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AGV : Autonomous Ground Vehicle.  

APF : Artificial Potential Field path planning. 

COG : Centre of Gravity  

COS : Center of Sets type reduction. 

CPU : Central Processing Unit. 

DV : Difference in a Vertical displacement, which estimated to evaluate error 

in a COG calculation. 

EKM : Enhanced Karnik–Mendel type reduction procedure. 

EKM-

IF 

: Enhanced Karnik–Mendel, type reduction procedure, using Incremental 

Form. 

FCM : Fuzzy C-Mean Clustering algorithm. 

FCS : Fuzzy Control System. 

FOU : Footprint of Uncertainty. 

FP : The Fixed Point. 

FPGA : Field Programmable Gate Arrays.  

FST1 : Fuzzy Set Type-1. 

FST2 : Fuzzy Set Type-2. 

FT1 : Fuzzy Type-1. 

FT2 : Fuzzy Type-2. 

GS : Global Stop point. 

IKM : Iterative Karnik–Mendel, type reduction procedure. 

ISE : Integrated Square Error. 

KM : Karnik–Mendel, Type Reduction Procedure. 

LMF : Lower Membership Function. 

MOM : Mean of Maximum type reduction. 
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OWA  : Ordered Weighted Average. 

PDF : Probability Density Function 

PID  : Proportional Integral Deferential. 

PS : Progressing Steps size of Iterative Routine 

PWL : Piecewise Linear. 

RG : Reduced Gradient method. 

SIF : Sampling Importance Factor. 

T1FLS : Type-1 Fuzzy Logic System. 

T2FLS : Type-2 Fuzzy Logic System. 

TES : Total Embedded Sets. 

TRDF : Type Reduction-Defuzzification process 

TRP : Type Reduction Process. 

TSK : Takagi Sugeno Kang fuzzy system model. 

Type-1 

OWA 
: Type-1 Ordered Weighted Average. 

UMF : Upper Membership Function. 

VS : Vertical Slice. 

VSTR : Vertical Slice Type Reduction.  

WEKM : Weighted Enhanced Karnik–Mendel, type reduction procedure. 
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Abstract 

 Fuzzy type-2 controllers can easily deal with systems nonlinearity and utilise 

humans’ expertise to solve many complex control problems; they are also very good at 

processing uncertainty, which exists in many robotic systems, such as autonomous vehicles. 

However, their computational cost is high, especially at the type reduction stage. In this 

research, it is aimed to reduce the computation cost of the type reduction stage, thus to 

facilitate faster performance speed and increase the number of actions able to be operated in 

one microprocessor. Proposed here are adaptive integration principles with a binary 

successive search technique to locate the straight or semi-straight segments of a fuzzy set, 

thus to use them in achieving faster weighted average computation. This computation is 

very important because it runs frequently in many type reductions. A variable adaptation 

rate is suggested during the type reduction iterations to reduce the computation cost further. 

The influence of the proposed approaches on the fuzzy type-2 controller’s error has been 

mathematically analysed and then experimentally measured using a wall-following 

behaviour, which is the most important action for many autonomous vehicles. The resultant 

execution time-gain of the proposed technique has reached to 200%. This evaluated with 

respect to the execution time of the original, unmodified, type reduction procedure. 

This study develops a new accelerated version of the enhanced Karnik-Mendel type reducer 

by using better initialisations and better indexing scheme. The resulting performance time-

gain reached 170%, with respect to the original version.  

A further cut in the type reduction time is achieved by proposing a One-Go type reduction 

procedure. This technique can reduce multiple sets altogether in one pass, thus eliminating 

much of the redundant calculations needed to carry out the reduction individually.  

All the proposed type reduction enhancements were evaluated in terms of their 

execution time-gain and performance error using every possible fuzzy firing level 

combination. Tests were then performed using a real autonomous vehicle, navigates in a 

relatively complex arena field with acute, right, obtuse, and reflex angled corners, to assure 

evaluating wide variety of operation conditions.  

A simplified state hold technique using Schmitt-trigger principles and dynamic 

sense pattern control was suggested and implemented to assure small rule base size and to 

obtain more accurate evaluation of the type reduction stages.  
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Chapter 1: Introduction 

1. Introduction 

1.1. Introduction 

 The autonomous vehicles can perform complex functions, each of them is 

consisting of one or more of the basic operations such as obstacle avoidance; path 

planning; trajectory following; localization; environment mapping; objects detecting and 

identifying. These different operations are mostly performed in dynamic, noisy and 

uncertain environments. In these conditions, the humans perform very well, therefore 

utilising components of humans performance expertise is essential to produce an 

autonomous vehicle controller with a similar capacity. This can be performed in fuzzy 

controllers where the human expertise can be captured in their rule-bases. It is possible, 

using fuzzy techniques, to model and process the uncertainty, which can exist in 

autonomous vehicles, their surrounding environments, and the degree of the human 

experts. This possibility arose from the simple act of defining variables like hot, cold, 

and fast using fuzzy sets. However, uncertainty processing and modelling in fuzzy 

systems has been extended by proposing the fuzzy type-2 (FT2) sets, where the sets 

boundaries are now fuzzy. Using these fuzzy type-2 sets in controllers has shown 

superiority over their competent fuzzy type-1 (FT1) controllers regarding their settling 

time, system overshoot, and noise immunity. Nevertheless, the fuzzy type-2 systems 

have a bottleneck at the type reduction stage, where a computationally intensive process 

has to be performed. This bottleneck limits using FT2 controllers in autonomous 

vehicles, as an example, when real-time and high-speed actions are required.  In this 

research, the fuzzy type-2 controllers of the autonomous vehicles are to be studied, 

regarding their type reduction computation costs, to find solutions that can offer higher 
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execution speed and better accuracy. Autonomous fuzzy type-2 controller types and the 

associated type reduction methods are surveyed in ensuing sections.   

 

 

1.2. Fuzzy Type-2 Fundamentals 

 The fuzzy principles, which were proposed by (Zadeh 1965), comprise an 

extension to the traditional set theory, where the set boundaries have been extended to a 

more flexible form describes the gradual features transition.  The boundaries of the fuzzy 

set define how much any set element in a specific set satisfies the set’s feature. This 

satisfaction level is defined using a range of [Zero, One], where zero means the feature 

does not exist, while one means it does exist.  This technique managed to simply 

describe lingual quantities like freezing, cold, cool, warm, and hot by adjacent sets each 

has a soft transitional section overlapping its preceding set.  The fuzzy description to 

lingual quantities can have different meanings because of some external factors like 

human expertise, health, and age, which cannot be justified. Therefore, in 1974, Zadeh 

suggested the FT2 sets as a solution, basically, to the uncertainty associated with words 

like very, extremely, fairly, rather, pretty, and quite. The FT2 sets systems, then after, 

have been developed by many researchers like (Karnik and Mendel 2001), (Mendel and 

John 2002), and (Zadeh 1975b; Zadeh 1975a) to simplify their design; adaptation 

flexibility; uncertainty modelling; and uncertainty processing. The FT2 sets can describe 

uncertainty with a high degree of freedom using primary and secondary membership 

functions (Mendel et al. 2006). They can be presented, graphically, on three axes to form 

3D-figures, as shown in Figure  1-1. Here, the 𝑌-𝑎𝑥𝑖𝑠 describes the extension of the fuzzy 

set elements. The vertical axis, which is commonly symbolled as (𝑈) and called the 

primary membership function, ranges at [0, 1] and represents every set element primary 

feature satisfaction. The third axis, which is usually denoted by ( 𝑈  ̃ ) and called the 

secondary membership function, represents the probability of the different satisfaction 

levels at a specific set point. All the points which have secondary membership functions 

equal to one is an embedded set called the principal set (Karnik et al. 1999). Also, the 

universe of discourse, where the set elements have primary membership functions greater 
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than zero is called the fuzzy primary set domain.  Any fuzzy type-2 discrete set 

element ( 𝑦𝑛) can have different satisfaction levels over the uncertainty interval denoted 

by ( 𝐽𝑦𝑛
).  The different satisfaction levels during this interval can have similar fixed 

values in the case of interval fuzzy type-2 sets.  

 

Figure  1-1 : Typical Fuzzy Sets. (a) Type-1. (b) General Type-2. (c) Interval Type-2.  

 

Mathematically, the FT2 set is represented by the union of the set elements, where each 

set element is described by one tuple. The tuple contains one domain element and its 

associated membership function  𝐹𝑢 𝐴 ̃(𝑦𝑛), as shown in equation ( 1-1). Here, the 

summation symbol  ∑   defines a union, not an addition.  

 𝐴 ̃ = ∑{𝑦𝑛  ,

𝑁

𝑛=1

  𝐹𝑢 𝐴 ̃(𝑦𝑛)} ( 1-1) 

 

The FT2 set ( 𝐴 ̃) can be defined, also, in a more detailed form, as shown in equation 

( 1-2) below, where the set domain Y has N elements, each has an uncertainty interval  𝐽𝑦𝑛
 

which describes the possible membership value. If this interval is discretised to 𝑀 

elements, then the secondary membership function can be described as 

  𝑢�̃̃� (𝑦𝑛, 𝐽𝑦𝑛
(𝑢𝑚)) which define the probability of every possible primary membership 

value.  
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 𝐴 ̃ = ∑  ∑{𝑦𝑛   ,   𝐽𝑦𝑛
(𝑢𝑚)  ,   𝑢�̃̃�(𝑦𝑛

𝑀𝑛

𝑚=1

,

𝑁

𝑛=1

𝐽𝑦𝑛
(𝑢𝑚))} ( 1-2) 

 

 

1.2.1. Interval Fuzzy Type-2 Sets 

 A simplified form of the FT2 sets has been suggested, mainly, by Mendel 

(Mendel 2000) to justify the secondary membership to be one value.  The secondary 

membership domain here can be defined by upper membership function (UMF) limit and 

lower membership function (LMF) limit (Mendel 2007), where they have been denoted 

as  𝑢�̃�(𝑦𝑛)  and  𝑢�̃�(𝑦𝑛) respectively. These two limits define the footprint of uncertainty 

(FOU) over the Y-u axis. An interval FT2 set   𝐴 ̃  can be defined mathematically as:  

 𝐴 ̃ = ∑  ∑{(𝑦𝑛   ,   𝐽𝑦𝑛
(𝑢𝑚)  ,

𝑀𝑛

𝑚=1

𝑁

𝑛=1

 1} ( 1-3) 

 

The symbols: N and 𝑀𝑛 define the set’s primary and secondary elements count, 

respectively. The interval FT2 sets are used extensively and successfully in many control 

systems, where they have low associated computation cost and good uncertainty 

representation (Mendel et al. 2006; Nie and Tan 2012). 

 

 

1.2.2. Embedded Fuzzy Sets 

 The embedded sets concept arises from the different uncertainty possibilities that 

a membership function can take in a FT2 set, which is called the footprint of uncertainty 

(FOU). In the cases of continuous FT2 set definitions, an infinite total-embedded-sets 

count  (TES)  will result (Mendel 2007; Mendel and John 2002). However, for the 

discretised FT2 sets, for example;  𝐴 ̃which has 𝑁  elements; each has an uncertainty 

interval U discretised to 𝑀𝑛 elements; will give a non-repeated count of the maximum 
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embedded sets that are equal to  ∏ 𝑀𝑛
𝑁
𝑛=1 = (𝑀1 × 𝑀2 × ….  × 𝑀𝑛 × ….  × 𝑀𝑁) , 

(Mendel 2007). In the case of  interval FT2 sets, these embedded sets are all of type-1, 

but in the case of general FT2 sets, the  embedded sets can also be a general FT2  set 

because there is at least one set element that has a secondary non-zero membership 

function (Mendel and John 2002). This fact has been utilized to define the general fuzzy 

set as a union of all the embedded sets. This generates what is known as the general 

representation theorem and the wave slice theorem (Mendel and John 2002), where  the 

FT2 set 𝐴  ̃ can be defined in terms of its embedded sets   �̃�𝑒  as: 

 𝐴 ̃ = ⋃  ( �̃�𝑒)

 

∏ 𝑀𝑚
𝑁
𝑛=1

=     ∑ (𝐴�̃�

𝐸= ∏ 𝑀𝑚
𝑁
𝑛=1

𝑒=1

) ( 1-4) 

 

 

1.2.3. Fuzzy Controllers 

 In general, the fuzzy controllers consist of four stages, as shown in Figure  1-2. 

The first stage is the fuzzifier, which converts the input, physical crisp values, to fuzzy 

levels, using the input sets membership functions. These generated fuzzy levels are to be 

used to generate sub-actions using the fuzzy Rule-Base. The fuzzy Rule-Base contains an 

IF-Then rules shape the controller behaviour. These rules generate individual 

consequences, which have to be aggregated to get the individual action sets firing levels. 

Finally,  the defuzzification stage has to convert the fuzzy action sets to one crisp output 

(Kovacic and Bogdan 2010). In the case of FT2 controllers, the inference stage generates 

a band of consequence levels which require a type reduction operation before the 

defuzzification stage. The type reduction stage has to convert down the FT2 sets to a FT1 

form. This has been done in different ways, but each way has its specific accuracy and 

computational cost. The accurate type reduction methods are computationally expensive, 

while the inaccurate ones are fast and computationally cheap. Choosing the appropriate 

type reduction would depend on many parameters like the required accuracy; the 

available processing power; the required action speed; application type.      
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Figure  1-2: Structure of fuzzy type-1 controllers. 

 

 

1.3. Research Hypothesis 

 This research is based on the fact that fuzzy type-2 systems are able to represent 

and resolve high levels of uncertainty, this makes them important for systems that are 

valuable to high uncertainty through their working environment, system parameters, and 

sensing data. However, most of those systems are always required to perform at higher 

speeds and do more functions using smaller digital controllers. The use of fuzzy type-2 

controllers in such systems is facing a problem related to the high computation cost at the 

type reduction stage. This generates a bottleneck, limiting the fields where the benefits of 

fuzzy type-2 controllers can be harvested.   

 This research hypothesizes that in between all these complex computations, of 

the type reduction algorithms, there are some redundant operations can be eliminated to 

get faster performance without affecting the initial accuracy of the initial algorithms. The 

adaptive integration is one of the possible techniques, which is going to be investigated 

for its possible benefits to the type reduction methods that involve centroid computations 

and/or integrations. A careful study to the important type reduction algorithms can reveal 

the redundant computations and suggests an accelerated version of them.  In addition to 

that, reducing multi fuzzy sets in one algorithm is another field that will be investigated 

in this research to eliminate its redundant computations. This approach is very important, 

especially for the large fuzzy-type-2 controllers.  
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1.4. Structure of the Thesis 

This thesis can be categorized into four main parts, as follows: 

 First is the introductory part, which contains Chapter 1 and the literature review 

of the type reductions, which is presented in Chapter 2. In addition to that, a 

survey regarding the fuzzy type-2 controllers that’s being used for autonomous 

ground vehicles during the past 10 years, is conducted in chapter 3,.  

 The second part describes the use of the adaptive integration in the iterative 

Karnik-Mendel type reduction procedure. It contains Chapter 4, which explains 

the related mathematical aspects and derives the error control relation. In Chapter 

5, simulations and the practical experiments are conducted to evaluate the 

resulting time-gain and the generated error due to the proposed modifications.  

 The third part contains Chapter 6, which presents an accelerated version of the 

Enhanced Karnik-Mendel type reduction with all the necessary tests and 

evaluations.  In addition to this, at the end of Chapter 6, a new type reduction 

procedure, based on eliminating the redundancy out of the multiset reduction, is 

proposed, analysed, and evaluated.   

 The fourth part covers the implementation aspect, which is in chapter 7, then 

followed by the thesis conclusions, contributions, and future work, which is seen 

in chapter 8. 
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Chapter 2: Fuzzy Type Reductions 

2. Fuzzy Type-2 Sets Reduction   

2.1. Fuzzy Type-2 Sets Reduction   

 Through this section, type reduction processes (TRPs) are going to be surveyed 

and investigated for their computation accuracy, complexity, and ability to be solved 

using parallel processing.  In general, any associated complex computations can form a 

big barrier that affects the usage of fuzzy type-2 controllers for high-speed systems The 

TRP procedures, in general, are an extension of the defuzzification process, and therefore 

inherit their high computation cost.  The defuzzification is described in general in the 

next section. 

 

2.2. Defuzzification 

 In fuzzy systems, the defuzzification is a process that maps the type-1 set to a 

crisp value, sometimes called type-0 (Karnik and Mendel 1998).  Many defuzzification 

methods are exist with different accuracy levels and computational complexity (George 

J. Klir and Bo Yuan 1995). The most common defuzzification type is the centre of mass 

(COM), which is identical to the centre of gravity COG and the centre of area. Another 

common method is the bisectoring method (COA/BSM), which divides the consequent 

set into two equal sections at the defuzzified point. The centre of sum (COS)  (Karnik 

and Mendel 1998) is another method that adds the sub-consequent sets together then 

applies the COG process. The quality measure, defuzzification method, (QM) considers 

the consequent set shape changing in the weighted average COG computation. The level 



 

10 

 

grading method (LGM), which is very much like the QM method but considers the 

certainty level at the consequence set firing level, therefore, they are both categorized as 

a modified height defuzzification (Karnik and Mendel 1998). Some defuzzification 

methods exhibit rough behaviour like the mean of maximum (MOM); the larger of 

maximum (LOM); and the smaller of maximum (SOM) different versions. Such rough 

defuzzification methods are mostly not recommended for many control applications 

(Runkler 1996; Skulavik et al. 2013). Choosing a proper defuzzification technique is 

totally dependent on the nature of the application, where some defuzzification techniques 

jump between solutions and others perform more gradual interpolated transitions.  For 

example, if a fuzzy inferring machine needed to decide the fuel type, which required for 

a specific machine, then it has to give an answer like gasoline or diesel or kerosene. The 

answer would be considered incorrect if it is going to be: use 20% gasoline and 80% 

diesel. But, this soft mix between the individual solutions is very important for electro-

mechanical and robotics control systems to achieve stable and soft actions (Runkler 

1997; Skulavik et al. 2013). The smoothness of the relation between the defuzzified 

values and the rules fairing levels is known as the defuzzification transfer characteristic. 

It has  been  evaluated in many studies, such as (Halgamuge et al. 1996; Runkler 1997; 

Runkler 1996; Saade and Diab 2000; Saade and Diab 2004), for different  defuzzification 

methods, to show that the COG and centre of area (COA) define the most preferred 

defuzzification techniques in control systems. These two methods are described 

mathematically in equations ( 2-1),( 2-2) for fuzzy set C  discretised to N elements. The 

centre of area is based on finding a vertical line that divides the set into two equal parts: 

𝐶𝑂𝐺 𝑜𝑓 𝑠𝑒𝑡 𝐶 =  𝐶𝑜 =
∑ 𝑢(𝑐𝑛) ∗ 𝐶𝑛

𝑁
𝑛=1

∑ 𝑢(𝑐𝑛)
𝑁
𝑛=1

  ( 2-1) 

The center of area condition:  ∑ 𝑢(𝑐𝑛)

𝑛=𝐶𝑂𝐴

𝑛=1

 = ∑ 𝑢(𝑐𝑛)

𝑁

𝑛=𝐶𝑂𝐴+1

 ( 2-2) 
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2.3. Type Reduction Principles 

 The type reduction is an extension of the defuzzification process where it is first 

has to convert the FT2 set to its equivalent FT1 set. The principles of embedded sets are 

the key ideas behind the type reduction processes (TRP). In general, any FT2 set can be 

defined in terms of its FT1 embedded sets and every embedded FT1 set can be 

defuzzified to one crisp value.  These defuzzified points are to be used to form one FT1 

set, which represents the type reduced set. This principle is logically simple, but 

computationally it is expensive because the total embedded sets count is high. For 

example, the total embedded sets count is (𝑇𝐸𝑆) = ∏ 𝑀𝑛
𝑁
𝑛=1 ,  and in the case of a 

general FT2 set  𝐴 ̃ contains N elements, each has uncertainty interval of   𝐽𝑦𝑛
 discretised 

to 𝑀𝑛 points. Therefore, the total computation, which is required to defuzzify all these 

embedded FT1 sets, is very high even when the cost per one set is low. This process is 

described by equation ( 2-3) to generate a FT1 set   𝐶 𝐴 ̃ (Karnik and Mendel 2001). Here, 

every point inside every primary membership function   𝐽𝑦𝑛
, as shown in Figure  1-1, has 

to be used to form the different embedded sets, as described by the first part of the 

equation. Each embedded set has to be defuzzified, as shown in the last part of equation 

( 2-3). Any defuzzified point has to take the smallest membership value, between all the 

points that have been used in its embedded set. This operation is described by the fuzzy 

t-norm operation, which is usually symbolized by asterisk ⋆.  Throughout the 

computation, many embedded sets may have similar defuzzification results but with 

different membership values. In these cases, only the highest membership values are to 

be taken.  

𝐶 𝐴 ̃ = 

∫ …∫ …
𝑀1

𝑚=1      
𝑗𝑛𝑚∈𝐽𝑦𝑛

𝑀1

𝑚=1      
𝑗1𝑚∈𝐽𝑦1

∫ [𝑓𝐽𝑥1
(𝑗1𝑚) ⋆ …⋆ 𝑓𝐽𝑦𝑛

(𝑗𝑛𝑚) ⋆. . .⋆ 𝑓𝐽𝑦𝑁
(𝑗𝑁𝑚)]

𝑀𝑁

𝑚=1         
𝑗𝑁𝑚∈𝐽𝑦𝑁

∑ 𝑦𝑛
𝑁
𝑛=1 . 𝑗𝑛

⋆

∑ 𝑗𝑛
⋆𝑁

𝑛=1

⁄  ( 2-3) 

 

Another discretised form is proposed by  (Coupland 2007) to calculate the type reduced 

set, as follows: 
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𝐶 𝑨 ̃ = ∑   [∑⋆
𝑛=1

𝑁

  𝜇�̌�(̃𝑗𝑛,𝑚|  𝑚=1
𝑀𝑛   , 𝑦𝑛)] | 

∑ 𝑗𝑛,𝑚 ∙ 𝑦𝑛
𝑁
𝑖=1

∑ 𝑗𝑛,𝑚
𝑁
𝑖=1

𝑇𝐸𝑆=∏ 𝑀𝑛
𝑁
𝑛=1

𝑒=1 

 ( 2-4) 

 
  𝐈         

_____↑_____
   𝐈𝐈                                   

___________________↑_____________________
  𝐈𝐈𝐈                 
___________↑___________

  

 

Here, the first summation means that calculations have to include all the possible 

embedded sets, each is symbolled as 𝑒.  These sets range from one to the total number of 

embedded sets,  𝑇𝐸𝑆 = ∏ 𝑀𝑛
𝑁
𝑛=1 . The middle part defines how to calculate the 

defuzzified point membership values using a t-norm operation (Karnik and Mendel 

2001).  The third, right, part is the defuzzification process, for every embedded set. The 

highest membership function has to be considered if more than one value is being 

generated for one set element.  Choosing the highest membership function is not 

described mathematically in equations ( 2-3) and ( 2-4) therefore a notice has been given. 

Here, high redundancy does exist in these TRP techniques; therefore called exhaustive 

TRP methods. The computational cost of these exhaustive TRP is (N-1) t-norm 

operations plus N multiplications plus 2(N-1) additions plus one division, which all have 

to be repeated for (𝑇𝐸𝑆 = ∏ 𝑀𝑛
𝑁
𝑛=1 ) times. The resulting centroids of these methods are 

considered ideal, but are used for referencing only, not for practical real time 

applications. Those expensive computations have been reduced very much by suggesting 

simplified FT2 sets, which are called the interval FT2 set. Here, most of the 

computational efforts, which have been used to processes the enormous embedded sets, 

are eliminated because of the possibility to process only the boundaries of the interval 

FT2 sets to get the same result of the exhaustive TRP methods. The traditional 

exhaustive TRP formula has been re-written by (Karnik and Mendel 2001) to match the 

interval FT2 sets where the secondary membership value becomes equal to 

one,     𝜇�̌�(̃𝑗𝑛,𝑚|  𝑚=1
𝑀𝑛   , 𝑦𝑛) = 1, to get the type reduced set as follows: 

𝐶 𝑨 ̃ = ∑ [∑⋆

𝑁

𝑛=1

  1  ] | 
∑ 𝑗𝑛,𝑚 ∙ 𝑦𝑛

𝑁
𝑖=1

∑ 𝑗𝑛,𝑚
𝑁
𝑖=1

𝑇𝐸𝑆=∏ 𝑀𝑛
𝑁
𝑛=1

𝑒=1 

= [𝐶𝐿 , 𝐶𝑅] 

 

( 2-5) 
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Here, the two points [𝐶𝐿 , 𝐶𝑅] define the start and the end of the resulted FT1 set. Also, 

they represent the leftmost and the rightmost uncertainty extreme points. All the other 

points in between these points will have equal membership levels, thus there is no 

necessity to compute them (Karnik and Mendel 2001). This general type reduction 

principle will be expanded during the ensuing sections, where all the type reduction 

procedures (TRP) that have been proposed to reduce interval and general FT2 sets since 

2001 are going to studied and reviewed. This date is selected because the development of 

fuzzy control systems (FCS) has witnessed a dramatic increase since then.  

 

 

2.4. Interval Fuzzy Sets Type Reductions 

 The importance of the interval FT2 sets arises from their good uncertainty 

representation combined with their relatively fast type reduction methods. Many type 

reduction methods have been developed for interval FT2 sets, aimed to reduce 

computation cost and enhance accuracy. However, some of them are sacrificing accuracy 

and embracing generality for the sake of high computational speed. Therefore, choosing 

a suitable type reduction method requires a review of the current methods and their 

features. 

 

 

2.4.1. Iterative Karnik & Mendel (IKM) Type Reduction 

 Iterative search technique has been proposed by (Karnik and Mendel 2001) as a 

type reduction procedure (TRP) to convert the interval FT2 to an interval FT1 set defined 

only by its start and end points. This procedure is based on forming an embedded sets 

having two joined parts taken from the footprint of uncertainty (FOU) that associated 

with the interval FT2 set. The first part is the lower edge of the footprint of uncertainty 

and the second part is the upper edge of the FOU. Two embedded sets are formed by 

joining two different edges of the  FOU using two temporary movable switching 



 

14 

 

points  𝑆𝐿 𝑎𝑛𝑑 𝑆𝑟. One of these embedded sets is required to find the leftmost switching 

point, which is usually symbolled as (𝑌𝐿). This set is formed by the upper edge of the 

FOU, symbolled  𝐹𝑂𝑈,  that is on the left side of the temporary switching point  𝑆𝐿, and 

the lower edge, symbolled  𝐹𝑂𝑈 , which is on the right side of this switching point. The 

embedded set, which is going to be used to  locate the rightmost switching point (𝑌𝑅), is 

formed by the  𝐹𝑂𝑈 on the left side of the rightmost temporary switching point  𝑆𝑟   and 

by the   𝐹𝑂𝑈 that is falling on the right side of this temporary switching point. 

Defuzzifying these two embedded sets independently would generate two new switching 

points,  𝑦𝑙 and  𝑦𝑅. These two points are to be used as the new switching point to 

construct two new embedded sets for the left and right uncertainty points. Performing 

these operations, of constructing new embedded set using the old results, and 

defuzzifying it to get new point, iteratively will settle to one point represents either the 

leftmost or the right most uncertainty point, based on the used embedded set. The 

iterations will be terminated when the new points become almost equal the old points. 

