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Abstract: Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. 

Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which 

possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To 

explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element 

computational solution is presented for magnetohydrodynamic (MHD), incompressible, dissipative, radiative and chemically-

reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated 

homogenous porous medium. Heat generation/absorption effects are included. Rosseland’s diffusion approximation is used 

to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous 

medium.  The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds 

number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite 

element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, 

radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity 

parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, 

Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of 

selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The 

finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow 

are identified and interpreted.     
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1. Introduction 

 

    Non-Newtonian fluid flows feature widely in an extensive range of technological applications 

including plastic fabrication, food processing, biotechnology and paint emulsion manufacture. To 

simulate the complex shear stress-strain characteristics of such fluids, numerous mathematical 

models have been developed. These include viscoelastic and viscoplastic formulations. While 

these models capture certain physical characteristics of specific materials, they ignore 

microstructural characteristics. Eringen [1] introduced the microfluid model and later simplified this 

model to micropolar fluids which can describe sophisticated phenomena including couple stresses, 

body couples and exhibit gyratory motions, which cannot be analyzed with simpler non-Newtonian 

models. By generalizing of micropolar fluids to heat conduction and other thermal effects, Eringen 

[2] developed a comprehensive theory for thermo-micropolar fluids. Many recent aspects of 

micropolar hydrodynamics are documented in Eringen [3] and Lukaswiascz [4]. Extensive 

discussion of other applications in chemical and mechanical engineering are available in the 

articles of Airman et al. [5, 6]. An important area in which micropolar fluid theory provides deeper 

insight of fluid dynamic behavior is materials processing. Other applications of thermal (heat 

transfer) problems are considered in [7-11]. 

The heat transfer coefficient or thermal boundary condition (s) become an integral part of solving 

such problems which deviate from the conventional boundary layer flow analysis, in which they are 

usually specified. This condition is necessary in the heat transfer analysis of extended surfaces 

where the thermal boundary conditions are specified only at the ends of the surfaces. It may be 

noted that convective thermal boundary conditions are known to arise in many diverse areas of 

technology including combustion in gas turbines, convective flows wherein the bounding surfaces 

absorb heat by solar radiation, design of efficient heat exchangers, optimization of turbine blade 

cooling system, photovoltaic panels etc. These systems are increasingly deploying or already 

feature more complex transport fluids containing suspensions. Micropolar fluid mechanics 

therefore offers a robust framework for simulating the non-Newtonian microstructural thermo-fluid 

characteristics of these technologies. Many investigators have examined boundary value problems 

of such fluids in recent years using a range of computational solvers. An important analysis in this 

regard was presented by Abo-Eldahab and Ghonaim [12] who addressed thermal radiation effects 
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in heat transfer of a micropolar fluid through a porous medium. Hydromagnetic convection heat 

transfer in a micropolar fluid over a vertical plate was studied by Ferdows et al. [13]. Olajuwon and 

Oahimire [14] obtained perturbation solutions for the double-diffusive convection in time-dependent 

radiative hydromagnetic micropolar convection. Kundu et al. [15] studied thermo-diffusive and 

radiative effects on rotating micropolar convection flows. Rahman and Sultana [16] analyzed 

magnetic body force and radiative heat transfer effects on micropolar flow with variable heat flux in 

a porous medium. In case of horizontal and vertical plates convective boundary layer flows have 

recieved considerable attention. However boundary layer flows adjacent to inclined plates have 

been studied less frequently for micropolar flows. Most studies have been confined to Newtonian 

flows. Cheng [17] examined the convective flow from an inclined surface through a porous 

medium. Heat and mass transfer in magneto-convective boundary layer flow from an inclined plate 

with viscous dissipation in porous media was analyzed by Singh [18]. Sudheer Babu et al., [19] 

described the effects of mass transfer on unsteady magneto-convection flow of micropolar fluid 

along a vertical moving porous plate through porous medium with viscous dissipation.  Radiation 

and mass transfer effects on MHD free convective flow of a micropolar fluid from an infinite vertical 

porous moving plate embedded in a porous medium with viscous dissipation was studied by Roja 

et al. [20]. Chen [21] described the effects of heat and mass transfer in magnetic free convection 

with Ohmic heating and viscous dissipation. Several studies have examined convection and 

conduction heat transfer in micropolar flows along inclined surfaces and these include the works of 

Aurangzaib et al. [22] who considered a stretching plate and Srinivas et al. [23] who focused on 

entropy generation aspects.  

