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Key points summary 

 

Key points summary 

 

 For the heart to function as a pump, intracellular calcium concentration  ([Ca
2+

]i) must 

increase during systole to activate contraction and then fall, during diastole, to allow 

the myofilaments to relax and the heart to refill with blood. 

 This study investigates the control of diastolic [Ca
2+

]i in rat ventricular myocytes. 

 We now show that diastolic [Ca
2+

]i is increased by manoeuvres which decrease 

sarcoplasmic reticulum function. This is accompanied by a decrease of systolic [Ca
2+

]i 

such that the time-averaged [Ca
2+

]i remains constant.  

 Here we report that diastolic [Ca
2+

]i is controlled by the balance between Ca
2+

 entry 

and Ca
2+

 efflux during systole.  

 Our results identify a novel mechanism whereby changes of the amplitude of the 

systolic Ca transient control diastolic [Ca
2+

]i. 
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Abstract 

[Ca
2+

]i must be low enough in diastole so that the ventricle is relaxed and can refill with 

blood. Interference with this will impair relaxation. The factors responsible for regulation of 

diastolic [Ca
2+

]i, in particular the relative roles of the sarcoplasmic reticulum (SR) and 

surface membrane are unclear. We investigated the effects on diastolic [Ca
2+

]i that result from 

the changes of Ca cycling known to occur in heart failure. Experiments were performed using 

Fluo-3 in voltage-clamped rat ventricular myocytes. Increasing stimulation frequency 

increased diastolic [Ca
2+

]i. This increase of [Ca
2+

]i was larger when SR function was 

impaired either by making the RyR leaky (with caffeine or ryanodine) or by decreasing 

SERCA activity with thapsigargin. The increase of diastolic [Ca
2+

]i produced by interfering 

with the SR was accompanied by a decrease of the amplitude of the systolic Ca transient such 

that there was no change of time-averaged [Ca
2+

]i. Time-averaged [Ca
2+

]i was increased by β-

adrenergic stimulation with isoprenaline and increased in a saturating manner with increased 

stimulation frequency; average [Ca
2+

]i was a linear function of Ca entry per unit time. 

Diastolic and time-averaged [Ca
2+

]i were decreased by decreasing the L-type Ca current (with 

50 μM cadmium chloride). We conclude that diastolic [Ca
2+

]i is controlled by the balance 

between Ca entry and efflux during systole. Furthermore, manoeuvres which decrease the 

amplitude of the Ca transient (without decreasing Ca influx) will therefore increase diastolic 

[Ca
2+

]i. This identifies a novel mechanism whereby changes of the amplitude of the systolic 

Ca transient control diastolic [Ca
2+

]i. 

Abbreviations. BDM, 2,3-butanedione monoxime;[Ca
2+

]i  ,cytoplasmic Ca ion 

concentration; ISO,  Isoproterenol; NCX, Sodium-Calcium Exchange;  RyR – Ryanodine 

Receptor; SR, Sarcoplasmic Reticulum; SERCA, sarco/endoplasmic reticulum  Ca-ATPase  
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Introduction 

For the heart to function as a pump, intracellular Ca concentration ([Ca
2+

]i) must 

increase during systole to activate contraction and then fall, during diastole, to levels 

sufficiently low to allow the myofilaments to relax and the heart to refill with blood. While 

the mechanisms that control the amplitude of the systolic rise of [Ca
2+

]i are well understood 

(see Bers, 2001  for review), the regulation of the diastolic level is obscure (Louch et al., 

2012). One problem is that much work studying [Ca
2+

]i has used unphysiologically slow rates 

of stimulation. Under these conditions, a steady state is reached where Ca entry into the cell 

balances efflux and there is no flux into and out of the sarcoplasmic reticulum (SR) (Allen et 

al., 1984;Rios, 2010). In contrast, at faster rates, fluxes of Ca into and out of the SR will play 

an important role. Indeed, diastolic [Ca
2+

]i increases with increasing rate (Layland & Kentish, 

1999;Dibb et al., 2007). 

An elevation of diastolic [Ca
2+

]i has been reported in some studies of heart failure 

(Gwathmey et al., 1987;Beuckelmann et al., 1992;Sipido et al., 1998;Fischer et al., 2013). 

The frequency-dependent increase of diastolic [Ca
2+

]i (Gwathmey et al., 1991) and force 

(Pieske et al., 2002) is increased in heart failure in humans and this may contribute to the 

phenomenon of “diastolic heart failure” (Selby et al., 2011). Raised diastolic [Ca
2+

]i also 

increases Ca leak from the SR by increasing efflux of Ca through the Ryanodine Receptor 

(RyR) (Bovo et al., 2011) and raised levels due to RyR leak have been suggested to initiate a 

vicious cycle by further increasing this leak (Louch et al., 2012). 

