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Abstract 

 
Titi monkeys (Callicebinae; Pitheciidae) are a diverse, species-rich group of New 

World primates with an extensive range across South America. They diverged from 

their sister clade (Pitheciinae) in the early Miocene, and thus, they comprise one of 

the oldest lineages of extant New World primates. To date, there has been no 

comprehensive molecular investigation of the phylogenetic relationships among 

Callicebinae species and, consequently, the evolutionary history of this diverse clade 

remains poorly studied. The overall goal of this PhD dissertation is, therefore, to 

provide insight into the evolutionary and biogeographic history of the subfamily 

Callicebinae using DNA sequence data. To infer phylogeny and estimate divergence 

times, we generated sequence data for 50+ wild-caught titi monkey specimens using 

multi-locus Sanger sequencing (22 nuclear and mitochondrial loci, > 14,500 bp) and 

reduced representation, genome-wide double-digest restriction-associated DNA 

(ddRAD) sequencing. A statistical biogeographical approach was employed to 

reconstruct the biogeography of Callicebinae and investigate the processes 

responsible for shaping present day distributions. Furthermore, the ddRAD sequence 

dataset was used to provide additional insight into phylogenetic relationships and 

genetic structure among taxa of the moloch group. Our phylogenetic and 

biogeographic results indicate that titi monkeys are divided into three distinct clades 

that diverged in the late Miocene through vicariance of a widespread ancestral range. 

Species relationships were generally recovered with strong support, and species-level 

diversification in the Amazonian clades was characterised by sequential founder 

events across river barriers in the Pleistocene. We propose a revised genus-level 

classification for Callicebinae that recognises three genera (Cheracebus, Callicebus, 

Plecturocebus) based on the results from the phylogenetic analyses, as well as 

morphological, karyological and biogeographic evidence. Overall, this study 

represents a major advance in our understanding of the evolutionary history of this 

strikingly poorly studied group, with implications for classification and research 

priorities.  
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Chapter 1: Introduction 

 

1.1 Phylogenetic systematics 

A central aim of biological research is to describe and explain the diversity of life, 

however, in order to communicate effectively about biological diversity, a system of 

classification is necessary. In the 18th century, Carl Linnaeus devised one of the first 

comprehensive classification systems, which systematically categorised living 

organisms into a ranked hierarchy based on structural similarity and standardised the 

use of formal binomial nomenclature. With the advent of the theory of evolution and 

the modern evolutionary synthesis, this pre-Darwinian Linnaean system has been 

gradually reworked into a system of classification based on 

the evolutionary relationships between organisms (Mayr & Bock, 2002; Mayr & 

Provine, 1998). Phylogenetic systematics is the study of evolutionary history 

involving the reconstruction of evolutionary relationships among taxa and consequent 

application to the classification of organisms (Wiley & Lieberman, 2011).  

Phylogenetics operates on the principle that all living organisms have 

descended from a single common ancestor through patterns of branching and 

divergence (Hennig, 1966), resulting in a tree-like hierarchy of relatedness among 

taxa, with closely related lineages sharing a more recent common ancestor. 

Phylogenies are reconstructions of these branching patterns, typically representing 

evolutionary hypotheses regarding the order of divergence (branch order) and the 

amount of evolutionary change (branch lengths), and provide a powerful framework 

within which to study evolutionary history (Baum et al., 2005; Gregory, 2008). 

Traditional approaches to phylogenetics relied primarily on morphological data to 

infer evolutionary relationships, however, the limitations of morphological characters, 

such as complex evolutionary change and the difficulty in obtaining large 

mathematical datasets, became a major driving force behind the paradigm shift 

towards the use of molecular data (Nei & Kumar, 2000). At the end of the 20th 

century, advances in molecular biology and sequencing technologies led to the 

dominance of molecular markers for estimation of phylogeny and the rapid growth of 

molecular phylogenetics (San Mauro & Agorreta, 2010). The ability to generate large 
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and unambiguous molecular datasets amenable to statistical analysis has 

revolutionised our understanding of the evolutionary relationships among taxa, and 

thus, our ability to establish taxonomic classifications representing patterns of 

diversification.  

Biological diversity is a continuum and the spectrum of diversity among any 

group of organisms cannot be fully accounted for by discrete units in a hierarchical 

classification system. The diversification process can also be more complex than 

reconstructed in a strictly bifurcating tree of life (e.g., Suh et al., 2015; Willis, 2017). 

Even considering such limitations, systematics is the primary language for 

communicating about diversity, and it is important that organisms are classified in a 

manner that attempts to represent, if it cannot truly reflect, the patterns and processes 

of diversification. 

1.2 Molecular phylogenetics 

Most early molecular phylogenies were inferred from a single locus, this however 

results in the reconstruction of a gene tree rather than an evolutionary tree of the 

species (Nei, 1987; Neigel & Avise, 1986; Tateno et al., 1982). Species trees can 

differ significantly from gene trees owing to processes such as incomplete lineage 

sorting and interspecific gene flow, which are especially problematic when 

considering lineages that are closely related or potentially hybridising (Avise et al., 

1983; Edwards, 2009; Maddison, 1997; Pamilo & Nei, 1988). Phylogenetics has since 

progressed to a multi-gene approach that can increase the likelihood of identifying 

species trees through the use of multiple independent loci (Pamilo & Nei, 1988; 

Rokas et al., 2003; Takahata, 1989; Wu, 1991). Increasing the number of loci helps to 

control for the stochastic forces affecting individual genes (Maddison & Knowles, 

2006), and results in phylogenies with increased resolution and confidence (e.g., 

Betancur-R et al., 2013; Murphy et al., 2001; Perelman et al., 2011; Yi et al., 2014).  

With the advance of next-generation sequencing (NGS) technologies, 

phylogenetics has entered a new era where genome-wide or whole-genome data is 

used to reconstruct evolutionary history (phylogenomics; Delsuc et al., 2005). NGS is 

a more cost-effective method of producing large sequence datasets than traditional 

Sanger sequencing approaches and the high-coverage capacity can reduce stochastic 

errors and enhance resolution power (Shendure & Ji, 2008). The power of genome-
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wide data to address difficult phylogenetic problems has been clearly demonstrated 

(e.g. Botero-Castro et al., 2013; Escudaro et al., 2014; Wagner et al., 2013). Large 

molecular datasets, however, can increase systematic error owing to model violation 

or misspecification, posing significant statistical and computational challenges to the 

estimation of a reliable phylogeny (Nishihara et al., 2007; Rannala & Yang, 2008; 

Rodríguez-Ezpeleta et al., 2007). This has led to much recent discussion about the 

most appropriate methods for the estimation of phylogeny from multi-locus and 

genomic datasets (e.g., Edwards et al., 2016; Liu et al., 2009; Liu et al., 2015; 

Simmons & Gatesy, 2015; Springer & Gatesy, 2016). The traditional approach 

involves the concatenation of all loci into a super-matrix and analysed simultaneously 

(Kluge, 1989; de Queiroz & Gatesy, 2007). One of the advantages of concatenation is 

robustness to missing data as taxa are represented by a large number of informative 

characters even when sequence data is incomplete (Delsuc et al., 2005). The 

development of partitioning methods that allow each partition to evolve under a 

different model, thus taking into account across gene-heterogenity, have enhanced our 

ability to extract the phylogenetic signal from concatenated sequences (Lanfear et al., 

2012; Nylander et al., 2004).  

Many strongly supported phylogenetic trees that include a large number of 

diverse taxa have been inferred using this approach (e.g Betancur-R et al., 2013; 

Perelman et al., 2011), however, differing gene histories can lead concatenation to 

infer well supported but inaccurate phylogenies (Degnan & Rosenberg, 2009; 

Edwards, 2009; Kubatko & Degnan, 2007; Roch & Steel, 2015). This has led to the 

recent growth of coalescent-based species tree methods that assume a multispecies 

coalescent model which can account for gene tree discordance (Edwards, 2009; 

Edwards et al., 2016; Liu et al., 2015; Ogilvie et al., 2016b). Although a wide variety 

of approaches are becoming available (e.g. Chifman & Kubatko, 2014; Larget et al., 

2010; Mirarab et al., 2014), coalescent-based methods where gene trees and species 

trees are coestimated in a Bayesian framework have received the widest support 

(Bryant et al., 2012; Heled & Drummond, 2010; Leaché & Rannala, 2011; Liu, 2008; 

Liu & Pearl, 2007; Ogilvie et al., 2016a,b). As phylogenies inferred through 

concatenation and coalescent-based methods are often consistent, some recent studies 

have questioned the emerging consensus that multispecies coalescent models are 

consistently superior (Gatesy & Springer, 2014; Springer & Gatesy, 2016; Tonini et 

al., 2015). Regardless of comparable results, Liu et al. (2015; p. 26) note that 
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justification for the superiority of coalescent-based methods “lies in their 

acknowledgement of fundamental genetic processes inherent in all organisms” (i.e., 

that genes are stochastically independent), resulting in more realistic models for 

phylogenetic inference. It has also been suggested that concatentation can be viewed 

as a special case of the multispecies coalescent model in which all gene trees are 

identical and, therefore, criticism of multispecies coalescent models can be extended 

to concatention (Edwards et al., 2016). Phylogenetic analyses of large molecular 

datasets are limited still by a trade-off between model accuracy and computational 

constraints. Concatenation will remain a useful and important approach to 

phylogenetic tree reconstruction for many researchers until more computationally 

efficient models are available for coalescent-based species tree estimation with large 

datasets (Bayzid & Warnow, 2013; Liu et al., 2015).  

In order to more accurately reconstruct the complex patterns of lineage 

diversification among organisms, the field of molecular phylogenetics is continuing to 

advance through novel sequencing technologies, increased computational power and 

improved methods of phylogenetic inference. The availability of tremendous amounts 

of sequence data and the consequent revision of our understanding of evolutionary 

history is of significance to many areas of research including systematics, 

evolutionary biology, historical biogeography, and conservation. 

1.3 Titi monkeys (Callicebus) 

Titi monkeys, Callicebus Thomas, 1903, are small to medium-sized (1–2 kg) New 

World primates of the family Pitheciidae (subfamily Callicebinae). They diverged 

from their sister clade, the Pitheciinae, in the Miocene, c. 20 Ma (Perelman et al., 

2011; Schrago et al., 2013; Springer et al., 2012;), thus Callicebus comprise of one of 

the oldest lineages of extant New World primates. They conform to a classic pattern 

of social monogamy and are characterised by several unique behaviours, such as the 

antiphonal duet call of the pair-bonded adults, extensive male involvement in infant 

care, and the affiliative tail-twining behaviour (Fragaszy et al., 1982; Moynihan, 

1966; Norconk, 2011; Robinson, 1979).  

Callicebus is the most species rich of any primate genus, 31 were listed by 

Ferrari et al. (2013), and since, two new species have been described (Callicebus 

miltoni, Dalponte et al., 2014; C. urubambensis, Vermeer & Tello-Alvarado, 2015), 
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and C. toppini Thomas, 1914, previously considered a synonym of C. cupreus, has 

been reinstated (Vermeer & Tello-Alvarado, 2015). These species form a diverse 

group of primates, showing interspecific differences in body size, pelage colour, 

cranial and post-cranial dimensions, and chromosome number (Bueno & Defler, 

2010; Hershkovitz, 1988, 1990; Kobayashi, 1995; Van Roosmalen et al., 2002). 

Although the first species of titis were described in the early 19th century, they were 

generally included in the genus Callithrix É. Geoffroy Saint-Hilaire, 1812. It was 

almost 100 years before the name Callicebus Thomas, 1903, was proposed, which has 

been in use ever since.  

Hershkovitz (1963, 1988, 1990) established the basis for the present 

classification for the genus. In 1963, he recognised just 10 taxa across two polytypic 

species (Callicebus moloch and C. torquatus). This view of titi monkey diversity 

prevailed until Hershkovitz’s revisions in 1988 and 1990. His analysis of around 

1,200 museum specimens resulted in the recognition of 25 taxa across five polytypic 

and eight monotypic species, many of which were resurrected from previous 

descriptions. He also arranged the taxa in four clusters that he labelled the modestus, 

donacophilus, moloch and torquatus species groups. These reviews by Hershkovitz 

(1963, 1988, 1990) were peerless studies aiming to investigate and organise all extant 

forms of Callicebus, a difficult task in light of their extensive phenotypic variation, 

and his work still forms an integral part of much of our knowledge of this genus 

today.  

 To infer phylogenetic relationships, Kobayashi (1995) carried out a 

morphometric analysis of cranial measurements for 23 taxa and modified 

Hershkovitz’s (1988, 1990) species groups. He maintained the torquatus and 

donacophilus groups, but included C. modestus in the latter, and split the moloch 

group into three: the personatus group, the moloch group and the cupreus group. As 

other characters, such as pelage colouration, karyotype, and geographic range, were 

consistent with this classification, he argued that these groups represented 

monophyletic clades. Kobayashi (1995) suggested that the donacophilus, moloch, and 

cupreus groups were closely related, while the personatus and torquatus groups 

presented a higher degree of character differentiation. The current taxonomic 

arrangement was established in the review by Van Roosmalen et al. (2002); they 

followed the species groups proposed by Kobayashi (1995) but listed all 28 

recognised taxa as valid species, as proposed by Groves (2001; see also Kobayashi & 
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Langguth, 1999). Five new species have been described since 2002, and C. toppini 

Thomas, 1914, has been reinstated (Vermeer & Tello-Alvarado, 2015). 

  Species-level classification has focused particularly on pelage colouration 

(e.g., Groves, 2001, 2005; Hershkovitz, 1963, 1988, 1990; Van Roosmalen et al., 

2002), but there are evident limitations to this phenotypic system in light of the 

considerable intraspecific and within-population variation (e.g., Aquino et al., 2008; 

Auricchio, 2010; Defler, 2012; Heymann et al., 2002). Intraspecific variation, 

particularly in traits used as diagnostic characters, has led to controversy surrounding 

Callicebus taxonomy and species identification. Auricchio (2010) analysed museum 

specimens for 25 species of Callicebus and found that C. moloch, C. cupreus and C. 

hoffmannsi possessed polymorphic phenotypes. Heymann et al. (2002) noted the 

inconsistency in hand colouration reported for C. lucifer, and similarly, Aquino et al. 

(2008) found phenotypic differences in the throat collar and hand colouration between 

populations of this species. Defler (2012) also found that individuals on both sides of 

the Rio Caquetá in Colombia were often indistinguishable despite apparently 

belonging to two species (C. lucifer and C. lugens). To comprehend the diversity of 

the titis, congruency is required between phenotypic traits and additional characters, 

such as DNA sequence data. 

 Some recent phylogenetic studies based on large molecular datasets have 

clarified high-level (genus and family) taxonomic relationships for primates (Jameson 

Kiesling et al., 2015; Perelman et al., 2011; Springer et al., 2012). These higher-level 

phylogenies reveal support for some of Kobayashi’s (1995) morphological species 

groups, as well as surprisingly deep divergence dates (Miocene) for the major 

Callicebus clades. However, many specimens were of captive origin and few titi 

species were included in these studies, limiting their usefulness in inferring species-

level relationships. To date, there has been no explicit molecular investigation of the 

phylogenetic relationships of Callicebus species and, consequently, the evolutionary 

history of titi monkeys remains poorly studied, our understanding of their diversity is 

limited, and the current taxonomy has yet to be tested using molecular evidence.  
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1.4 Biogeography of the titi monkeys 

Titis have an extensive range spread across nearly all ecogeographic zones inhabitable 

by non-human primates in the Neotropics (Jameson Kiesling et al., 2015; except 

Mesoamerica), from the foothills of the northern Andes in Colombia to the tropical 

forests of the Amazon and Orinoco basins, the Atlantic forest region of Brazil, forest 

patches in the xerophytic Caatinga of northeast Brazil, and the Beni Plain in northern 

Bolivia, extending south as far as the Chacoan forests south and east of Santa Cruz in 

Bolivia and into northeast Paraguay (Defler, 2004; Hershkovitz, 1990; Martínez & 

Wallace, 2010; Rumiz, 2012; Stallings et al., 1989; Van Roosmalen et al., 2002). 

  Most of the Callicebus species groups show distinct distributional patterns. 

The personatus group are entirely extra-Amazonian and isolated from all other titis by 

over 500km of drier habitats (the Cerrado shrubby savannas). They are endemic to 

eastern Brazil from south of the Rio São Francisco as far as the state of São Paulo, 

predominantly in the Atlantic Forest biome but also in neighbouring arboreal 

Caatinga regions. The torquatus group occur in the Amazon and Orinoco basins from 

the eastern foothills of the Andes to the Rio Branco and the Rio Purus (north and 

south of the Rio Amazonas, respectively). The moloch and cupreus groups occur 

throughout the southern and western Amazon basin, as far east as the Rio Tocantins, 

as well as some isolated regions in Colombia. Sympatry among titis occurs between 

species of torquatus and moloch/cupreus groups in the Amazon, west of the Rio 

Purus. The donacophilus group occupy forest patches and gallery forests in wooded 

savannas, the Pantanal, and Chaco scrublands of Bolivia, Brazil, Peru and Paraguay 

(Ferrari et al., 2013; Hershkovitz, 1990; Printes et al., 2013; Van Roosmalen et al., 

2002). In light of their broad and diverse distribution, it is notable that titi monkeys 

are absent from both Central America and the Guiana Shield (from east of the Rio 

Branco), and they have a large gap in their distribution in the Cerrado biome of 

central Brazil. 

  There have been multiple independent radiations into drier habitats, such as C. 

barbarabrownae, a member of the personatus group found in the Caatinga (Printes et 

al., 2013), and C. donacophilus and C. pallescens, members of the donacophilus 

group in the Guaporé grasslands and the Paraguayan Chaco scrublands (Ferrari et al., 

2000; Rumiz, 2012). Larger rivers in Amazonia frequently delimit the geographic 

distribution of titi monkey species, and a recent study suggested that rivers can act as 
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isolating barriers for sister taxa, promoting vicariance in this group (Boubli et al., 

2015). In light of the above, the biogeography of the genus Callicebus is of particular 

interest in order to better understand their spatial diversification and the processes 

responsible for shaping present day distributions. There have been few attempts, 

however, to understand the biogeographic history of titi monkeys, and most existing 

evaluations are confounded by taxonomic uncertainty and a lack of information 

regarding species relationships (e.g., Hershkovitz, 1963, 1988; Kinzey, 1982; Kinzey 

& Gentry, 1979).  

1.5 Research objectives  

It is over 20 years since Kobayashi (1995) drew our attention to the complete dearth 

of information surrounding Callicebus phylogenetic relationships and evolutionary 

history, yet, his morphological phylogenetic analysis has remained the only species-

level phylogeny available. In the same time-period, Callicebus has emerged as the 

most species-rich of all primate genera (34 species), partially owing to the elevation 

of all subspecies to species status. Despite the availability of genetic material for 

many taxa and the rapid advance of molecular phylogenetics, molecular studies have 

been limited to higher-level primate phylogenies, which do not provide a detailed 

understanding of species-level relationships within this diverse group. There has been 

no molecular genetic investigation with a focus on Callicebus, and as such, 

phylogenetic relationships remain contentious and an understanding of their genetic 

diversity and patterns of diversification is lacking. The paucity of information 

regarding the evolutionary history of Callicebus requires attention as it impedes 

scientific communication and raises challenges in related fields of research. For 

example, species-level classification relies on variation in pelage colouration to 

differentiate between taxa, and consequently, there is controversy surrounding species 

identification and validity. It is over a decade since the most recent comprehensive 

taxonomic reviews of the genus (Groves, 2005; Van Roosmalen et al., 2002), and 

these proposals have yet to be evaluated using molecular evidence. Explicit 

phylogenetic hypotheses are also a necessary component for understanding the 

patterns of spatial diversification, and thus, study of the biogeography of titis is 

hindered by the absence of a species-level phylogeny.  
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The encompassing goal of this thesis was, therefore, to employ molecular data 

to provide insight into the evolutionary history and biogeography of Callicebinae, one 

of the most strikingly poorly studied groups of primates. The following objectives 

were identified: 

• Generate a multi-locus molecular dataset using Sanger sequencing to infer 

phylogeny and divergence times for Callicebus species and species groups, 

and revise the taxonomy of the genus based on molecular and morphological 

evidence (Chapter 2). 

• Employ a statistical biogeographical approach to perform ancestral-area 

estimations across a time-calibrated phylogeny using the multi-locus data and 

reconstruct titi monkey biogeographic history (Chapter 3).  

• Generate a genome-wide molecular dataset using double digest restriction-site 

associated DNA sequencing (ddRADseq) to infer phylogeny and divergence 

times, assess genetic structure, and test for interspecific gene flow (Chapter 4).  
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Chapter 2: Phylogenetic relationships of the New World titi 

monkeys (Callicebus): First appraisal of taxonomy based on 

molecular evidence 

 

2.1 Abstract 

Titi monkeys, Callicebus, comprise the most species-rich primate genus—34 species 

are currently recognised, five of them described since 2005. The lack of molecular 

data for titi monkeys has meant that little is known of their phylogenetic relationships 

and divergence times. To clarify their evolutionary history, we assembled a large 

molecular dataset by sequencing 20 nuclear and two mitochondrial loci for 15 species, 

including representatives from all recognised species groups. Phylogenetic 

relationships were inferred using concatenated maximum likelihood and Bayesian 

analyses, allowing us to evaluate the current taxonomic hypothesis for the genus. Our 

results show four distinct Callicebus clades, for the most part concordant with the 

currently recognised morphological species-groups—the torquatus group, the 

personatus group, the donacophilus group, and the moloch group. The cupreus and 

moloch groups are not monophyletic, and all species of the formerly recognized 

cupreus group are reassigned to the moloch group. Two of the major divergence 

events are dated to the Miocene. The torquatus group, the oldest lineage, diverged c. 

11 Ma; and the Atlantic forest personatus group split from the ancestor of all 

donacophilus and moloch species at 8–9 Ma. Considering molecular, morphological 

and biogeographic evidence, we propose a new genus level taxonomy for titi 

monkeys: Cheracebus (Byrne et al., 2016) in the Orinoco, Negro and upper Amazon 

basins (torquatus group), Callicebus Thomas, 1903, in the Atlantic Forest (personatus 

group), and Plecturocebus (Byrne et al., 2016) in the Amazon basin and Chaco region 

(donacophilus and moloch species groups). 
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2.2 Introduction 

2.2.1 Background 

Titi monkeys, Callicebus Thomas, 1903, are small to medium-sized (1–2 kg) New 

World primates of the family Pitheciidae. They comprise an old platyrrhine radiation 

that diverged from their sister clade, the Pitheciinae, in the Miocene, c. 20 Ma 

(Perelman et al., 2011; Schrago et al., 2013; Springer et al., 2012). Callicebus species 

occur only in South America, with an extensive range from the foothills of the 

northern Andes in Colombia to the tropical forests of the Amazon and upper Orinoco 

basins, the Atlantic forest region of Brazil, forest patches in the xerophytic Caatinga 

of northeast Brazil, and the Beni Plain in northern Bolivia, extending south as far as 

the Chacoan forests south and east of Santa Cruz in Bolivia and into northeast 

Paraguay (Defler, 2004; Hershkovitz, 1990; Martínez & Wallace, 2010; Rumiz, 2012; 

Stallings et al., 1989; Van Roosmalen et al., 2002).  

 Callicebus is the most species rich of any primate genus; 31 were listed by 

Ferrari et al. (2013). Two new species have been described since then, Callicebus 

miltoni Dalponte et al., 2014 and C. urubambensis Vermeer & Tello-Alvarado, 2015. 

Vermeer & Tello-Alvarado (2015) also reinstated C. toppini Thomas, 1914, for long 

incorrectly considered a synonym of C. cupreus. These 34 titi species form a highly 

diverse group of primates, showing interspecific differences in body size, pelage 

colour, cranial dimensions, and chromosome number (Bueno & Defler, 2010; 

Hershkovitz, 1988, 1990; Kobayashi, 1995; Van Roosmalen et al., 2002). Kobayashi 

(1995) employed cranial morphometrics to propose the current species-group 

arrangement for Callicebus taxa, which he suggested was consistent with variation in 

other characters, such as pelage colouration, karyotype, and geographic range. 

Species-level classification, however, has focused particularly on pelage colouration 

(e.g., Groves, 2001, 2005; Hershkovitz, 1963, 1988, 1990; Van Roosmalen et al., 

2002), but there are evident limitations to this phenotypic system in light of the 

considerable intraspecific and within-population variation (e.g., Aquino et al., 2008; 

Auricchio, 2010; Defler, 2012; Heymann et al., 2002). To comprehend the real 

taxonomic diversity of the titis, congruency is required between phenotypic traits and 

additional characters, such as DNA sequence data. 

