen based on their inclusion in 

consensus sequence families (table 3.1). Those sequences, L3 and L4 with and without primer 

were assayed for their binding affinity to SIRT1 enzyme.  

     In conclusion, a stringent SELEX methodology is demonstrated to isolate circular and linear 

ssDNA aptamers with high affinity and specificity for the SIRT1 enzyme. The results validate 

our SELEX process with identifying new aptamers against SIRT1 enzyme.  
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4 CHARACTERISATION, KINETICS AND STABILITY OF 

APTAMERS  

 

4.1 Introduction 
 

     A critical analysis of current knowledge and recent discoveries clearly indicates that 

activation or inhibition of SIRT1 modulation is beneficial against several diseases including 

neurodegeneration, cancer, inflammatory/ autoimmune, and metabolic disease (Carafa et al., 

2016; Vachharajani et al., 2016). The chemistry and biomedical characterisation of SIRT1 

activators are at a much earlier stage of development than SIRT1 inhibitors, thus suggesting 

that new alternatives may arise soon. Based on that, the potential selective modulation of SIRT1 

will represent a promising area if new stable selective molecules can be designed as an activator 

for SIRT1. 

          In our study, Fluor de lys fluorescent assay system, was used successfully for study the 

characterising of SIRT1 enzyme activity with 10 aptamers (L1, L2, L3, L4, C1, C2, C3, C4, 

C5 and C6). The SIRT1 fluorescent activity assay/ drug discovery designed to measure the 

lysyl deacetylase activity of the recombinant human SIRT1. This system is ideal screening 

inhibitors, activators or kinetic assay of the enzyme under varying conditions. The FLUOR DE 

LYS SIRT1 assay is based on the FLUOR DE LYS SIRT1 substrate and FLUOR DE LYS 

Developer II combination. The assay procedure has two steps. First, the FLUOR DE LYS 

SIRT1 Substrate, which contains a peptide comprising amino acids 379-382 of human p53 

(Arg-His-Lys-Lys(Ac)). Deacetylation of the substrate sensitises the substrate so that, in the 

second step, treatment with the FLUOR DE LYS Developer II produces a fluorophore as shown 

in figure 4.1. 
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Figure 0.1: Reaction Scheme of the SIRT1 Fluorescent Activity Assay. NAD+-dependent deacetylation of the 

substrate by recombinant human SIRT1 sensitises it to Developer II, which then generates a fluorophore (symbol). 

The fluorophore is excited with 360 nm light and the emitted light (460 nm) is detected on a fluorometric plate 

reader. NAD+ is consumed in the reaction to produce nicotinamide (NAM) and O-acetyl-ADP-ribose. 
http://www.blossombio.com/pdf/products/UG_BML-AK500.pdf 

 

 

     To address the kinetic mechanism of activation of the human SIRT1 enzyme with aptamers, 

we determined the effect of aptamers on the Vmax (velocity of enzyme-catalysed reaction) and 

the Km (Michaelis-Menten constant) of SIRT1 for its aptamers.  

     To understand how SIRT1 enzymes function, we need a kinetic description of their activity. 

In general, an enzyme reaction is used to be processed in two-steps: substrate (S) and enzyme 

(E) binding for formation of an enzyme-substrate (ES) complex, following irreversible 

enzyme-substrate decomposition to free enzyme and product (P): 
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     In an enzyme and substrate reaction, reaction velocity is directly proportional to the amount 

of substrate following first-order reaction. Once the enzyme is saturated with the substrate, rate 

of reaction is independent to the substrate concentration (figure 4.2) (Berg et al., 2002). 

 
Figure 4.2: Substrate concentration versus enzyme reaction velocity, (Berg et al., 2002). 

 

     There are three enzymes kinetic analysis: elucidating enzyme mechanism and comparing 

between enzymes, predicting enzyme activity under various conditions and developing enzyme 

inhibitors (or activators) as therapeutic agents. In the steady-state model assumption, the 

concentration of enzyme-substrate complex (ES) remains constant in time. From this 

assumption, Michaelis-Menten equation is derived as: 
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     Michaelis-Menten constant (Km) is equivalent to the dissociation constant of the ES 

complex when kcat << k-1: 

 

     The Km corresponds to substrate concentration at Vmax/2. Since the Km is almost same as 

the kd, except for the presence of the kcat term, it is related to the affinity or strength of binding 

of a substrate to the enzyme (Keener and Sneyd, 2008). 

 

     Maximum velocity (Vmax) is achieved at high substrate levels ([S]>>Km). Thus, the entire 

enzyme is in the [ES] form. Turn over number or catalytic efficiency is derived by Vmax and 

the total amount of the enzyme when the enzyme is fully saturated with the substrate. kcat 

indicates that the moles of products are produced by a single enzyme molecule in a certain 

period time (Yang, 2011). 

 

     To calculate the important enzyme kinetic constants, a graphical analysis of the 

experimental data is necessary. Since the accurate determination of Vmax on the graph, velocity 

versus [S], is difficult, double reciprocal plots have been widely used via Lineweaver-Burke 

Plots (Yang, 2011) (Figure 4.3). 
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Figure 4.3: Lineweaver-Burke Plots, (Yang, 2011). 

 

 

 

y = 1/v, x = 1/[S] 

y-intercept = 1/Vmax 

Slope = Km/Vmax 

     

      Experimentally, from the various concentration of the substrate versus recording the initial 

velocity, one could get Lineweaver-Burke Linear Plots. kcat/Km indicates the second order 

reaction of free enzyme (E) and free substrate (S). This is a significant term for describing the 

specificity/selectivity of the enzyme for a given substrate. In this study, SIRT1 kinetics for (L3, 

L4, C3 and C4) aptamers has been examined by comparing to SIRT1’s kinetics for activator 

SIRT1 (resveratrol). 

      The final step for studing the mechanism of SIRT1 aptamer is estimation of the dissociation 

constant value (KD) of aptamers (L3, L4, C3 and C4) to determine how good aptamers bind 

and modulate to the SIRT1 enzyme. The lower KD, the more tightly bound the aptamer is to 

the target, this might/might not relate directly to the activity.  

     In our study, the binding affinity of the selected aptamers for SIRT1 enzyme target was 

determined by surface plasmon resonance (SPR) assay. Surface plasmon resonance (SPR) is 

fast becoming the method of choice for the determination of binding affinity (Di Primo et al., 
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2014; Patching, 2014; Nguyen et al., 2015; Puiu and Bala, 2016). This is due to the fact that it 

allows for real time determination of kinetic parameters such as KD, koff and kon of protein-

aptamer interactions. It is also a sensitive method allowing for the measurement of KD down 

to 10-12 M (Tsuji et al., 2009). The proteOn XPR36 biosensor, which uses SPR detection and 

permits real-time kinetic analysis of interacting molecules, was used to measure the molecular- 

binding kinetics of the selected aptamers. 

     Lastly, the most important point and a prerequisite for a potential therapeutic use of the 

aptamers is a reasonable stability in mammalian serum or plasma. Different from RNA, which 

is very easily degraded in biological fluids, DNA is much more stable, which suggests an 

advantage of DNA aptamers for clinical applications. 

     To sum up, the objectives of this chapter were to: [i] investigate aptamers whether activator 

or inhibitor to the SIRT1 by studying SIRT1 activity with Fluor de Lys assay; [ii] to gain an 

understanding of the mechanism by which aptamers accelerate SIRT1-catalysed deacetylation; 

[iii] determining the KD values for the selected SIRT1 aptamers and [iv] determine the 

degradation rate for the best selected aptamer in plasma. 

4.2 Methods 
 

          All methods were described in chapter 2, measurement of SIRT1 activity in section 

2.2.5.1, SIRT1 kinetics as a function of the concentrations of aptamers in section 2.2.5.2, KD 

values for the selected SIRT1 aptamers in section 2.2.5.3 as well as the stability of aptamer in 

plasma in section 2.2.7. 

4.3 Results 
 

4.3.1 In vitro Characterisation Study of Activators and Inhibitors of the  

SIRT1 Enzyme by Selected Aptamers   

 

     To measure SIRT1 activity with 10 aptamers (C1, C2, C3, C4, C5, C6, L1, L2, L3 and L4), 

we needed an assay able to detect specifically SIRT1 activity. Studies have demonstrated that 

SIRT1 binds to and regulates the activity of several transcription factors among which is p53 

(Langley et al., 2002). SIRT1 can interact with and deacetylate p53 on Lys382 inhibiting its 
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function (Solomon et al., 2006). Indeed, Fluor de Lys assay (BML-AK555) was used to 

measure the SIRT1 activity in order to investigate if the aptamers activate or inhibit the SIRT1. 

     The results from Fluor de Lys assay are summarised in figures 4.4 and 4.5. These figures 

are demonstrating the SIRT1 enzyme activity, axis Y representing fluorescence data of SIRT1 

activity for all aptamers divided by fluorescence data of SIRT1 activity at zero time) with axis 

X representing  logarithm concentrations of 100 nM, 200 nM, 400 nM and 800 nM from 

linear1, linear2, linear3, linear4, circular1, circular3 and circular5 aptamers and 37.5 nM, 75 

nM, 150 nM and 30 0nM from circular2, circular4 and circular6 aptamers as compared with 

the activity of 200000 nM resveratrol (SIRT1 activator as a positive control) and 200000 nM 

suramin and nicotinamide (SIRT1 inhibitors as a negative control). The results of this 

experiment as shown in figure 4.4 suggests that the level of SIRT1 activity with 800 nM C3 

aptamer is significantly higher than the activity of SIRT1 with activator control (200000 nM 

resveratrol), p ˂ 0.0001. The activity of SIRT1 with 800 nM L3, 800 nM L4, 400 nM C3 and 

300 nM C4 aptamers are increased nearly the level of SIRT1 with resveratrol at a concentration 

200000 nm, p ˂ 0.05 and the rest of aptamers (C1, C2, C6, L1 and L2) were non-active the 

SIRT1 enzyme (p ˃ 0.05). Surprisingly, C5 aptamer decreased the activity of SIRT1 at 800, 

400 and 200 nM concentrations as shown in figure 4.5, this is mean that C5 acted as inhibitor 

to SIRT1 enzyme approximately similar to inhibitor controls (200000 nM suramin and 

nicotinamide), p ˂ 0.05. 
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Figure 0.4: Measurement of SIRT1 activity with Fluor de Lys assay. SIRT1 activity was increased significantly 

with 800 nM C3 as compared with the activity of 200000 nM resveratrol (activator control). The activity of SIRT1 

with 800 nM L3, 800 nM L4, 400 nM C3 and 300 nM C4 were convergent the activity of 200000 nM resveratrol. 

The significance was calculated by the ANOVA one-way test; lines = mean ± standard error of the mean (SEM). 

p < 0.0001 of C3 compared with resveratrol and ˂ 0.05 of C4, L3 and L4 compared with resveratrol. 

 
 

 
Figure 0.5: Measurement of SIRT1 activity with Fluor de Lys assay. SIRT1 activity with 800, 400, 200 and 100 

nM C5 aptamer were nearly equal the activity of 200000 nM suramin and nicotinamide (inhibitor control). The 

significance was calculated by the ANOVA one-way test; lines = mean ± standard error of the mean (SEM). p < 

0.05 compared with suramin and nicotinamide. 
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     Subsequently, the data of characterisation of SIRT1 enzyme activators and inhibitors were 

fitted on mathematical equation: 

 
using Origin 9.1 software (figures 4.6-4.15) to determine the kd and ka constants using nonlinear 

regression analysis to choose the best aptamers to complete the study of kinetics and binding 

affinity of these aptamers, see table 4.1. 

Table 0.1: kd and ka constants ± SEM for all selected aptamers. 

 Kd (nM) Ka (nM) 

Circular 1  32 ± 3.5 0.03 ± 0.01 

Circular 2 8.3 ± 1.3 0.12 ± 0.026 

Circular 3 22.6 ± 4.9 0.04 ± 0.0134 

Circular 4 7.1 ± 1.9 0.14 ± 0.07 

Circular 5 -14.9 ± 3.5        - 

Circular 6 3.8 ± 0.46 0.26 ± 0.045 

Linear 1 26 ± 7.01 0.04 ± 0.016 

Linear 2 18.6 ± 6.8 0.05 ± 0.019 

Linear3 20.9 ± 3.7 0.05 ± 0.01 

Linear4 3.5 ± 1.11 0.28 ± 0.09 

      

 

     Figure 4.8, 4.9, 4.14 and 4.15 demonstrate the Kd values of the C3, C4, L3 and L4 aptamers 

respectively. The Kd values for these aptamers (C3, C4, L3 and L4) were better than the rest of 

aptamers, C1, C2, C4, L1 and L3, as shown in figures 4.6, 4.7, 4.11, 4.12and 4.13 because the 

low values of Kd and the Adj.R-Square is accepted as it is nearly 0.998. For C5 aptamer, the 

results revealed that it is inhibiting the SIRT1 and the Kd value is not accepted (-14.89 nM) as 

shown in figure 4.10. According to these results, C3, C4, L3 and L4 has been chose to study 

the kinetics and binding affinity with SIRT1.  
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Figure 0.6: The best fit of the data yielded a Kdissociation constant of circular1 aptamer with SIRT1= 32.7 nM. 

The error in Kd is calculated from the root mean square deviation of data points from the fit. 

 

 
Figure 4.7: The best fit of the data yielded a Kdissociation constant of circular2 aptamer with SIRT1= 8.3 nM. 

The error in Kd is calculated from the root mean square deviation of data points from the fit. 
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Figure 4.8: The best fit of the data yielded a Kdissociation constant of circular3 aptamer with SIRT1= 22.6 nM. 

The error in Kd is calculated from the root mean square deviation of data points from the fit. 

 

 
Figure 4.9: The best fit of the data yielded a Kdissociation constant of circular4 aptamer with SIRT1= 7.1 nM. 

The error in Kd is calculated from the root mean square deviation of data points from the fit. 
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Figure 4.10: The best fit of the data yielded a Kdissociation constant of circular5 aptamer with SIRT1= -14.8 

nM. The error in Kd is calculated from the root mean square deviation of data points from the fit. 

 

 
Figure 4.11: The best fit of the data yielded a Kdissociation constant of circular6 aptamer with SIRT1= 3.8 nM. 

The error in Kd is calculated from the root mean square deviation of data points from the fit. 
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Figure 0.12: The best fit of the data yielded a Kdissociation constant of linear1 aptamer with SIRT1= 26 nM. 

The error in Kd is calculated from the root mean square deviation of data points from the fit. 

 

 
Figure 0.13: The best fit of the data yielded a Kdissociation constant of linear2 aptamer with SIRT1= 18.6 nM. 

The error in Kd is calculated from the root mean square deviation of data points from the fit. 
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Figure 0.14: The best fit of the data yielded a Kdissociation constant of linear3 aptamer with SIRT1= 20.9 nM. 

The error in Kd is calculated from the root mean square deviation of data points from the fit. 

 

 
Figure 0.15: The best fit of the data yielded a Kdissociation constant of linear4 aptamer with SIRT1= 3.4 nM. 

The error in Kd is calculated from the root mean square deviation of data points from the fit. 
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4.3.2 SIRT1 kinetics as a Function of the Concentrations of Aptamers 
 

     To calculate Michaelis constant (Km) and Velocity maximum (Vmax) values, a velocity 

versus substrate concentration [S] graph is required. SIRT1 was assessed for 5, 15, 30 and 45 

min, and then an initial velocity was measured through the slope of these four points. Since the 

accurate determination of Vmax on the graph, velocity versus substrate [S], is difficult, double 

reciprocal plots were used via Lineweaver-Burk Plots to determine the Vmax and Km. From our 

previous results, we decided to further studies on L3, L4, C3 and C4 as they showed the highest 

activities as well as Kd.  

     Figure 4.16 illustrates the C3 aptamer progress curve analysis at different concentrations 

(0.0001, 0.0005, 0.001 and 0.002 mM) and showed that Vmax for the SIRT1 reaction is attained 

within 45 min at 37° C. The rate of catalysis rises linearly as C3 aptamer concentration 

increases and then begins to level off and approach a maximum at 0.002 mM C3 aptamer 

concentrations.  

 

 
Figure 0.16: A plot of the reaction velocity (V0) versus circular3 aptamer concentration (mM) for SIRT1 enzyme 

that obeys Michaelis-Menten kinetics shows that the maximal velocity (Vmax) is approached asymptotically. The 
initial velocity (V0) for each aptamer concentration is determined from the slope of the curve at the beginning of 

a reaction, when the reverse reaction is insignificant. The Michaelis constant (Km) is the C3 concentration yielding 

a velocity of Vmax/2. 
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     The Lineweaver-Burk plot in figure 4.17 and table 4.3 summarises the data of Km value and 

Vmax of C3 aptamer. The plot of initial velocity and C3 aptamer concentration was a hyperbolic 

curve at each time investigated and all Lineweaver-Burk plots were linear. Lowering of Km 

value as shown in table 4.2 confirmed that kinetic mechanism of C3 aptamer activation is by 

enhanced binding of aptamer with the SIRT1 enzyme. The obtained maximum velocity Vmax 

and Michaelis constant Km of the reaction catalysed by C3 aptamers at concentrations (0.0001, 

0.0005, 0.001 and 0.002 mM) were less than the Vmax and Km of 0.2 mM resveratrol (control) 

as shown in table 4.2. 

 
Figure 0.17: A double-reciprocal plot of SIRT1 kinetics for circular3 aptamer is generated by plotting 1/V0 as a 

function 1/[S]. The slope is the Km/Vmax, the intercept on the vertical axis is 1/Vmax, and the intercept on the 
horizontal axis is -1/Km. 

 

 

 

Table 0.2: Vmax and Km for C3 aptamer ± standard error. 

     5min   15min   30min   45min  

 Vmax Km Vmax Km Vmax Km Vmax Km 

Circular 3 

at 0.0001, 

0.0005, 

0.001 and 

0.002 mM 

0.54µM 

±0.098 

0.000486µM 

± 0.00031 

0.24µM 

±0.1 

0.000437µM 

±0.00019 

0.154µM 

±0.023 

0.00041µM 

±0.00033 

0.102µM 

±0.008 

0.000267µM 

±0.00031 

Resveratrol 

at 0.2 mM 

0.25µM 

± 0.15 

0.002µM 

± 0.0014 

0.13µM 

± 0.09 

0.002µM 

± 0.0014 

0.069µM 

± 0.104 

0.002µM 

± 0.0014 

0.056µM 

± 0.043 

0.002µM 

± 0.0014 
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     The extent of SIRT1 enzyme activity formation is determined as a function of time for a 

series of C3 aptamer concentrations (figure 4.18). As expected, in each case, the activity of 

SIRT1 formed increases with time, although eventually a time is reached when there is no net 

change in the concentration of C3 aptamer. The most important point in this figure is all the 

concentrations of C3 aptamers were significantly increased the activity of SIRT1 as compared 

with 200 μM resveratrol activator, p < 0.001. 

 

 
Figure 0.18: The amount of product formed at different concentrations (circular3 aptamers at 0.1, 0.5, 1 and 2 

µM and 200 µM resveratrol) are plotted as a function of time, p < 0.001. 

 

     In the same context, kinetic examination of SIRT1 enzyme activity with circular4 aptamer 

showed in figures 4.19 and 4.20. At a fixed concentration of SIRT1 enzyme, V0 is almost 

linearly proportional to C4 aptamer concentration when C4 aptamer concentration is 0.0001, 

0.0005 and 0.001 mM but is nearly independent of C4 aptamer concentration when C4 aptamer 

concentration is 0.002 mM. The Km value and Vmax of SIRT1 enzyme with C4 aptamer at series 

time (5, 15, 30 and 45min) demonstrated in table 4.3. 
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Figure 0.19: A plot of the reaction velocity (V0) versus circular4 aptamer concentration (mM) for SIRT1 enzyme 

that obeys Michaelis-Menten kinetics shows that the maximal velocity (Vmax) is approached asymptotically. The 

initial velocity (V0) for each aptamer concentration is determined from the slope of the curve at the beginning of 

a reaction, when the reverse reaction is insignificant. The Michaelis constant (Km) is the C4 concentration yielding 
a velocity of Vmax/2. 

 

 

 
Figure 4.20: A double-reciprocal plot of SIRT1 kinetics for circular4 aptamer is generated by plotting 1/V0 as a 

function 1/[S]. The slope is the Km/Vmax, the intercept on the vertical axis is 1/Vmax, and the intercept on the 

horizontal axis is -1/Km. 
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Table 0.3: Vmax and Km for C4 aptamer ± standard error. 

 

     5min   15min   30min   45min  

 Vmax Km Vmax Km Vmax Km Vmax Km 

Circular 4 

at 0.0001, 

0.0005, 

0.001 and 

0.002 mM 

0.3µM 

±0.042 

0.00007µM 

± 

0.0000606 

0.174µM 

±0.027 

0.000059µM 

±0.000064 

0.12µM 

±0.002 

0.000026µM 

±0.0000563 

0.076µM 

±0.0056 

0.000015µM 

±0.0000102 

Resveratrol 

at 0.2 mM 

0.25µM 

± 0.15 

0.002µM 

± 0.0014 

0.13µM 

± 0.09 

0.002µM 

± 0.0014 

0.069µM 

± 0.104 

0.002µM 

± 0.0014 

0.056µM 

± 0.043 

0.002µM 

± 0.0014 

 

 

     To examine this activation of in more detail, we determined the dependence of C4 aptamer 

concentration on SIRT1 activity at different time (5, 15, 30, 45min). In figure 4.21, C4 aptamer 

is seen to activate the SIRT1 in time course at different concentration as well as resveratrol. 