The required stop condition is usually in the form of: IF ( 𝑦𝑛 −   𝑦𝑛−1) ≤ 𝜀 THEN STOP 

(Karnik and Mendel 2001). The value 𝜀 represents a small acceptable error. The used 

embedded sets for this type reduction are shown in Figure  2-1 with their associated 

calculations. This is described in equations ( 2-6) ( 2-7) for a discrete interval FT2 set 

defined using N elements.  

 

 

Figure  2-1 : Iterative KM type reduction over IFT2 set. 
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𝑦𝑙 =
∑ (𝜇𝑛 ∙ 𝑦𝑛) + ∑ ( 𝜇𝑛 ∙ 𝑦𝑛)

𝑁
𝑛=𝑆𝐿+1

𝑆𝐿
𝑛=1

∑ (𝜇𝑛)
𝑆𝐿
𝑛=1 + ∑ (𝜇𝑛)

𝑁
𝑛=𝑆𝐿+1

 
( 2-6) 

𝑦𝑟 =
∑ (𝜇𝑛 ∙ 𝑦𝑛) + ∑ (𝜇𝑛 ∙ 𝑦𝑛)

𝑁
𝑛=𝑆𝑟+1

𝑆𝑟
𝑛=1

∑ (𝜇𝑛) + ∑ (𝜇𝑛
𝑁
𝑛=𝑆𝑟+1

𝑆𝑟
𝑛=1 )

 ( 2-7) 

 

This resulted interval FT1 set defines the uncertainty associated with the output interval 

FT2 decision set. It can be defuzzified by averaging its two ends, as:  

𝐹𝑢𝑧𝑧𝑦 𝑇𝑦𝑝𝑒2 𝑂𝑢𝑡𝑝𝑢𝑡 =
𝑦𝑙 + 𝑦𝑟

2
 ( 2-8) 

 

The iterations that are required for each end to converge can be N iterations in worst 

case, but the average is (N/2) iterations for initial start points chosen as the centroid of 

the average set:  
1

2
(𝐹𝑂𝑈 + 𝐹𝑂𝑈), (Wu and Mendel 2009) or at the middle of the output 

set range (
𝑁

2
). This TRP consumes a total of (N×(N∙multiplication+2N× additions)) plus 

the defuzzification computation cost to generate one crisp output. 

 

 

2.4.2. Approximated KM Type Reduction (AKM)  

 In (Karnik and Mendel 2001)  a new method is proposed to approximate the type 

reduction results. The approximation is evaluated without passing through the type 

reduction iterations only for those fuzzy sets having uniform small uncertainty (∆𝐽𝑛) 

value associated with their elements (𝑦𝑛).  This approximation is performed by 

representing each vertical interval (𝐽𝑦𝑛) using its central element (𝐶𝐽𝑦𝑛) and its local 

uncertainty spread (∆𝐽𝑛). Now, for an output FT2 set,  �̃� , any of its fuzzy elements (𝑦𝑛) 

will be represented as:    𝐽𝑦𝑛 = (𝐶𝐽𝑦𝑛 ∓ ∆𝐽𝑛). The next step is to form one embedded set 

called the centre of average set which contains all these central elements. This set is to be 

defuzzified to one point as in ( 2-9). The associated uncertainty with this point is 

approximated in equation ( 2-10) using all the uncertainty spreads. 
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𝑌𝑜 =
∑ 𝑦𝑛  𝐶𝐽𝑦𝑛 

𝑁
𝑛=1

∑ 𝐶𝐽𝑦𝑛
𝑁
𝑛=1

 
( 2-9) 

𝑆 =
∑ |𝑦𝑛 − 𝑌𝑜|∆𝐽𝑛

𝑁
𝑛=1

∑ 𝐶𝐽𝑦𝑛
𝑁
𝑛=1

 ( 2-10) 

 

The type reduced set is formed by  𝐶𝐿 = 𝑌𝑜 − 𝑆 and  𝐶𝑅 = 𝑌𝑜 + 𝑆.  The approximation 

shows that the uncertainty is symmetry around the approximated center, which is not the 

case in general.  The computational cost is 2N multiplications; two divisions; and 4N 

additions.   

 

 

2.4.3. Wu-Mendel (Max-Min) Approximation 

 Another approximated type reduction procedure  proposed by (Mendel 2002) is 

based on calculating the centre of set for the lower and upper membership functions, 𝑓(𝑦) 

and 𝑓(𝑦), separately, then arranging these centres in ascending order such that  𝑦𝑙 =

min(𝐶𝐿𝑀𝐹, 𝐶𝑈𝑀𝐹) and  𝑦𝑟 = max (𝐶𝐿𝑀𝐹, 𝐶𝑈𝑀𝐹). These two points are considered to be 

the inner uncertainty boundaries for the type-reduced set. The outer uncertainty 

boundaries  𝑦𝑙  and  𝑦𝑟, are defined by calculating what are termed the extra uncertainty 

limits, then adding those extra uncertainty limits to the existing inner boundaries, as: 

𝑦𝑙 = 𝑦𝑙 −
∑ (𝑓𝑦𝑖 − 𝑓𝑦𝑖)

𝑁
𝑖=1

∑ 𝑓𝑦𝑖 ∙ ∑ 𝑓𝑦𝑖
𝑁
𝑦=1

𝑁
𝑖=1

∙
∑ (𝑓𝑦𝑖 ∙ (𝑦𝑖 − 𝑦1))

𝑁
𝑖=1 ∙ ∑ (𝑓𝑦𝑖

𝑁
𝑖=1 ∙ (𝑦𝑁 − 𝑦𝑖))

∑ (𝑓𝑦𝑖 ∙ (𝑦𝑖 − 𝑦1)) + ∑ (𝑓𝑦𝑖 ∙ (𝑦𝑁 − 𝑦𝑖))
𝑁
𝑖=1

𝑁
𝑖=1

 ( 2-11) 

𝑦𝑟 = 𝑦𝑟 +
∑ (𝑓𝑦𝑖 − 𝑓𝑦𝑖)

𝑁
𝑖=1

∑ 𝑓𝑦𝑖 ∙ ∑ 𝑓𝑦𝑖
𝑁
𝑦=1

𝑁
𝑖=1

∙
∑ (𝑓𝑦𝑖 ∙  (𝑦𝑖 − 𝑦1))

𝑁
𝑖=1 ∙ ∑ (𝑓𝑦𝑖

𝑁
𝑖=1 ∙ (𝑦𝑁 − 𝑦𝑖))

∑ (𝑓𝑦𝑖 ∙ (𝑦𝑖 − 𝑦1)) + ∑ (𝑓𝑦𝑖 ∙ (𝑦𝑁 − 𝑦𝑖))
𝑁
𝑖=1

𝑁
𝑖=1

 
( 2-12) 

 

 

Two of those four points are used to approximate one end of the ideal type reduced set as 

follows:   𝑦𝐿 = (𝑦𝑙 , 𝑦𝑙 )/2  and  𝑦𝑅 = (𝑦𝑟 + 𝑦𝑟)/2. The final defuzzified point is 

calculated by averaging these two ends (𝐶𝑜 =
𝑦𝐿+𝑦𝑅

2
), as shown in Figure  2-2. This type 

reduction, using the uncertainty bounds, is called the Max-Min uncertainty bounds 
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method (Mendel and Liu 2008). It has achieved an acceptable real time control 

performance comparable to neural network type reduction techniques (Lynch et al. 

2006). Here, (5N) multiplications and (10N) addition-subtraction operations are used to 

calculate one crisp output.  

 
Figure  2-2: Wu-Mendel Approximation Method and N-T set. 

 

 

 

2.4.4. Wu-Tan Type Reduction  

 Another type reduction procedure is presented by (Wu and Tan 2005) to 

overcome the type reduction bottleneck. It is based on performing a type-reduction-like 

process, prior to the inferring stage, of the fuzzy controllers. Here, each vertical interval 

at the antecedent FT2 sets is going to be replaced by one equivalent point  𝑓𝑒𝑞(𝑥𝑛). 

Computation of these equivalent points is performed through an empirical formula, 

described by equation ( 2-13).  This equation uses what have been termed as rate-

correction parameters to compensate for the effects of other fuzzy sets at the input stage. 

𝑓𝑒𝑞(𝑥𝑛) = 𝐹𝑛 −
1

𝑆𝑒
∑𝑟𝑎𝑡𝑒𝑖 ∙ 𝑥𝑖 ∙ (𝜇𝑥𝑛

− 𝜇𝑥𝑛
)

𝑆𝑒

𝑖=1

     ( 2-13) 
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Here, 𝑓𝑒𝑞(𝑥𝑛) is the point that is going to replace the nth input set interval. The  𝜇𝑥𝑛
  and 

𝜇𝑥𝑛
 are the intervals upper and lower membership boundaries. The symbol  𝑆𝑒 is the 

count of the antecedent input sets used in the fuzzy controller. The symbol 𝑥𝑖 represents 

the   𝑖𝑡ℎ  input set firing level, which is affected by the controller inputs and the input set 

shapes. The symbol  𝑟𝑎𝑡𝑒𝑖 defines those correction factors, which are used to 

compensate the effects of the other input fuzzy sets. The correction factors have to be 

evaluated for every set using genetic technique to utilise a cost function based on the 

integration of a time-weighted absolute system error. However, these factors can be 

easily estimated for simple set shapes. As shown in Figure  2-3, if the fuzzy systems have 

only basic trapezoidal sets, then its  𝑟𝑎𝑡𝑒𝑖 factors can be approximated by: 
2 

𝑃𝑖1−𝑃𝑖2
 (Wu 

and Tan 2005), where  𝑃𝑖1 and   𝑃𝑖2 represents the left and the right apex points in each 

trapezoidal sets.   

 
Figure  2-3: Example of interval FT2 sets reduction using Wu-Tan method. (a) Is the first 

input set: 𝑋1.  (b) Is the second input set, 𝑋1, with its equivalent sets 𝑓𝑒𝑞(𝑥2) being 

evaluated at three different input levels: 𝑋1 = {+1, 0, −1}. 

 

 

The computation cost of this approximation is low, very much similar to this associated 

with FT1 systems. However, the uncertainty measure is completely missing and the 

 𝑟𝑎𝑡𝑒𝑖 parameters are hard to evaluate for complex systems. 
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2.4.5. The Nie-Tan (N-T) method 

 The procedure of this type reduction is based on omitting the uncertainty 

awareness of the interval FT2 sets, but considering the final defuzzified value only (Nie 

and Tan 2008). It determines the centre of the set using the COG calculates for one 

embedded set containing all the average points of the vertical uncertainty slices  𝐽𝑦𝑛 =

[𝑢𝑦𝑛
, 𝑢𝑦𝑛

].  The output of this type reduction-defuzzifier is one crisp value, calculated as:  

𝑌𝑜 = ∑ 𝑦𝑛 ∙ 𝐶𝐽𝑛

𝑁

𝑛=1

=
∑ 𝑦𝑛

𝑁
𝑛=1 ∙ (

𝜇𝑗𝑛 + 𝜇𝑗𝑛

2
)

∑ (
𝜇𝑗𝑛 + 𝜇𝑗𝑛

2 )𝑁
𝑛=1

 

 

( 2-14) 

 

The non-iterative features, which exist here, enable for more fuzzy systems analyses and 

tuning operations (Nie and Tan 2008). This type reduction formula gives smoother 

control surface in compare to IKM TRP. The computation cost is 3N additions, and 2N 

multiplications and divisions. This is considered a very low cost in compare to the other 

type reduction techniques.  

 

 

2.4.6. Collapse Type Reduction 

 The collapse type reduction works to generate a FT1 set that has a centre of set 

similar to its unreduced original FT2 set (Greenfield, Chiclana, Coupland, et al. 2009). 

The reduction principle is based on choosing one special interval set that has one blurred 

point, let’s say at 𝑦𝑖, where the blurring level is equal to: 𝑏𝑖 = 𝑈𝑀𝐹𝑖 − 𝐿𝑀𝐹𝑖  , as shown 

in Figure  2-4. This special interval set has an identical LMF and UMF except at the 

blurred point. A temporary reprehensive set (𝑅𝑖), of type-1, is going to be derived such 

that its centre of set is similar to the special interval set, which has one blurred point. 

This representing set has been chosen to be similar to the lower LMF except at the 

blurred point, where the membership value  𝑟𝑖  is calculated to be: 

𝑟𝑖 =
𝑏𝑖 ∙ ‖𝐿‖

𝑏𝑖 + 2 ∙ ‖𝐿‖
      ,  The scalar cardinality is  ‖𝐿‖ = ∑ 𝜇𝐿𝑀𝐹(𝑦𝑛)

𝑁

𝑛=1
 ( 2-15) 
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Here, the symbol 𝑢𝐿𝑀𝐹(𝑦𝑖)
 represents the FT2 lower membership values. Repeating the 

operation of choosing a blurred set and finding its represented FT1, while considering 

the converted and the non-converted parts of the initial FT2 set, will lead to reducing the 

whole FT2 set, point by point successively, to one equivalent FT1 set. This is described 

in equation ( 2-16), where the symbol  𝑢𝑅𝑘(𝑦𝑖) represents the temporary equivalent set at 

the  𝑖𝑡ℎ point, on the  𝑘𝑡ℎ cycle. As shown in Figure  2-4, the process started from the left-

most elements and ended at the point  𝑦𝑖. The collapse type reduction may generate 

different representing sets, but all of them will have symmetrical centres. This may 

happen if different indexing patterns are used, as shown in Figure  2-4 part (a), for  

backward, inward or outward indexing patterns (Greenfield, Chiclana and John 2009). 

 

𝑢𝑅𝑘(𝑦𝑖) = 𝑢𝐿𝑀𝐹(𝑦𝑖) +
𝑏𝑖 ∙ (‖𝐿‖ + ∑ 𝑟(𝑦𝑗)

𝑖−1
𝑗=1 )

𝑏𝑖 + 2 ∙ (‖𝐿‖ + ∑ 𝑟(𝑦𝑗)
𝑖−1
𝑗=1 )

 ( 2-16) 

 

 

 
Figure  2-4 : (a) Collapse type reduction principles. (b) Different progress patterns effect. 

 

 

The collapse type reduction will generate a Nie-Tan set, described on page 19,  if a very 

fine set discretization level is used (Greenfield 2012). This happens because the 

‖𝐿‖ value will become very high. This makes the value   (
𝑏𝑖

‖𝐿‖
)  equal to zero, as shown 

below, generating   𝑟𝑖  definition similar to that in Nie-Tan set, which uses the set’s mid-

points.  
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𝑟𝑖 =
𝑏𝑖

2+(
𝑏𝑖
‖𝐿‖

)
                  ⇒                        𝑟𝑖 =

𝑏𝑖

2
 

0 
( 2-17) 

 

The uncertainty measure in the collapse procedure is omitted, like the N-T type reduction 

technique. The computations required here are 3N multiplication and divisions, plus 4N 

additions to get the final representative set. The conversion to crisp value will require 2N 

additions and N multiplications, if the COG defuzzification is being used, which is 

preferred in control systems.  

 

 

2.4.7. Enhanced Karnik–Mendel (EKM) Type Reduction Procedure 

 The type reduction cost has been reduced noticeably in the procedure proposed in 

(Wu and Mendel 2007). Much of the redundant computations of the KM type reduction 

have been eliminated by suggesting two main enhancements (Wu and Mendel 2009) 

(Maowen 2011). The first enhancement is achieved by proposing better initial switching 

points,  
𝑁

2.4
 for the left and 

𝑁

1.7
   for the right. This is made instead of the set average point, 

which had been used in the iterative KM procedure, as shown in equation ( 2-18).  

 

 
 

Figure  2-5 : EKM iterations principles. 
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Using this initialization has led to fewer iterations, because these new starting points 

have been deduced using statistical analysis for different set shapes and their type 

reduction results, thus they are very close to the real solutions. Using these points may 

require some extra tuning in cases of complex or non-common set shapes (Wu and 

Mendel 2009).  

The second enhancement has achieved by eliminating some redundant computations out 

of the KM type reduction, especially after the first KM iteration. Here, the suggestion is 

to make the first iteration in full, as shown in equations ( 2-19).  Then, all of the 

following iterations are going to use the previous result and a correction value, which has 

to be added or subtracted, according to the difference between the current switching 

point and its predecessor, as shown in equation ( 2-20) and  Figure  2-5.  

𝐶𝐿0 = 𝐶𝑅0 =
∑ 𝑦𝑖 (𝑢𝑦𝑖

+ 𝑢𝑦𝑖
) 2⁄𝑁

𝑖=1

∑ (𝑢𝑦𝑖
+ 𝑢𝑦𝑖

) 2⁄𝑁
𝑖=1

 
( 2-18) 

𝐶𝑙0 =
𝑎

𝑏
=

∑ 𝑢𝑦𝑖
∙ 𝑦𝑖 + ∑ 𝑢𝑦𝑖

∙ 𝑦𝑖
𝑁
𝑖=𝑘+1

𝑘
𝑖=1

∑ 𝑢𝑦𝑖
+ ∑ 𝑢𝑦𝑖

𝑁
𝑖=𝑘+1

𝑘
𝑖=1

 
( 2-19) 

𝐶𝑙
𝑘′ =

𝑎 + 𝒔𝒊𝒈𝒏(𝑘′ − 𝑘)∑ 𝑦𝑖 ∙ (𝑢𝑦𝑖 − 𝑢𝑦𝑖)
max (𝑘′,𝑘)
𝑖=min (𝑘′,𝑘)

𝑏  +  𝒔𝒊𝒈𝒏(𝑘′ − 𝑘)∑ (𝑢𝑦𝑖
− 𝑢𝑦𝑖

)
max (𝑘′,𝑘)

𝑖=min (𝑘′,𝑘)

 ( 2-20) 

 

The total computational cost required to find the left centroid is 2N additions and N 

multiplications and one division plus the calculations required for a move from the initial 

start point, N/2.4, to zero, which in the worst case is about 4×(N/2.4) additions-

subtractions, plus N/2.4 multiplications. Widespread acceptance of this EKM type 

reduction procedure has encouraged researchers to solve many related issues, as for 

example (Garcia 2012), which has suggested using interpolation to discretise interval 

FT2 sets that have missing vertical interval ends,{𝐽𝑥, 𝐽𝑥}, which can result during a 

horizontal alpha cut process.  
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2.4.8. EKM Type Reduction Using Incremental Formula 

 The EKM has been reformulated by (Duran et al. 2008) to an incremental  

formula  (EKM-IF) with enhanced stop condition, which eliminates search fluctuation 

around the final left and right switching points. Fluctuation can result because of 

digitization error and the convexity nature of the search space, which can exists in almost 

all fuzzy sets. The practical tests performed by (Liu et al. 2012) had shown that 

fluctuation happens frequently in the EKM algorithm, which is demanding bulk 

computations for redundant operations. The incremental formula starts by calculating 

separately the numerator and the denominator of the centroid formula of the upper and 

lower membership functions, as in equations ( 2-21) and ( 2-22).  

𝑅𝑛𝑢𝑚0

𝑅𝑑𝑒𝑛0

 =
∑ 𝑦𝑖 ∙ 𝑢𝑦𝑖

𝑁
𝑖=1

∑ 𝑢𝑦𝑖

𝑁
𝑖=1

    ( 2-21) 

𝐿𝑛𝑢𝑚0

𝐿𝑑𝑒𝑛0
=

∑ 𝑦𝑖 ∙ 𝑢𝑦𝑖

𝑁
𝑖=1

∑ 𝑢𝑦𝑖

𝑁
𝑖=1

   
( 2-22) 

 

At initialization, these nominators and denominators are given index zero.  Then a 

sequential left and right switching points search have to be performed, as shown in 

Figure  2-6, giving the first resulting left and right centroids an index k=1, as shown in 

equations ( 2-23) and ( 2-24).  

𝑅𝑛𝑢𝑚 𝑘 = 𝑅𝑛𝑢𝑚 𝑘−1  − 𝑦𝑘 ∙ (𝑢𝑦𝑘 − 𝑢𝑦𝑘) ,   𝑅𝑑𝑒𝑛 𝑘

= 𝑅𝑑𝑒𝑛 𝑘−1 − (𝑢𝑦𝑘 − 𝑢𝑦𝑘) ( 2-23) 

𝐿𝑛𝑢𝑚 𝑘 = 𝐿𝑛𝑢𝑚 𝑘−1 + 𝑦𝑘 ∙ (𝑢𝑦𝑘 − 𝑢𝑦𝑘) ,

𝐿𝑑𝑒𝑛 𝑘 = 𝐿𝑑𝑒𝑛 𝑘−1 + (𝑢𝑦𝑘 − 𝑢𝑦𝑘) ( 2-24) 

𝐶𝑅𝑘 =
𝑛𝑢𝑚 𝑘

𝑑𝑒𝑛 𝑘
 , 𝐶𝐿𝑘 =

𝑛𝑢𝑚 𝑘
𝑑𝑒𝑛 𝑘

 
( 2-25) 

 

The sequential search operation ends when minimum  𝐶𝐿𝑘  and maximum 𝐶𝑅𝑘 points are 

found.  The computation cost is 9N additions and 3N multiplications. 
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2.4.9. Type Reduction Using Type-1 OWA 

 The ordered weighted average (OWA) operation is a tunable fuzzy aggregation 

process suggested by (Yager 1988). It is based on a unit weighting operator  𝑊 =

{𝜔1, 𝜔2, . . . . . . , 𝜔𝑁}𝑇 consisting of sub weights; each of them is in the range of  𝜔𝑖 ∈

[0,1], while their summation is one  ∑ 𝜔𝑖
𝑁
𝑖=1 = 1. Processing an (n) variables vector 

{𝑎1, 𝑎2, … . . , 𝑎𝑛}  in OWA means generating one crisp output by the 

process   ∑ 𝜔𝑖
𝑁
𝑖=1 𝑎𝜎(𝑖)  , where 𝜎(𝑖) is a sorting operator, which  arranges the input 

vectored elements  𝑎𝑖’s, such that  𝑎𝜎(𝑖)  is the  𝑖-𝑡ℎ  largest element in the set. Examples 

of the OWA operators are maximum operator 𝑊 ↑= {1,0,0, … . }𝑇; minimum 

operator 𝑊 ↓= {… ,0,0,1}𝑇; and average operator 𝑊~
𝑁 = {

1

𝑁
, … . .

1

𝑁
}𝑇. 

 This aggregation process has been extended by (Zhou et al. 2008) to aggregate 

FT2 sets. The new extended aggregation is called type-1 OWA. Here the operator now is 

a two-dimensional array described as linguistic fuzzy sets,  {𝑊𝑖}𝑖=1
𝑁 , using the unity 

universe of discourse. The lingual fuzzy sets {𝐴𝑖}𝑖=1
𝑁 , which are going to be processed, 

can be defined over their localized universes X𝑘 without the need to re-map them to the 

unity universe of discourse. The result of processing N  fuzzy type-1 sets using the type-

 

 

Figure  2-6: EKM Type Reduction in Incremental Formula. (a) Left switching point search. (b) 

Right switching point search. 
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1 OWA operation is N  points, which define one FT1 set, Y. These N points and their 

related membership values have been evaluated by (Zhou et al. 2008), as follows:  

 𝑦 = ∑�̅�𝑖𝑎𝜎(𝑖)

𝑁

𝑖=1

  | 𝜔𝑖 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑊𝑟 ,  𝑎𝑖 ∈  𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐴𝑘 ( 2-26) 

 Where   �̅�𝑖 =
𝜔𝑖

∑ 𝜔𝑖
𝑁
𝑖=1

 
( 2-27) 

𝑎𝑛𝑑     𝜇(𝑦) =
𝑠𝑢𝑝
𝑦 (𝜇𝐴1

(𝑎1) ⋆ …⋆ 𝜇𝐴𝑁
(𝑎𝑁) ⋆ 𝜇𝑊1

(𝜔1) ⋆ …⋆ 𝜇𝑊𝑁
(𝜔𝐾)) 

( 2-28) 

 

Equation ( 2-27) can be substituted in equation ( 2-26) to get the formal COG equation, 

but here, the weighting arrays of the type-1 OWA describe the uncertainty over the 

vertical set slices, which usually called the primary membership functions.  

Using this type-1 OWA to reduce an interval FT2 set,   �̃�, which contains N elements 

will require describing its elements as vectors, {𝐴(𝑋)𝑖}𝑖=1
𝑁 . Here, each victor is defining 

the uncertainty, which may exist in the set elements. The weighting operators {𝑊𝑖}𝑖=1
𝑁  

have to describe the primary and the secondary membership functions  as:  𝑊𝑖 =

{𝜇𝑊𝑖
(𝜔𝑘) | 𝜔𝑘 ∈  𝐽𝑥𝑖

 }, for each set element  𝑥𝑖  . A general type-1  OWA operation is 

performed by (Chiclana and Zhou 2011) as in equation ( 2-27), where all the possible 

combinations of  𝑎𝑖 𝑎𝑛𝑑 𝑤𝑖, have to be used to determine the uncertainty boundaries, that 

define the start and end points of the type reduced set. The computation cost of this 

operation is similar to the exhaustive TRP. 

 A better type-1 OWA procedure had been proposed by (Zhou and Chiclana 2009) 

named the 𝛼-𝑐𝑢𝑡 OWA, which requires defining the sets {𝐴𝑖}𝑖=1
𝑁  and the operators 

{𝑊𝑖}𝑖=1
𝑁  to become a group of intervals. That is performed using an equally spaced values 

of   𝛼 ∈ [0,1] to generate these intervals as: {𝑊𝑖𝛼}𝑖=1
𝑁 = {𝜔|𝜇𝑊𝑖

(𝜔) ≥ 𝛼} and 𝐴𝑖𝛼 =

{x|𝜇𝐴𝑖
(𝑥) ≥ 𝛼} . The  {𝑊𝑖𝛼}𝑖=1

𝑁  and {𝐴𝑖}𝑖=1
𝑁  sets have to be aggregated using equations 

( 2-26), ( 2-27), and ( 2-28) then a union between the different results of the different 

𝛼-𝑐𝑢𝑡 OWA has to be performed to get the  final type reduced set 

 𝑌 =
  ⋃  𝛼 ∙ 𝑌𝛼

0 ≤ 𝛼 ≤ 1  
   . Any of the individual 𝛼-𝑐𝑢𝑡 OWA result set is an interval can 
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be fully described using its ends, as 𝑌𝛼 = {𝑌𝛼−, 𝑌𝛼+}, thus a good computation cost 

reduction has been achieved by processing these ends only. 

𝑌𝛼− =
𝑚𝑖𝑛 ∑ 𝜔𝑖𝑎𝜎(𝑖)/∑ 𝜔𝑖

𝑁
𝑖=1

𝑁
𝑖=1

 
𝐴𝛼−

𝑖 ≤𝑎𝑖≤𝐴𝛼+
𝑖

𝑊𝛼−
𝑖 ≤𝜔𝑖≤𝑊𝛼+

𝑖

 
, 𝜇(𝑦) = 1       

( 2-29) 

𝑌𝛼+ =
𝑚𝑎𝑥 ∑ 𝜔𝑖𝑎𝜎(𝑖)∕∑ 𝜔𝑖

𝑁
𝑖=1

𝑁
𝑖=1

 
𝐴𝛼−

𝑖 ≤𝑎𝑖≤𝐴𝛼+
𝑖

𝑊𝛼−
𝑖 ≤𝜔𝑖≤𝑊𝛼+

𝑖

 
 , 𝜇(𝑦) = 1      ( 2-30) 

 

The ends are determined for each  𝛼-level set iteratively (Zhou and Chiclana 2009; 

Chiclana and Zhou 2013), very similar to IKM algorithm, where the search starts using 

the first set element, indexed 1, and stops  if 𝜌𝛼−
𝑠 ≥ 𝐴𝛼−

σ(s)
  and  𝜌𝛼+

𝑠 ≥ 𝐴𝛼+
σ(s)

 , 

respectively, for the left and the right uncertainty points. 