 Some recent phylogenetic studies based on large molecular datasets have 

clarified high-level (genus and family) taxonomic relationships for primates (Jameson 
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Kiesling et al., 2015; Perelman et al., 2011; Springer et al., 2012). These higher-level 

phylogenies reveal surprisingly deep divergence dates (Miocene) for the major 

Callicebus clades. However, most specimens were of captive origin and rather few titi 

species were included in these studies, limiting their usefulness in inferring species-

level relationships. To date, there has been no explicit molecular investigation of the 

phylogenetic relationships of Callicebus species and, consequently, the evolutionary 

history of titi monkeys remains poorly studied. The current taxonomy has yet to be 

tested using molecular evidence.  

 Here, we present a molecular phylogeny of the genus Callicebus based on 

DNA sequence data from 20 independent nuclear loci and two mitochondrial loci. In 

taking a molecular approach, we investigate phylogenetic relationships and 

divergence times among 15 species (with representatives of all species groups sensu 

Kobayashi, 1995) using concatenated Bayesian and maximum likelihood (ML) 

analyses. In contrast to high-level primate phylogenies (Jameson Kiesling et al., 2015; 

Perelman et al., 2011; Springer et al., 2012), most of the Callicebus species included 

this study are represented by multiple wild-caught specimens of known provenance 

and taxonomic identification. Taking into account the results from our phylogenetic 

analyses, as well as morphological and biogeographic evidence, we suggest a revised 

taxonomy that recognises three genera of titi monkey in the subfamily Callicebinae 

that are largely coherent with Kobayashi’s (1995) morphological species groups. 

Below, we review changes to the taxonomy of the titis since Hershkovitz’s (1963, 

1988, 1990) reviews. 

 

2.2.2 Callicebus taxonomy 

Simia Linnaeus, C. 1758. Syst. Nat. 10th ed., 1: 25. In part. Humboldt, A. von. 1811. 

Rec. Obs. Zool. Anat. Comp. 1: 319. Simia lugens (= Callicebus lugens). 

Cebus Erxleben, C. P. 1777. Systema Regni Anim. Mammalia, p. 44. In part. 

Hoffmannsegg, G. von. 1807. Mag. Ges. Naturf. Freunde, Berlin, 9: 97. Cebus 

moloch (= Callicebus moloch). 

Callitrix Hoffmannsegg, G. von. 1807. Mag. Ges. Naturf. Fr., Berlin, 10: 86. Type 

species by monotypy Callitrix torquata Hoffmannsegg. Name pre-occupied by 

Callitrix Desmarest, 1804, a junior synonym of Cebus Erxleben, 1777. 

Callithrix Geoffroy Saint-Hilaire, É. 1812. Suite en Tableau des Quadrumanes. Ann. 

Mus. Hist. Nat. Paris, 19: 112. Included Callithrix sciureus (Linnaeus) (= Saimiri 
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sciureus), Callithrix personnatus [sic] É. Geoffroy Saint-Hilaire (= Callicebus 

personatus), Callithrix lugens (Humboldt), Callithrix amictus É. Geoffroy Saint-

Hilaire, Callithrix torquatus (Hoffmannsegg), and Callithrix moloch 

(Hoffmannsegg). Name pre-occupied by Callithrix Erxleben, 1777, for the 

marmosets, Callitrichidae Thomas, 1903. 

Saguinus Lesson, R. P. 1827. Manuel de mammalogie. J. B. Baillière, Paris: 56. 

Included all species listed by É. Geoffroy Saint-Hilaire (1812) for Callithrix, 

along with Saguinus melanochir (Weid-Neuwied) (= Callicebus melanochir), and 

Saguinus infulatus Kuhl (= Aotus infulatus). Name pre-occupied by Saguinus 

Hoffmannsegg, 1807, for the tamarins, Callitrichidae. 

Callicebus Thomas, O. 1903. Ann. Mag. Nat. Hist., 7th series, 12: 456. Type species 

Simia personata É. Geoffroy Saint-Hilaire, 1812. 

 

In the 1800s, titis were generally included in the genus Callithrix É. Geoffroy Saint-

Hilaire, 1812. Thomas (1903) pointed out that the name was pre-occupied by 

Callithrix Erxleben, 1777 (the currently accepted generic epithet for the marmosets) 

and proposed the name Callicebus Thomas, 1903, which has been in use ever since.  

 Goodman et al. (1998) suggested that members of the torquatus species group 

should be placed in a subgenus due to the last common ancestor with Callicebus 

moloch having an estimated age of more than 6 Ma. They suggested the name 

Torquatus. Groves (2001, 2005) listed Torquatus as a subgenus of Callicebus 

Thomas, 1903, with Callicebus torquatus (Hoffmannsegg, 1807), as the type species. 

As pointed out by Groves himself (in litt.), Goodman et al.’s (1998) suggestion of the 

name Torquatus, as proposed, does not conform to the requirements of Article 13 of 

the International Code of Zoological Nomenclature (ICZN, 1999): Names published 

after 1930. 13.1. “To be available, every new name published after 1930 must satisfy 

the provisions of Article 11 and must – 13.1.1 be accompanied by a description or 

definition that states in words characters that are purported to differentiate the taxon, 

or – 13.1.2 be accompanied by a bibliographic reference to such a public statement 

[…], or – 13.1.3 be proposed expressly as a new replacement name (nomen novum) 

for an available name […]”. Thus the name Torquatus is a nomen nudum, and 

unavailable. 
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2.2.3 Species and species groups 

Elliot (1913), Cabrera (1958), and Hill (1960) listed 22–34 titi monkeys, of which 22 

are considered valid taxa today. Hershkovitz (1963, 1988, 1990) subsequently 

established the basis for the present classification for the genus. In 1963, he 

recognised just 10 taxa across two polytypic species (Callicebus moloch and C. 

torquatus). Although the Atlantic forest C. personatus taxa were not included in this 

early review, Hershkovitz (1963) suggested that they were subspecies of C. moloch. 

This view of titi monkey diversity prevailed until Hershkovitz’s revisions in 1988 and 

1990. His analysis of around 1,200 museum specimens resulted in the recognition of 

25 taxa across five polytypic and eight monotypic species, which he arranged in four 

clusters that he labelled the modestus, donacophilus, moloch and torquatus species 

groups (Table 2.1) (Hershkovitz, 1988, 1990). 

 To infer phylogenetic relationships, Kobayashi (1995) carried out a 

morphometric analysis of cranial measurements for 23 taxa, and modified 

Hershkovitz’s (1988, 1990) species groups. He maintained the torquatus and 

donacophilus groups, but included C. modestus in the latter. He split the moloch 

group into three: the personatus group, the moloch group and the cupreus group 

(Table 2.1). As other characters, such as pelage colouration, karyotype, and 

geographic range, were consistent with this classification, he argued that these groups 

represented phylogenetically independent clades. Kobayashi (1995) suggested that the 

donacophilus, moloch, and cupreus groups were closely related, while the personatus 

and torquatus groups presented a higher degree of character differentiation. Based 

upon the occlusal pattern of the upper molars, the torquatus group was proposed as 

the earliest lineage (Kobayashi, 1990). 

 

 

 

  



 

15 

Table 2.1 The taxonomy of the titis. Taxonomic arrangement for Callicebus taxa as proposed by Hershkovitz (1963); 

Hershkovitz (1988, 1990); Kobayashi (1995) and Kobayashi & Langguth (1999); Van Roosmalen et al. (2002); Groves 

(2005); and the present study. Taxa included in this study are denoted with an asterisk. Classification for species not 

included in this study follows Groves (2005), and species described and reinstated after Groves (2005); (Dalponte et al., 

2014; Defler et al., 2010; Gualda-Barros et al., 2012; Vermeer & Tello-Alvarado, 2015; Wallace et al., 2006), with the 

exception of modestus where we follow Kobayashi (1995).  

Hershkovtiz Kobayashi Van Roosmalen et 

al. (2002) 

Groves Present 

(1988, 1990)  (1995) (2005) study 

Genus Callicebus Genus Callicebus Genus Callicebus Genus Callicebus Genus Cheracebus 

-- -- -- Subgenus Torquatus -- 

torquatus group torquatus group torquatus group torquatus group -- 

C. torquatus 
torquatus 

C. torquatus 
torquatus 

C. torquatus C. torquatus C. torquatus 

C. t. lugens C. t. lugens C. lugens C. lugens C. lugens* 

C. t. lucifer C. t. lucifer C. lucifer C. lucifer C. lucifer 

C. t. purinus C. t. purinus C. purinus C. purinus C. purinus* 

C. t. regulus C. t. regulus C. regulus C. regulus C. regulus 

C. t. medemi C. t. medemi C. medemi C. medemi C. medemi 

-- -- -- Subgenus Callicebus Genus Callicebus 

moloch group personatus group personatus group personatus group -- 

C. personatus 
personatus 

C. personatus C. personatus C. personatus C. personatus* 

C. p. melanochir C. melanochir C. melanochir C. melanochir C. melanochir 

C. p. nigrifrons C. nigrifrons C. nigrifrons C. nigrifrons C. nigrifrons* 

C. p. 
barbarabrownae 

C. barbarabrownae C. barbarabrownae C. barbarabrownae C. barbarabrownae 

-- C. coimbrai1 C. coimbrai C. coimbrai C. coimbrai* 

-- -- -- -- Genus Plecturocebus 

-- moloch group moloch group moloch group moloch group 

C. moloch C. moloch C. moloch C. moloch P. moloch* 

C. cinerascens C. cinerascens C. cinerascens C. cinerascens P. cinerascens* 

C. hoffmannsi 
hoffmannsi 

C. hoffmannsi 
hoffmannsi 

C. hoffmannsi C. hoffmannsi P. hoffmannsi* 

C. h. baptista C. h. baptista C. baptista C. baptista P. baptista 

-- -- C. bernhardi C. bernhardi P. bernhardi* 

C. brunneus C. brunneus C. brunneus C. brunneus P. brunneus* 

-- cupreus group cupreus group -- -- 

C. cupreus cupreus C. cupreus cupreus C. cupreus C. cupreus P. cupreus* 

C. c. discolor C. c. discolor C. discolor C. discolor P. discolor 

C. c. ornatus C. c. ornatus C. ornatus C. ornatus P. ornatus 

C. caligatus C. caligatus C. caligatus C. caligatus P. caligatus* 

C. dubius C. dubius2 C. dubius C. dubius -- 

-- -- C. stephennashi C. stephennashi P. stephennashi  

-- -- -- -- P. aureipalatii 

-- -- -- -- P. caquetensis 

-- -- -- -- P. vieirai 

-- -- -- -- P. miltoni* 

-- -- -- -- P. toppini 

donacophilus group donacophilus group donacophilus group donacophilus group donacophilus group 

C. donacophilus 

donacophilus 

C. donacophilus 

donacophilus 
C. donacophilus C. donacophilus P. donacophilus* 

C. d. pallescens C. d. pallescens C. pallescens C. pallescens P. pallescens 

C. oenanthe -- C. oenanthe C. oenanthe P. oenanthe 

C. olallae C. olallae C. olallae C. olallae P. olallae 

-- -- -- -- P. urubambensis 

modestus group -- -- modestus group -- 

C. modestus C. modestus C. modestus C. modestus P. modestus 

25 taxa 25 taxa 28 species 28 species 33 species 
1Kobayashi & Langguth (1999) 

   2Species group undetermined 
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 The distinctiveness of the torquatus group has long been recognised; C. 

torquatus was one of the two species in Hershkovitz’s first appraisal in 1963. He 

considered it polytypic, with three subspecies: C. t. torquatus (Hoffmannsegg, 1807); 

C. t. lugens (Humboldt, 1811); and C. t. medemi Hershkovitz, 1963. Hershkovitz 

(1988, 1990) subsequently resurrected three other taxa: lucifer Thomas, 1914; regulus 

Thomas, 1927; and purinus Thomas, 1927—all as subspecies of torquatus. As of 

1990, therefore, the torquatus group consisted of a single species with six subspecies. 

Groves (2001) listed medemi as a species, but otherwise followed Hershkovitz in 

maintaining the remaining forms as subspecies of torquatus. Van Roosmalen et al. 

(2002) and Groves (2005) classified all members of the torquatus group as species. 

Taking note of the suggestion of Goodman et al. (1998), Groves (2005) placed the 

members of the torquatus group in the subgenus Torquatus (all other titis in the 

subgenus Callicebus), although, as mentioned, he subsequently realised that the name 

as suggested by Goodman et al. (1998) was a nomen nudum. 

 Hershkovitz (1988) recognised three subspecies of C. personatus; C. p. 

personatus (É. Geoffroy Saint-Hilaire, 1812); C. p. melanochir (Wied-Neuwied, 

1820); and C. p. nigrifrons (Spix, 1823). He indicated that they could be considered 

subspecies of C. moloch, and placed them in his moloch species group (1988, 1990). 

In his 1990 revision, he described another subspecies from northeast Brazil, C. p. 

barbarabrownae. Kobayashi (1995) continued to recognise these four titis as 

subspecies but placed them in a separate species group, based on the high degree of 

character differentiation between C. personatus and other Callicebus taxa. Kobayashi 

& Langguth (1999) described C. coimbrai, a member of the personatus group from 

northeast Brazil, and determined that all members of the personatus group be 

considered distinct species. 

 The craniometric study of Kobayashi (1995) showed that the donacophilus, 

moloch, and cupreus groups are more closely related to each other than they are to the 

torquatus and personatus groups. This is reflected in the early history of their 

taxonomy. Hershkovitz (1963) recognised a single species with seven subspecies in 

his moloch group: C. moloch moloch (Hoffmannsegg, 1807); C. m. cupreus (Spix, 

1823); C. m. donacophilus (d’Orbigny, 1836); C. m. brunneus (Wagner, 1842); C. m. 

discolor (I. Geoffroy & Deville, 1848); C. m. ornatus (Gray, 1866); and C. m. 

hoffmannsi Thomas, 1908. Hershkovitz’s subsequent revisions (1988, 1990) resulted 

in the description of a new species, dubius Hershkovitz, 1988, and the reinstatement 
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of cinerascens Spix, 1823, caligatus Wagner, 1842, modestus Lönnberg, 1939, 

olallae Lönnberg, 1939, baptista Lönnberg, 1939, pallescens Thomas, 1907, and 

oenanthe Thomas, 1924, as valid taxa. Excluding the C. personatus subspecies, 

Hershkovitz (1990) listed 15 species and subspecies, and classified them into three 

species groups; the modestus group, the donacophilus group, and the moloch group 

(Table 2.1). Groves (2001) maintained the species groups of Hershkovitz (1990), but 

raised all the donacophilus and moloch (but not C. personatus) group members to 

species. In his review, Groves questioned the distinction between C. cupreus, C. 

caligatus, C. discolor, and C. dubius, and placed the latter three as synonyms of C. 

cupreus. Groves (2005), however, subsequently accepted them as valid species. 

 The current taxonomic arrangement was established in the review by Van 

Roosmalen et al. (2002). They followed the species groups proposed by Kobayashi 

(1995) but listed all recognised taxa as species, as proposed by Groves (2001, 2005; 

see also Kobayashi & Langguth, 1999). Van Roosmalen et al. (2002) described C. 

bernhardi and C. stephennashi, belonging to the moloch and cupreus groups, 

respectively. Five new species have been described since 2002; C. aureipalatii 

Wallace et al., 2006, C. caquetensis Defler et al., 2010, C. vieirai Gualda-Barros et 

al., 2012, C. miltoni Dalponte et al., 2014, in the moloch and cupreus groups, and C. 

urubambensis Vermeer & Tello-Alvarado, 2015, assigned to the donacophilus group. 

Vermeer & Tello-Alvarado (2015) also reinstated C. toppini Thomas, 1914, as a 

member of the cupreus group. 

2.3 Methods 

2.3.1 Taxon sampling 

A total of 50 fresh tissue samples were collected from museum voucher specimens 

from the following Brazilian institutions: National Institute of Amazonian Research 

(INPA), Federal University of Pará (UFPA), Federal University of Rondônia (UNIR), 

Federal University of Amazonas (UFAM) and the Goeldi Museum (MPEG). The 

majority of these specimens were obtained in the context of an Amazonian-wide 

faunal inventory project (CNPq/SISBIOTA) carried out in accordance with the 

appropriate collection permits (IBAMA 483 license No. 005/2005 – CGFAU/LIC). 

This research adhered to the American Society of Primatologists’ and American 
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Society of Mammalogists' principles for the ethical treatment of primates, and 

Brazilian laws that govern primate research.  

Fifteen species of Callicebus were sampled, including representatives from 

each of the species groups of Kobayashi (1995), and five platyrrhine species were 

selected as outgroup taxa. A complete list of Callicebus and outgroup species is 

presented in Table 2.2. We generated novel sequence data for a total of 49 Callicebus 

and 1 outgroup sample (JPB100, Cebus albifrons). All samples used in this study 

were from wild specimens, nearly all of which are of known provenance, and 

morphologically identified following Hershkovitz (1988, 1990), Van Roosmalen et al. 

(2002), and Dalponte et al. (2014). Three of these samples are from a new species of 

Callicebus from the Alta Floresta region of Mato Grosso, Brazil (Boubli et al., in 

prep), that is closely related to C. moloch based on geographic location and pelage 

colouration, and is classified here as C. cf. moloch.  

We retrieved additional sequences from GenBank representing six Callicebus 

and five outgroup samples from Perelman et al. (2011), and another four Callicebus 

and four outgroup individuals. A total of 59 Callicebus and 10 outgroup individuals 

were included in this study. Additional information for all samples is presented in 

Table 2.2. 

 Of the six Callicebus specimens retrieved from the Perelman et al. (2011) 

study, our molecular datasets confirm the taxonomic validity of C. nigrifrons (CNI-1) 

and show that C. moloch (CMH-1) and C. caligatus (CCG-1) are incorrectly 

identified. The C. moloch (CMH-1) specimen is most similar to our C. hoffmannsi 

individuals and C. caligatus (CCG-1) is very closely related to their C. donacophilus 

specimen (CDO-1). These samples are classified as C. cf. hoffmannsi and C. 

donacophilus, respectively (Table 2.2), but we note that these samples are of captive 

origin and could be captive hybrids.  
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Table 2.2 List of genetic samples used in this study including ID, source and corresponding dataset. 

Species Sample ID Col. 
Species 

group 

Wild 

or 

captive 

Geographic origin or sample source Data Sample notes 

Callicebus moloch MCB63 UFPA moloch Wild Senador José Porfírio, R bank of the Rio Xingu, Pará, Brazil nDNA, mtDNA   

Callicebus moloch MCB64 UFPA moloch Wild Senador José Porfírio, R bank of the Rio Xingu, Pará, Brazil nDNA, mtDNA   
Callicebus moloch MCB79 UFPA moloch Wild Senador José Porfírio, R bank of the Rio Xingu, Pará, Brazil nDNA, mtDNA   

Callicebus moloch 857 UFPA moloch Wild Tucuruí Dam, L bank of the Rio Tocantins, Pará, Brazil nDNA, mtDNA   

Callicebus moloch 1516 UFPA moloch Wild Tucuruí Dam, L bank of the Rio Tocantins, Pará, Brazil nDNA, mtDNA   

Callicebus moloch CTGAM420 UFAM moloch Wild Belterra, R bank of the Rio Tapajós, Pará, Brazil nDNA, mtDNA   

Callicebus moloch CTGAM421 UFAM moloch Wild Belterra, R bank of the Rio Tapajós, Pará, Brazil nDNA, mtDNA   
Callicebus cf. moloch RVR22 INPA moloch Wild Novo Horizonte Community, Alta Floresta, Mato Grosso, Brazil nDNA, mtDNA   

Callicebus cf. moloch RVR68 INPA moloch Wild Novo Horizonte Community, Alta Floresta, Mato Grosso, Brazil nDNA, mtDNA   
Callicebus cf. moloch RVR73 INPA moloch Wild Novo Horizonte Community, Alta Floresta, Mato Grosso, Brazil nDNA, mtDNA   

Callicebus bernhardi UFRO413 UNIR moloch Wild Machadinho D’Oeste, Rondônia, Brazil  nDNA, mtDNA   

Callicebus bernhardi  42960 MPEG moloch Wild São Francisco do Guaporé, Guaporé Biological Reserve, Rondônia, Brazil nDNA, mtDNA   
Callicebus bernhardi 42961 MPEG moloch Wild São Francisco do Guaporé, Guaporé Biological Reserve, Rondônia, Brazil nDNA, mtDNA   

Callicebus bernhardi 42964 MPEG moloch Wild São Francisco do Guaporé, Guaporé Biological Reserve, Rondônia, Brazil nDNA, mtDNA   
Callicebus miltoni 42991 MPEG moloch Wild Novo Aripuanã, L bank of the Rio Aripuanã, Amazonas, Brazil nDNA, mtDNA   

Callicebus miltoni 42992 MPEG moloch Wild Novo Aripuanã, L bank of the Rio Aripuanã, Amazonas, Brazil nDNA, mtDNA   

Callicebus miltoni 42993 MPEG moloch Wild Novo Aripuanã, L bank of the Rio Aripuanã, Amazonas, Brazil nDNA, mtDNA   

Callicebus cinerascens UFRO352 UNIR moloch Wild Rondon II Dam, Pimenta Bueno, Rondônia, Brazil nDNA, mtDNA   

Callicebus cinerascens UFRO355 UNIR moloch Wild Rondon II Dam, Pimenta Bueno, Rondônia, Brazil nDNA, mtDNA   
Callicebus cinerascens UFRO499 UNIR moloch Wild Cabixi, Rondônia, Brazil nDNA, mtDNA   

Callicebus hoffmannsi CTGAM248 UFAM moloch Wild Cametá Community, L bank of the Rio Tapajós, Pará, Brazil nDNA, mtDNA   

Callicebus hoffmannsi CTGAM290 UFAM moloch Wild Cametá Community, L bank of the Rio Tapajós, Pará, Brazil nDNA, mtDNA   
Callicebus hoffmannsi 01CNP UFPA moloch --- No location data nDNA, mtDNA   

Callicebus cf. hoffmannsi CMH1 --- moloch Captive Perelman et al. (2011): Centro Nacional de Primatas.  nDNA C. moloch (Perelman et al., 2011) 
Callicebus cupreus AAM15 INPA moloch Wild RESEX Catuá-Ipixuna, Lago do Ipixuna, Coari, Amazonas, Brazil nDNA, mtDNA C. cupreus clade A 

Callicebus cupreus CTGAM210 UFAM moloch Wild Rebio Abufari, Turiaçu, L bank of the Rio Purus, Amazonas, Brazil nDNA, mtDNA C. cupreus clade A 

Callicebus cupreus JLP15920 INPA moloch Wild Itamarati, L bank of the Rio Jurua, Amazonas, Brazil nDNA, mtDNA C. cupreus clade A 
Callicebus cupreus 4984 UFPA moloch Wild No location data nDNA, mtDNA C. cupreus clade B 

Callicebus cupreus 4988 UFPA moloch Wild No location data nDNA, mtDNA C. cupreus clade B 
Callicebus cupreus 4990 UFPA moloch Wild No location data nDNA, mtDNA C. cupreus clade B 

Callicebus cupreus 4993 UFPA moloch Wild No location data nDNA, mtDNA C. cupreus clade B 

Callicebus brunneus UFRO541 UNIR moloch Wild Porto Velho, R bank of the Rio Madeira, Rondônia, Brazil nDNA, mtDNA   
Callicebus brunneus 4009 UFPA moloch Wild Samuel Dam, L bank of the Rio Jamari, Rondônia, Brazil nDNA, mtDNA   

Callicebus brunneus 4019 UFPA moloch Wild Samuel Dam, L bank of the Rio Jamari, Rondônia, Brazil nDNA, mtDNA   
Callicebus brunneus 4346 UFPA moloch Wild Samuel Dam, L bank of the Rio Jamari, Rondônia, Brazil nDNA, mtDNA   

Callicebus brunneus 4505 UFPA moloch Wild Samuel Dam, R bank of the Rio Jamari, Rondônia, Brazil nDNA, mtDNA   

Callicebus dubius UFRO403 UNIR moloch Wild Porto Velho, L bank of the Rio Madeira, Rondônia, Brazil nDNA, mtDNA   
Callicebus dubius UFRO544 UNIR moloch Wild Porto Velho, L bank of the Rio Madeira, Rondônia, Brazil nDNA, mtDNA   

Callicebus caligatus CTGAM181 UFAM moloch Wild Tapauá, Igarapé do Jacinto, R bank of the Rio Purus, Amazonas, Brazil  nDNA, mtDNA   
Callicebus caligatus CTGAM182 UFAM moloch Wild Tapauá, Igarapé do Jacinto, R bank of the Rio Purus, Amazonas, Brazil  nDNA, mtDNA   
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Table 2.2 cont’d List of genetic samples used in this study including ID, source and corresponding dataset. 