These results demonstrate, for the first time, that C4 aptamer can accelerate the reaction at 2 

μM more than the other C4 aptamer concentration. Likewise, all the concentration of C4 

aptamers increased the activity of SIRT1 as compared with 200 μM resveratrol activator, p < 

0.05. 

 

 
Figure 4.21: The amount of product formed at different concentrations (circular4 aptamers at 0.1, 0.5, 1 and 2 

µM and 200 µM resveratrol) are plotted as a function of time, p < 0.05. 
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     Figure 4.22 illustrates the relationship between initial velocity and linear3 aptamer 

concentration at different times. The relationship between rate of reaction and concentration of 

L3 aptamer depends on the affinity of the SIRT1enzyme for its aptamer. This is usually 

expressed as the Km of the SIRT1 enzyme, an inverse measure of affinity. Low concentration 

of L3 aptamer at 5 min, there is a steep increase in the rate of reaction with increasing L3 

aptamer concentration. The catalytic site of the SIRT1 enzyme is empty, waiting for L3 

aptamer to bind, for much of the time, and the rate at which product can be formed is limited 

by the concentration of L3 aptamer which is available. As the concentration of L3 aptamer 

increases, the SIRT1 enzyme becomes saturated with L3 aptamer. As soon as the catalytic site 

is empty, more L3 aptamer is available to bind and undergo reaction. The rate of formation of 

product now depends on the activity of the SIRT1 enzyme itself, and adding more L3 aptamer 

will not affect the rate of the reaction to any significant effect. 

 

 
Figure 4.22: A plot of the reaction velocity (V0) versus linear3 aptamer concentration (mM) for SIRT1 enzyme 

that obeys Michaelis-Menten kinetics shows that the maximal velocity (Vmax) is approached asymptotically. The 

initial velocity (V0) for each aptamer concentration is determined from the slope of the curve at the beginning of 

a reaction, when the reverse reaction is insignificant. The Michaelis constant (Km) is the L3 concentration yielding 

a velocity of Vmax/2. 
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     Km and Vmax value for SIRT1 enzyme with L3 aptamer were determined by used double 

reciprocal plots via Lineweaver-Burk Plots as shown in figure 4.23 and the values is 

demonstrated in table 4.4. 

 

 
Figure 0.23: A double-reciprocal plot of SIRT1 kinetics for linear3 aptamer is generated by plotting 1/V0 as a 
function 1/[S]. The slope is the Km/Vmax, the intercept on the vertical axis is 1/Vmax, and the intercept on the 

horizontal axis is -1/Km. 

 

 

Table 0.4: Vmax and Km for L3 aptamer ± standard error. 

     5min   15min   30min   45min  

 Vmax Km Vmax Km Vmax Km Vmax Km 

Linear 3 at 

0.0001, 

0.0005, 

0.001 and 

0.002 mM 

0.282µM 

±0.0258 

0.000364µM 

± 0.000028 

0.144µM 

±0.0075 

0.000074µM 

±0.000024 

0.104µM 

±0.00702 

0.00003µM 

±0.000019 

0.0776µM 

±0.0065 

0.000031µM 

±0.000021 

Resveratrol 

at 0.2 mM 

0.25µM 

± 0.15 

0.002µM 

± 0.0014 

0.13µM 

± 0.09 

0.002µM 

± 0.0014 

0.069µM 

± 0.104 

0.002µM 

± 0.0014 

0.056µM 

± 0.043 

0.002µM 

± 0.0014 

 

     The activity of SIRT1 enzyme was increased markedly at 0.1, 0.5, 1 and 2 μM concentration 

of L3 aptamer as compared with the activator control (200 μM resveratrol) (p < 0.01) as 

indicated in figure 4.24. 



CHAPTER 4                                   CHARACTERISATION OF APTAMERS 

149 
 

 
Figure 4.24: The amount of product formed at different concentrations (linear3 aptamers at 0.1, 0.5, 1 and 2 µM 

and 200 µM resveratrol) are plotted as a function of time, p < 0.01. 

 

     The Km and Vmax of Linear4 aptamer were also estimated as in the previously described 

method of C3, C4 and L3 aptamers as demonstrated in figures 4.25 and 4.26. The values of 

these kinetics constants of SIRT1 enzyme with L4 aptamer as compared with resveratrol 

control shown in table 4.5.   
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Figure 0.25: A plot of the reaction velocity (V0) versus linear4 aptamer concentration (mM) for SIRT1 enzyme 

that obeys Michaelis-Menten kinetics shows that the maximal velocity (Vmax) is approached asymptotically. The 

initial velocity (V0) for each aptamer concentration is determined from the slope of the curve at the beginning of 

a reaction, when the reverse reaction is insignificant. The Michaelis constant (Km) is the L4 concentration yielding 

a velocity of Vmax/2. 

 

 

 
Figure 4.26: A double-reciprocal plot of SIRT1 kinetics for linear4 aptamer is generated by plotting 1/V0 as a 

function 1/[S]. The slope is the Km/Vmax, the intercept on the vertical axis is 1/Vmax, and the intercept on the 

horizontal axis is -1/Km. 
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Table 0.5: Vmax and Km for L4 aptamer ± standard error. 

     5min   15min   30min   45min  

 Vmax Km Vmax Km Vmax Km Vmax Km 

Linear 4 at 

0.0001, 

0.0005, 

0.001 and 

0.002 mM 

0.226µM 

±0.0094 

0.0000586µM 

± 0.0000099 

0.125µM 

±0.00186 

0.000047µM 

±0.0000052 

0.103µM 

±0.006 

0.000033µM 

±0.000018 

0.074µM 

±0.0015 

0.0000277µM 

±0.0000059 

Resveratrol 

at 0.2 mM 

0.25µM 

± 0.15 

0.002µM 

± 0.0014 

0.13µM 

± 0.09 

0.002µM 

± 0.0014 

0.069µM 

± 0.104 

0.002µM 

± 0.0014 

0.056µM 

± 0.043 

0.002µM 

± 0.0014 

 

 

     The activity of SIRT1 enzyme at different concentration of L4 aptamer was similar the 

activity of SIRT1 enzyme at 1 and 2µM C3, C4 and L3 aptamers as compared with 200µM 

resveratrol (p < 0.05), while the activity of SIRT1 enzyme with 200µM resveratrol is higher 

than the activity of SIRT1 enzyme at low concentrations (0.1 and 0.5µM) as shown in figure 

4.27. 

 

 
Figure 0.27: The amount of product formed at different concentrations (linear4 aptamers at 0.1, 0.5, 1 and 2 µM 

and 200 µM resveratrol) are plotted as a function of time, p < 0.05.  

 

 

     In summary, the results in tables 4.2-4.5 showed the low values of Vmax in lower 

concentrations at 0.0001, 0.0005, 0.001 and 0.002 mM of C3, C4, L3 and L4 aptamers 
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respectively as compared with the lower Vmax value of high concentration of 0.2 mM 

resveratrol, the low values of kinetic results for Vmax and Km of aptamers demonstrated that C3, 

C4, L3 and L4 aptamers are a good binding with SIRT1 enzyme.  

 

4.3.3 Determination of Equilibrium Binding Characterisation of Circular3,  

Circular4, Linear3 and Linear4 Aptamers for SIRT1 using Surface Plasmon  

Resonance SPR 

 

      To determine the dissociation constants (KD) of C3, C4, L3 and L4 aptamers and SIRT1 

enzyme binding, we performed a SPR kinetic analysis using a ProteOn™ XPR36 system. The 

sensorgram must be fitted to a kinetic model using a mathematical algorithm. In ProteOn 

software, the most commonly used binding model for SPR biosensors is the Langmuir model. 

It describes a 1:1 interaction in which one aptamer molecule interacts with one SIRT1 enzyme 

molecule. In theory, the formation of the ligand aptamer-SIRT1 complex follows second-order 

kinetics. However, because the majority of SPR biosensors are fluidics-based and capable of 

maintaining a constant aptamers concentration in a continuous liquid flow, complex formation 

actually follows pseudo–first-order kinetics. In addition, this model assumes that the binding 

reactions are equivalent and independent at all binding sites. It also assumes that the reaction 

rate is not limited by mass transport. Many interactions adhere to this model, in which the 

interaction is described by the simple equation shown below, where B represents the ligand 

(aptamer) and A is the analyte (SIRT1 enzyme). The rate of complex formation is represented 

by the association constant (Ka, in the unit of M-1s-1) and the rate of complex decay is 

represented by the dissociation constant (Kd, in the unit of s-1), as given as: 

 

     In a kinetic analysis, the equilibrium constant (KD, in the unit of nM) is calculated from the 

two kinetic constants through the defining relation KD = Kd/Ka. Relating the interaction state 

to the SPR sensorgram is accomplished by applying specific equations relevant to the different 

sensorgram phases, as schematised in figure 4.28. 
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Figure 4.28: An idealised sensorgram showing the baseline, association, and dissociation phases. 

 

     For these experiments, highly purified SIRT1 enzyme was prepared as described in section 

(2.3.1) chapter 2. When various concentrations of SIRT1 were applied to 1 µM of C3, C4, L3 

and L4 aptamers immobilised on a sensor chip, a specific real-time binding between the SIRT1 

enzyme and aptamers was observed and quantified (figure 4.29-4.32). Binding curves were 

globally fitted to various binding models, provided by the ProteOn™ XPR36 evaluation 

software. The molecular weight of the SIRT1 enzyme was considered in all calculations. 

Apparent rate constants obtained from the Langmuir model were demonstrated in table 4.7. 

     The results in figures 4.29-4.32 were showed the curve to determination the affinities of C3, 

C4, L3 and L4 aptamers for SIRT1 respectively using surface plasmon resonance. The KD 

values of all aptamers were in nM range and a good result for binding affinity but the KD value 

of C3 aptamers (KD = 27.07 nM) is the best one because is the lowest value from the rest 

aptamers and indicates that is at high affinity with the SIRT1 enzyme. The KD value in this 

method of SPR is the better than the KD value of all aptamer in the previous method because 

it is more sensitive to determined the KD value between aptamers and SIRT1 enzyme. 

     In summary, table 4.7 demonstrates the KD values of C3, C4, L3 and L4 aptamers with 

SIRT1 and showed the C3 aptamers is the best aptamer for binding with the SIRT1 enzyme. 
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Figure 4.29: Determination of the affinities of aptamers for SIRT1 using surface plasmon resonance. (A) 

Sensorgrams of the binding response to C3 aptamer measured for concentrations of 12.5, 25, 50, 100, 200, 400 

and 800 nM SIRT1. The KD = 27.07 nM as determined from a global fit of the kinetic simultaneous ka/kd model, 
assuming Langmuir (1:1) binding, and x2= 0.959, (B) Plot of the steady-state affinity for `A' using the Req values 

derived from sensorgrams in (A) fitted locally. 

 

 

 

 
Figure 4.30: Determination of the affinities of aptamers for SIRT1 using surface plasmon resonance. (C) 
Sensorgrams of the binding response to C4 aptamer measured for concentrations of 12.5, 25, 50, 100, 200, 400 

and 800 nM SIRT1. The KD = 66.6 nM as determined from a global fit of the kinetic simultaneous ka/kd model, 

assuming Langmuir (1:1) binding, and x2= 0.982, (D) Plot of the steady-state affinity for `C' using the Req values 

derived from sensorgrams in (C) fitted locally. 
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Figure 0.31: Determination of the affinities of aptamers for SIRT1 using surface plasmon resonance. (E) 

Sensorgrams of the binding response to L3 aptamer measured for concentrations of 12.5, 25, 50, 100, 200, 400 

and 800 nM SIRT1. The KD = 48.3 nM as determined from a global fit of the kinetic simultaneous ka/kd model, 

assuming Langmuir (1:1) binding, and x2= 0.986, (F) Plot of the steady-state affinity for `E' using the Req values 

derived from sensorgrams in (E) fitted locally. 

 

 
Figure 0.32: Determination of the affinities of aptamers for SIRT1 using surface plasmon resonance. (G) 

Sensorgrams of the binding response to L4 aptamer measured for concentrations of 12.5, 25, 50, 100, 200, 400 

and 800 nM SIRT1. The KD = 92.6 nM as determined from a global fit of the kinetic simultaneous ka/kd model, 

assuming Langmuir (1:1) binding, and x2= 0.972, (H) Plot of the steady-state affinity for `G' using the Req values 

derived from sensorgrams in (G) fitted locally. 

Table 0.6: Association binding parameters resulting from the analysis of the surface plasmon resonance data for 

the interaction between the selected aptamers and the SIRT1 enzyme. 

 

Aptamers Ka (M
-1 s-1)  Kd (s-1)  KD (nM) ± x2 

Circular3 1.480 ×107  0.00401  27.07± 0.959 

Circular4 0.237 ×107  0.00158  66.6 ± 0.982 

Linear 3 0.480 ×107  0.00232  48.3 ± 0.986 

Linear 4                         0.340 ×107  0.0035                             92.6± 0.972 
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4.3.4 Plasma Stability Assay of C3 Aptamer by Urea PAGE and HPLC 
 

     To test the stability of C3 aptamer in human plasma, stability assays were carried out by 

incubating the 1 µM of C3 aptamer in human plasma for up to 24h by HPLC and urea PAGE 

methods in parallel. The incubation of C3 aptamer in human plasma by gel method only partial 

degradation was observed after four hours as shown in figure 4.33. Even after 24h of 

incubation, the aptamer could still be detected on the gel. However, HPLC method showed less 

degradation after 24h of incubation as showed in figure 4.34.  

 

 

 
Figure 4.33: Stability of the circular3 aptamer in human plasma by 10% urea PAGE method. Aliquots were taken 

at the indicated times (0, 15, 30, 60, 120, 240 min and 24h). Lane1, HyperLadder 25bp; Lane2, the C3 aptamer 

band at 0 time; Lane3, the C3 aptamer band at 15 min; Lane4, the C3 aptamer band at 30 min; Lane5, the C3 

aptamer band at 60 min; Lane6, the C3 aptamer band at 120 min; Lane7, the C3 aptamer band at 240 min; Lane8, 

the C3 aptamer band at 24h.  
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Figure 0.34: Stability of the circular3 aptamer in human plasma by HPLC-UV method. Aliquots were taken at 
the indicated times (0, 15, 30, 60, 120, 240 min and 24h) and compared with control (aptamer+water). The area 

from 0.5- 2.5 RT is plasma and the area from 3.5-4.5 RT is C3 aptamers. 
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     The stability of the C3 aptamer when it was digested with endonuclease was much higher 

than of C3 aptamer without digestion in human plasma, which degrades after 24h in human 

plasma as shown in figure 4.35 and 4.36 in both methods. 

 
Figure 4.35: Stability of the circular3 aptamer (digested with endonuclease and without digestion) in human 

plasma by HPLC method. Aliquots were taken at the indicated times (0 and 24h) and compared with control 

(aptamer+water). The area from 0.5- 3.0 RT is plasma and the area from 3.5-4.5 RT is C3 aptamers.  
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Figure 0.36: Stability of the circular3 aptamer (digested with endonuclease and without digestion) in human 

plasma by 10% urea PAGE method. Aliquots were taken after 24h. Lane1, HyperLadder 25bp; Lane2, the C3 

aptamer band with plasma after 24h; Lane3, the C3 aptamer band with Endo after 24h; Lane4, the C3 aptamer 
band at with plasma and Endo after 24h; Lane5, the C3 aptamer band with water after 24h (control). 

 

 

     To sum up, in this experiment to study the stability of C3 aptamer in plasma, two methods 

were used. The first one by urea-PAGE and the second one by HPLC, the results as 

demonstrates in figures 4.33-4.36 were showed that HPLC method is the best method and when 

the C3 aptamer was digested by the endonuclease, the degradation of aptamer was the less than 

the degradation without digestion. 
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4.4 Discussion 
 

     As the best-studied member of the Sirtuins family, SIRT1 is a 747-amino acid 83kDa 

(isoform a) class III (NAD+ -dependent) (HDAC), a member of the Silent information regulator 

2 (Sir2) protein family, SIRT1 influence a myriad of biological processes including 

inflammation, aging, metabolism, and oncogenesis (Zhao et al.,2013). It is rising as an 

important therapeutic target for a number of age-associated diseases and possibly aging. While 

much attention has been focused on the identification of cellular targets of this Sirtuin, the 

network that regulates SIRT1 expression and activity has just begun to emerge (Kwon and Ott, 

2008; Zschoering and Mahlknecht, 2008; Haigis et al., 2010). Others recently shown that 

SIRT1 can be activated by small molecules like resveratrol which was discovered around 1999 

(Howitz et al., 2003). Resveratrol (trans-3, 5, 4′-trihydroxystilbene) is a polyphenolic 

compound that is synthesised in grapes, berries, peanuts and plants to respond to ecological 

strain and pathogenic infection (Gescher and Steward, 2003; Das et al., 2008). This natural 

compound has been of great interest to many because of its cardiovascular benefits due to its 

presence in red wine. In addition, numerous cell culture studies have revealed its potential 

health benefits such as: anti-aging, anti-oxidative, anti-diabetic, anti-inflammatory, anti-

obesity, neuroprotective and cardio-protective activities (Gescher and Steward, 2003; He et al., 

2006; Das et al., 2008). Previous studies have shown resveratrol to also have pharmacological 

activities as a chemopreventive agent (Gescher and Steward, 2003; He et al., 2006; Das et al., 

2008). It has been demonstrated several cellular mechanisms to prevent tumour initiation, 

promotion and development in the process of carcinogenesis (Delmas et al., 2006). Although 

this dietary compound seems promising, studies revealed the pharmacokinetic parameters do 

not show the same advantages as its pharmacological activities (Das et al., 2008). Previous 

studies suggest that high dose of resveratrol is not sufficient for systemic levels of 

chemoprevention suggesting that resveratrol undergoes significant biotransformation via 

conjugation pathways (Boocock et al., 2007). However, other mechanisms such as rapid 

degradation in plasma, high binding to tissues or low binding to the plasma could occur. 

Therefore, it is still unclear of the degradation kinetics of resveratrol in biological medium 

(Robinson et al., 2015), they observed that resveratrol is unstable in human and rat plasma 

samples at 37 °C up to 96h. Because of the results of these previous studies which did not reach 

to stable activating SIRT1 compounds, this study was focused on aptamers, which are nucleic 

acid ligands that can bind with SIRT1 enzyme. DNA aptamers are easily and inexpensively 

synthesised and modified. Several cases in which aptamers were applied instead of antibodies 
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have already been reported (Ikebukuro et al., 2005; Murphy et al., 2003), and it has been 

demonstrated that aptamers can be used as molecular recognition elements. Moreover, 

aptamers are single-strand DNAs or RNAs, and therefore, it is easy to design the way their 

structure changes; signal-generating molecules, which acquire their properties because of such 

changes, work like molecular beacons (Tyagi and Kramer, 1996). Recently, some designed 

aptamers that generate signals as a result of structural changes caused by their binding to their 

target molecules have been reported (Nutiu and Li, 2003; Stojanovic and Kolpashchikov, 

2004). Such structural changes have also been applied to allosteric ribozymes (Piganeau et al., 

2001) and allosteric DNA enzymes (Liu and Lu, 2004). 

     In our studies, the activity of SIRT1 as assessed with our developed aptamers. Assays for 

enzymatic activities are based on the detection of consumption of substrates or formation of 

products. In the case of SIRT1, many assays have been developed by directly or indirectly 

tracking the consumption of acylated peptides, the formation of deacylated peptides, the release 

of nicotinamide. They are divided into two categories: one is called “labelfree” approaches, 

which use detection of substrate and product peptides; the other is called “labeled” approaches, 

which involve a coupled two-step enzymatic assays to detect the formation of products. There 

are several methods to measure the activity of SIRT1 in vitro. These include fluorescence 

(Bitterman et al., 2002; Marcotte et al., 2004; Wegener et al., 2003; Feng et al., 2009), time-

resolved fluorescence, chemiluminescence (Liu et al., 2008), microfluidic mobility shift (Liu 

et al., 2008), fluorescence polarisation (Milne et al., 2007), mass spectrometry (Milne et al., 

2007; Pye et al., 2011), capillary electrophoresis (Fan et al., 2011), high-performance liquid 

chromatography (HPLC) (Jackson et al., 2002) and radioactive formats (Grozinger et al., 2001; 

Bedalov et al., 2001; Borra and Denu, 2004). In terms of a high-throughput format, among the 

reported assay, the fluorescence-based assays should be the best one, which is easily 

miniaturised and automated (Borra and Denu, 2004; Li et al., 2015). Fluor de lys fluorescent 

assay is one of the fluorescence-based assay which uses a small lysine-acetylated peptide, 

corresponding to K382 of human p53, as a substrate. The first SIRT1 activators identified with 

this assay were polyphenolic plant-derived compounds: resveratrol, butein, quercetin, 

piceatannol, and myrcetin (Howitz et al., 2003 and de Boer et al., 2006). 