In the above investigations, the combined effects of heat source or sink and chemical reaction in 

hydromagnetic micropolar transport have been excluded. However, in many industrial processes 

e.g. materials fabrication of powders, heat source/sink and chemical reaction effects may exert an 

influential role. Other applications include heat removal from nuclear fuel debris (solidified melt 

distributed among fuel assemblies), exothermic chemical reaction and dissociating fluids in PBRs 

(packed bed reactors) and cooling of finned heat sinks [24].  Nayak and Dash [25] studied heat 

transfer effects on transient mixed radiative convection hydromagnetic flow of a micropolar fluid 

from a moving semi-infinite vertical porous plate with heat sink and time dependent suction. Khedr 

et al. [26] investigated theoretically the magneto-micropolar convection from a stretched permeable 
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surface with heat generation or absorption. Further studies of reactive micropolar flows include, 

Magyari and Chamkha [27], Chamkha and Khaled [28] and Rahman et al. [29]. In numerous 

process engineering systems, chemical reactions take place, which may be destructive or 

constructive in nature and can influence significantly heat and mass diffusion phenomena. 

Generally, boundary layer flow models utilize first order chemical reaction effects and assume the 

reaction to be destructive. Recently Srinivasacharya and Upender [30] have considered the 

composite effects of thermal radiation and chemical reaction on magnetic free convection heat and 

mass transfer in micropolar fluids. Sheri and Shamshuddin [31] have presented numerical 

solutions for coupled heat and mass transfer in magnetohydrodynamic micropolar flow with both 

viscous dissipation and chemical reaction effects. Sheri and Shamshuddin [32] have further 

presented finite element numerical solutions for diffuso-thermal and chemical reaction effects on 

transient free convection micropolar flow. Further studies of reactive micropolar flows include 

Rawat et al. [33] (which considered double diffusive convection in reactive micropolar flow from an 

extending sheet), Das [34] (who examined slip effects in micropolar fluid over an inclined plate), 

Pal and Talukdar [35] and also Srinivasacharya [36]. 

In the present article, motivated by simulating non-Newtonian thermal materials processing flow, 

we have extended the analytical work of Sudheer Babu et al. [19] by taking into account of thermal 

radiation, heat source/sink and first order chemical reaction effects and deriving finite element 

numerical solutions for generalized micropolar radiative-convection flow from an inclined surface in 

a porous medium. The perturbation method approximation solutions presented by Sudheer Babu 

et al. [19] provide a benchmark for the present finite element computational solutions. The effects 

of various emerging thermo-physical parameters on the velocity, micro-rotation (angular) velocity, 

temperature and concentration profiles as well as on local skin friction coefficient and wall couple 

stress are visualized and tabulated. The current problem, to the best knowledge of the authors, has 

not been communicated thusfar in the technical literature, and provides a deeper insight into more 

complex rheological high-temperature materials processing operations in which collective effects of 

magnetohydrodynamics, thermal radiation, non-Newtonian fluid characteristics and filtration media 

all contribute. 
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2. Mathematical Model 

 
Free convective flow of an electrically conducting incompressible micropolar fluid from an inclined plane 

(with inclination angle  to the vertical) is considered. The plane considered is permeable and is moving 

with constant velocity Up in a porous medium. The physical configuration is illustrated in Fig. 1. The 

inclination angles 
o

,
o

900 and 
oo

900   represent the vertical, horizontal and inclined plate 

scenarios respectively. Darcy’s law is assumed which is valid for low Reynolds number flow 

(viscous-dominated). A magnetic field of uniform strength 0
B is applied in a direction parallel to the 

y axis which is perpendicular to the flow direction. It is assumed that the induced magnetic field is 

negligible in comparison to the applied magnetic field [37]. Magnetic Reynolds number is therefore 

very small. The magnetohydrodynamic (MHD) body force term is derived from an order of 

magnitude analysis of the full Navier-Stokes equations. It is also assumed that applied or polarized 

voltage is neglected so that no energy is added or extracted from the fluid by electrical means. The 

fluid is considered to be a gray, absorbing-emitting but non-scattering medium and the Rosseland 

approximation is used to describe the radiative heat flux. The radiative heat flux in the x direction 

is considered negligible in comparison with that of y direction. Both wall temperature and 

concentration vary with the distance along the plate and they are always greater than their uniform 

ambient values existing far from the plate surface. Ohmic (Joule) dissipation is ignored. The 

magnetic micropolar fluid contains a species which is reactive and obeys a first order homogenous 

chemical reaction. To simplify the formulation of the boundary conditions, we assumed the size of 

holes in the porous plate is significantly larger than the characteristic microscopic length scale of 

the micropolar fluid. It is assumed that the plate is infinite in extent and hence all physical 

quantities depend only on y and t  . 