Species Sample ID Col. 
Species 

group 

Wild 

or 

captive 

Geographic origin or sample source Data Sample notes 

Callicebus caligatus MVR58 INPA moloch Wild No location data mtDNA   

Callicebus caligatus CCM248 INPA moloch Wild No location data mtDNA   

Callicebus donacophilus CDO1 --- donacophilus Captive Perelman et al. (2011): Center for Reproduction of Endangered Species nDNA   
Callicebus donacophilus -- --- donacophilus --- GenBank (accession number FJ785423) mtDNA   

Callicebus donacophilus CCG1 --- donacophilus Captive Perelman et al. (2011): Center for Reproduction of Endangered Species nDNA C. caligatus (Perelman et al. 2011) 

Callicebus personatus CLP1 --- personatus Wild Perelman et al. (2011): Espirito Santo State, Brazil. nDNA   

Callicebus personatus -- --- personatus --- GenBank (accession number AF289988) mtDNA   

Callicebus coimbrai CCO1 --- personatus Wild Perelman et al. (2011): Bahia state, Brazil.  nDNA   
Callicebus nigrifrons CNI1 --- personatus Wild Perelman et al. (2011): Carangola, Minas Gerais State, Brazil.  nDNA   

Callicebus nigrifrons CPE04 --- personatus Wild Minas Gerais, Brazil nDNA, mtDNA   
Callicebus nigrifrons CPRJ1493 --- personatus --- GenBank (accession number AF524884) mtDNA   

Callicebus lugens JPB81 INPA torquatus Wild Mandiquie, R bank of the Rio Negro, Amazonas, Brazil nDNA, mtDNA   

Callicebus lugens CRB2698 --- torquatus --- GenBank (DQ337708) R bank of the Rio Negro mtDNA   
Callicebus lugens JPB119 INPA torquatus Wild Marari, L bank of the Rio Negro, Amazonas, Brazil nDNA, mtDNA   

Callicebus lugens JPB124 INPA torquatus Wild Pé da Serra do Aracá, L bank of the Rio Negro, Amazonas, Brazil nDNA, mtDNA   

Callicebus lugens JPB136 INPA torquatus Wild Igarapé Cuieiras, L bank of the Rio Negro, Amazonas, Brazil nDNA, mtDNA   

Callicebus purinus CTGAM154 UFAM torquatus Wild Rebio Abufari, L bank of the Rio Purus, Amazonas, Brazil nDNA, mtDNA   

Callicebus purinus CTGAM195 UFAM torquatus Wild Rebio Abufari, L bank of the Rio Purus, Amazonas, Brazil nDNA, mtDNA   
Callicebus purinus CTGAM209 UFAM torquatus Wild Rebio Abufari, L bank of the Rio Purus, Amazonas, Brazil nDNA, mtDNA   

Cebus albifrons JPB100 INPA Outgroup Wild No location data nDNA, mtDNA   

Cebus albifrons CEA1 --- Outgroup Wild Perelman et al. (2011): Instituto Nacional de Cancer. nDNA   
Saimiri sciureus  SSC7 --- Outgroup Captive Perelman et al. (2011): Schwerin Zoo, Germany. nDNA   

Saimiri sciureus  -- --- Outgroup --- GenBank (accession number HQ644334) mtDNA   
Cacajao calvus  CCL1 --- Outgroup Wild Perelman et al. (2011): Köln Zoo, Germany. nDNA   

Cacajao calvus  -- --- Outgroup --- GenBank (accession number NC_021967) mtDNA   

Chiropotes israelita  CIS1 --- Outgroup Wild Perelman et al. (2011): Barcelos, Amazonas State, Brazil. nDNA   
Chiropotes israelita  -- --- Outgroup --- GenBank (accession number NC_024629) mtDNA   

Pithecia pithecia  PPT1 --- Outgroup Captive Perelman et al. (2011): Centro Nacional de Primatas. nDNA   

Pithecia pithecia -- --- Outgroup --- GenBank (accession number JF459229) mtDNA   

Collection abbreviations: UFPA = Federal University of Pará; UFAM = Federal University of Amazonas; INPA = National Institute for Amazonian Research; UNIR = Federal University of Rondônia; MPEG = 

Goeldi Museum 
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2.3.2 Molecular dataset 

DNA sequence data were obtained from a total of 22 loci. We selected primers for 20 

independent nuclear loci from Perelman et al. (2011) based on their performance for 

Callicebus. Most of these primers were designed for the Perelman et al. (2011) study, 

but some originated in previous studies (Horvath et al., 2008; Murphy et al., 2001; 

Teeling et al., 2000; Venta et al., 1996). The nuclear regions included exons, introns, 

and 3’UTRs, and two loci located on the X chromosome (Table 2.3). We also 

obtained DNA sequence data from two mitochondrial loci; we amplified the 

cytochrome b gene (CYTB) with novel primers designed for this study, and 

cytochrome c oxidase I (COI) using previously designed primers (Ward et al., 2005).  

A total of 944 new sequences (nuclear and mitochondrial) were generated for 

this study from three laboratories: Universidade Federal do Pará (UFPA), Pará, 

Brazil; University of Salford, Manchester, UK; and the Evolution and Animal 

Genetics Laboratory (LEGAL), Universidade Federal do Amazonas (UFAM), 

Amazonas, Brazil. We retrieved an additional 209 nuclear sequences for the 11 

individuals sequenced for Perelman et al. (2011) from GenBank, and 12 

mitochondrial sequences from GenBank (accession numbers are listed in Table 2.4). 

 Three datasets were compiled from subsets of loci and samples: the nuclear 

dataset composed of the 20 nuclear loci totalling 12,778 bp in length; the combined 

dataset including all 22 loci totalling 14,578 bp in length; and the mitochondrial 

dataset composed of the two mitochondrial loci and a length of 1,800 bp. The nuclear 

and combined datasets were composed of the same set of samples, containing 47 

Callicebus and one outgroup sequenced for this study, and the 6 Callicebus and 5 

outgroup individuals from Perelman et al. (2011). The mitochondrial dataset included 

all 50 newly sequenced samples, as well as an additional eight individuals retrieved 

from GenBank. All Callicebus and outgroup species are represented in each dataset, 

with the exception C. cf. hoffmannsi and C. coimbrai (nuclear and combined only). A 

list of samples and number of loci sequenced for the nuclear and combined datasets is 

presented in Table 2.5 and for the mitochondrial dataset in Table 2.6. A summary of 

each dataset is presented in Table 2.7. 
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Table 2.3 List of the 22 loci used in this study and primer information. 

Locus ID Full Name Forward primer sequence Reverse primer sequence Description Reference 

Anneal. 

temp. 

(°C) 

ABCA1 
ATP‐binding cassette, sub‐family A 

(ABC1), member 1 
CCTCCATCTTTTCAGCTCTACCTAC  ACAAGAGCCTGGAGATTGGATAAC  Intronic Horvath et al. (2008) 56 

ADORA3 adenosine A3 receptor ACCCCCATGTTTGGCTGGAA  GATAGGGTTCATCATGGAGTT  Exonic Murphy et al. (2001) 60 

APP amyloid beta (A4) precursor protein TCCAAGATGCAGCAGAACG CTAATGTGTGCACATAAAACAGG  3'UTR Murphy et al. (2001) 60 

COI cytochrome c oxidase I TCCATTACCAGGCCAGCTAG GAACTTGCTGGCTTTCATATC Exonic; mtDNA Ward et al. (2005) 45 

CREM cAMP responsive element modulator AGGAACTCAAGGCCCTCAAA  GGGAGGACAAATGTCTTTCAA  3'UTR Murphy et al. (2001) 57 

CYTB cytochrome b GCACAACCTACAGCACCACTA CAGCTTTGGGTGTTGAYGGTRGAA Exonic; mtDNA This study 60 

DENND5A DENN/MADD domain containing 5A CCAGAGTTATCATGGCCAATC  GTACCAAGCAAGAAGCTGGG  Mostly intronic Perelman et al. (2011) 62 

DMRT1 
doublesex and mab-3 related transcription 

factor 1 
ATCCCTTGTTCTGAGTGCCA  ACATTGCAAAGACCCCTGAC  Intronic Perelman et al. (2011) 60 

ERC2 
ELKS/RAB6-interacting/CAST family 

member 2 
AGCTCATCCTCCTCCTGGTTTAG  CTCCTTGAGGATCTCCAGCAAC  Mostly intronic Horvath et al. (2008) 57 

FAM123B 
APC membrane recruitment protein 1 
(AMER1) 

CATCACTCTGGAAGAGCTGC  TGGATTTGAGGATGATTCAGG  
Exonic; X-
chromosome 

Perelman et al. (2011) 60 

FES FES proto-oncogene, tyrosine kinase GGGGAACTTTGGCGAAGTGTT  TCCATGACGATGTAGATGGG  Mostly intronic Venta et al. (1996) 56 

FOXP1 forkhead box P1 TCAGCATCACTAATTTTGATGAAC  TGATGCAACTCTCAAGGAAAAG  Intronic Perelman et al. (2011) 60 

MAPKAP1 
mitogen-activated protein kinase 
associated protein 1 

TGTCAGCTCCATCGCTTATAACT  GGGCTGAATGATGGTGATTT  Intronic Perelman et al. (2011) 60 

MBD5 methyl-CpG binding domain protein 5 GGCAGATAGCTACCACCACC  CTTCCAGGCAAGGTTCATTC  3'UTR Perelman et al. (2011) 60 

NEGR1 neuronal growth regulator 1 CATTATGTGGTTGGCAGCAT  TTGCAAGATGACAAACTATGTGTT  Intronic Perelman et al. (2011) 60 

NPAS3.2 neuronal PAS domain protein 3 (NPAS3) TCAGCATTGTTGATCTGCTTTT  TGGAATATCTAACCATCTCTGAACA  Intronic Perelman et al. (2011) 60 

RAG1 recombination activating gene 1 GCTTTGATGGACATGGAAGAAGACAT  GAGCCATCCCTCTCAATAATTTCAGG  Exonic Teeling et al. (2000) 57 

RAG2 recombination activating gene 2 GATTCCTGCTAYCTYCCTCCTCT  CCCATGTTGCTTCCAAACCATA  Exonic Teeling et al. (2000) 60 

RPGRIP1 
retinitis pigmentosa GTPase regulator 
interacting protein 1 

AGATGTTGCTTATGGCACCC  ACCTGGGCTTTCTTTCGTTT  Exonic Perelman et al. (2011) 57 

SGMS1 sphingomyelin synthase 1 TCAGAATCAAACCCCATTCAG  GTGGTGGTACAGGCCATTTC  Mostly 3'UTR Perelman et al. (2011) 57 

SIM1 
single-minded family bHLH transcription 

factor 1 
GACCTACCGCAGAAAATTCG  CTGGGGCTCATCATTCATTC  Intronic Perelman et al. (2011) 60 

ZFX zinc finger protein, X-linked TGGAATGAAATCCCTCAAATA  ATGTCCATCAGGGCCAATAAT  
Intronic; X-
chromosome 

Perelman et al. (2011) 52 
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            Table 2.4 List of the GenBank accession numbers. 

Species ID 
Locus 

ABCA1 ADORA3 APP CREM DENND5A DMRT1 ERC2 FAM123B FES FOXP1 MAPKAP1 

C. cf. hoffmannsi CMH1 HM765300 HM765212 HM764676 HM763036 HM759316 HM762546 HM762182 HM762131 HM761805 HM761544 HM760645 

C. donacophilus CDO1 HM765289 HM765211 HM764675 HM763035 HM759315 HM762536 HM762211 HM762130 HM761804 HM761533 HM760634 

C. donacophilus CCG1 HM765282 HM765208 HM764672 -- HM759311 HM762529 HM762201 HM762127 -- HM761526 HM760630 

C. personatus CLP1 HM765298 HM765214 -- HM763038 HM759320 HM762544 HM762187 HM762133 HM761807 HM761542 HM760643 

C. coimbrai CCO1 HM765284 HM765209 HM764673 HM763033 HM759312 HM762531 HM762175 HM762128 HM761802 HM761528 HM760631 

C. nigrifrons CNI1 -- HM765213 HM764677 HM763037 HM759318 HM762550 HM762178 HM762132 HM761806 HM761547 HM760647 

Cebus albifrons CEA1 HM765415 HM765189 HM764657 HM763047 HM759289 HM762675 HM762192 HM762106 -- HM761665 HM760760 

Saimiri sciureus SSC7 HM765401 HM765206 HM764671 HM763149 HM759309 HM762658 HM762269 HM762126 HM761799 HM761651 HM760744 

Cacajao calvus CCL1 HM765283 HM765187 HM764655 -- HM759286 HM762530 HM762297 HM762104 -- HM761527 -- 

Chiropotes israelita CIS1 HM765295 HM765194 HM764662 -- HM759295 HM762542 HM762183 HM762112 HM761786 HM761539 HM760640 

Pithecia pithecia PPT1 HM765380 HM765215 HM764678 HM763130 HM759323 HM762634 HM762204 HM762135 HM761808 HM761627 HM760722 

Species ID 
Locus 

MBD5 NEGR1 NPAS3.2 RAG1 RAG2 RPGRIP1 SGMS1 SIM1 ZFX COI CYTB 

C. cf. hoffmannsi CMH1 HM760560 HM760295 HM759935 HM759136 HM758968 HM758700 HM758570 HM758334 HM757152 -- -- 

C. donacophilus CDO1 HM760559 HM760284 HM759924 HM759135 HM758967 HM758685 HM758480 HM758323 HM757151 -- -- 

C. donacophilus CCG1 HM760556 HM760277 HM759917 HM759133 HM758965 HM758677 HM758479 HM758317 HM757148 -- -- 

C. personatus CLP1 HM760562 HM760293 HM759933 HM759138 HM758970 HM758697 HM758591 HM758332 HM757153 -- -- 

C. coimbrai CCO1 HM760557 HM760279 HM759919 HM759134 -- HM758679 HM758518 HM758319 HM757149 -- -- 

C. nigrifrons CNI1 HM760561 HM760298 HM759938 HM759137 HM758969 HM758705 HM758576 HM758335 -- -- -- 

Cebus albifrons CEA1 HM760533 HM760422 HM760060 HM759115 HM758944 HM758686 HM758491 HM758451 HM757128 -- -- 

Saimiri sciureus SSC7 HM760553 HM760405 HM760044 HM759131 HM758963 HM758816 HM758621 HM758437 HM757147 -- -- 

Cacajao calvus CCL1 HM760531 HM760278 HM759918 HM759113 HM758942 HM758678 HM758478 HM758318 HM757126 -- -- 

Chiropotes israelita CIS1 HM760539 HM760290 HM759930 HM759120 HM758950 HM758692 HM758540 HM758329 HM757133 -- -- 

Pithecia pithecia PPT1 HM760564 HM760382 HM760023 HM759140 HM758971 HM758792 HM758594 HM758414 HM757155 -- -- 

C. personatus -- -- -- -- -- -- -- -- -- -- -- AF289988 

C. donacophilus -- -- -- -- -- -- -- -- -- -- FJ785423 FJ785423 

C. nigrifrons -- -- -- -- -- -- -- -- -- -- -- AF524884 

C. lugens -- -- -- -- -- -- -- -- -- -- -- DQ337708 

Saimiri sciureus -- -- -- -- -- -- -- -- -- -- HQ644334 HQ644334 

Cacajao calvus -- -- -- -- -- -- -- -- -- -- NC021967 NC021967 

Chiropotes israelita -- -- -- -- -- -- -- -- -- -- NC024629 NC024629 

Pithecia pithecia -- -- -- -- -- -- -- -- -- -- JF459229 -- 
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Table 2.5 List of sequence length and loci coverage for samples in the combined and nuclear datasets. 

Species Sample ID 

Nuclear Combined Locus 

No. 

loci 

(20) 

Length 

(12778) 

No. 

loci 

(22) 

Length 

(14578) 

A
B

C
A

1
 

A
D

O
R

A
3

 

A
P

P
 

C
O

I 

C
R

E
M

 

C
Y

T
B

 

D
E

N
N

D
5

A
 

D
M

R
T

1
 

E
R

C
2
 

F
A

M
1
2

3
B

 

F
E

S
 

F
O

X
P

1
 

M
A

P
K

A
P

1
 

M
B

D
5
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E

G
R

1
 

N
P

A
S

3
.2

 

R
A

G
1
 

R
A

G
2
 

R
P

G
R

IP
1
 

S
G

M
S

1
 

S
IM

1
 

Z
F

X
 

C. moloch MCB63 18 11,056 20 12,856                                             

C. moloch MCB64 20 12,615 22 14,415                                             

C. moloch MCB79 19 11,536 21 13,297                                             

C. moloch 857 14 8,133 16 9,933                                             

C. moloch 1516 15 8,755 17 10,531                                             

C. moloch CTGAM420 16 10,068 18 11,868                                             

C. moloch CTGAM421 13 8,142 15 9,942                                             

C. cf. moloch RVR22 20 12,379 22 14,179                                             

C. cf. moloch RVR68 19 11,760 21 13,560                                             

C. cf. moloch RVR73 20 12,603 22 14,403                                             

C. bernhardi UFRO413 17 10,845 19 12,641                                             

C. bernhardi 42960 18 11,302 20 13,102                                             

C. bernhardi 42961 16 10,038 17 11,178                                             

C. bernhardi 42964 19 11,743 21 13,543                                             

C. miltoni 42991 20 12,405 22 14,205                                             

C. miltoni 42992 20 12,400 22 14,200                                             

C. miltoni 42993 19 11,685 21 13,351                                             

C. cinerascens UFRO352 11 6,570 13 8,366                                             

C. cinerascens UFRO355 20 12,343 22 14,139                                             

C. cinerascens UFRO499 18 11,102 20 12,892                                             

C. hoffmannsi CTGAM248 18 11,022 20 12,764                                             

C. hoffmannsi CTGAM290 20 12,449 22 14,191                                             

C. hoffmannsi 01CNP 15 9,384 17 11,184                                             

C. cf. hoffmannsi CMH1 20 12,456 20 12,456                                             

C. cupreus AAM15 15 8,881 17 10,663                                             

C. cupreus CTGAM210 17 11,356 19 13,141                                             

C. cupreus JLP15920 7 4,667 9 6,428                                             

C. cupreus 4984 17 10,156 19 11,956                                             

C. cupreus 4988 19 11,892 21 13,692                                             

C. cupreus 4990 20 12,611 22 14,411                                             
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Table 2.5 cont’d. List of sequence length and loci coverage for samples in the combined and nuclear datasets. 

Species Sample ID 

Nuclear Combined Locus 

No. 

loci 

(20) 

Length 

(12778) 

No. 

loci 

(22) 

Length 

(14578) 

A
B

C
A

1
 

A
D

O
R

A
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A
P

P
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T
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R
A
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M
S

1
 

S
IM

1
 

Z
F

X
 

C. cupreus 4993 19 11,572 21 13,372                                             

C. brunneus UFRO541 18 11,076 20 12,872                                             

C. brunneus 4009 19 11,999 21 13,799                                             

C. brunneus 4019 17 10,388 19 12,188                                             

C. brunneus 4346 20 12,475 22 14,251                                             

C. brunneus 4505 20 12,560 22 14,333                                             

C. dubius UFRO403 20 12,305 22 14,098                                             

C. dubius UFRO544 20 12,511 21 13,651                                             

C. caligatus CTGAM181 20 12,344 22 14,129                                             

C. caligatus CTGAM182 20 12,540 22 14,277                                             

C. donacophilus CDO1 20 12,387 20 12,387                                             

C. donacophilus CCG1 18 11,535 18 11,535                                             

C. personatus CLP1 19 11,458 19 11,458                                             

C. coimbrai CCO1 19 11,769 19 11,769                                             

C. nigrifrons CNI1 18 10,720 18 10,720                                             

C. nigrifrons CPE04 9 5,623 11 7,419                                             

C. lugens JPB81 16 10,276 18 11,468                                             

C. lugens JPB119 20 12,610 22 14,342                                             

C. lugens JPB124 20 12,437 22 14,234                                             

C. lugens JPB136 19 11,677 21 13,400                                             

C. purinus CTGAM154 20 12,310 22 14,095                                             

C. purinus CTGAM195 16 9,299 18 11,075                                             

C. purinus CTGAM209 17 10,142 19 11,927                                             

Cebus albifrons JPB100 15 8,761 16 9,898                                             

Cebus albifrons CEA1 19 11,036 19 11,036                                             

Saimiri sciureus SSC7 20 12,116 20 12,116                                             

Cacajao calvus CCL1 17 10,737 17 10,737                                             

Chiropotes 
israelita CIS1 19 11,837 19 11,837                                             

Pithecia pithecia  PPT1 20 12,324 20 12,324                                             
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Table 2.6 List of sequence length and loci coverage for 

samples in the mitochondrial (mtDNA) dataset. 

Species Sample ID 

Mitochondrial 

(mtDNA) 
Locus 

Length 

(1,800) 

No. 

loci 

(2) 

C
O

I 

C
Y

T
B

 

C. moloch MCB63 1,800 2     

C. moloch MCB64 1,800 2     

C. moloch MCB79 1,761 2     

C. moloch 857 1,800 2     

C. moloch 1516 1,776 2     

C. moloch CTGAM420 1,800 2     

C. moloch CTGAM421 1,800 2     

C. cf. moloch RVR22 1,800 2     

C. cf. moloch RVR68 1,800 2     

C. cf. moloch RVR73 1,800 2     

C. bernhardi UFRO413 1,796 2     

C. bernhardi 42960 1,800 2     

C. bernhardi 42961 1,140 1     

C. bernhardi 42964 1,800 2     

C. miltoni 42991 1,800 2     

C. miltoni 42992 1,800 2     

C. miltoni 42993 1,676 2     

C. cinerascens UFRO352 1,796 2     

C. cinerascens UFRO355 1,796 2     

C. cinerascens UFRO499 1,790 2     

C. hoffmannsi CTGAM248 1,742 2     

C. hoffmannsi CTGAM290 1,742 2     

C. hoffmannsi 01CNP 1,800 2     

C. cupreus AAM15 1,782 2     

C. cupreus CTGAM210 1,785 2     

C. cupreus JLP15920 1,761 2     

C. cupreus 4984 1,800 2     

C. cupreus 4988 1,800 2     

C. cupreus 4990 1,800 2     

C. cupreus 4993 1,800 2     

C. brunneus UFRO541 1,796 2     

C. brunneus 4009 1,800 2     

C. brunneus 4019 1,800 2     

C. brunneus 4346 1,776 2     

C. brunneus 4505 1,773 2     

C. dubius UFRO403 1,793 2     

C. dubius UFRO544 1,140 1     

C. caligatus CTGAM181 1,785 2     

C. caligatus CTGAM182 1,737 2     

C. caligatus MVR58 1,796 2     

C. caligatus CCM248 1,140 1     

C. donacophilus FJ785423 1,797 2     

C. personatus AF289988 998 1     

C. nigrifrons CPE04 1,796 2     

C. nigrifrons CPRJ1493 1,001 1     

C. lugens JPB81 1,192 2     

C. lugens CRB2698 1,140 1     

C. lugens JPB119 1,732 2     

C. lugens JPB124 1,797 2     

C. lugens JPB136 1,723 2     

C. purinus CTGAM154 1,785 2     

C. purinus CTGAM195 1,776 2     

C. purinus CTGAM209 1,785 2     

Cebus albifrons JPB100 1,137 1     

Saimiri sciureus HQ644334 1,800 2     

Cacajao calvus NC021967 1,797 2     

Chiropotes israelita NC024629 1,797 2     

Pithecia pithecia JF459229 657 1     
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Table 2.7 Summary of dataset characteristics and sequence variation for Callicebus taxa. 

Dataset ID Description 
Length 

(bp) 

Missing 

(%) 

Constant sites 
Variable 

sites 

Parsimony 

informative 

sites 
Callicebus 

samples 

bp % bp % bp % 

Nuclear 
nDNA         

(20 loci)  
12,778 13.6 12,387 96.9 391 3.1 293 2.3 

53 samples; 47 
sequenced for 

this study, 6 for 
Perelman et al. 

(2011) 
Combined 

nDNA + 

mtDNA       
(22 loci) 

14,578 14.6 13,735 94.2 843 5.8 678 4.7 

Mitochondrial 
mtDNA         
(2 loci) 

1,800 7.1 1,312 72.9 488 27.1 420 23.3 

53 samples; 49 

sequenced for 
this study, 4 

from GenBank 

   

For all datasets, Callicebus sample coverage for individual gene regions varied 

from 74% to 100% (average sample coverage = 90%). Length of loci varied between 

402 bp and 1140 bp. A list of loci characteristics is presented in Appendix 1, Table 

A1.1.  