      Subsequently, more potent SIRT1’s activators were reported as potential therapeutics for 

the treatment of diabetes (e.g. SRIT1720, SRT2183, and SRIT1460) (Milne et al., 2007; 

Venkatasubramanian et al., 2016), using a fluorescently labelled substrate in a fluorescence 

polarisation assay. It was realised quickly that SIRT1 biochemical activation by resveratrol 
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could only be demonstrated when the substrate was fluorescently tagged (Borra et al., 2005; 

Kaeberlein et al., 2005 and Pacholec et al., 2010). Using a variety of nonfluorometric assay 

formats, it was found that these four compounds (resveratrol, SRIT1720, SRIT2183, and 

SRIT1460) did not directly activate SIRT1 when using native peptide or protein substrates 

(Pacholec et al., 2010 and Huber et al., 2010). Furthermore, SRIT1720 and SRIT2183 

decreased acetylated p53 levels in SIRT1-deficient (siRNA) and null (SIRT–/– MEFs) cells’, 

again suggesting SIRT1 was not the direct target. One unconfirmed report claimed that 

SRT1720 and SRT2183, but not resveratrol, were p300 HAT inhibitors, accounting for their 

cellular effect on p53 acetylation in the absence of enzymatic modulation (Huber et al., 2010). 

The selectivity of piceatannol for SIRT1 is also questionable as it inhibits tyrosine kinases such 

as Lck154 and mitochondrial ATP synthase (as do other polyphenols) (Dadi et al., 2009). It is 

evident that more highly selective SIRT1 activators, which show correlative activity in both 

enzymatic and cellular SIRT1-dependent assays, are still needed to understand SIRT1 biology 

and therapeutic potential. 

     As mentioned above, the mechanism of SIRT1 activation was examined using selected 

circular and linear aptamers (linear1, linear2, linear3, linear4, circular1, circular2, circular3, 

circular4, circular5 and circular6) by using the commercially available Fluor de Lys-SIRT1 

assay and compared the activity of SIRT1 enzyme-aptamers with the activators and inhibitors 

controls of SIRT1 enzyme (resveratrol, suramin and nicotinamide). Comparison of the rate of 

fluorescence increase in the presence 800 nM C3 aptamer showed that C3 aptamers activated 

SIRT1 enzyme more than the activated of SIRT1 by 200000 nM resveratrol and the activity of 

SIRT1 enzyme with 800 nM L3, 800 nM L4 and 300 nM C4 aptamers are increased nearly the 

level of SIRT1enzyme with resveratrol at a concentration 200000 nM as shown in figure 4.4. 

From the competition study, it is evident that C3, C4, L3 and L4 aptamers were significantly 

increased the activity of SIRT1 enzyme compared with the activators controls of SIRT1 

enzyme with the low Kd constant (22.6 ± 4.9, 7.1 ± 1.9, 20.9 ± 3.7 and 3.5 ± 1.11 nM 

respectively) as shown in table 4.2 and figures 4.8, 4.9, 4.14 and 4.15. This study revealed that 

activation of SIRT1 by aptamers is strongly dependent on structural features of the aptamers.  

Rather, the data suggest that these four novel aptamers interact directly with SIRT1 enzyme 

and activate SIRT1-catalysed deacetylation through an allosteric mechanism. Furthermore, 

enzyme kinetic studies of SIRT1 with aptamers were examined through the values of Km and 

Vmax compared to kinetic of SIRT1 enzyme with resveratrol. Consequently, this new design of 

aptamers by immobilising ssDNA and SIRT1 enzyme showed great selectivity ligands against 
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SIRT1. The enzyme kinetics constants for SIRT1 enzyme with C3, C4, L3 and L4 are shown 

in tables 4.3-4.6 compared to those with resveratrol indicated that higher enzyme kinetic 

efficiency of SIRT1 with aptamers than resveratrol, for example, the Km of SIRT1 enzyme with 

C3 at 5, 15, 30 and 45min are 0.000486, 0.000437, 0.00041and 0.000267 nM respectively 

compared to the Km of SIRT1 enzyme with resveratrol (0.002 nM) exhibited an 8-fold higher 

affinity to resveratrol. The decrease in the Km values of immobilised SIRT1 enzymes is due to 

electrostatic attraction of hydrophobic adsorption of the aptamers to the solid it might lead to 

the presence of areas of increased aptamers concentration around the particle. The obtained 

maximum velocity Vmax of the reaction catalysed by SIRT1 with C3 at 5, 15, 30 and 45min 

were 0.54, 0.24, 0.15 and 0.1 nM respectively, which is 3% in comparison to resveratrol 

catalysis (0.25 nM). From a reaction rate point of view, the maximal velocity of substrate 

change was calculated as a remaining amount of aptamer from SIRT1 digestion per minute. 

The high rate of enzyme reaction and catalytic efficiency of SIRT1 enzyme could be due to 

enough diffusion of aptamers molecules to the surface of the particles and to the active sites of 

the immobilised enzyme. 

     The Surface plasmon resonance (SPR) assay proved to be suitable for aptamer 

characterisation. Utilising this method, four acceptable aptamers C3, C4, L3 and L4 were 

examined, the sensor surface was build up by immobilisation of aptamers, for example (C3, 

C4, L3 or L4) on the sensor chip, and a concentration series of SIRT1 in the range of 12.5, 25, 

50, 100, 200, 400 and 800nM was injected. An aptamer level of 1000–1200 RU on the sensor 

surface was adjusted in this experiment over the injection time during the immobilisation of 

the aptamer. The sensorgrams in figures 4.29A, 4.30C, 4.31E and 4.32G reveal a very tightly 

and stable binding behaviour of SIRT1 enzyme to the immobilised aptamers C3, C4, L3 and 

L4 respectively. Figures 4.29B, 4.30D, 4.31F and 4.32H show the corresponding saturation 

curves derived from the binding data at the end of the binding phases. Based on this, 

dissociation constants in the low nanomolar range were calculated: C3 aptamer was the best 

binder with an apparent KD = 27.07 ± 0.959 nM. C4, L3 and L4 were following C3 with 66.6 

± 0.982 nM, 48.3 ± 0.986 nM and 92.6 ± 0.972 nM of KD respectively. The SPR data have 

confirmed the high affinity of the aptamers for the SIRT1 enzyme, with KD values in the 

nanomolar range. This is in good agreement with KD values obtained for aptamers against 

other targets. Such examples include the DNA aptamers to thrombin with KD= 25–200 nmol/l 

(Bock et al., 1992; Griffin et al; 1993), RNA aptamer to PSMA with KD=2 nmol/l (Lupold et 
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al., 2002), RNA aptamer to tenascin C with KD= 5 nmol/l (Hicke et al., 2001) and RNA 

aptamer to Trypanosoma cruzi cell surface receptor with KD=172 nmol/l (Ulrich et al., 2002).  

After equilibrium binding characterisation study of both Linear and Circular aptamers by SPR, 

it has been found that circular3 and linear3 aptamers are a good binder to SIRT1 enzyme, with 

the ability to bind selectively and with high affinity to SIRT1 target. Because circular aptamers 

are more stable than linear, C3 aptamer was characterised for nuclease degradation by blood 

and was found to be stable, with less indication of degradation for 24h, as deemed by HPLC 

and gel electrophoresis as shown in figures 4.33-4.36. Previous studies already showed the 

stability of the modified aptamers in serum up to 12h (Borbas et al., 2007). This significant 

human plasma stability of the C3 aptamer can be attributed to circularisation structure, which 

made the aptamer less susceptible to nuclease degradation in human plasma. Circularisation of 

aptamers is an attractive alternative to chemical modification for improving aptamer stability. 

With the majority of nucleic acid degradation activity arising from plasma exonucleases (Shaw 

et al., 1995), modification of exposed termini often achieves a sufficient improvement in 

stability for use in vivo (Kurreck, 2003), and circular constructs eliminate this primary source 

of degradation entirely. Moreover, circularisation permits the use of natural nucleotides, which 

should avoid potential toxicity associated with chemical modification. 

     Overall, it was concluded that the four novel aptamers generated by SELEX procedure (C3, 

C4, L3 and L4) have high affinity and selectivity ligands against SIRT1 enzyme, based on the 

observed results of these aptamers in characterisation and kinetic study. These results suggest 

that C3 aptamer may well be an appropriate candidate for the development of biotherapy 

because it is achieved a higher affinity binding with SIRT1 enzyme (KD = 27.07 ± 0.959 nM) 

and more stable than linear.  
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5 APTAMERS AS THERAPEUTICS  
 

5.1  Introduction 
 

     Cancer is the second leading cause of age-related mortality in humans, therefore the ability 

to suppress carcinogenesis has attracted the widespread attention of cancer prevention and 

treatment researchers. Traditional cancer treatment approaches, such as chemotherapy, 

radiotherapy, photodynamic therapy, and photothermic therapy can cause serious side effects 

in patients due to their associated nonspecific toxicity. To counter or reduce the adverse side 

effects of anti-cancer drugs used in chemotherapy, much attention has been devoted to the 

development of targeted drug therapy in recent years. Targeted drug therapy is achieved 

through drug with inherent targeting properties or modification of the drug molecule with a 

ligand that can selectively recognise its target. Some problems frequently encountered in 

targeted drug therapy include stability of the targeting ligand, decrease in targeting efficacy of 

the ligand, and decrease in drug efficacy in cell killing or growth retardation after ligand 

modification. Recent clinical approaches for targeted cancer therapy employs antibody-

predicated drugs. Although antibody-mediated therapy is highly selective, potential 

immunogenicity and high costs may limit its clinical applications. Oligonucleotide aptamer-

predicated targeted therapeutics and categorical drug delivery systems have recently been 

explored, for example of cancer treatment AS1411 aptamer as discussed in section 1.9.4 

chapter one. 

     In the present study, high-affinity circular and linear ssDNA aptamers binding to SIRT1 

enzyme have been successfully selected as described in chapter 3. The high-affinity SIRT1- 

aptamers identified in this study may be used in the future to the cancer treatment as SIRT1 

enzyme is a novel target and comes with the challenge of discovering molecules that are 

activators rather than inhibitors and would be developed as first-in-class cancer therapeutics.  

     The SIRT1 deacetylase activity towards p53 has been associated to a specific function in 

tumour promotion in the involved proteins, studies have been conducted on different aspects 

such as (i) expression studies in tumours, (ii) manipulation of SIRT1 levels in animals, and (iii) 

pharmacological approaches, have challenged this hypothesis, leading to the opposite view that 

SIRT1 may function as a tumour suppressor. The mechanism of activated SIRT1 triggering 

cell death, is explained by the researchers by demonstrating that SIRT1 negatively regulates 

expression of Survivin, which is responsible for encoding an anti-apoptotic protein, by 
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deacetylating H3K9 within the promoter of Survivin (Wang et al., 2008). Conclusively, it can 

be established that SIRT1 mediates BRCA1 signalling and inhibits tumour growth by the 

suppression of transcription of oncogenes or activity of oncoproteins (figure 5.1). 

 

 
Figure 0.1: Models illustrating possible functions of SIRT1 in tumour suppression. BRCA1 and Resveratrol can 

positively regulate SIRT1 transcription and activity, respectively. Increased SIRT1, in turn, inhibits expression 

and/or activity of several oncogenes, leading to reduced cell proliferation, increased apoptosis, and tumour 

suppression (Adapted from Deng, 2009). 

 

     Considering previously conducted studies, the effect of small molecular compounds 

increases the activity of SIRT1, which could be a potential molecular therapy target for cancer 

cells. As longterm treatment with resveratrol or selective SIRT1 activators have not been 

associated with the incidence of tumours in animals. Resveratrol is used for treatment of 

multiple indications and is known to have multiple pharmacological effects of resveratrol in 

different model systems. However, the concentrations, needed for attaining pharmacological 

effects, are very high and this has urged the researchers to look for more potent SIRT1 

activating compounds. The high throughput screening of oligonucleotide targeted therapeutics 

has helped identify four novel aptamers which can activate the SIRT1 enzyme, circular3, 

circular4, linear3 and linear4, these aptamers, however, are structurally unrelated to resveratrol 

on the basis that they are ssDNA and have a higher potency for activation of the SIRT1 enzyme. 

In this study, the impact of different on aptamers given for aiding SIRT1 on the growth of 

several cancer cell lines and normal cell lines have been carried out by using the colorimetric 

assay tetrazolium salt thiazolyl blue, also known as MTT.  

     A panel of cell lines were used in this study: colorectal adenocarcinoma (Caco-2), human 

adenocarcinoma of alveolar basal epithelial cells (A549), breast cancer cell lines oestrogen 

positive and model for majority of breast cancers (MCF-7), breast cancer oestrogen negative 

(MDA-MB-468), children liver hepatocellular carcinoma (HepG2), children human bone 

osteosarcoma (U2OS), adult human keratinocyte (HaCaT) and normal human bronchial 

epithelial cells (Beas-2b). The selection of these types of cell lines have been based on the 

expression data of SIRT1 in cells that comes from the Genomics Institute of the Novartis 
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Research Institute (https://proteomescout.wustl.edu/proteins/74160/expression) which also 

proved by other studies. 

 

5.1.1 Background to the Cell Lines and Expression of SIRT1 
 

         In human colorectal cancer (CRC) and in CRC cell lines the SIRT1 expression was 

observed to be heterogeneous (Pazienza et al., 2012). The mean SIRT1 expression levels were 

decreased in patients with CRC. The levels of SIRT1 appeared to be lower in Caco-2 cells (a 

type of colorectal cancer cells) (Pazienza  et al. 2012). This type of cells has been employed as 

a model of down-expression of SIRT1 enzyme in CRC cancer cell line. Caco-2 cells are a 

human intestinal cell line present in human colon adenocarcinoma and are extensively used as 

an in vitro model to study the permeability of intestinal epithelium particularly for carrying out 

the analysis of intestinal absorption and metabolism of drugs under different conditions. 

Additionally, it is also useful in carrying out experiments of regulation and expression of 

intestinal genes. The in vitro culture of Caco-2 cells, produce a merging monolayer then 

immediately differentiate in different layers, and further changes in their morphology over 

time. Differentiated cells appear similar to the phenotype of epithelial cells in the small 

intestine and columnar and polarised cellular layers are formed.  Additionally, these cells 

produce microvilli on the apical membrane and tight junctions between cells and expression of 

tissue-specific genes, digestive enzymes, and nutrient transport are their chief characteristic 

which makes them a popular choice among in vitro model (Lea, 2015). 

     According to the overexpression of SIRT1, Grbesa et al., (2015) evaluated the expression 

of SIRT1 in human non-small cell lung cancer cell lines (A549) and they found that SIRT1 

protein levels were clearly higher in these cancer cell lines than in immortalised epithelial cells. 

Therefore, it has been using this type of cells as a model of overexpression of SIRT1 enzyme 

in cancer cell line. Adenocarcinomic human alveolar basal epithelial cells are also known as 

A549. D. J. Giard et al., (1973) was the one to develop the A549 cell line, he did so by removing 

and culturing cancerous lung tissue in the explanted tumour of a 58-year-old Caucasian male 

(Giard et al., 1973; Jiang et al., 2010). A549 cells are squamous cells which carry out the 

diffusion of some substances such as water and electrolytes across the alveoli of lungs. In in 

vitro cultures, the A549 cells grow as monolayer cells, adherent or attached to the culture flask 

(Giard et al., 1973). Under specific conditions large number of cells can be obtained and 

controlled (Ramage, 2003). They are easy to grow, the cell counts become twice as much within 

https://proteomescout.wustl.edu/proteins/74160/expression
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48 hours of cultivation (Giard et al., 1973). A549 cells are not only used as a model in the 

research of lung epithelial structure and the occurrence, development and treatment of lung 

cancer, Jiang et al., (2010), reports them to be a useful in studying promoter activity, apoptosis, 

and alveolar epithelial cell DNA damage (Kasai et al., 2005).  These cells can synthesise 

lecithin and are rich in unsaturated fatty acids, which are essential for the membrane 

phospholipids in cells. Another use of A549 cell lines is as an in vitro model for a type II 

pulmonary epithelial cell model for drug metabolism and as a host for transfection.    

     Zhang et al., (2009) and Kuzmichev et al., (2015) carried out studies which showed 

increased expression of SIRT1 in breast cancer. Literature supporting different arguments 

about the role of activation SIRT1 in breast cancer is available such as some researchers believe 

that it acts as an oncogene while there are others who believe it is a tumour suppressing agent. 

These contraindications are mostly considering the regulation of steroid hormone receptor 

signalling. Zhang et al., (2016) reported in their study that overexpression of BRCA1 inhibits 

the expression of Androgen Receptor (AR) by activating the SIRT1 by resveratrol in breast 

cancer cells such as MCF-7 cell line and it is also deuced that BRCA1 weakens the AR-

stimulated proliferation of breast cancer cells through the SIRT1 mediated pathway. For 

studying the effect of activation SIRT1 by aptamers for proliferation of breast cancer cell line, 

for this study (MCF-7) breast cancer cell line oestrogen positive were studied. MCF-7 was 

isolated in 1970 from the breast tissue of a 69-year old Caucasian woman for the first time 

(Soule et al., 1973). MCF-7 cells retain many characteristics to the mammary epithelium and 

hence are useful for in vitro breast cancer studies. These mammary characters include the 

ability for MCF-7 cells to process estrogen, in the form of estradiol, via oestrogen receptors 

present in the cell cytoplasm. This means the MCF-7 cell line can be used as a positive control 

of oestrogen receptor (ER) (Huguet et al., 1994). Additionally, MCF-7 cells show sensitivity 

towards cytokeratin. They do not respond to desmin, endothelin, GAP, and vimentin. In in vitro 

cultures, the cell line can form domes and their epithelial cells grow in form of monolayers. 

The tumour necrosis factor alpha (TNF alpha) can be used to inhibit the growth, and treatment 

of MCF-7 cancer cells with anti-oestrogen agents can imitate insulin-like growth factor finding 

protein’s, which consequently cause the mitigation of cell growth (Lacroix et al., 2006). 

     MDA-MB-468 cells are also used as model for breast cancer cells but these are oestrogen 

negative (Kim et al., 2009).  The expression of SIRT1 is higher in comparison to any other 

breast cancer cells. The pleural effusion of mammary gland/breast tissue was used for 
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extraction of this type of breast cancer cell line and is employed as a model of breast cancer 

cell line oestrogen negative.  

     In a study by Portmann et al., (2013) a panel of hepatocellular cancer (HCC) cancer cell 

lines (Hep3B, HepG2, HuH7, HLE, HLF, HepKK1, skHep1) were screened to assess the 

expression of the SIRT1, the results were consistently overexpressed SIRT1 in comparison to 

other normal hepatocytes. Hao et al., (2014) conducted another study to investigate the SIRT1 

expression in hepatocellular carcinoma (HCC) and they found the SIRT1 were substantially 

overexpressed in the tumour tissues and HCC cell lines (HepG2, Huh7, Hep3B, and SMMC-

7721). Additionally, the effect of resveratrol (50μmol/L) was measured on the basis of cell 

viability and apoptosis of HCC cells (HepG2 and SMMC-7721). The results showed that 

resveratrol is slightly effective in inhibiting the cell viability and enhancing apoptosis. 

Therefore, the authors selected HepG2 cell line for evaluating the effect of SIRT1 aptamers. 

HepG2 is a human liver cancer cell line. Morphologically they are cells and have modal 

chromosome number of 55, and do not cause tumours in nude mice. HepG2 cells can be used 

as in vitro model system for the study of polarised human hepatocytes (Ihrke et al., 1993). 

Under specific culture conditions, HepG2 cells display robust morphological and functional 

differentiation and a manageable formation of apical and basolateral cell surface domains (van 

IJzendoorn et al., 1997) which is similar to the bile canalicular (BC) and sinusoidal domains in 

appearance in vivo. HepG2 cells can be used as a model to study the intracellular trafficking 

and dynamics of bile canalicular and sinusoidal membrane proteins and lipids in human 

hepatocytes in vitro owing to their high degree of morphological and functional differentiation 

in vitro. This can prove significant in studying human liver diseases that are caused by improper 

subcellular distribution of cell surface proteins, e.g., hepatocanalicular transport defects for 

example Dubin-Johnson Syndrome and progressive familial intrahepatic cholestasis (PFIC), 

and familial hypercholesterolemia. HepG2 cells and their derivatives have been found useful 

for studying the liver metabolism and toxicity of xenobiotics, the detection of environmental 

and dietary cytotoxic and genotoxic (including cryoprotective, anti-genotoxic, and 

cogenotoxic) agents (Mersch-Sundermann et al., 2004), they can be used in understanding 

hepatocarcinogenetic, and in drug targeting studies. HepG2 cells are also used in trials with 

bio-artificial liver devices. 

     U2OS cell line can also be used as an example of the cells that cause SIRT1 overexpression. 

Human osteosarcoma (U2OS) cell line is a primary malignant tumour of the skeletal cells and 

bone prevalent in children and young adults of ages 15-29 years and in geriatrics 60 years of 
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age and above. It is the 6th most prevalent cancer among children and the occurrence is reported 

during pre-teen and teen years of life in the adolescent growth period, with a high incidence in 

adolescent boys who are experiencing puberty (Niforou et al., 2008). The cause of 

osteosarcoma is still a mystery; however, irradiation, genetic influences and rapid bone growth 

are considered to be contributing factors. The U2OS cell line is a popular research model in 

biomedical research such as biochemistry, molecular biology, bone formation, arthritis 

(Bartkova et al., 2006; Furuya et al., 2007). The human osteosarcoma U2OS cell line was first 

isolated in 1964 from a relatively differentiated sarcoma of the tibia of a 15-year-old girl. It 

was among the first generated cell lines and is still used commonly. Chromosomal instability, 

structural rearrangements and alterations and high incidence of aneuploidy was observed in 

spectral karyotyping analysis and cytogenetic analysis (Bayani et al., 2003). Near-triploidy 

state of U2OS cells appeared on the spectral analysis, which is caused by both tetraploidisation 

and chromosomal losses. The SIRT1 expression in U2OS cell line was analysed and the results 

showed that there is extensive SIRT1 overexpression in this type of cells (Oberdoerffer et al. 