End diastolic [Ca
2+

]i presumably depends on a combination of fluxes due to both 

sarcolemmal and sarcoplasmic reticulum (SR) Ca handling proteins. Heart failure impairs SR 

function due to a combination of a decrease of SERCA activity and increased RyR leak (see 

(Lou et al., 2012) for recent review). Previous work has shown that decreasing SERCA 
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activity elevates diastolic Ca (Negretti et al., 1993). In addition, making the RyR leaky with 

ryanodine elevates [Ca
2+

]i, particularly at high stimulation rates (Gao et al., 1995). However, 

the exact mechanism by which alterations of SR function affect diastolic [Ca
2+

]i is 

unresolved. The aim of the present work was to investigate quantitatively the effects of 

interfering with the SR on diastolic [Ca
2+

]i . We find that decreasing SR function decreases 

systolic and increases diastolic [Ca
2+

]i. Importantly, there is no effect on the average level of 

[Ca
2+

]i. We conclude that the increase of diastolic [Ca
2+

]i is a consequence of the decrease of 

systolic [Ca
2+

]i decreasing the efflux of Ca from the cell and, therefore, that systolic [Ca
2+

]i 

plays a major role in controlling diastolic [Ca
2+

]i. 
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Methods 

Ethical Approval 

Care and use of animals were in accordance with The UK Animals (Scientific 

Procedures) Act, 1986 and Directive 2010/63/EU of the European Parliament. The 

experiments were approved by the University of Manchester Ethical Review Board. Male 

Wistar rats (weighing ≈ 200 to 250 g) were killed by stunning and cervical dislocation. Single 

ventricular myocytes were isolated by digestion with collagenase and protease as described 

previously (Eisner et al., 1989).  

 

Isolated myocytes were superfused with a solution (control) consisting of (in mM) 

NaCl 135, Glucose 11.1, CaCl2 1, Hepes 10, MgCl2 1, and KCL 4. 4-aminopyridine 5 mM 

and BaCl2 0.1 mM were added to inhibit K
+
 currents and the solution was titrated to pH 7.4 

using NaOH. Probenecid (2 mM) was added to reduce loss of indicator from the myocytes. 

Micropipettes (<5 MΩ) were filled with a solution consisting of (in mM): KCH3O3S 125, 

KCl 12, NaCl 10, Hepes 10, MgCl2 5, EGTA 0.1; titrated to pH 7.2 with KOH; and a final 

concentration of amphotericin B of 240 g.ml
−1

. Cells were voltage-clamped with the 

perforated patch clamp technique using the discontinuous switch clamp mode (frequency 1–2 

kHz and gain 0.3–0.7 nA/mV) of an Axoclamp 2A voltage-clamp amplifier (Molecular 

Devices, Union City, CA, USA). Cells were voltage clamped and stimulated at a range of 

frequencies (0.2 to 3 Hz) with a 40 mV, 100 ms duration pulse from a holding potential of -

40 mV. All experiments were performed at room temperature. 

 

 [Ca
2+

]i measurements 

 Cells were incubated with the acetoxymethyl (AM) ester of Fluo-3 (5 μM for 10 

minutes) and allowed to de-esterify before use. An aliquot was then placed in a superfusion 

chamber mounted on the stage of an inverted fluorescence microscope. In order to measure 

changes of [Ca
2+

]i, at the end of each experiment the maximum fluorescence (Fmax) was 

measured by damaging the cell with the patch pipette. The dissociation constant of Fluo-3 

(Kd) was taken as 864 nM (Cheng et al., 1993) and [Ca
2+

]i calculated as described previously 

(Trafford et al., 1999). 

Diastolic [Ca
2+

]i was calculated by averaging [Ca
2+

]i during the final 50 ms before the 

next stimulus. The amplitude of the Ca transient was calculated by subtracting diastolic 
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[Ca
2+

]i from peak [Ca
2+

]i. Average [Ca
2+

]i was calculated as the mean level from one stimulus 

to the next. In some experiments SR Ca content was estimated by releasing Ca from the SR 

using a mixture of 5 mM caffeine and 20 mM 2,3-butanedione monoxime (BDM) 

(Kashimura et al., 2010). 

 The Ca influx through the L-type Ca current was calculated by integrating the Ca 

current (Venetucci et al., 2007). All analysis was performed using custom-written software 

(Greensmith, 2014). 

 

All chemicals were obtained from Sigma-Aldrich UK, R & D Systems UK or Fisher 

Scientific UK. Caffeine was added as required. Ryanodine and thapsigargin were both stored 

as 1 mM stock solutions in DMSO and made up to a concentration of 1 μM before use. 