𝜌𝛼−
𝑠 ≜

∑ 𝜇𝑊𝛼−
(𝑖) ∙ 𝐴𝛼−

𝜎(𝑖)𝑠−1
𝑖=1 + ∑ 𝜇𝑊𝛼+

(𝑖) ∙ 𝐴𝛼−
𝜎(𝑖)𝑁

𝑖=𝑠

∑ 𝜇𝑊𝛼−
(𝑖)𝑠−1

𝑖=1 + ∑ 𝜇𝑊𝛼+
(𝑖)𝑁

𝑖=𝑠

 ( 2-31) 

𝜌𝛼+
𝑠 ≜

∑ 𝜇𝑊𝛼+
(𝑖) ∙ 𝐴𝛼+

𝜎(𝑖)𝑠−1
𝑖=1 + ∑ 𝜇𝑊𝛼−

(𝑖) ∙ 𝐴𝛼+
𝜎(𝑖)𝑁

𝑖=𝑠

∑ 𝜇𝑊𝛼+
(𝑖)𝑠−1

𝑖=1 + ∑ 𝜇𝑊𝛼−
(𝑖)𝑁

𝑖=𝑠

 ( 2-32) 

  

Each {𝑊𝑖𝛼}𝑖=1
𝑁  set uses its associated   𝐽𝑥𝑖   endpoints, thus it is exactly like the IKM 

algorithm for IFT2 set type reduction with the same computation cost. In general, the 

type reduction is a special case of the OWA type-1 aggregation (Chiclana and Zhou 

2013). 

 

 

2.4.10. Weighted Enhanced Karnik–Mendel Type Reduction Procedure  

 The weighted enhanced KM algorithm (WEKM), suggested in (Liu et al. 2012), 

has achieved computation cut, over the EKM, by two modifications: (i) Using a 

mathematical formula to estimate better initial start points; (ii) Weighting every primary 

membership point in a way that can reduce the EKM iterations.  The initial point’s 

mathematical formula mainly depends on the difference between the UMF and the LMF, 
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where  𝑦𝑙𝑜 = 𝑁/(1 + √𝜌)  and  𝑦𝑟𝑜 = 𝑁/(1 + √1/𝜌).  The  𝜌 equals to ∑ 𝜇 ∑ 𝜇 𝑁⁄  𝑁 . 

This formula gives  𝑦𝑙𝑜 = 𝑁/2.4  and  𝑦𝑟𝑜 = 𝑁/1.7 for the case of  𝜌 = 2 , which 

indicates that most of the practical tests that had been performed by  Karnik–Mendel in 

(Wu and Mendel 2009) to estimate the initialization points have this ratio and it is coop 

with more practical cases. The second enhancement has been achieved by using the 

weights of the Trapezoidal, Simpson, and  3 8⁄ -Simpson integration rules to weight the 

fuzzy sets elements. In case of Trapezoidal rules, each primary membership has to be 

weighted by one value, according to its index as {𝑤𝑖=1,𝑁 =0.5 ,  𝑤𝑖≠𝑁,1=1}. In case of 

Simpson rule, the following weights are used {𝑤𝑖=1,𝑁 =0.5, 𝑤𝑖=𝑒𝑣𝑒𝑛  𝑎𝑛𝑑 ≠𝑁=2,  

𝑤𝑖=𝑜𝑑𝑑  𝑎𝑛𝑑 ≠1=1 }. While, the  3 8⁄ -Simpson rule requires the weights {𝑤𝑖=1,𝑁 =0.5, 

𝑤𝑖=𝑒𝑣𝑒𝑛  𝑎𝑛𝑑 ≠𝑁=2,  𝑤𝑖=𝑜𝑑𝑑  𝑎𝑛𝑑 ≠1=1 } for each  𝜇𝑥𝑖. This weighting process adds more 

computations to the EKM formula but it leads to getting less iteration to reach the left 

and right uncertainty points. The overall computation cost is shown to be less, for the 

case of Trapezoidal weights only (Liu et al. 2012). 

 

 
Figure  2-7 : Piecewise Linear IFT2 Set reduction. 

 

 

2.4.11. Piecewise Linear Interval Fuzzy Type-2 Set Reduction  

 The piecewise linear (PWL) interval FT2 sets reduction has been proposed using 

a closed formula, based on the traditional derivation principles to find maximum and 
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minimum optimal. This has utilised to find the uncertainty boundaries using closed 

mathematical formula without iterations. A high speed performance and a high accuracy 

were achieved (Ulu et al. 2013) due to the well-defined geometry of piecewise linear 

interval sets which can be presented using two polygons, one for the upper and one for 

the lower membership function. Here, the end points,  𝐶𝑙 and 𝐶𝑟 ,  of  a type reduced set 

have been found by calculating centroids of two specially selected type-1 fuzzy 

sets,  𝐴𝑇1𝐿 for the left switch point and  𝐴𝑇1𝑅 for the right switch point, as shown in 

Figure  2-7 in black and red dots respectively. The sets  𝐴𝑇1𝐿 and  𝐴𝑇1𝑅 are described in a 

non-intersecting closed polygon form using  𝑁𝐿 and 𝑁𝑅 vertices, for the left and the right 

respectively. The initial centroids are chosen to be the closest vertices points to the 2.4 

and 1.7, which are the EKM initials. This closest is defined by a minimum absolute 

distance search as: 𝑥𝐿
 = |𝑥𝑖

𝑚𝑖𝑛 𝑥𝑖 − (𝑥0 + (
𝑥1−𝑥0

2.4
)| and 𝑥𝑅

 = |𝑥𝑖

𝑚𝑖𝑛 𝑥𝑖 − (𝑥0 +
𝑥1−𝑥0

1.7
)|, for 

the left and the right initialisation points respectively. Here, the symbol 𝑥𝑖 defines the 

lower membership vertices, which has been used in the search because the lower 

membership has usually less vertices. The symbol 𝑥𝑖 defines the uppers, as shown in 

Figure  2-7. The  𝑥0 and   𝑥1 are the leftmost and the rightmost the vertices points of the 

upper membership function on the horizontal set axes, while for lower set boundaries 

vertices are 𝑥0 and 𝑥1. The area and centroids calculations for  𝐴𝑇1𝐿, 𝐶 𝐴𝑇1𝐿
 and 

 𝐴𝑇1𝑅, 𝐶 𝐴𝑇1𝑅
 have been performed using Surveyor’s area formula for a polygon contains 

N vertices (Ulu et al. 2013) (Braden 1986), as follows: 

𝐴𝑃𝑙𝑜𝑦 =
1

2
∑(𝑥𝑖𝑢𝑖+1 − 𝑥𝑖+1𝑢𝑖)

𝑁−1

𝑖=0

 ( 2-33) 

𝐶𝑃𝑙𝑜𝑦 =
1

6𝐴𝑃𝑜𝑙𝑦
∑(𝑥𝑖+𝑥𝑖+1)(𝑥𝑖𝑢𝑖+1 − 𝑥𝑖+1𝑢𝑖)

𝑁−1

𝑖=0

 ( 2-34) 

 

 

These centroids’ initializations are based on choosing the closest vertices to the ideal 

centroids initials, the (2.4) and (1.7) points.  The accurate centroids require a correction 

parts defined by two movable points L and R, as follows: 

𝐶𝑙(�̃�) =
𝐴 𝐴𝑇1𝐿

∙ 𝐶 𝐴𝑇1𝐿
+ (𝐿2 − (𝑥𝐿

 )2) ∙ ∆𝜇�̃�(𝑥𝐿
 )/2

𝐴 𝐴𝑇1𝐿
+ (𝐿 − 𝑥𝐿

′ ) ∙ ∆𝜇�̃�(𝑥𝐿
′ )

 
( 2-35) 
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𝐶𝑟(�̃�) =
𝐴 𝐴𝑇1𝑅

∙ 𝐶 𝐴𝑇1𝑅
+ (𝑅2 − (𝑥𝑅

 )2) ∙ ∆𝜇�̃�(𝑥𝑅
 )/2

𝐴 𝐴𝑇1𝑅
+ (𝑅 − 𝑥𝑅

 ) ∙ ∆𝜇�̃�(𝑥𝑅
 )

 
( 2-36) 

 

The (L) point has to minimise the value  𝐶𝑙(�̃�) , while the (R) point has to maximise 

𝐶𝑟(�̃�). There positions have been evaluated by deriving with respect to  (𝑑𝐿) for the left 

point and with respect to (𝑑𝑅) for the right point. Then equating the derivations to zero, 

getting:  

 

𝐿 = 𝑥𝐿
 +

−𝐴 𝐴𝑇1𝐿
+ √𝐴 𝐴𝑇1𝐿

2 + 2∆𝜇�̃�(𝑥𝐿) ∙ 𝐴 𝐴𝑇1𝐿
∙ (𝐶 𝐴𝑇1𝐿

− 𝑥𝐿)

∆𝜇�̃�(𝑥𝐿)
 ( 2-37) 

𝑅 = 𝑥𝑅
 +

𝐴 𝐴𝑇1𝑅
− √𝐴 𝐴𝑇1𝑅

2 − 2∆𝜇�̃�(𝑥𝑅) ∙ 𝐴 𝐴𝑇1𝑅
∙ (𝐶 𝐴𝑇1𝑅

− 𝑥𝑅)

∆𝜇�̃�(𝑥𝑅)
 ( 2-38) 

 

The symbol ∆𝜇�̃�(𝑥) represents the vertical uncertainty slice for set element x. This 

solution is proposed for fixed FOU width during the periods [𝑥𝐿 , 𝐿] and [𝑥𝑅 , 𝑅]  and it 

can be more complex if the width of the FOU, ∆𝜇𝐴 ̃(𝑥𝑅)  is not constant (Ulu et al. 

2013). If this is so, many possible cases can exist which depend on the slope of the lower 

and the upper FOU boundaries and the difference between the initial centroid points 

𝑥𝐿
 , 𝑥𝑅

  and the approximated centroid L and R. These cases are categorized, as shown in 

Figure  2-8, to:   

(a) The UMF slope is less than LMF slope,  (|𝑈𝑀𝐹′| − |𝐿𝑀𝐹′|) < 0, then  

(i) If  𝐿 > 𝑥𝐿 (denoted 𝐿𝑅) then subtract the red triangle from the calculations 

to enhance the result. 

(ii) If  𝐿 < 𝑥𝐿 (denoted 𝐿𝐿) then add the black triangle to the calculations to 

enhance the result. 

(iii) If  𝑅 > 𝑥𝑅 (denoted 𝑅𝑅) then add the black triangle to the calculations to 

enhance the result. 

(iv) If  𝑅 < 𝑥𝑅 (denoted 𝑅𝐿) then subtract the red triangle from the 

calculations to enhance the result. 

(b) The UMF slope is greater than LMF slope,  (|𝑈𝑀𝐹′| − |𝐿𝑀𝐹′|) > 0, then  

(i) If  𝐿 > 𝑥𝐿 (denoted 𝐿𝑅) then add the black triangle to the calculations to 

enhance the result. 

(ii) If  𝐿 < 𝑥𝐿 (denoted 𝐿𝐿) then subtract the red triangle from the calculations 

to enhance the result. 
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(iii) If  𝑅 > 𝑥𝑅 (denoted 𝑅𝑅) then subtract the red triangle from the 

calculations to enhance the result. 

(iv) If  𝑅 < 𝑥𝑅 (denoted 𝑅𝐿) then add the black triangle to the calculations to 

enhance the result. 

 

 

Figure  2-8 : Enhanced PWL type reduction cases. (a) Left and right centroid enhancement for 

(|𝑈𝑀𝐹′| − |𝐿𝑀𝐹′|) < 0. (b) Left and right centroid enhancement when (|𝑈𝑀𝐹′| −
|𝐿𝑀𝐹′|) > 0. 

 

 

Here, the computational cost cannot be evaluated in term of the horizontal set 

discretization points  N because the PWL sets are defined using  N segments; but the 

empirical speedup results showed time cut reached to 1 3⁄   of the EKM execution time.  

 

2.4.12. Linearly Approximated Karnik-Mendel Type reduction 

In (Salaken et al. 2015), a linear regression approach is used to approximate the result of 

the iterative KM type reduction procedure.  They followed a tradition approach of 

systems learning by monitoring a large bunch of input/output data for each fuzzy set, 

over the most important operating range. Then each fuzzy set will be associated with two 

|𝑼𝑴𝑭′| − |𝑳𝑴𝑭′|) < 𝟎 

|𝑼𝑴𝑭′| − |𝑳𝑴𝑭′|) > 𝟎. 
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different polynomials, for the left and right uncertainty points. These polynomials have 

to be tuned such that to reduce any error between the ideal and the approximated points. 

Each polynomial has a degree of three, in the following form:    

ℎ(𝑥) = ∑𝑘𝑖 ∙ 𝑥𝑖

3

𝑖=0

 (2-39) 

 

The lower and upper fuzzy firing levels  𝑓 and  𝑓  are used as inputs to generate a 

mapping, with the assist of the normal KM results, while offline, such that to avoid going 

into the KM iterations while the controller is on running. These resulting closed form 

relations will have an execution time very much like the Wu-Tan formula, which has to 

be pre-tuned, offline, for every fuzzy set.   

 

 

2.5. Special Cases Type Reduction 

 Special type reductions have been proposed for special set types. It is useful to 

cover them here and to get a comprehensive literature review.  

 

A- LR Interval Fuzzy Type-2 Set Reduction 

 An LR fuzzy set is a normal and convex set having UMF greater than LMF over 

its universe of discourse have been proposed by (Zimmermann 1991) for fuzzy systems. 

(Chen et al. 2013). They contain three sections, left, central, and right, that each can be 

described fully using a closed form equation (Zimmermann 1991) as:  

𝐿𝑅 =

{
 
 

 
 𝐹𝐿 (

𝑚𝐿 − 𝑥

𝛼
)            𝑖𝑓 𝑥 < 𝑚𝐿

 𝑘                   𝑖𝑓  𝑚𝐿 ≤ 𝑥 ≤ 𝑚𝑅

𝐹𝑅 (
𝑥 − 𝑚𝑅

𝛽
)          𝑖𝑓 𝑥 >  𝑚𝑅 

 ( 2-40) 
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Here, the symbols 𝛼  and 𝛽  define the spread of the left and right side, respectively. The 

constant k is a fixed value represents the current fuzzy firing level. These LR interval sets 

are important and have been used in many fuzzy systems (Kuo and Chen 1998), (Chen et 

al. 2013). Reducing such sets has been proposed by (Chen et al. 2013) using a closed 

form equation to find the reduced set ends. The proposal can be implemented for the 

cases of linear, Gaussian, and mixed set sides. The proposed reduction uses the 

integrations of the set sub-sections to compute the uncertainty boundaries, or the KM-

switch points,  𝑌𝐿 and 𝑌𝑅.  The integration forms have six possible cases, which depend 

on the position of the switching points with respect to each other, as shown in Figure  2-9. 

The switching points position can be changed because of the relative distribution of the 

set parameters (𝛼, 𝛽, 𝑍𝑙 , 𝑍𝑟 and  𝛼, 𝛽, 𝑍𝑙 , 𝑍𝑟), and the fuzzy firing levels,  𝑓 and  𝑓 , as 

shown in Figure  2-9. Locating the left and the right uncertainty points are performed 

iteratively but not like the EKM. Here, the switching points have to be tested on each 

cycle to determine the equations and the parameters required to be considered in the next 

iteration. This algorithm processes each consequent set individually because it is 

impossible to process one final complex consequent set which can be non-convex. 

Therefore, the final defuzzified value is to be computed using the weighted average 

aggregation technique based on the individual centroids of the output sets. 
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Figure  2-9: LR Interval FT2 sets possible cases and the possible switching point 

locations (1, 2, 3, 4, 5). 

 

 

B- Reducing Interval FT2 Sets with Spikes   

 In some modelling situations and with some aggregators, an interval FT2 set with 

spikes may exist (Aisbett and Rickard 2014). Such spikes can create very big error if any 

of them falls exactly at a discretisation step position (Aisbett and Rickard 2014). The 

correct type reduction, in this unique situation, cannot be satisfied easily using normal 

type reductions techniques.  One solution has been proposed in (Aisbett and Rickard 

2014) that is based on processing, as a first step, a smoothed version of such interval FT2 
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set, totally removing  any spike of the set. This smoothed set type reduction, is to be 

performed using a normal EKM algorithm. The second step is to identify the peak 

points, 𝜇𝑀𝑎𝑥𝐿 and  𝜇𝑀𝑎𝑥𝑅, which are the highest points of the FT1 sets that being used in 

the EKM procedure. The effective spikes, in each FT1 set, are only those whom attached 

to upper membership sections and having values higher than the peak of the smoothed 

set version. Thus, spikes that fall to the left of  𝑌𝐿 or to the right of  𝑌𝑅, and have enough 

height are the only ones to be taken into account, as shown in Figure  2-10. The new 

centroid of the FT1 set, which is going to contain the effective spikes, is calculated as 

below. The membership symbol with apostrophe, 𝜇′(𝑦𝑖), describes the smoothed set 

version. 

𝐶𝐿 =
∑ 𝜇′(𝑦𝑖) ∙ 𝑦𝑖

𝐿−1
𝑖=1 + ∑ 𝜇′(𝑦𝑖) ∙ 𝑦𝑖

𝑁
𝑖=𝐿 + ∑ (𝜇(𝑦𝑠) − 𝜇𝑀𝑎𝑥𝐿) ∙ 𝑦𝑠

 
𝑠≤𝐿−1

∑ 𝜇′(𝑦𝑖)
𝐿−1
𝑖=1 + ∑ 𝜇′(𝑦𝑖) ∙ 𝑦𝑖

𝑁
𝑖=𝐿 + ∑ (𝜇(𝑦𝑠) − 𝜇𝑀𝑎𝑥𝐿)

 
𝑠≤𝐿−1

 ( 2-41) 

𝐶𝑅 =
∑ 𝜇′(𝑦𝑖) ∙ 𝑦𝑖

𝑅−1
𝑖=1 + ∑ 𝜇′(𝑦𝑖) ∙ 𝑦𝑖

𝑁
𝑖=𝑅 + ∑ (𝜇(𝑦𝑠) − 𝜇𝑀𝑎𝑥𝑅) ∙ 𝑦𝑠

 
𝑠≥𝑅

∑ 𝜇′(𝑦𝑖)
𝑁
𝑖=1 + ∑ 𝜇′(𝑦𝑖) ∙ 𝑦𝑖

𝑁
𝑖=1 + ∑ (𝜇(𝑦𝑠) − 𝜇𝑀𝑎𝑥𝑅) 

𝑠≥𝑅

 
( 2-42) 

 

The small spikes have been proved to have no effect on the centroid result, thus they 

have to be neglected (Aisbett and Rickard 2014). The process computation cost is very 

similar to the EKM cost, but that can be affected by the number of the existed spikes. 

 

 

  

 
Figure  2-10: Type reduction principles of an interval FT2 set with spikes. 
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2.6. Reduction of The General Fuzzy Type-2 Sets 

 The general fuzzy type-2 (GFT2) systems are capable of better performance 

because they can model uncertainty in a better way. However, the type reduction of the 

GFT2 sets represents a barrier in real time systems, like in autonomous vehicles and 

robotic systems (Wagner and Hagras 2010). The GFT2 sets reduction techniques 

complexity arises from its complex representation.  Many efforts to simplify the set 

representation have been proposed through the use of 𝛼-cuts and 𝑧-Slicing techniques, 

where the general FT2 set can be decomposed to form simpler sub-sets based on sub 

features. Decomposition techniques have some related definitions; these have to be 

presented first before going to use them for GFT2 sets reduction. 

A- Vertical Slicing: Each set domain element  (𝑥) is associated with a vertical plane 

formed of the primary and the secondary membership functions of the element. 

This vertical plane is usually defined by the fuzzy axis 𝑈 and �̃�. 

B- The Alpha-Cut (𝜶-cut): Is an important concept, initially proposed by Zadeh 

(1971) under the name of resolution identity (Hamrawi 2011) to decompose the 

fuzzy set  based on its features to simplify its processing. The α-cuts of a FT1 set 

(A) are crisp, classical sets (Hamrawi 2011), and each represents specific set’s 

feature,  as: 𝐴𝛼 = {𝑥 ∈ 𝑋│ 𝜇𝐴(𝑥) ≥ 𝛼, 𝛼 ∈ [0,1]}.  Each alpha set  𝐴𝛼 has an 

indicator set (George J. Klir and Bo Yuan 1995), which is defined as following: 

           𝐼𝐴𝛼(𝑥) = {
1  𝑖𝑓 𝑥 ∈  𝐴𝛼

0  𝑖𝑓 𝑥 ∉  𝐴𝛼
 . 

A detailed set definition using  𝛼-cut is: 

 𝐴𝛼 = 𝛼 ∙ 𝐼𝐴𝛼(𝑥) = {(𝑥, 𝛼)|∀𝑥 ∈ 𝐴𝛼}. 

C- The 𝜶-Cut Representation Theorem: Any fuzzy set can be represented through 

the union of its 𝛼-cut sets as:  𝐴(𝑥) = ⋃    
∀𝛼

 𝛼 ∙ 𝐼𝐴𝛼(𝑥), where each of them is an 

embedded constrained set. 

D- The 𝜶-cut Properties: For a convex FT1 sets A and B the following are true 

(George J. Klir and Bo Yuan 1995): 

1- 𝐴𝛼+ ⊆ 𝐴𝛼, ∀𝛼. 

2- If 𝐴 ⊆ 𝐵 𝑡ℎ𝑒𝑛 𝐴𝛼 ⊆ 𝐵𝛼, ∀𝛼. 

3- If 𝐴 = 𝐵 𝑡ℎ𝑒𝑛 𝐴𝛼 = 𝐵𝛼, ∀𝛼. 
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4- (𝐴 ∪ 𝐵)𝛼 = 𝐴𝛼 ∪ 𝐵𝛼. 

5- (𝐴 ∩ 𝐵)𝛼 = 𝐴𝛼 ∩ 𝐵𝛼. 

6- 𝐴𝛼
′ = (𝐴(1−𝛼)+)

′, where the apostrophe indicates a complement of the fuzzy 

set. 

E- The 𝜶-Plane, Horizontal Slices: Applying the 𝛼-cut on a fuzzy type-2 set 

generates a horizontal slice that falls in the XU plane. Each 𝛼-plane contains the 

set elements which have a secondary grade equal or greater than  𝛼. 

Mathematically, this can be described for each 𝛼-plane as below: 

 𝐴�̃� = {𝑥, 𝜇�̃�(𝑥)| 𝑢�̃̃�(𝑥) ≥ 𝛼, ∀𝑥 ∈ 𝑋, ∀𝜇�̃�(𝑥) ∈ 𝐽𝑥}. 

The union of these planes describes the initial FT2 set (Mendel et al. 2009). 

F- Fuzzy Type-2 𝜶-Identifier set: This describes an interval fuzzy type-2 set 

associated with each 𝛼-plane (George J. Klir and Bo Yuan 1995), (Mendel et al. 

2009)  has a secondary membership value equal to 1 for every element  in it,  as 

follows: 

𝐼𝐴�̃�(𝑥) = {  
0  𝑖𝑓 (𝑥,𝜇�̃�(𝑥)) ∉ 𝐴�̃�

1  𝑖𝑓 (𝑥,𝜇�̃�(𝑥)) ∈ 𝐴�̃�
. 

G- The 𝒛-Slice: This is a representation technique, very similar to alpha planes, 

formed by horizontally slicing the z-dimension, of the general fuzzy type-2 sets, 

to equally spaced grades each falling in the range of [0, 1]. The Z-slice creates an 

interval FT2 set with secondary grade equal to  
𝑖

𝑧𝐼
 , 1 ≤ 𝑖 ≤ 𝐼. Each generated 

interval FT2 sets, has specific interval domain, 𝐽𝑧𝑖, defined by its two end points 

𝐽𝑧𝑖 and 𝐽𝑧𝑖. Mathematically, the 𝑧𝑖-slice, of a general FT2 set  ( 𝐴 ̃) which has been 

sliced to (I) slices, can be described as in (Wagner and Hagras 2010) by: 

𝐴zĩ (𝑥) = ∑  𝑥∈𝑋 ∑ (𝑥𝑢𝑖∈[𝐽𝑧𝑖,𝐽𝑧𝑖]
, 𝑢𝑖 , 𝑧𝑖). The whole set is formed by a union of the 

individual slices as:  𝐴z̃ (𝑥) = ∑ 𝐴zĩ (𝑥)𝐼
1=1 . Note that, the  𝑧0 slice is not 

considered because it has a secondary membership value equal to zero which 

does not affect the system decision.  
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2.6.1. General Fuzzy Sets Reduction Using Vertical Slice 

 Every set element 𝑥𝑖  in a general fuzzy type-2 set, has a vertical slice (VS) 

formed by its primary and secondary membership functions. This defines a plane 

projected on the 𝑈�̃� and 𝑈�̃̃� axis, which usually known as   𝐽𝑥 in interval FT2 sets. Each 

plane describes the uncertainty associated with its set element; thus, reducing the 

uncertainties that are associated with all of the set elements to get crisp values, can create 

one FT1 set. This idea is being adopted in (Lucas et al. 2007) to reduce the general FT2 

sets by reducing all the FT1 sets which shapes the uncertainty in the 𝑉𝑆𝑖 planes, as 

shown in Figure  2-11.  

 

Figure  2-11: Vertical Slice Type Reduction of a General Type-2 Set. 

 

 

Here, the dark parts represent high membership value and the light parts represent low 

values. This type reduction is very much like the N-T procedure to reduce the interval 

sets, but applied here to general FT2 sets. This vertical slicing type reduction (VSTR) 

omits the uncertainty measurements of the fuzzy type-2 set (Lucas et al. 2007), just like 

the N-T technique (Nie and Tan 2008). The computation cost for the VSTR process is 

(𝑁 × 2𝑀𝑛) additions and (𝑁 × 𝑀𝑛) multiplications, when applied to discrete set that has 

 𝑁 elements, each element is associated with a vertical slice discretised to 𝑀𝑛 elements. 
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2.6.2. The 𝜶-Planes Type Reduction Method 

 Based on the elemental logic of the 𝛼–cuts on fuzzy sets, like (𝐴 ∪ 𝐵)𝛼=𝐴𝛼 ∪ 𝐵𝛼 

and (𝐴 ∩ 𝐵)𝛼=𝐴𝛼 ∩ 𝐵𝛼, one can easily recognize that to reduce computational 

redundancy, the fuzzy operations can only be performed on those similar uncertainty 

levels (George J. Klir and Bo Yuan 1995), (Hamrawi 2011). This has been utilized in  

(LIU 2008), (Mendel et al. 2009) to decompose general FT2 set to embedded sets, as 

shown in Figure  2-12, then processing only those embedded sets, which have similar 

features, to achieve efficient type reduction. The reduced FT1 set which results from this  

general FT2 set reduction is formed by a union of the individual FT1 reduced sets, which 

have been resulted from the alpha planes sets reduction, as:  𝐶0 =

∑ (𝛼, [𝐶𝛼𝐿, 𝐶𝛼𝑅]𝛼∈[0,1] ),. The notation (𝛼, [𝐶𝛼𝐿 , 𝐶𝛼𝑅]) denotes an interval FT1 set with 

domain [𝐶𝛼𝐿 , 𝐶𝛼𝑅] and membership equal to 𝛼. The symbol ∑   describes a discrete set 

union, which is to be performed using the maximum operation.  