2008). Because the characterisation of this cell is crucial to the study of biochemistry, it is used 

as a model for cells in this study where SIRT1 is overexpression. 

     Park and Lee, (2007) explained how resveratrol (activator SIRT1) may be used as a potential 

photochemoprotective agent against UVB-induced skin damage by used HaCaT cells. HaCaT 

is an aneuploid immortal keratinocyte cell line, which becomes transformed on its own from 

adult human skin (Boukamp et al., 1988), and had wide application in scientific research 

(Schoop et al., 1999). The high capacity of HaCaT cells to differentiate and proliferate in vitro 

has made them a popular research model (Schurer et al., 1993). The human keratinocyte can 

be characterised by the use of this model because it is reproducible and does not limitise the 

research with problems such as short culture lifespan and variations between cell lines, which 

are a common issue in other models. Many processes (like Vitamin D3 metabolism in the skin) 

can be characterised using this cell line as a model (Lehmann et al., 1997). The effects of SIRT1 

aptamers on tissue organisation and keratinisation in vitro can be studied efficiently using the 

HaCaT cells.    

     In this study, Beas-2b cells are employed for the investigation of the effects of SIRT1 

aptamers on normal cell line. Beas-2b cells are human bronchial epithelium normal cells, which 

were developed by using normal human bronchial epithelial cells obtained from autopsy of 

non-cancerous individuals, AD12-SV40 virus was employed for this extraction (Reddel et al., 

1988; Stewart et al., 2012). Squamous differentiates upon exposure to the serum. This trait can 
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be employed in screening of chemical and biological agents inducing or affecting 

tumourigenesis and/or differentiation. The cell line has also been used to investigate the 

pneumococcal infection mechanisms.  

     In summary, the aim of this chapter was to establish the therapeutic effect of the activator 

SIRT1 aptamers as a pharmacological model for cancer treatment with the objectives of: [i] 

evaluating the effect of activators SIRT1 (aptamers) on the growth of a series of human cancer 

cell lines (Caco-2, A549, HepG2, MCF-7, MDA-MB-468, U2OS, HaCaT and Beas-2b); [ii] 

investigating the activity of SIRT1 in these cancer cells; [iii] measuring the Reactive Oxygen 

Species (ROS) production in these cancer cell lines after treated with aptamers; [iv] 

determining the IC50 for C3 aptamer of these cells and [v]  detecting the location and pathway 

of C3 aptamer by using fluorescence microscopy. 

5.2 Methods 
 

     All methods were described in chapter 2, the measurement of cell viability in section 2.2.6.3, 

ROS production in section 2.2.6.4, SIRT1 activity in section 2.2.6.5, IC50 in section 2.2.6.6 and 

imaging of C3 aptamer by immunofluorescence microscopy in section 2.2.6.7 in eight cell lines 

(A549, HepG2, MCF-7, MDA-MB-468, U2OS, Caco-2, HaCaT, and Beas-2b). 

5.3 Results 
 

     The results of all the experiments in this study are representing the results of three 

independent experiments. The concentration of aptamers in cell viability experiments and ROS 

assay are 2.5 µM because this concentration is the best one after doing the optimisation 

experiments to choose the best concentration between 1-4 µM of C3, C4, L3 and L4 aptamers.   
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5.3.1 Effect of Linear3, Linear4, Circular3 and Circular4 Aptamers on 8  

Cells Viability by MTT Assay 

 

5.3.1.1 Human Adenocarcinoma of Alveolar Basal Epithelial Cells (A549) 
 

     A549 cells were pre-treated with L3, L4, C3 and C4 aptamers at concentrations 2.5 μM for 

24, 48 and 72h to determine the effect of aptamers on A549 cell viability.  L3, L4, C3 and C4 

aptamers were decreased significantly the cell viability at 2.5 µM, p ˂  0.005, 0.001 and 0.00005 

at 24, 48 and 72h respectively as shown in figure 5.2. To compare between aptamers group 

(L3, L4, C3 and C4), the results were established that C3 aptamer is significantly reduced A549 

cells viability than L3, L4 and C4 aptamers (p < 0.0001).  

 
Figure 0.2: In vitro cell viability of the human adenocarcinoma of alveolar basal epithelial (A549) cells was 

detected by MTT assay. The results of A549 cells post 24, 48 and 72h treatment of 2.5 µM (L3, L4, C3 and C4) 

aptamers. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. Aptamers have a strong inhibition ability 

for A549 cells. p ˂ 0.005, 0.001 and 0.00005 at 24, 48 and 72h respectively vs. control. 

 

 

     To investigate the protection upon challenging with 50 µM TBHP (Tert-Butyl Hydrogen 

Peroxide: it is the oxidative processes), cells were treated with 50 μM TBHP and showed a 

reduction of 19% in cell viability after 24h compared to untreated cells (control); however, the 

difference was not statistically significant. The reduction in cell viability became more 

pronounced after treated with 2.5 µM aptamers and 50 µM TBHP compared with the cells 

which pre-treated with 2.5 µM aptamer only (figures 5.3-5.6). 
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Figure 5.3: In vitro cell viability of the human adenocarcinoma of alveolar basal epithelial (A549) cells was 

detected by MTT assay.  The results of A549 cells post 24, 48 and 72h treatment with 2.5 µM L3 aptamer also 

exposure to 50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a 
microplate reader. The results represent the mean ± SEM of 3 independent experiments. p < 0.001 vs. control. 

 

 

 
Figure 5.4: In vitro cell viability of the human adenocarcinoma of alveolar basal epithelial (A549) cells was 

detected by MTT assay.  The results of A549 cells post 24, 48 and 72h treatment with 2.5 µM L4 aptamer also 

exposure to 50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a 
microplate reader. The results represent the mean ± SEM of 3 independent experiments. p < 0.05 vs. control. 
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Figure 5.5: In vitro cell viability of the human adenocarcinoma of alveolar basal epithelial (A549) cells was 

detected by MTT assay.  The results of A549 cells post 24, 48 and 72h treatment with 2.5 µM C3 aptamer also 

exposure to 50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a 
microplate reader. The results represent the mean ± SEM of 3 independent experiments. C3 aptamer with TBHP 

have a strong inhibition ability for A549 cells. p < 0.00005 vs. control. 

 

 
Figure 5.6: In vitro cell viability of the human adenocarcinoma of alveolar basal epithelial (A549) cells was 

detected by MTT assay.  The results of A549 cells post 24, 48 and 72h treatment with 2.5 µM C4 aptamer also 

exposure to 50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a 

microplate reader. The results represent the mean ± SEM of 3 independent experiments. p < 0.005 vs. control. 

 

 

     Figure 5.7 illustrated the percentage of A549 cell death at 24, 48 and 72h after treatment 

with 2.5 μM L3, L4, C3 and C4 aptamers, the results presented a statistically significant 

increase of cell death when compared to untreated cells (p ˂ 0.0005). Based on the results 

presented in this figure, 2.5 μM aptamers and 50 μM TBHP treatment of A549 cells after 72h 

caused a cell death increase of 86.4%, 77.6%, 96.2% and 89.2% for L3, L4, C3 and C4 
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respectively. Between the groups of an aptamer, C3 aptamer was showed significantly higher 

percentage of cell death than L3, L4 and C4 aptamers (p ˂ 0.005). 

 

 
Figure 0.7: In vitro cell death percentage of the human adenocarcinoma of alveolar basal epithelial (A549) cells 

was estimated by MTT assay in 96-well plates following 24, 48 and 72h exposure to 2.5 µM (L3, L4, C3 and C4) 

aptamers and 50 µM TBHP. Data is shown as % mean ± SEM of cell death for of 3 separate experiments. 

Treatment significantly different from the untreated controls p < 0.005. 
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5.3.1.2 Children Liver Hepatocellular Carcinoma Cells (HepG2)  
 

     To estimate the effect of aptamers on HepG2 cells viability, HepG2 cells were treated with 

2.5 μM of L3, L4, C3 and C4 aptamers at 24, 48 and 72h.  L3, L4, C3 and C4 aptamers 

significantly decreased the cell viability of HepG2 at 2.5 µM, p ˂ 0.0005, at 24, 48 and 72h 

respectively as shown in figures 5.8.  

 
Figure 0.8: In vitro cell viability of the human hepatocellular carcinoma (HepG2) cells was detected by MTT 

assay. The results of HepG2 cells post 24, 48 and 72h treatment of 2.5 µM (L3, L4, C3 and C4) aptamers. The 

absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. Aptamers have a strong inhibition ability for HepG2 

cells. p ˂ 0.0005 at 24, 48 and 72h respectively vs. control. 

 

     HepG2 cells were treated with 50 μM TBHP and showed slightly decreased by 30% in cell 

viability after 24h compared to untreated cells (control), while the cell viability of HepG2 cells 

were a markedly decreased when treated with 2.5 μM L3, L4, C3 and C4 aptamers and 50 μM 

TBHP, p ˂ 0.00005 (figures 5.9-5.12). According to the results presented in figure 5.13, 2.5 

μM aptamers and 50 μM TBHP treatment of HepG2 cells after 72h caused a cell death increase 

of 90.8%, 86.5%, 98.3% and 88.8% for L3, L4, C3 and C4 respectively. Between the groups 

of aptamers, C3 aptamer was showed significantly higher percentage of cell death than L3, L4 

and C4 aptamers (p ˂ 0.000001). 
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Figure 0.9: In vitro cell viability of the human hepatocellular carcinoma (HepG2) cells was detected by MTT 
assay.  The results of HepG2 cells post 24, 48 and 72h treatment with 2.5 µM L3 aptamer also exposure to 50 µM 

TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The 

results represent the mean ± SEM of 3 independent experiments. L3 aptamer with TBHP have a strong inhibition 

ability for HepG2 cells at 72h. p < 0.00005 vs. control. 

 

 

 
Figure 0.10: In vitro cell viability of the human hepatocellular carcinoma (HepG2) cells was detected by MTT 

assay.  The results of HepG2 cells post 24, 48 and 72h treatment with 2.5 µM L4 aptamer also exposure to 50 µM 
TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The 

results represent the mean ± SEM of 3 independent experiments. L4 aptamer with TBHP have a strong inhibition 

ability for HepG2 cells at 72h. p < 0.00005 vs. control. 
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Figure 0.11: In vitro cell viability of the human hepatocellular carcinoma (HepG2) cells was detected by MTT 

assay.  The results of HepG2 cells post 24, 48 and 72h treatment with 2.5 µM C3 aptamer also exposure to 50 µM 

TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The 

results represent the mean ± SEM of 3 independent experiments. C3 aptamer with TBHP have a strong inhibition 

ability for HepG2 cells at 24, 48 and 72h. p < 0.00005 vs. control. 

 

Figure 0.12: In vitro cell viability of the human hepatocellular carcinoma (HepG2) cells was detected by MTT 

assay.  The results of HepG2 cells post 24, 48 and 72h treatment with 2.5 µM C4 aptamer also exposure to 50 µM 

TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The 

results represent the mean ± SEM of 3 independent experiments. C4 aptamer with TBHP have a strong inhibition 

ability for HepG2 cells at 72h. p < 0.00005 vs. control. 
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Figure 0.13: In vitro cell death percentage of the human hepatocellular carcinoma (HepG2) cells was estimated 

by MTT assay in 96-well plates following 24, 48 and 72h exposure to 2.5 µM (L3, L4, C3 and C4) aptamers and 

50 µM TBHP. Data is shown as % mean ± SEM of cell death for of 3 separate experiments. Treatment significantly 

different from the untreated controls p < 0.000001.  
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5.3.1.3 Breast Cancer (MCF7) Cells (oestrogen positive) 
 

     To determine aptamers effect on MCF-7 cells viability, MTT assay was conducted. The 

results of the MTT assay showed that L3, L4, C3 and C4 aptamers were clearly capable of 

reducing cell viability after 72h, p ˂ 0.0001. The C3 aptamer was decreased significantly the 

cell viability of MCF-7 after 24h to 38% -18% at 72h, p ˂ 0.0005 compared with L3, L4 and 

C4 aptamers (figure 5.14). 

Figure 5.14: In vitro cell viability of the human breast cancer (MCF-7) cells was detected by MTT assay. The 

results of MCF-7 cells post 24, 48 and 72h treatment of 2.5 µM (L3, L4, C3 and C4) aptamers. The absorbance 

was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results represent the mean 

± SEM of 3 independent experiments. Aptamers have a strong inhibition ability for MCF-7 cells. p ˂ 0.0001 at 

72h vs. control. 

 

     Both 2.5 μM L3, L4, C3 and C4 aptamers and 50 µM TBHP treatments of cells caused a 

statistical significant reduction in cell viability compared to viability of untreated cells (2.5 μM 

L3, L4 and C4: p ˂ 0.005, 2.5 μM C3: p ˂ 0.0005: 50 μM TBHP: p ≤ 0.05) at 24, 48 and 72h 

respectively as shown in figures 5.15-5.18. C3 aptamer showed the highest increase of cell 

death by 82% when the cells were treated with C3 aptamer, 78.8% when the cells were treated 

with 2.5 µM C3 aptamer then adding 50 µM TBHP and 85.9% when the cells were treated with 

50 µM TBHP then adding 2.5 µM C3 aptamer after 72h compared with the percentage of MCF-

7 cell death which treated with the same condition from L3, L4 and C4 aptamers (p ˂ 0.0005) 

as shown in figure 5.19. 
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Figure 0.15: In vitro cell viability of the human breast cancer (MCF-7) cells was detected by MTT assay.  The 

results of MCF-7 cells post 24, 48 and 72h treatment with 2.5 µM L3 aptames also exposure to 50 µM TBHP. 

The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. L3 aptamer with TBHP have a strong inhibition ability 

for MCF-7 cells at 24, 48 and 72h. p < 0.005 vs. control. 

 
 

 
Figure 5.16: In vitro cell viability of the human breast cancer (MCF-7) cells was detected by MTT assay.  The 

results of MCF-7 cells post 24, 48 and 72h treatment with 2.5 µM L4 aptamer also exposure to 50 µM TBHP. 

The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. L4 aptamer with TBHP have a strong inhibition ability 

for MCF-7 cells at 72h. p < 0.005 vs. control. 
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Figure 0.17: In vitro cell viability of the human breast cancer (MCF-7) cells was detected by MTT assay.  The 

results of MCF-7 cells post 24, 48 and 72h treatment with 2.5 µM C3 aptamer also exposure to 50 µM TBHP. 

The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. C3 aptamer with TBHP have a strong inhibition ability 

for MCF-7 cells at 72h. p < 0.0005 vs. control. 

 
 

 
Figure 5.18: In vitro cell viability of the human breast cancer (MCF-7) cells was detected by MTT assay.  The 

results of MCF-7 cells post 24, 48 and 72h treatment with 2.5 µM C4 aptamer also exposure to 50 µM TBHP. 

The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. C4 aptamer with TBHP have a strong inhibition ability 
for MCF-7 cells at 72h. p < 0.005 vs. control. 
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Figure 5.019: In vitro cell death percentage of the human breast cancer (MCF-7) cells was estimated by MTT 

assay in 96-well plates following 24, 48 and 72h exposure to 2.5 µM (L3, L4, C3 and C4) aptamers and 50 µM 

TBHP. Data is shown as % mean ± SEM of cell death for of 3 separate experiments. Treatment significantly 

different from the untreated controls p < 0.0005.  
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5.3.1.4 Breast Cancer (MDA-MB-468) Cells (oestrogen negative) 
 

     MDA-MB-468 cells were exposed to 2.5 μM of L3, L4, C3 and C4 aptamers at 24, 48 and 

72h to estimate the effect of aptamers on cell viability. After 72h, cells exposed to 2.5 μM L3, 

C3 and C4 aptamers presented a statistically significant decrease in cell viability compared to 

untreated cells (p ˂ 0.005), while L4 aptamer was not effected on MDA-MB-468 cells viability 

compared to control (p ˃ 0.05) as shown in figure 5.20. 

Figure 5.20: In vitro cell viability of the human breast cancer (MDA-MB-468) cells was detected by MTT assay. 

The results of MDA-MB-468 cells post 24, 48 and 72h treatment of 2.5 µM (L3, L4, C3 and C4) aptamers. The 

absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. C3 aptamer have a strong inhibition ability for MDA-

MB-468 cells. p ˂ 0.005 at 72h vs. control. 

 

 

     MDA-MB-468 cells treated with 50 μM TBHP also showed a reduction of 23% in cell 

viability after 24 and 48h compared to untreated cells (control); however, the difference was 

not statistically significant, while after 72h the cells which treated with 50 µM TBHP showed 

slightly decreased in cell viability as compared with untreated cells (p ˂ 0.05). The reduction 

in cell viability became more pronounced after treated with aptamers and TBHP. At 24h, L3, 

L4 and C4 aptamers and 50 μM TBHP were not effecting on MDA-MB-468 cells viability (p 

˃ 0.05), while 2.5 µM C3 aptamer and 50 µM TBHP were significantly reduced the MDA-

MB-468 cells viability at 24h (p ˂ 0.005) as shown in figure 5.21-5.24. A similar observation 

has been detected after 48h (figure 5.21-5.24), whereas after 72h, L3, C3, and C4 aptamers 

were showed decreased on the cell viability of MDA-MB-468 cells which treated with 50 µM 
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TBHP then added 2.5 µM aptamers. The results of C4 aptamer was showed not effect on cell 

viability when the cells were treated with 2.5 µM C4 aptamer only and 2.5 µM L4 aptamer 

then added 50 µM TBHP. Whereas, MDA-MB-468 cells which treated with 50 µM TBHP then 

added 2.5 µM C4 aptamer was decreased significantly the cell viability at 72h, p ˂  0.005 (figure 

5.24). 

 

 
Figure 5.21: In vitro cell viability of the human breast cancer (MDA-MB-468) cells was detected by MTT assay.  
The results of MDA-MB-468 cells post 24, 48 and 72h treatment with 2.5 µM L3 aptamer also exposure to 50 

µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. p < 0.005 vs. control. 
 

 

 
Figure 5.22: In vitro cell viability of the human breast cancer (MDA-MB-468) cells was detected by MTT assay.  

The results of MDA-MB-468 cells post 24, 48 and 72h treatment with 2.5 µM L4 aptamer also exposure to 50 

µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. p < 0.005 vs. control. 
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Figure 0.23: In vitro cell viability of the human breast cancer (MDA-MB-468) cells was detected by MTT assay.  

The results of MDA-MB-468 cells post 24, 48 and 72h treatment with 2.5 µM C3 aptamer also exposure to 50 

µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. C3 aptamer with TBHP have a strong 

inhibition ability for MDA-MB-468 cells at 72h. p < 0.005 vs. control. 

 

 

 
Figure 0.24: In vitro cell viability of the human breast cancer (MDA-MB-468) cells was detected by MTT assay.  

The results of MDA-MB-468 cells post 24, 48 and 72h treatment with 2.5 µM C4 aptamer also exposure to 50 

µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. p < 0.005 vs. control. 
 

 

     Based on the results presented in figure 5.25, 2.5 μM L3, L4, C3 and C4 aptamers and 50 

μM TBHP treatment to MDA-MB-468 cells after 72h caused a cell death increase of 77%, 

70%, 83% and 77% respectively. Between the groups of aptamers, C3 aptamer was showed 

significantly higher percentage of cell death than L3, L4 and C4 aptamers (p ˂ 0.005). 
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Figure 5.25: In vitro cell death percentage of the human breast cancer (MDA-MB-468) cells was estimated by 

MTT assay in 96-well plates following 24, 48 and 72 exposure to 2.5 µM (L3, L4, C3 and C4) aptamers and 50 

µM TBHP. Data is shown as % mean ± SEM of cell death for of 3 separate experiments. Treatment significantly 
different from the untreated controls p < 0.005.  
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5.3.1.5 Children Human Bone Osteosarcoma cells (U2OS)  
 

     To establish the effect of aptamers on cell viability of U2OS cells, L3, L4, C3 and C4 

aptamers at concentrations 2.5 μM were pretreated to U2OS cells at 24, 48 and 72h.  L3, L4, 

C3 and C4 aptamers were significantly decreased the cell viability of U2OS cells at 2.5 µM, p 

˂ 0.0005, at 72h as shown in figures 5.26. C3 aptamer showed the highly significant to reduce 

U2OS cells viability after 24, 48 and 72h when compared to untreated cells (p ˂ 0.000005) and 

L3, L4 and C4 aptamers (p ˂ 0.005).  

 
Figure 5.26: In vitro cell viability of the human bone osteosarcoma (U2OS) cells was detected by MTT assay. 

The results of U2OS cells post 24, 48 and 72h treatment of 2.5 µM (L3, L4, C3 and C4) aptamers. The absorbance 

was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results represent the mean 

± SEM of 3 independent experiments. C3 aptamers have a strong inhibition ability for U2OS cells. p ˂ 0.0005 at 

72h vs. control. 
 

 

     To investigate the challenging of cells with TBHP, U2OS cells were treated with 50 μM 

TBHP and showed a reduction by 40% at 24 and 48h and 47% at 72h in cell viability compared 

to untreated cells (control). U2OS cells were illustrated significantly decrease on cell viability 

after treatment with 2.5 µM L3, L4 and C3 aptamers and 50 µM TBHP at 24, 48 and 72h, p ˂ 

0.0001 (figure 5.27-5.29), while C4 aptamer was reduced the U2OS cells viability after 72h, 

(p < 0.005) as described in figure 5.30.  
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Figure 5.27: In vitro cell viability of the human bone osteosarcoma (U2OS) cells was detected by MTT assay.  