Thapsigargin was dissolved in DMSO and stored as a 1 mM stock solution and used at a final 

concentration of 1 μM.  

  

Statistical analysis 

 Data are reported as mean ± standard error of the mean (SEM) where applicable for 

descriptive analysis. Statistical comparisons were made using two-way ANOVA. The 

regression lines (Fig. 2D) were compared with a F test. Differences were considered 

statistically significant when p < 0.05. 
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Results 

Effects of RyR leak on diastolic and systolic [Ca
2+

]i  

The first series of experiments examined the effect of increased RyR leak on the 

response to increased stimulation rate. The grey traces in Fig. 1A show the effect of periods 

of stimulation at 2 Hz. Under basal conditions the diastolic level of [Ca
2+

]i during 2 Hz 

stimulation was only slightly greater than that during rest. The subsequent addition of 

caffeine (1 mM) to increase RyR leak decreased the amplitude of the Ca transient and 

modestly elevated diastolic [Ca
2+

]i. The effects of β-adrenergic stimulation with isoprenaline 

(ISO, 1 μM) were then investigated on these phenomena. In agreement with previous work, 

ISO increased the amplitude of the systolic Ca transient (Hussain & Orchard, 1997); there 

was little effect on diastolic [Ca
2+

]i. However, when the cell was stimulated in the presence of 

caffeine plus ISO, the increase of diastolic [Ca
2+

]i was greater than that in caffeine in the 

absence of ISO. These changes are seen in more detail in the expanded records of Fig. 1B. 

The origin of the increase of diastolic Ca is revealed in Fig. 1C. Increased leak slows the 

decay of the Ca transient such that, at elevated rates of stimulation, there is no time for decay 

to the resting level. In this example the decay is biphasic with a fast phase preceding the slow 

one. With more extreme leak a slow monophasic decay is seen (Sankaranarayanan et al., 

2016). The mean data (Fig. 1D) show values normalized to those obtained at a slow 

stimulation rate (0.5 Hz) in the absence of both caffeine and ISO. It is clear that the effects of 

ISO on both systolic and diastolic [Ca
2+

]i are greatly affected by the presence of caffeine. For 

example, in the absence of caffeine, ISO greatly increases the amplitude of the Ca transient 

(from 82 + 3 % to 157 + 3 % of control at 2 Hz stimulation, p<0.001, ANOVA) while having 

no effect on diastolic [Ca
2+

]i (from 115 + 2.5 nM to 121 + 3.1 %, p=0.18). In contrast, in the 

presence of caffeine, ISO had a much smaller effect on the amplitude of the Ca transient 



9 
 

(from 36 + 3 % to 46 + 3 %, p=0.037) but markedly increased diastolic [Ca
2+

]i (from 

168 + 3 % to 208 + 4 %, p<0.001). 

 

Effects of RyR leak on average [Ca
2+

]i  

The above data show that caffeine increases diastolic [Ca
2+

]i while decreasing the 

systolic rise of [Ca
2+

]i. Given this, we next investigated the effect of caffeine on time-

averaged [Ca
2+

]i as shown by the blue trace in Fig. 1A. It is clear that average [Ca
2+

]i is (i) 

increased by stimulation; (ii) increased by ISO; and (iii) unaffected by caffeine in both 

control and ISO. These observations are confirmed by the mean data of Fig. 1D which show 

that average [Ca
2+

]i does not significantly change upon addition of caffeine (control 

151 + 2 % vs. caffeine 149 + 2 %; p=0.61; data normalized to 0.5 Hz stimulation). A similar 

finding is seen in the presence of ISO (ISO 208 + 3 % vs ISO + caffeine 212 + 4 %; p=0.3). 

Finally, these data also show that ISO increases average [Ca
2+

]i in both the presence and 

absence of caffeine (p<0.001). 

 

The frequency-dependence of average [Ca
2+

]i  

Since the data of Fig. 1 showed that the effects of caffeine on  diastolic [Ca
2+

]i were 

more prominent in the presence of ISO, all subsequent experiments were performed in the 

presence of ISO. The experiment illustrated in Fig. 2 was designed to investigate Ca handling 

over a wider range of frequencies. Fig. 2A shows data in the presence and absence of 

caffeine. As frequency of stimulation increased, the Ca transient amplitude decreased slightly 

and diastolic [Ca
2+

]i increased. The decrease in Ca transient amplitude was accompanied by 

and is presumably at least in part caused by a decrease in the amplitude of the L-type Ca 
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current (Fig. 2C) (Antoons et al., 2002;Dibb et al., 2007). The effects of frequency were 

increased by caffeine. The solid line in Fig. 2A shows, again, that average [Ca
2+

]i was 

unaffected by caffeine and was increased by increasing frequency. Notably, the increase of 

average [Ca
2+

]i was a saturating function of frequency as shown by the fact that raising rate 

from 0.5 to 1 Hz had a larger effect than that from 2 to 3 Hz.  