 

Figure  2-12: General fuzzy type-2 Set decomposed by alpha planes at the values 0, 

0.16, 0.33, 0.5, 0.66, 0.83 and 1. 

 

 

The final crisp value is computed by defuzzifying the envelope which contains all the 

FT1 sets, 𝐶0, (Wagner and Hagras 2010) using weighted average.  

 In the alpha plane type reduction, more computations that are redundant have 

been excluded in the case of fully symmetrical fuzzy type-2 sets, which have symmetrical 
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secondary primary membership functions around some point,  𝑥 = 𝑚. This reduction is 

achieved by considering point 𝑦0 = 𝑚 as the defuzzified value if the system does not 

require uncertainty details (Mendel et al. 2009). For convex general FT2 sets case, which 

have normal secondary membership function, it is possible to calculate the centroid and 

the defuzzified value by only processing  𝛼-planes at values  0  and  𝜇𝑀𝑎𝑥 and still 

achieving “excellent approximation” (Mendel et al. 2009).  Also, it had been shown that, 

for higher accuracy and complex uncertainty figures, the use of less than (10) alpha 

levels is sufficiently acceptable for control applications (Mendel et al. 2009). However, 

this accuracy cause still has no mathematical proof or illustration (Mendel et al. 2009).   

 The computational cost of the alpha plane type reduction, if decomposition is 

made using  (𝑘 ≤ 10) levels, is 𝑘 times the cost of reducing one interval FT2 set. The 

good point of this type reduction is the possibility of using independent 2𝑘 parallel 

processors to perform the centroid computations.  

 

 

2.6.3. Random Sampling Method 

 The random sampling type reduction-defuzzification (RSTR-DF) method has 

been proposed by (Greenfield et al. 2005). The method gets use of the high redundancy 

nature of the embedded sets. Any FT2 set of 1 𝑁⁄  horizontal discretization level and 

 1 𝑀⁄ 𝑛  secondary discretization level will contain ∏ 𝑀𝑛
𝑁
𝑛=𝑖   embedded sets. This number 

can be very large even for small digitization levels. As for example if  N=10 and M=10, 

then embedded sets count is  (10)10. This high population has been replaced by random 

small samples that can be used to approximate the type reduced set (Greenfield 2012). In 

this situation, the Central Limit Theorem (Greenfield et al. 2011), which states that for 

any huge populations, there is a mean (𝑚) and a standard deviation 𝜎 , that can be 

estimated using a sample of size N elements, which will have the same mean (𝑚) of the 

bigger population, and a variance of  
𝜎2

𝑁
  . This mean value can represent the centroid of 

the defuzzified set (Greenfield et al. 2011).  Thus, instead of processing huge embedded 

sets, a small set sample can be used to generate an accurate centroid too. The process 

contains the following main steps: (i) For every domain division (𝑥𝑖), select a random 
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primary membership value in the vertical slice (𝐽𝑥𝑖) and construct one embedded set; (ii) 

Calculate the centroid of this randomly selected embedded set and associate it with 

minimum secondary membership; (iii) Construct the type reduced set using these 

generated tuples. The accuracy of this type reduction, according to practical experiments 

performed by (Greenfield et al. 2011) using common fuzzy sets like Gaussian and 

trapezoidal, shows a generate accuracy, even for low discretization level, as summarised 

in the bar chart Figure  2-13.  

 

 
Figure  2-13 : Random sampling, type reduction-defuzzification, accuracy. 

 

 

The computation cost is equal to (Sample size/discretization level) of multiplications, 

plus  twice of that as additions.  

 The random sampling type reduction process has been developed further by 

(Linda et al. 2010), by defining a sampling importance factor (SIF) using the bounded 

Gaussian probability density function (PDF) to limit the embedded sets sampling spread. 

Here, the Gaussian PDF mean is calculated simply by averaging the FOU limits. The 

standard deviation has been modified to an adjustable form by subtracting the upper and 

lower boundaries of the FOU and dividing over  2𝛽, as:  𝜎= (𝐹𝑂𝑈 − 𝐹𝑂𝑈) 2𝛽⁄ . Thus, 

( 𝛽 ) can control the Gaussians PDF-spread to important regions only, as shown in 

Figure  2-14. Through this development, more calculation reduction has achieved with 

smoother control surface (Linda et al. 2010). However, the uncertainty boundary 

becomes more undefined.   
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Figure  2-14: Importance Random Sampling type reduction principles. (a) Using 

importance control factor  𝛽 = 0. (b) Using importance control factor  𝛽 = 8. 
 

 

2.6.4. The Enhanced 𝜶-Plane Type Reduction (E𝜶-Plane) 

 More efforts to enhance the type reduction of the general FT2 set using 𝛼-planes 

have been made by (Yeh et al. 2011), (Wu and Nie 2011), and (Linda and Manic 2012), 

were based on enhancing the initial start points of the EKM TRP on each 𝛼-plan. The 

first 𝛼-plane, which falls at 𝛼𝑀𝑎𝑥, has been suggested to use an initial point, like the 

EKM initialization, defined as the principal set mean point. The following  𝛼-planes, 

where  𝑘 = {1,2, …… ,𝐾}, 𝛼𝑘 > 𝛼𝑘+1 > 0, have proposed to use its predecessor plane 

uncertainty ends, as the initialization to the current 𝛼-plan’s EKM calculations.  

 

 

2.6.5. Quasi-Fuzzy Type-2 Sets Reduction 

 In (Mendel and Liu 2008), it has been shown that some special general fuzzy 

type-2 sets, which have triangular or trapezoidal secondary membership functions, 

named Quasi-Fuzzy Type-2 sets, can be reduced through decomposing them using just 

two 𝛼-planes, at   𝛼=0 and  𝛼=1. In the case of triangular secondary membership 

function, the resulted set at 𝛼=1 will be a type-1 fuzzy set. The resulting type reduced 

set is defined only by three points  𝐶𝐿,𝛼=0,  𝐶𝑅,𝛼=0, 𝐶𝑜,𝛼=1 which form a triangular FT1 

set. This set defuzzification generated the final crisp output. In the case of trapezoidal 
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secondary membership function, a trapezoidal (like) type reduced set will be generated 

which can be defuzzified very easily using its vertices points. The type reduction, for 

each 𝛼-plane,  can be performed using the approximate Max-Min closed uncertainty 

formula (Mendel 2002) to achieve a high speed fuzzy system that suits real time 

applications (Mendel and Liu 2008). 

 

 

2.6.6. Geometric Type-2 Reduction-Defuzzification 

 For a general FT2 set defined using straight segments, it is possible to describe its 

outer surface using primitive triangular shapes, and then calculate their centroid, like any 

geometric body. That is what has been utilised by (Coupland 2007), where the triangles 

have been used to cover the surface of the sets and calculates the final set centroid using 

a weighted average, of the individual centroids, as: 

𝐶0 =
∑ 𝐶𝑡 ∙ 𝐴𝑡

𝑇
𝑡=1

∑ 𝐴𝑡
𝑇
𝑡=1

 

 

 

 

( 2-43) 

 
 

Figure  2-15: Geometric type reduction-defuzzification. (a) Two triangles shape the 

secondary membership function in a general FT2 set. (b-c) The possible sides to be 

described using triangles are a, b, c, d and e. 
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Where  𝐶𝑡 and  𝐴𝑡 are the centroid and the area respectively, for each individual triangle 

(t), of a total (T) triangles. The set five sides (a, b, c, d, and f) shown in Figure  2-15 have 

to be covered by  triangles. Every triangle is to be formed using successive fuzzy 

elements and one of their membership functions. Any triangle area is to be evaluated as 

half the determinant of two of its edges’ cross products. The triangles’ centroids are to be 

evaluated by averaging the horizontal coordination of every triangle vertex, as for 

example the points p-q-r shown in Figure  2-15:( a). 

 𝐶𝑡 =
𝑥𝑝∙𝑥𝑞∙𝑥𝑟

3
    and each triangle area is  𝐴𝑡 =

|𝑉𝑞−𝑉𝑝⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑×𝑉𝑟−𝑉𝑝⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|

2
 ( 2-44) 

 

The computational cost for every discretization step, which contains two triangles, is: 

two centroid calculations, which use 4 multiplications; two area calculations, which 

require 12 multiplications; all that have to be performed for the set’s 5 sides. So, the total 

computational cost is in the range of (16 × 5 × 2 × 𝑁) multiplications which is still high 

if compared to the EKM calculation cost. 

 

 

2.7. Interval Set TRPs Comparison 

 Some type reductions are suitable for general fuzzy sets, while others are 

designed for special set types. To acquire a clearer view about what has been done, a 

comparison is made, shown in Table-1, based on the type reduction nature, accuracy, 

best-fit set, and computational cost, of the interval and the general fuzzy sets. In addition, 

Figure  2-16 shows a comparison between the costs of the interval sets reduction. This 

computational cost has been estimated by assuming a fuzzy system uses 10 consequence 

sets, each is discretised to 100 samples. The addition cost is considered one clock cycle 

and the multiplication and the addition cost are considered as three clocks. These costs 

are typical for Intel-Pentium processors (Fog 2004), which it is one of the most common 

and general processors 

. 
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Figure  2-16: Interval FT2 sets type reduction procedures cost comparison. 
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2.8. General Set Reductions Comparison 

 The general fuzzy type-2 sets reduction process consumes a very high level of 

computation to eliminate the high uncertainty of these sets. The alpha cut decomposition 

and the Z-slicing have reduced the type reduction cost by processing the symmetrical 

uncertainty levels only. Using the quasi general FT2 sets (Mendel et al. 2009) is another 

approach offering low type reduction cost and good uncertainty modelling, in 

comparison to interval FT2 sets. The tabulated information, shown in Table-2, 

summarizes the nature of the general FT2 sets type reduction and their computational 

cost and the targeted fuzzy sets. This computational cost has been estimated by assuming 

a fuzzy system uses 10 consequence sets, each is discretised to 100 samples using the 

typical Intel-Pentium processors (Fog 2004) computation cost. The bar graph, in 

Figure  2-17, compares the computational cost of the general fuzzy type-2 reduction, 

taking in account their historical development. It can be seen that the best compromise 

between computational cost and uncertainty presentation is in using the quasi-fuzzy sets. 
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Figure  2-17: Computational cost comparison of the general FT2 set reductions. 

 

 

2.9. Conclusions 

 Concerning the current type reduction methods, it can be seen that either they are 

slow, general, and accurate, or; they are fast but sacrifice accuracy, uncertainty, and 

generality. Each specific technique has its own features, which can’t be changed. 

However, it is very useful to build a type reduction procedure or suggest a method that 

can slide between high accuracy and complexity to low accuracy and complexity. The 

features sliding property will offer a selective accuracy and computation complexity 

control, which will help to do, only, the necessary computations that fulfil the fuzzy 

system requirements at a specific situation and time.  
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In addition to that, because of the high usage of integrations in the accurate type 

reductions, there is a high chance to exclude redundant computations that are distributed 

inside such procedures by using adaptive integration methods, which support selective 

accuracy. Locating and eliminating those computations can result a shorter execution 

time without affecting the accuracy of the initial algorithms. Also, the computation costs 

of the type reductions is seen to be very much dependent on the initialisations of the type 

reduction procedures, like the EKM and IKM algorithms. Thus, there is a good 

possibility to enhance the type reduction cost by finding better initializations.  
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Chapter 3: Autonomous Vehicle Fuzzy  

Type-2 Controllers 

3. Introduction 

 Using high order fuzzy sets in digital autonomous vehicle controllers facilitates 

higher uncertainty modelling and better utilization of human expertise. This is important 

because autonomous vehicles usually face high uncertainty levels, which arise from: 

environment noise; possible inaccurate sensor readings; deterioration of the actuator’s 

performance; and the variation in humans knowledge and experience (Mendel 2000).  

 In this chapter, the two main fuzzy type-2 system architectures that are 

commonly used in autonomous vehicle controllers will be briefed to have a better 

understanding and clear conclusions while surveying the autonomous vehicle controllers, 

conducted in the following sections.  

 

 

3.1. The Fuzzy Type-2 Mamdani Controller  

 If uncertainty and non-linearity dominate a system, then most of the control 

techniques will either fail to perform adequately or will require high design effort to 

achieve the requirement, while fuzzy type-2 controllers can be constructed easily and 

achieve satisfactory even for model-less systems (Castillo 2011).  Also, most of the 

traditional controller techniques applied for linear and nonlinear systems can be applied 

using fuzzy techniques achieving better uncertainty process. The two main fuzzy type-2 

logic controller structures are the Mamdani (Mamdani 1977) and Takagi-Sugeno-Kang 

(Takagi and Sugeno 1985) architectures. The Mamdani fuzzy type-2 controller uses 

linguistic variables and commands to describe system inputs, actions, and outputs in a 
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method very similar to human decision-making process, thus they encouraged wide 

usage. 

 
 

Figure  3-1: Main units of the fuzzy type-2 controllers. 

 

The main units of the Mamdani fuzzy type-2 controller, shown in Figure  3-1, are: 

 The fuzzification stage is a mapping from the input space to the fuzzy unity 

space  𝕀 = 𝑈: [0,1]1. This mapping is controlled by the membership 

functions  𝑢𝐴𝑛: 𝑋 → [0,1] of the input set (Thiele 1994). In case of FT2 systems, 

each input variable can generate multiple fuzzy levels according to the uncertain 

footprint of the input set.  

 The inference stage is an operation of generating one decision according to the 

input fuzzy states, using (if-then) relations. Different input states vectors can be 

defined, and each can have different size 𝐾𝑖 . Every state has to be processed 

using one rule to generate one decision represented by fuzzy level, which 

describes the decision importance (Wang and Wang 2001). Thus, every rule 

defines a mapping from 𝐾𝑖 dimensional space to one-dimensional space, 

as: [0,1]𝑘 → 𝕀. Putting different rules altogether would create one rule-base to 

shape the fuzzy controller performance. The deduction of one rule, which is 

based on a specific state, has to be extended to wider input range, as shown 

below: 
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Given Rule 1: 𝐼𝐹  antecedent_1  is 𝑨𝟏(𝒙)       
And                 𝐼𝐹  antecedent_2  is 𝐴2(𝑥)                 
                          .                                                    
And                𝐼𝐹  antecedent_N is 𝐴𝑁(𝑥)      𝑇𝐻𝐸𝑁   consequent 𝑖𝑠 𝑪𝟏(𝒚) 

Deduction 1:  𝐼𝐹  antecedent_1  is 𝑨𝟏
′ (𝒙)       

And                𝐼𝐹  antecedent_2  is 𝐴2(𝑥)                 
                            .                                                      
And               𝐼𝐹  antecedent_N is 𝐴𝑁(𝑥)      𝑇𝐻𝐸𝑁   consequent 𝑖𝑠 𝑪𝟏

′ (𝒚) 

 

Here, inferencing of  𝐶1
′(𝑦) is performed using  𝐴1

′ (𝑥), which is a slightly 

modified version of the main state set  𝐴1(𝑥). This is performed using Zadeh’s 

implication process  𝑍(𝑥 → 𝑦)  as following.  

Given, 𝑍(𝑢𝐴(𝑥)  → 𝑢𝐶(𝑦)) 

= {
𝑢𝐴(𝑥)  ⋁ 𝑢𝐴(𝑥)     if       𝑢𝐴(𝑥) ≤ 𝑢𝐶(𝑦) 

𝑢𝐴(𝑥)  ⋁ 𝑢𝐶(𝑦)    if       𝑢𝐴(𝑥) > 𝑢𝐶(𝑦)
 

( 3-1) 

 

Deduce  𝐶′(𝑦) =  𝑥∈𝑋
𝑆𝑈𝑃  [ 𝑢𝐴′(𝑥) ∗  𝑍 (𝑢𝐴𝑛

(𝑥) → 𝑢𝐶𝑛
(𝑦)) ] ( 3-2) 

 

This Zadeh implication process has been shown to be not suitable for engineering 

control applications (Mendel 1995) because of its high non-linearity. Therefore, it 

has been replaced by the Mamdani implication formula using (minimum) 

operation only  (Mamdani 1977).  

𝑀(𝑢𝐴(𝑥) → 𝑢𝐶(𝑦)) ≜ 𝑀𝑖𝑛(𝑢𝐴(𝑥) ,  𝑢𝐶(𝑦)) ( 3-3) 

≡ 𝑀(𝑢𝐴(𝑥) → 𝑢𝐶(𝑦)) ≜ 𝑢𝐴(𝑥)  ∗   𝑢𝐶(𝑦) = 𝑢𝐴→𝐶(𝑥, 𝑦) (  3-4) 

 

This deduction formula has been generalized by Larsen (Mendel 1995) using t-

norm operations as in equation (  3-4). Generally, aggregating minor aspects in 

different consequents is performed using supermom and t-norm implications, 

which are abbreviated as one (SUP-STAR) operation, to act as follows:  

𝐶′(𝑦) =  𝑥∈𝐴′
𝑆𝑈𝑃  [𝑢𝐴′(𝑥) ∗  𝑢𝐴→𝐶(𝑥, 𝑦) ] ( 3-5) 
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However, to get correct deductions from a discretised fuzzy controllers, the 

operations minimum and 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 are used, respectively, to perform the t-norm 

and supermom operations (Karnik et al. 1999). If more than one rule is triggered, 

then combining their sub-decisions is possible using t-conorm operations. The t-

conorm, sometimes-called S-norm, is defined as a category of fuzzy operations 

consists of different operations (Shi 2009) like; maximum(x, y); probabilistic 

sum  = (𝑥 + 𝑦 − 𝑥𝑦); bounded sum= min(𝑥 + 𝑦 , 1); and drastic sum =

{max(𝑥, 𝑦) , 𝑖𝑓 𝑥 = 0 𝑜𝑟 𝑦 = 0 ; 𝑒𝑙𝑠𝑒 = 1} . The t-norm is another fuzzy category 

(Shi 2009) and includes operations like; 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(x,y); algebraic multiplication; 

bounded product = max[0, 𝑥 + 𝑦 − 1] ; drastic product  =  {min(𝑥, 𝑦) , 𝑖𝑓 𝑥 =

1 𝑜𝑟 𝑦 = 1;  𝑒𝑙𝑠𝑒 = 0 } ; and nilpotent minimum (left-continuous t-norm)   = 

{min(𝑥, 𝑦) , 𝑖𝑓 𝑦 > 𝑥 ;  𝑒𝑙𝑠𝑒 = 0 }, where  𝑥 = (1 − 𝑥).  

 Last stage in the FT2 controller is the type reduction and the defuzzification 

operations. Both of them are using similar principles to convert the fuzzy type-2 

consequent sets to FT1 sets, then to a crisp type-0 values. 

 

 

3.2. The Takagi-Sugeno Fuzzy Controller 

 Building a fuzzy controller using the Takagi-Sugeno-Kang (TSK) technique is 

based on clustering the controller to multi linear or semi-linear sub-systems (Takagi and 

Sugeno 1985) (Sugeno and Kang 1988), (Ren et al. 2006),, (Takagi & Sugeno 1985; 

Sugeno & Kang 1988; Ren et al. 2006). The mathematical model of each sub-system is 

to be defined and engaged with specific single tone consequent set. The output can be 

calculated as a weighted sum of consequent sets, each set is scaled by its related rule 

firing strength. The final output is an interpolation of sub-systems outputs. 



 

56 

 

 
 

Figure  3-2 : Structure of the Takagi-Sugeno Fuzzy Control System. 

 

The TSK fuzzy controller is categorized to three models known as model-I, model-II and 

model-III, depending on the type of the antecedent and consequent sets (Liang and 

Mendel 1999). Model-I has antecedent sets of type-2 and consequent sets are interval 

FT1 sets. Model-II has antecedent sets of type-2 while the consequent sets that are crisp 

values. Model-III is considered as a FT1 system where the input and the output are 

modelled using type-1 fuzzy sets only. The fuzzification and inferring process are 

exactly as in the Mamdani model. The type reduction process in the TSK fuzzy 

controller is simple because the consequence sets membership functions are linear or 

constants (Liang and Mendel 1999).  

 

 

3.3. The Fuzzy Type-1 Controller  

 The FT1 controllers have very similar structures to those of the FT2 controllers 

but they have simpler fuzzy sets of type-1, which cannot present uncertainty. Each 

element of the FT1 sets has its own well-defined membership level, thus uncertainty 

presentation is minimum. In such case, no type reduction is required, only a 

defuzzification is process is necessary at the output stage of the FT1 controllers. 

However, the structure of the rule base and the inferring process of the FT1 controllers 

are identical to those of the FT2 systems. Nevertheless, in some cases, it may require 
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involving more rules to compensate for the missing uncertainty process that exists in FT2 

systems. 

 

 

3.4. Autonomous Vehicles   

 The autonomous vehicles are robotic systems which utilize intelligent controllers, 

human expertise, advanced sensing techniques, and adaptive algorithms to interact 

correctly with the surrounding environment while performing autonomous missions.  

They can replace the humans in hazardous and inaccessible places (Trabia et al. 2006); 

perform military and criminal confronting missions (Theodoridis and Hu 2012); and do 

routine tasks, in agricultural and industry sectors (Kayacan et al. 2013). These 

autonomous vehicles platforms can take different forms like unmanned ground vehicles 

(UGV); unmanned air vehicles (UAV); unmanned water-surface vehicles (USV); and 

autonomous underwater vehicles (AUV). The autonomous navigation missions require 

mutual cooperation between different sub-functions such as: obstacle avoiding; path, 

lane, and wall following; goal seeking; path planning; trajectory planning; traps and 

ambiguous status resolving, which have to be performed under the constraints of the 

vehicle’s kinematics and dynamics. Enhancing the performance of autonomous vehicles 

is a continuous challenge for a range of reasons, such as environment uncertainty; high 

environment dynamics; environment complexity; limitation of processing speed; 

limitation of portable power sources; system cost limitation, plus many other difficulties. 

To reduce the uncertainty, different advanced sensing types can be used, such as: touch 

detector; ultrasonic distance estimator; infrared sensors; laser distance meter; radar 

scanner; thermal, optical and/or stereovision cameras, at the expense of costing, power 

and space. Therefore, it is good to use simple and cheap sensors equipped with good 

uncertainty resolving process in the control algorithms. In this study, an emphasis on 

enhancing the fuzzy type-2 controllers, which are efficient in resolving uncertainty, is to 

be conducted thus to get faster controller can do better for autonomous vehicles and 

similar systems that have high uncertainty and require fast action rates. In addition to 

that, fast fuzzy type-2 systems will enable pumping more functions in small digital 

controllers while still giving a short response time and achieving small errors. 
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3.5. Autonomous Vehicle Fuzzy Type-2 Controllers Survey  

 The fuzzy type-2 controllers for autonomous vehicles are to be surveyed for their 

controller’s architecture, sensors, applied type reduction, and any other technology fused 

in them. The results are to be summarized, discussed, and presented graphically to 

identify the success and the problems associated in using the FT2 controllers in 

autonomous vehicles.  

 The first FT2 controller, performed on autonomous vehicles, was built by 

(Hagras 2004a; Hagras 2004b) using two different autonomous vehicle platforms. The 

first vehicle was equipped with 7 ultrasonic sensors and one infrared scanner. It was 

derived and directed by two differential independent front wheel DC motors. The second 

vehicle was a down-scaled car structure with GPS receiver. They were modelled on 2D 

bases to perform goal seeking, obstacle avoidance and wall-following behaviours for 

both indoor and outdoor environments. FT2 and FT1 controllers were built and 

optimized using genetic techniques to facilitate even comparison between them. 

Different obstacles and surrounding walls, with different ultrasonic absorption rates, 

were used in the comparison tests. The performance of that FT2 controller overcomes the 

FT1 controllers even when less fuzzy sets were being used. The centre of sets (COS) 

type reduction process was applied, as it offers less computational cost, which was 

considered as a priority, even when its output is not very extensive. The hierarchical 

decision structure has been applied to process the high priority tasks first. The tests 

achieved did not show the performance in highly dynamic obstacle situations and did not 

process the vehicle dynamics in high-speed examples.  

 In (Figueroa et al. 2005), a control operation is performed on a soccer robotic 

vehicle to track a ball using its coordination, which is gained by a simple image 

processing algorithm. A nonlinear interval fuzzy type-2 functioning as a proportional-

differential (PD) controller, using two sets for each input, was constructed to overcome 

the uncertainty in the ball and the robot position data. The ball catching function is 

performed using tracking process, where no dynamic, motion, estimation to the ball or 

other soccer moves were performed. The comparison was performed with an FT1 

controller, showing error deviation enhancement of 50%.  
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 In (Baklouti and Alimi 2007), a fuzzy type-2 TSK model-I system architecture 

was used to perform three main operations: sub-goal access, local obstacle avoidance, 

and priority organiser. The sub-goals have been determined using the generalised local 

Voronoi diagram (Aurenhammer and Klein 1991) to cluster the obstacles according to 

the robot dimensions, before going on to decide the correct safe path.  The obstacles are 

described by their local minimum and maximum limit points only. The robot receives the 

local minimum point as local goal to calculate the angle of the next move. The second 

operation is the local obstacle avoidance, which depends on six laser sensors; each is 

described using two fuzzy trapezoidal sets to calculate the proper obstacle-avoidance 

angle. The final output is coordinated using a FT1 controller with 64 rules. 

 In (Liu et al. 2007), continuous walking gait switching nonlinear general FT2 

controllers were designed to control the three nonlinear operation modes; single support, 

double support and the transient control, of a biped humanoid robot. A developed fuzzy 

clustering modelling technique, based on variant estimation, was used to reflect the 

variables uncertainty effect over the fuzzy secondary membership function. The gradient 

decent tuning algorithm was performed to tune the system parameter. The hip and ankle 

gait generation and switching were controlled to preserve the stability by maintaining the 

zero moment point (ZMP) into the allowable boundaries. The proposed controller 

performance reveals a very low integral square error (ISE) and a superiority, even with 

the injection of high noise level, in comparison to controllers based on reinforced-

learning; type-1 fuzzy sets; slide mode technique; traditional PID; and fuzzy type-2 with 

normal fuzzy C-mean clustering algorithm (FCM). The proposed technique captures the 

dispersion around the mean to achieve high accuracy, but this can be considered as an 

over tuning which may degrade the system’s robustness. Further development is required 

to support the complex soft switching required for efficient running and jumping, for 

example what has been done by (Ahmed 2011).  