The results of U2OS cells post 24, 48 and 72h treatment with 2.5 µM L3 aptamer also exposure to 50 µM TBHP. 

The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. L3 aptamer with TBHP have a strong inhibition ability 

for U2OS cells at 72h. p < 0.0001 vs. control. 
 

 

 
Figure 5.28: In vitro cell viability of the human bone osteosarcoma (U2OS) cells was detected by MTT assay.  
The results of U2OS cells post 24, 48 and 72h treatment with 2.5 µM L4 aptamer also exposure to 50 µM TBHP. 

The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. L4 aptamer with TBHP have a strong inhibition ability 

for U2OS cells at 72h. p < 0.0001 vs. control. 
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Figure 5.29: In vitro cell viability of the human bone osteosarcoma (U2OS) cells was detected by MTT assay.  

The results of U2OS cells post 24, 48 and 72h treatment with 2.5 µM C3 aptamer also exposure to 50 µM TBHP. 

The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. C3 aptamer with TBHP have a strong inhibition ability 

for U2OS cells at 72h. p < 0.0001 vs. control. 

 
 

 

 
Figure 5.30: In vitro cell viability of the human bone osteosarcoma (U2OS) cells was detected by MTT assay.  

The results of U2OS cells post 24, 48 and 72h treatment with 2.5 µM C4 aptamer also exposure to 50 µM TBHP. 
The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. p < 0.005 vs. control. 
 

 

     Based on the results presented in figure 5.31, 2.5 μM aptamers and 50 μM TBHP treatment 

after 72h caused a cell death increase of 86.6%, and 92.6% for L3 and C3 aptamers 

respectively. Between the groups of aptamers, C3 aptamer was showed significantly higher 

percentage of cell death than L3, L4 and C4 aptamers (p ˂ 0.00001). 
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Figure 5.31: In vitro cell death percentage of the human bone osteosarcoma (U2OS) cells was estimated by MTT 

assay in 96-well plates following 24, 48 and 72 exposure to 2.5 µM (L3, L4, C3 and C4) aptamers and 50 µM 

TBHP. Data is shown as % mean ± SEM of cell death for of 3 separate experiments. Treatment significantly 
different from the untreated controls p < 0.00001.  
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5.3.1.6 Colorectal Adenocarcinoma cells (Caco-2)  
 

     Caco-2 cells were exposed to 2.5 μM L3, L4, C3 and C4 aptamers at 24, 48 and 72h to 

estimate the effect of aptamers on Caco-2 cell viability.  L3, C3 and C4 aptamers significantly 

reduced cell viability at 2.5 µM, p ˂ 0.05, 0.005 and 0.001 at 24, 48 and 72h respectively as 

shown in figures 5.32, while L4 aptamer was not effected on Caco-2 cell viability at the same 

concentration (p ˃ 0.05).  

Figure 5.32: In vitro cell viability of the human colorectal adenocarcinoma (Caco-2) cells was detected by MTT 

assay. The results of Caco-2 cells post 24, 48 and 72h treatment of 2.5 µM (L3, L4, C3 and C4) aptamers. The 

absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. C3 aptamers have a strong inhibition ability for Caco-

2 cells. p ˂ 0.05, 0.005 and 0.001 at 24, 48 and 72h respectively vs. control. 

 

     Caco-2 cells which were treated with 50 μM TBHP also showed a reduction of 25% in cell 

viability after 24h compared to untreated cells; however, the difference was not statistically 

significant. The reduction in cell viability became more pronounced after treated with 2.5 µM 

L3, C3 and C4 aptamers and 50 μM TBHP, p < 0.005 (figures 5.33, 5.35 and 5.36). In addition, 

L4 aptamer was not effected to Caco-2 cells viability after treated with 50 μM TBHP, p ˃ 0.05 

(figure 5.34). 
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Figure 5.33: In vitro cell viability of the human colorectal adenocarcinoma (Caco-2) cells was detected by MTT 

assay.  The results of Caco-2 cells post 24, 48 and 72h treatment with 2.5 µM L3 aptamer also exposure to 50 µM 

TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The 

results represent the mean ± SEM of 3 independent experiments. p < 0.005 vs. control. 
 

 

 

 
Figure 0.34: In vitro cell viability of the human colorectal adenocarcinoma (Caco-2) cells was detected by MTT 

assay.  The results of Caco-2 cells post 24, 48 and 72h treatment with 2.5 µM L4 aptamer also exposure to 50 µM 

TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The 

results represent the mean ± SEM of 3 independent experiments. p ˃ 0.05 vs. control. 
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Figure 0.35: In vitro cell viability of the human colorectal adenocarcinoma (Caco-2) cells was detected by MTT 

assay.  The results of Caco-2 cells post 24, 48 and 72h treatment with 2.5 µM C3 aptamer also exposure to 50 µM 

TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The 
results represent the mean ± SEM of 3 independent experiments. p < 0.005 vs. control. 

 
 

 
Figure 5.36: In vitro cell viability of the human colorectal adenocarcinoma (Caco-2) cells was detected by MTT 

assay.  The results of Caco-2 cells post 24, 48 and 72h treatment with 2.5 µM C4 aptamer also exposure to 50 µM 

TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The 
results represent the mean ± SEM of 3 independent experiments. p < 0.005 vs. control. 

 

 

     Based on the results presented in figure 5.37, cells exposed to 2.5 μM L3, C3 and C4 

aptamers after 24h were presented a statistically significant increase of cell death when 

compared to untreated cells (p ˂ 0.005). 2.5 μM aptamers and 50 μM TBHP treatment after 

72h caused a cell death increase of 86.4%, 93.1% and 77.9% for L3, C3, and C4 respectively. 

Between the groups of aptamers, C3 aptamer was showed significantly higher percentage of 

cell death than L3, L4 and C4 aptamers (p ˂ 0.005). 
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Figure 5.37: In vitro cell death percentage of the colorectal adenocarcinoma (Caco-2) cells was estimated by 

MTT assay in 96-well plates following 24, 48 and 72h exposure to 2.5 µM (L3, L4, C3 and C4) aptamers and 50 

µM TBHP. Data is shown as % mean ± SEM of cell death for 3 separate experiments. Treatment significantly 

different from the untreated controls p < 0.005. 
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5.3.1.7 Aneuploid Immortal Keratinocyte (HaCaT) Cells 
 

     Figure 5.38 illustrates the ability of L3, L4, C3 and C4 aptamers to inhibit the HaCaT cells 

viability. The C3 aptamer was significantly reduced the HaCaT cells viability after 24h 

compared with untreated cells (p ˂ 0.005), while L3, L4, and C4 aptamers showed reduced the 

cell viability after 72h (p ˂ 0.05). 

 
Figure 0.38: In vitro cell viability of the human aneuploid immortal keratinocyte (HaCaT) cells was detected by 

MTT assay. The results of HaCaT cells post 24, 48 and 72h treatment of 2.5 µM (L3, L4, C3 and C4) aptamers. 

The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. C3 aptamers have a strong inhibition ability for HaCaT 

cells. p ˂ 0.005 vs. control. 

 

      Both 2.5 μM C3 aptamer and 50 µM TBHP treatments of HaCaT cells caused a statistical 

significant reduction in cell viability compared to viability of untreated cells (p ˂ 0.0001) after 

24h as shown in figures 5.41, while L3, L4, and C4 aptamers were showed reduce in cell 

viability after 48h when pre-treated with 50 µM TBHP before added 2.5 µM aptamers (p ˂ 

0.05) as described in figures 5.39, 5.40 and 5.42. 

     C3 aptamer showed the highest increase of HaCaT cell death by 82% when the cells were 

treated with 2.5 µM C3 aptamer, 86.6% when the cells were treated with 2.5 µM C3 aptamer 

then 50 µM TBHP and 89% when the cells were treated with 50 µM TBHP then 2.5 µM C3 

aptamer after 72h compared to L3, L4 and C4 aptamers (p ˂ 0.0005) as shown in figure 5.43.   
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Figure 5.39: In vitro cell viability of the human aneuploid immortal keratinocyte (HaCaT) cells was detected by 

MTT assay.  The results of HaCaT cells post 24, 48 and 72h treatment with 2.5 µM L3 aptamer also exposure to 

50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. p < 0.05 vs. control. 

Figure 0.40:  In vitro cell viability of the human aneuploid immortal keratinocyte (HaCaT) cells was detected by 

MTT assay.  The results of HaCaT cells post 24, 48 and 72h treatment with 2.5 µM L4 aptamer also exposure to 
50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. p < 0.05 vs. control. 
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Figure 5.41: In vitro cell viability of the human aneuploid immortal keratinocyte (HaCaT) cells was detected by 

MTT assay.  The results of haCaT cells post 24, 48 and 72h treatment with 2.5 µM C3 aptamer also exposure to 

50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. C3 aptamer with TBHP have a strong 

inhibition ability for HaCaT cells at 24, 48 and 72h. p < 0.0001 vs. control. 

 

Figure 0.42: In vitro cell viability of the human aneuploid immortal keratinocyte (HaCaT) cells was detected by 

MTT assay.  The results of HaCaT cells post 24, 48 and 72h treatment with 2.5 µM C4 aptamers also exposure to 

50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 
The results represent the mean ± SEM of 3 independent experiments. p < 0.05 vs. control. 
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Figure 5.43: In vitro cell death percentage of the human aneuploid immortal keratinocyte (HaCaT) cells was 

estimated by MTT assay in 96-well plates following 24, 48 and 72 exposure to 2.5 µM (L3, L4, C3 and C4) 

aptamers and 50 µM TBHP. Data is shown as % mean ± SEM of cell death for of 3 separate experiments. 

Treatment significantly different from the untreated controls p < 0.0005.  
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5.3.1.8 Normal Human Bronchial Epithelial Cells (Beas-2b)   
 

     Beas-2b cell line was used in this study to compare the effect of aptamers on cancer cell line 

with the normal cell line. Figure 5.44 demonstrates the cell viability of Beas-2b after treatment 

with 2.5 µM L3, L4, C3 and C4 aptamers at 24, 48 and 72h. Results were showed that all 

aptamers had not affected on Beas-2b cells viability. 

 

 
Figure 5.44: In vitro cell viability of normal human bronchial epithelial cells (Beas-2b) cells was detected by 

MTT assay. The results of Beas-2b cells post 24, 48 and 72h treatment of 2.5 µM (L3, L4, C3 and C4) aptamers. 

The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. The results 

represent the mean ± SEM of 3 independent experiments. p ˃ 0.05 vs. control. 

 

     Interestingly, pre-treated Beas-2b cells with 2.5 μM L3, L4, C3 and C4 aptamers and 50 

µM TBHP were showed not affected on Beas-2b cells viability as described in figures 5.45-

5.48. Figure 5.46 was illustrated the percentage of Beas-2b cell death after treatment with 2.5 

µM aptamers and 50 µM TBHP. 
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Figure 0.45: In vitro cell viability of normal human bronchial epithelial cells (Beas-2b) cells was detected by 

MTT assay.  The results of Beas-2b cells post 24, 48 and 72h treatment with 2.5 µM L3 aptamer also exposure to 

50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. p ˃ 0.05 vs. control. 
 

 

 
Figure 0.46: In vitro cell viability of normal human bronchial epithelial cells (Beas-2b) cells was detected by 

MTT assay.  The results of Beas-2b cells post 24, 48 and 72h treatment with 2.5 µM L4 aptamer also exposure to 

50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. p ˃ 0.05 vs. control. 
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Figure 5.47: In vitro cell viability of normal human bronchial epithelial cells (Beas-2b) cells was detected by 
MTT assay.  The results of Beas-2b cells post 24, 48 and 72h treatment with 2.5 µM C3 aptamer also exposure to 

50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. p ˃ 0.05 vs. control. 

 
 

 
Figure 5.48: In vitro cell viability of normal human bronchial epithelial cells (Beas-2b) cells was detected by 

MTT assay.  The results of Beas-2b cells post 24, 48 and 72h treatment with 2.5 µM C4 aptamer also exposure to 

50 µM TBHP. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate reader. 

The results represent the mean ± SEM of 3 independent experiments. p ˃ 0.05 vs. control. 
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Figure 0.49: In vitro cell viability of normal human bronchial epithelial cells (Beas-2b) was detected by MTT 

assay.  The results of Beas-2b cells post 24h treatment of 2.5 µM (L3, L4, C3 and C4) aptamers also exposure to 

50 µM TBHP at 24h. The absorbance was measured at 540 nm (reference wavelength 650 nm) using a microplate 
reader. The results represent the mean absorbance ± SEM of 3 independent experiments. Aptamers have not 

affected on Beas-2b cells viability. p ˃ 0.05 vs. control. 
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     In summary, the percentage of cell death for all cancer cells A549, HepG2, MCF-7, MDA-

MB-468, U2OS, Caco-2 that they were treated with C3 aptamer was significantly higher than 

the percentage of cell death when the cells were pre-treated with other aptamers (C4, L3 and 

L4). In conclusion, we will recommend that C3 aptamer is the best-selected aptamer to use as 

therapeutic for cancer between all aptamers, where it was achieved the highest affinity and 

selectivity with SIRT1 and the highest percentage of cancer cell death. 

 

5.3.2 Effect of Linear3, Linear4, Circular3 and Circular4 aptamers on 

Intracellular ROS Production in 8 Cell Lines 

 

     To investigate the antioxidative effect of L3, L4, C3, and C4 aptamers, the ability to prevent 

the production of ROS in 8 cell lines (A549, HepG2, MCF-7, MDA-MB-468, U2OS, Caco-2, 

HaCaT, and Beas-2b) was evaluated. As shown in figure 5.50-5.54 for A549, MCF-7, MDA-

MB-468, U2OS and Caco-2 cell lines, incubation of these cells with 2.5 µM L3, L4, C3 and 

C4 aptamers at 6h were slightly decreased the levels of endogenous ROS as assessed using the 

fluorescent probe DCF. When cells were exposed to 50 µM TBHP (tert-Butyl hydroperoxide 

(tBuOOH) is an organic peroxide widely used in a variety of oxidation processes), a marked 

increase was observed in the intracellular ROS level (p ˂ 0.005). In fact, when cells were pre-

incubated with 2.5 µM L3, L4, C3 and C4 aptamers for 4h before being exposed to 50 µM 

TBHP, the levels of ROS observed after 45 min were slightly increased than the same cells 

which were pre-treated with 2.5 µM L3, L4, C3 and C4 aptamers only (p ˂ 0.05). When the 

same cells were exposed to 50 µM TBHP before adding 2.5 µM L3, L4, C3 and C4 aptamers, 

the levels of ROS observed after 45 min were increased significantly than cells of control and 

cells were pre-treated with aptamers firstly (p ˂ 0.005). The C3 aptamer was significantly 

decreased the ROS level on A549, MCF-7, MDA-MB-468, U2OS and Caco-2 cell lines 

compared with L3, L4 and C4 aptamers, p ˂ 0.005. 
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Figure 0.50: Effects of L3, L4, C3 and C4 aptamers on intracellular ROS production in A549 cells, using DCF 

as fluorescent probe. Cells were pre-incubated with the 2.5 µM of L3, L4, C3 and C4 aptamers, then cells were 

exposed to 50 µM TBHP (Tert-Butyl Hydrogen Peroxide) before and after 4h from adding the aptamers. After a 

recovery period 6h, the culture was incubated with the DCFDA solution for about 45min at 37° C. DCF 

fluorescence was measured at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. The 

results represent the mean ± SEM of three different experiments performed in triplicate. p ˂ 0.005. 

 

 

 
Figure 0.51: Effects of L3, L4, C3 and C4 aptamers on intracellular ROS production in MCF-7 cells, using DCF 

as fluorescent probe. Cells were pre-incubated with the 2.5 µM of L3, L4, C3 and C4 aptamers, then cells were 

exposed to 50 µM TBHP (Tert-Butyl Hydrogen Peroxide) before and after 4h from adding the aptamers. After a 

recovery period 6h, the culture was incubated with the DCFDA solution for about 45min at 37° C. DCF 

fluorescence was measured at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. The 

results represent the mean ± SEM of three different experiments performed in triplicate. p ˂ 0.005. 
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Figure 0.52: Effects of L3, L4, C3 and C4 aptamers on intracellular ROS production in MDA-MB-468 cells, 

using DCF as fluorescent probe. Cells were pre-incubated with the 2.5 µM of L3, L4, C3 and C4 aptamers, then 
cells were exposed to 50 µM TBHP (Tert-Butyl Hydrogen Peroxide) before and after 4h from adding the aptamers. 

After a recovery period 6h, the culture was incubated with the DCFDA solution for about 45min at 37° C. DCF 

fluorescence was measured at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. The 

results represent the mean ± SEM of three different experiments performed in triplicate. P ˂ 0.005. 

 

Figure 0.53: Effects of L3, L4, C3 and C4 aptamers on intracellular ROS production in U2OS cells, using DCF 

as fluorescent probe. Cells were pre-incubated with the 2.5 µM of L3, L4, C3 and C4 aptamers, then cells were 

exposed to 50 µM TBHP (Tert-Butyl Hydrogen Peroxide) before and after 4h from adding the aptamers. After a 

recovery period 6h, the culture was incubated with the DCFDA solution for about 45min at 37° C. DCF 

fluorescence was measured at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. The 

results represent the mean ± SEM of three different experiments performed in triplicate. p ˂ 0.005. 
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Figure 0.54: Effects of L3, L4, C3 and C4 aptamers on intracellular ROS production in Caco-2 cells, using DCF 
as fluorescent probe. Cells were pre-incubated with the 2.5 µM of L3, L4, C3 and C4 aptamers, then cells were 

exposed to 50 µM TBHP (Tert-Butyl Hydrogen Peroxide) before and after 4h from adding the aptamers. After a 

recovery period 6h, the culture was incubated with the DCFDA solution for about 45min at 37° C. DCF 

fluorescence was measured at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. The 

results represent the mean ± SEM of three different experiments performed in triplicate. p ˂ 0.005. 

 

     According to the effect of L3, L4, C3 and C4 aptamers on intracellular ROS production in 

HepG2 cells, the results showed that ROS level were decreased in cells pre-treated with 

aptamers and more decreased when cells treated with aptamers and exposed to 50 µM TBHP 

except C4 aptamer was showed increased the ROS level after adding 50 µM TBHP. However, 

the ROS level was increased again when cells exposed to 50 µM TBHP before adding the 

aptamers (figure 5.55). The C3 aptamer was significantly decreased the ROS level on HepGe2 

cell lines compared with L3, L4 and C4 aptamers, p ˂ 0.005. 
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Figure 5.55: Effects of L3, L4, C3 and C4 aptamers on intracellular ROS production in HepG2 cells, using DCF 

as fluorescent probe. Cells were pre-incubated with the 2.5 µM of L3, L4, C3 and C4 aptamers, then cells were 

exposed to 50 µM TBHP (Tert-Butyl Hydrogen Peroxide) before and after 4h from adding the aptamers. After a 

recovery period 6h, the culture was incubated with the DCFDA solution for about 45min at 37° C. DCF 

fluorescence was measured at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. The 

results represent the mean ± SEM of three different experiments performed in triplicate. p ˂ 0.005. 

     In contrast, L3, L4, C3 and C4 aptamers were increased the intracellular ROS production in 

HaCaT cells as shown in figure 5.56 (p ˂ 0.001).  

 
Figure 0.56: Effects of L3, L4, C3 and C4 aptamers on intracellular ROS production in HaCaT cells, using DCF 

as fluorescent probe. Cells were pre-incubated with the 2.5 µM of L3, L4, C3 and C4 aptamers, then cells were 

exposed to 50 µM TBHP (Tert-Butyl Hydrogen Peroxide) before and after 4h from adding the aptamers. After a 

recovery period 6h, the culture was incubated with the DCFDA solution for about 45min at 37° C. DCF 

fluorescence was measured at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. The 

results represent the mean ± SEM of three different experiments performed in triplicate. p ˂ 0.005. 

 

     According to the results of Beas-2b cells, it was observed that all aptamers have not effect 

on intracellular ROS production (p ˃ 0.05) as shown in figure 5.57. 
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Figure 0.57: Effects of L3, L4, C3 and C4 aptamers on intracellular ROS production in Beas-2b cells, using DCF 

as fluorescent probe. Cells were pre-incubated with the 2.5 µM of L3, L4, C3 and C4 aptamers, then cells were 

exposed to 50 µM TBHP (Tert-Butyl Hydrogen Peroxide) before and after 4h from adding the aptamers. After a 

recovery period 6h, the culture was incubated with the DCFDA solution for about 45min at 37° C. DCF 

fluorescence was measured at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. The 

results represent the mean ± SEM of three different experiments performed in triplicate. p ˃ 0.05. 

     In summary, the results in figures 5.50-5.55 were illustrates that ROS level were decreased 

in cancer cells which treated with aptamers since it increases the activity of SIRT1 enzyme, 

therefore the increased activity of SIRT1 enzyme can control and inhibited the level of ROS 

when the cells treated with aptamers before added the TBHP if they compared with the 

increased level of ROS in cancer cells when these cells were treated with TBHP before added 

aptamers whereas this increase in the level of ROS can be inhibited the activity of SIRT1.  