 

Fig .1:  Flow configuration and coordinate system 
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The Boussinesq approximation is adopted in the momentum equation.  The balances of mass, linear 

momentum, angular momentum, energy, and concentration species in the Cartesian frame are written 

as follows:  

The continuity equation: 
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The angular momentum equation:  
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The energy equation: 
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The concentration equation: 
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Here u  and v are the velocity components in x and y axis respectively.   is the micro-rotation 

component,  is the kinematic viscosity, r is the kinematic micro-rotation viscosity,  is the 

constant fluid density,  is the electrical conductivity of the micropolar fluid, g  is the acceleration 

due to gravity,   T
w

TT  and   C
w

C
C

  denote the thermal and concentration buoyancy 

effects respectively, 0
B is the strength of the transverse magnetic field, Cp is the specific heat at 

constant pressure, k is the permeability of the porous medium, mD  is the molecular diffusivity of 

species and cK   is the dimensional chemical reaction rate constant. Implicit in the present analysis 

is the assumption of a constant permeable plate velocity in the direction of the fluid flow. The 
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appropriate initial and boundary conditions for velocity, angular velocity (micro-rotation), 

temperature and concentrations fields are specified thus: 
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Where 
p

u 
 
is plate velocity, it is clear from the equation of continuity that suction velocity normal to 

the plate is either a constant or a function of time. Hence it is assumed that the suction velocity 

takes the form: 

0Vu                                                                                                                                            (7)
                                       

 

Where 0
V is a scale of suction velocity and 0

0
V . The negative sign indicates that the suction 

velocity is directed towards the plate. The radiative heat flux term is given by:  
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Here  and k are the Stefan-Boltzmann constant and mean absorption coefficient, respectively. 

The assumed Rosseland model has been shown to be generally valid for optically-thick fluid 

media, as considered in viscous fluids [38]. Implementing eqn. (8) results in a highly nonlinear 

energy equation inT and it is difficult to obtain a solution. However, researchers have resolved this 

problem by assuming small temperature differences within the fluid flow (see [39]- [41]). In this 

situation, Rosseland’s model can be linearized about ambient an temperature T assuming that 

the difference in the temperature within the flow is such that 4
T  can be expressed as a linear 

combination of the temperature. Using Taylor’s series expansion about T   the expansion of  4
T   

can be written as follows, neglecting higher order terms:  

    ...TTTTTTTT  2263444                                                                                   (9) 

Neglecting higher order terms beyond the first degree in  

 TT  , we have: 

43344
 TTTT                                                                                                                          (10)                             

Differentiating equation (8) w.r.t y and using (10), we obtain:  



 8 


























2

2

3

316

y

T

k

T

y
rq 

                                                                                                                (11) 

Now simply replacing
3

T  in Eq. (8) with 3
T , Eq. (4) can be expressed as follows: 
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In order to write the governing equations and boundary conditions in dimensionless form, the 

following non-dimensional quantities are introduced: 
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Here oU  represents free stream velocity. Furthermore, the spin gradient viscosity    which 

provides an important relationship between the coefficient of viscosity and microinertia is defined 

as follows    
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Here all quantities with a prime are dimensionless. Also   is dimensionless temperature function,  

  is dimensionless concentration and   is the Eringen micropolar vortex viscosity parameter. In 

view of Eqs (6)- (14), the governing equations (2)- (5), after dropping primes, emerge as a system 

of coupled dimensionless partial differential equations: 
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viscosity ratio parameter). The boundary conditions can be written in non-dimensional form as 

follows: 
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The mathematical statement of the problem is now complete and embodies the solution of Eqs. 

(15)- (18) with modified boundary conditions (19). The system is well-posed. The skin friction 

coefficient and couple stress coefficient are important parameters for this type of boundary layer 

flow and frequently used in materials processing simulations and design.  

The skin-friction at the plate in non-dimensional form is given by: 

0


















yy

u
fC                                                                                                                                 (20) 

The couple stress coefficient at the plate in non-dimensional form is given by: 

0





















y
y

m
C


                                                                                                                               (21) 

Nusselt number is computed in non-dimensional form as: 
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0
















yyxRe/Nu


                                                                                                                      (22) 

Sherwood number is evaluated as in non-dimensional form by: 

0
















yyxRe/Sh


                                                                                                                        (23) 

Here 


xoV
xRe  is the local Reynolds number based on the plate suction velocity. 

3. Finite Element Method Numerical Solution  

The finite element method (FEM) is employed to solve the transformed, coupled boundary value 

problem defined by eqns. (15) -(18) under (19). FEM is the most popular and adaptable method 

available to engineers. The general details of the variational finite element method are described at 

length in Rao [42] and Reddy [43]. FEM has been applied to study many transport problems of 

micropolar fluids and magnetic liquids and relevant references in this regard are [44-47]. The 

fundamental steps involved in the finite-element analysis of a problem are as follows:  

 Discretization of the infinite fluid domain into finite elements  

 Derivation of element equations 

 Assembly of element equations 

 Imposition of boundary conditions 

 Solution of assembled equations 

The final matrix equation obtained can be solved by any efficient iterative scheme. 