 

The above observations of the frequency dependence of average [Ca
2+

]i are emphasised by 

the mean data of Fig. 2B. Caffeine decreased the amplitude of the Ca transient at all 

frequencies. An increase of frequency increased diastolic [Ca
2+

]i; this effect is much more 

obvious in the presence of caffeine.  In contrast to the marked effects of caffeine on both 

diastolic and systolic [Ca
2+

]i, average [Ca
2+

]i was unaffected by caffeine (ANOVA, p> 0.5 at 

all frequencies). Average [Ca
2+

]i did, however, increase in a saturating manner with 

increasing frequency of stimulation. The bottom two panels in Fig. 2B shed light on this 

saturation of average Ca. The Ca influx via the L-type Ca current on each pulse decreased 

with increasing stimulation rate (Fig. 2C) due to increasing inactivation (Antoons et al., 

2002;Dibb et al., 2007).  Consequently the Ca influx per unit time (bottom panel of Fig. 2B) 

was a saturating function of frequency and therefore paralleled the frequency dependence of 

average [Ca
2+

]i. Data obtained in the presence of caffeine (red symbols) were identical to 

those in its absence (ANOVA, p>0.5 at all frequencies). The correlation between Ca entry per 

unit time and average [Ca
2+

]i is emphasised by Fig. 2D which shows a clear linear 

relationship between these two parameters which is not statistically different (F test; p=0.064) 

in the absence and presence of caffeine. 
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The effects of thapsigargin and ryanodine 

The purpose of the experiments illustrated in Fig. 3&4 was to examine whether the 

above observations were specific to caffeine or were a general consequence of interfering 

with RyR function. In the experiment illustrated in Fig. 3A, the application of thapsigargin 

decreased systolic [Ca
2+

]i and increased diastolic [Ca
2+

]i during stimulation at 0.5 Hz. On 

increasing stimulation rate to 2 Hz, there was a more marked increase of diastolic and 

decrease of systolic [Ca
2+

]i. When stimulation was stopped [Ca
2+

]i declined to a level similar 

to the original diastolic one. The mean data of Fig. 3B show the effects of thapsigargin at 0.5 

and 2 Hz. (Because thapsigargin is irreversible, it was not feasible to study the full range of 

frequencies used for caffeine). Thapsigargin decreased the amplitude and increased diastolic 

[Ca
2+

]i while having no effect on average [Ca
2+

]i.  

In the experiment illustrated in Fig. 4A, the application of ryanodine decreased 

systolic [Ca
2+

]i and increased diastolic [Ca
2+

]i. The dark line shows that average [Ca
2+

]i 

remained constant during this period. When stimulation was stopped [Ca
2+

]i declined to a 

level similar to the original diastolic one. Subsequent stimulation at 2 Hz increased average 

[Ca
2+

]i. Ryanodine was reapplied to increase its effect. When stimulation was recommenced 

at 0.5 Hz, the Ca transient was considerably smaller than observed previously at this 

frequency. The average [Ca
2+

]i was, however, virtually identical. Increasing stimulation rate 

to 2 Hz resulted in a smaller Ca transient than seen at 2 Hz before. Once again, the average 

Ca was unaffected. These data were interrupted by exposures to caffeine plus BDM to release 

Ca from the SR and thereby obtain an estimate of the fall of SR Ca content. The mean data of 

Fig. 4B confirm that ryanodine decreases the amplitude of the Ca transient (to 14.1 + 0.7 %, 

p<0.001), increases diastolic [Ca
2+

]i (to 273 + 3.1 %, p<0.001) while having no effect on 

average [Ca
2+

]i (102.8 + 1.4 %; p = 0.17).  
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Effects of decreasing Ca influx 

The above experiments suggest that the level of diastolic [Ca
2+

]i depends on a balance 

between Ca influx and efflux. If this is the case, one would expect diastolic [Ca
2+

]i to be 

decreased by reducing Ca influx. In the experiment illustrated in Fig. 5A, caffeine had been 

added while stimulating at either 0.5 or 3 Hz. In agreement with the results above, the rise of 

diastolic [Ca
2+

]i was greater at the higher frequency. Addition of cadmium chloride (50 μM) 

to decrease the L-type Ca current, decreased diastolic [Ca
2+

]i at both stimulation rates (see 

expanded records of Fig. 5B). On average, cadmium decreased the L-type Ca current to 