 In (Astudillo et al. 2007), a path following process has been performed using 

interval FT2 controller in a back stepping form. The differential-driven wheeled mobile 

kinematic constraints were considered using a mathematical model to find the 

instantaneous orientation. The interval FT2 controller, Mamdani architecture, calculates 

the driving torque for each wheel. A test with periodic disturbance, injected over the 

fuzzy controller output, showed a very small, negligible, effect on the performance.  But, 
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applying that disturbance at the feedback path was not considered or evaluated. The 

trajectory speed was gained from a separate controller, so the fuzzy controller did not 

achieve the full system control. 

 In (Nurmaini and Hashim 2008), a FT2 controller performing edge following and 

obstacle avoidance operations were  constructed using two wheeled, differential driven, 

mobile robot contains 8 ultrasonic sensors. Each sensor’s inputs and the two control 

signals were described using three IFT2 sets. The processing power, required to 

overcome the type reduction delay, has been offered by AT89x55 microcontroller and 8 

peripheral interface controllers, type (PIC1684a), for the ultrasonic sensors. 

 In (Zhang et al. 2008), a hierarchical fuzzy control architecture was proposed and 

presented to solve the problem of the exponential growth of fuzzy rules with respect to 

the controller input’s count. The example of the autonomous robot, with 7 ultrasonic 

sensors, has been given, where each sensor signal is described using three FT2 sets. So, 

the representation of the full working state requires 37 = 26487 rules. The processing 

time issue of such a huge rule base has potentially been solved by decomposing the robot 

tasks to low level local sub-tasks and high level strategic tasks. Two FT2 controllers 

were used to perform obstacle avoidance and goal seeking, based on calculating robot-

obstacle and robot-goal angle’s errors. A third fuzzy controller has been designed to act 

as an organiser or coordinator which prioritises operations at any specific time. This 

hierarchical control has been suggested to achieve high performance, but no systematic 

design procedure has yet been described.  

 In the work of (Chen and Yao 2011; Chen and Yao 2009), an autonomous wall-

following behaviour was implemented on the Pioneer, a differential driven, robotic 

vehicle with 16 ultrasonic sensors. An interval FT2 set has been used and tuned based on 

the mean data and deviation; to get smooth action can increase gear life and reduce 

power consumption. A simplified centroid type reduction was proposed based on using 

single-tone consequence set firing levels in a procedure similar to the KM to achieve 

high throughput. Also, the vehicle kinematics and its dynamics have been modelled in a 

separate low level controller.  

 In (Hsiao et al. 2009), an interval FT2 controller was built for a nonholonomic 

wheeled robot, using sliding mode control technique, to perform trajectory tracking 
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while considering vehicle kinematics and dynamics. The gain adaptation was used to 

enhance disturbance rejection and to achieve required asymptotic stability using 

Lyapunov stability conditions (Jean-Jacques E. Slotine and Weiping 1991; Mohammad 

Khansari-Zadeh and Billard 2014).  

 In (Wagner and Hagras 2009), the wheeled robot Pioneer-2 has been evaluated 

on-street to perform wall-following and obstacle-avoiding functions using a Z-sliced 

General FT2 controller tuned for the indoor environment. The front and side ultrasonic 

sensors were used to detect obstacles and pavement. Each sensor signal is modelled 

using two trapezoidal sets, for near and far. The used consequent sets were turn-right and 

turn-left. The general FT2 sets were formulated of four Z-slices only. The zero level 

slices describe the footprint of uncertainty (FOU). The general FT2 vehicle controller 

tests, with Z-sliced set, had shown better performance, when compared to controllers 

with interval FT2 and FT1 sets, using wet asphalt roads that are covered with leaves, 

pebbles, and dust. 

  In  (Siti Nurmaini et al. 2009; Nurmaini and Hashim 2009; S. Nurmaini et al. 

2009), a weightless neural network object identifier (Aleksander et al. 2009) has been 

fused with an interval FT2 controller to enhance obstacle avoidance and wall-following 

autonomous behaviours. The usage of this object classifier is important to reduce 

uncertainty and system process cost. The weightless neural classifier, which supports 

one-shot training, collects all sensors data to identify the obstacle shape. Actions were 

taken accordingly to avoid collision possibility. Low hit rate had been achieved by fusing 

the two controllers, in compare to the FT1 and the interval FT2 controllers, in complex 

and noisy environments.  

 In (Kang et al. 2009), a stereo vision ego-motion estimation compensator for an 

autonomous humanoid robot to enhance recognition level was built using a fuzzy type-2 

controller. The direct least squares technique (Fitzgibbon et al. 1999) is used to fit an 

ellipse around the extracted useful feature to calculate the rotation and the displacement 

between the objects, in the successive images.  The FT2 compensator accuracy and the 

computation time were compared to the iterative closest point technique and the scale-

invariant feature transformed technique to show better performance. The achieved 

accuracy and good processing time promote the proposed technique for the correction of 

the autonomous vehicle’s vision. 
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 In both (Leottau and Melgarejo 2010) and (Sidhu et al. 2012; Leottau and 

Melgarejo 2011) a similar work has been performed using an interval FT2 controller to 

overcome the non-holonomic vehicles steering constraints. The relation between the 

relative horizontal position error and the orientation error has been described as a FT2 

controller. The required steering angle is being fed to a low-level controller, which 

represents the vehicle constraints to achieve it while the vehicle is moving. In (Leottau 

and Melgarejo 2011), the controller is tested with different types of set reduction 

methods taking into account the error and the stability. These tests have shown superior 

performance of the centroid type reduction over other reduction types.  

 In (Linda and Manic 2011), a fuzzy type-2 wall-following controller was built 

with Lego-Robot platform and tuned by measuring and modelling the sensors 

uncertainty. Each ultrasonic sensor uncertainty has been evaluated, in its active range, for 

different reflective materials. This FT2 controller shows low absolute error in 

comparison to a traditionally designed FT2 controller and FT1 controller. The FT1 

controller sets, also, have been tuned using the sensor uncertainty. The uncertainty 

propagations throughout the system have been evaluated and used to define the 

consequent set boundaries.  

 In (Mbede and Melingui 2012) autonomous goal-seeking and obstacle avoidance 

were performed using a controller with Z-sliced general fuzzy type-2 sets, such as to 

avoid static and dynamic obstacles.  The slices, being used, were just two, at 0.5 & 1, and 

still achieved better performances than interval FT2 controllers. The omnidirectional, 

three wheel, Robotino robot, which is supported with 9 distance sensors, was used as a 

platform for the tests. A single colour camera was used to identify the goal, while no 

obstacles prediction was performed for the dynamic obstacle avoidance. 

 In (Baklouti et al. 2012), the KheperaII robot, which has two wheels and is 

equipped with six infrared distance sensors, had been used and simulated using 

SIMROBOT toolbox software to evaluate different FT2 controllers. TSK and the 

Mamdani models were used for the different interval set widths and the total 

performance being evaluated for path smoothness, distance to the goal, and task time. 

The best performance has been achieved using Mamdani architecture with interval sets 

width of 40%. 
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 The work in (Hsu and Juang 2012), has been proposed using a simple and 

efficient ant-colony optimization (ACO) technique to tune the global parameters of the 

interval FT2 controller, using cost function dependent on system error. They first 

discretized each system parameter to 𝑁 sections then formed a segments array of size 

 ×  𝐷 , where D is the system total variables to be tuned, that being included in the ant 

path. The exploration and exploitation of the ACO algorithm uses the cost-fermion 

function, which gradually leads to a global optimal solution. The system tests, using 

autonomous wall-following, have shown low error deviation.  

 In (Chang et al. 2013), robotic team members are controlled individually by  two 

fuzzy controllers to follow one leader which orders them, while avoiding collision, 

conjunction, and being trapped in local minima. The first interval FT2 controller 

performs team pattern construction process, dynamically. It is mixed with neural network 

layers to substitute the type reduction and to achieve tuning using the gradient descent 

method. The second interval FT2 controller uses a potential based separation method to 

keep a safe distance between the team members and to take the robot out of any local 

minima that generate a stop case. Best response has gained using the FT2 controller, in 

comparison to the traditional consensus potential-based algorithm.   

  In (Kumbasar and Hagras 2013), two FT2 proportional-integral-differentiator 

controllers  (FT2PID) were designed to control non-holonomic robotic vehicles in the 

path following process. The external FT2PID, the first controller, calculates the required 

vehicle steering angle while it propagates at a constant speed to its target, which is 

defined by  𝑥, 𝑦, 𝜃 . The second controller preserves the required angle by controlling the 

torque necessary to correct the angle at different loadings. Performance error has 

compared to traditional-PID, FT1-PID, and Interval FT2PID controllers, to show the 

superiority of the interval FT2-PID technique. All the controllers were optimized using 

Big-Bang Big-Crunch technique (Erol and Eksin 2006) to minimize the integral absolute 

error function. The robot kinematic constraints were included but not the dynamic 

constraints.  

 In (Kayacan et al. 2013), an extensive piece of work was undertaken towards 

achieving an autonomous agricultural robotic tractor, using sliding mode technique in an 

interval FT2-Nneural Network controller. The tractor kinematic and dynamic constraints 

were considered to minimize errors during the trajectory-fallowing process. A state 
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estimator, to calculate the tractor orientation, was built using extended Kalman filter. The 

Real Time Kinematic Global Positioning System (RTK-GPS) is used for coordination 

and steering angle estimation, achieving less than 1mm error.  The real-time learning was 

used by tuning the neural parameters while preserving the Lyapunov stability criteria. 

The neural network type reduction was chosen to achieve high throughput reached to 

20Hz. The work is great, but did not use any obstacles sensing or cameras to interact 

with the surrounding environment because it is assumed that all the navigation is to be 

done in the open fields; thus, it is still dangerous and more work will have to be done to 

include all the autonomous sub-functions.  

 In (Melingui and Chettibi 2013), an omnidirectional mobile robot was used to 

perform target seeking while avoiding obstacles, left/right corners, corridors and U-

shapes, in the indoor dynamic environment. These operations were performed using four 

techniques; (i) Artificial potential field path planning (APF), (ii) Interval FT2 controller, 

(iii) Switched interval FT2 controller plus artificial potential field (IFT2C+APF), (iv) 

Fused artificial potential field and interval FT2 controllers (T2FP). The robot has 9 

distance infrared sensors, for obstacle detection, and one coloured camera to identify the 

goal position. Their tests have shown a better performance in regard to seeking time and 

path smoothness for the fused T2FP controller over the other experimented techniques. 

The work covers different strategies, but still there is no learning strategy implemented 

to overcome tricky obstacles.  

 

 

3.6. Survey Summary of Autonomous Fuzzy Type-2 Controllers  

 The first implementation of FT2 controllers, in autonomous vehicles, was done 

by (Hagras 2004a; Hagras 2004b) to achieve obstacle avoidance, wall-following, and 

goal-seeking behaviours using ultrasonic sensors and hierarchical structure, which was 

tuned using a genetic algorithm.  The hierarchical FT2 structure has been further 

investigated for autonomous vehicles in (Zhang et al. 2008) to achieve lower 

computational cost. A moving object tracking autonomous process has performed  using 

FT2PD controlled in (Figueroa et al. 2005). Then, the first TSK FT2 controller was 
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designed to perform obstacle avoiding and goal seeking by using Voronoi diagrams 

(Aurenhammer and Klein 1991)  to cluster the obstacles  (Baklouti and Alimi 2007). In 

(Liu et al. 2007), the FT2 controller was used to supervise autonomous biped motion, 

while in (Kang et al. 2009) the ego-motion was isolated to enhance the stereoscopic 

objects recognition. In (Leottau and Melgarejo 2010) (Sidhu et al. 2012; Leottau and 

Melgarejo 2011), the steering constraint of the non-holonomic autonomous vehicle has 

been processed using a FT2 controller for forward and backward moves. The 

autonomous vehicle controller design is proposed by (Linda and Manic 2011) based on 

modelling the sensor uncertainty. The backstepping controller has been built by 

(Astudillo et al. 2007) using the FT2 technique to perform path following process. In 

(Nurmaini and Hashim 2008), the microcontroller AT89x55 has been used to perform 

obstacle avoiding and goal seeking. In (Chen and Yao 2009), the FT2 controller smooth 

action, during the autonomous operations, has been achieved to increase the vehicle’s 

gear life and to reduce power consumption. In (Wagner and Hagras 2009), the z-sliced 

general FT2 sets has been used in autonomous vehicle, which achieved great results with 

just two sensors, while in (Mbede and Melingui 2012) a very simple general FT2 set, z-

sliced only to two layers, has been designed and compared to controllers using interval 

FT2 sets. In (Siti Nurmaini et al. 2009) (Nurmaini and Hashim 2009) (Nurmaini and 

Tutuko 2011), a neural network identifier has been used to enhance the FT2 autonomous 

actions. In (Hsu and Juang 2012), the ACO algorithm has been used to optimise the 

parameter of the FT2 autonomous vehicle controller. The robotic team controller has 

been successfully achieved in (Chang et al. 2013) using FT2 techniques to execute 

different movements while avoiding any collisions and local minima situations. The 

autonomous path following process is performed in (Kumbasar and Hagras 2013), using 

two cascaded FT2PID controllers to simplify processing the vehicle nonlinearity. The 

autonomous agricultural tractor has been controlled in (Kayacan et al. 2013) to move 

autonomously at the fields using a general FT2 controller. In  (Melingui and Chettibi 

2013), complex obstacles have been avoided by fusing the potential field path planning 

with the interval FT2 controller. 
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3.7. Autonomous Fuzzy Type-2 Controller Survey Statistics  

 The survey of the FT2 autonomous vehicle controllers, presented in Figure  3-3 of 

the last 10 years, shows great involvements of the Interval FT2 sets, which are taking 

place as Mamdani FT2 controllers. This is mainly due to the controller simplicity, simple 

human expert utilization, and ability to process uncertainty. In the cases where only input 

data has uncertainty and the system can be presented using linear sub-sections, the TSK 

fuzzy model has been preferred because of its fast type reduction process. But, when 

human expertise and the mathematical model are not available, then Mamdani fuzzy 

architecture is preferred and to be tuned using either manual technique; genetic 

algorithms (GA); Neural-Networks (NN); Swarm intelligence; or bio-intelligent 

techniques (BIT). These Mamdani FT2 architectures are preferred, but still, they require 

high processing power, during the type reduction computations. The type reduction cost 

went down dramatically after 2007 when the Enhanced Karnik–Mendel (EKM) type 

reduction algorithm has been proposed. The impact of this type reduction algorithm on 

autonomous vehicle controllers can be seen in the histogram chart Figure  3-4  during the 

period from 2008 till 2009 where such researches have increased rapidly.  However, the 

total number of researches during the last decade is still small due to the bottlenecks exist 

in the Mamdani fuzzy type-2 controllers, which mainly caused to the type reduction 

computations. This is, strongly, recommends and encourages finding better type 

reduction algorithms can perform more efficient in fast systems and enable using more 

tasks in smaller and cheaper processors haveing low processing power. 
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Also, it can be seen in the pie-chart Figure  3-5, how important the centroid type 

reduction technique is, which can achieve smooth controller output that required in 

autonomous vehicles. In addition, the autonomous controller survey shows, during the 

last three years, that most of the researches do focus on using general fuzzy type-2 

controllers and their tuning techniques. This research shows that how more efficient 

techniques are required to reduce the type reduction cost, especially when there are real-

time actions or optimization algorithms.   

 

 

Figure  3-3: Interval FT2 sets usage rate in autonomous vehicles control researches, 

during 1994-2014 
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Figure  3-4: Autonomous FT2 Controllers researches during the past ten years. 

 

Figure  3-5: Type reduction suitability for autonomous FT1 control applications. 
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Chapter 4: Type Reduction Approximation 

4. Research Goals 

4.1. Research Goals and Methodology 

 The digital fuzzy type-2 controllers have many attracting features required for 

autonomous vehicles such as high reliability, uncertainty process, simple utilisation to 

human expert, adaptability, and high nonlinearity process. The main drawback of the 

FT2 controllers is its intensive computational cost during the type reduction process (Liu 

et al. 2012). Therefore, a type reduction with low execution time is required for high-

speed systems like autonomous vehicles to assure performing faster to achieve low error 

and enabling more functions in smaller and cheaper processors. This research is aiming 

to develop better type reduction methods to be used in the Mamdani fuzzy type-2 

controller architectures. The Mamdani fuzzy type-2 controllers are of the most common 

and preferred architectures; supporting high uncertainty resolving, and simple knowledge 

representations, and understandable deduction methods very similar to humans’ way of 

thinking. The enhancements are to be achieved firstly by using the adaptive integration 

techniques into the type reduction stage thus to cut the computations cost while keeping 

the required system error at the designed levels.  In addition, it is aimed to carefully 

studying the most important and efficient type reduction methods thus to locate and 

eliminate any possible redundant calculations. The proposed type reduction methods are 

going to be evaluated regarding their performance speed and their calculations’ error. 

The evaluations of the new type reductions will be performed with respect to their 

original type reduction algorithms to get an unbiased vision about the resulting 

enhancements, in the speed, and any payed penalties that appear as error. The 

performance evaluations are going to be performed at the type reduction stages then at 

the full system level. The autonomous ground vehicle fuzzy type-2 controller is chosen 
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for the full system evaluations. This type of controller is suitable because of its 

vulnerability to high uncertainty level and its need to perform at high speed, which will 

require a fast controller throughput to maintain a low performance error.   

 

 

4.2. Type Reduction Development 

Significant efforts have been made, which can be seen in the literature review of chapter 

2, to reduce the computation cost of the type reduction in the fuzzy type-2 systems but 

the flexible type reductions techniques like the EKM still have long delays. Also, it can 

be seen that the core computation behind most type reduction and defuzzification 

techniques is the COG which is used to generate a weighted average decision, as:  

𝐶𝑂𝐺 =
∫ 𝑦

𝑦𝑁

𝑦0
. 𝑓(𝑦)𝑑𝑦

∫ 𝑓(𝑦)𝑑𝑦
𝑦𝑁

𝑦0

≈
∑   𝑦𝑛 ∙  𝜇𝑛

𝑁
𝑛=1

∑ 𝜇𝑛
𝑁
𝑛=1

=
𝐼𝑁𝑢𝑚

𝐼𝐷𝑒𝑛
 ( 4-1) 

  

The output set discretisation level would define the computation cost of the fuzzy 

controllers, where two additions and one multiplication have to be performed on every 

discrete set element. Practically, an accuracy of  1 × 10−3, of the full operating range, is 

required for electromechanical and autonomous vehicle controllers (Zhu et al. 2012; 

Gomez and Jamshidi 2010; Kovacic and Bogdan 2010; Saleh et al. 2009; ActivMedia 

Robotics 2006). This accuracy is the degree of system achievement measured with 

respect to the total sense divisions in the working-range. This means a digital 

discretization level of 1000 elements is sufficient to achieve most of the practical 

accuracy cases. Thus, a tabulated discrete set definition of 1000 elements as  𝜇𝑛 = 𝑓(𝑦𝑛) 

is simple and adequate to be used for the COG evaluation within a fuzzy controller. The 

COG can be evaluated using closed integration forms, as in (Zimmermann 1991), for 

cases of well-defined fuzzy shapes like Gaussian sets. But, the most general cases for 

fuzzy sets are non-simplex set shapes, especially those ones whom been shaped by 

tuning algorithms, as in  (Hsu and Juang 2012). The integration cost can be reduced by 

approximating the slightly curved segments to straight lines, so as the under curve area 
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can be evaluated using fewer points while maintaining the integration accuracy  (Gonnet 

2012). To evaluate the fuzzy controller output error, which caused by such 

approximation, let’s have a look on the numerical integration error formula using  𝑁   

points, over a function range [a, b] using Riemann right point sum, which is used in 

many fuzzy decision making due to its simplicity.  

𝐼 = ∫ 𝑓(𝑦)
𝑏

𝑎
𝑑𝑦 = ∑   𝑓(𝑦𝑛). ∆𝑦𝑁

𝑛=1  ;      𝑦0 = 𝑎 , 𝑦𝑁 = 𝑏  ( 4-2) 

∆𝑦 =
(𝑏 − 𝑎)

𝑁
 ( 4-3) 

 

The Riemann sum integration error for a smooth continuous function over a period [a, b] 

will proportion to the step size and the function average slope  𝑓 ′̃(𝑥).  

𝑒𝑟𝑟𝑜𝑟 =  
∆𝑦

2
. (𝑓(𝑏) − 𝑓(𝑎)) =

∆𝑦

2
. |𝑓 ′̃(𝑥)| ( 4-4) 

 

This Riemann sum integration error is considered high if it is compared to the 

Trapezoidal rule, which has a low error found to be close to the Simpson-rule error in 

many practical cases (Cruz-Uribe et al. 2002). Also, the Trapezoidal rule’s total 

performance speed, in COG related type reductions, is shown to be better than Simpson-

rule and some other high order rules (Liu et al. 2012).  

 

Figure  4-1: Riemann sum maximum error limits for evenly distributed points. 
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4.3. Basic Numerical Quadrature Rules 

 There are different quadrature rules and each one has accuracy and costs specific 

to its computation. The most common types, ordered according to their complexity, are 

the first order Newton Cotes; the Simpson rule; the Trapezoidal rule; and Riemann 

midpoint sum. They approximate the definite integration using equally spaced segments. 

The high order quadrature rules have low approximation error, but high computation 

cost, which can cause high delay if used in fuzzy type-2 controllers. The trapezoidal rule 

computations for N discreet points require dividing the first and the last points by two 

then adding them to the rest of the points, as: 

𝐼𝑁
𝑇 =

(𝑏 − 𝑎)

𝑁
[ 
𝑓(𝑦1) + 𝑓(𝑦𝑁)

2
+ ∑ 𝑓(𝑦𝑛) 

𝑁−1

𝑛=2
] ( 4-5) 

 

The integration error, of the Trapezoidal rule over the period [a, b], is defined as in 

equation ( 4-6).   

𝐸𝑟𝑟𝑜𝑟𝑁
𝑇 =

|(𝑎 − 𝑏)3|

12𝑁2
 |𝑓′′(𝑦)| ( 4-6) 

   

This error has been evaluated upon assumption of smooth function and that average 

second order derivative |𝑓′′(𝑦)| over the integration period does exist and continues 

while any higher order derivatives are zero or negligible.  

 The Simpson’s 1/3 (3/8) quadrature rule is based on approximating parts of the 

total curved function 𝑓(𝑦) using 3(4) points for each part and performing the following 

calculations individually, as:  

𝐼3
𝑆1/3

=
∆𝑦

3
(𝑓(𝑦0) + 4𝑓(𝑦1) + 𝑓(𝑦2)) ( 4-7) 

𝐼4
𝑆3/8

=
3∆𝑦

8
(𝑓(𝑦0) + 3𝑓(𝑦1) + 3𝑓(𝑦2) + 𝑓(𝑦3)) ( 4-8) 
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In this case, each point has to be pre-scaled then added to the rest points. This idea is 

generalised in the high order Newton-Cotes quadrature closed formulas, where the 

numerical integration uses chunks of weighted sums, as  below, where each chunk 

contains N+1 points to approximate a function of order N. 

𝐼𝑁
𝑁𝑄 = ∑ 𝑤𝑛

𝑁

𝑛=1
. 𝑓(𝑦𝑛) ( 4-9) 

 

Each point weight can be calculated for the function of order  𝑁  using Lagrange 

polynomial as: 

𝑤𝑛 = ∫ [∏
𝑥−𝑥𝑗

𝑥𝑛−𝑥𝑗

𝑁

 
𝑗≠𝑛
𝑗=0 ]

𝑏

𝑎
𝑑𝑥 , 𝑗 = 0,1,2, …… ,𝑁 ( 4-10) 

 

These weights  𝑤𝑛 are to be evaluated for every sub-interval [a, b], of the total 

integration range [A, B]; thus, high delay will result if this is used for fuzzy type 

reduction because fuzzy set shapes are changing continually by the rules firing levels.  

 

 

4.4. Adaptive Quadrature Rules  

 Adapting each quadrature rule period size according to the function curvature is a 

useful technique that can reduce the total computation cost.  Adaptive quadrature (AQ) 

methods can be performed in different ways based on how to evaluate the integration 

error (Gonnet 2009). A long start period can be chosen at the beginning; then, if the error 

is significant, then integration periods have to be subdivided into two equal periods. The 

integration and the error, for the new periods, have to be re-evaluated. The initial interval 

integration can usually be used to evaluate the next smaller intervals in order to maintain 

high calculation efficiency.  The error evaluation of the adaptive quadrature methods at 

each step requires extra computation which is considered a penalty that may be 

compensated if enough smooth sub-sections are executed within the total integrant 

period. Practically, fuzzy sets contain a mix of sharp and smooth sections, therefore, a 
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positive time gain using AQ can be generated.  However, using the AQ  methods have a 

risk of delivering incorrect results  (Gander and Gautschi 2000) if care is not taken off 

the integrant function characteristics like its degree and its maximum slope change. Such 

errors are considered in this research, thus a closer examination of it has to be made, 

starting from the analog trapezoidal rule integration and its error, over an interval  [𝑎, 𝑏]. 

The integration error can be evaluated  for a function 𝑓(𝑦) using the bi-part integration 

technique, utilising the function derivations only (Cruz-Uribe and Neugebauer 2003), as 

follows: 

 𝐼𝑎𝑏 = ∫ 𝑓(𝑦)𝑑𝑦
𝑏

𝑎

⇒ 𝐼0ℎ = ∫ 𝑓(𝑎 + 𝑦)𝑑𝑦  
ℎ

0

    ;    ℎ = 𝑏 − 𝑎 ( 4-11) 

and 𝐼𝑎𝑏 = 𝐼ℎ0 = ∫ 𝑓(𝑏 − 𝑦)𝑑𝑦
0

ℎ

     ( 4-12) 

but 𝑒𝑇[𝑎,𝑏] =
1

2
(𝐼0ℎ + 𝐼ℎ0) − 

ℎ

2
(𝑓(𝑎) + 𝑓(𝑏)) ( 4-13) 

getting 𝑒𝑇[𝑎,𝑏] =
(𝑏 − 𝑎)3 [𝑓′′(𝑏) − 2𝑓′′(𝑎)]

12
 ( 4-14) 

Substituting 𝑓′′(𝑎) and 𝑓′′(𝑏) by 𝑓′′(æ), which represents the average of the function’s 

second derivative over the interval [a, b], then it is possible to re-write the trapezoidal 

integration error as:  

 

𝑒𝑇[𝑎,𝑏] =
−(𝑏 − 𝑎)3

12
𝑓′′(æ) ( 4-15) 

 

This can be expressed for interval of size equals to  ℎ =
𝑏−𝑎

𝑁
  over a total of  𝑁  sub 

intervals, as:  

𝑒𝑇𝑁 = 𝑁 × 𝑒𝑇ℎ = 𝑁
−(𝑏 − 𝑎)3

12𝑁3
𝑓′′(æ) =  

−(𝑏 − 𝑎)3

12𝑁2
𝑓′′(æ) ( 4-16) 

 

This error is in an absolute form and does not depend on integration results or integration 

period length. Using this global error to form adaptive quadrature rules has a negative 

effect on the calculation speed, but a positive effect on integration reliability where a 

search operation has to be performed in every cycle to find the highest error segment 

(Gonnet 2009). A local error-locating scheme is another technique, which is less 
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expensive, and has been used successfully by many researchers as in (Gonnet 2009) 

(Barden 2013) (Doncker et al. 1996). It is based on downscaling the global error linearly, 

according to the local segment size, in relation to the total integration period, thus 

eliminating the search process. Here, the sum of the local integration errors is equal to or 

smaller than the global required error.  This error localisation is a distribution process,  

known to be safer, and can perform more adequately except for functions containing a 

singularity point (Doncker et al. 1996). Thus, using local error technique for the fuzzy 

sets type reduction, and aggregation is totally safe because the fuzzy sets do not contain 

any singularities. Considering the results given by (Liu et al. 2012), which shows that 

trapezoidal rule is outperforming the other high order quadrature rules, if it is used for 

fuzzy type reductions, due to its good practical accuracy and its low computation cost. A 

similar result in (Carluccio and Albani 2011) shows that the speed of adaptive quadrature 

rules  for low order functions is higher than that at high order functions. Thus, one can 

expect that using an adaptive trapezoidal rule for fuzzy type reduction will enhance their 

computation cost while maintaining the required system accuracy.   