3.1 Variational formulation 

The variational formulation associated with Eqns. (15) - (18) over a typical two-node linear element 

 
1e

y,ey  is given by: 

  0
1

22

2

11 








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























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


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



















dy

e
y

ey y
AuNcos)GcGr(

y

u
A

y

u

t

u
w


                       (24) 

0
1

2

2
1

2 

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
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
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






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







dy

e
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ey y
_
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w






                                                  (25) 
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
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
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
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
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

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e
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u
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y
A
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w 


                                                          (26) 
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w                                                                                 (27) 

Where  1
1

A ,  22 A , 



1

3
A and ,1w ,2w ,3w 4w are arbitrary test functions and may 

be viewed as the variations in  ,u   ,   and   respectively. After dropping the order of integration 

and non-linearity, we arrive at the following system of equations: 

          

 
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1

1

12

111
1

111






































































e

y

ey
y

u
wdy

e
y

ey

y
wA

coswGcwGruwN
y

u

y

w
A

y

u
w

t

u
w





      
   

(28) 
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
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                 (31) 

3.2 Finite Element formulation 

The finite element model may be obtained from Eqs. (28) - (31) by substituting finite element 

approximations of the form: 

 ,
j

e
j

e
juu 




2

1
 ,

j

e
j

e
j




2

1
 




2

1j
and

e
j

e
j 




2

1j

e
j

e
j                                                 (32) 

With ),,i(
e
jwwww 214321    where ,

e
ju and

e
j,

e
j   

e

j  are the velocity in the 

direction of x-axis, y-axis and temperature respectively at the 
thj  node of typical 

the  element 

 
1ey,ey  and 

e
i  are the shape functions for this element  

1ey,ey  and are taken as: 

 and

eyey

yeye






1

1
1 ,

eyey

eyye






1
2

 1 ee yyy
                                                                 

(33) 
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The finite element model of the equations for the 
the  element thus formed is given by.  

       
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(34) 

Where     mn
M,

mn
K  and                 me

band
e

,
e

,
e

,
e

u,
e

,
e

,
e

,
e

u    

,1,( nm  )4,3,2,  are the set of matrices of order 22  and 12   respectively and 

)(prime indicates
dy

d . These matrices are defined as follows: 
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In one-dimensional space, linear and quadratic elements or higher order elements can be 

deployed. Here the entire flow domain is considered by dividing it into successively sized grids of 

order 81x81, 101x101 and 121x121 in the y-axis direction. After many tests a grid size with 101 

intervals has been adopted. Thus, all the computations are executed with 101 intervals of equal 

step size 0.01. At each node, 4 functions are to be evaluated and after assembly of the element 

equations, a set of 404 non-linear equations are obtained which necessitate an iterative solution 

subject to the specified boundary conditions. The iterative process is terminated when the following 

condition is met: 
6

10
1 

 


j,i

nn
 where  ,,u  and   are velocity along x axis, 

microrotation, temperature and concentration respectively and n denote the iterative step. To see the 

effects of step size (h) the finite element code is run with step sizes as h=0.01 and very good 

agreement is obtained for different profiles.  

Table 1: Effects of MandGc,Gr,  on xRe/ShandxRe/Nu,mC,fC
 

  Gr  Gc  M  
fC  

Cm  

x
Re/Nu  

x
Re/Sh  

0.0 2.0 2.0 2.0 3.4848 3.4789 0.5372 0.7113 

0.1 2.0 2.0 2.0 0.7551 0.7551 0.5375 0.7113 

0.5 2.0 2.0 2.0 0.7097 0.7096 0.5310 0.7113 

0.1 4.0 2.0 2.0 1.7222 1.7129 0.5345 0.7113 

0.1 2.0 4.0 2.0 0.7174 0.7115 0.5050 0.7113 

0.1 2.0 2.0 1.0 1.1444 1.1445 0.5368 0.7113 
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Table 2: Effects of EcandRPr, on xRe/ShandxRe/Nu,mC,fC   

Pr  R  Ec  Sc  K  
fC  

mC  
x

Re/Nu  
x

Re/Sh  

0.71 2.0 0.01 0.6 0.5 3.4847 3.7937 0.5372 0.7113 

5.0 2.0 0.01 0.6 0.5 0.6873 0.6372 0.6722 0.7113 

0.71 1.0 0.01 0.6 0.5 0.7845 0.7844 0.4151 0.7113 

0.71 2.0 1.0 0.6 0.5 0.6181 0.6180 0.7116 0.7113 

0.71 2.0 0.01 0.2 0.5 0.9494 0.9493 0.5390 0.3109 

0.71 2,0 0.01 0.6 1.5 1.9591 0.4991 1.0252 1.0252 

 

 

Table 1 and Table 2 document the friction factor, surface heat transfer and mass transfer rate 

dependency on the emerging thermo-physical parameters.  