33 + 5 % (n=5 cells).    Fig. 5C shows mean data from 5 cells (at 0.5 Hz). One way ANOVA 

showed that cadmium decreased average and diastolic [Ca
2+

]i as well as the amplitude of the 

Ca transient (all p<0.001). Specifically, cadmium decreased average [Ca
2+

]i to 69.6 + 1.7 %. 
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Discussion 

This paper investigates the control of diastolic [Ca
2+

]i in rat ventricular myocytes. In 

agreement with previous work we find that increasing stimulation frequency increases 

diastolic [Ca
2+

]i (Layland & Kentish, 1999;Dibb et al., 2007). We now add the following, 

important findings: (i) Diastolic [Ca
2+

]i is increased by manoeuvres which decrease SR 

function such as increased RyR leak or decreased SERCA activity. (ii) This is accompanied 

by a decrease of systolic [Ca
2+

]i such that the time-averaged [Ca
2+

]i remains constant. (iii) 

Time-averaged [Ca
2+

]i is increased by β-adrenergic stimulation and is a saturating function of 

frequency reflecting a frequency dependent decrease of Ca influx per beat. (iv) Diastolic 

[Ca
2+

]i is regulated by the difference between the Ca influx and the systolic efflux on each 

beat.  

 

The effects of interfering with SR function on diastolic [Ca
2+

]i 

Previous work has shown that ryanodine and thapsigargin increase diastolic [Ca
2+

]i 

(Hansford & Lakatta, 1987;Negretti et al., 1993). In the present paper we elucidated the 

mechanism of this effect and found that the reduction in Ca transient caused by increasing 

leak with caffeine or ryanodine was always associated with an increase in diastolic [Ca
2+

]i. 

The same behaviour was observed following the application of thapsigargin to inhibit 

SERCA. In other words, decreased systolic [Ca
2+

]i associated with increased diastolic [Ca
2+

]i 

is a distinguishing feature of impaired SR function, no matter whether this results from 

increased RyR leak or decreased SERCA activity. In the absence of stimulation, interfering 

with the SR had no effect on the level of resting [Ca
2+

]i (Figs 1, 2 & 4). This is to be expected 

as, under these conditions, [Ca
2+

]i is presumably determined solely by the surface membrane 
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(Allen et al., 1984;Rios, 2010). The increase of diastolic [Ca
2+

]i at elevated frequencies 

results from the fact that the next transient begins before the previous one has relaxed. 

Increasing leak or decreasing SERCA slows the rate of relaxation of the Ca transient(Negretti 

et al., 1993;Belevych et al., 2007;Sankaranarayanan et al., 2016). A combination of increased 

frequency and slowed relaxation would be expected to elevate diastolic [Ca
2+

]i . The 

frequency-dependence of diastolic [Ca
2+

]i is particularly obvious for thapsigargin (Fig 3B). 

This may be because inhibition of SERCA greatly slows the decay of the Ca transient. At low 

rates the increased duration of the Ca transient compensates for the decreased amplitude in 

maintaining efflux such that diastolic [Ca
2+

]i does not increase. This is impossible at high 

rates as the decay of the transient is interrupted by the next stimulus. 

A key question is what causes the inverse relationship between diastolic and systolic 

[Ca
2+

]i such that average [Ca
2+

]i is maintained constant when SR function is altered? We 

suggest that the answer resides in the mechanisms that maintain Ca flux balance. In the 

steady state, during each cycle of stimulation, the influx mediated by the Ca current must be 

precisely equal to the Ca efflux, largely via NCX (see Eisner et al.,2013 (2013) for review). 

The activity of NCX depends on [Ca
2+

]i. Increasing SR leak or decreasing SERCA activity 

will decrease the SR Ca content and therefore the amplitude of the systolic Ca transient. This, 

in turn, will decrease Ca efflux to a level less than the influx. Consequently, the cell will gain 

Ca and, since the SR is compromised, much of this Ca will remain in the cytoplasm, 

increasing diastolic [Ca
2+

]i. This elevated diastolic [Ca
2+

]i produces more Ca efflux and 

compensates for the loss of efflux associated with the systolic transient (Dibb et al., 2007). If 

we assume that NCX activity is proportional to [Ca
2+

]i then the Ca efflux per cycle will be 

proportional to average [Ca
2+

]i. If Ca influx is unaffected then the need for constant efflux 

requires that average [Ca
2+

]i be constant and therefore the decrease of systolic [Ca
2+

]i must be 

balanced by an increase of diastolic such that average [Ca
2+

]i remains constant.  
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 This consideration of flux balance is a more complicated and general version of 

previous work showing that potentiating the opening of the RyR with low concentrations of 

caffeine leads to a transient increase of the amplitude of the systolic Ca transient (Trafford et 

al., 2000;Greensmith et al., 2014). In the steady state, however, the amplitude of the Ca 

transient was the same as in control. Under the conditions of those experiments (performed at 

low rates of stimulation), diastolic [Ca
2+

]i did not change and therefore maintenance of flux 

balance required that systolic [Ca
2+

]i was constant. In the present experiments, the changes of 

systolic [Ca
2+

]i required that diastolic [Ca
2+

]i change in order to maintain flux balance. 