 

 

4.5. Suggested Error Evaluation 

 The usual dividing of the integration period into two equal intervals, during 

adaptive integrations,  when the quadrature local error exceeds its limit (Gonnet 2009), 

means that performing two integrations one of them can be unnecessary. Searching for 

the appropriate interval length successively to assure that integration local error is 

preserved can be another possible approach. In the next sections, this is going to 

analysed and evaluated for fuzzy type reduction purposes. The trapezoidal rule error 

proportional nature, where integration error is zero for straight segments and high for 

highly curved segments, facilitates using the successive search by evaluating the local 

integration error on a variable integration period. It is required to find the maximum 

interval length, which still has an integration error within the required limit. In the 

successive search technique (McNeill et al. 2011); if the required criteria level is not 

exceeded, then the search step size is doubled, otherwise, it is halved. This algorithm has 

been used frequently for  high speed Analog to Digital Converters (ADC) because of its 
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simplicity and ability to be realized using simple hardware, consuming low power 

(Saberi and Lotfi 2014).   

This is going to be used here to find the correct interval length in the successive adaptive 

quadrature algorithm while assuming that the fuzzy membership is defined using discrete 

equally spaced points as: 𝑓(𝑦𝑛) = {𝜇0, 𝜇1, 𝜇2, ….,𝜇𝑁}, which it is one of the simple and 

most common definitions that’s being use for digital systems. The goal is to find the 

maximum possible interval length successively within a convex fuzzy set. This can be 

done by using the well-known trapezoidal-rule error over a period [𝑎, 𝑏], which is 

defined by equation ( 4-15), then re-formulating this for a temporary segment section 𝑆𝑠𝑐 

by using its first point (𝑦0𝑆𝑒𝑐
, 𝜇0𝑆𝑒𝑐

) and its last point (𝑦𝑛𝑆𝑒𝑐
, 𝜇𝑛𝑆𝑒𝑐

). This re-shaping 

begins from the definition of the slope at the start point of the temporary section  𝑆𝑠𝑐, as 

follows: 

𝑆1𝑆𝑒𝑐
=

(𝜇1𝑆𝑒𝑐
− 𝜇0𝑆𝑒𝑐

)

(𝑦1𝑆𝑒𝑐
− 𝑦0𝑆𝑒𝑐

)
=

(𝜇1𝑆𝑒𝑐
− 𝜇0𝑆𝑒𝑐

)

∆𝑦
 

( 4-17) 

 

This section can be defined in different lengths as multiplicands of the system 

discretisation level (𝑛𝑆𝑒𝑐 . 𝑑𝑦). Its slope at the end-point is equal to: 

𝑆𝑛𝑆𝑒𝑔
=

(𝜇𝑛𝑆𝑒𝑐
− 𝜇(𝑛−1)𝑆𝑒𝑐

)

(𝑦𝑛𝑆𝑒𝑐
− 𝑦(𝑛−1)𝑆𝑒𝑐

)
=

(𝜇𝑛𝑆𝑒𝑐
− 𝜇(𝑛−1)𝑆𝑒𝑐

)

∆𝑦
 

( 4-18) 

 
Figure  4-2: Trapezoidal error over one long interval. 
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Then, as shown in Figure  4-2, from the average second-derivation of the curved function 

over this section: 

𝑓′′(æ) =
𝑆𝑛𝑆𝑒𝑐

− 𝑆1𝑆𝑒𝑐

(𝑛 − 0)𝑆𝑒𝑐 . ∆𝑦
 

( 4-19) 

Can get the average slope of the straight line that joining the start and end points of the 

curved section to be; 

𝑆𝑇𝑆𝑒𝑔
=

(𝜇𝑛𝑆𝑒𝑐
− 𝜇0𝑆𝑒𝑐

)

(𝑦𝑛𝑆𝑒𝑐
− 𝑦0𝑆𝑒𝑐

)
=

(𝜇𝑛𝑆𝑒𝑐
− 𝜇0𝑆𝑒𝑐

)

𝑛𝑆𝑒𝑐 . ∆𝑦
 

( 4-20) 

This slope, according to the mid-point interpolation theorem (Rao 2007), can be 

approximated by:   

𝑆𝑇𝑆𝑒𝑐
≈

𝑆𝑛𝑆𝑒𝑐
+ 𝑆1𝑆𝑒𝑐

2
 ( 4-21) 

Getting: 𝑆𝑛𝑆𝑒𝑐
≈ 2𝑆𝑇𝑆𝑒𝑐

− 𝑆1𝑆𝑒𝑐
 

( 4-22) 

Substitute in ( 4-19) to get; 𝑓′′(æ) ≈
2(𝑆𝑇𝑆𝑒𝑐

− 𝑆1𝑆𝑒𝑐
)

𝑛𝑆𝑒𝑐 . ∆𝑦
 ( 4-23) 

Re-write using the start and 

end points: 

 

𝑓′′(æ) ≈
2[(𝜇𝑛𝑆𝑒𝑐

− 𝜇0𝑆𝑒𝑐
) − 𝑛(𝜇1𝑆𝑒𝑐

− 𝜇0𝑆𝑒𝑐
)]

𝑛2. (∆𝑦)2
 ( 4-24) 

Using equation ( 4-15) to get: 𝑒𝑇𝑛 =
−𝑛3. (∆𝑦)3

12
𝑓′′(æ) ( 4-25) 

Re-write, using the section terminal points: 
 

 

𝑒𝑇𝑛 ≈
−𝑛. ∆𝑦 [𝑛(𝜇1𝑆𝑒𝑐

− 𝜇0𝐼
) − (𝜇𝑛𝑆𝑒𝑐

− 𝜇0𝑆𝑒𝑐
)

6
 ( 4-26) 

 

The local error limit is the unit-length error multiplied by the local interval length. The 

unit-length error is the global error divided by the equally spaced total integration 

divisions, as follows:  

𝑒𝑢𝑛𝑖𝑡𝐿 =
𝑒𝑇𝑟𝑎𝑝𝑒𝑧

𝑁. ∆𝑦
 ( 4-27) 
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Thus, error threshold for an interval of length    𝑛. ∆𝑦     should be bounded as: 

𝑒𝑇𝑛 ≤ 𝑒𝑢𝑛𝑖𝑡𝐿 . 𝑛. ∆𝑦 
( 4-28) 

 

Substituting in equation ( 4-26) to get the local integration error constraints as: 

|𝑛(𝜇1𝑆𝑒𝑐
− 𝜇0𝑆𝑒𝑐

) − (𝜇𝑛𝑆𝑒𝑐
− 𝜇0𝑆𝑒𝑐

)|  ≤
6 . |𝑒𝑇𝑟𝑎𝑝𝑒𝑧|

𝑁. ∆𝑦
 

( 4-29) 

𝑛(𝜇1𝑆𝑒𝑐
− 𝜇0𝑆𝑒𝑐

) − (𝜇𝑛𝑆𝑒𝑐
− 𝜇0𝑆𝑒𝑐

)  ≤ |6. 𝑒𝑇𝑝.𝑢.𝑙|  ;         𝑓𝑜𝑟 ∆𝑦 = 1 
( 4-30) 

 

This error constraint is correct for functions that have gradual slope change over their 

domain. However, this is not the case with fuzzy sets that have horizontal cuts, which 

caused by different fuzzy threshold levels. The error, in this case, is bounded as shown in 

Figure  4-2 by the dotted area, which has to be considered in order to keep the total error 

under the required limit. The maximum possible integration error for such shapes with 

horizontal cuts can be in its maximum value when the point  𝑦𝑐   falls in the middle 

distance between 𝑦0 and  𝑦𝑛. The integration error for this case can be evaluated as:  

𝑒𝑆𝑒𝑔 = (𝑦𝐶𝑆𝑒𝑐
− 𝑦0𝑆𝑒𝑐

)
(𝜇𝐶𝑆𝑒𝑐

− 𝜇0𝑆𝑒𝑐
)

2
+ 

(𝑦𝑛𝑆𝑒𝑐
− 𝑦𝐶𝑆𝑒𝑐

)
(𝜇𝑛𝑆𝑒𝑐

− 𝜇0𝑆𝑒𝑐
) + (𝜇𝐶𝑆𝑒𝑐

− 𝜇0𝑆𝑒𝑐
)

2
 

−(𝑦𝑛𝑆𝑒𝑐
− 𝑦0𝑆𝑒𝑐

)
(𝜇𝐶𝑆𝑒𝑐

− 𝜇0𝑆𝑒𝑐
)

2
 

( 4-31) 

 

Re-formulating and using the slope of the start and end points: 

𝑆0 =
(𝜇𝑐 − 𝜇0)

(𝑦𝑐 − 𝑦0)
=

(𝜇𝑐 − 𝜇0)

0.5(𝑦𝑛 − 𝑦0)
 

( 4-32) 

𝑆𝑛 =
(𝜇𝑛 − 𝜇𝑐)

(𝑦𝑛 − 𝑦𝑐)
=

(𝜇𝑛 − 𝜇𝑐)

0.5(𝑦𝑛 − 𝑦0)
 

( 4-33) 

Dividing them by each other equation to get: 
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𝑆0

𝑆𝑛
=

(𝜇𝑐 − 𝜇0)

(𝜇𝑛 − 𝜇𝑐)
 

( 4-34) 

 

To get point  𝜇𝑐  definition as: 

𝜇𝑐 =
𝑆𝑛 . 𝜇0 + 𝑆0 . 𝜇𝑖

𝑆0 + 𝑆𝑛
 

( 4-35) 

Using equation ( 4-21) to get  𝜇𝑐 in term of total slope  𝑆𝑇 as below: 

𝜇𝑐 ≈
2𝑆𝑇 . 𝜇0 − 𝑆0 . 𝜇0 + 𝑆0 . 𝜇𝑛

2𝑆𝑇
 

( 4-36) 

This can be simplified to: 

𝜇𝑐 ≈ 𝜇0 +
𝑆0

2𝑆𝑇

(𝜇𝑛 − 𝜇0) = 𝜇0 +
𝑛

2
(𝜇1 − 𝜇0) 

( 4-37) 

Substitute in equation ( 4-31) to get: 

𝑒𝑆𝑒𝑔 ≈
𝑛∆𝑦

4
[𝑛(𝜇1 − 𝜇0) − (𝜇𝑛 − 𝜇0)] ( 4-38) 

Thus, the error will stay under the required boundaries, if the following relation is held:  

𝑛(𝜇1 − 𝜇0) − (𝜇𝑛 − 𝜇0) ≤
4 . |𝑒𝑇𝑟𝑎𝑝𝑒𝑧|

𝑁. ∆𝑦
 

( 4-39) 

Or, 𝑛(𝜇1 − 𝜇0) − (𝜇𝑛 − 𝜇0) ≤ |4. 𝑒𝑇𝑝.𝑢.𝑙|  ;         𝑓𝑜𝑟 ∆𝑦 = 1 
( 4-40) 

 

This relation defines the Trapezoidal error in stricter form if compared to relation ( 4-30), 

which it is the result of a traditional trapezoidal error equation ( 4-15). 
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4.6. Error in Fuzzy Type Reduction 

 The fuzzy controller’s accuracy can be decided depending on the controlled plant 

parameters. The final system's accuracy cannot be much better than the mechanical plant 

accuracy even if high accuracy digital controller or interpolation techniques are used. 

Such cases can be seen in many practical autonomous vehicle controllers, like those in 

(Hu and Li 2014; Xue et al. 2012; Fang et al. 2011; Zhao et al. 2012), and in many 

electromechanical systems as in (Abdelmajid et al. 2011), where their ultimate electro-

mechanical goal accuracy was  1/1000. Also, the accuracy of any digital controller is 

bounded by the word size of its digital-to-analog (DAC) and analog-to-digital (ADC) 

converters. These ADC and DAC can be found at low prices and good performance 

speed mostly in the ranges of 8,10,12,14 and 16 bits (Analog Devices Inc. 2005). Thus, 

to avoid any ineffectual extra computation in the fuzzy type-2 controllers, an output 

word size of 10 bits is to be chosen. This word size offers a digitization level of 1024 

elements, which is sufficient for the mechanical systems’ accuracy, described above. 

However, the IFT2 controller output is evaluated by averaging its left and right switching 

points; thus, output error associated with one ideal fuzzy output 𝑂𝑢𝑡0 is defined by: 

𝑂𝑢𝑡0 + 𝑒𝑂𝑢𝑡𝐹2 =
(𝑦𝑙 ∓ 𝑒𝑙) + (𝑦𝑟 ∓ 𝑒𝑟)

2
=

𝑦𝑙 + 𝑦𝑟

2
+

|𝑒𝑙 ∓ 𝑒𝑟|

2
= 𝑂𝑢𝑡𝐹𝑇2  ( 4-41) 

Here, 𝑒𝑙  𝑎𝑛𝑑 𝑒𝑟 are the absolute errors associated with the left and the right extreme 

points of the type reduced set. The controller output absolute error is  𝑒𝑂𝑢𝑡𝐹2.  

𝑒𝑂𝑢𝑡𝐹2 =
|𝑒𝑙| + |𝑒𝑟|

2
 ( 4-42) 

If |𝑒𝑙| = |𝑒𝑟|     Then     𝑒𝑂𝑢𝑡𝐹2 = |𝑒𝑙| = |𝑒𝑟| ( 4-43) 

The error of these points is also affected by the allowance of the stop condition of the 

fixed-point iterations used in the KM type reduction. Their calculation, which has to be 

performed iteratively, is the (COG). The COG denominator integration error 

allowance  𝑒𝐷_𝑎𝑙𝑤, which is associated with the ideal integration result  𝐼𝐷𝑒𝑛0, can be 

defined, for simplicity, using a normalized discrete step size of   ∆𝑦 = 1 as follows: 

𝐼𝐷𝑒𝑛0 + 𝑒𝐷_𝑎𝑙𝑤 = ∑(𝜇𝑛

𝑁

𝑛=1

+ 𝑒𝜇𝑛
). ∆𝑦 = ∑ 𝜇𝑛

𝑁

𝑛=1

+ ∑ 𝑒𝜇𝑛

𝑁

𝑛=1

 ( 4-44) 
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The symbol  𝑒𝜇𝑛
 defines the error associated with every set sample, which is the 

calculation allowance for each unit length. The error in defining the set membership 

levels is assumed zero; then only the error limit per unit length 𝑒𝐷𝑝.𝑢.𝑙  will dominate the 

calculation. 

𝑒𝜇𝑛
= 𝑒𝐷𝑝.𝑢.𝑙 =

𝑒𝐷_𝑎𝑙𝑤

𝑁
 

( 4-45) 

Performing the same calculations for the numerator, as shown below, using the fuzzy 

membership error 𝑒𝜇𝑛
 and the normalized ∆𝑦 =1 to get: 

𝐼𝑁𝑢𝑚 + 𝑒𝑁_𝑎𝑙𝑤 = ∑   (𝜇𝑛 + 𝑒𝜇𝑛
) ∙

𝑁

𝑛=1

𝑦𝑛 ∙ ∆𝑦

= ∑   𝑦𝑛 ∙ 𝜇𝑛

𝑁

𝑛=1

+ ∑   𝑦𝑛 ∙ 𝑒𝐷𝑝.𝑢.𝑙

𝑁

𝑛=1

 

( 4-46) 

And, by using the following approximation for a discretised output axis contains N’ 

elements  𝑦𝑛  can get:   

∑    𝑛 ∙ 𝑒𝐷𝑝.𝑢.𝑙
𝑁
𝑛=1 ≈

𝑁2

2
𝑒𝐷𝑝.𝑢.𝑙= 

𝑁

2
𝑒𝐷_𝑎𝑙𝑤  ( 4-47) 

Resulting:  

𝐼𝑁𝑢𝑚 + 𝑒𝑁_𝑎𝑙𝑤 ≈ [∑ 𝑦𝑛 ∙ 𝜇𝑛

𝑁

𝑛=1

] +  
𝑁

2
𝑒𝐷_𝑎𝑙𝑤  

( 4-48) 

However, the final COG error has to be evaluated using the numerator and the 

denominator errors in percentage form because they are associated with two dividend 

operands (Castrup and Castrup 2010), as:  

|𝑒𝐶𝑂𝐺|

|𝐶𝑂𝐺|
 =

|𝑒𝑁𝑢𝑚|

|𝐼𝑁𝑢𝑚|
+

|𝑒𝐷𝑒𝑛|

|𝐼𝐷𝑒𝑛|
 

= |

𝑁
2 𝑒𝐷𝑎𝑙𝑤

𝐼𝑁𝑢𝑚
| + |

𝑒𝐷𝑎𝑙𝑤

𝐼𝐷𝑒𝑛
|  

= | 
𝐼𝐷𝑒𝑛

𝐼𝐷𝑒𝑛
×

𝑁
2 𝑒𝐷_𝑎𝑙𝑤

𝐼𝑁𝑢𝑚
| + |

𝑒𝐷_𝑎𝑙𝑤

𝐼𝐷𝑒𝑛
| 

( 4-49) 
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Get: 

𝑒𝐶𝑂𝐺% =
𝑁/2

𝐼𝑁𝑢𝑚/𝐼𝐷𝑒𝑛
× 𝑒𝐷𝑒𝑛% + 𝑒𝐷𝑒𝑛% 

( 4-50) 

Thus, it is possible to control the total COG error limit using the denominator error 

boundaries only. The term    𝐼𝑁𝑢𝑚/𝐼𝐷𝑒𝑛  can be approximated for 𝐶𝑂�̃� = N/1.7 and for 

𝐶𝑂�̃� = N/2.4, which are the average values of the right and left switching points, 

respectively, as in the following cases:  

1- For right switching points: 𝑒𝐶𝑂𝐺_𝑅̃ % ≈ 1.85 × 𝑒𝐷𝑒𝑛_𝑅%  
( 4-51) 

2- For left switching points: 𝑒𝐶𝑂𝐺_𝐿̃ % ≈ 2.2 × 𝑒𝐷𝑒𝑛_𝐿% 
( 4-52) 

The different absolute denominator errors, which can be considered during the COG 

calculations, are:  

The general form: 𝑒𝐷𝑒𝑛 =
|𝑒𝐶𝑂𝐺  ×   𝐼𝐷𝑒𝑛|

0.5 ×  𝑁 + 𝐶𝑂𝐺
 ( 4-53) 

For the right switching point: 𝑒𝐷𝑒𝑛_𝑅 ≈
|𝑒𝐶𝑂𝐺_𝑅̃  ×  𝐼𝐷𝑒𝑛_𝑅|

1.1× 𝑁
  ( 4-54) 

For the left switching point: 
𝑒𝐷𝑒𝑛_𝐿 ≈

|𝑒𝐶𝑂𝐺_𝐿̃  ×   𝐼𝐷𝑒𝑛_𝐿|

0.9 ×  𝑁
 ( 4-55) 

For 𝐶𝑂�̃� ≈ 𝑁/2 : 𝑒𝐷𝑒𝑛 =
|𝑒𝐶𝑂𝐺  ×   𝐼𝐷𝑒𝑛|

 𝑁
 ( 4-56) 

If the  |𝑒𝐶𝑂𝐺| is set to be half of one-discrete element, then the minimum value of 

 |𝑒𝐷𝑒𝑛|   is resulting if the COG is at its maximum value, which equals to N  for 

discretised outputs.  

𝑀𝑖𝑛 𝑒𝐷𝑒𝑛 =
|  𝐼𝐷𝑒𝑛|

3 𝑁
 ( 4-57) 

The maximum possible value of the error  |𝑒𝐷𝑒𝑛|  can result if the COG is minimum, 

which it is zero in the case of digital discretised outputs, to get: 

𝑀𝑎𝑥 𝑒𝐷𝑒𝑛 =
|  𝐼𝐷𝑒𝑛|

 𝑁
 ( 4-58) 

This minimum error limit, which is one-third of the maximum error limit, has to be used 

to assure that COG error is going to be within required limit whatever the COG result is. 

Thus, to achieve absolute output error smaller than one discrete element, an absolute 
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error of half discrete element has to be used in the evaluation of the left and right 

switching points, as defined in equation ( 4-42) - page 80. However, to get the absolute 

value of  |𝑒𝐷𝑒𝑛|, the value   𝐼𝐷𝑒𝑛  has to be approximated for the first computation cycle 

of the iterative KM type reduction family. The average membership level of the set  
𝑁

2
  

can be used for convex shaped fuzzy sets that have N discrete elements on their vertical 

and horizontal axis, as:  

 𝐼𝐷𝑒𝑛0 ≈ 𝑁𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 ×
(𝜇𝑚𝑖𝑛 + 𝜇𝑚𝑎𝑥)

2
≈

𝑁𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 × 𝑁𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙

2
 ( 4-59) 

Assuming for simplicity that  𝑁𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 = 𝑁𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙  and considering the COG is on 

its maximum value of (N) then substituting this in equation ( 4-53) to get: 

 

 [𝑒𝐷𝑒𝑛]0 ≈ |𝑒𝑂𝑢𝑡𝐹2| ×
𝑁

3
 ( 4-60) 

The evaluation of   𝑒𝐷𝑒𝑛 within the KM’s iterations after the first cycle will be more 

accurate, than the initial guess, because the previous integration’s actual result will be 

used in the new error evaluation.  

[𝑒𝐷𝑒𝑛]𝑖 =
𝑒𝑂𝑢𝑡𝐹2  ×   |𝐼𝐷𝑒𝑛|(𝑖−1)

0.5 ×  𝑁 + 𝐶𝑂𝐺
     , 𝑓𝑜𝑟  𝑖 ≥ 1    ( 4-61) 

The   |𝐼𝐷𝑒𝑛|(𝑖−1) represents the latest result of the numerator integration in the iterative 

KM type reductions. The minimum error, which can result if   𝐶𝑂𝐺 ≈ 𝑁, is as shown 

below:  

[𝑒𝐷𝑒𝑛]𝑖 =
𝑒𝑂𝑢𝑡𝐹2

1.5 × 𝑁
|𝐼𝐷𝑒𝑛|(𝑖−1)     , 𝑓𝑜𝑟  𝑖 ≥ 1         

( 4-62) 

Substituting the initial error value from equation ( 4-60) into error relation ( 4-30), page 

78, to get the simple initial error limit as follows: 

|𝑛(𝜇1 − 𝜇0) − (𝜇𝑛 − 𝜇0)| ≤ |2𝑒𝑂𝑢𝑡𝐹2|0 
( 4-63) 

Using equation ( 4-62) in the next evaluation cycles, to get: 

|𝑛(𝜇1 − 𝜇0) − (𝜇𝑛 − 𝜇0)|𝑖 ≤
6

𝑁
[𝑒𝐷𝑒𝑛](𝑖−1) = 4𝑒𝑂𝑢𝑡𝐹2

|𝐼𝐷𝑒𝑛| (𝑖−1)

𝑁2
 ( 4-64) 
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The value |𝑛(𝜇1 − 𝜇0) − (𝜇𝑛 − 𝜇0)|   represents the vertical difference (𝑑𝑣) between the 

curved fuzzy set and the straight line that starts from the first point of the integration 

period and has a slope equal to the initial slope of the curve, as shown in Figure  4-3.  

 

 

4.6.1. TheCOG’sErrorDependency 

 The COG error, which is controlled by relation ( 4-62) is dependent on the 

denominator result  |𝐼𝐷𝑒𝑛| of the previous cycle. Thus, if a previous cycle result is 

smaller than the result of the running calculation then the fuzzy controller’s output error 

is going to be smaller than the required error limit, which it is acceptable.  

 
 

Figure  4-3: Estimating the possible error limit of the trapezoidal rule by monitoring 

the difference between a straight line and the curved section. 
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However, if the current integration result is smaller than the previous integration result 

then the error of this integration can exceed the required system limit. If this is the case, 

then it can be fixed by repeating the integration using the last integration result, which is 

generated due to using the previous integration result. Analytically, it can be seen as in 

Figure  4-4 that using only the previous integration result to define the calculation 

allowance will cause results fluctuation. As an example, consider the old integration 

result |𝐼0| is big and the 2
nd

 integration result |𝐼𝐼𝑑𝑒𝑎𝑙| is small. Thus, in the first 

evaluation cycle, the allowance is high, the execution time  𝑇1 is short, and the last 

integration result |𝐼1| is smaller than  |𝐼𝐼𝑑𝑒𝑎𝑙|. This smallest integration result is generated 

because the fuzzy sets have convex shapes, thus any approximation to their curved 

shapes using straight segments will cut away part of the area under the curve and gives 

smaller total area of the underside of the curves. Because of that, all the integration 

results 𝐼1, 𝐼2, 𝐼3, and 𝐼4   are smaller than the ideal integration result  |𝐼𝑖𝑑𝑒𝑎𝑙|. But, as can 

be seen in Figure  4-4, the best result is  𝐼2, because its error falls within the required 

controller’s error and it takes a short execution time to be calculated. Any further cycles 

would consume a longer execution time and increase the integration error. 

 

 

 

 

 
 
 

 

Figure  4-4: Integration result fluctuation because of error dependency. 
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4.7. Correct Interval Length Search 

The trapezoidal rule error, which is defined by equations ( 4-15) and ( 4-30), is 

directly proportioned to the interval length of the integration, in the case of pure 

quadratic functions. This property enables the use of successive binary search technique 

to find the correct intervals that maintain the trapezoidal rule error limit.  The successive 

binary search does approach the required criteria using a coarse accuracy at the 

beginning, which then to become finer and finer, step after step, as shown Figure  4-5. 

The first step size in a search domain contains (N) discrete elements will be (N/2). The 

successive steps will be halved until reaching a step size equal to one discrete level at the 

end of the search process. However, here, the search interval length is non-radix-2. 

Therefore, the step size also is non-radix-2 and dividing it by 2 would require rounding 

either to floor or ceiling. In this case, it is possible to round the step size to floor thus to 

get final interval length smaller than the ideal case (Ogawa et al. 2011; Zeloufi et al. 