 

5.3.3 In vitro Study the Activity of SIRT1 Enzyme by C3 in Cells by Fluor de  

Lys Deacetylase Assay 

 

     After the obtained results from the performed studies of mechanisms and stability on the 

L3, L4, C3 and C4 aptamers in current work, and studying their effect on the growth of the 6 

cancer cells and 2 normal cells, it has been found that C3 is the best aptamer among them 

because it has several factors that helped it to be the best aptamer among them like the KD 

value and the highest percentage of cancer cell death. Therefore, a study of aptamers 

mechanism on growth inhibition of cancer cells was limited to C3 aptamer at different lower 

concentrations. In this experiment, SIRT1 activity, cell viability and intracellular ROS 

production was estimated on A549, HepG2, MCF-7, MDA-MB-468, U2OS, Caco-2, HaCaT, 

and Beas-2b cell lines in parallel under the same conditions to investigate the mechanism of 
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C3 aptamer in cells (Data for the effect of C3 aptamer on % cell death and intracellular ROS 

production in section 5.3.4).   

     The activity of SIRT1 on A549 cells which are pretreated with C3 aptamer at concentrations 

0.5 and 1 µM were markedly increased compared with control (the level of SIRT1 in A549 

cells) and 100 µM resveratrol (SIRT1 activators) (p ˂ 0.0005) as shown in figure 5.58.  

 

 
Figure 0.58: SIRT1 activity in A549 cells line at 0.25, 0.5 and 1 µM C3 aptamer, 100 µM resveratrol (SIRT1 

activator control), 100 µM suramin and nicotinamide (SIRT1 inhibitor control). The results represent the mean ± 

SEM of three different experiments performed in triplicate. p ˂ 0.0005. 

 

 

 

     As it can be seen in figure 5.59, the 1 µM of C3 aptamer can activate the SIRT1 more than 

twice its value compared with control (the level of SIRT1 in HepG2 cells) (p ˂ 0.0001). 

However, 0.25, 0.5 µM of C3 aptamer was slightly increased the activity of SIRT1 compared 

with control, p ˂ 0.005.   
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Figure 5.59: SIRT1 activity in HepG2 cells line at 0.25, 0.5 and 1 µM C3 aptamer, 100 µM resveratrol (SIRT1 

activator control), 100 µM suramin and nicotinamide (SIRT1 inhibitor control). The results represent the mean ± 

SEM of three different experiments performed in triplicate. p ˂ 0.0001. 

          

     The results of activator SIRT1 by C3 aptamer in MCF-7, MDA-MB-468, and U2OS cells 

were described in figures (5.60-5.62). C3 aptamers were markedly increased the activity of 

SIRT1 at concentration 0.25, 0.5 and 1 µM compared to control (the level of SIRT1 in MCF-

7, MDA-MB-468 and U2OS cells) (p ˂ 0.001, 0.0005, 0.00005 at 0.25, 0.5 and 1 µM 

respectively). The increased level of SIRT1 activity by 1 µM C3 aptamer led to increasing the 

percentage of cell death in MCF-7, MDA-MB-468 and U2OS cells to 46%, 61%, and 42% 

respectively.  

 
Figure 0.60: SIRT1 activity in MCF-7 cells line at 0.25, 0.5 and 1 µM C3 aptamer, 100 µM resveratrol (SIRT1 

activator control), 100 µM suramin and nicotinamide (SIRT1 inhibitor control). The results represent the mean ± 

SEM of three different experiments performed in triplicate. p ˂ 0.001, 0.0005, 0.00005 at 0.25, 0.5 and 1 µM 

respectively. 
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Figure 0.61: SIRT1 activity in MDA-MB-468 cells line at 0.25, 0.5 and 1 µM C3 aptamer, 100 µM resveratrol 

(SIRT1 activator control), 100 µM suramin and nicotinamide (SIRT1 inhibitor control). The results represent the 

mean ± SEM of three different experiments performed in triplicate. p ˂ 0.001, 0.0005,0.00005 at 0.25, 0.5 and 1 
µM respectively. 

  

 
Figure 0.62: SIRT1 activity in U2OS cells line at 0.25, 0.5 and 1 µM C3 aptamer, 100 µM resveratrol (SIRT1 

activator control), 100 µM suramin and nicotinamide (SIRT1 inhibitor control). The results represent the mean ± 

SEM of three different experiments performed in triplicate. p ˂ 0.001, 0.0005, 0.00005 at 0.25, 0.5 and 1 µM 

respectively.         

         As it has been shown in figure 5.63, the activity of SIRT1 on Caco-2 cells which 

pretreated with C3 aptamer at concentrations 0.25, 0.5 µM were slightly increased compared 

with control (the level of SIRT1 in Caco-2 cells) and 100 µM resveratrol (SIRT1 activators) 

(p˂ 0.01). However, the activity of SIRT1 on Caco-2 cells which pretreated with C3 aptamer 

at concentration 1 µM was increased significantly compared with control (the level of SIRT1 

in Caco-2 cells) and 100 µM Resveratrol (SIRT1 activators) (p ˂ 0.00001). 
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Figure 0.63: SIRT1 activity in Caco-2 cells line at 0.25, 0.5 and 1 µM C3 aptamer, 100 µM resveratrol (SIRT1 

activator control), 100 µM suramin and nicotinamide (SIRT1 inhibitor control). The results represent the mean ± 

SEM of three different experiments performed in triplicate. p ˂ 0.00001.  

 

     HaCaT cells were used as a non-cancer cell line to study the effect of C3 aptamer in these 

cells. The results of these cells as shown in figure 5.64 are suggesting that 1 µM of the C3 

aptamer is activating SIRT1 in these cells compared with control (the level of SIRT1 in HaCaT 

cells) (p ˂ 0.001).  

 

 
Figure 0.64: SIRT1 activity in HaCaT cells line at 0.25, 0.5 and 1 µM C3 aptamer, 100 µM resveratrol (SIRT1 

activator control), 100 µM suramin and nicotinamide (SIRT1 inhibitor control). The results represent the mean ± 

SEM of three different experiments performed in triplicate. p ˂ 0.001. 
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     Regarding Beas-2b cells, data analysis as shown in figures 5.65 have disclosed that C3 

aptamer, not effects on the activity of SIRT1 in Beas-2b cells. Therefore, C3 aptamer does not 

inhibit the growth of cells. 

 

 
Figure 5.65: SIRT1 activity in Beas-2b cells line at 0.25, 0.5 and 1 µM C3 aptamer, 100 µM resveratrol (SIRT1 

activator control), 100 µM suramin and nicotinamide (SIRT1 inhibitor control). The results represent the mean ± 

SEM of three different experiments performed in triplicate. p ˃ 0.05. 

 

 

     In summary, the results in figures 5.58-5.65 were indicated that A549, HepG2, MCF-7, 

MDA-MB-468, U2OS, Caco-2, HaCaT cells which were treated with C3 aptamer had a 

markedly increased the activity of SIRT1 and this increase of SIRT1 activity led to decreased 

the cell viability of cancer cell lines as well as HaCaT cell line. In contrast, the C3 aptamer was 

not effecting on the activity of SIRT1 in Beas-2b cells. 

 

5.3.4 Effect of C3 Aptamer on Ratio of Intracellular ROS Production and  

Cell Viability 

 

     To investigate the causes of increased cell death in cancer cell lines and HaCaT cell line by 

C3 aptamer, cell viability and intracellular ROS production was estimated on A549, HepG2, 

MCF-7, MDA-MB-468, U2OS, Caco-2, and HaCaT cell lines in parallel under the same 

conditions by treatment with 0.25, 0.5, 1µM C3 aptamer and then exposed these cells to the 

same concentration of C3 aptamer with 50µM TBHP. 
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     Table 5.1-5.7 demonstrates the data of percentage ROS normalised to control, cell viability 

of A549, HepG2, MCF-7, U2OS, MDA-MB-468, Caco-2, and HaCaT as well as the ratio of 

ROS/Cell viability. The results were showed that C3 aptamer at 0.25, 0.5, 1 µM reduced the 

ROS level, while the cells which exposed to 50 µM TBHP (positive control) were increased 

the ROS level, these results indicate that C3 was a protective effect, though resveratrol at 100 

µM does the same effect. According to MTT, results were showed the same inhibition of cell 

viability. Because of C3 aptamer and resveratrol kill the cells, the ratio of ROS and cell viability 

should be calculated. Anything close to 1 means that protection is happening so the cells are 

reducing the ROS in comparison to a number of cells there. So, with the ratio, at 1 is control, 

C3 aptamer at lower concentrations has a closer to 1 ratio but also because the cells are dying. 

At 1 µM, 50% of the cell with 50% of the ROS so there is less ROS but also fewer cells. When 

50 µM TBHP was added, the level of ROS is normalised, considering the cells are dying too, 

so even though C3 aptamer was anticancer activity, it also helps as an added mechanism to 

survive the damage from ROS. The data suggests that C3 aptamer might produce the anticancer 

activity through another mechanism rather than ROS. However, the data of HaCaT cells were 

showed increased the ratio of ROS/Cell viability of 0.25, 0.5, 1 µM C3 aptamer by 1.7, 1.8 and 

2.5 respectively. These data indicate that 1 μM C3 aptamer was killed the HaCaT cells because 

of increased the level of ROS. 
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Table 0.1: The percentage of ROS normalised to control, cell viability and ratio of ROS/Cell viability of A549 

cell line with 0.25, 0.5, 1 µM C3 aptamer and 100 µM resveratrol with and without 50 µM TBHP. 

 

A549 % ROS  

to control 

normalise 

STD % cell 

viability 

STD 
 

  Ratio 

ROS/cell 

viability 

C3 at 0.25 µM 63.2 0.45 81.0 0.026 
 

0.8 

C3 at 0.5 µM 47.3 1.92 55.1 0.002 
 

0.9 

C3 at 1 µM 27.5 1.83 47.4 0.030 
 

0.6        

A549 cells +TBHP (positive 

control) 

143.0 1.25 34.3 0.016 
 

4.2 

       

C3 at 0.25 µM+TBHP 93.7 4.23 85.0 0.003 
 

1.1 

C3 at 0.5 µM+TBHP 73.2 1.77 61.4 0.002 
 

1.2 

C3 at 1 µM+TBHP 63.2 0.77 56.8 0.010 
 

1.1 
       

       

Resveratrol at 100 µM 31.0 1.52 59.0 0.002 
 

0.5 

Resveratrol at 100 µM+TBHP 47.1 2.46 67.5 0.010 
 

0.7 

 

Table 5.2: The percentage of ROS normalised to control, cell viability and ratio of ROS/Cell viability of HepG2 

cell line with 0.25, 0.5, 1 µM C3 aptamer and 100 µM resveratrol with and without 50 µM TBHP. 

 

HepG2 % ROS  

to control 

normalise 

STD % cell 

viability 

STD 
 

Ratio 

ROS/cell 

viability 

C3 at 0.25 µM 49.5 1.36 83.0 0.004 
 

0.6 

C3 at 0.5 µM 43.3 2.26 59.7 0.003 
 

0.7 

C3 at 1 µM 28.0 2.09 47.6 0.001 
 

0.6 
       

HepG2 cells +TBHP (positive 

control) 

129.8 0.554 41.4 0.026 
 

3.1 

       

C3 at 0.25 µM+TBHP 84.7 1.432 88.1 0.014 
 

1.0 

C3 at 0.5 µM+TBHP 77.4 1.213 58.9 0.001 
 

1.3 

C3 at 1 µM+TBHP 53.8 0.919 53.4 0.001 
 

1.0 
       

       

Resveratrol at 100 µM 38.9 0.952 53.8 0.003 
 

0.7 

Resveratrol at 100 µM+TBHP 49.6 2.004 60.0 0.001 
 

0.8 
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Table 0.3: The percentage of ROS normalised to control, cell viability and ratio of ROS/Cell viability of MCF-7 

cell line with 0.25, 0.5, 1 µM C3 aptamer and 100 µM resveratrol with and without 50 µM TBHP. 

 

MCF-7 % ROS  

to control 

normalise 

STD % cell 

viability 

STD 
 

Ratio 

ROS/cell 

viability 

C3 at 0.25 µM 57.6 1.89 81.4 0.021 
 

0.7 

C3 at 0.5 µM 52.0 3.203 69.9 0.011 
 

0.7 

C3 at 1 µM 36.8 2.54 43.9 0.008 
 

0.8 
       

MCF-7 cells +TBHP (positive 

control) 

127.1 0.786 39.7 0.042 
 

3.2 

       

C3 at 0.25 µM+TBHP 92.6 1.53 99.1 0.055 
 

0.9 

C3 at 0.5 µM+TBHP 81.4 0.981 70.8 0.009 
 

1.1 

C3 at 1 µM+TBHP 74.7 3.24 62.3 0.026 
 

1.2 
       

       

Resveratrol at 100 µM 47.2 1.42 56.9 0.006 
 

0.8 

Resveratrol at 100 µM+TBHP 53.5 2.09 59.9 0.017 
 

0.9 

 

Table 5.4: The percentage of ROS normalised to control, cell viability and ratio of ROS/Cell viability of U2OS 

cell line with 0.25, 0.5, 1 µM C3 aptamer and 100 µM resveratrol with and without 50 µM TBHP. 

 

U2OS % ROS  

to control 

normalise 

STD % cell 

viability 

STD 
 

Ratio 

ROS/cell 

viability 

C3 at 0.25 µM 59.3 1.76 82.6 0.006 
 

0.7 

C3 at 0.5 µM 54.4 1.59 76.3 0.011 
 

0.7 

C3 at 1 µM 38.9 1.09 41.6 0.003 
 

0.9        

U2OS cells +TBHP (positive 

control) 

113.2 0.782 39.8 0.020 
 

2.8 

       

C3 at 0.25 µM+TBHP 87.0 0.987 96.6 0.031 
 

0.9 

C3 at 0.5 µM+TBHP 70.2 1.013 65.7 0.001 
 

1.1 

C3 at 1 µM+TBHP 58.1 0.999 57.7 0.008 
 

1.0 
       

       

Resveratrol at 100 µM 35.8 2.32 57.4 0.003 
 

0.6 

Resveratrol at 100 µM+TBHP 54.3 1.75 61.9 0.006 
 

0.9 
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Table 0.5: The percentage of ROS normalised to control, cell viability and ratio of ROS/Cell viability of MDA-

MB-468 cell line with 0.25, 0.5, 1 µM C3 aptamer and 100 µM resveratrol with and without 50 µM TBHP. 

 

MDA-MB-468 % ROS 

to control 

normalise 

STD % cell 

viability 

STD 
 

Ratio 

ROS/cell 

viability 

C3 at 0.25 µM 61.2 1.019 92.9 0.011 
 

0.7 

C3 at 0.5 µM 53.9 0.932 55.1 0.003 
 

1.0 

C3 at 1 µM 30.8 0.765 39.1 0.001 
 

0.8        

MDA-MB-468 cells +TBHP 

(positive control) 

141.1 2.94 47.3 0.020 
 

3.0 

       

C3 at 0.25 µM+TBHP 91.1 2.342 86.8 0.025 
 

1.0 

C3 at 0.5 µM+TBHP 80.0 1.25 65.5 0.015 
 

1.2 

C3 at 1 µM+TBHP 51.9 0.98 41.2 0.003 
 

1.3 
       

       

Resveratrol at 100 µM 29.0 0.932 50.6 0.008 
 

0.6 

Resveratrol at 100 

µM+TBHP 

46.0 1.763 60.0 0.055 
 

0.8 

 

 

Table 0.6: The percentage of ROS normalised to control, cell viability and ratio of ROS/Cell viability of Caco-2 

cell line with 0.25, 0.5, 1 µM C3 aptamer and 100 µM resveratrol with and without 50 µM TBHP. 

 

 

Caco-2 % ROS  

to control 

normalise 

STD % cell 

viability 

STD 
 

Ratio 

ROS/cell 

viability 

C3 at 0.25 µM 68.9 2.34 79.8 0.004 
 

0.9 

C3 at 0.5 µM 54.5 1.065 68.5 0.004 
 

0.8 

C3 at 1 µM 46.7 0.987 46.4 0.004 
 

1.0 
       

Caco-2 cells +TBHP (positive 

control) 

144.6 0.65 34.2 0.010 
 

4.2 

       

C3 at 0.25 µM+TBHP 84.3 0.774 72.1 0.015 
 

1.2 

C3 at 0.5 µM+TBHP 81.6 0.896 67.7 0.010 
 

1.2 

C3 at 1 µM+TBHP 68.5 1.03 56.4 0.003 
 

1.2 
       

       

Resveratrol at 100 µM 29.5 0.33 53.8 0.002 
 

0.5 

Resveratrol at 100 

µM+TBHP 

39.5 0.63 59.1 0.010 
 

0.7 
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Table 5.7: The percentage of ROS normalised to control, cell viability and ratio of ROS/Cell viability of HaCaT 

cell line with 0.25, 0.5, 1 µM C3 aptamer and 100 µM resveratrol with and without 50 µM TBHP. 

 

HaCaT % ROS 

to control 

normalise 

STD % cell 

viability 

STD 
 

Ratio ROS/ 

cell viability 

C3 at 0.25 µM 127.8 1.01 75.4 0.012 
 

1.7 

C3 at 0.5 µM 127.3 0.23 71.9 0.001 
 

1.8 

C3 at 1 µM 119.3 
 

48.5 0.001 
 

2.5        

HaCaT cells +TBHP 

(positive control) 

137.4 0.399 27.3 0.015 
 

5.0 

       

C3 at 0.25 µM+TBHP 140.5 0.543 83.2 0.005 
 

1.7 

C3 at 0.5 µM+TBHP 136.5 0.89 81.3 0.034 
 

1.7 

C3 at 1 µM+TBHP 162.7 1.09 75.3 0.001 
 

2.2 
       

       

Resveratrol at 100 µM 45.3 1.29 88.8 0.010 
 

0.5 

Resveratrol at 100 

µM+TBHP 

59.2 0.99 86.0 0.006 
 

0.7 

 

5.3.5 Determination the Half Maximal Inhibitory Concentration (IC50)  

Value  

 

     The dose-response curve generated by Origin 9.1 using nonlinear regression analysis for C3 

aptamer in A549, HepG2, MCF-7, MDA-MB-468, U2OS, Caco-2 and HaCaT cells are shown 

in figures 5.66-5.72 respectively. The IC50 values were obtained to a range of concentrations 

of C3 aptamer from 0.0078 – 1 µM) by MTT assay. The results of IC50 for C3 aptamer were 

(0.32, 0.2, 0.144, 0.13, 0.1, 0.3 and 0.23 µM) in A549, HepG2, MCF-7, MDA-MB-468, U2OS, 

Caco-2 and HaCaT cells respectively as shown in figures 5.66-5.72.  
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Figure 5.66: Dose-response curves of IC50 for C3 aptamer. A549 cells were treated for 72h with 0.0078, 0.0156, 

0.0312, 0.625, 0.125, 0.25, 0.5 and 1 µM dose ranges of C3 aptamer. The normalised dose response for C3 aptamer 

was plotted over log transformed aptamer concentrations. IC50 values were determined using nonlinear regression 

analysis (Origin 9.1). Error bars represent the standard error of the mean (SEM) for triplicate data. 

 

 

 
Figure 0.67: Dose-response curves of IC50 for C3 aptamer. HepG2 cells were treated for 72h with 0.0078, 0.0156, 

0.0312, 0.625, 0.125, 0.25, 0.5 and 1 µM dose ranges of C3 aptamer. The normalised dose response for C3 aptamer 

was plotted over log transformed aptamer concentrations. IC50 values were determined using nonlinear regression 
analysis (Origin 9.1). Error bars represent the standard error of the mean (SEM) for triplicate data. 
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Figure 0.68: Dose-response curves of IC50 for C3 aptamer. MCF-7 cells were treated for 72h with 0.0078, 0.0156, 

0.0312, 0.625, 0.125, 0.25, 0.5 and 1 µM dose ranges of C3 aptamer. The normalised dose response for C3 aptamer 

was plotted over log transformed aptamer concentrations. IC50 values were determined using nonlinear regression 
analysis (Origin 9.1). Error bars represent the standard error of the mean (SEM) for triplicate data. 

 

 

 
Figure 5.69: Dose-response curves of IC50 for C3 aptamer. MDA-MB-468 cells were treated for 72h with 0.0078, 

0.0156, 0.0312, 0.625, 0.125, 0.25, 0.5 and 1 µM dose ranges of C3 aptamer. The normalised dose response for 

C3 aptamer was plotted over log transformed aptamer concentrations. IC50 values were determined using nonlinear 

regression analysis (Origin 9.1). Error bars represent the standard error of the mean (SEM) for triplicate data. 
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Figure 5.70: Dose-response curves of IC50 for C3 aptamer. U2OS cells were treated for 72h with 0.0078, 0.0156, 

0.0312, 0.625, 0.125, 0.25, 0.5 and 1 µM dose ranges of C3 aptamer. The normalised dose response for C3 aptamer 

was plotted over log transformed aptamer concentrations. IC50 values were determined using nonlinear regression 

analysis (Origin 9.1). Error bars represent the standard error of the mean (SEM) for triplicate data. 

 

 
Figure 0.71: Dose-response curves of IC50 for C3 aptamer. Caco-2 cells were treated for 72h with 0.0078, 0.0156, 

0.0312, 0.625, 0.125, 0.25, 0.5 and 1 µM dose ranges of C3 aptamer. The normalised dose response for C3 aptamer 

was plotted over log transformed aptamer concentrations. IC50 values were determined using nonlinear regression 

analysis (Origin 9.1). Error bars represent the standard error of the mean (SEM) for triplicate data. 
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Figure 5.72: Dose-response curves of IC50 for C3 aptamer. HaCaT cells were treated for 72h with 0.0078, 0.0156, 
0.0312, 0.625, 0.125, 0.25, 0.5 and 1 µM dose ranges of C3 aptamer. The normalised dose response for C3 aptamer 

was plotted over log transformed aptamer concentrations. IC50 values were determined using nonlinear regression 

analysis (Origin 9.1). Error bars represent the standard error of the mean (SEM) for triplicate data. 
 