  

The effects of β-adrenergic stimulation on [Ca
2+

]i 

The above analysis also explains why ISO increases average [Ca
2+

]i. ISO will increase 

Ca entry through the L-type current and this will have to be balanced by increased efflux on 

NCX. This increased efflux can be achieved by an increase of average [Ca
2+

]i. The exact 

circumstances will determine whether the increase of average [Ca
2+

]i results primarily from a 

rise of diastolic as opposed to systolic [Ca
2+

]i. For example (Fig. 1), with normal SR function, 

the increase of the amplitude of the systolic Ca transient is sufficiently large that diastolic 

[Ca
2+

]i does not increase. In contrast when the SR is partly disabled, systolic [Ca
2+

]i cannot 

increase sufficiently and a rise of diastolic [Ca
2+

]i ensues (Fig. 1D). It is also possible that an 

increase of Ca leak from the SR, possibly via a Ca Calmodulin dependent kinase II (CaMKII) 

mechanism (Curran et al., 2007), contributes to the increase of diastolic [Ca
2+

]i. In this 

context it is worth noting that in mice overexpressing CaMKII, the rise of systolic [Ca
2+

]i 

produced by ISO was less than in wild type. However ISO produced a larger increase of 

diastolic [Ca
2+

]i in the overexpressing mice compared to control (Sag et al., 2009). Given that 

these transgenic mice have elevated SR Ca leak, the reciprocal effect on diastolic and systolic 
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[Ca
2+

]i is consistent with the conclusions of our work. It should also be noted that the normal 

inotropic response to ISO, resulting from an increase of systolic [Ca
2+

]i with no change of 

diastolic, requires a normal, functional SR. As SR activity is compromised an increase of 

diastolic [Ca
2+

]i will occur.  

 

The effects of stimulation frequency 

An increase of stimulation frequency will increase Ca influx per unit time thereby 

requiring an increase of average [Ca
2+

]i to maintain flux balance. From first principles this 

can be achieved by an increase of either or both diastolic or systolic [Ca
2+

]i. In the present 

experiments, performed on rat myocytes, increased frequency decreases systolic [Ca
2+

]i and 

therefore systolic efflux. As frequency is increased, the cell therefore faces three challenges: 

(i) increased Ca influx per unit time (Fig. 2B); (ii) decreased systolic efflux; (iii) decreased 

diastolic time for efflux to occur in.  Ca flux balance can therefore only be established with 

an increase of diastolic [Ca
2+

]i. If SR function is depressed, increased frequency produces a 

larger decrease of systolic [Ca
2+

]i and one would therefore expect a larger rise of diastolic 

[Ca
2+

]i. In agreement with these predictions, we find that increasing frequency increases 

diastolic [Ca
2+

]i and this increase is potentiated by increasing SR leak or decreasing SERCA 

activity. Average [Ca
2+

]i is a saturating function of frequency (Fig. 2B) presumably because 

the Ca entry per unit time also saturates with frequency due to increased inactivation of the L-

type Ca current (Fig. 2C), (Antoons et al., 2002;Dibb et al., 2007). Consistent with this, 

average [Ca
2+

]i is a linear function of Ca influx per unit time through the L-type Ca current 

(Fig. 2D). It should be noted that if the L-type Ca current did not decrease at higher 

frequencies the rise of diastolic [Ca
2+

]i would be even greater.  
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One final conclusion can be derived from Fig. 2D. It is clear that, even with zero 

influx through the L-type Ca current, [Ca
2+

]i has a finite value. This has been accounted for 

by a background Ca entry (Choi et al., 2000;Kupittayanant et al., 2006) which is unaffected 

by stimulation rate. The value of this background flux, estimated from the horizontal 

intercept of Fig. 2D is of the order of 4 µmol.l
-1

.s
-1

. The existence of this background flux 

may also be relevant to the effects of cadmium. We found that 50 µM Cd decreased Ca influx 

to 33% but average [Ca
2+

]i fell to only 70%. This discrepancy can be accounted for if the 

background flux is unaffected by Cd. 