 

2.3.3 DNA isolation, amplification and sequencing 

DNA was extracted from multiple tissues (blood, muscle, kidney) using the Promega 

Wizard Genomic Kit according to the manufacturer's protocol. We amplified all 

nuclear and mitochondrial gene regions using polymerase chain reaction (PCR). The 

PCR reactions were carried out in a total volume of 25 µL, containing approximately 

30 ng of genomic DNA; 4 µL of dNTPs (200μM each); 2.5 µL 10X buffer (200 mM 

Tris-HCL, 500 mM KCl); 1 µL of MgCl2 (25 mM); 1 µL of each forward and reverse 

primer (0.2 µM); and 1 Unit of Invitrogen™ Taq DNA polymerase. The amplification 

cycles were carried out under the following conditions; initial denaturation at 95°C 

for 5 min; followed by 35 cycles of denaturing at 94°C for 1 min, primer annealing at 

between 44°C and 64°C (temperature varies per primer, see Table 2.3) for 1 min, and 

extension at 72°C for 1 min; a final extension was carried out at 72°C for 5 min.  

 PCR products were analysed on 1.5% agarose gels and those that produced 

clear single bands were purified with polyethylene glycol (PEG) and ethanol 

(Paithankar & Prasad, 1991). After purification, PCR products were sequenced 

directly in two reactions with forward and reverse primers. Sequencing reactions were 

carried out using the BigDye Terminator v3.1 cycle sequencing kit (Life 

Technologies). For 10 µL sequencing reactions we used 0.5 µL of BigDye; 1.5 µL of 

5X Sequencing buffer; 1.0 µL of each primer (0.8 µM); and 2 µL of PCR product. 

Sequencing reactions were performed as follows: 96°C for 2 min; followed by 35 
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cycles of 96°C for 15 s, 50°C for 15 s, 60°C for 2.5 min. The sequencing products 

were analysed using an ABI 3500xl (Life Technologies) automatic sequencer 

following the manufacturer’s instructions. Consensus sequences for each individual 

were generated from sequences in forward and reverse directions using Geneious 

R7.1 (Biomatters). 

 

2.3.4 Sequence alignment, data partitioning and model selection 

Each locus was first aligned independently using the standard MUSCLE (Edgar, 

2004) alignment plugin in Geneious R7.1 and checked visually. The loci were then 

concatenated into alignments reflecting the three datasets (nuclear, combined and 

mitochondrial).  

 We used the program PartitionFinder (Lanfear et al., 2012) to objectively 

determine the optimal model of evolution and partitioning scheme simultaneously. 

Best-fit models were selected using Bayesian information criteria under a “greedy” 

search scheme using a subset of models specific to each programme used (RAxML, 

MrBayes, BEAST). When specifying the alignment subsets for PartitionFinder, we 

defined all intronic and UTR loci as single data-blocks and split exonic sequences into 

three subsets reflecting codon position. All our phylogenetic analyses used a specific 

partitioning scheme (containing between three and nine partitions) selected for the 

dataset by PartitionFinder. Additional information about each specific partitioning 

scheme is presented in Appendix 1, Table A1.2. 

 

2.3.5 Phylogenetic analyses 

We conducted phylogenetic inference using maximum-likelihood (ML) and Bayesian 

methods for each dataset. All phylogenetic analyses were run on the CIPRES Science 

Gateway v 3.3 server (Miller et al., 2010). Our ML phylogenetic reconstructions were 

conducted using the program RAxML v. 8.1 (Stamatakis, 2014). For ML inferences, 

we used the partitioning scheme and best-fit models chosen by PartitionFinder. We 

estimated support for nodes using the rapid-bootstrapping algorithm (−f a -x option) 

for 1000 non-parametric bootstrap replicates (Stamatakis et al., 2008). Maximum-

likelihood bootstrap support values (BP) greater than 70% were considered as 

significant support (Hillis & Bull, 1993). 

 Bayesian analyses were performed using MrBayes 3.2.3 (Ronquist et al., 

2008) with the Metropolis coupled Markov Chain Monte Carlo (MCMC) algorithm. 
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The partitioning scheme and best-fit models chosen by PartitionFinder were 

implemented and partitions were unlinked. MCMC convergence was checked aſter 

two independent four-chain runs of 10 million generations for each Bayesian 

inference. We assessed convergence by examining LnL, the average standard 

deviation of the split frequencies between the two simultaneous runs (< 0.01), and the 

Potential Scale Reduction Factor (PSRF) diagnostic in MrBayes, after a burn-in of 

10%. Posterior probability values (PP) higher than 0.95 were considered as significant 

support (Alfaro et al., 2003). 

 A divergence matrix for the cytochrome b locus was generated for selected 

taxa (C. cupreus, C. brunneus, C. caligatus, C. dubius) using PAUP*4.0 (Swofford, 

2002), based on the model parameters selected for the alignment by jModelTest v 

2.1.6 (Darriba et al., 2012; Guindon & Gascuel, 2003).  

 

2.3.6 Divergence-time analyses 

We jointly estimated phylogeny and diversification times under an uncorrelated 

lognormal relaxed clock in the program BEAST v. 1.8.1 (Drummond et al., 2012). 

The partitioning scheme and best-fit models chosen by PartitionFinder were 

implemented and a Yule speciation process was used for all analyses. We ran two 

independent analyses for 50 million generations, sampling every 5000 generations. 

The sampling distributions of each run were visualized using Tracer v. 1.6 to evaluate 

convergence and to verify that the effective sample size was > 200 for all parameters 

after a burn-in of 10%. We combined runs using LogCombiner v. 1.8.1 and generated 

the maximum credibility tree in TreeAnnotator v. 1.8.1.  

 To obtain the posterior distribution of the estimated divergence times, we used 

two calibration points with lognormal priors to set a hard minimum and soft 

maximum bound (Ho & Phillips, 2009). We set a minimum age of 15.7 Ma for crown 

Pitheciidae based on the fossil Proteropithecia Kay et al., 1998 (Kay et al., 1998, 

1999), and a minimum age of 12.5 Ma on crown Cebinae using the fossil Neosaimiri 

Stirton, 1951 (Hartwig & Meldrum, 2002; Rosenberger et al., 1991; Takai, 1994). For 

both calibration points, we set a soft maximum bound at 26 Ma using the fossil 

Branisella boliviana Hoffstetter, 1969, from the Deseadan fauna of La Salla 

(MacFadden, 1990). We chose this maximum age based on the evidence that 

Branisella boliviana and the Miocene Patagonian fossils belong to independent stem 

platyrrhine radiations (Kay et al., 2008; Schrago et al., 2013), the absence of fossils 
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for extant lineages in South American formations from this period (Kay & Fleagle, 

2010), and the wealth of molecular evidence in support of a more recent common 

ancestor for extant platyrrhines (e.g., Hodgson et al., 2009; Schrago et al, 2013, 2014; 

Springer et al., 2012). The calibration points were implemented as lognormal 

distributions with an offset as the hard minimum bound. We set the standard deviation 

and mean such that 95% of the prior distribution falls before the maximum age to 

create a soft maximum bound (Table 2.8). 

 

         Table 2.8. Evolutionary rate calibration constraints (in millions of years). 

Divergence Offset fossil Offset 
95% age 

fossil 

95% prior 

distribution 

Standard 

deviation 
Mean 

Pitheciinae- 
Proteropithecia 15.7 

Branisella 

boliviana 
26 0.8 1.02 

Callicebinae 

Cebus- 
Neosaimiri 12.5 

Branisella 

boliviana 
26 0.8 1.29 

Saimiri 

 

 Our divergence-time analyses were run based on all 22 loci in the combined 

dataset, but to minimise missing data for these analyses, we concatenated sequences 

from two individuals for some outgroup species (Cacajao calvus, Chiropotes 

israelita, Pithecia pithecia, Saimiri sciureus). For comparison of node dates and 

topology, we also ran our BEAST analyses using the nuclear dataset. 

2.4 Results 

2.4.1 Group-level topology 

All analyses across the mitochondrial, nuclear and combined datasets yielded an 

identical topology for the Callicebus species groups (Figure 2.1). Our results support 

the division of Callicebus into four reciprocally monophyletic groups; the torquatus 

clade, here including C. lugens and C. purinus; the personatus clade with C. 

personatus, C. coimbrai, and C. nigrifrons; the donacophilus clade with C. 

donacophilus; and the moloch clade containing all remaining taxa (C. hoffmannsi, C. 

cinerascens, C. miltoni, C. bernhardi, C. moloch, C. cf. moloch, C. brunneus, C. 

cupreus, C. dubius, and C. caligatus). The torquatus group is strongly supported as 

the earliest radiation to diverge. It is followed by the separation of the personatus 

group from the donacophilus+moloch clade, with the final group-level split occurring 
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between the donacophilus group and the moloch group. These major diversification 

events receive significant support across all analyses (bootstrap percentage, BP > 

70%; posterior probability, PP > 0.95), and thus, our results suggest a highly resolved 

topology for the Callicebus species groups (Figure 2.1). As Kobayashi’s moloch and 

cupreus groups were not monophyletic, we adopt Groves’ (2005) classification and 

include all cupreus group species (sensu Kobayashi, 1995) in the moloch group. A 

summary of node support per analysis is presented in Table 2.9.  

 

 

Figure 2.1 Phylogenetic reconstruction showing Callicebus species-group level topology. All nodes 

were significantly supported in all analyses (BP ≥ 70% and PP ≥ 0.95). Node numbers correspond to 

those in Figure 2, 3. 

 

2.4.2 Species-level topology 

Within each dataset, ML (RAxML) and Bayesian (MrBayes, BEAST) inference trees 

all presented similar species-level topologies. Individual trees with node support 

values for each analysis are found in Appendix 1, Figure A1.1–A1.3 (combined), 

A1.4–A1.6 (nuclear), A1.7, A1.8 (mitochondrial). Node support values for all 

phylogenetic analyses are listed in Table 2.9. 

 The phylogenetic relationships among taxa in the torquatus and personatus 

clades are identical for all three datasets (Figure 2.2). All nodes have significant 

support (BP > 70%, PP > 0.95) with the exception of the sister-relationship between 
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C. lugens from the left and right banks of the Rio Negro, which is not supported for 

the mitochondrial dataset (BP = 64%, PP = 0.78). Callicebus donacophilus is 

consistently supported as an independent lineage, sister to the moloch species group. 

Species-level relationships within the moloch group, however, vary according to each 

dataset. The principal differences were found between the combined and nuclear 

dataset topologies in the phylogenetic position of C. cinerascens and C. miltoni, as 

well as the phylogenetic relationships of C. cupreus and other closely related species 

(Figure 2.2). The mitochondrial trees largely reflect those inferred from the combined 

dataset except in the phylogenetic position of C. hoffmannsi (see Figure A1.7, A1.8), 

discussed below. 

 

2.4.3 The moloch group 

In contrast to morphological hypotheses (Kobayashi, 1995; Van Roosmalen et al., 

2002), the moloch and cupreus groups were not monophyletic; C. hoffmannsi does not 

share a most recent common ancestor with other species of moloch group (sensu 

Kobayashi, 1995); and C. brunneus of the moloch group (sensu Kobayashi, 1995) is 

nested in the cupreus species group clade.  

 There is little molecular evidence for the separation of specimens identified as 

C. caligatus and C. dubius. The mitochondrial dataset supports C. caligatus and C. 

dubius as a monophyletic group (BP = 91%, PP = 1.00); however, the two C. dubius 

do not form a clade, and branch off independently at the base of the C. caligatus 

clade. Most of the nodes within this clade are not well supported (BP < 70%, PP < 

0.95), and the topology may suggest that these taxa form one, not two, species. For 

the nuclear and combined datasets, C. dubius is monophyletic and is a minimally 

diverged sister taxon of C. caligatus. A divergence matrix based on the 1140bp 

cytochrome b locus (Appendix 1, Table A1.3) shows genetic distance values of 0.01–

0.06 between the six C. dubius and C. caligatus specimens. These values are 

comparable to the divergence between specimens of C. brunneus (0.0–0.08) or of C. 

cupreus (0.02–0.19), rather than the genetic distances found between C. brunneus, C. 

cupreus and the C. caligatus/C. dubius complex (0.24–0.38). 
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Table 2.9 Node support values for all phylogenetic analyses. Node numbers correspond to those on Figure 2.1, 2.2, 2.3, A1.1 – A1.10. Bold 

indicates an unsupported node. Asterisk indicates the node is not represented in that topology. 

Node Split or clade 

Combined dataset Nuclear dataset Mitochondrial dataset 

BP 

RAxML 

PP 

MrBayes 

PP  

BEAST 

BP 

RAxML 

PP 

MrBayes 

PP  

BEAST 

BP 

RAxML 

PP 

MrBayes 

1 Pitheciidae vs. Cebinae root root 1.00 root root 1.00 root root 
2 Pitheciinae vs. Callicebinae 100 1.00 1.00 100 1.00 1.00 83 1.00 

3 Saimiri vs. Cebus 100 1.00 1.00 100 1.00 1.00 83 1.00 
4 Pithecia vs. Cacajao + Chiropotes 100 1.00 1.00 100 1.00 0.98 75 1.00 

5 torquatus group vs. all other Callicebus 100 1.00 1.00 100 1.00 0.98 100 1.00 

6 personatus group vs. donacophilus + moloch groups 100 1.00 1.00 100 1.00 0.98 72 0.95 
7 Cacajao vs. Chiropotes  100 1.00 1.00 100 1.00 1.00 98 0.96 

8 donacophilus group vs. moloch group 100 1.00 1.00 100 1.00 0.98 100 1.00 
9 C. hoffmannsi vs. remaining Callicebus 1 85 1.00 1.00 70 1.00 1.00 29 Polytomy  

10 west- vs. east-Amazonian moloch taxa 2 53 1.00 1.00 67 1.00 1.00 71 Polytomy 

11 C. lugens vs. C. purinus 100 1.00 1.00 100 1.00 1.00 100 1.00 

12 C. nigrifrons vs. other personatus group taxa. 100 1.00 1.00 100 1.00 1.00 100 1.00 

13 C. cinerascens + C. miltoni vs. C. bernhardi + C. moloch 2 44 0.76 1.00 * * * 80 1.00 
14 C. cupreus vs. remaining west-Amazonian taxa 3 99 1.00 1.00 * * * 84 1.00 

15 C. bernhardi vs. C. moloch  100 1.00 1.00 56 0.99 1.00 89 1.00 

16 C. coimbrai vs. C. personatus 100 1.00 1.00 100 1.00 1.00 * * 
17 C. brunneus vs. remaining west-Amazonian taxa 3 99 1.00 1.00 58 Polytomy 1.00 91 1.00 

18 C. cinerascens vs. C. miltoni 2 72 1.00 1.00 * * * 100 1.00 
19 C. hoffmannsi vs. C. cf. hoffmannsi  85 1.00 1.00 82 1.00 1.00 * * 

20 C. lugens L bank vs. C lugens R bank 99 1.00 1.00 97 1.00 0.99 64 0.78 

21 C. moloch vs. C. cf. moloch  98 1.00 1.00 79 1.00 1.00 94 1.00 
22 C. cupreus A vs. C. cupreus B 3 99 1.00 1.00 * * * 98 1.00 

23 C. dubius vs. C. caligatus 4 99 1.00 1.00 64 0.99 1.00 * * 
24 C. cinerascens (independent radiation) 2 * * * 76 1.00 0.99 * * 

25 C. miltoni (independent radiation) 2 * * * 70 0.98 0.99 * * 

26 C. cupreus A vs. remaining west-Amazonian taxa 3 * * * 95 1.00 1.00 * * 
27 C. cupreus B vs. C. caligatus + C. dubius 3 * * * 23 Polytomy  0.38 * * 
1 The mitochondrial position of C. hoffmannsi differs from the combined and nuclear.  

      2 Nuclear topology: C. cinerascens and C. miltoni form independent lineages. 

       3 The relationship between C. brunneus, C. cupreus and C. dubius/caligatus differs between the nuclear and combined/mitochondrial topology. 

 4 For the mitochondrial topology, C. dubius is not monophyletic. 
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Figure 2.2 Molecular phylogeny showing relationships among Callicebus taxa based on 53 Callicebus 

and 6 outgroup individuals. Shown are maximum likelihood trees inferred from the combined dataset 

(left) and the nuclear dataset (right), with branches collapsed to represent clades of interest. Numbers in 

parenthesis indicate number of individuals represented in the collapsed clade. See Figure A1.1–A1.6 

for the expanded ML (RAxML) and Bayesian (MrBayes, BEAST) trees with node support values. 

Unmarked nodes were significantly supported in all analyses (BP ≥ 70% and PP ≥ 0.95), while nodes 

marked with white circles received low support (BP < 70% and/or PP < 0.95). Red numbers represent 

nodes of interest listed with support values for all methods of analysis in Table 2.9. Background 

colours reflect species group; green for the torquatus group, pink for the personatus group, yellow for 

donacophilus group, blue for the moloch group; and grey indicates the outgroup species. 

 

All datasets support a west-Amazonian species complex that comprises C. 

brunneus, C. cupreus, C. caligatus and C. dubius, and is subdivided into four distinct 

clades: C. brunneus; C. cupreus A; C. cupreus B; and C. caligatus/C. dubius. The 

sister group relationship of C. cupreus (C. cupreus A, C. cupreus B) to the group 

comprising C. brunneus and C. caligatus/dubius is consistently supported in the 

combined/mitochondrial phylogeny (BP > 84%, PP = 1.00). In the nuclear dataset, C. 

cupreus is paraphyletic and C. cupreus A is supported as the first diverging member 

of the group (BP = 95%, PP = 1.00). The RAxML and BEAST topologies show that 

C. brunneus is the next taxon to diverge (BP = 58%, PP = 1.00), with C. cupreus B 

being sister to C. caligatus/dubius (BP = 23%, PP = 0.38). However, the MrBayes 
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tree inferred from the nuclear dataset shows a polytomy among C. brunneus, C. 

caligatus/dubius and C. cupreus B. 

 Callicebus hoffmannsi is strongly supported as an early diverging lineage in 

the nuclear (between the C. cinerascens and C. miltoni radiations) and combined (as 

sister-group to all other species of the moloch group) dataset analyses. The 

phylogenetic relationship of C. hoffmannsi differs in the mitochondrial dataset (see 

Figure A1.7, A1.8), but has no statistical support (RAxML, BP = 28%; MrBayes, 

unresolved polytomy). 

 All analyses support a clade that contains C. moloch, C. cf. moloch and C. 

bernhardi, with a sister-species relationship between C. moloch and C. cf. moloch. All 

nodes within this group are significantly supported (BP > 70%, PP > 0.95) with the 

exception of the split between C. bernhardi and C. moloch/C. cf. moloch for the ML 

nuclear phylogeny (BP = 56%, PP > 0.99). Callicebus cinerascens + C. miltoni are a 

sister group to this clade in the mitochondrial (with significant support) and combined 

(supported only in the BEAST analysis, PP = 1.00) datasets. In the nuclear dataset, C. 

cinerascens and C. miltoni find significant support as independent early diverging 

lineages, along with C. hoffmannsi. Thus, there is a conflict in the phylogenetic 

signals of the nuclear and mitochondrial datasets, which is reflected by low support in 

combined datasets, but high support in independent mitochondrial and nuclear 

analyses. The phylogenetic position of C. cinerascens and C. miltoni, therefore, 

remains unresolved.  

 

2.4.4 Divergence-time estimates  

From the combined dataset (Figure 2.3, A1.9, Table 2.10), we estimated the origin of 

crown Pitheciidae at c. 21.47 Ma (95% HPD = 17.82–25.78) and the origin of crown 

Callicebus to be in the early Miocene, c. 18.71 Ma (95% HPD = 15.97–22.6). The 

most recent common ancestor of extant Callicebus lineages is estimated to have lived 

in the late Miocene (10.98 Ma; 95% HPD = 8.36–14.25); this ancestor gave rise to the 

progenitor of the torquatus species group (Amazon and Orinoco) and the progenitor 

of all other Callicebus clades. Next to diverge was the Atlantic forest personatus 

group at around 8.34 Ma (95% HPD = 6.18–10.86), also in the late Miocene. The 

final group-level divergence is estimated to have occurred in the Pliocene, around 

4.39 Ma (95% HPD = 2.99–6.08), between C. donacophilus (representative of the 

donacophilus group) and the moloch group. In the moloch group, C. hoffmannsi 
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diverged at an estimated 3.44 Ma (95% HPD = 2.39–4.74), followed by the 

divergence of an east-Amazonian clade (C. cinerascens, C. miltoni, C. bernhardi, C. 

moloch, C. cf. moloch) and a west-Amazonian clade (C. cupreus, C. brunneus, C. 

dubius, C. caligatus) at around 2.81 Ma (95% HPD = 1.95–3.8).  

 

Table 2.10 Divergence time estimates for the combined and nuclear datasets. Node numbers correspond to those 

on Figure 2.1, 2.2, 2.3, A1.9, A1.10. Asterisk indicates the node is not represented in that topology. 

Node Split or clade 

Combined dataset Nuclear dataset 

Mean age 95% HPD Mean age 95% HPD 

(Ma) Lower Upper (Ma) Lower Upper 

1 Pitheciidae vs. Cebinae 21.47 17.82 25.78 22.89 17.82 28.92 

2 Pitheciinae vs. Callicebinae 18.71 15.97 22.6 19.13 15.93 23.8 

3 Saimiri vs. Cebus 15.02 12.85 17.92 14.99 12.79 18.08 

4 Pithecia vs. Cacajao + Chiropotes 11.89 8.82 15.5 11.99 7.33 16.67 

5 torquatus group vs. all other Callicebus 10.98 8.36 14.25 12.03 7.78 16.72 

6 
personatus group vs. donacophilus + moloch 
groups 

8.34 6.18 10.86 8.94 5.52 13.07 

7 Cacajao vs. Chiropotes  6.77 4.48 9.27 6.23 2.68 10.15 

8 donacophilus group vs. moloch group 4.39 2.99 6.08 5.33 2.58 8.78 

9 C. hoffmannsi vs. remaining Callicebus  3.44 2.39 4.74 3.57 1.55 6.29 

10 west- vs. east-Amazonian moloch taxa 1 2.81 1.95 3.8 2.41 1 4.33 

11 C. lugens vs. C. purinus 2.6 1.57 3.77 3.15 1.03 6.22 

12 
C. nigrifrons vs. other personatus group 

taxa. 
2.53 1.52 3.79 4.14 1.85 7.3 

13 
C. cinerascens + C. miltoni vs. C. bernhardi 
+ C. moloch 1 

2.33 1.65 3.2 * * * 

14 
C. cupreus vs. remaining west-Amazonian 
taxa 2 

1.95 1.33 2.72 * * * 

15 C. bernhardi vs. C. moloch  1.72 1.16 2.39 1.73 0.63 3.23 

16 C. coimbrai vs. C. personatus 1.55 0.81 2.44 2.43 0.87 4.48 

17 
C. brunneus vs. remaining west-Amazonian 

taxa 2 
1.5 0.96 2.1 1.36 0.51 2.55 

18 C. cinerascens vs. C. miltoni 1 1.33 0.85 1.93 * * * 

19 C. hoffmannsi vs. C. cf. hoffmannsi  1.23 0.53 2.07 1.91 0.6 3.72 

20 C. lugens L bank vs. C lugens R bank 1.16 0.65 1.82 1.65 0.52 3.4 

21 C. moloch vs. C. cf. moloch  1.05 0.64 1.52 1.18 0.39 2.27 

22 C. cupreus A vs. C. cupreus B 2 1 0.58 1.47 * * * 

23 C. dubius vs. C. caligatus  0.5 0.26 0.79 0.84 0.28 1.66 

24 C. cinerascens (independent radiation) 1 * * * 4.38 1.96 7.63 

25 C. miltoni (independent radiation) 1 * * * 3.08 1.33 5.37 

26 
C. cupreus A vs. remaining west-Amazonian 

taxa 2 
* * * 1.69 0.63 3.17 

27 C. cupreus B vs. C. caligatus + C. dubius 2 * * * 1.16 0.42 2.16 
1 For the nuclear topology, C. cinerascens and C. miltoni form independent lineages. 

   2 The relationship between C. brunneus, C. cupreus and C. dubius/caligatus differs in the nuclear and combined topology. 

 

Sister species divergences are estimated at 1–3 Ma for all Callicebus taxa 

included in the dating analyses. These are especially recent for species of the moloch 

group, with all sister-species splits occurring 1−2 Ma with the exception of the C. 

dubius and C. caligatus divergence, which occurred more recently at c. 0.5 Ma (95% 

HPD = 0.26–0.79). Our dating analyses also suggest relatively divergent lineages 

within some taxa that diverged c. 1.0 – 1.2 Ma; C. lugens from the left and right bank 

of the Rio Negro; C. moloch and C. cf. moloch; and C. cupreus A and B.  
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Figure 2.3 A time-calibrated phylogeny showing estimated divergence ages among Callicebus 

individuals based on the combined dataset. Unmarked nodes were strongly supported (PP ≥ 0.99), 

nodes marked with white circles received low support (PP < 0.95). Node bars indicate the 95% highest 

posterior density. Red numbers represent nodes of interest listed with specific support values and 

estimated divergence times in Tables 2.9, 2.10. Nodes numbered 2 and 3 were used for calibration. A 

time scale in million years and the geological periods are given. Background colours reflect species-

group; green for the torquatus group, pink for the personatus group, yellow for donacophilus group, 

blue for the moloch group; and grey indicates the outgroup species. Illustrations by Stephen D. Nash 

©Conservation International. 
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 We also dated the phylogeny based on nuclear loci only (Table 2.10, Figure 

A1.10). Importantly, we estimated the age of divergence of C. cinerascens and C. 

miltoni from their sister clades in the moloch group at c. 4.38 Ma (95% HPD = 1.96–

7.63) and 3.08 Ma (95% HPD = 1.33–5.37), respectively. Note that C. cinerascens 

and C. miltoni are weakly supported as a sister group to the C. bernhardi/C. 

moloch/C. cf. moloch clade in the combined dataset analyses due to mitochondrial 

DNA signal. Divergence dates inferred for the combined dataset BEAST analyses are 

consistently slightly younger across Callicebus than for the dating analyses based on 

the nuclear loci. A summary of divergence date estimates and 95% HPD intervals for 

the combined and nuclear dataset BEAST analyses is presented in Table 2.10.  