2015). Such smaller intervals will certainly have an error limit falls within the required 

boundaries. Also, it is necessary to divide the domain of the output fuzzy sets at the 

cross-section points between the adjacent sets and at the peak points of the sets, as shown 

in Figure  4-6.  This will guarantee to get in each subsection a quadratic shape that is 

going to stay quadratic during every possible fuzzy firing level combination.  Re-

sectioning has to be performed again if the shapes of the output sets are changed by some 

tuning process.   
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 Figure  4-5: Traditional successive binary search. 
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4.8. COG Using Adaptive Trapezoidal 

 The type reduction and defuzzification operations that can generate smooth 

output are mostly performed through a weighting average operation, which is the COG 

calculation. Any COG calculation contains two integrations; one is for the denominator 

and the other for the numerator. The denominator integration can be performed using 

trapezoidal integration over N discrete points as follows: 

 

𝐼𝐷𝑒𝑛 = ∫ 𝑓(𝑦)𝑑𝑦
𝑦𝑁

𝑦0

≈ ∑(𝑦𝑛 − 𝑦𝑛0)
(𝜇𝑛 + 𝜇𝑛0)

2
𝑁

 ( 4-65) 

 

The numerator integrations can be performed as: 

INum = ∫ y
yN

y0

. 𝑓(𝑦)𝑑𝑦 ≈ ∑(yn − yn0)
(ynμn + yn0μn0)

2
N

 ( 4-66) 

 

 

 Figure  4-6: Output fuzzy sets sub-sectioning example. 
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Here,  𝑦𝑛0  denotes the local segment start point and  𝑦𝑛 defines its end. The 

symbols  𝜇𝑛0  and 𝜇𝑛  define the fuzzy membership level at the segment ends. The 

lengths of these different integration segments affect the total COG calculation error. 

Controlling the segments, lengths can be achieved using relation ( 4-64) to monitor the 

error of the denominator integration only then executing the two COG integrations.  

However, it is important to analyse what is going to happen if an approximation process 

is merged with a KM iterative type reduction family procedure. These iterations have the 

well-known iterative form   𝑦𝑛+1 = 𝑓(𝑦𝑛), where   𝑓(𝑦𝑛) is replaced by COG(𝑦𝑛) where 

𝑦𝑛 is the movable switching point that joins the left and the right parts of the fuzzy set to 

be reduced, see paragraph  2.4.1 and Figure  2-1. The iterations are going to settle or end 

at what is known as the fixed point (FP). This will happen when the left equation part, 

𝑦𝑛+1, which can be described as an independent equation, defines a straight line, and has 

a slope of one, as shown in Figure  4-7. This equation is going to equate the right 

part   𝑓(𝑦𝑛) at the FP. However, this would require that the function 𝑓(𝑦)  has an 

absolute slope less than or equal to one, and has a sufficient extend around the FP. That 

extend is important to including the initial guessed point (Burden and Faires 2011). 

However, all the possible progressing patterns to reach the FP are dependent on the 

function slope between the initial guess and the FP.  
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But, the condition of having an absolute slope smaller than or equal to one will generate 

some complexities when any approximation is performed on the function  𝑓(𝑦). The 

complexity arises because approximation will add some error ε to the initial function 

points making it in the form  𝑓(𝑦) ± ε. This means that the initial smooth function is 

converted to what is known as a partially discontinuous function (Cromme 1997), where 

any two  adjacent points can be within a circle of a diameter Ð. This Ð defines the 

function discontinuity level, which in our case equals to Ð = 2ε  because the 

approximation error may be added to a point and may be subtracted from its adjacent 

point, thus creating a gap of double the error size. This possible discontinuity can create 

many small segments around the FP with slopes equal or greater than one. In such cases, 

the converging condition of having an absolute slope smaller than one is violated and the 

iterative KM type reduction procedures is going to stuck in an infinite loop on one of 

 
a- Positive slope at the left and negative 

slope at the right side of the FP. 

 
b- Positive slope at the left and positive 

slope at the right side of the FP. 

 
c- Negative slope at the left and positive 

slope at the right side of the FP. 

 
d- Negative slope at the left and 

negative slope at the right side of the 

FP. 

 

Figure  4-7 : The different progressing cases of the FP iterative procedure showing all 

the cases in a, b, c, and d. 
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these segments, as shown in Figure  4-8. Such an infinite loop can be terminated by 

setting a maximum iterations limit or by setting the stop condition of the iteration to be 

sufficiently large, as   (2ε + 1) (Jean-Jacques Herings et al. 2008; Cromme 1997), noting 

that this approximation error is measured as a multiplicand of the function discretisation 

level. That first solution can waste some of the system processing power and generate a 

high level of delay in the type reduction stage. Taking in account that control loops have 

to be repeated at short time slices, not longer than one tenth of the controlled plant time 

constant, then that solution is not preferred. The second solution can give a very short 

execution time, which is good, but this sacrifices accuracy, reaching to  (2ε + 1).  

This problem can be solved by averaging of the last two points, which are generated by 

the last two FP iterations, if and only if a looping case is occurring. This solution 

smooths the approximated function and can give a result with a smaller error.  In 

addition, this process can accelerate converging to FP even for smooth function, like case 

(d) in Figure  4-7 where it can easily be seen, that averaging any pair of points, in the case 

of looping, gives a result closer to the FP than any of the points being used in the 

average. Thus, before doing the average, it is essential to detect the looping case. This 

detecting is possible by examining the last three of the FP iterations, 𝑦0, 𝑦1,  𝑦2,  where 

𝑦0 is the newest generated point,  𝑦1  is the old generated point, and 𝑦2  is the oldest 

point. From these points, two progressing steps (PS) are calculated describing the last 

two cases, 𝑃𝑆0, and 𝑃𝑆1, as follows: 

𝑃𝑆0 = 𝑦0 − 𝑦1 
( 4-67) 

 

𝑃𝑆1 = 𝑦1 − 𝑦2 
( 4-68) 

 

A simple inspection to all the possible cases in Figure  4-7 and Figure  4-8 of multiplying 

any two successive PSs would show that a negative result could only be generated if a 

looping case is happening. Thus, this negative can be used to indicate a looping state 

occurrence.  

 𝐼𝐹:       (𝑃𝑆0 ∗ 𝑃𝑆1) < 0    𝑇ℎ𝑒𝑛 𝑙𝑜𝑜𝑝𝑖𝑛𝑔 𝑓𝑙𝑎𝑔 𝑖𝑠 𝑂𝑁 
( 4-69) 
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However, before starting to use this indicator, three previous points have to be generated. 

Another abnormal looping state can be seen in Figure  4-8- case (c), which is occurring 

because of the approximation noise. In such case, the PS is increasing and decreasing 

instead of the normal behaviour of continually decreasing till it reaches the FP.  Our 

proposed remedy for such abnormal looping is to take an average of all the points in the 

loop and terminate the iterations.  This can give a better result because averaging all of 

the points in a loop gives one central point, which is very close to the ideal FP.    
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a- Case of one-bit noise added to a straight line function causing a shift in the 

position of the FP. 

 
b- Case of infinite loop around the FP, caused by adding one-bit error to a 

straight line function. 

 

 
c- Infinite loop consists of two hopes around the FP, caused by adding one-bit 

error to a straight-line function. 

Figure  4-8 : Some possible effects on the progressing pattern of an iterative FP 

routine are shows in the sub figures a, b, and c, that are caused by adding one 

bit noise. 
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Chapter Five: Performance Evaluation 

5. Evaluations 

5.1. Evaluating the Adaptive Type Reduction 

 To evaluate the proposed adaptive trapezoidal integration using successive search 

technique, for fuzzy type reduction purposes, the output error of some fuzzy controller 

and the time gain of the new type reduction are to be evaluated for every possible fuzzy 

firing levels combination while the FT2 controller is running. Two Gaussian output FT2 

sets, as shown in Figure  5-1, are suggested to be used during the type reduction 

evaluations. The Gaussian sets have a well know average features that can be considered 

as reference values. Thus, any result here can be treated as a reference and interpreted to 

any other set shape easily. In addition, Gaussian sets are off the most common set types 

that are being used for speed and direction control in autonomous vehicles. These 

controllers represent the category of fuzzy systems that will benefit the most from any 

developed fast type reduction. Using two fuzzy sets per output is usually enough for 

autonomous fuzzy controllers, as there is a limited nonlinearity in the direction and speed 

control.   

Before commenting on to the different tests, it is required to select a better  𝐼𝐷𝑒𝑛0 value 

rather than this one being used in equation ( 4-59) - Page 83, thus achieving higher 

performance speed at an approximation error not exceeding the designed limits. This 

initial value can be higher than what is theoretically estimated before using the average 

area, 
𝑁𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙× 𝑁𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙

2
. Using such initial high value means starting with high 

calculation allowance before reducing it to the final required allowance needed to be by 

the end of the type reduction iterations. Total time gain is calculated by dividing the 

execution time of the iterative KM type reduction by the approximated type reduction 
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time. The execution time is taken as the average at every possible fuzzy level. The hop 

distance between any two adjacent fuzzy levels is considered ones as 10% and then as 

20%. These two proposed transition levels are more than enough, because it is always 

required to design the repetition rate of any control loop to be about one tenth of the 

plant time constant. This rate has an analogy to fuzzy step transition size of 10%. Any 

smaller transition distance between the successive fuzzy levels will give better and 

shorter type reduction time. Also, because it is proposed, here, to use the result of the 

previous control cycle, as an initial guess to the current type reduction cycle, then a very 

close guess to the real possible result will be generated. The different initial value effects 

are tested using two Gaussian output IFT2 sets with fuzzy level transition size of 20%, 

which considered an extreme situation. The different results for using fuzzy sets interval 

widths of 10%, 20%, and 40% are shown in Figure  5-2-(a), (b), and (c) respectively. 

Those interval widths are selected because they represent most of the practically used 

cases (Begian 2010). The approximation allowances are in the range of 1, 2, 4 and 8. 

They are shown on the horizontal axis with their initial integration multiplayers, which 

are in the range of 0.5,1,2,4, and 8. However at Figure  5-3, the same data is collected but 

for a fuzzy transition step size of 10%. The approximation allowances and the initial 

integration multipliers are selected to cover big ranges where the best performance point 

can be easily spotted. From these tests, the best performance time gain is determined to 

be close to the initial integration multiplier of four. This value is going to be used instead 

of the theoretical estimated value of  0.5, shown in equation ( 4-59).  This initial value 

will be updated according to the required calculation allowance and the integration result 

of the previous type reduction iterations. This means variable calculation allowances is 

implemented, starting with a big value then ending to a smaller value. In the next section, 

tests of the time gain and the system error are going to be presented and analysed for the 

cases of using the 𝐼2 test, which proposed to eliminate any error that may exceed the 

limits. That 𝐼2 test is previously suggested and analysed in section  4.6.1- page 84.  
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Figure  5-1: Two fuzzy type-2 sets used to evaluate the output error. 
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a- Average time gain for using IFT2 set width of 10%. 

 
b- - Average time gain for using IFT2 set width of 20%. 

 
c- Average time gain for using IFT2 set width of 40%. 

Figure  5-2: Average time gain for the approximated type reduction using fuzzy 

transition step size of 20% at different approximation allowances and initial 

integration multipliers for: (a) - IFT2 set width of 10%, (b) - IFT2 set width of 20%, 

(c) - IFT2 set width of 40%. 
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a- Average time gain for using IFT2 set width of 10%. 

 
b- Average time gain for using IFT2 set width of 20%. 

 
c- Average time gain for using IFT2 set width of 40%. 

Figure  5-3: Average time gain for the approximated type reduction using fuzzy 

transition step size of 10% at different approximation allowances and initial 

integration multipliers for: (a) - IFT2 set width of 10%, (b) - IFT2 set width of 

20%, (c) - IFT2 set width of 40%. 
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5.1.1. Using Variable Approximation Allowances 

 It can be seen from the previous section results, Figure  5-2 and Figure  5-3, that 

the cost of performing the successive searches is high, as the average time-gain of using 

approximation allowance of one has reached, in its best cases, to 150% for an initial 

integration multiplier value of four. What should be achieved is a time gain of 200% for 

approximation allowance of one. This is because the approximation allowance of one has 

an accuracy similar to the accuracy that results from using normal KM at double 

discretisation size. A possible solution to attain better performance is increasing the 

calculation allowance during the second iteration of the approximated KM type 

reduction. This approach would generate a new non-linear approximation throughout the 

type reduction. This approach has to be tested for its maximum possible calculation 

allowance at the second iteration to keep the type reduction result at the required error. 

Performance time-gains are tested for fuzzy transition step size equals to 10%, of the 

total fuzzy range, using three different fuzzy set widths. The time gain results, shown in 

Figure  5-4, are for using a Gaussian IFT2 set with interval width of 10%. This time-gain 

is measured by dividing the execution time of the proposed approximated type reduction 

by the execution time of the traditional iterative KM type reduction procedure. In these 

charts, the horizontal line describes two variables, one of them is the required 

approximation error, and the second is the calculations’ allowance used at the second 

iteration of the approximated type reduction. A wide range of error has been 

experimented, starting from one discrete element reaching to eight discrete elements. 

However, the calculation allowances are ranged from one to four.  More tests are 

performed for interval width of 20%, and 40%. These are shown in Figure  8-2, and 

Figure  8-3, in appendix-A.    These results showing high time-gains exceeding 200% at 

approximation allowance multiplier of two and greater. More tests are performed using 

greater fuzzy transition size of 20%, which represents an extreme operation condition 

should be avoided in good controller designs. The results of Figure  8-4, Figure  8-5, and 

Figure  8-6, in appendix-A, are for the three different interval widths of 10%, 20%, and 

40%, using this extreme fuzzy transition step of 20%. Here, the average time-gain has 

reached to about 200% at approximation allowance multiplier equal to two. The results 

indicate that the time consumed by this approximated type reduction has a minor 

dependency on the fuzzy transition step size, but only if the set interval width is in the 

ranges of 10%.  
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Figure  5-4: Average time-gain for the approximated type reduction using Gaussian 

IFT2 set having width of 10% and fuzzy transition step size of 10%, at different 

approximation allowances and various integration multipliers of the second iteration. 
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5.2. Variable Approximation Allowance Error 

 The maximum possible error and the error mean are another factors that have to 

be evaluated for the non-linear calculation allowance that being used during the 

approximated type reduction. This error is evaluated by calculating the difference 

between two type reduction units; the first unit has the traditional iterative KM type 

reduction. The second unit is using our proposed approximated type reduction. Identical 

Gaussian fuzzy sets, with similar fuzzy firing levels, are used in the type-reduction units 

to assure that no other factors will influence the errors. The tests are performed at all the 

possible combinations of two fuzzy firing levels. The maximum error results for using 

different approximation allowances and different scaling factors during the second 

approximation cycle for incremental fuzzy transition size of 10% are shown in 

Figure 5-5 for fuzzy sets have interval width of 10%. The maximum error results for 

using fuzzy interval sets with widths of 20% and 40% are shown in Figure  8-8, and 

Figure  8-9 , in appendix-B. Similar tests are performed by using incremental fuzzy 

transition step size of 20%, which it is double the fuzzy incremental size that is used 

during the past tests. The results are shown in Figure 5-6 for fuzzy sets have interval 

width of 10%. However, the results for using fuzzy interval sets widths of 20% and 40% 

are shown in Figure  8-11, and Figure  8-12, in appendix-B. During those last six tests, 

incremental fuzzy level transitions started with zero then increased gradually to reach the 

fuzzy level of one, is used. Practically, fuzzy firing level transitions are increasing and 

decreasing according to the input variable levels change. Therefore, another set of tests is 

performed using a decrementing fuzzy firing scheme that starts with one and ends at 

zero. The maximum resulting errors of these tests, using decremented fuzzy transition 

step size of 10%, are shown in Figure  5-7 for a fuzzy set with interval width of 10%. The 

maximum resulting error for using fuzzy sets have interval width of 20% and 40% are 

shown in  Figure  8-14, and Figure  8-15, in appendix-B.  Meanwhile, the maximum errors 

for using 20% decremented fuzzy transition step size are shown in Figure  5-8  for 

interval widths of 10%. The results of using fuzzy interval sets with 20% and 40% 

interval size are shown in Figure  8-17, and Figure  8-18, in appendix-B. It can be seen 

from all those cases that the final error is kept within the required limits for the second 

cycle allowance multipliers having values smaller or equal to 1.5. That can be seen in the 
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worst-case condition when the fuzzy transition size is 20% and is decrementing at fuzzy 

interval width of 10%. This point, which marked by a red circle in Figure  5-8, is 

considered a boundary value. 
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Figure  5-5: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 10%  and incremental fuzzy transition step size of 

10%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  5-6: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 10%  and incremental fuzzy transition step size of 

20%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  5-7: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 10%  and decrementing fuzzy transition step size of 

10%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  5-8: Maximum error of the approximated type reduction for using 

Gaussian IFT2 set having interval width of 10%  and decrementing fuzzy 

transition step size of 20%, at different approximation allowance multipliers 

during the second iteration calculations. 
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5.3. Performance at Optimal Parameters 

 Many concepts can be concluded from the two previous sections of  5.1.1and  5.2. 

In these sections, all the possible calculation error and the execution time-gain, which are 

resulted from using high integration multiplier during the first and the second iterations 

of the approximated KM type reduction, are experimented.  Concluding that using an 

initial integration guess value of four times the horizontal divisions times the vertical 

divisions can give the best time gain without exceeding any required error limits. 

Moreover, to achieve faster computations it is possible to use a higher integration 

multiplier, during the second iteration of the approximated type reduction. These 

multipliers maintain the required computations error while giving a high time-gain. The 

best value, that can achieve the best performance while preserving the required errors, 

has been deduced from sections  5.1.1 and  5.2 to be 1.5.  At this value, the total cost of 

searching the straight segments is slightly higher than the cost-reduction resulting from 

using straight segments during the type reduction. This is correct for the total cost only. 

The total cost is evaluated by averaging the reduction time at every possible fuzzy firing 

combination. A closer look at the different time-gain values during individual fuzzy 

firing levels using different interval widths with incremental, and decremented fuzzy 

levels shows that time gain is reaching very high values when the fuzzy firing levels are 

low. This is reasonable because the fuzzy sets will have longer straight segments that are 

going to be used during the approximation to achieve that high time-gain. The individual 

time-gains of using these two ideal values can be seen throughout Figure  5-9  to 

Figure  5-11 at all the possible fuzzy firing levels, U1 and U2, using a decrementing step 

size of 10% and interval FT2 sets widths of 10%, 20%, and 40%. The results of using 

incremental firing level in steps of 10% on IFT2 sets having interval widths of 10%, 

20%, and 40%, are shown in Figure  5-12 to Figure  5-14. 
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Figure  5-9: Time-Gain for all the possible combinations of two fuzzy firing 

levels, U1 and U2, transitioning from one to zero in step size of 10%, and acting 

on two Gaussian’s  IFT2 sets having 10% interval width. 
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Figure  5-10: Time-Gain for all the possible combinations of two fuzzy firing levels, 

U1 and U2, transitioning from one to zero in step size of 10%, and acting on two 

Gaussian’s  IFT2 sets having 20% interval width. 
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Figure  5-11: Time-Gain for all the possible combinations of two fuzzy firing levels, U1 

and U2, transitioning from one to zero in step size of 10%, and acting on two Gaussian’s  

IFT2 sets having 40% interval width. 
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Figure  5-12: Time-Gain for all the possible combinations of two fuzzy firing levels, 

U1 and U2, transitioning from one to zero in step size of 20%, and acting on two 

Gaussian’s  IFT2 sets having 10% interval width. 
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Figure  5-13: Time-Gain for all the possible combinations of two fuzzy firing levels, 

U1 and U2, transitioning from one to zero in step size of 20%, and acting on two 

Gaussian’s  IFT2 sets having 20% interval width. 
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Figure  5-14: Time-Gain for all the possible combinations of two fuzzy firing levels, 

U1 and U2, transitioning from one to zero in step size of 20%, and acting on two 

Gaussian’s  IFT2 sets having 40% interval width. 
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5.4. Fuzzy Type-2 Autonomous Controller using Adaptive COG 

 Different behaviours like wall-following, track-following, obstacle-avoidance 

and goal seeking can be used in autonomous vehicles. The aggregation of all these sub-

actions generates one final output. In order to evaluate performance error and execution 

time-gain of the proposed type reduction, the wall-following behaviour is selected 

because different wall shapes can be constructed to impose different working conditions 

throughout the tests. The direction error of the autonomous wall-following controller is 

measured for the wall structure shown in Figure  5-15, which contains acute, right, 

obtuse, and reflex-angled corners. Two fuzzy type-2 wall-following controllers have 

been built, the first uses traditional KM-type reduction with Gaussian output sets, each is 

discretised to 1000 elements, while the second controller uses our adaptive type 

reduction, as shown in Figure  5-16. Here the first controller, with a traditional KM-type 

reduction, is considered as a reference controller. The second controller uses the adaptive 

COG during the type reduction iterations. Thus, any difference, or error, between the 

outputs of these two controllers is definitely caused at the adaptive type-reduction stage. 

In addition, any execution time difference between those two identical controllers is due 

to the execution difference between their type reduction stages. The computation time-

gain for these allowances at interval widths of 10%, 20% 40% are shown in Figure  5-17, 

as a bar chart form, for a fuzzy direction controller part of an autonomous real and 

simulated vehicle. It can be seen that time-gain is high, reaching to 500%, in most of the 

cases, if small interval widths in the range of 10% are used. However, time-gain is small, 

in the range of 150% when large interval widths, in ranges of 40%, are used. This 

happens because the uncertainty will be high at these values, thus more iterations will be 

required to get the left and right switching points. The cost of these extra iterations seems 

to be higher than what is being gained out of the adaptation. The associated mean 

absolute errors with these different tests, evaluated using 10000 samples for each, are 

shown Figure  5-18, where the mean absolute errors are, in all these cases, smaller than 

one in a thousand. This is considered very good for our fuzzy controller which is using a 

discretisation level of 1/1000 for its output fuzzy sets. Other tests have been conducted to 

compare the average time-gain for different sets discretisation levels using an interval set 

width of 10%, shown in Figure  5-19. It shows that best time-gain is happening at low 

allowances, before reaching saturation where no real acceleration can be achieved. 



 

115 

 

 

 

 

 
Figure  5-15: Wall following test field arena. 

 
Figure  5-16 : Comparing two fuzzy autonomous wall following controllers. 
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Figure  5-17: Execution time-gain at calculation allowances of one and two using 

control loop times of 10ms, 20ms, and 30ms for 10%, 20%, and 40% interval widths. 

 
Figure  5-18: Mean absolute error at calculation allowances of one and two 

using control loop times of 10ms, 20ms, and 30ms for 10%, 20%, and 40% 

interval widths. 



 

117 

 

 

 

 

  

 
Figure  5-19: The traditional KM and adaptive type reduction time-gain for 

output discretisation levels of 250, 500, and 1000 points using interval set width 

of 10%. 
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Chapter 6: Redundancy Elimination 

6. Change Color 

 What has been done in Chapter 4, and 5 is mainly an elimination of the redundant 

operations out of the iterative KM type reduction. This is performed by using the 

successive binary search to locate jus the important sections that can be used to calculate 

the type reduction at adequate system error. Similarly, in this chapter, the redundant 

calculations in the enhanced KM type reduction procedure are going to be spotted and 

eliminated to achieve faster type reduction. Then, this will be taken further to eliminate 

the redundancy out of the process of reducing many sets in one go. 

 

 

6.1. Accelerating the EKM  

 The improvements of the incremental-EKM proposed by (Duran et al. 2008) can 

be taken further by calculating the numerator and denominator initials using only the 

lower membership function,  instead of the initial suggestion, which calculates these 

initials using lower and upper membership functions for left and right uncertainty points, 

respectively. This will cut, basically, half of the initial method’s computation cost and 

accelerate reaching to the uncertainty points.  The left and right uncertainty points can be 

calculated using this accelerated version using equations ( 6-1) to ( 6-4), instead of the old 

method, which uses equations ( 2-23) and ( 2-24), on page 23. A new indexing scheme is 

suggested to reduce the type reduction cost of this type reduction. This assures faster 

access to the left and the right uncertainty points by starting closer to them. The proposed 

indexing uses an incremental scheme starts from zero for calculating the left uncertainty 
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point and using decremented indexing scheme starts from N while calculating the right 

uncertainty point. This helps to travel smaller distance, getting to the uncertainty points 

faster.   

𝑅𝑛𝑢𝑚 𝑛−1 = 𝑅𝑛𝑢𝑚 𝑛 + 𝑦𝑛−1 ∙ (𝑢𝑦𝑛−1 − 𝑢𝑦𝑛−1)   ;  

𝑈𝑠𝑖𝑛𝑔 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥  𝑛 = 𝑛 − 1, 𝑁 ≥ 𝑛 > 1 

 

( 6-1) 

𝑅𝑑𝑒𝑛 𝑛−1 = 𝑅𝑑𝑒𝑛 𝑛 + (𝑢𝑦𝑛−1 − 𝑢𝑦𝑛−1)         ; 

𝑈𝑠𝑖𝑛𝑔 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥  𝑛 = 𝑛 − 1, 𝑁 ≥ 𝑛 > 1 

 

( 6-2) 

For the left point as: 

 
 

𝐿𝑛𝑢𝑚 𝑛+1 = 𝐿𝑛𝑢𝑚 𝑛 + 𝑦𝑛 ∙ (𝑢𝑦𝑛 − 𝑢𝑦𝑛)         ; 

𝑈𝑠𝑖𝑛𝑔 𝑎𝑠𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔  𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔  𝑛 = 𝑛 + 1, 0 < 𝑛 < 𝑁 − 1 

 

( 6-3) 

𝐿𝑑𝑒𝑛 𝑛+1 = 𝐿𝑑𝑒𝑛 𝑛 + (𝑢𝑦𝑛 − 𝑢𝑦𝑛)        ; 

𝑈𝑠𝑖𝑛𝑔 𝑎𝑠𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔  𝑖𝑛𝑑𝑒𝑥  𝑛 = 𝑛 + 1, 0 < 𝑛 < 𝑁 − 1 

( 6-4) 

 

Here, initialization of left and right numerators and denominators are equal, as follows: 

𝑅𝑛𝑢𝑚 = 𝐿𝑛𝑢𝑚  and  𝑅𝑑𝑒𝑛 = 𝐿𝑑𝑒𝑛. These initials are evaluated by calculating the COG 

of the lower membership function that for the interval FT2 set, whom to be reduced. The 

sequential search of the right uncertainty point is to be terminated when the new 

calculated rightmost point, 𝑦𝑅𝑛 ,   has become smaller than its preceding result,   𝑦𝑅𝑛−1. 

The sequential search of the left uncertainty point is to be terminated when the new 

calculated left most point, 𝑦𝐿𝑛, has become bigger than its previous value,  𝑦𝐿𝑛+1 , as 

illustrated in Figure  6-1. 

 𝑦𝐿𝑛 =
𝐿𝑛𝑢𝑚 𝑛
𝐿𝑑𝑒𝑛 𝑛

 ,              𝑦𝑅𝑛 =
𝑅𝑛𝑢𝑚 𝑛
𝑅𝑑𝑒𝑛 𝑛

    ( 6-5) 
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The computation cut can be expected because of: (a)- Any lower membership function 

usually has smaller universe extension and fewer discrete elements, (b)- Same initial 

values are used for the left and right uncertainty calculations, (c)-  Two different 

indexing schemes are used to assure shorter transition distance while getting to the 

uncertainty points. The resulting execution time-gains from using the above 

modifications are shown in Figure  6-2 in respect to the traditional incremented EKM-IF 

procedure, which is described in section  2.4.8, page 23. Different fuzzy interval widths 

are tested throughout the autonomous fuzzy type-2 controller using simulated in real 

vehicle. The time-gain resulting from the sets with high interval widths is high because 

the uncertainty point will fall closer to the ends and the sequential search will locate 

them faster. 