 

Limitations 

 It should be noted that in these experiments we used a holding potential of -40 mV to 

inactivate the Na
+
 current. This holding potential will decrease the L-type Ca current and lead 

to an underestimate of the effects of frequency on diastolic [Ca
2+

]i (Dibb et al., 2007). The 

removal of Na
+
 current might be expected to decrease the frequency-dependent increase of 

intracellular Na
+
 concentration but since Na

+
 influx through Na channels is quantitatively 

smaller than that through NCX (Bers et al., 2003), this may not be a major issue. Previous 

work has measured systolic and diastolic [Ca
2+

]i in rat ventricular myocytes excited with 

physiological action potentials. An increase of frequency increased both diastolic and systolic 

[Ca
2+

]i indicated that a frequency-dependent increase of average [Ca
2+

]i is also seen with 

more physiological stimulation (Dibb et al., 2007). A more general point is that the above 

discussion assumes that the only factor regulating NCX is [Ca
2+

]i. It therefore ignores the 

effects that changes of intracellular sodium concentration ([Na
+
]i) may have on NCX activity. 

[Na
+
]i will be increased by an increase of stimulation rate and as a consequence of the 

increased NCX activity in response to the Ca loading produced by β-adrenergic stimulation. 
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It will be decreased as a consequence of phosphorylation of phospholemman and stimulation 

of the sodium pump (see Bers et al., 2003  for a recent review).  It  should also be noted that 

the above discussion is based on the assumption that NCX activity is proportional to [Ca
2+

]i . 

This will only be true over a certain range and, at higher [Ca
2+

]i, efflux will tend towards 

saturation. In this case, when SR function is decreased one might expect a reduction of 

average [Ca
2+

]i. Any such effect is below the resolution of the experiments.  Finally, although 

in the present experiments Ca influx through the L-type current was unaffected by altering 

SR function with caffeine, more generally it is possible that changes of Ca-dependent 

inactivation may affect the L-type Ca current and this would need to be allowed for, 

Relationship to disease 

Some previous work has shown that heart failure results in an increase of diastolic 

force and/or [Ca
2+

]i at elevated rates of stimulation (Sipido et al., 1998;Baartscheer et al., 

2003;Selby et al., 2011). One explanation for this is the measured increase of [Na
+
]i which 

will decrease Ca efflux on NCX (Pieske et al., 2002). The results of the present paper suggest 

an additional explanation for the rise of diastolic [Ca
2+

]i. It is known that heart failure is often 

associated with increased RyR leak (Marks, 2000;Marx et al., 2000;Shannon et al., 

2003;Terentyev et al., 2008;Belevych et al., 2013) and decreased SERCA activity (Nagai et 

al., 1989;Mercadier et al., 1990;Hasenfuss et al., 1994). As a consequence of the resulting 

decrease of SR Ca content and thence systolic [Ca
2+

]i, these changes would be expected to 

also elevate diastolic [Ca
2+

]i. Indeed both this mechanism and the increase of [Na
+
]i will 

decrease Ca efflux and increase diastolic [Ca
2+

]i. 

A common observation is that, in human heart failure, the reduction of the amplitude 

of the Ca transient is more marked at higher frequencies (Gwathmey et al., 1990;Mulieri et 

al., 1992). This is accompanied by removal of the increase of SR Ca content produced by 
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increasing stimulation frequency (Lindner et al., 1998;Pieske et al., 1999). These effects have 

previously been attributed to a decrease of SERCA activity (Pieske et al., 1995). Our data 

suggest that a Ca leak may also contribute to the loss of this frequency dependence in heart 

failure. The results of this paper are also relevant to the changes produced by increasing Ca 

buffering by the myofilaments as occurs in some case of hypertrophic cardiomyopathy 

(HCM). Such increased buffering slows the rate constant of decay of the Ca transient and 

increases diastolic [Ca
2+

]i (Schober et al., 2012). The increased buffering will decrease the 

increase of [Ca
2+

]i produced by a given total Ca release from the SR, thereby decreasing Ca 

efflux. This, and the slowed decay will elevate diastolic [Ca
2+

]i. 