2.5 Discussion 

2.5.1 A proposal for a new taxonomy of the titi monkeys at genus-level 

In this study, we assembled one of the largest molecular datasets for any group of 

platyrrhine primates, sequencing 20 nuclear and two mitochondrial loci totalling over 

14,000 base pairs, and including representatives of all the major callicebine lineages. 

Using this dataset, we provide the first comprehensive review of Callicebinae using 

molecular data to assess phylogenetic relationships and divergence dates among the 

major lineages and to test morphological taxonomical hypotheses. Our analyses show 

that Callicebus is divided into three principal clades of Miocene origin, corresponding 

to Kobayashi’s (1995) torquatus and personatus groups, and a clade containing the 

donacophilus, moloch and cupreus species groups. All phylogenetic analyses yielded 

identical relationships among these three clades with estimated divergence times 

being in the late Miocene. Based on the results from our phylogenetic analyses, and 

also morphological, ecological, karyological and biogeographical evidence (see 

below), we suggest the division of titi monkeys into three genera in the subfamily 

Callicebinae (Table 2.1).  

 

     Cheracebus new genus 

 
LSID: urn:lsid:zoobank.org:act:DE67E93E-89A3-47C1-BAF3-E183F3448520 

 

Type species: Simia lugens Humboldt, A. von. 1811. Rec. Obs. Zool. Anat. Comp. 1: 

319. 
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We did not suggest the earlier named Callitrix [sic] torquata Hoffmannsegg, 1807, as 

the type species, because the type locality given by Schlegel (p. 235, 1876) is outside 

the range of torquatus as defined by Hershkovitz (1990), and there is a certain, as yet 

unresolved, confusion concerning the diagnostic phenotypic traits for the species’ 

identification (see Lönnberg, 1939; Spix, 1823). There is, as such, a lack of clarity 

regarding its diagnostic characteristics, its distribution, and even its validity as a 

taxon. Humboldt’s anecdote about Simia lugens was the inspiration for the name 

Cheracebus (see below). 

 

Etymology: “Chera” is the Latin form of χηρα; Greek for “widow”. “Cebus” comes 

from the Greek “kebos”, which means “long-tailed monkey”. Humboldt (1811, 1852) 

referred to it as the “viudita” of the Orinoco and recounted that missionaries called it 

the widow monkey because of its pelage colouration—a pale face, white collar, and 

white hands contrasting with an overall blackish pelage—that was reminiscent of the 

white veil, neckerchief, and gloves of a widow in mourning. The name persevered 

(Tate, 1939) and in French it has been called the “veuve” (Hill, 1960; Humboldt, 

1852). A synonym of Simia lugens is Saguinus vidua Lesson, 1840: 165. “Vidua” is 

Latin for widow. 

"The saimiri, or titi of the Orinoco, the atele, the sajou, and other 

quadrumanous animals long known in Europe, form a striking contrast, both 

in their gait and habits, with the macavahu, called by the missionaries viudita, 

or ‘widow in mourning’. The hair of this little animal is soft, glossy, and of a 

fine black. Its face is covered with a mask of a square form and a whitish 

colour tinged with blue. This mask contains the eyes, nose, and mouth. The 

ears have a rim: they are small, very pretty, and almost bare. The neck of the 

widow presents in front a white band, an inch broad, and forming a 

semicircle. The feet, or rather the hinder hands, are black like the rest of the 

body; but the fore paws are white without, and of a glossy black within. In 

these marks, or white spots, the missionaries think they recognize the veil, the 

neckerchief, and the gloves of a widow in mourning. The character of this 

little monkey, which sits up on its hinder extremities only when eating, is but 

little indicated in its appearance.” (p. 212, Humboldt, 1852). 
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Distinguishing characters: Cheracebus comprises the torquatus group titis as defined 

by Hershkovitz (1963, 1988, 1990), Kobayashi (1995), and Groves (2001) (Figure 

2.4). Hershkovitz’s (1990) review contains detailed descriptions of the dental, cranial 

and post-cranial characters which distinguish the torquatus group, and hence, now the 

genus Cheracebus, from all other titi monkeys. He described the diagnostic characters 

as follows: “Average size larger than that of other species except C. personatus 

(tables 11, 13), ethmoturbinal I larger, projecting farther behind than the 

maxilloturbinal bone […] average cerebral index high (table 9) [29% of greatest skull 

length], diploid chromosome number = 20 (subspecies unknown) [see below], 

forehead, forearms, sideburns, feet, and tail blackish; crown reddish, reddish brown, 

mahogany, or blackish; sideburns little projecting; throat collar whitish or buffy, 

sometimes not well defined or absent; hands blackish, buffy, yellowish, or orange; 

upper parts from crown to tail base reddish brown, conspicuously to faintly banded or 

uniformly colored; chest, belly uniformly reddish, reddish brown, or blackish” (p. 78, 

1990). 

 

 

Figure 2.4. Titi monkeys, genus Cheracebus. Illustrations by Stephen D. Nash ©Conservation 

International. 
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 Jones & Anderson (1978) summarised the diagnostic characters in a 

taxonomic key distinguishing Callicebus personatus from Callicebus torquatus and 

Callicebus moloch, based on Hershkovitz (1963): “Color of body reddish to black, 

venter either not or slightly defined from dorsum; hind feet and tail to tip black; 

forearms black above and below; upper surface of forefeet either whitish or blackish 

like the wrists”.  

 According to Kobayashi (1990), the occlusal pattern of the upper molars is 

relatively smooth and simple in the torquatus group.  

 Groves (p. 176−177. 2001) added that the mesostyle and distostyle on the 

upper premolars are well defined, whereas in the other species-groups they are absent 

on P2 and weak or absent on P3-4; an entepicondylar foramen is present that is lacking 

in all other species; and the limbs are very long: arm 67−73% of trunk length, leg 

90%. Groves (2001) did not agree with Hershkovitz’s (1990) assertion that the 

torquatus group titis are unusually large. 

 

Geographic range: Titis of the genus Cheracebus occur in the Amazon and Orinoco 

basins, in Brazil, Colombia, Ecuador, Peru, and Venezuela (Figure 2.5). North of the 

Solimões-Amazonas, they occur east as far as the Rio Branco in Brazil, extending into 

Venezuela as far north as the Rio Orinoco, west of the Río Caroni to the foothills of 

the Eastern Cordillera of the Andes, south of the upper Río Guaviare, Colombia, 

through Ecuador, north of the Río Aguarico, and into Peru to the north of the rios 

Amazonas and Tigre. South of the Solimões-Amazonas, they extend eastward from 

the Rio Javari in Brazil, across the lower and middle rios Juruá and Purus (Aquino & 

Encarnación, 1994; Aquino et al., 2008; Defler, 2004; Hershkovitz, 1990; Linares, 

1998; Van Roosmalen et al., 2002). In Ecuador, Peru, and Brazil (primarily south of 

the Rio Amazonas-Solimões), titis of this genus are sympatric with a number of the 

smaller titis of Hershkovitz’s (1988, 1990) moloch group. 

 

Cheracebus lugens (Humboldt, 1811). Widow monkey, White-chested titi 

Simia lugens Humboldt, A. von. 1811. Rec. Obs. Zool. Anat. Comp. 1: 319. 

Type locality: Near San Francisco de Atabapo, at the confluence of the ríos Orinoco 

and Guaviare, Amazonas, Venezuela. 
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Figure 2.5 Approximate geographic distribution of Cheracebus (green), Callicebus (pink) and 

Plecturocebus (orange). The area of sympatry between Cheracebus and Plecturocebus is shown in red. 

 

Cheracebus medemi (Hershkovitz, 1963). Black-handed titi, Medem’s titi 

Callicebus torquatus medemi. Hershkovitz, P. 1963. Mammalia 27(1): 52. 

Type locality: Río Meceya, near mouth, right bank Río Caquetá, Putumayo, 

Colombia: altitude approximately 180 m. 

 

Cheracebus torquatus (Hoffmannsegg, 1807). Collared titi, white-collared titi 

Callitrix [sic] torquatus Hoffmannsegg, G. von. 1807. Mag. Ges. Naturf. Fr., Berlin 

10: 86. 

Type locality: Codajás, north bank Rio Solimões upstream the mouth of the Rio 

Negro, Amazonas, Brazil (Hershkovitz, 1963; see also Lönnberg, 1939). 

 

Cheracebus lucifer (Thomas, 1914). Yellow-handed titi 

Callicebus lucifer Thomas, O. 1914. Ann. Mag. Nat. Hist., 8th ser. 13: 345.  
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Type locality: Yahuas, N. of Loreto, about 2°40'S, 70°30'W, Alt. 500 ft. (Thomas, 

1914). Yahuas territory, near Pebas, Loreto, Peru, about 125 m (Hershkovitz, 1990). 

 

Cheracebus purinus (Thomas, 1927). Rio Purus titi 

Callicebus purinus Thomas, O. 1927. Ann. Mag. Nat. Hist. 9th ser. 19: 509.  

Type locality: Ayapuá, lower Rio Purus, southern affluent of Rio Solimões, Brazil. 

 

Cheracebus regulus (Thomas, 1927). Juruá collared titi 

Callicebus regulus Thomas, O. 1914. Ann. Mag. Nat. Hist. 9th ser. 19: 510. 

Type locality: Fonte Boa, upper Rio Solimões, Amazonas, Brazil. 

 

Callicebus Thomas, 1903 

 

Thomas, O. 1903. Ann. Mag. Nat. Hist., 7th series, 12: 456. Type species. Simia 

personata É. Geoffroy Saint-Hilaire, 1812.  

 

Type species. Simia personata Geoffroy Saint-Hilaire, É. 1812. In: Humboldt, 1812. 

Rec. Obs. Zool., p. 357. 

 

Etymology: “Calli” is from the Greek kalos, which means “beautiful”. “Cebus” is 

from the Greek kebos, which means “a long-tailed monkey”. 

 

Distinguishing characters: The genus Callicebus is here restricted to the Atlantic 

forest titis that were listed as subspecies of C. personatus in the moloch group by 

Hershkovitz (1990), and as members of a distinct C. personatus group by Kobayashi 

(1995) and Groves (2001) (Figure 2.6). Groves (2001) also included C. coimbrai 

Kobayashi & Langguth, 1999. Hershkovitz’s (1990) review contains detailed 

descriptions of the dental, cranial and post-cranial skeletal characters which 

distinguish C. personatus from all other titi monkeys [see also Kobayashi (1995) for 

craniometric differences]. Hershkovitz (p. 70−71, 1990) diagnosed C. personatus as 

follows: “Average size largest […]; cranial characters essentially as in moloch group 

except average cerebral index greater, average brain case index less […]; pelage 

coarse, shaggy with full coat of hidden brownish wool hairs; color of trunk variable, 

cover hairs with 2 or 4 pheomelanic bands sharply defined to shadowy, or uniformly, 
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pheomelanin; cheiridia blackish, the blackish often extending proximally as a tapered 

band to mid-arm or mid-foreleg, remainder of limbs grayish, buffy, yellowish or 

orange, the hairs banded or unbanded; facial hairs long, often comparatively thick but 

not concealing skin; forehead blackish with or without fine buffy banding; sideburns 

and ear tufts blackish; tail orange, reddish, mahogany, or mixed with blackish, never 

entirely blackish.”  

 

 

Figure 2.6. Titi monkeys, genus Callicebus. Illustrations by Stephen D. Nash ©Conservation 

International. 

 

 Jones & Anderson (1978) summarised the diagnostic characters in a 

taxonomic key distinguishing Callicebus personatus from Callicebus torquatus and 

Callicebus moloch, based on Hershkovitz (1963): “Distal portion of limbs (at least 

forefeet and hind feet) black and in sharp contrast to the gray or rufous of wrists and 

other proximal parts”. According to Kobayashi (1990), the personatus group shows 

the most uneven and variable occlusal pattern in the upper molars, with the largest 

number of small cusps and conules. 

 Callicebus coimbrai, not included by Hershkovitz (1990), conforms. It has a 

black forehead, crown, and ears, and a buffy body; pale cheek whiskers, the colour 
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extending to the nape; hands and feet blackish, tail orange, and zebra stripes on the 

upper back (Groves, 2001). The diagnostic features of the personatus group given by 

Groves (p. 175, 2001) summarised Hershkovitz (1990).  

 

Geographic range: Endemic to Brazil (Figure 2.5). These titis are known from north-

eastern Brazil, south of the Rio São Francisco in forest patches in the Caatinga 

(barbarabrownae) and Atlantic forest (coimbrai), south through the Atlantic forest of 

the states of Bahia, Espírito Santo, and Rio Janeiro, west as far as the rios Paraná and 

Paranaíba, and south to the Rio Tieté in the state of São Paulo (Chagas & Ferrari, 

2010; Hershkovitz, 1990; Printes et al., 2013; Van Roosmalen et al., 2002). 

 

Callicebus personatus (É. Geoffroy Saint-Hilaire, 1812). Masked titi 

Simia personata Geoffroy-Saint Hilaire, É. 1812. In: Humboldt, 1812. Rec. Obs. 

Zool., p. 357. 

Type locality: Brazil. Restricted by Hershkovitz (1990) to the lower Rio Doce, 

Espírito Santo, Brazil. 

 

Callicebus coimbrai Kobayashi & Langguth, 1999. Coimbra-Filho’s titi 

Callicebus coimbrai Kobayashi, S. & Langguth, A. 1999. Revta. Bras. Zool. 16(2): 

534. 

Type locality: Proximity of the small village of Aragão, in the region of Santana dos 

Frades about 11.0 km SW of Pacatuba, south of the estuary of the Rio São Francisco, 

state of Sergipe, Brazil. 10°32'S, 36°41'W, altitude 90 m. 

 

Callicebus barbarabrownae Hershkovitz, 1990. Blond titi  

Callicebus personatus barbarabrownae Hershkovitz, P. 1990. Fieldiana, Zool., n.s., 

(55): 77. 

Type locality: Lamarão, Bahia, Brazil, altitude about 300 m above sea level. 

 

Callicebus melanochir (Wied-Neuwied, 1820). Southern Bahian titi 

Callithrix melanochir Wied-Neuwied, M. A. P. von. 1820. Reise nach Brasilien in 

den Jahren 1815 bis 1817. Vol. 1. H. L. Bronner, Frankfurt am Main, p. 258 and fn. 

Type locality: Morro d’Árara or Fazenda Arara, state of Bahia, Brazil (Hershkovitz, 

1990).  
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Callicebus nigrifrons (Spix, 1823). Black-fronted titi 

Callithrix nigrifrons Spix, J. B. von. 1823. Sim. Vespert. Brasil., p. 21. 

Type locality: Brazil. Restricted by Hershkovitz (1990) to the Rio Onças, 

municipality of Campos, Rio de Janeiro, Brazil. 

 

Plecturocebus new genus 

 

LSID: urn:lsid:zoobank.org:act:1E86C672-5008-4DB6-8776-53595C157FEA 

 

Type species. Plecturocebus moloch (Hoffmannsegg, 1807) Red-bellied titi 

Cebus moloch Hoffmannsegg, G. von. 1807. Mag. Ges. Naturf. Fr., Berlin, 9: 97. 

 

Etymology: “Plect-” comes from the Greek plektos, which means plaited or twisted. 

In Latin, Plecto and plexus refer to a braid, plait, or interweave. “Uro-” comes from 

the Greek word oura, which means “tail”. “Cebus” is from the Greek kebos, which 

means “a long-tailed monkey”. The name refers to the tail-twining behaviour of the 

Callicebinae. Titis, adults and juveniles, frequently intertwine their tails when they sit 

side-by-side; sometimes looped quite loosely, sometimes wound around very tightly, 

making several turns. The behaviour is affiliative (Moynihan, 1966). 

 

Diagnostic characters: Hershkovitz’s (1990) review contains detailed descriptions of 

the dental, cranial and post-cranial characters of the titi species recognized at the time, 

and presents summaries of the key characteristics of his modestus (included here in 

the donacophilus group), donacophilus (Figure 2.7) and moloch (Figure 2.8) groups. 

Groves’ (2001) taxonomy, with some exceptions, followed that of Hershkovitz, and 

the distinguishing features he provided, and that we record here, are from 

Hershkovitz’s comprehensive 1990 review.  

 Groves (p. 171, 2001) summarized the modestus group as follows: “Externally 

resembles the moloch group, but cranially primitive according to Hershkovitz (1990), 

with an elongate, low-slung cranium, very small cranial capacity, only 20% of 

greatest skull length, and short occiput, condylobasal length averaging 86% of 

greatest skull length. Median pterygoids very large; mandibular angle large. 

Postcranial skeleton unknown; chromosomes unknown”.  
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 Characteristics of species of the donacophilus group (donacophilus, 

pallescens, olallae and oenanthe) were summarized as follows by Groves (p. 171, 

2001): “Cranial capacity 21−25% of greatest skull length, condylobasal length 

81−84% of greatest skull length. Arm (radius plus humerus) 52−58% of trunk length, 

leg (tibia plus femur) 71−78%. Chromosomes 2n = 50”. 

 Characteristics of the moloch group, including the species cinerascens, 

hoffmannsi, baptista, moloch, brunneus, cupreus (synonyms caligatus, discolor, 

toppini, and dubius), and ornatus, were summarized by Groves (p. 172−173, 2001) as 

follows: “Cranial capacity 26−29% of greatest skull length; condylobasal length 

78−82%. Forelimb (known only for C. cupreus) 53-61% of trunk length, hind limb 

72−81%. Chromosomes 2n = 48 (C. moloch, C. brunneus) or 46 (C. cupreus, C. 

ornatus)”.  

 

 

Figure 2.7. Titi monkeys, the donacophilus group of Plecturocebus. Illustrations by Stephen D. Nash 

©Conservation International. 

 

Geographic range: Brazil, Colombia, Ecuador, Peru, Bolivia, Paraguay (Figure 2.5). 

The northernmost limit is the upper reaches of the Río Meta in Colombia 

(Plecturocebus ornatus) extending south to the upper Río Guaviare. Plecturocebus 
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caquetensis occurs in a small portion of the upper Caquetá basin in Colombia. All 

other representatives of this genus occur throughout the greater part of the Amazon 

basin, south of the ríos Iça-Putumayo and Amazonas-Solimões, east of the Andes, 

extending south through Ecuador, Peru, Brazil, and Bolivia into Paraguay to the 

confluence of the ríos Pilcomayo and Paraguai. In Brazil, they occur east as far as the 

Rio Tocantins-Araguaia, south of the Rio Amazonas (Aquino & Encarnación, 1994; 

Defler, 2004; Hershkovitz, 1990; Martínez & Wallace, 2010; Stallings et al., 1989; 

Tirira, 2007; Van Roosmalen et al., 2002). 

 

 

Figure 2.8. Titi monkeys, the moloch group of Plecturocebus. Illustrations by Stephen D. Nash 

©Conservation International.  
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Plecturocebus donacophilus group 

 

Plecturocebus donacophilus (D’Orbigny, 1836). White-eared titi 

Callithrix donacophilus D’Orbigny, M. A. D. 1836. Voy. Am. Merid., Atlas Zool., pl. 5. 

Type locality: Rio Mamoré basin, Beni, Bolivia. 

 

Plecturocebus pallescens (Thomas, 1907). White-coated titi 

Callicebus pallescens Thomas, O. 1907. Ann. Mag. Nat. Hist., 7th ser., 20: 161. 

Type locality: Thirty miles north of Concepción, Chaco, Paraguay. 

 

Plecturocebus oenanthe (Thomas, 1924). Río Mayo titi 

Callicebus oenanthe Thomas, O. 1924. Ann. Mag. Nat. Hist. 9th ser., 14: 286. 

Type locality: Moyobamba, San Martín, Peru, altitude c. 840 m above sea level. 

 

Plecturocebus olallae (Lönnberg, 1939). Olalla Brother’s titi 

Callicebus olallae Lönnberg, E. 1939. Ark. f. Zool., 31A, 13: 16. 

Type locality: La Laguna, 5 km from Santa Rosa, Beni, Bolivia, altitude c. 200 m 

above sea level. 

 

Plecturocebus modestus (Lönnberg, 1939). Rio Beni titi 

Callicebus modestus Lönnberg, E. 1939. Ark. f. Zool., 31A, 13: 17. 

Type locality: El Consuelo, Río Beni, Beni, Bolivia, altitude 196 m above sea level. 

 

Plecturocebus urubambensis (Vermeer & Tello-Alvarado, 2015). Urubamba brown 

titi 

Callicebus urubambensis Vermeer, J. & Tello-Alvarado, J. C. 2015. Primate Conserv. 

(29): 19. 

Type locality: Peru, near the Colonia Penal del Sepa, on the southern bank of the Río 

Sepa, a western tributary of the Río Urubamba (10°48'50"S, 73°17'80"W). Altitude 

280 m. 
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Plecturocebus moloch group 

 

Plecturocebus moloch (Hoffmannsegg, 1807) Red-bellied titi 

Cebus moloch Hoffmannsegg, G. von. 1807. Mag. Ges. Naturf. Fr., Berlin, 9: 97. 

Type locality: Near the town of Belém, Pará, Brazil. Hill (1960) gives the type 

locality as the banks of the Rio Pará (= terminal part of the Rio Tocantins), Pará, 

Brazil. Redetermined by Hershkovitz (1963) as the right bank of the lower Rio 

Tapajós, municipality of Santarém, Pará, Brazil. 

 

Plecturocebus vieirai (Gualda-Barros, Nascimento & Amaral, 2012). Vieira’s titi 

Callicebus vieirai Gualda-Barros, J., Nascimento, F. O. do & Amaral, M. K. do. 

2012. Pap. Avuls. Zool., São Paulo 52(53): 263. 

Type locality: Rio Renato, tributary of Rio Teles Pires (right bank), nearby the city of 

Cláudia, state of Mato Grosso, Brazil (11°33'00.15"S, 55°10'59.98"W); around 370 m 

above sea level. 

 

Plecturocebus bernhardi (M. G. M. Van Roosmalen, T. Van Roosmalen & 

Mittermeier, 2002). Prince Bernhard’s titi 

Callicebus bernhardi Van Roosmalen, M. G. M., Van Roosmalen, T. and 

Mittermeier, R. A. 2002. Neotrop. Primates 10(suppl.): 24. 

Type locality: West bank of the lower Rio Aripuanã, at the edge of the settlement of 

Nova Olinda, 41 km southwest of the town of Novo Aripuanã, Amazonas state, Brazil 

(05°30'63"S, 60°24'61"W); altitude 45 m above sea level. 

 

Plecturocebus cinerascens (Spix, 1823). Ashy titi 

Callithrix cinerascens Spix, J. B. von. 1823. Sim. Vespert. Brasil., p. 20, pl.14. 

Type locality: Unknown. Spix indicated the Río Putumayo-Içá in the vicinity of the 

Peru-Brazil border, but, as indicated by Hershkovitz (1990), there is no evidence that 

it was ever collected there. This species occurs on right bank of the Rio Aripuanã, a 

tributary of the Rio Madeira (Noronha et al., 2007; Van Roosmalen et al., 2002). 

 

Plecturocebus miltoni (Dalponte, Silva & Silva-Júnior, 2014). Milton's titi 

Plecturocebus miltoni Dalponte, J. C., Silva, F. E. & Silva-Júnior, J. de S. 2014. Pap. 

Avuls. Zool., São Paulo 54(32): 462. 
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Type locality: Curva do Cotovelo, region of the mouth of the Pombal stream, Reserva 

Extrativista Guariba-Roosevelt, right bank of the upper Roosevelt River, municipality 

of Colniza, Mato Grosso, Brazil (08°59'45.21"S, 60°43'42.72"W). 

 

Plecturocebus hoffmannsi (Thomas, 1908). Hoffmanns’s titi 

Callicebus hoffmannsi Thomas, O. 1908. Ann. Mag. Nat. Hist., 8th series, 2: 89. 

Type locality: Urucurituba, Santarém, Rio Tapajós, Pará, Brazil.   