Table 1 depicts the effect of M,Gc,Gr, on 
x

Re/Sh,
x

Re/Nu,mC,
f

C respectively. It is observed 

that the skin friction decreases as Gc, increases while it increases as Gr increases. As 

M decreases skin friction increases. The same trend is observed in case of wall couple stress. 

Further, it is observed that the Nusselt number decreases as Gc,Gr, increases but as 

M increases, Nusselt number decreases. Sherwood number has no significant effect 

on M,Gc,Gr, . Table 2 depicts the effect of K,Sc,Ec,RPr,  on 
x

Re/Sh,
x

Re/Nu,mC,
f

C  

respectively. The skin friction coefficient decreases as K,R,EcPr,  increases, while it decreases as 

Sc decreases. The same trend is computed in the case of wall couple stress (wall micro-rotation 

gradient). Further, it is observed that the Nusselt number decreases as R decreases. Nusselt 

number increases as Sc decreases, while it increases as K,EcPr, increases. Sherwood number 

decreases as Sc decreases and Sherwood number increases as K increases. No tangible 

modification is computed in Sherwood number (wall mass transfer rate) with a change in 

Ec,RPr, . Numerical values of the coefficients proportional to the skin friction f
C , couple stress 

coefficient wC , Nusselt number Nu and Sherwood number Sh  are given in Table 3 for the general 

model with all parameters invoked. 
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Table 3: Effects of various parameters on xRe/ShandxRe/Nu,mC,fC  for 

 ,H, with 01027102225050010101 .Ec,R,.Pr,Gc,Gr,M,.,.Up,.,.n,t    

 

It is evident from Table 3, that as angle of inclination    and homogeneous chemical reaction 

parameter ( ) increase, the skin friction coefficient f
C

 
and wall couple stress coefficient mC both 

decrease. However, with greater heat source/sink parameter  H , the skin friction coefficient f
C

 

and wall couple stress coefficient mC both increase. Also, it is apparent that as chemical reaction 

(  ) increases, a significant increase is computed in Sherwood number, Sh . Conversely with 

increasing angle of inclination, there is a reduction in Sherwood number Sh  i.e. mass transfer rates 

at the plate surface are decreased. Furthermore, with an increase in angle of inclination ( ), the 

Nusselt number ( Nu ) increases i.e. wall heat transfer rates are enhanced at the plate surface. 

Additionally, with an increase in heat source/sink parameter ( H ), the Nusselt number ( Nu ) 

decreases i.e. wall heat transfer rates are reduced at the plate surface. 

4. Results and Discussion 

Herein we present extensive computations in Figs.2-23 to visualize the influence of key thermo-

physical parameters on the unsteady micropolar fluid transport characteristics i.e. translation 

velocity, angular velocity (micro-rotation), temperature and concentration profiles. In the present 

study we adopted the following default parameter values for finite element computations 

i.e. 1.0,1  nt .While , ,M , ,K Pr, ,Gr ,Gm ,Sc ,R Ec and  are varied over a range, which are 

listed in the figure legends. The permeability in all the figures plotted is set at 0.5 which 

corresponds to a highly permeable regime as typified by materials fabrication operations. Prandtl 

Parameters values 
f

C  mC  
x

Re/Nu  
x

Re/Sh  

  /4 3.5111 2.0212 0.3542 0.4003 

/2 3.4561 1.9976 0.3618 0.3911 

H  0.5 0.5108 0.5105 0.6121 0.6007 

1.0 0.7389 0.7387 0.4267 0.6007 

  1.0 2.4215 2.7313 0.5663 1.4615 

2.0 2.3312 2.7215 0.5663 1.4821 
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number (Pr) is taken to be 0.71 which corresponds to air at 20°C and 1 atmospheric Pressure and 

the value of Sc  is 0.6(water-vapour).  

 

The influence of micro-rotation parameter   on velocity and micro-rotation profiles is illustrated in 

Figs. 2-3.  It is seen that as  increases, the velocity gradient near the porous plate decreases, 

and then approaches to the free stream velocity. Also, it is noteworthy that velocity distribution 

across the boundary layer is lower for Newtonian fluid (  = 0) as compared with strongly 

micropolar fluid (  = 0.2) for the same conditions and fluid properties. Micropolarity (i.e. increasing 

vortex viscosity of micro-elements) therefore consistently induces deceleration in the flow adjacent 

to the plate. All profiles are parabolic and peak at some distance from the wall, decaying smoothly 

to vanish in the free stream. In addition, the magnitude of microrotation at the wall is decreased as 

  increases. However, the distribution of microrotation across boundary layer does not show 

consistent variations with increase of  . 