 

Conclusion: Systolic [Ca
2+

]i controls diastolic 

The results of this paper show that the time-averaged level of [Ca
2+

]i is an important 

factor in regulating Ca cycling. This average level determines the Ca efflux from the cell 

required to balance Ca influx. The total efflux can be thought of as comprising two 

components: (i) that activated by the diastolic level of [Ca
2+

]i and (ii) an additional 

component that occurs during the systolic Ca transient (Dibb et al., 2007). Anything which 

decreases the amplitude of the systolic Ca transient, without affecting Ca influx will decrease 

the systolic efflux thereby requiring an increase of diastolic [Ca
2+

]i to maintain Ca flux 

balance. Seen in this way, the systolic Ca transient plays a vital role in regulating diastolic 

[Ca
2+

]i. 
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Fig. 1. The effects of caffeine on systolic, diastolic and average [Ca
2+

]i. A. Original 

timecourse. The grey trace shows [Ca
2+

]i during rest and stimulation at 2 Hz. Caffeine (Caf, 1 

mM) and isoprenaline (ISO, 1 μM) were applied as shown. The blue trace shows the average 

[Ca
2+

]i for each transient. B. Specimen, averaged (n=20) transients. The left hand records 

were obtained in the absence and the right hand ones in the presence of ISO. Red traces 

obtained in the presence of caffeine (1 mM). C. Decay of [Ca
2+

]i at the end of stimulation. 

The record shows the last three transients and the period afterwards from A in ISO + Caf. D. 

Mean data from 6 experiments. Bars show data at a stimulation rate of 2 Hz. For each cell, 

the data have been normalized to the corresponding values obtained during stimulation at 0.5 

Hz in the absence of both caffeine and ISO. The left-hand group of 4 bars shows amplitude, 

the next group diastolic [Ca
2+

]i and the right hand average [Ca
2+

]i. In each group the 

unlabelled bar is control; C, caffeine; I, ISO; I+C, ISO + caffeine. For clarity, statistical 

significance is not presented on the figure but is reported in the main text. 
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Fig. 2. The frequency dependence of the effects of interfering with SR function on 

[Ca
2+

]i. A. Timecourse of effects of caffeine. Stimulation frequency was altered and caffeine 

(Caf, 1 mM) applied as shown above. ISO (1 μM) was present throughout. The grey trace 

shows the original data and the dark one the average [Ca
2+

]i on each transient. B. Mean data 

showing frequency dependence. Panels show mean data (14 to 20 cells) of the effects of 

frequency on the following parameters (from top to bottom): amplitude of the Ca transient; 

diastolic [Ca
2+

]i; average [Ca
2+

]i; Ca influx per pulse; Ca influx per second. In all panels, red 

symbols in presence of caffeine. C. Effects of stimulation frequency on the L-type Ca current 

(absence of caffeine). Top, specimen Ca currents obtained at frequencies from 0.2 to 3 Hz. 

Bottom, timecourse of the integral of the Ca current to show Ca influx. For clarity, the full 

range of frequencies is only indicated on the integral traces. For the Ca currents, the extreme 

frequencies are indicated. For the other frequencies, the order of speed of inactivation of the 

L-type Ca current parallels simulation frequency. D. Relationship between average [Ca
2+

]i 

and Ca influx per second. Data taken from B. Black symbols show absence and red presence 

of caffeine. 
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Fig. 3. The effects of interfering with SR Ca handling with thapsigargin on [Ca
2+

]i 

during stimulation. All experiments were performed in the presence of ISO (1 μM). A. 

Effects of thapsigargin. Thapsigargin (Th, 1 μM) were applied for the period shown above. 

The cell was stimulated at the frequencies indicated below. B. Mean data from 10-12 

experiments at stimulus rates of 0.5 and 2 Hz. Panels show (from top to bottom): amplitude; 

diastolic; and average [Ca
2+

]i. Open symbols before and closed in presence of thapsigargin. * 

p<0.05 (two way repeated measures ANOVA) for comparisons between control and 

thapsigargin.  (ANOVA performed on the 9 cells which had measurements at both 

frequencies.)  
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Fig. 4. The effects of ryanodine. A. Timecourse of the effects of ryanodine (1 μM) on 

[Ca
2+

]i studied at rest, 0.5 and 2 Hz. B. Mean data from 6 experiments. Bars show data at a 

stimulation rate of 2 Hz. For each cell, the data have been normalized to the corresponding 

values obtained during stimulation in the absence of ryanodine. The left hand two bars show 

amplitude, the next diastolic [Ca
2+

]i and the right hand average [Ca
2+

]i. In each group the 

unlabelled, open bar is control and the filled is ryanodine (Ry). 
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Fig. 5. Effects of cadmium on diastolic [Ca
2+

]i. A. Time course. The cell had been exposed 

to ISO (1 μM). Caffeine (Caf, 1 mM) and cadmium (Cd, 50 μM) were applied for the periods 

shown. Stimulation rate was 0.5 Hz until it was elevated to 3 Hz as shown. B. Expanded 

records of the periods of application of Cd during stimulation at 0.5 (a) and 3 (b) Hz. C. 

Mean (n= 5 cells) data showing effects of Caf alone and Caf + Cd on amplitude, diastolic and 

average [Ca
2+

]i at 0.5 Hz.     
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