 

Plecturocebus baptista (Lönnberg, 1939). Lake Baptista titi 

Callicebus baptista Lönnberg, E. 1939. Ark. f. Zool., 31A, 13: 7. 

Type locality: Determined by Hershkovitz (p. 29, 1963) as the Lago do Baptista, right 

bank of the Rio Madeira, north of the Paraná Urariá and east of the town of Nova 

Olinda do Norte, Amazonas, Brazil (Van Roosmalen et al., 2002). Syntypes collected 

from the Lago Tapaiuna. 

 

Plecturocebus cupreus (Spix, 1823) Coppery titi 

Callithrix cuprea Spix, J. B. von. 1823. Sim. Vespert. Brasil., p. 23, pl. 17. 

Type locality: Rio Solimões, Brazil, near the Peruvian boundary. Restricted to 

Tabatinga by Hershkovitz (p. 36, 1963), but should be opposite Tabatinga because the 

species does not occur on the north bank or Tabatinga side of the Solimões (p. 61, 

Hershkovitz, 1990). 

 

Plecturocebus discolor (I. Geoffroy Saint-Hilaire & Deville, 1848). Red-crowned titi 

Callithrix discolor Geoffroy Saint Hilaire, I. & Deville, É. 1848. C. R. Acad. Sci. 

Paris, 27: 498.  

Type locality: Sarayacu, Río Ucayali, Ucayali, Peru. 

 

Plecturocebus ornatus (Gray, 1866). Ornate titi 

Callithrix ornata Gray J. E. 1866. Ann. Mag. Nat. Hist., 4th ser., 17: 57. 

Type locality: “Nouvelle Grenade”, now Colombia, restricted to the Villavicencio 

region, Río Meta, Meta, Colombia, by Hershkovitz (p. 44, 1963).  

 

Plecturocebus caquetensis (Defler, Bueno & Garcia, 2010). Caquetá titi 
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Callicebus caquetensis Defler, T. R., Bueno. M. L. & García, J. 2010. Primate 

Conserv. (25): 2. 

Type locality: Vereda El Jardin, east of Valparaiso, municipality of Puerto Milan, 

Department of Caquetá, Colombia (01°8'24.61"N, 75°32'34.04"W); 251 m above sea 

level. 

 

Plecturocebus brunneus (Wagner, 1842). Brown titi 

Callithrix brunea Wagner, J. A. 1842. Arch. Naturgesch., 8(1): 357. 

Type locality: Brazil, subsequently specified by Pelzeln (p. 20, 1883) as Rio Mamoré, 

Cachoeira da Bananeira, Rondônia, Brazil.  

 

Plecturocebus aureipalatii (Wallace, Gómez, A. M. Felton & A. Felton, 2006). 

Madidi titi 

Callicebus aureipalatii Wallace et al. 2006. Primate Conserv. (20): 31. 

Type locality: Campamento Roco Roco, Río Hondo, Madid National Park and 

Natural Area of Integrated Management, La Paz Department, Bolivia (14°37'30"S, 

67°43'06"W). 

 

Plecturocebus toppini (Thomas, 1914). Toppin’s titi 

Callicebus toppini Thomas, O. 1914. Ann. Mag. Nat. Hist., ser. 8, 13: 480.  

Type locality: Rio Tahuamanu, northeast Peru [sic] near Bolivian boundary. About 

12°20'S, 68°45'W. The Rio Tahuamanu and the Bolivian border are in fact in 

southeast Peru, not northeast; evidently a lapsus calami. 

 

Plecturocebus caligatus (Wagner, 1842). Chestnut-bellied titi 

Callithrix caligata Wagner, J. A. 1842. Arch. Naturgesch., 8(1): 357. 

Type locality: Restricted by Thomas (p. 90, 1908) to Borba, Rio Madeira, Amazonas 

Brazil. 

 

Plecturocebus dubius (Hershkovitz, 1988). Doubtful titi 

Callicebus dubius Hershkovitz, P. 1988. Proc. Acad. Nat. Sci. Philadelphia 140(1): 

264. 

Type locality: Said to be Lago de Aiapuá (= Ayapuá), west bank, lower Rio Purus, 

more likely on the east bank of the lower Rio Purus, probably opposite of the Lago do 
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Aiapuá (Hershkovitz, 1990). Röhe & Silva-Júnior (2009) recorded that the species 

had crossed from the Mucuim-Ituxi interfluvium to the right bank of the Rio Mucium 

using a man-made bridge. Here considered a junior synonym of P. caligatus. 

 

Plecturocebus stephennashi (M. G. M. Van Roosmalen, T. Van Roosmalen & 

Mittermeier, 2002). Stephen Nash’s titi 

Callicebus stephennashi Van Roosmalen, M. G. M., Van Roosmalen, T. and 

Mittermeier, R. A. 2002. Neotrop. Primates 10(suppl.): 15. 

Type locality: Unknown, holotype and paratypes said to be have been caught 

somewhere along the middle to upper Rio Purus, Amazonas, Brazil. 

 

2.5.2 Genus-level topology 

Our proposal to divide Callicebus into three distinct genera gains support from 

previous molecular phylogenetic analyses (e.g., Canavez et al., 1999; Perelman et al., 

2011; Springer et al., 2012). Our divergence-time estimates for the genus-level splits 

(Cheracebus c. 11 Ma; Callicebus c. 8.3 Ma), are comparable to those reported by 

Springer et al. (2012) (Cheracebus c. 7.8 Ma; Callicebus c. 7.2 Ma) and Perelman et 

al. (2011) (Callicebus c. 9.9 Ma). Based on phylogenomic evidence, Jameson 

Kiesling et al. (2015) estimated the divergence time of Callicebus and Plecturocebus 

at 6.7 Ma, and suggested that these two species groups required the designation of 

separate genera based on the time-classification criteria proposed by Goodman et al. 

(1998). 

 The phyletic groups proposed by Kobayashi (1995) using cranial 

morphometrics correspond with the arrangement found using molecular evidence in 

the present study. Kobayashi (1995) noted that the torquatus group (Cheracebus) and 

the personatus group (Callicebus) presented a high degree of character differentiation, 

while the donacophilus, moloch and cupreus groups (Plecturocebus) were more 

closely related. In discordance with his proposal, we found support for the division of 

Plecturocebus into two, not three, species groups. The donacophilus group is indeed a 

distinct early diverging lineage but Kobayashi’s (1995) moloch and cupreus groups 

are better described as a single group, which began diversifying c. 3.4 Ma. To account 

for paraphyly in the current group arrangement, we propose that all Amazonian titis 

of the cupreus and moloch groups (sensu Kobayashi, 1995) should be assigned to a 

single moloch group, conforming to the moloch group identified by Groves (2001). 
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We argue that increased resolution of the species-level relationships among these 

species is required to justify erecting any additional species group. 

Body size and pelage colouration also support our taxonomic hypothesis. The 

moloch species group of Plecturocebus is composed of medium-sized “typical” titis 

characterised by the greyish or brownish dorsum with a contrasting whitish, orange or 

reddish belly (except P. cinerascens and P. brunneus; see Figure 2.8), while the 

donacophilus clade taxa are the smallest species, generally showing a buffy to dark 

grey pelage that lacks contrast (Figure 2.7) (Hershkovitz, 1988; Kobayashi, 1995). 

Callicebus are distinguished by their large size and overall appearance (Figure 2.6), 

distinct from other callicebine taxa (see Groves, 2001). Hershkovitz (1988) indicated 

that Cheracebus species are larger than the species of Plecturocebus, but Groves (p. 

176, 2001) found that this was not borne out by the available measurements. They are 

distinguishable from all other titis, however, by their uniform dark reddish to blackish 

pelage with contrasting whitish throat collar (Figure 2.4) and also their postcranial 

skeleton. 

Our conclusions based on molecular evidence are further supported by 

karyological data. The subfamily Callicebinae presents extensive karyotypic variation 

that corresponds closely to the present genera derived from molecular and 

morphological data. Cheracebus is characterised by low chromosome number; 2n = 

20 in C. torquatus (Benirschke & Bogart, 1976) and C. lucifer (Bueno & Defler, 

2010), and 2n = 16 in C. lugens, the lowest diploid chromosome number and most 

derived karyotype known among all primates (Stanyon et al., 2003). Callicebus 

nigrifrons and C. personatus, show intermediate chromosome numbers of 2n = 42 and 

2n = 44, respectively (Rodrigues et al., 2004). Plecturocebus taxa have the highest 

chromosome numbers, ranging from 2n = 44 (P. ornatus) (Bueno et al., 2006) to 2n = 

50 (P. hoffmannsi, P. donacophilus) (de Boer, 1974; Rodrigues et al., 2001).  

Wood & Collard (1999) argued that the designation of a genus should include 

“an ecological situation, or adaptive zone, that is different from that occupied by the 

species of another genus”. Our three genera satisfy these conditions with each having 

distinct geographic distributions (Figure 2.5) and habitat preferences (Ferrari et al., 

2013). Callicebus species are entirely extra-Amazonian and geographically well 

separated from all other titis. They are found in the Atlantic Forest region of eastern 

Brazil, as far south and west as the Tietê-Paraná-Parnaíba river system, and as far 
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north as the Rio São Francisco (Chagas & Ferrari, 2010). This includes the range of 

C. barbarabrownae, which occupies the Caatinga biome of northeast Brazil.  

Cheracebus is the northern-most genus, occurring in the Amazon Basin to the 

west of the rios Branco and Negro (north of the Rio Amazonas) and west of the Rio 

Purus (south of the Rio Amazonas), with the geographic range of C. lugens extending 

north of the Rio Negro into Venezuela and Colombia (Ferrari et al., 2013). In the 

southern part of their range, Cheracebus species are sympatric with species of the 

moloch group of Plecturocebus, which occur throughout the southern and western 

Amazon basin (Figure 2.5). However, it is unlikely that this has resulted in extensive 

niche overlap. Cheracebus species prefer open-canopy forests, with tall trees and 

well-drained soils, and make use of higher levels of the canopy, whereas moloch 

group species occupy the dense understoreys of vegetation, thick with lianas (Johns, 

1991; Defler, 2004). Where they are sympatric, it has been reported that Cheracebus 

species often inhabit areas of poor vegetation, outcompeted by the moloch group 

species for more favourable habitats (Kinzey, 1981; Kinzey & Gentry, 1979) 

Although still little studied, Cheracebus and sympatric Plecturocebus undoubtedly 

have different dietary preferences, with Cheracebus species consuming more insects, 

seeds and tougher fruits, while the diets of the moloch group species contain more 

leaves (Bicca-Marques & Heymann, 2013; Ferrari et al., 2013; Heymann & 

Nadjafzadeh, 2013; Palacios et al., 1997; Palacios & Rodríguez, 2013). 

The range of the donacophilus group species of Plecturocebus extends far 

south of the Amazon basin and they have the most disjunct set of species distributions 

of the titi monkey clades. They occupy forest patches and gallery forests in the 

savannah floodplains of Bolivia, Paraguay and Brazil, with the range of P. pallescens 

extending into the Chaco scrublands and Pantanal swamps in Paraguay and Brazil 

(Ferrari et al., 2013; Rumiz, 2012; Silva-Júnior et al., 2013; Stallings, 1985)  

As we have sequence data for only one species of the donacophilus clade, we 

are limited in our ability to make novel inferences about this group. The 

morphological, molecular and ecological differences between these two species 

groups may justify a new classification for taxa of the donacophilus clade, pending 

increased taxonomic sampling and sequence data. 

For the taxa not included in this study we will continue to follow the 

arrangement proposed by Groves (2005) (Table 2.1), with the exception of P. 

modestus. Only a single adult specimen has been collected to date. Hershkovitz (1988, 
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1990) noted the unusual elongated skull of P. modestus and regarded it as the most 

primitive titi monkey species. Because of this, he created the modestus group, a 

proposal followed by Groves (2001, 2005). Kobayashi (1995) moved P. modestus to 

the donacophilus group, but stated “the phylogenetic position of P. modestus is 

morphometrically debatable” (p.119) and that a sufficient number of samples need to 

be collected to clarify placement. Although new observations have been made in the 

wild (Felton et al., 2006), no further adult P. modestus specimens have been collected 

and thus we follow Kobayashi (1995) in maintaining P. modestus in the donacophilus 

group.  

 

2.5.3 Species-level topology 

Our phylogenetic analyses showed strong support for most of the nodes in the 

Callicebinae phylogeny. At species-level, phylogenetic relationships among taxa of 

Cheracebus and Callicebus are identical in all analyses, however they varied among 

species of the moloch group of Plecturocebus.  

Based on the analysis of museum specimens, Auricchio (2010) suggested that 

the pelage colouration of P. bernhardi is consistent with polymorphic variation found 

in P. moloch specimens, and considered P. bernhardi as a junior synonym of P. 

moloch. He states that a mitochondrial phylogeny also supports the classification of 

all “moloch” phenotypes as polymorphic variants of the same species, including P. 

bernhardi and a specimen from the Alta Floresta region (likely P. cf. moloch). 

However, the molecular data and phylogenetic trees were not presented in the study. 

This classification is in conflict with the results from our molecular datasets, showing 

support for three distinct taxa, with a sister-clade relationship between P. bernhardi 

and P. moloch/P. cf. moloch. Divergence time analyses date the split between P. 

bernhardi and P. moloch/P. cf. moloch at c. 1.7 Ma, representing one of the oldest 

speciation events within the moloch group and providing support for the validity of P. 

bernhardi as a distinct species. Plecturocebus moloch and P. cf. moloch are highly 

supported as distinct sister-taxa across all datasets, and divergence time analyses date 

the split at c. 1.1 Ma, comparable to other speciation times within the moloch group. 

Seven P. moloch specimens from three different localities (see Table 2.2) are included 

in this study, however, in contrast, the earliest diversification event within P. moloch 

is estimated at c. 0.4 Ma. The molecular evidence presented here provides support for 

the designation of P. cf. moloch as a valid species. This taxon occurs in the Alta 
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Floresta region of Mato Grosso, Brazil and our group is currently working on this new 

species description (Boubli et al. in prep.).  

Our results cast doubt on the validity of the species status of P. dubius. For the 

nuclear and combined datasets, P. dubius is a minimally diverged sister taxon of P. 

caligatus, and for the mitochondrial dataset, P. dubius is paraphyletic and most of the 

nodes within the P. caligatus/P. dubius clade show low support. Pairwise genetic 

distances estimated for the cytochrome b locus between P. caligatus and P. dubius 

(see Table A1.3; 0.01–0.06) indicate that the two taxa show very low genetic 

differentiation. Plecturocebus caligatus occurs in the interfluve delineated by the rios 

Purús/Solimões/Madeira/Ipixuna, and to the southwest P. dubius is found between the 

rios Purús/Mucuím/Madeira (southern limit unknown). The pelage colouration of P. 

caligatus and P. dubius is also highly similar; Hershkovitz (1988) noted that the only 

distinguishing feature between P. caligatus and P. dubius was the whitish frontal 

band found in the latter, and suggested that rather than indicating two distinct species, 

forehead colouration could be a variable feature in P. caligatus. This white frontal 

blaze is poorly developed in some P. dubius specimens (pers. obs.). Considering the 

morphological, molecular, and geographical affinities between P. caligatus and P. 

dubius, we propose the designation of P. dubius (Hershkovitz, 1988) as a junior 

synonym of a polymorphic P. caligatus. We suggest that the phenotypic differences 

found between these taxa represent geographic variation in pelage colouration. 

Based on cranial morphometrics, Kobayashi (1995) suggested that P. 

brunneus was closely related to his moloch group species, however, the skulls of P. 

brunneus studied were of two species, P. urubambensis and P. brunneus, which may 

have affected the results. Our analyses support a western Amazonian species-complex 

composed of P. brunneus, and Kobayashi’s cupreus group species, P. cupreus and P. 

caligatus. Plecturocebus cupreus is the earliest diverging lineage within this clade, 

and P. brunneus is the sister taxon to P. caligatus (P. dubius). Although the 

relationships between these west-Amazonian species are well resolved in the 

mitochondrial and combined datasets, the nuclear topology differs but with low 

support across most of the nodes. We consistently find two distinct P. cupreus clades, 

with an estimated divergence time of 1 Ma. These two clades are not sister in the 

nuclear dataset phylogenies. The P. cupreus clade A samples are from museum 

specimens with known localities in the Amazon basin, whereas those of P. cupreus 
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clade B come from a collection of blood samples with no available skins, skulls or 

geographical data.  

Plecturocebus cinerascens has an overall grey agouti pelage, lacking the 

contrasting colours characteristic of the moloch group, leading Hershkovitz (1988) to 

suggest that P. cinerascens is the most primitive member. In this study, the nuclear 

dataset supports P. cinerascens as the earliest diverging lineage, forming a sister-

clade to all other species of the moloch group, followed by the divergence of P. 

hoffmannsi and then P. miltoni and the rest of the moloch group. However, the 

mitochondrial dataset supports an alternative topology where P. cinerascens and P. 

miltoni form a sister-group to the P. bernhardi and P. moloch clade. Analyses based 

on combined data show the same topology as mitochondrial phylogenies, but with 

low support for the P. cinerascens/P. miltoni and P. bernhardi/P. moloch sister group 

relationship, likely as a result of strong conflict between the nuclear and 

mitochondrial phylogenetic signals. Using mitochondrial loci alone does not resolve 

the phylogenetic position of P. hoffmannsi, however, the combined phylogenetic 

signal from nuclear and mitochondrial markers supports P. hoffmannsi as an early 

diverging lineage. All taxonomic reviews to date infer a close relationship with P. 

baptista, and thus our results suggest that P. hoffmannsi and P. baptista are a sister 

clade to all remaining moloch group taxa, with the exception of P. cinerascens and P. 

miltoni (position unresolved). 

The P. caligatus and P. moloch specimens sequenced by Perelman et al. 

(2011) were incorrectly identified and our results indicate that their P. caligatus 

sample is likely P. donacophilus. The identity of the P. moloch specimen of Perelman 

et al. (2011) is unknown, however, it is sister to our P. hoffmannsi individuals in all 

analyses and so we labelled it P. cf. hoffmannsi. In our divergence time analyses, we 

estimate that these taxa diverged c. 1.2 Ma, thus P. cf. hoffmannsi may be a distinct 

species. Further investigation is required to confirm whether P. cf. hoffmannsi is one 

of the known species of Plecturocebus that have not been analysed. It is also possible 

both these specimens from Perelman et al. (2011) are captive hybrids.  
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2.5.4 Age estimates 

Our time-calibrated phylogeny suggests that the callicebine lineages began to radiate 

in the late Miocene, with the origin of Cheracebus at around 11 Ma, followed by the 

divergence of Callicebus and Plecturocebus at around 8.3 Ma. The timescale for titi 

monkey evolution estimated here is compatible with the fossil record of the 

platyrrhines and with other recent molecular analyses (see Table 2.11; Jameson 

Kiesling et al., 2015; Perelman et al., 2011; Schrago et al., 2013; Springer et al., 

2012). Within Plecturocebus, we find support for divergent lineages leading to P. 

donacophilus, P. hoffmannsi, and the remaining taxa that date to the Pliocene, c. 4.4 

Ma and 3.4 Ma, respectively. Within the moloch group, we find a sister-clade 

relationship between east- and west-distributed Amazonian species, which diverged c. 

2.8 Ma. Nearly all the moloch group sister-species divergences in this study occurred 

2–1 Ma, pointing to a rapid Pleistocene diversification of this group.  

 

Table 2.11 Comparison of estimated divergence times (combined dataset) with other recent studies. 

Clade or Split 

Mean age (Ma) 

Perelman et 

al. (2011) 

Springer et 

al. (2012) 

Schrago et 

al. (2013) 

Kiesling et 

al. (2015) 

Present 

study 

Crown Pitheciidae 24.82 23.3 21.9 25.51 21.47 

Pitheciinae vs. Callicebinae 20.24 20.7 19.6 18.08 18.71 

Cheracebus vs. Callicebus 

+ Plecturocebus 
n/a 7.81 n/a n/a 10.98 

Callicebus vs. 

Plecturocebus 
9.86 7.16 n/a 6.65 8.34 

Plecturocebus: 

donacophilus group vs. 

moloch group 

4.69 3.22 n/a n/a 4.39 

 

 

 The three Callicebinae genera proposed here are isolated from each other by 

major biogeographical barriers: the Amazonian Plecturocebus titis are largely 

separated from the northernmost genus, Cheracebus, by the Rio Amazonas, and from 

the Atlantic Forest genus, Callicebus, by the Cerrado and Caatinga biomes of central 

Brazil (Figure 2.5). At the species level, larger rivers in Amazonia frequently delimit 

the geographic distribution of titi monkeys, and recent evidence suggests that they can 

act as isolating barriers for sister taxa, promoting vicariant divergence (Boubli et al., 

2015). Together, these characteristics make the subfamily Callicebinae of particular 

interest for the study of Amazonian biogeographical history. 
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2.6 Conclusions 

In this study, we provide the first molecular review of the subfamily Callicebinae, and 

our phylogenetic analyses help to clarify a number of issues on the taxonomic 

relationships among its species and genera. We provide evidence for an early 

divergence of three major Callicebinae lineages, and infer a highly supported 

phylogeny for all species included, with the exception of P. miltoni and P. 

cinerascens, which require further investigation. The three Callicebinae genera 

identified here can be clearly separated on biogeographical, morphological and 

molecular grounds, and together, these factors provide strong evidence in support of 

our taxonomic proposal. Recent taxonomic revisions using molecular, ecological and 

morphological evidence have argued for the separation at the generic level of the 

robust and the gracile capuchins (Lynch Alfaro et al., 2012) and, likewise, saddleback 

and black-mantled tamarins from the remaining species of the genus Saguinus 

(Rylands et al., 2016). As with the tamarins and capuchins, this new classification will 

undoubtedly make for a taxonomy that reflects more clearly titi monkey evolutionary 

history. It is evident that questions remain regarding the species-level taxonomy of the 

Callicebinae, and thus phylogenetic hypotheses will be modified with the availability 

of sequence data for remaining titi species. Taken together, our work illustrates the 

value of a molecular phylogenetic approach to taxonomic classification and here 

provides a basis for future studies on the evolutionary history and taxonomy of titi 

monkeys.  
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Chapter 3: Biogeography of the titi monkeys (Callicebinae) 

 

3.1 Abstract 

Titi monkeys (Callicebinae; Pitheciidae) are a diverse group of platyrrhine primates 

with an extensive range across South America. There have been few attempts to 

understand the biogeographic history of Callicebinae and most evaluations have been 

limited by taxonomic and phylogenetic uncertainty. Here, we reconstructed a time-

calibrated molecular phylogeny for Callicebinae under Bayesian inference using two 

mitochondrial and five nuclear loci. Statistical biogeographic methods implemented 

in BioGeoBEARS were employed to estimate ancestral areas and to reconstruct 

Callicebinae biogeographic history using 12 biogeographic models. Our results 

indicate that the most recent common ancestor to all extant titi monkeys was 

widespread from the present-day Andean foothills in the Colombian Amazon, through 

the savannas of Bolivia and Brazil, to the Atlantic Forest of eastern Brazil. Genus-

level divergences were characterised by vicariance of ancestral range in the late 

Miocene resulting in the isolation of Cheracebus in north-western Amazon, 

Callicebus in the Atlantic Forest, and Plecturocebus in the wet and dry savanna 

regions. Species-level diversification in both Amazonian clades occurred as they 

spread across the Amazon in the Pleistocene and were largely characterised by long-

distance dispersal from a narrow area of origin (Napo, Cheracebus; Rondônia, P. 

moloch group) through sequential founder-events across rivers. These founder-events 

were sufficiently rare to allow diversification in isolation after dispersal, supporting 

the role of major Amazonian rivers as strong barriers to gene flow. Overall, our 

biogeographic reconstruction is most consistent with the “Dynamic Young Amazon” 

model, suggesting that the diversification of Callicebinae lineages was influenced by 

the evolution of the Pebas wetland system of western Amazon. This study comprises 

one of the first large-scale investigations of the evolutionary history of titi monkeys in 

the context of Amazonian and South American historical biogeography, and sheds 

light on the processes that generated the great diversity found among Callicebinae 

taxa.   
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3.2 Introduction 

3.2.1 Background 

Titi monkeys (Callicebinae; Pitheciidae) are a diverse group of New World primates 

found throughout much of South America. They were considered monogeneric 

(Callicebus Thomas, 1903) for much of their taxonomic history, however, the most 

recent classification (Chapter 2) recognises 33 species across three genera; 

Cheracebus Byrne et al. (2016) for the widow titis; Callicebus Thomas, 1903, for the 

titis of the Atlantic Forest and Caatinga; and Plecturocebus Byrne et al. (2016), 

comprised of the donacophilus and moloch species groups. Further support for this 

classification is found in other recent molecular phylogenetic studies (Carneiro et al., 

2016; Hoyos et al., 2016), and this classification is followed throughout this chapter. 