     In conclude, the results were indicated that these values of IC50 of C3 aptamers in all cells 

are very good value because a very low concentration of C3 aptamer can inhibit the half number 

of cancer cell viability as compared with the IC50 of resveratrol (70–150 µM) in MCF7, SW480, 

HCE7, Seg-1, Bic-1, and HL60 cell lines according to Joe et al., (2002).  

5.3.6 Determine the Location of C3 Aptamer by Fluorescence Microscopy 
 

     To determine the location of the C3 aptamer, fluorescence microscopy was used in this 

experiment. The C3 aptamer was labelled with green fluorescent protein (GFP), DAPI (4', 6-

Diamidino-2-Phenylindole, Dihydrochloride) was used to locate the nuclei and a Texas Red 

(sulfonyl chloride) antibody for SIRT1. The cells were challenged with the C3 aptamer at a 

lower concentration (0.1 µM to U2OS, MDA-MB-468 and HaCaT, 0.2 µM to MCF-7 and 

HepG2, 0.3 µM to A549 and Caco-2, and 1 µM to Beas-2b) at 72h. Thus, figures 5.73-5.80 

showed that fluorescence microscopy is very useful tool for studying the location of C3 

aptamer in cancer and non-cancer cell lines. Cells treated with C3 aptamers were brightly 

fluorescent and overexpression of SIRT1 as showed in figures 5.73-5.79B, while fluorescence 

of SIRT1 was weakly when cells were untreated with C3 aptamer (figures 5.73-5.79A), 

confirming the binding specificity of the selected C3 aptamer. In contrast, there was no 
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observable fluorescence signal from control Beas-2b cells treated with the C3 aptamer or 

untreated aptamer (figure 5.80).  

     Figure 5.73, 5.74 and 5.75 shown the localisation of SIRT1 in A549, HepG2, Caco-2 cells 

and demonstrates that SIRT1 was localised in the cytoplasm of these cells, while in MDA-MB-

468, U2OS, HaCaT and Beas-2b cells, the SIRT1 was localised in the nucleus as shown in 

figures 5.77-5.80. 

     These results strongly suggested that this aptamer is highly affinity and selectivity binding 

with SIRT1 as the results of fluorescent imaging shown that when the aptamer present in this 

cancer cells it could be activated and increased the expression of the SIRT1 enzyme. 
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Figure 0.73: Fluorescence microscopy analysis of C3 aptamer binding to SIRT1 enzyme in A549 cell line. (A) 

A549 cell line (control), (B) A549 cells pretreated with 0.3 µM C3 aptamer at 72h, (C) A549 cell line pretreated 

with 50 µM H2O2, (D) A549 cells pretreated with 0.3 µM C3 aptamer and 50 µM H2O2 at 72h. C3 aptamer was 

labelled with green fluorescent protein (GFP), nuclei were stained with DAPI (Blue) and a Texas Red antibody 

for SIRT1 (Red). Fluorescence intensity were measured by Luminometer Microplate Readers, fluorescence 

measurement system with an excitation wavelength of 395, 359 and 596 nm and an emission wavelength of 509, 
461 and 615 nm of GFP, DAPI and Texas Red respectively. The results represent the mean ± SEM of two different 

experiments performed in twice. Images were taken at a magnification of 100X.  
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Figure 0.74: Fluorescence microscopy analysis of C3 aptamer binding to SIRT1 enzyme in HepG2 cell line. (A) 

HepG2 cell line (control), (B) HepG2 cells pretreated with 0.2 µM C3 aptamer at 72h, (C) HepG2 cell line 

pretreated with 50 µM H2O2, (D) HepG2 cells pretreated with 0.2 µM C3 aptamer and 50 µM H2O2 at 72h. C3 

aptamer was labelled with green fluorescent protein (GFP), nuclei were stained with DAPI (Blue) and a Texas 

Red antibody for SIRT1 (Red). Fluorescence intensity were measured by Luminometer Microplate Readers, 

fluorescence measurement system with an excitation wavelength of 395, 359 and 596 nm and an emission 

wavelength of 509, 461 and 615 nm of GFP, DAPI and Texas Red respectively. The results represent the mean ± 

SEM of two different experiments performed in twice. Images were taken at a magnification of 100X and 200X.   
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Figure 0.75: Fluorescence microscopy analysis of C3 aptamer binding to SIRT1 enzyme in Caco-2 cell line. (A) 

Caco-2 cell line (control), (B) Caco-2 cells pretreated with 0.3 µM C3 aptamer at 72h, (C) Caco-2 cell line 

pretreated with 50 µM H2O2, (D) Caco-2 cells pretreated with 0.3 µM C3 aptamer and 50 µM H2O2 at 72h. C3 

aptamer was labelled with green fluorescent protein (GFP), nuclei were stained with DAPI (Blue) and a Texas 

Red antibody for SIRT1 (Red). Fluorescence intensity were measured by Luminometer Microplate Readers, 

fluorescence measurement system with an excitation wavelength of 395, 359 and 596 nm and an emission 
wavelength of 509, 461 and 615 nm of GFP, DAPI and Texas Red respectively. The results represent the mean ± 

SEM of two different experiments performed in twice. Images were taken at a magnification of 100X.   
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Figure 0.76: Fluorescence microscopy analysis of C3 aptamer binding to SIRT1 enzyme in MCF-7 cell line. (A) 

MCF-7 cell line (control), (B) MCF-7 cells pretreated with 0.2 µM C3 aptamer at 72h, (C) MCF-7 cell line 

pretreated with 50 µM H2O2, (D) MCF-7 cells pretreated with 0.2 µM C3 aptamer and 50 µM H2O2 at 72h. C3 
aptamer was labelled with green fluorescent protein (GFP), nuclei were stained with DAPI (Blue) and a Texas 

Red antibody for SIRT1 (Red). Fluorescence intensity were measured by Luminometer Microplate Readers, 

fluorescence measurement system with an excitation wavelength of 395, 359 and 596 nm and an emission 

wavelength of 509, 461 and 615 nm of GFP, DAPI and Texas Red respectively. The results represent the mean ± 

SEM of two different experiments performed in twice. Images were taken at a magnification of 100X and 200X. 
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Figure 5.77: Fluorescence microscopy analysis of C3 aptamer binding to SIRT1 enzyme in MDA-MB-468 cell 
line. (A) MDA-MB-468 cell line (control), (B) MDA-MB-468 cells pretreated with 0.1 µM C3 aptamer at 72h, 

(C) MDA-MB-468 cell line pretreated with 50 µM H2O2, (D) MDA-MB-468 cells pretreated with 0.1 µM C3 

aptamer and 50 µM H2O2 at 72h. C3 aptamer was labelled with green fluorescent protein (GFP), nuclei were 

stained with DAPI (Blue) and a Texas Red antibody for SIRT1 (Red). Fluorescence intensity were measured by 

Luminometer Microplate Readers, fluorescence measurement system with an excitation wavelength of 395, 359 

and 596 nm and an emission wavelength of 509, 461 and 615 nm of GFP, DAPI and Texas Red respectively. The 

results represent the mean ± SEM of two different experiments performed in twice. Images were taken at a 

magnification of 200X.   
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Figure 5.78: Fluorescence microscopy analysis of C3 aptamer binding to SIRT1 enzyme in U2OS cell line. (A) 

U2OS cell line (control), (B) U2OS cells pretreated with 0.1 µM C3 aptamer at 72h, (C) U2OS cell line pretreated 

with 50 µM H2O2, (D) U2OS cells pretreated with 0.1 µM C3 aptamer and 50 µM H2O2 at 72h. C3 aptamer was 

labelled with green fluorescent protein (GFP), nuclei were stained with DAPI (Blue) and a Texas Red antibody 

for SIRT1 (Red). Fluorescence intensity were measured by Luminometer Microplate Readers, fluorescence 

measurement system with an excitation wavelength of 395, 359 and 596 nm and an emission wavelength of 509, 
461 and 615 nm of GFP, DAPI and Texas Red respectively. The results represent the mean ± SEM of two different 

experiments performed in twice. Images were taken at a magnification of 100X and 200X.   
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Figure 5.79: Fluorescence microscopy analysis of C3 aptamer binding to SIRT1 enzyme in HaCaT cell line. (A) 

HaCaT cell line (control), (B) HaCaT cells pretreated with 0.1 µM C3 aptamer at 72h, (C) HaCaT cell line 

pretreated with 50 µM H2O2, (D) HaCaT cells pretreated with 0.1 µM C3 aptamer and 50 µM H2O2 at 72h. C3 

aptamer was labelled with green fluorescent protein (GFP), nuclei were stained with DAPI (Blue) and a Texas 

Red antibody for SIRT1 (Red). Fluorescence intensity were measured by Luminometer Microplate Readers, 

fluorescence measurement system with an excitation wavelength of 395, 359 and 596 nm and an emission 
wavelength of 509, 461 and 615 nm of GFP, DAPI and Texas Red respectively. The results represent the mean ± 

SEM of two different experiments performed in twice. Images were taken at a magnification of 100X and 200X. 
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Figure 0.80: Fluorescence microscopy analysis of C3 aptamer binding to SIRT1 enzyme in Beas-2b cell line. (A) 

Beas-2b cell line (control), (B) Beas-2b cells pretreated with 1 µM C3 aptamer at 72h, (C) Beas-2b cell line 

pretreated with 50 µM H2O2, (D) Beas-2b cells pretreated with 1 µM C3 aptamer and 50 µM H2O2 at 72h. C3 
aptamer was labelled with green fluorescent protein (GFP), nuclei were stained with DAPI (Blue) and a Texas 

Red antibody for SIRT1 (Red). Fluorescence intensity were measured by Luminometer Microplate Readers, 

fluorescence measurement system with an excitation wavelength of 395, 359 and 596 nm and an emission 

wavelength of 509, 461 and 615 nm of GFP, DAPI and Texas Red respectively. The results represent the mean ± 

SEM of two different experiments performed in twice. Images were taken at a magnification of 100X.  
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5.4 Discussion 
 

    This study has investigated oligonucleotide aptamer as can use for anticancer drug discovery. 

In doing so, the work in this chapter has provided information in greater detail regarding the 

use of MTT assay to investigate the inhibitory effect of SIRT1-aptamers on viability of cancer 

cells (A549, HepG2, MCF-7, MDA-MB-468, U2OS and Caco-2) and non-cancer cells (HaCaT 

and Beas-2b) and study the activity of SIRT1 in these cells. SIRT1 is implicated in cell 

proliferation (Brow, 2015). Most studies have established that SIRT1 was involved in cancer 

cells. For instance, Li et al., (2012) were established that downregulation of SIRT1 inhibits 

proliferation of breast cancer cells (BT-474, MDA-MB-231, MDA-MB-435, SK-BR-3), and 

inhibition of SIRT1 blocks proliferation of chronic lymphocytic leukemia cells. In contrary to 

this, increased expression of SIRT1 after resveratrol treatment inhibits proliferation of 

osteosarcoma cells (HOS, Saos-2, U2OS and MG-63) (Li et al., 2009), breast cancer cells 

(MCF-7, MDA-MB-231) (Lin et al., 2010) and human colon cancer cells (Caco-2) (Jensen, 

2013).  

     In the current study, our experiments using cultured cancer cell lines (A549, HepG2, MCF-

7, MDA-MB-468, U2OS, and Caco-2) demonstrates that SIRT1 activated by L3, L4, C3 and 

C4 aptamers has properties of a growth suppressor. Kaba, (2010) was found that knockdown 

of SIRT1 increases the rate of tumour growth by enhancing cell proliferation, whereas 

overexpression of SIRT1 reduces tumour initiation and growth in nude mice, this results is 

agreement with our suggestion that the pharmacological activation of SIRT1 by aptamers 

decreases the rate of cell viability in cancer cell lines (A549, HepG2, MCF-7, MDA-MB-468, 

U2OS and Caco-2) as shown in figures (5.2, 5.8, 5.14, 5.20, 5.26 and 5.32) respectively. 

Together, these results suggest that SIRT1 functions as a context-dependent tumour suppressor 

where activation of SIRT1 suppress tumour initiation and promote cell death. SIRT1 has a 

well-established anti-apoptotic function which has led to the presumption that it acts as an 

oncogene. However, a study showed that transgenic mice overexpressing SIRT1 reduced the 

development of neoplasia in the intestine caused by ApcMin mutation suggesting a tumour 

suppressive role of SIRT1 (Firestein et al., 2008). Wang et al., (2008) demonstrated that 

Sirt1+/- mice showed increased tumour incidence when crossed to a p53+/- background. These 

genetic models strongly suggest that SIRT1 has properties of a tumour suppressor and our 

results lend further support to this function of SIRT1. It is noticeable that our results regarding 

the anti-proliferative properties of SIRT1 contradict many published studies that show an anti-
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apoptotic function of SIRT1. According to these published studies, tumour cells undergo 

apoptosis or growth arrest after transient knockdown of SIRT1 or treatment with SIRT1 

inhibitors such as sirtinol, splitomicin and cambinol (Ford et al., 2005; Heltweg et al., 2006; 

Ota et al., 2006). Based on our results, aptamers have increased the activity of SIRT1 in cancer 

cell lines thereby sensitising these cells to DNA damage-induced apoptosis and promotes cell 

death. A possible explanation for the discrepancies between the studies might be that, in the 

studies published by other research groups tumour cells treated with SIRT1 shRNA (small 

hairpin RNA, is an artificial RNA molecule with a tight hairpin turn that can be used to silence 

target gene expression via RNA interference) may be sensitised to apoptosis due to additional 

transfection associated stress. Furthermore, the off-target toxicity of the first-generation small 

molecule SIRT1 inhibitors could be responsible for the cell death or growth arrest responses 

that they observed (Kabra, 2010). In fact, the recent development of the nanomolar SIRT1 

inhibitor EX-527 demonstrated that specific inhibition of SIRT1 alone does not cause apoptosis 

in tumour cell lines (Solomon et al., 2006; Kabra, 2010).  

     Several studies have suggested that SIRT1 may act as an oncogene based on the correlation 

of higher than normal expression levels of SIRT1 in certain tumours compared to normal tissue 

(Hida et al., 2007; Huffman et al., 2007; Stunkel et al., 2007).In contrast, Kabra, (2010) 

established that SIRT1 levels are variable in different stages of colon cancer tumours, such a 

staining pattern can be interpreted as SIRT1 having both oncogenic and tumour-suppressive 

properties which are consistent with the pleiotropic effects of SIRT1, i.e. anti-apoptotic and 

growth suppressive depending on cellular context and a subset of tumours downregulate SIRT1 

to obtain a proliferation advantage, whereas some could increase SIRT1 expression to benefit 

from its anti-apoptotic function. Although the mechanism by which SIRT1 inhibits cell 

proliferation remains to be further investigated, previous studies suggested that inhibition of 

E2F1 is partly responsible for this observed effect as shown in (figure 1.6, chapter 1, page 12). 

SIRT1 interacts with E2F1, inhibits E2F1 acetylation, and is recruited by E2F1 to target 

promoters (Wang et al., 2006). When expressed at high levels, SIRT1 is a potent inducer of G1 

arrest (Kabra, 2010). Indeed, our results confirmed these previous suggestions that activators 

of SIRT1 by aptamers could have therapeutic potential as an anti-cancer target. Another 

scenario is that activators of SIRT1 may impart cancer preventative effects by enhancing the 

growth-inhibitory effect of SIRT1 in cancer cell line and revealed the decrease level of 

intracellular ROS production. As mentioned earlier, SIRT1 inactivates the p65 subunit of NF-

κB through direct deacetylation. NF-κB inhibition suppresses the iNOS (inducible nitric oxide 
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synthase are a family of enzymes catalysing the production of nitric oxide (NO) from L-

arginine) and nitrous oxide production and thus may lower the cellular ROS load (Lee et al., 

2009; Merksamer et al., 2013). To further our investigation on the function of SIRT1, C3 

aptamer was used to study the activity of SIRT1 in (A549, HepG2, MCF-7, MDA-MB-468, 

U2OS, and Caco-2) cells. Moreover, our results clearly show that treatment of these cells with 

lower concentration of C3 aptamer significantly increases the SIRT1 activity in these cells 

compared with control and resveratrol (figures 5.58, -5.65 respectively), this elevation of 

SIRT1 activity led to decelerated ROS production but this decreasing in ROS level was not the 

cause of decreased cell viability of these cancer cells. Based on table 5.1-5.7, when 50 μM 

TBHP is added, the level of ROS is normalised, considering the cells are dying, so even though 

C3 aptamer kills cancer cells, it also helps as an added mechanism to survive the damage from 

ROS, this is suggesting that C3 aptamer might produce the anticancer activity in a different 

way and not through ROS.  

     The mechanism underlying the expression control of SIRT1 is poorly understood. To the 

best of our knowledge, we demonstrate here for the first time that aptamers induce the 

expression of SIRT1.The results observed in this study are consistent with several research 

groups have reported that resveratrol which activator SIRT1 was inhibited much more cancer 

cells proliferation such as Caco-2 (Jensen, 2013), MCF-7, A549 (Lin et al., 2010), U2OS ((Li 

et al., 2009), MDA-MB-468 (Serrero and Lu, 2001) and HepG2 (Massimi et al., 2012; Hao et 

al., 2014). To investigate the protective effects of aptamers on skin cells, HaCaT cell line, a 

well-known model of keratinocytes in vitro, was used in this study. Our data clearly show that 

aptamers were inhibited cell viability through the increased production of ROS. These results 

suggesting that L3, L4, C3, C4 aptamers which activated SIRT1 could not be used as a 

protective agent because aptamers should have the ability to increase cell viability and 

decreased the ROS production as observed in resveratrol effect on this cell line by (Park and 

lee, 2007; Park and Lee, 2008), but it might be possible to use aptamers in skin cancer as a 

preventing agent and try to study the effects of C3 aptamer on skin cancer cells. In regard to 

aptamers effect on normal cells, Bease-2b cell line has been used as a model system of normal 

cells to compare the result of aptamers on these cells with the observed results in cancer cells 

(A549, HepG2, MCF-7, MDA-MB-468, U2OS, and Caco-2). Interestingly, it has been 

demonstrated that there is not effect to used SIRT1-aptamers on Bease-2b cells viability, which 

indicating that aptamers have actively killing cancer cells without affecting normal cells. The 

IC50 of C3 aptamer was very low concentration (0.32, 0.2, 0.144, 0.13, 0.1, 0.3 and 0.23 µM) 
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in A549, HepG2, MCF-7, MDA-MB-468, U2OS, Caco-2 and HaCaT cells respectively as 

shown in figures 5.66-5.72. This low concentration of IC50 is very good results because the low 

dose of C3 aptamer can inhibit the growth of cancer cells. To study the localisation of SIRT1 

in these cells, fluorescence microscopy was used and the results were showed the different 

location of SIRT1 between cytoplasm and nuclei depending on the type of cells. In A549, 

HepG2, Caco-2 cells our results were shown that SIRT1 was localised in the cytoplasm (figure 

5.73, 5.74 and 5.75 respectively), while in MDA-MB-468, U2OS, HaCaT and Beas-2b cells, 

the SIRT1 was localised in the nucleus (figures 5.77-5.80).  

     In summary, our study provides important information regarding SIRT1 aptamers effect on 

cancer cells. The results presented here suggest that C3 aptamer might be useful in the treatment 

of these types of cancer because its properties of a growth suppressor for specific killing of the 

tumour cells only avoiding unpleasant side effects from damage to the rest of the body. More 

studies are needed, for example, the cellular mechanism of action of SIRT1 in aptamer-

mediated apoptosis demands further investigation and, furthermore, the C3 aptamer-induced 

apoptosis of these cells needs to be investigated in appropriate in vivo models. 
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6 GENERAL DISCUSSION AND FUTURE PERSPECTIVES 
 

6.1  Discussion 
 

     Aptamers have been proven to be highly versatile reagents for biological, diagnostic and 

therapeutic applications ever since the concept was developed in 1990. A multitude of cancer 

therapeutic usages of aptamers has been reported. In the present study, novel aptamers were 

developed by used SELEX technology to produce the first known circular3 aptamer capable of 

binding to the SIRT1 enzyme. 

     The systemic evolution of ligands by exponential enrichment technique is a powerful and 

effective aptamer-selection procedure. However, modifications to the process can dramatically 

improve selection efficiency and aptamer performance. Therefore, the conditions of an 

individual in vitro selection need to be optimised according to the target properties and the 

requirements of selected aptamers. The most important point of success during aptamer 

selection is highly dependent on the design of the library. There are some rules to design a 

suitable library and primers for SELEX. A library cannot be too stable as it must be easily 

denaturated at 95°C for PCR. Our library; 5’-TTCGGAAGAGATGGCGAC-N40-

CGAGCTGATCCTGATGGAA -3’ had a mean melting temperature of 72°C. Primers should 

not have the guanine at 5’ or 3’ ends. Guanine can quench the fluorescent molecules if it is 

close enough. Fluorescence quenching by an adjacent guanosine nucleotide is an under-

appreciated phenomenon that can significantly affect quantum yield. Depending upon the 

fluorophore, this effect can be as much as 40%. The mechanism of fluorophore quenching has 

been explained by electron sharing/donor properties of the adjacent base (Nazarenko et al., 

2002). Quenching of 2- aminopurine fluorescence in DNA is dominated by distance-dependent 

electron transfer from 2-aminopurine to guanosine (Kelly and Barton, 1999). Seidel et al. 