 

The influence of angle of inclination )(  of the surface on velocity and microrotation profiles has 

been depicted in Figs. 4-5. It is clearly observed from the figures that velocity is decreased with an 

increase in the angle of inclination of the plate, which implies that greater drag is experienced at 

the plate surface and the momentum boundary layer thickness is increased (flow deceleration). 

Furthermore, the buoyancy effects decrease by a factor of gravity body force component, cos. 

Hence the fluid attains higher velocity profiles for the vertical plate ).,e.i(
0

0  than that of 

inclined plate, while the opposite behavior is observed for micro-rotation i.e. angular velocity. 

Consequently, as a result of decrease in both thermal and species buoyancy forces arising in the 

dimensionless momentum eqn. (15) with greater plate inclination, there is a deceleration in the 

linear flow (increased momentum boundary layer thickness) and acceleration in the angular flow 

(decreased angular momentum boundary layer thickness). The plate inclination therefore induces 

a significant modification in both linear and angular velocity (micro-rotation) distributions. 

 

The effect of thermal radiation-conduction parameter ( R ) on linear velocity and temperature is 

presented in Figs. 6-7. This parameter is defined as kk/TR 3
3

16    and features in the 
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augmented thermal diffusion term in eqn. (17) i.e. 
2

2
1

y






. It defines the relative contribution of 

thermal radiation heat transfer to thermal conduction heat transfer. When 1R , thermal 

conduction dominates. When 1R , both thermal conduction and thermal radiation contributions 

are equal. For 1R thermal radiation dominates over thermal conduction. In the present 

simulations, we confine attention to the last of these three cases i.e. 1R wherein thermal 

radiative flux is substantial. Fig. 6 clearly reveals that there is a strong deceleration in the linear 

velocity with increasing R values. The energizing of the flow enhances thermal diffusion but 

counteracts momentum diffusion. This leads to an increase in momentum boundary layer 

thickness. A similar observation has been reported by Abo-Eldahab and Ghonaim [12] and 

Olajuwon and Oahimire [14].  Increasing radiation-conduction parameter is also found to decrease 

temperatures in the boundary layer (Fig. 7). Thermal boundary layer thickness is therefore also 

reduced with greater values of R . 

 

Figs. 8-9 shows the graphical representation of the non-dimensional velocity and temperature 

profiles for some representative values of the temperature dependent and surface dependent heat 

source (or sink) parameter 1012 ,,,H  . It is to be noted that negative values of H indicate heat 

source while positive values of H correspond to heat sink. From Fig.8, it is observed that due to 

heat source  0H  the buoyancy force increases which in turn manifests in higher velocities in the 

boundary layer i.e. flow acceleration. On the other hand, when heat sink  0H  is present, the 

buoyancy force decreases inducing flow deceleration. For both heat source and sink, the peak 

velocities occur near the surface of the plate. Fig. 9 depicts heat source/sink effect on temperature 

and indicates that as H increases from negative to positive values, the temperature as well as 

thermal boundary layer thickness increases. This is due to fact that the heat source introduces 

thermal energy to the plate which increases temperature, energizes the boundary layer and 

elevates thermal boundary layer thickness. For the case of heat sink more heat is removed from 

the plate which decreases temperature and allows effective cooling of the boundary layer. These 

thermal effects may therefore be exploited to advantage in materials processing systems to control 

temperatures in manufactured materials which in turn influence other characteristics.  
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Figs. 10-11 represents the influence of chemical reaction parameter (  ) on the velocity and 

concentration profiles. The reaction parameter is based on a first-order irreversible chemical 

reaction which takes place both in the bulk of the fluid (homogeneous) as well as at the plate which 

is assumed to be catalytic to chemical reaction. Although chemical reactions generally fall into one 

of two categories i.e. homogenous or heterogenous, the former is of interest in the present study. 

Homogenous chemical reactions take place uniformly throughout a given phase and exert a similar 

influence to an internal source of heat generation. We consider the destructive type of 

homogenous chemical reaction. Increasing the chemical reaction parameter   produces a 

decrease in velocity. The momentum boundary layer thickness is therefore increased substantially 

with greater chemical reaction effect. It is noticed that concentration distributions decrease when 

the chemical reaction increases. Physically, for a destructive case, chemical reaction takes place 

and progressively destroys the original species. This, in turn, suppresses molecular diffusion of the 

remaining species which leads to a fall in concentration magnitudes and a decrease in 

concentration boundary layer thickness.  