Titi monkeys have an extensive range spread across nearly all ecogeographic 

zones inhabitable by non-human primates in the Neotropics (Jameson Kiesling et al., 

2015; except Mesoamerica), with each genus or group showing a distinct 

distributional pattern (Figure 2.5, Chapter 2). The Atlantic forest Callicebus are 

entirely extra-Amazonian and isolated from all other titis by over 500km of drier 

habitats (the Cerrado shrubby savannas). They are endemic to eastern Brazil from 

south of the Rio São Francisco as far as the state of São Paulo, predominantly in the 

Atlantic Forest biome but also in neighbouring arboreal Caatinga regions. The widow 

titis (genus Cheracebus) occur in the Amazon and Orinoco basins from the eastern 

foothills of the Andes to the Rio Branco and the Rio Purus (north and south of the Rio 

Amazonas, respectively). The moloch group of Plecturocebus occur throughout the 

southern and western Amazon basin, as far east as the Rio Tocantins, as well as some 

isolated regions in Colombia (P. ornatus and P. caquetensis). Sympatry among titis 

occurs between species of Cheracebus and Plecturocebus in the Amazon, west of the 

Rio Purus. The donacophilus group of Plecturocebus occupy forest patches and 

gallery forests in wooded savannas, the Pantanal, and Chaco scrublands of Bolivia, 

Brazil, Peru and Paraguay (Ferrari et al., 2013; Hershkovitz, 1990; Printes et al., 

2013; Van Roosmalen et al., 2002). In light of their broad and diverse distribution, it 

is notable that titi monkeys are absent from both Central America and the Guiana 

Shield (from east of the Rio Branco), and they have a large gap in their distribution in 

the Cerrado biome of central Brazil (which separates Callicebus from all other titis). 

A recent review of the biogeography of New World primates (Lynch Alfaro et 
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al., 2015b) highlighted the family Pitheciidae (which is comprised of the subfamilies 

Callicebinae and Pitheciinae) as the group most urgently in need of further 

biogeographic research. As with all New World primate lineages, little information 

regarding the biogeography of Callicebinae can be derived from the fossil record. The 

oldest fossil with a definite resemblance to modern titi monkeys (Miocallicebus 

villaviega Takai et al., 2001) comes from La Venta fauna of the middle Miocene (c. 

12–11 Ma), in the modern day Tatacoa Desert of Colombia (Kay et al., 2013). It is the 

only fossil to document the callicebine lineage; however, the material is limited 

(consisting of one maxillary fragment) with little else known about Miocallicebus. 

There have been few attempts to understand the biogeographic history of 

Callicebinae, and most existing evaluations are confounded by taxonomic uncertainty 

and a lack of information regarding species relationships (e.g., Hershkovitz, 1963, 

1988; Kinzey, 1982; Kinzey & Gentry, 1979).  

Titi monkey evolutionary history has only recently been elucidated using 

molecular evidence (see Chapter 2; Carneiro et al., 2016; Hoyos et al., 2016), 

providing new insights into the relationships among Callicebinae lineages, and thus 

an appropriate phylogenetic framework to investigate the biogeographic history of the 

clade. In placing the northernmost genus Cheracebus as the earliest lineage to 

diverge, interesting biogeographic patterns emerge such as the sister clade 

relationship of the Atlantic Forest Callicebus and Plecturocebus of the Amazon and 

the wet and dry savanna ecosystems. As such, the extant distribution of titi monkeys 

makes their biogeographic history of particular interest, especially when interpreted in 

light of phylogenetic relationships and estimated lineage divergence times. The 

subfamily Callicebinae diverged from their sister clade (Pitheciinae) in the early 

Miocene, c. 18–20 Ma (Chapter 3), thus titi monkeys comprise of one of the oldest 

lineages of extant New World primates. Based on recent molecular dating analyses, 

the ancestors of current titi genera appeared in the late Miocene, with initial 

diversification of Plecturocebus occurring in the Pliocene, and extant species 

diverging mostly in the Pleistocene (Chapter 3; Hoyos et al., 2016). Based on nuclear 

data, Perelman et al. (2011) inferred slightly older Plio-Pleistocene species 

divergences, however they are difficult to interpret except for Callicebus because of 

the misidentification of Plecturocebus specimens and lack of taxonomic coverage 

(see Chapter 2). In light of their evolutionary history, a deeper understanding of the 

spatial diversification of extant titi monkey taxa has the potential to provide insight 
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into the biogeographic history of South America since the late Miocene.  

3.2.2 Callicebinae biogeography  

The earliest hypotheses for Callicebinae biogeography were proposed by Hershkovitz 

(1963, 1988), and focused on the upper Amazon Basin as the centre of origin for each 

major lineage. From this area, he suggested that ancestral stock from each clade 

dispersed downstream to lowland areas through newly available habitats following 

receding floodplains during the Pleistocene, with fluvial dynamics important in 

driving and maintaining species-level diversification. His biogeographic scenarios are 

elaborate and contain details about the historical distribution and spatial 

diversification of each lineage (Hershkovitz, 1988). However, they are based on 

species relationships inferred from Hershkovitz’s metachromism hypothesis (the 

evolution of pelage colouration via specific unidirectional pathways), which has not 

been corroborated by molecular phylogenetic hypotheses (e.g., see Jacobs et al., 

1995). An evaluation of facial colouration in Neotropical primates found no support 

for the metachromism hypothesis and much higher support for a model assuming no 

constraints on colour change (Santana et al., 2012). Owing to Hershkovitz’s strict 

adherence to this hypothesis, it is difficult to extract further details from his 

biogeographic reconstructions that are interpretable in light of our current 

understanding of titi monkey evolutionary history. The first biogeographic scenario 

derived from an explicit phylogenetic hypothesis is that of Hoyos et al. (2016) who 

suggested that the central Amazon region was the ancestral area of origin for P. 

cupreus and closely related taxa, with subsequent dispersal westwards following the 

southern bank of the Rio Amazonas towards the foothills of the Andes, and then 

northwards along the eastern Andes into Colombia. Since Hoyos et al. (2016) focuses 

solely on select species of the genus Plecturocebus, broader biogeographic patterns 

remain unclear.   

A number of biogeographic models have been proposed for the Amazon basin, 

and many of these models have the potential to explain the diversification of 

Callicebinae. The most frequently invoked of these is the riverine barrier hypothesis 

(Wallace, 1852), which identifies river dynamics influenced by tectonic activity as 

primarily responsible for the isolation and diversification of Amazonian biota. Larger 

rivers frequently delineate the distributions of Callicebinae species in the Amazon and 

river dynamics have been proposed as an important speciation force in the clade (e.g., 
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Hershkovitz, 1988). Different timescales have been proposed for the formation of the 

current Amazonian drainage system. The “Old Amazon” geologic model suggests that 

by c. 7 Ma a transcontinental drainage system and major rivers in the Amazon had 

established, the Pebas lake and floodplain system of the western Amazon had 

disappeared, and from then on this region bore the key geographic features of the 

current landscape (Hoorn et al., 2010). In contrary, the “Dynamic Young Amazon” 

model infers a more recent Plio-Pleistocene origin for the transition from a lacustrine 

system to the current drainage system in the western Amazon (Campbell et al., 2006; 

Latrubesse et al., 2010; Rosetti et al., 2005). This model implies that different regions 

in Amazonia may have undergone distinct rates of landscape change, the most 

dynamic area being western Amazon where lowland forest was only established 

following the Pliocene to Pleistocene transition and recession of the Pebas system. As 

such, diversification of Amazonian biota is associated with tectonically mediated 

fluvial dynamics as well as the availability of suitable habitat to colonise the western 

Amazon (Aleixo & Rosetti, 2007). Based on patterns of diversification in the 

widespread Amazonian avian genus Psophia, Ribas et al. (2012) proposed a timescale 

for the drainage of the wetlands and formation of major rivers in the Amazon within 

the last three million years. Similar patterns found in other avian (e.g., Fernandes et 

al., 2012; d’Horta et al., 2013) and primate taxa (Boubli et al., 2015; Buckner et al., 

2015; Lynch Alfaro et al., 2015a) have also been hypothesized to be related to the 

establishment of the current drainage system in the Plio-Pleistocene.  

Jameson Kiesling et al. (2015) reconstructed a biogeographic scenario for 

New World primates using a statistical biogeographical analysis based on a genomic 

dataset and identified the Amazon as the area of origin for the most recent common 

ancestor of extant New World primates, each of the families (Pitheciidae, Atelidae, 

Cebidae), and most genera. Rather than diversification in geographic isolation, these 

authors argue that the Amazon rainforest was the key generator of diversity, providing 

such a rich environment for niche exploitation that diversification of the major 

lineages could have occurred largely in sympatry (Jameson Kiesling et al., 2015). 

Following the divergence of genera in the Amazon, members of some lineages 

colonised other subregions occupied by New World primates (Atlantic Forest, Central 

Grasslands, Caatinga, Cerrado). Although Callicebinae was represented as a 

monogeneric clade in this study, under the current classification this implies that the 

progenitors of the Atlantic Forest genus Callicebus and the Plecturocebus 



 

66 

donacophilus group originated in the Amazon and subsequently dispersed to their 

respective biomes.  

All New World primate genera found in the Atlantic Forest have closely 

related sister taxa in the Amazon (Lynch Alfaro et al., 2015b) and it has been 

suggested based on the timing of divergences that there were intermittent periods of 

increased connectivity between the two regions during the middle-late Miocene. 

Similar patterns among avian sister taxa in the Amazon and Atlantic Forest have been 

associated with a middle-late Miocene corridor along the southern Cerrado in Mato 

Grosso or along the transition towards the Chaco of Bolivia and Paraguay, while 

younger Plio-Pleistocene divergences correspond to connections between the north-

eastern Atlantic Forest and the eastern extreme of the Amazon through the Caatinga 

(Batalha-Filho et al., 2013). Batalha-Filho et al. (2013) suggested that the older 

southern connections were driven by geological events associated with the uplift of 

the Andes and that the more recent northern connections were influenced by climatic 

changes that promoted the intermittent expansion of gallery forest through the 

Cerrado and Caatinga. Hershkovitz (1988) proposed a similar scenario to that of 

Batalha-Filho et al. (2013) for the spread of titi monkeys to the Atlantic Forest. He 

suggested that riparian forest along Cerrado river systems facilitated the dispersal of 

the progenitor of the genus Callicebus to the Atlantic Forest, and that these forests 

largely disappeared during the climatic changes in the Pleistocene. The late Miocene 

origin for this clade, however, would suggest that titis arrived in the Atlantic Forest 

biome via the southern connections, which is further supported by the extant 

distributions of members of their sister clade (Plecturocebus) through the wet and dry 

savannas along this corridor.  

3.2.3 Biogeographic hypotheses for Callicebinae diversification 

In this study, through a statistical biogeographical approach, we reconstructed the 

biogeographic history of Callicebinae to better understand their spatial diversification 

and the processes responsible for shaping present day distributions. Our primary aim 

was to infer the origin of Callicebinae and the origin of the major titi clades, and the 

history of their colonisation of South America since the late Miocene. Geographical 

areas were based upon vertebrate centres of endemism in the Amazon as well as 

major biomes (Figure 3.1); Pantepui, Napo, Inambari, Rondônia, Pará, Wet & Dry 

Savannas, Atlantic Forest (see 3.3.3 Methods: Biogeographical analyses). Statistical 
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methods based on maximum likelihood were applied to a time-calibrated molecular 

phylogeny, allowing the comparison of models to determine the relative importance 

of vicariance and dispersal in forming the current distributions of Callicebinae taxa. 

This approach has been used to better understand the biogeographic history of other 

Neotropical primates (e.g. tamarins and marmosets, Buckner et al., 2015; capuchins, 

Lima et al., 2017; squirrel monkeys, Lynch Alfaro et al., 2015a). The current 

hierarchy of the subfamily Callicebinae corresponds to geological periods, such that 

genus- and species-level divergences shed light on diversification dynamics in the late 

Miocene or the Plio-Pleistocene, respectively. In light of this, we discuss the 

predictions regarding patterns of genus- and species-level diversification separately 

below.  

 

 

Figure 3.1 Map showing the seven biogeographic regions/centres of endemism used in this study: (A) 

Pantepui (& Imeri), (B) Napo, (C) Inambari, (D) Rondônia, (E) Pará (Tapajós & Xingu), (F) Wet & 

Dry Savannas, (G) Atlantic Forest. Major Amazonian rivers are also shown.   
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3.2.4 Genus-level diversification 

We tested whether the ancestral populations to all modern titi monkeys were 

widespread across South America (scenario 1a) or had a more regionally restricted 

ancestral range (1b), with the aim to shed light on the patterns and processes of genus-

level diversification and the present day sympatry between Cheracebus and 

Plecturocebus in the Amazon. We also tested whether titis colonised the Atlantic 

Forest biome through the “southern” Miocene pathway via the Chaco, or the more 

recent “northern” pathway to the eastern Amazon via the Caatinga in the Plio-

Pleistocene (Batalha-Filho et al., 2013) (2a–b). 

If Callicebinae genus-level divergences represent the fragmentation of a 

widespread ancestral range owing to a series of ecological or geological vicariant 

events, we expect our biogeographic model and reconstruction to emphasise 

vicariance and the ancestral range should span across multiple regions, from the Napo 

to the Atlantic Forest (1a). Vicariance may have been driven by geological events 

associated with the accelerated uplift of the Andes since the late Miocene. Under the 

“Old Amazon” geologic model, a transcontinental fluvial pathway had developed by 

c. 10 Ma and the Rio Amazonas was fully established by 7 Ma (Hoorn et al., 2010). If 

the formation of the drainage system promoted diversification, this model suggests 

that the development of this transcontinental waterway may have led to vicariance of 

ancestral range within the Amazon, isolating the Cheracebus ancestor to the north of 

the Rio Amazonas (Napo + Pantepui) and the Callicebus + Plecturocebus ancestor to 

the south (Inambari + other southern areas) (1a.i) (Figure 3.2). Under this model, 

present day sympatry between Plecturocebus and Cheracebus is explained by 

dispersal over the Rio Amazonas, northwards and southwards, respectively.  

Alternatively the “Dynamic Young Amazon” scenario (see above) suggests 

that Miocene divergences in Amazonian biota were driven by the evolution of the 

extensive Pebas wetlands system of the western Amazon (Aleixo & Rosetti, 2007). 

This model proposes that the western Amazon was largely inhospitable to upland 

forest taxa throughout the late Miocene, resulting in vicariance of ancestral range 

across more geologically stable terra firme regions: the Brazilian Shield, the eastern 

foothills of the Andes, and the Guiana Shield/northern and north-eastern periphery of 

the Pebas system. Thus, we expect initial vicariance to result in isolation of the 

Cheracebus ancestor in the Andean foothills (within the Napo region) and the 

Callicebus + Plecturocebus ancestor in the Brazilian Shield and/or surrounding 



 

69 

regions (i.e., Rondônia, Pará, Wet & Dry Savannas, Atlantic Forest), and the absence 

of ancestral range in Inambari until the Pleistocene (1a.ii) (Figure 3.2). In this 

scenario, present day sympatry is explained by the spread of Cheracebus and 

Plecturocebus from opposing sides of the Amazon following the recession of the 

wetlands in the Pleistocene. In both scenarios (1ai + 1a.ii), we predict that vicariance 

between the Atlantic Forest and the Amazon/Wet & Dry Savanna regions resulted in 

the divergence of Callicebus and Plecturocebus.  

 

 

Figure 3.2 Graphical summary of alternative vicariance scenarios. Shown are the predicted patterns of 

genus-level diversification through vicariance of a widespread Callicebinae ancestor in the late 

Miocene under the “Old Amazon” model (1a.i) and “Dynamic Young Amazon” model (1a.ii). 

 

In the case of a narrow ancestral range, dispersal should be emphasised and 

the ancestral areas should be restricted to one or two regions (1b). If most Neotropical 

primate genera originated in the Amazon, as suggested by Jameson Kiesling et al. 

(2015), we expect the ancestral range for each genus to be restricted to Amazonian 

subregions, with subsequent dispersal of Callicebus to the Atlantic Forest and the 
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donacophilus group of Plecturocebus to the Wet & Dry Savannas region (1b.i) 

(Figure 3.3).  

Figure 3.3 Graphical summary of alternative dispersal scenarios. Shown are possible patterns of 

dispersal between major biomes characterising the diversification of Callicebinae lineages, beginning 

with a geographically restricted ancestor in the late Miocene. In scenario 1b.i, all major divergences 

occur within the Amazon, with subsequent dispersal of Callicebus and the P. donacophilus group to 

their respective biomes prior to the Pleistocene. In the pure dispersal scenarios (1b.ii – iv), major 

divergences among Callicebinae lineages are driven by dispersal between biomes. Arrows represent 

dispersal events and shaded regions depict major biomes: Amazon (purple), Wet & Dry Savannas 

(green), Atlantic Forest (pink). 

 

There are two alternative scenarios based on pure dispersal between major 

biomes that infer the origin of Callicebus and Plecturocebus outside the Amazon. The 

first plausible scenario involves dispersal of Callicebus + Plecturocebus ancestor 

from the Amazon to the Wet & Dry Savannas region, followed by dispersal of 

Callicebus to the Atlantic Forest, and subsequently, reinvasion of the Amazon by 

Plecturocebus from the Wet & Dry Savannas (1b.ii) (Figure 3.3). Alternatively, the 

Callicebus + Plecturocebus ancestor dispersed first from the Amazon to the Atlantic 

Forest, followed by dispersal of Plecturocebus either to the Wet & Dry Savannas 
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region and back to the Amazon, or vice versa (1b.iii + iv) (Figure 3.3). In these latter 

dispersal scenarios, ancestral Plecturocebus originated outside the Amazon and 

subsequently reinvaded, thus explaining the present day sympatry with Cheracebus. 

3.2.5 Species-level diversification  

Titi monkeys diversified relatively rapidly in the Pleistocene, and as such, species-

level divergences in the Amazonian clades (Cheracebus and the Plecturocebus 

moloch group) can shed light on the processes and mechanisms of speciation in 

Amazonia in the last two million years. Below we provide alternative hypotheses for 

the biogeographic history of these Callicebinae lineages (3a–b). 

The “Old Amazon” geologic model suggests that major rivers in the Amazon 

were established by 7 Ma (Hoorn et al., 2010), before the divergence of extant 

Callicebinae species, and as such, these lineages are too young to be driven by 

vicariance owing to river formation. However, assuming that rivers are barriers to the 

dispersal of titis, this model predicts that current species distributions are best 

explained by a pattern of rare dispersal events across rivers (pure dispersal). In this 

scenario, we expect the biogeographic model and reconstruction to emphasize 

founder-event speciation, and dispersal should have occurred between adjacent 

regions delineated by major rivers (3a).   

The “Dynamic Young Amazon” scenario proposes that species-level 

diversification in some currently widespread Amazonian taxa was associated with the 

dynamic geologic history of the western Amazon and the relatively recent 

establishment of terra firme forest in this region (Aleixo & Rosetti, 2007). This model 

implies that Cheracebus and the P. moloch group were isolated in the more stable 

Andean foothills and Brazilian Shield, respectively, until dispersal was facilitated by 

the availability of suitable ‘upland’ forest habitat in the western Amazon. This 

landscape change was driven by tectonically mediated fluvial dynamics and the 

formation of key features of the current drainage system in the Plio-Pleistocene 

(Aleixo & Rosetti, 2007; Campbell et al., 2006; Rosetti et al., 2005), however, the 

exact timing of these events remains uncertain. If major rivers were in place early in 

the Plio-Pleistocene prior to species divergences, then we expect diversification to be 

explained by rare dispersal events across rivers and the biogeographic model and 

reconstruction should emphasize founder-event speciation, similar to the “Old 

Amazon” model. On the other hand, there are specific constraints on the pattern of 
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dispersal which are viewed as support (in addition to consideration of genus-level 

divergences) for the “Dynamic Young Amazon” model; we expect diversification to 

be associated with recent dispersal into the western Amazon (Inambari) by both 

Amazonian clades, which were previously isolated in the Brazilian Shield 

(Rondônia/Pará; P. moloch group) or Andean foothills (within Napo; Cheracebus) 

(3b.i).  

Alternatively, according to the temporal scale proposed by Ribas et al. (2012), 

major Amazonian tributaries were formed within the last two million years, 

concurrent with the diversification of extant Callicebinae species. In this scenario, 

ancestral populations expanded between 2–3 Ma following drainage of the wetlands 

and establishment of terra firme forest in the western Amazon, with subsequent 

vicariance owing to river formation. Thus, we expect ancestral range to be 

reconstructed as widespread, through the western Amazon, by c. 2 Ma and major 

divisions by vicariance following the order of river formation (from Ribas et al., 

2012); first across the Rio Amazonas/Solimões (2–3 Ma), then the Rio Madeira (1–2 

Ma), Rio Tapajós (1.3–0.8 Ma), and Rio Negro (c. 1 Ma) (3b.ii).  

3.3 Methods 

3.3.1 Molecular dataset 

A molecular sequence dataset was assembled comprising five nuclear (FES, 

MAPKAP1, RAG1, RAG2, ZFX) and two mitochondrial loci (CYTB, COI). These 

loci were chosen to maximise taxonomic coverage while minimising missing data 

across the dataset, as only mitochondrial sequences were available for some 

Callicebinae species. Twenty-one individuals from 19 Callicebinae species were 

represented in the dataset, including the two distinct Cheracebus lugens lineages from 

opposing banks of the Rio Negro, Brazil (Boubli et al., 2015), and also one taxon in 

the process of description (P. cf. moloch, Boubli et al., in prep). A total of 223 

sequences were included; 115 sequences belonging to Callicebinae taxa, most of 

which were generated for Chapter 2; and 108 sequences retrieved from GenBank 

belonging to 16 species of Platyrrhini (5) and Catarrhini (11) selected as outgroups in 

order to include nodes with reliable fossil calibrations. GenBank accession numbers 

for the retrieved sequences are provided in Table 3.1. 
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Table 3.1 List of the GenBank accession numbers.  

Species COI CYTB FES MAPKAP1 RAG1 RAG2 ZFX 

Plecturocebus 

ornatus --- KX353784 --- --- --- --- --- 

Plecturocebus 
caquetensis --- KX353781 --- --- --- --- --- 

Plecturocebus 
discolor --- KX353786 --- --- --- --- --- 

Plecturocebus 
donacophilus* FJ785423 FJ785423 HM761804 HM760634 HM759135 HM758967 HM757151 

Callicebus 

nigrifrons* --- --- --- --- HM759137 HM758969 --- 

Callicebus 

personatus* --- --- HM761807 HM760643 HM759138 HM758970 HM757153 

Callicebus 

coimbrai --- --- HM761802 HM760631 HM759134 --- HM757149 

Pithecia 

pithecia* JF459229 KR902424 HM761808 HM760722 HM759140 HM758971 HM757155 

Cacajao 
calvus* NC021967 NC021967 --- --- HM759113 HM758942 HM757126 

Chiropotes 

israelita* NC024629 NC024629 HM761786 HM760640 HM759120 HM758950 HM757133 

Cebus 

albifrons* AJ309866 KU694249 KU694628 KU694723 HM759115 KU694935 KU695108 

Saimiri 
sciureus* HQ644334 HQ644334 HM761799 HM760744 HM759131 HM758963 HM757147 

Trachypithecus 

obscurus* AY863425 AY863425 HM761732 HM760754 HM759066 HM758893 HM757077 

Colobus 

guereza* AY863427 AY863427 HM761695 HM760637 HM759029 HM758852 HM757038 

Chlorocebus 

aethiops* NC007009 NC007009 HM761691 HM760620 HM759026 HM758848 HM757034 

Macaca 

fascicularis* NC012670 NC012670 HM761702 HM760689 --- HM758859 HM757045 

Papio anubis* KC757406 KC757406 HM761717 HM760709 HM759049 HM758875 HM757061 

Theropithecus 
gelada* FJ785426  FJ785426  HM761728 --- HM759062 HM758888 HM757077 

Hylobates lar* HQ622766 HQ622766 HM761737 HM760669 HM759071 HM758898 HM757082 

Pongo 

pygmaeus* NC001646  NC001646  HM761749 HM760724 HM759081 HM758910 HM757094 

Gorilla 
gorilla* KF914214 KF914214 HM761744 HM760662 HM759077 HM758905 HM757089 

Pan 
troglodytes* EU095335  EU095335  HM761747 HM760726 HM759080 HM758908 HM757092 

Homo sapiens* EF061150  EF061150  HM761735 HM760672 HM759069 HM758896 HM757080 

*composite individuals 
       

Six new sequences were obtained from museum voucher specimens to include 

Callicebinae species (Cheracebus lucifer, Plecturocebus vieirai, Callicebus 

personatus) for which no or little molecular sequence data was available. Laboratory 

work was carried out at the University of Salford, Manchester, UK. DNA was 

extracted from blood and muscle tissues using the Qiagen DNeasy Blood & Tissue 

Kit according to manufacturer's protocol. Six new sequences were generated for COI 

(3), CYTB (2) and RAG1 (1) (see primer information in Chapter 2, Table 2.3). The 

PCR reactions were carried out in a total volume of 50 μL, containing approximately 
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30 ng of genomic DNA, 4 μL of dNTPs (200μM each), 5 μL 10X PCR buffer (100 

mM Tris-HCL, 500 mM KCL, 15 mM Mg2+), 1 μL of each forward and reverse 

primer (0.2 μM), and 0.25 μL of TaKaRa Taq DNA polymerase (1 Unit). The 

amplification cycles were carried out under the following conditions; initial 

denaturation at 95 °C for 5 min; followed by 35 cycles of denaturing at 94 °C for 1 

min, primer annealing for 1 min, and extension at 72 °C for 1 min; a final extension 

was carried out at 72 °C for 5 min. PCR products were analysed on 1.5 % agarose 

gels and then Sanger sequenced commercially by Source Bioscience (Cambridge, 

UK). Consensus sequences were generated from forward and reverse reads using 

Geneious R7.1 (Biomatters). 