 Here, it is impossible to use the proposed adaptation during the initial evaluations 

because high levels of error will result. This occurs because it is only possible to use the 

integration result, as described by equation ( 4-64) on page 83, of the lower membership 

 
Figure  6-1: Modified incremental EKM. 
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function to control the initial values error. This integration result will probably be bigger 

than the integration result of the interval set that is shaped by this LMF, thereby 

generating unexpected and uncontrolled computation error while evaluating the 

uncertainty points. 

 This accelerated EKM procedure is implemented during our tests using java 

programming language. The exact coding is shown in Appendix-C in two parts. The first 

is for the left uncertainty point calculations, while the second is for the right point.  

 

 

 

 

6.2. A Global Type Reducer 

 Throughout most of the commonly implemented type reduction procedures, it is 

essential to use regular fuzzy type-2 set (Chen et al. 2013), this is, to have convex upper 

and lower membership functions. Otherwise, most of the proposed type reduction 

procedures will only provide an approximated result, depending on their irregularity. 

 
 

Figure  6-2: Execution time gain of the modified incremental EKM execution time in 

comparison to the initial incremental formula using different interval set widths. 
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However, a similar issue will appear if many fuzzy type-2 sets are reduced in one go. 

Achieving this requires merging their individual universes into one global universe, 

which will definitely have less computation cost, compared to the normal case where 

each fuzzy set has to be reduced individually. This expected computation cost cut comes 

from the fact that all of the overlapped sections between the sets will be processed into 

the type reduction ones instead of twice or more. This can be seen more clearly in 

Figure  6-3, where reducing the six interval sets individually, as what is usually done, will 

require performing the reduction six times using 6 × 𝑁 elements. Here, every set is 

assumed to have N discrete divisions. However, performing the type reduction in one go, 

while all the sets are placed on one global universe, will require using only  3 × 𝑁 +

0.5 × 𝑁  elements. This is resulting due to the excluding of the redundant calculations 

associated with the overlapped sections. In general, if it is required to reduce 𝐾 fuzzy 

sets, each having an overlap ratio of 50% and each one has  𝑁  elements, using normal 

techniques individually, then it is required to process   𝐾 × 𝑁  elements. Reducing them 

in one go will cut about half of these calculations reaching to process only the points 

amount shown below.  

The One-Go points = 𝑁 × ( 
𝐾

2
+ 0.5) 

( 6-6) 

 

From this, it is possible to sketch the time-gain graph of this new type reduction with 

respect to the accelerated EKM. In this sketch, it is assumed that different identical 

systems do exist but they have different fuzzy set counts, ranging from one to 12 sets. 

The resulting time-gain for each case is shown in Figure  6-4. The ultimate, ideal, time-

gain situation will be 200% if too many fuzzy sets are reduced all together using the one-

go procedure. 
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Figure  6-3:  Possible computation cut due to using a one-go type reduction 

 

 

Figure  6-4:  Time gain due to reducing multiple sets in one go 
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6.3. The Proposed One-Go Type Reduction Procedure 

 Our proposal for this one-go type reduction routine is based on principles very 

similar to the global optima search process used to locate maximums and minimums. 

However, this can be implemented in a cost-effective manner by extending the 

accelerated EKM-IF type reduction procedure to the following form:  

 

1- Construct the global LMF by taking the maximum of the lower membership values 

which share one universe point. 

2- Construct the global UMF by taking the maximum of the upper membership values 

which share one universe point. 

3- Calculate the initial numerator and the initial denominator using the global LMF, in 

the same way, it is been calculated for the accelerated EKM (presented in 

section  6.1). 

4- Calculate the global stop (GS) point by dividing the initial numerator by the initial 

denominator. 

5- For the right uncertainty point, use the global universe elements, search 

sequentially using a decremented indexing, start from the highest index, stop at the 

GS point, and use the global UMF. 

6- During this search, keep the maximum result only: 

IF(Current Right > Global Right) THEN (Global Right = Current Right) 

7- For the left uncertainty point, use the global universe elements, search sequentially; 

use incremental indexing, start from index zero, stop at the GS point, and use the 

global UMF. 

8- During this search, to get the left uncertainty point, keep the minimum  result only: 

IF(Current Left < Global Left) THEN (Global Left = Current Left) 
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6.3.1. Benefits of the Proposed One-Go Procedure 

 In addition to the cost cut resulting from reducing multiple sets in one go, this 

procedure opens the door to using non-regular fuzzy type-2 sets. These sets are more 

flexible, which can produce more accurate system modelling and better controllers’ 

tuning. Also, using such non-regular fuzzy type-2 sets can reduce the total fuzzy sets in a 

system, leading to a dramatic reduction in a system’s complexity and rule base sizes. 

 In spite of the benefits of the proposed One-Go type reduction, it is not 

implemented in our autonomous vehicle because it currently has only two Gaussian 

output fuzzy sets. Such small controller is very good for practical evaluations of the 

common type reduction procedures because the rule base will be small. However, the 

practical evaluation of the One-Go type reduction procedure would require a bigger 

fuzzy controller with many output fuzzy sets. Building such controller and testing the 

time-gain practically is in our plan for the future work.  
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Chapter 7: Implementation Aspects 

7. Change Color 

7.1. The Autonomous Vehicle  

 In this research, the tests of the autonomous fuzzy type-2 controllers are 

performed using the simulator MobileSim from ActivMedi𝑎® robots. The Pioneer P3-

DX mobile robot, shown in Figure  7-1, is selected to be the platform for the practical 

tests. It is fully modelled by the above simulator and has sixteen ultra-sonic sensors, 

eight of them are for the front motion and the rest are for the back. This series of ground 

robotic vehicles are of those types, whom are common, flexible, and can be upgraded 

easily with wide span of accessories. They have been used a lot by many researchers to 

develop autonomous fuzzy controllers, as an example: (Yaonan et al. 2011; Wagner and 

Hagras 2009) ,   

The software development toolkit for this robot is supported by a library named 

Advanced Robot Interface for Applications (ARIA). This library can be used with Java 

and C++ languages. The Java language is chosen here to write the fuzzy control and the 

type reduction algorithms because Java is an object-oriented programming language, 

robust, reliable, and portable (Cingolani and Alcalá-Fdez 2012; Collier and Meyer 2000). 

From those features, robustness and portability are the most important features for 

robotic systems, which dominate this selection.  

You can find in appendix-D the implementation of the successive binary search 

routine that being used throughout the autonomous vehicle controller and type reduction 

evaluations 
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7.2. Using Schmitt-Trigger 

 In fuzzy controllers, a specific fuzzy rule-base has to describe the system model 

and any required decisions using linguistic IF-THEN commands.  However, in some 

cases, the available data can be limited and cannot be used to make a decision even if a 

human is using it. A simple example of such case can be seen for a typical autonomous 

vehicle equipped with front, right and left distance sensors and which uses the rule base 

shown below. A decision ambiguity is happening in this case that can be seen in rule 

number three: Here, one of two possible actions should be taken when there is no other 

data that can give a clue to which one is preferred. 

1- If left is far & front is far & right is far then Go forward 

2- If left is far & front is far & right is close then Go slight left 

3- If left is far & front is close & right is far then Ambiguity 

4- If left is far & front is close & right is close then Go hard left 

5- If left is close & front is far & right is far then Go slight right 

6- If left is close & front is far & right is close then Go forward 

7- If left is close & front is close & right is far then Go hard right 

8- If left is close & front is close & right is close then Go back 

    

 
Figure  7-1: The Pioneer P3-DX mobile robot. 
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One of the solutions, for such cases, can be seen in (Figueroa et al. 2005) (Chang et al. 

2013),  where random directions are used. This randomness is acceptable in limited and 

simple cases only. In (Melingui and Chettibi 2013), the potential field evaluation has 

been suggested to decide the best autonomous vehicle direction but this still cannot 

suggest correct direction if symmetrical objects exist around the vehicle. The work in 

(Nurmaini and Tutuko 2011) had used the fuzzy type-2 autonomous controller with 

neural network controller to identify the environment but they chose one preferred 

direction in such ambiguity cases, which is still a limited solution. Here the absolute 

correct decision cannot be taken if the fuzzy controller is using the current state data 

only.  The environment map can be used to get correct decisions, but using maps can 

generate excess over-heading delay and can have a negative effect on evaluating the type 

reduction performance. In addition, while constructing a new environment map, it will 

require finding some simple solution capable of resolving such ambiguity. The human, in 

 
Figure  7-2: Areas where the left or right wall following state can be captured and 

where they can act. 

 

Right-Wall 

Following

Left-Wall 

Following
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such cases, makes his decision by using some simple old data in addition to the current 

details. In a similar way, any old fuzzy states can be used to resolve such ambiguity 

conflict. Such conflict can appear in cases where acute wall corners and symmetrical 

environments exist. Such conflict has been addressed in (Mucientes et al. 2007), 

attempting to resolve it throughout accurate fuzzy rules tuning, but they still do not 

deliver a real solution, only considering such corners as dangerous areas that have to be 

avoided early. The decision-making in the implemented wall following controller is 

based on using some saved old states with the current input readings to generate correct 

actions that can overcome any conflict situations. The states, that have to be recognized 

and saved to define the future actions, are identified using some extra rules designed 

specifically for this purpose. As shown in Figure  7-2, for a situation where the 

autonomous vehicle is passing close to a right wall, the state "right wall" is saved. 

Similarly, if the autonomous vehicle is passing close to a left wall, the state "left wall" is 

saved. These states are used to resolve any possible ambiguity conditions like those 

whom are resulting when getting close to acute wall corners or running in a long narrow 

corridor. The update process of the saved state requires some care, where the 

symmetrical environment can trigger successive fast state switching. This fast state 

change would give an average action between the two actions, where they should not be 

averaged. These two behaviours outputs, at worst, can cancel each other, causing a 

vehicle collision. Here, the old right-wall state, for example, has to be kept active till the 

vehicle goes relatively far away from the right wall and close enough to the left wall. 

This principle has been implemented in our fuzzy wall-following controller by using an 

external Schmitt-trigger to correctly discriminate one behaviour (either left or right wall-

following). In our fuzzy controller, one output (“state”) has been generated using two 

output fuzzy sets, left and right. Each one of the two sets has one rule which controls its 

fuzzy membership level, as follows: 

1- IF left distance   is close THEN The state is left wall-following 

2- IF right distance is close THEN The state is right wall-following 

 

Normally, these state outputs will go low if the left and the right distances are 

symmetrical; this leads to fully conflicting rules action. However, if the state output is 

being fed to a Schmitt-trigger then any mid-valued levels will be shifted to either 

minimum or maximum, depending on the previous Schmitt-output level. The Schmitt 
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output will feedback to the fuzzy “L/R-select” input; any ambiguity in approaching wall 

structures having an angle of 90 degrees or less, or entering a long corridor, thus can be 

easily resolved.   

 

 

7.3. Using Schmitt-Trigger 

 Based on the required accuracy and complexity, different sensing devices can be 

used in autonomous vehicles, such as a stereo vision camera (Achtelik et al. 2009), a 3D 

laser (Zhuang et al. 2013), and the differential GPS systems (Rodríguez-Castaño et al. 

2000), and ultrasonic distance sensors. However, the sensors readings will be processed 

as numbers inside digital autonomous vehicle controllers with no indication how 

accurate any reading is. This means the cheaper the sensors are, the harder to use. 

Therefore, only those basic ultrasonic sensors of the Pioneer P3-DX are used during the 

fuzzy type-2 autonomous vehicle controller’s evaluations in order to expose it to high 

uncertainty levels. These ultrasonic sensors are mounted around the robotic vehicle to 

form a circular detection pattern. However, processing the different directions’ 

measurements depends on the required job nature. For a dynamic environment and multi-

robotic fields, the circular sense pattern is preferred, where a collision is expected from 

 
 

Figure  7-3: Left and right wall-following discrimination using Schmitt-trigger 
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all directions (Chang et al. 2013).  However, for a wall-following operation, two 

different actions have to be constructed, for front and side detectors. The obstacles, 

which fall at a specific distance from the vehicle side, would require less attention than a 

similar obstacle occurring at a similar distance but in front of the vehicle. This can be 

considered through the fuzzy rule base. However, another approach is suggested here. It 

works by reshaping the sensing pattern into a slim vertical rectangle, as shown in 

Figure  7-4, to get simpler rule-base that can generate different action strengths for those 

objects falling at similar distances but at different angles with respect to the moving 

direction. This reshaping process creates a long detection range ahead and a short 

detection range on the sides (the side detection range has to be short to offer the vehicle 

more flexibility in getting inside narrow sections in various environments). In addition, 

this rectangular detection pattern simplifies the alignment of the vehicle alongside walls 

using less fuzzy rules. This reduces the total fuzzy sets computation time and system 

complexity, enabling better evaluation of the performance at the type reduction stage. In 

our wall-following controller, the sonar readings are pre-scaled as: (𝑠𝑖𝑑𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/

cos(𝜃), where 𝜃 is the detector angle with respect to the side direction. 

The 𝑠𝑖𝑑𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the closest apart required to the left or the right direction. This pre-

scaling process can offer a simple and real time adaptation based on the required acting 

and the current moving speed of the vehicle.  
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Figure  7-4: Scaling the distance sensors for the wall-following behaviour 
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Chapter 8: Conclusions and Future Work 

8. Change Color 

8.1. Conclusions 

 The literature review conducted throughout this work covers all type reductions 

known up to date. It shows the importance of the Karnik–Mendel type reduction family. 

The features of these type reductions are recommended for control systems, such as their 

smooth output, uncertainty measures, accuracy, and generality. Their impact on 

autonomous fuzzy controllers and mobile robot controllers are revealed by means of 

another survey conducted here. It is therefore important to continue the research in order 

to reduce the computation cost of these type reduction procedures and to then utilise that 

in an autonomous vehicle controller.   

By the end of this research, the following conclusions were reached: 

The effect of the main bottleneck in the fuzzy type-2 controllers (the type reduction 

calculations) has successfully reduced in different methods.  An adaptation is suggested 

to cut some of the computations associated with the type-reduction core computation (the 

centre of gravity, or COG). The adaptation is based on locating the sections of the fuzzy 

sets containing straight lines and slight curves. These sections are considered to be 

straight lines, which are used to perform faster COG calculations within type reduction 

procedures.  Such segments are located using a binary successive search approach.  This 

technique has never (according to the extent of our knowledge) been used before in fuzzy 

systems. The required output error of the fuzzy type-2 controller is used to decide to 

what extent the binary search is aggressive. A fixed accuracy is suggested, first 

throughout the iterative KM type reduction to reduce its computation cost. The resulting 

time-gain was not very high. A variable accuracy level is proposed as an alternative 
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during the iterations of the Karnik–Mendel type reduction. A higher time-gain was thus 

achieved while at the same time preserving the final error within required limits.  

During the approximation process, a negative impact was spotted due to the resulting 

discontinuity, which generates extra unwanted iterations degrading the progress rate of 

the iterative KM type reduction. A suitable state detection flag was used to trigger an 

averaging process; this managed to resolve the issue.  

Extra enhancements were proposed to the enhanced Karnik–Mendel type reduction in its 

incremental form (EKM-IF). These are related to using better initial calculations and a 

better indexing scheme, which assures accelerated reach to the left and the right 

uncertainty points.  Both the simulated and the real tests show a resulting time gain 

approaching 170%. The original accuracy is intact by the proposed acceleration.  

A new type reduction technique is proposed to reduce multiple fuzzy sets altogether in 

one go. This one-go procedure has the potential to exclude the computation redundancy 

which exists due to fuzzy sets overlapping.  The efficiency of this procedure is analysed 

for common overlapping cases, showing a time-gain approaching 200%.  

The computation cost comparisons (of the proposed adaptive type reductions with 

respect to the iterative KM) are showing a time-gain ranging from 150% to 500%, 

depending on the fuzzy interval width and the control loop delay.  The final fuzzy type-2 

controller performance error was in the range of  10−3 (in comparison to the iterative 

KM) when a calculation allowance of one discrete element, out of 1000 elements, is 

used. 

The evaluations are performed using an autonomous fuzzy type-2 controller 

accomplishing a left and right wall following, with obstacle avoidance tasks.  These tasks 

are considered the most crucial behaviour for autonomous vehicles, especially in terms 

of navigation in new environments. The choice of this behaviour for the evaluations was 

successful because of the ease in creating different operation conditions, which can 

impose a wide variety of fuzzy firing levels.  

A cheap solution based on current state latching principles using an external Schmitt 

trigger is suggested for fuzzy controller systems to resolve rule-base ambiguity, thus to 

arrive at a correct decision. This approach managed to remove the partial and full rules 
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conflict, which appears close to acute corners and narrow corridors. Implementation was 

simple where just one extra output and two rules were added.   

A dynamic sensing pattern is proposed and implemented in our autonomous vehicle. 

This approach controls the sensitivity of the sensors, according to the currently running 

task, and is very successful, helping to reduce the fuzzy rule base and thus promoting 

better evaluation at the type reduction stage.  

 

 

8.2. Contributions 

The final outputs of this work are listed below: 

I. Design and analysis of a binary successive search technique to locate straight and 

slightly curved segments in fuzzy sets based on a required output error limit.   

II. Design of a method to detect and process unwanted iterations happening within 

the iterative KM type reduction due to discontinuity caused by approximations.  

III. Design of an accelerated version of the enhanced KM-IF type reduction 

procedure. Better initialisations are proposed, which can be used for left and right 

uncertainty calculations. Shorter searching distances are used, individually, for 

the left and for the right uncertainty calculations.   

IV. Design of a procedure to reduce non-regular fuzzy sets. Analysis and 

implementation of this procedure to reduce multiple fuzzy sets in one go. This 

one-go procedure excludes redundancy of the overlapped sections to achieve 

performance time-gain approaching 200%, in comparison to the enhanced KM-IF 

type reduction procedure. 

V. Design of a simple ambiguity resolving method and a dynamic sensing scheme, 

for autonomous wall-following behaviours, to minimise the fuzzy rule-base 

complexity. That is useful to get accurate performance measurement at the type 

reduction and defuzzification stages. 
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8.3. Future Work 

 Although this work has successfully managed to cut some of the high cost 

associated with the accurate type reduction procedures, it is possible to do more work for 

the sake of type-reductions and autonomous vehicle controllers. Those are outlined in the 

following items as a future work, thus someway to be done. 

 Parallel Processing. 

 Although, it is suggested by this research to use the binary successive 

search, but it is being implemented using sequential procedure running in a 

single microprocessor. However, building parallel type reduction procedures is 

a promising research field for this searching technique and for the adaptive 

integrations, in general.  

 Using Field-Programmable Gate Array chips. 

 In spite of the high speed and low cost of the microprocessors, it can be 

seen how many control systems are migrating to the field-programmable gate 

array chips (FPGA). This is a very promising working field for the type 

reduction calculations because the FPGA chips can offer a simple multiply 

and add logic gate arrays. This is an essential aspect to achieve excellent 

throughput rate of the type reduction calculations.  

 Negative Fuzzy Rules. 

 It is known that fuzzy rule bases are trying to mimic the human 

knowledge and decision-making, but human negative knowledge like” Don’t 

do this----- again, IF you are-----”  is very important way to define new fuzzy 

rules, which could be very small and efficient.  By this way, dozens of rules 

that are using the form “ IF this------ THEN do this-----” can be omitted.  This 

approach is very suitable for fuzzy re-enforcement learning systems. Such 

systems are very important for autonomous vehicles approaching and 

discovering new environments.  
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 Circular Universe. 

 Throughout most fuzzy systems, linear data universes are used. This is 

very much like the rectangular coordination system. However, many physical 

quantities around us can be presented much better using polar coordinating 

system. For example, the obstacle positions around an autonomous vehicle. In 

such/similar cases, it will be more efficient to use circular fuzzy type-2 sets.  

The idea of using such circular fuzzy set is new, and it has only been 

implanted in some systems using FT1  sets. Thus, there is a big research field 

to be covered relating to implementing the circular fuzzy controllers, building 

the required rule bases, performing the type reduction etc...  
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Appendix-A 

 The performance time-gain tests result for the proposed nonlinear approximated 

type reduction at different allowance levels and calculation clearance of the second 

iteration.  



 

139 A 

 

 

 
Figure  8-1: Average time-gain for the approximated type reduction using Gaussian 

IFT2 set having width of 10% and fuzzy transition step size of 10%, at different 

approximation allowances and various integration multipliers of the second 

iteration. 
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Figure  8-2: Average time-gain for the approximated type reduction using Gaussian 

IFT2 set having width of 20% and fuzzy transition step size of 10%, at different 

approximation allowances and various integration multipliers of the second 

iteration. 
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Figure  8-3: Average time-gain for the approximated type reduction using 

Gaussian IFT2 set having width of 40% and fuzzy transition step size of 10%, at 

different approximation allowances and various integration multipliers of the 

second iteration. 
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Figure  8-4: Average time-gain for the approximated type reduction using 

Gaussian IFT2 set having width of 10% and fuzzy transition step size of 20%, 

at different approximation allowances and various integration multipliers of the 

second iteration. 
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Figure  8-5: Average time-gain for the approximated type reduction using 

Gaussian IFT2 set having width of 20% and fuzzy transition step size of 20%, 

at different approximation allowances and various integration multipliers of the 

second iteration. 
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Figure  8-6: Average time-gain for the approximated type reduction using 

Gaussian IFT2 set having width of 40% and fuzzy transition step size of 20%, at 

different approximation allowances and various integration multipliers of the 

second iteration. 
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Appendix-B 

 The results of the maximum error tests that are performed on the proposed 

nonlinear approximated type reduction using all the possible firing levels are presented 

in this appendix. The used firing levels are transitioned using two different steps, 10%, 

and 20%. A wide span of allowance levels and calculation clearance, at the second 

iteration, are used with different fuzzy interval widths to cover all the possible practical 

cases. 
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Figure  8-7: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 10%  and incremental fuzzy transition step size of 

10%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  8-8: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 20%  and incremental fuzzy transition step size of 

10%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  8-9: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 40%  and incremental fuzzy transition step size of 

10%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  8-10: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 10%  and incremental fuzzy transition step size of 

20%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  8-11: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 20%  and incremental fuzzy transition step size of 

20%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  8-12: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 40%  and incremental fuzzy transition step size of 

20%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  8-13: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 10%  and decrementing fuzzy transition step size of 

10%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  8-14: Maximum error of the approximated type reduction for using Gaussian IFT2 

set having interval width of 20%  and decrementing fuzzy transition step size of 10%, at 

different approximation allowance multipliers during the second iteration calculations. 
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Figure  8-15: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 40%  and decrementing fuzzy transition step size 

of 10%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Figure  8-16: Maximum error of the approximated type reduction for using 

Gaussian IFT2 set having interval width of 10%  and decrementing fuzzy 

transition step size of 20%, at different approximation allowance multipliers 

during the second iteration calculations. 
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Figure  8-17: Maximum error of the approximated type reduction for using 

Gaussian IFT2 set having interval width of 20%  and decrementing fuzzy transition 

step size of 20%, at different approximation allowance multipliers during the 

second iteration calculations. 
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Figure  8-18: Maximum error of the approximated type reduction for using Gaussian 

IFT2 set having interval width of 40%  and decrementing fuzzy transition step size 

of 20%, at different approximation allowance multipliers during the second iteration 

calculations. 
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Appendix-C 

The accelerated EKM type reduction routine to locate the left and right uncertainty 

points, implemented using Java language. 

 

     int               initialNuminatorL = 0; 

     int               initialDeNominatorL = 0; 

                        initialDeNominatorL=initialDeNominatorL + LMF[outNo][0]/2;  // Using 

the first point in the set 

                    for(int i=1;i< MaxHorizontalIndex -1;i++){ 

                        initialNuminatorL=initialNuminatorL+LMF[outNo][i]*i;  // For the Left 

Point - the LMF is used 

                        initialDeNominatorL=initialDeNominatorL+ LMF[outNo][i]; 

                    } 

                    initialNuminatorL=initialNuminatorL+LMF[outNo][MaxHorizontalIndex -

1]*(MaxHorizontalIndex -1)/2; 

                    initialDeNominatorL=initialDeNominatorL+ 

LMF[outNo][MaxHorizontalIndex -1]/2; 

 

                    initialNuminatorR= initialNuminatorL; 

                    initialDeNominatorR=initialDeNominatorL; 

                    //----------------------------calculate the left point using the lower-MF ----------

-- 

                    newLeftPoint= MaxHorizontalIndex; // Start from the rightmost point 

                    int setIndex=0;     // Incremental indexing 

                    do{ 

                        dU=(UMF[outNo][setIndex]-LMF[outNo][setIndex]); 

                        initialNuminatorL=initialNuminatorL+setIndex * dU; 

                        initialDeNominatorL=( initialDeNominatorL + dU); 

                        oldLeftPoint=newLeftPoint;//Save 

                        newLeftPoint=initialNuminatorL/initialDeNominatorL; // Update 

                        setIndex++;  // Incremental indexing 

                    }while (setIndex< MaxHorizontalIndex && ((newLeftPoint <= 

oldLeftPoint))); 

 

                    // ------ Calculate the right point ----------- 

 

                    newRPoint=0; 

                    setIndex= MaxHorizontalIndex; 

                    do{ setIndex--;  // Start from the rightmost point 

                        dU=(UMF[outNo][setIndex]-LMF[outNo][setIndex]); 

                        initialNuminatorR=initialNuminatorR + setIndex*dU; 
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                        initialDeNominatorR=( initialDeNominatorR+dU); 

                        oldRightPoint=newRPoint;// Save old point 

                        newRPoint= initialNuminatorR/initialDeNominatorR; // Update 

 

                    }while (setIndex>0 &&((newRPoint >= oldRightPoint ))); 

                    //------------------------------------------- 

                    int LeftResult= oldLeftPoint; 

                    int rightResult= oldRightPoint; 
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Appendix-D 

The trapezoidal rule integration using successive binary search implemented using 

Java language. 

. 

    /** 

     *  

     * @param startP   Trapezoid rule start point 

     * @param endPoint     Trapezoid rule end point 

     * @param set      Trapezoid rule acting set 

     * @param outNo    Trapezoid rule output set number 

     * @return         Array contains Numerator@0, denominator@1 using int precision 

     */ 

    static public void   trapezo(int startP, int endPoint, int set [][], int outNo, int 

tolerance){ 

        int i =startP; 

        int i0; 

        int dy1; 

        int step; 

        int offset; 

        while (i< endPoint ) { //  The (i) Roles over the universe of discourse. 

            i0=i;            // Save Stat point 

            i++; 

            dy1=(set[outNo][i]) - set[outNo][i0];// Using Up set for the left side 

            step =(endPoint-i);// Math.min(1, (endPoint-i));//  Start step = remaining space 

div2 

            while(step>1){ 

                step=step>>1; // Divide by 2 

                i=i+step; 

                if(((Math.abs(((i-i0)*dy1)-(set[outNo][i]-set[outNo][i0]))>tolerance))){ 

                    i=i-step; 

                } 

            } 

            int temp1; 

            int temp2; 

            offset=i-i0; 

            num_deNum[1]=num_deNum[1]+ 

((temp1=set[outNo][i0])+(temp2=set[outNo][i]))*offset; // Save the denominator 

            num_deNum[0]=num_deNum[0]+(i0*temp1  +  i*temp2)*offset;   // Save the  

numerator 

        } 

        } 
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