 

The profiles of the velocity and microrotation in the boundary layer for various values of the plate 

moving velocity pU are shown in Figures 12 -13 in the direction of the fluid flow. It is noticed that 

the peak value of velocity across the boundary layer increases near the porous plate as the plate 

velocity increases. The results also show that the magnitude of microrotation on porous plate 

decreases as pU  increases. The linear flow is therefore accelerated with greater plate velocity 

whereas the micro-rotation (angular flow) of micro-elements is inhibited i.e. decelerated. 

 

Figs. 14-15 represents the influence of Grashof number Gr  and modified Grashof number Gc  on 

velocity and microrotation profiles. The thermal Grashof number, Gr , quantifies the relative 

magnitude of the buoyancy force and the opposing frictional (viscous) forces acting on the 

micropolar fluid. Physically the positive, negative and zero )GrandGr,Gr.,e.i( 000   values of 

the Grashof number correspond to cooling, heating of the boundary surface and absence of free 

convection currents, respectively. The species (solutal) Grashof number i.e. Gc  embodies the 

relative contribution of species buoyancy force to viscous hydrodynamic force. It is observed that 

the velocity increases as Gr  or Gc   increases. Furthermore, the peak value of velocity increases 
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rapidly near the wall of the porous plate. However, the converse behavior is computed in the case 

of micro-rotation profiles. Thermal and species buoyancy therefore modify linear and angular 

velocity fields in a different fashion with different implications for boundary layer thicknesses. 

 

Figs. 16-17 show the pattern of the velocity and microrotation for different values of magnetic field 

parameter M . It is observed that the amplitude of the velocity as well as the boundary layer 

thickness decreases when M is increased. Physically, in magnetohydrodynamic materials 

processing, the applied magnetic field exerts a retarding effect on the free convective flow, 

transverse to the direction of imposition of the magnetic field. With increasing the values of M , this 

type of resisting force slows down the fluid i.e. with stronger magnetic field strength the flow is 

decelerated and this is confirmed with the decreasing velocity distribution across the boundary 

layer. In case of Fig. 17 an increase in magnetic parameter is observed to significantly accelerate 

the angular velocity i.e. enhance the magnitude of micro-rotation, although the effect is more 

localized at the plate surface and progressively grows further from the plate. In both Figs. 16 and 

17 asymptotically smooth solutions are obtained indicating that a sufficiently large infinity boundary 

condition is prescribed in the free stream. Linear momentum boundary layer thickness is therefore 

increased with greater magnetic parameter whereas angular momentum boundary layer thickness 

is reduced. 

 

Figs. 18-19 visualize the effect of the porous medium permeability parameter (K) on both velocity 

and microrotation fields. This parameter characterizes the hydraulic transmissivity of the porous 

medium. It arises in the Darcian drag force term in the composite linear momentum eqn. (16), viz 

 uK/1 .With increasing permeability the regime, the quantity of solid fibers progressively 

decreases. The Darcian bulk impedance to flow is therefore also decreased. This results in 

acceleration in the velocity u , as observed in Fig. 18. This behaviour is sustained across the 

boundary layer i.e. for all values of transverse co-ordinate, y . It is also apparent that micro-rotation 

i.e. angular velocity is enhanced with greater permeability parameter although the effect is more 

prominent near the plate surface and is weakened with further distance into the boundary layer. 

Since the permeability parameter does not arise in the angular momentum conservation (boundary 

layer) eqn. (17) the accelerating effect on micro-rotation is sustained via the boost in linear 

momentum experienced through the coupling terms which link both linear and angular momentum 
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fields. The increase in permeability implies greater void space in the porous medium. This allows 

an enhancement in gyratory motions as the micro-elements are afforded greater space in which to 

spin. Similar observations have been reported by Zueco et al. [48] and Mohammadein et al. [49]. 

 

Figs. 20-21 present the effects of the viscous dissipation parameter i.e., the Eckert number Ec on 

the velocity and temperature fields. Eckert number signifies the quantity of mechanical energy 

converted via internal friction to thermal energy i.e. heat dissipation. Increasing Ec values will 

therefore cause an increase in thermal energy contributing to the flow and will heat the regime. 

Positive Eckert number implies cooling of the wall and therefore a transfer of heat to the micropolar 

fluid. Convection is enhanced and we observe that in consistency with this, the micropolar fluid is 

accelerated i.e. linear velocity is elevated (Fig. 20). Temperatures are markedly increased with 

greater Eckert number (Fig. 21). For all non-zero values of Ec the temperature overshoot near the 

wall is distinct; this overshoot migrates marginally further into the boundary layer with an increase 

in Ec. Very smooth decays in temperature profiles are observed for all values of Eckert number 

and the convergence of profiles in the free stream indicates that an adequately large infinity 

boundary condition has been imposed in the finite element model. 