(1996) found that photo-induced electron transfer plays an important role in this type of 

quenching. The order of quenching efficiency is G<A<C<T if the nucleobase is reduced but it 

is the reverse, G>A>C>T if the nucleobase is oxidised (Seidel et al., 1996). Nazarenko et al., 

(2002) also report that quenching by adjacent nucleobases is dependent upon the location of 

the fluorophore within the oligonucleotide. The primers must be 18 to 20 base pairs, must have 

GC content of 50% or more and anneal to a library around 55°C to 60°C. Our primers 5’-

TTCGGAAGAGATGGCGAC-3’ and 5’-CGAGCTGATCCTGATGGAA-3’ had a GC 

content of 52.5 %. They had a melting temperature of 60°C, respectively. Also, each primer 
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must have a ΔG lower than 5kcal/mol. Our primers had ΔG of -7.04kcal/mol and -8kcal/mol, 

respectively. The library was synthesised by TriLink BioTechnology and the successfully 

synthesised DNA library was separated and purified by reversed-phase ion pairing HPLC. 

SELEX methodology was successfully used to select specific aptamers for the SIRT1 enzyme. 

In our SELEX strategy, we did not use any negative selection round because the aim of this 

study is select aptamers broadly recognising the SIRT1 enzyme, the smooth and undisrupted 

selection is very important for successive SELEX. In negative selection, disrupting the SELEX 

exponential enrichment chain can easily be broken and some enriched sequences can be lost. 

Therefore, only purified SIRT1 enzyme was used and increased the stringency of SELEX by 

decreasing the time of incubation, increasing the washing, and adding high concentration salt 

from 150mM-1500mM NaCl+5mM MgCl2 for later rounds of SELEX without negative 

selection. After first incubation of library with SIRT1 enzyme target, each round was followed 

by a preparative PCR of eluted binders. This step is one of the most important steps in the 

SELEX. In the current study, circular and linear aptamers against SIRT1 enzyme were selected. 

For circular aptamer, circularisation library was carried out before starting each round of 

SELEX. 

     After the 8th round SELEX of circular aptamers (figure 3.13) and 12th round SELEX of 

linear aptamers (figure 3.15), a total of 144 clones (72 circular and 72 linear) were sent for 

sequencing resulting in 100 (50 for Circular and 50 for Linear) complete sequences used in 

analysis sequencing. The 100 sequences were sorted into 8 classes as shown in table 3.1 

(linear1, linear2, linear3, linear4, circular1, circular2, circular3, and circular4) with sizes 

ranging from 6-19% frequency. After selecting candidate aptamers, the sequences were 

grouped according to frequency of sequences to (linear3, linear4, circular2, circular3 and 

circular4). Then 10 aptamers (table 3.2) were chosen to study the characterisation that are: 

{(linear3= L1 and L2), (linear4= L3 and L4), (circular2= C1 and C2), (circular3= C3 and C4) 

and (circular4= C5 and C6)}, 5 aptamers with primer to find out if primer is important for the 

effectiveness of aptamer or not (L2, L4, C2, C4 and C6) and 5 aptamers the primer regions 

were removed (L1, L3, C1, C3 and C5). A representative set of 10 abundant sequences was 

chosen for testing their binding abilities and activity to the SIRT1 enzyme. (L1, L2, L3, L4, 

C1, C2, C3, C4, C5, and C6) aptamers were initially checked for SIRT1 activity and binding 

affinities using Fluor de Lys-SIRT1 assay, the best activities and binders from these aptamers 

were further selected for studies characterisation. From the competition study for these 10 

aptamers, it is evident that C3, C4, L3 and L4 aptamers were significantly increased the activity 
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of SIRT1 enzyme compared with the activators controls of the SIRT1 enzyme (figure 4.4) with 

the low Kd constant (22.6 ± 4.9, 7.1 ± 1.9, 20.9 ± 3.7 and 3.5 ± 1.11 nM respectively). This 

study revealed that activation of SIRT1 by aptamers is strongly dependent on structural features 

of the aptamers. The structures formed within and between single-stranded nucleic acid of 

C3, C4, L3 and L4 aptamers are mainly a result of the interactions between their nitrogenous 

bases and these bases. These bases are decorated with a number of complementary hydrogen 

bond acceptors and donors. The common mechanism of association between two 

complementary sequences is by Watson-Crick base-pairing, in which purine nitrogenous 

bases (guanine and adenine) form hydrogen bonds with the pyrimidine nitrogenous bases 

(cytosine and thymine). The sequences of C3 and C4 aptamers as shown in table 3.2 

(CGAGTGGGTTACATCGAAACTGGATCTCAACAGCGGTAAC and    

TTCGGAAGAGATGGCGACCGAGTGGGTTACATCGAAACTGGATCTCAACAGCG

GTAACCGAGCTGATCCTGATGGAA respectively) were demonstrated that contents 

more guanines, these guanines interact with cytosines through 3 hydrogen bonds, while 

adenines only form 2 hydrogen bonds with thymines, also these circular aptamers contents 

G:C base pairings and they are more stable than A:T interactions. In addition to the Watson-

Crick interactions, base-pairing between nucleotides can occur through other mechanisms, 

such as Hoogsteen base-pairing, which involves the formation of hydrogen bonds between 

atoms at the Hoogsteen interface of the nitrogenous bases rather than at the Watson-Crick 

interface (Bloomfield et al., 2000). Since the nitrogenous bases are non-polar structures, 

they may also associate by stacking on each other through hydrogen bonding, hydrophobic 

interactions, electrostatic forces and van der Waals forces in order to reduce the area exposed 

to polar solvents. Moreover, the bases can also interact by a combination of hydrogen 

bonding and base stacking to produce more complex structures. For example, in L3 and L4 

aptamers sequences as shown in table 3.2 chapter 3 

(CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA and 

TTCGGAAGAGATGGCGACCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTG

TTTA CGAGCTGATCCTGATGGAA respectively) demonstrated that within guanine-rich 

regions of a nucleic acid sequence, four guanine residues can assemble into a square co-

planar array known as a guanine quartet through 8 hydrogen bonds. The guanines of these 

quartets can further be stacked, thus resulting in the formation of a stable quadruplex 

structure consisting of 4 strands (Parkinson, 2006). These interactions are the principle 

instigators of the activity of functional aptamers. Not only are they the driving force behind 

the folding of single-stranded sequences into specific catalytic structures, they grant these 
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sequences the ability to selectively bind their target substrates and ligands (SIRT1 enzyme). 

Additionally, the data suggest that these four novel aptamers interact directly with SIRT1 

enzyme and activate SIRT1-catalysed deacetylation through an allosteric mechanism. 

Furthermore, enzyme kinetic studies of SIRT1 with aptamers were examined through the 

values of Km and Vmax compared to kinetic of the SIRT1 enzyme with resveratrol (tables 4.2-

4.5). Consequently, this new design of aptamers by immobilising ssDNA and SIRT1 enzyme 

showed great selectivity ligands against SIRT1. The enzyme kinetics constants for the SIRT1 

enzyme with C3, C4, L3 and L4 compared to those with resveratrol indicated that higher 

enzyme kinetic efficiency of SIRT1 with aptamers than resveratrol. The decrease in the Km and 

Vmax values of immobilised SIRT1 enzymes is due to electrostatic attraction of hydrophobic 

adsorption of the aptamers to the solid it might lead to the presence of areas of increased 

aptamers concentration around the particle. From a reaction rate point of view, the maximal 

velocity of substrate change was calculated as a remaining amount of aptamer from SIRT1 

digestion per minute. The high rate of enzyme reaction and catalytic efficiency of the SIRT1 

enzyme could be due to enough diffusion of aptamer molecules to the surface of the particles 

and to the active sites of the immobilised enzyme. The surface plasmon resonance SPR data 

have confirmed the high affinity of the aptamers for the SIRT1 enzyme, with the low KD values 

in the nanomolar range where the C3 aptamer was the best binder with an apparent KD = 27.07 

± 0.959 nM as shown in figure 4.29. The C3 aptamer was characterised for nuclease 

degradation by blood and was found to be stable, with no indication of degradation for 24 h, as 

deemed by HPLC and gel electrophoresis (figures 4.33-4.36). This significant human plasma 

stability of the C3 aptamer can be attributed to circularisation structure, which made the 

aptamer less susceptible to nuclease degradation in human plasma. Circularisation of aptamers 

is an attractive alternative to chemical modification for improving aptamer stability. Moreover, 

circularisation permits the use of natural nucleotides, which should avoid potential toxicity 

associated with chemical modification. These results suggest that C3 aptamer may well be an 

appropriate candidate for the development of biotherapy. 

     The high-affinity SIRT1- aptamers identified in this study may be used in the future to the 

cancer treatment because the SIRT1 enzyme is a novel target and comes with the challenge of 

discovering molecules that are activators rather than inhibitors and would be developed as first-

in-class cancer therapeutics. Our data in this study using cultured cancer cell lines (A549, 

HepG2, MCF-7, MDA-MB-468, U2OS, and Caco-2) demonstrates that SIRT1 activated by 

aptamers has anticancer properties. According to the previous studies, it can be suggesting the 
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small molecular compounds lead to increase the activity of SIRT1 could be a potential 

molecular therapy target for cancer cells since there is no recorded data indicating that longer 

term treatment with resveratrol or selective SIRT1 activators causes tumours in animals. 

     Several studies reports have provided evidence for a tumour suppressive function of SIRT1 

(Firestein et al., 2008; Wang et al., 2008). Stunkel et al., (2007) compared the levels of SIRT1 

in cancer cell lines with normal cells and found that SIRT1 was overexpressed in almost all the 

cancer cell lines that were tested. When stained with the anti-SIRT1 antibody, HeLa and 

SW620 cell lines exhibited cytoplasmic localisation of SIRT1. Staining of a colon tumour 

microarray (TMA) also revealed cytoplasmic localisation of SIRT1 in the tumour as well as 

normal colon tissues. This result was unexpected since the nuclear localisation of SIRT1 is a 

well-established fact and further investigation of this expression pattern will reveal its 

significance. Another research group identified two nuclear import and two export sequences 

on the SIRT1 enzyme and found that SIRT1 could shuttle between the nucleus and cytoplasm 

in C2C12 myoblast cells (Tanno et al., 2007). SIRT1 was nuclear in undifferentiated C2C12 

and localised to the cytoplasm upon differentiation. Nuclear SIRT1 was found to protect the 

cells against oxidative damage induced cell death but the function of cytoplasmic SIRT1 is yet 

to be determined. It was hypothesised that the cytoplasmic localisation of SIRT1 is a mode of 

regulation such that removal of SIRT1 from the nucleus allows for acetylation and activation 

of certain nuclear substrates of SIRT1. In the current study, the localisation of SIRT1 was 

determined by fluorescence microscopy and the results were showed the different location of 

SIRT1 between cytoplasm and nuclei depending on the type of cells. For example, in A549, 

HepG2, Caco-2 cells our results were shown that SIRT1 was localised in the cytoplasm (figure 

5.73, 5.74 and 5.75), while in MDA-MB-468, U2OS, HaCaT and Beas-2b cells, the SIRT1 was 

localised in the nucleus (figures 5.77-5.80). 

     To study the role of SIRT1 in cancer, Huffman, et al., (2007) developed a prostate cancer 

mouse model called TRAMP (Transgenic adenocarcinoma of mouse prostate). SIRT1 levels 

were found to be elevated in prostate adenocarcinomas in these mice. Simultaneously, HIC1 

levels were downregulated leading the authors to suggest that lower levels of HIC1 

(Hypermethylated in cancer 1 protein) expression were responsible for the observed increase 

in SIRT1. Levels of acetylated lys9 on histone H3 were also reduced in these cancers. Upon 

staining prostate tumour biopsies, it was found that SIRT1 expression was high in the cancer 

cells as compared to the normal surrounding cells. Based on the association of elevated SIRT1 

levels with advanced prostate cancer, the authors summarised that SIRT1 functions as an 
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oncogene and may serve as a potential target for prostate cancer therapy. However, this model 

does not provide conclusive evidence for SIRT1 as a cause of prostate cancer. It merely shows 

an association between high SIRT1 expression and prostate cancer. Another research group 

generated an SIRT1 null mouse model to determine the role of SIRT1 in tumourigenesis (Wang 

et al., 2008). They discovered that cells obtained from Sirt1-/- embryos exhibited incomplete 

chromosome condensation and chromosome instability. These cells also demonstrated cell 

cycle abnormalities and impaired DNA damage repair as compared to Sirt1+/+ cells. 

Furthermore, it was discovered that Sirt1+/-; p53+/- mice were more prone to development of 

spontaneous tumours as compared to Sirt1+/- or p53+/- mice. These observations led the 

authors to suggest that SIRT1 may function as a tumour suppressor. They then analysed a set 

of clinical tissues to study the levels of SIRT1 expression in tumours and found that SIRT1 

levels were lower than normal in glioblastoma, bladder carcinoma, prostate carcinoma and 

certain ovarian cancers. This expression pattern in the different tumours along with 

observations from the SIRT1 null mice led the authors to suggest that SIRT1 has a tumour 

suppressive function. 

     To study the effect of SIRT1 on tumour formation and growth in colon, the ApcMin colon 

cancer mouse model was bred to an SIRT1 transgenic mouse to obtain progenies that 

overexpress SIRT1. Polyp formation in SIRT1 overexpressing mice was compared to control 

ApcMin mice. As observed by Firestein, et al., (2008) SIRT1 overexpression was associated 

with fewer adenomas in the colon of ApcMin mice suggesting a tumour suppressive role for 

SIRT1. It was shown that SIRT1 inhibited colon tumourigenesis by deacetylating and 

negatively regulating the oncogene, β- catenin. Indeed, in a colon TMA (tissue microarray 

technology), the nuclear localisation of SIRT1 was associated with a cytoplasmic localisation 

of β-catenin suggesting that SIRT1 inhibits β-catenin by nuclear exclusion besides 

deacetylating and inhibiting its transcriptional function (Firestein et al., 2008). McBurney et 

al., (2003) generated a transgenic mouse model for SIRT1 null genotype. Most of these 

transgenic mice grew to adulthood probably due to their outbred background and were used to 

test whether SIRT1 inhibits or promotes the development of cancer (Boily et al., 2009). To 

study the effect of SIRT1 on skin carcinogenesis, DMBA (7,12-Dimethylbenz[a]anthracene is 

an immunosuppressor and a powerful organ-specific laboratory carcinogen) was applied to the 

skin to initiate cancer and TPA (Tissue plasminogen activator, is a protein involved in the 

breakdown of blood clots) to promote the cancer in wild type and SIRT1 null mice. No 

difference in tumour formation was observed between the two genotypes but interestingly, 
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treatment with resveratrol could reduce the tumours in both groups although to a lower extent 

in SIRT1 null genotypes suggesting an SIRT1-dependent as well as the independent 

antitumourigenic role of resveratrol. Upon crossing SIRT1 transgenic mice with ApcMin mice 

to study the effect of SIRT1 in colon cancer, it was found that the number of polyps that 

developed in the ApcMin; Sirt1+/+ and ApcMin; Sirt1-/- mice were almost the same but the 

ApcMin; Sirt1-/- mice had smaller sized polyps. We conclude from this research that SIRT1, at 

its endogenous expression level, does not modulate susceptibility to tumour formation but is 

essential for resveratrol-mediated chemoprotection and that the SIRT1 gene expression may 

have to be induced to a certain level for it to function as a tumour suppressor. The above 

observations concerning the role of SIRT1 in cancer are conflicting at best.  

     Based on the early mentioned research above and strong discussions about the role of SIRT1 

in cancer, there is a strong evidence to suggest that increasing the activity of SIRT1 leads to 

inhibition of growth of cancer cells as demonstrated in our results. The data in the current study 

were established that C3 aptamer at a lower concentration 1µM was significantly decreased the 

cell cancer viability to 47.4, 47.6, 43.9, 41.6, 39.1, and 46.4 in A549, HepG2, MCF-7, U2OS, 

MDA-MB-468, and Caco-2 cells respectively. Since C3 aptamer show high SIRT1 activity in 

(A549, HepG2, MCF-7, MDA-MB-468, U2OS, and Caco-2) cancer cell lines, similar to the 

resveratrol, we investigated if the SIRT1 activator (C3 aptamer) could suppress the ROS level 

in these cancer cell lines, as it might be SIRT1 activator (C3 aptamer) block the growth of 

cancer cells by reduction the ROS production. Our result showed that SIRT1 activator (C3 

aptamer) could suppress ROS production in cancer cells and increased the percentage of cell 

death of these cancer cells but this decreasing in ROS level was not the cause of decreased the 

cell viability of these cancer cells, because C3 aptamer at lower concentrations 0.025 μM has 

a closer to 1 ratio (%ROS/ Cell viability) in cancer cells as described in tables 5.1-5.6 chapter 

5. The data suggesting that C3 aptamer is killing the cells in different mechanisms and not 

through ROS.  

     Furthermore, activation and increased the level of SIRT1 in HaCaT cells was inhibited the 

growth cells. In contrast to cancer cell line which has been used in this study, the data of HaCaT 

cells were showed increased the ratio of ROS/Cell viability of 0.25, 0.5, 1 µM C3 aptamer by 

1.7, 1.8 and 2.5 respectively (table 5.7 chapter 5). These data indicate that C3 aptamer was 

killed the HaCaT cells because of increased the level of ROS. Therefore, the increased activity 

of SIRT1in HaCaT cells was not further enhanced to protective these cells but it was helped to 

inhibition their growth, indicating that SIRT1 potentially used as anti-cancer skin drug. 
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Regarding the non-cancerous Beas-2b cells, the data analysis has shown that C3 aptamer has 

no effects on the activity of SIRT1 and does not inhibit the growth of cells. While 100 µM of 

resveratrol were increased the percentage of Beas-2b cell death to 91%. In addition, the ROS 

level of Beas-2b cells after treated with C3 aptamer was stayed on its normal value compared 

with control.  

     The results above were showed that SIRT1 enzyme’s level was increased after adding the 

C3 aptamer to these cells. It is predicted that this elevation in enzyme’s level lead to inhibited 

the NF-κB by decreased the nuclear p65 protein the subunit of NF-κB and decreased the DNA 

binding through direct deacetylation, according to the earlier studies which have been reported 

that increasing activity of SIRT1 enzyme leads to inhibiting NF-κB by SIRT1 which can be 

blocked cytokine-induced NF-κB and led to downstream gene iNOS. This, in turn, led to 

decrease ROS level as was found in the results obtained in this study. According to the results 

of mechanisms and stability of C3 aptamer and its ability to inhibited the cancer cell line, it can 

be suggested that C3 aptamer can be used in the future to the cancer treatment. 

     To summarise, current cancer therapies are varied depending on the type and stage of 

cancer. In the case of osteosarcoma, therapies involve small drugs and surgery, something 

practically impossible when it is in a late stage. Colon cancer is a very difficult to treat cancer 

with bad prognosis if discovered at a later stage. Lung cancers have been in the eye of the storm 

for many decades, different therapies have been made available, and nevertheless outcome is 

poor when found at a later stage. Breast cancer has seen different waves, with oestrogen 

positive being more successful in treatment and oestrogen negative experiencing less success. 

In the area of biologics, different antibodies have been used to treat some form of cancers, 

some being used as drug delivery, some for imaging, and some to stimulate the immune system 

and some targeting cytokines and factors. As any antibody-based therapy, the main side effects 

are related to interference with the immune system, either shutting it down or overloading, with 

different outcomes such as mild infections to shock syndrome and over-expression cytokines. 

Unlike antibodies, aptamers are not immune response inducers, they have the capability of 

targeting selectively the desired protein, without exerting an immune response. They are also 

more stable and most important of all, circular aptamers like C3 can enter the cells and reach 

the target, something antibodies are not capable of performing. This novel C3 aptamer can 

enter the cells to activate SIRT1 and destroy the cells from within.     
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     In conclusion, using SELEX methodology we have produced an aptamer which is i) 

selective for SIRT1, ii) enters the cells and iii) interacts only with SIRT1, iv) is stable upon 

enzymatic attack, v) active on cancer cells, vi) the mode of action is through activation of 

SIRT1 and vii) is safe on non-cancer cells. 

6.2 Future perspectives  
 

     As the Circular3 aptamer against SIRT1 enzyme was successfully selected, further efforts 

will be done to identify its function as a cancer therapy. Oligonucleotide C3 aptamer has 

become an attractive and promising tool for targeted cancer therapy after obtained our results 

for inhibited viability of cancer cells. Therefore, we suggest further investigation of clinical 

data about the cellular mechanism of action for the SIRT1-aptamer in cancer cells by: 

1) Test the aptamer in an extensive panel of cancer cell lines including difficult to treat cancers 

such as pancreatic cancer, this will provide us with more information about which other cancers 

can be affected by activation of SIRT1. 

2) Test the aptamer in more normal human cells to compare selective toxicity for cancer cells 

and establish the safety profile. 

3) Test extensive pharmacokinetics parameters in vitro using different enzymes and cell-based 

assays to work dosage. 

4) Test the proof of concept in vivo models to assess the anticancer activity in vivo as well as 

its pharmacokinetics and pharmacodynamics.  
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