 

The velocity and concentration profiles for different values of Schmidt number, Sc are illustrated in 

Figs. 20-21. The Schmidt number embodies the ratio of the momentum to the mass diffusivity i.e. 

DvSc / . The Schmidt number therefore quantifies the relative effectiveness of momentum and 

mass transport by diffusion in the hydrodynamic (velocity) and concentration (species) boundary 

layers. For 1Sc  momentum diffusion rate exceeds the species diffusion rate. The opposite 

applies for 1Sc . For 1Sc both momentum and concentration (species) boundary layers will 

have the same thickness and diffusivity rates will be equal.  It is observed that as the Schmidt 

number increases velocity decreases. The momentum boundary layer thickness is also reduced 

with greater Schmidt number. However, it is apparent that species (concentration) profiles 

gradually increase with higher Schmidt number. Smaller values of Sc are equivalent to increasing 

the chemical molecular diffusivity and vice versa for larger values of Sc. 
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Fig. 2: Velocity profiles for various values 

of 
 

 

 
Fig. 3: Micro-rotation profiles for various 

values of 
 

 

 
Fig. 4 : Velocity profiles for various values 

of   

 
Fig. 5 : Microrotation profiles for various 

values of    
 

 
     Fig. 6: Velocity profiles for varoius values of 

R  
 
 

 
     Fig. 7 : Temperature profiles for various 

values of  R  
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 Fig. 8: Velocity profiles for various values of  

H  
 

Fig. 9 : Temperature profiles for various 

values of H  
 

Fig. 10: Velocity profiles for various values of 

  

 

   

 
Fig. 11 : Concentration profiles for various 

values of   
 

Fig. 12 : Velocity profiles for various values 

Up
 

 
Fig. 13 : Microrotation profiles for various 

valuesUp  
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Fig. 14 : Velocity profiles for various values 

of Gr & Gc  
 

 

Fig. 15 : Microrotation profiles for various 

values of Gr & Gc  

 

 

Fig. 16 : Velocity profiles for various values 

of  M  
 

 
Fig. 17 : Microrotation profiles for various 

values of M  
 

 
Fig. 18 : Velocity profiles for various values 

of  K  
 

 

Fig. 19 : Microrotation profiles for various 

values of K  
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    Fig. 20: Velocity profiles for various values 

of Ec  

 

 
Fig. 21 : Temperature profiles for various 

values of Ec  
 

 
 

 
 Fig. 22 : Velocity profiles for various values 

of Sc  
 
 

 

Fig. 23 : Concentration profiles for various 

values of Sc  
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5. Conclusions 

A mathematical model has been presented for radiative magnetic free convection heat and 

mass transfer in transient flow of an incompressible, micropolar fluid from an inclined plate in 

porous media. Heat source/sink and homogeneous chemical reaction effects have been included 

in the formulation. The conservation equations for momentum, angular momentum (micro-rotation 

component), energy and concentration have been non-dimensionlized with appropriate variables. 

The resulting non-linear, transient, coupled system of partial differential equations and set of initial 

and boundary conditions has been solved numerically, using the variational finite element method 

with a Galerkin weighted residual scheme. Validation of the finite element solutions for selected 

cases has been conducted with previous published works i.e. Roja et al. [19] and excellent 

correlation achieved. The computations have been executed in MATLAB software, and have 

shown that the flow is accelerated and momentum boundary layer thickness decreased with 

increasing values of Up, Gr, Gc, H, K and Ec but in case of , , M, R, Sc and  the flow is 

decelerated and momentum boundary layer thickness increased.  Angular velocity (Microrotation) 

is suppressed as , Up, Gr, Gc, and K increases, conversely angular velocity is elevated with  

and M increases. Increasing heat source/sink H parameter and Eckert number Ec elevates 

temperature and enhances thickness of thermal boundary layer. Increasing Schmidt number 

elevates concentration and enhances the thickness of the species boundary layer. Increasing 

homogeneous chemical reaction parameter decreases concentration and reduces concentration 

boundary layer thickness. Sherwood number (wall mass transfer rate) is enhanced with increasing 

permeability and homogeneous chemical reaction but reduced with increasing angle of inclination 

of the plate. Wall heat transfer rate is decreased with an increase in heat source/sink (H) 

parameter and increased with an increase in angle of inclination of the plate. With an increase in 

heat source/sink H parameter there is initially a significant rise in both wall skin friction (flow 

acceleration) and wall couple stress coefficient (flow acceleration), however with further increase 

in , there is a subsequent declaration in the flow.  

The finite element code developed has resolved efficiently the nonlinear micropolar transport 

phenomena in inclined plate magnetohydrodynamic heat and mass transfer. Future studies will 

consider magnetic induction effects and will be reported soon.  
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