 
    Table 3.2 Locus coverage and ID for Callicebinae taxa. 

Species Sample ID COI CYTB FES MAPKAP1 RAG1 RAG2 ZFX 

Plecturocebus hoffmannsi CTGAM290               

Plecturocebus cinerascens UFRO355               

Plecturocebus miltoni 42991               

Plecturocebus bernhardi 42964               

Plecturocebus cf. moloch RVR73               

Plecturocebus vieirai 2594               

Plecturocebus moloch MCB64               

Plecturocebus brunneus 4505               

Plecturocebus caligatus CTGAM182               

Plecturocebus ornatus ZP01               

Plecturocebus caquetensis ICN19439               

Plecturocebus discolor ZP03               

Plecturocebus cupreus CTGAM210               

Plecturocebus donacophilus* NA               

Callicebus nigrifrons* NA               

Callicebus personatus* NA               

Callicebus coimbrai CCO1               

Cheracebus lugens (RN) JPB81               

Cheracebus lugens (LN) JPB119               

Cheracebus lucifer CTGAM703               

Cheracebus purinus CTGAM154               

*composite individuals 
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Each locus was aligned independently using the MUSCLE algorithm in 

Geneious R7.1 (Biomatters) and subsequently combined in a matrix resulting in a 

total alignment length of 5,233 bp. PartitionFinder (Lanfear et al., 2012) was used to 

determine the optimal partitioning scheme and the best-fit substitution models for 

each partition under the Bayesian information criterion (BIC). The analysis was run 

using the complete search algorithm (“all”) and linked branch lengths (see Table 3.3 

for selected partitioning scheme).  

 

Table 3.3 Partitioning scheme and substitution 

models selected by PartitionFinder. 

Partition  Model Loci 

1 K80+G FES 

2 K80+I MAPKAP1, RAG1 

3 HKY+G RAG2, ZFX 

4 GTR+I+G COI, CYTB 

 

3.3.2 Phylogenetic analysis and molecular dating 

Phylogeny and diversification times were jointly estimated under an uncorrelated 

lognormal relaxed clock in the program BEAST v. 1.8.2 (Drummond et al., 2012). 

The partitioning scheme and best-fit models chosen by PartitionFinder were 

implemented and a Yule speciation process was used. We conducted two replicate 

runs of 50 million generations, sampling every 5,000 generations. The sampling 

distributions were visualized using Tracer v. 1.6 to evaluate convergence, 

performance, and burn-in. We combined the runs using LogCombiner v. 1.8.2 and 

generated the maximum credibility tree using a burn-in of 10% in TreeAnnotator v. 

1.8.2. To obtain the posterior distribution of the estimated divergence times, we used 

six calibration points (Table 3.4) with lognormal priors to set hard minimum and soft 

maximum bounds; (i) Callicebinae/Pitheciinae (95%: 15.7–26.0 Ma); (ii) 

Cebus/Saimiri (95%: 12.5–26.0 Ma); (iii) Hominoid/Cercopithecoid (95%: 21.0–30.0 

Ma); (iv) Homo/Pongo (95%: 12.5–18.0 Ma); (v) Homo/Pan (95%: 5.0–10.0 Ma); 

and (vi) Theropithecus/Papio (95%: 3.5–6.5 Ma). Standard deviation was set at 0.5 

for all nodes.   
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Table 3.4 Evolutionary rate calibration constraints (in millions of years). 

Divergence Offset 
95% Prior 

Distribution 
Mean  Fossil  Reference Age 

Callicebinae-

Pitheciinae 
15.7 26.0a 5.13 Proteropithecia 

Kay et al. 

(1998) 
≈15.7 

Cebus-Saimiri 12.5 26.0a 6.72 Neosaimiri 
Hartwig & 
Meldrum (2002) 

≈12.1 

Homo-Pan 5 10 2.49 

Ardipithecus 
Haile-Selassie 
(2001) 

5.2 

Orrorin 
Senut et al. 
(2001) 

6 

Sahelanthropus 

Brunet et al. 

(2002); Vignaud 

et al. (2002) 

6.0 – 
7.0 

Homo-Pongo 12.5 18 2.74 Sivapithecus Kelley (2002) ≈12.5 

Hominoid-

Cercopithecoid  
21 30 4.48 

Morotopithecus 

Young & 

MacLatchy 

(2004) 

>20.6 

Victoriapithecus 
Pilbeam & 

Walker (1968); 
≈19.0 

  

Benefit & 

McCrossin 

(2002) 

  

Papio-

Theropithecus 
3.5 6.5 1.49 Theropithecus Leakey (1993) ≈3.5 

 a Based on the fossil Branisella boliviana Hoffsetter, 1969. 

 
3.3.3 Biogeographic analyses 

We divided the distribution of titi monkeys into seven geographic regions (Pantepui, 

Napo, Inambari, Rondônia, Pará, Wet & Dry Savannas, Atlantic Forest) and coded 

each taxon for presence/absence in each of these regions (see Table 3.5). The 

geographic regions were broadly defined by major biomes or centres of endemism in 

the Amazon, primarily following Cracraft (1985) and Silva et al. (2002) (see Figure 

3.1, Table 3.6).  

The Pará region (Cracraft, 1985) represents both the Tapajós and Xingu areas 

of endemism (Silva et al., 2002), as delineating these areas separately is not of central 

importance to the present study. Our Pantepui region covers the highlands of the 

Guiana Shield (from west of the Branco-Essequibo divide/Rupununi graben) in the 

Duida and parts of the Gran Sabana subcentres of the Pantepui area of endemism and 

the lowlands of the Imeri area of endemism (Cracraft, 1985; Silva et al., 2002). It is 

delineated by the Negro, Orinoco and Branco rivers and contains the geographic 

distribution of the left bank Rio Negro C. lugens lineage. Geographic regions were 

assigned for the Atlantic Forest biome and for the wet and dry savanna ecosystems. 

The Wet & Dry Savannas region is comprised largely of the seasonally flooded 

Pantanal and Llanos de Moxos (Beni) savannas, and the dry wooded Chaco and 

Chiquitano savannas, as well as the southernmost tip of the Amazon basin. It broadly 
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follows the Central Grasslands area of Jameson Kiesling et al. (2015) but is refined to 

the known limits of extant titi monkey distributions. These open habitats are of 

importance to the biogeography of Callicebinae, which are one of the most diverse 

groups of New World primates found across these regions. Four species of the P. 

donacophilus group are known to occur here (Martínez & Wallace, 2007, 2013; 

Rumiz, 2012), only P. donacophilus, however, was represented in this dataset owing 

to the lack of available sequence data for the other taxa.   

 

Table 3.5 Biogeographic regions used to reconstruct the biogeographic history of 

Callicebinae. Single letter codes correspond to those in Figure 3.1, 3.5, A2.2 –A2.5.  

Area code 
Corresponding area of 

endemism/biome 
Taxa 

A Pantepui (& Imeri) C. lugens (left bank Rio Negro lineage) 

B Napo 

C. lugens (right bank Rio Negro 

lineage), C. lucifer, P. ornatus, P. 

caquetensis, P. discolor 

C Inambari C. purinus, P. cupreus, P. caligatus 

D Rondônia 
P. hoffmannsi, P. cinerascens, P. 

miltoni, P. bernhardi, P. brunneus 

E Pará (Tapajós & Xingu) P. moloch, P. cf. moloch, P. vieirai 

F Wet & Dry Savannas P. donacophilus 

G Atlantic Forest 
C. personatus, C. coimbrai, C. 

nigrifrons 

 

Our main biogeographic analyses were based on time-calibrated trees from the 

BEAST analysis with the outgroup taxa removed. Two approaches were employed to 

perform ancestral-area estimations across the phylogeny of Callicebinae. We first 

used the R package BioGeoBEARS (Matzke, 2013a) to reconstruct the biogeographic 

history of Callicebinae under alternative models implemented in a likelihood 

framework: DIVALIKE, DIVALIKE+J, DEC, DEC+J, BAYAREALIKE, 

BAYAREALIKE+J. Each model allows for a different subset of biogeographic 

processes, such as dispersal, vicariance and extinction (see Figure 1 in Matke 2013b), 

which are implemented as free parameters that are estimated from the data. The “J” 

parameter corresponds to founder-event speciation (“jump dispersal”, see Matzke, 

2014). 
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Table 3.6 Description of the geographic limits of the biogeographic regions.  

Region 

code 

Corresponding area of 

endemism/biome 
Boundaries 

A Pantepui (& Imeri) Bordered on the east by the Rio Branco, north-west by 

the Rio Orinoco, and south-west by the Rio Negro. 

B Napo 
Bordered on the west by the Andes, north-east by the 

Rios Meta, Orinoco and Negro, and south-east by the 

Rio Solimões. 

C Inambari 
Bordered on the west by the Rio Ucayali, north by the 

Rio Solimões-Amazonas, and south-east by the Rio 

Madeira-Madre De Dios. 

D Rondônia 
Bordered on the west by the Rio Madeira, north by the 

Rio Amazonas, east by the Rio Tapajós-Juruena, and 

south by the Rio Itenez O Guapore. 

E Pará (Tapajós & Xingu) 
Bordered on the west by the Rio Tapajós-Juruena, north 

by the Rio Amazonas, east by the Rio Tocantins, and 

south by the Amazon watershed and Cerrado. 

F Wet & Dry Savannas 

Bordered on the west by the Andes, north-west by the 

Rio Madre De Dios, north-east by the Rio Itenez O 

Guapore and the Amazon watershed, east by the 

Cerrado, and south by the known limits to extant 

Callicebinae distributions. It contains the Beni Savanna, 

the Chiquitano Savanna, the dry Chaco and the 

Pantanal ecoregions. 

G Atlantic Forest 
Bordered on the east by the Atlantic coastline, south by 

the Rio Tietê, and north and west by the Rios Paraná 

and São Francisco and the Cerrado.  

 

 To account for the influence of distance on dispersal, all BioGeoBEARS 

analyses were also conducted under a distance-based dispersal model where dispersal 

probability is multiplied by distance to the power of x (“X” parameter; Van Dam & 

Matzke, 2016): DIVALIKE+X, DIVALIKE+J+X, DEC+X, DEC+J+X, 

BAYAREALIKE+X, BAYAREALIKE+J+X. Distances were calculated as the 

physical distance in kilometres between the centre of the geographic areas and then 

scaled to the smallest distance (Table 3.7). 

We set the maximum number of ancestral areas at a given node to four for all 

biogeographic analyses given that extant Callicebinae species have relatively 

restricted distributions and to avoid intractability of the analyses. We compared the 

twelve different BioGeoBEARS models for statistical fit using the corrected Akaike 

Information Criterion (AICc). We performed Biogeographic Stochastic Mapping 

(BSM) simulations in BioGeoBEARS to estimate the overall probability of the 

different biogeographic processes under the specified phylogeny, parameters and 

models (Matzke, 2016). The BSM simulations were conducted across 1000 stochastic 

maps (simulated histories) under the best-fit BioGeoBEARS models based on AICc 

scores, and checked for convergence. We also ran all 12 BioGeoBEARS models on 

time-calibrated trees that included two Pitheciinae outgroup taxa (Cacajao calvus, 
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Inambari + Napo; Chiropotes israelita, Pantepui) to test the impact on the ancestral 

areas estimated for the origin of Callicebinae.  

The second approach to ancestral-area estimations was using the Bayesian 

framework implemented in the software RASP 3.2 (Yu et al., 2015), which 

reconstructs ancestral states over a posterior distribution of trees. The biogeographic 

history of titi monkeys was reconstructed under the Bayesian DIVA (S-DIVA), 

Bayesian DEC (S-DEC), and Bayesian Binary MCMC (BBM) models. All analyses 

were run on a random subset of 1,000 trees from the BEAST analysis. The BBM 

chains were run for 5 million generations (sampling every 1000 generations, a 

temperature of 0.1, and 10% burn-in), and state frequencies were estimated under the 

F81+G model.  

 

Table 3.7. Distance-dependent dispersal matrix for the "+X" models in BioGeoBEARS.  

Areas 

  

Pantepui Napo Inambari Rondônia Pará 

Wet & 

Dry 

Savannas 

Atlantic 

Forest 

  

Area 

Code 
A B C D E F G 

Pantepui A 0 1 1.81 1.86 2.31 2.99 4.4 

Napo B 1 0 1.15 1.82 2.66 2.7 4.7 

Inambari C 1.81 1.15 0 1.16 2.22 1.64 4.01 

Rondônia D 1.86 1.82 1.16 0 1.07 1.18 2.91 

Pará E 2.31 2.66 2.22 1.07 0 1.73 2.09 

Wet & Dry 

Savannas 
F 2.99 2.7 1.64 1.18 1.73 0 2.69 

Atlantic 

Forest 
G 4.4 4.7 4.01 2.91 2.09 2.69 0 

 

3.4 Results  

3.4.1 Phylogeny 

Our phylogenetic results showed monophyly of the three Callicebinae genera (Figure 

3.4, see Figure A2.1 for the full timetree with outgroup taxa) and are broadly 

concordant with previous molecular genetic analyses (Chapter 2; Carneiro et al., 

2016; Hoyos et al., 2016). Phylogenetic relationships within the subfamily 

Callicebinae were largely resolved with most nodes showing strong support (posterior 

probability/PP = 1.00), and only posterior probability values of less than 1.00 are 

discussed below. A summary of PP and age estimates with 95% HPD intervals are 

reported in Table 3.8. The genus Cheracebus was strongly supported as sister taxon to 

remaining titis, diverging in the late Miocene c. 10.25 Ma, followed by the divergence 

of Callicebus and Plecturocebus c. 8.27 Ma, and then the division of Plecturocebus 
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into P. donacophilus (representative of the P. donacophilus group) and the P. moloch 

group in the Pliocene c. 4 Ma.  

Among Cheracebus taxa, the earliest divergence occurred between C. lugens 

and C. lucifer + C. purinus in the Pleistocene c. 1.87 Ma, while the sister-species C. 

lucifer and C. purinus diverged c. 1.26 Ma, and the C. lugens lineages diverged c. 1 

Ma. Callicebus nigrifrons was supported as the sister taxon to a clade containing C. 

personatus and C. coimbrai, diverging c. 2.85 Ma (the oldest estimated speciation 

age). The divergence of C. personatus and C. coimbrai was recovered with low 

support (PP = 0.61), likely as a result of missing data (no mitochondrial loci for C. 

coimbrai). Our results, however, are concordant with Chapter 2 and Perelman et al. 

(2011).  

Figure 3.4 A time-calibrated phylogeny of Callicebinae. Unmarked nodes were strongly supported (PP 

= 1.00), the node marked with a black circle received good support (PP = 0.96), and nodes marked with 

white circles were recovered without significant support (PP < 0.95). Node bars indicate the 95% 

highest posterior density (HPDs). Support values, estimated divergence ages, and HPDs are listed 

according to node numbers in Table 3.8. Illustrations by Stephen D. Nash ©Conservation International. 
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The most notable result for the P. moloch group is the strongly supported 

division into three clades; the Aripuanã-Tapajós clade containing P. hoffmannsi, P. 

miltoni and P. cinerascens; the Eastern clade containing P. bernhardi, P. cf. moloch, 

P. vieirai and P. moloch; and the Western clade comprised of P. brunneus, P. 

caligatus, P. ornatus, P. caquetensis, P. discolor and P. cupreus. These clades 

diversified rapidly in the early Pleistocene, with the Aripuanã-Tapajós clade diverging 

from the ancestor of the Eastern and Western clades c. 2.2 Ma, and the Eastern and 

Western clades diverging at c. 2 Ma. Within the Aripuanã-Tapajós clade, P. 

hoffmannsi was the earliest diverging lineage (PP = 0.96), diverging from P. 

cinerascens + P. miltoni at c. 1.92 Ma. For the Eastern Amazonian taxa, P. bernhardi 

and P. cf. moloch were recovered as successive sister taxa to the P. moloch + P. 

vieirai clade, with estimated divergence times of 1.35 Ma and 0.72 Ma, respectively. 

The sister-species relationship of P. moloch and P. vieirai received low support (PP= 

0.52), and the divergence was dated at 0.54 Ma, which is the youngest cladogenetic 

event across the phylogeny. For the Western Amazonian species, our results mirror 

those of Hoyos et al. (2016), but with addition of P. brunneus which was recovered as 

the sister taxon to P. caligatus. The earliest diversification event within this clade was 

the division between P. brunneus + P. caligatus and remaining taxa at c. 1.5 Ma. 

Plecturocebus ornatus and P. caquetensis were recovered as successive sister taxa to 

the P. discolor + P. cupreus clade, with estimated divergence times of 1.25 Ma and 

0.84 Ma. Nodes representing the P. ornatus split and the divergence of P. discolor 

and P. cupreus were recovered with low support (0.79 and 0.59, respectively). 

Overall, these age estimates are slightly younger than those from Chapter 2. A 

summary of PP and age estimates with 95% HPD intervals are reported in Table 3.8. 

3.4.2 Biogeographic reconstruction 

In total, we performed 15 different biogeographic analyses using 

BioGeoBEARS (12) and RASP (3). Of the 12 BioGeoBEARS models evaluated, the 

DIVALIKE+J+X model (ΔAICc = 0) produced the best statistical fit to the data 

(Table 3.9). Figure 3.5 depicts the ancestral areas with the greatest probability at each 

node under this model, graphic depictions of state probabilities are presented in 

Figure A2.2.  
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Table 3.8 Summary of posterior probability and ages estimates from BEAST, and ancestral areas and probabilities estimated under best-fit models in 

BioGeoBEARS. States with a probability ≥ 0.05 are listed, bold indicates the most probable state. Node numbers correspond to those on Figure 3.4. 

Node Divergence PP 

Age estimates  
Ancestral states & 

probabilites 

(DIVALIKE+J+X) 

Ancestral states & probabilites 

(DEC+J+X) 

Mean 

age 
95% HPD 

(Ma) Lower Upper 

1 Cheracebus vs. Callicebus + Plecturocebus 1.00 10.25 8.24 12.5 

BFG (0.19), BDFG (0.12), AFG 

(0.09), ABFG (0.08), BDG 
(0.07), BCFG, (0.07), ACFG 

(0.06)  

BFG (0.26), BDG (0.12), AFG 

(0.12), BDFG (0.11), CFG (0.08), 

ADG (0.06) 

2 Callicebus vs. Plecturocebus 1.00 8.27 6.47 10.13 
FG (0.56), DG (0.23), DFG 

(0.12) 

FG (0.45), DG (0.21), DFG 

(0.16) 

3 P. donacophilus group vs. P. moloch group 1.00 3.96 2.99 5.05 F (0.57), D (0.23), DF (0.13) F (0.47), D (0.22), DF (0.16) 

4 C. purinus + C. lucifer vs. C. lugens 1.00 1.87 1.32 2.5 
B (0.38), A (0.17), BC (0.15), 

AB (0.11), C (0.10), AC (0.08) 
B (0.57), A (0.26), C (0.16) 

5 C. purinus vs. C. lucifer 1.00 1.26 0.74 1.81 B (0.58), C (0.35), BC (0.08) B (0.72), C (0.27) 

6 C. lugens left bank vs. C. lugens right bank 1.00 1.04 0.6 1.51 A (0.57), B (0.41) B (0.51), A (0.49) 

7 C. nigrifrons vs. C. personatus + C. coimbrai 1.00 2.85 1.89 3.96 G (1.00) G (1.00) 

8 C. personatus vs. C. coimbrai 0.61 1.92 0.68 3.08 G (1.00) G (1.00) 

9 
Aripuanã-Tapajós clade vs. Eastern + Western P. 

moloch clades 
1.00 2.2 1.71 2.68 D (0.91), C (0.05) D (0.84), C (0.08) 

10 P. hoffmannsi vs. P. cinerascens + P. miltoni 0.96 1.92 1.43 2.46 D (1.00) D (1.00) 

11 P. cinerascens vs. P. miltoni 1.00 0.69 0.35 1.04 D (1.00) D (1.00) 

12 Eastern vs. Western P. moloch clades 1.00 1.99 1.58 2.45 D (0.69), C (0.23), E (0.08) D (0.62), C (0.25), E (0.08) 

13 
P. bernhardi vs. P. cf. moloch + P. vieirai + P. 

moloch 
1.00 1.35 0.94 1.76 D (0.84), E (0.16) D (0.82), E (0.17) 

14 P. cf. moloch vs. P. vieirai + P. moloch 1.00 0.72 0.44 1.02 E (1.00) E (1.00) 

15 P. vieirai vs. P. moloch 0.52 0.54 0.26 0.83 E (1.00) E (1.00) 

16 
P. brunneus + P. caligatus vs. P. ornatus + P. 

caquetensis + P. discolor + P. cupreus 
1.00 1.5 1.13 1.9 C (0.73), D (0.25) C (0.71), D (0.25) 

17 P. brunneus vs. P. caligatus 1.00 0.95 0.62 1.29 C (0.71), D (0.29) C (0.70), D (0.30) 

18 
P. ornatus vs. P. caquetensis + P. discolor + P. 

cupreus 
0.79 1.25 0.87 1.65 B (0.59), C (0.41) B (0.60), C (0.40) 

19 P. caquetensis vs. P. discolor + P. cupreus 1.00 0.84 0.52 1.22 B (0.54), C (0.46) B (0.54), C (0.45) 

20 P. discolor vs. P. cupreus 0.59 0.68 0.36 1.01 C (0.60), B (0.40) C (0.60), B (0.40) 
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The second best model, DEC+J+X (ΔAICc = 3.94; see Appendix 2, Figure 

A2.3, A2.4), estimated identical most likely states (ancestral areas) at all nodes with 

similar support values as the best-fitting model (DIVALIKE+J+X) with one exception 

(C. lugens; discussed below). The concordance between the ancestral areas and 

diversification patterns recovered under these two best-fit models are viewed as 

strong support for the inferred biogeographic scenario, detailed below. Together these 

two best-fit models comprise 0.98 of the relative likelihood according to corrected 

Akaike weights (AICc), with the other ten BioGeoBEARS models combined 

accounting for just 0.02 of the relative likelihood (Table 3.9). The results from each of 

the RASP models are comparable to one of the corresponding BioGeoBEARS 

analyses, with the same most likely states recovered at all nodes; BBM to 

BAYAREALIKE+J, S-DEC to DEC, and S-DIVA to DIVALIKE (except for the 

most recent common ancestor of Cheracebus). 

 Our results support a widespread ancestral population to all titi monkeys 

occurring through the Napo, Wet & Dry Savannas and Atlantic Forest regions early in 

the late Miocene and genus-level diversification events were characterised by 

vicariance of this ancestral range. An initial major vicariant event at c. 10.25 Ma 

resulted in the isolation of Cheracebus in the Napo and the Callicebus + 

Plecturocebus ancestor in the Atlantic Forest and Wet & Dry Savannas. A subsequent 

vicariant event at c. 8.27 Ma led to the isolation of Plecturocebus in the Wet & Dry 

Savannas region and Callicebus in the Atlantic Forest, where all species-level 

divergences within this clade occurred. The Plecturocebus species groups diverged in 

the Pliocene, c. 4 Ma, through a founder-event when the progenitor of the P. moloch 

group dispersed from the Wet & Dry Savannas into Rondônia, while the P. 

donacophilus group ancestor remained in the Wet & Dry Savannas region. All 

diversification events within the Amazonian clades, Cheracebus and the P. moloch 

group, were characterised by founder-event speciation (jump dispersal) or occurred 

within one geographic area (“narrow sympatry”, see Matzke, 2013b). The initial 

divergence within the P. moloch group occurred within Rondônia between the 

ancestors of the Aripuanã-Tapajós clade and the Eastern + Western clade. The 

divergence between the Eastern and Western clades was explained by jump dispersal 

of the progenitor of the Western clade from Rondônia into Inambari at c. 2 Ma. 
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Table 3.9 Comparison of likelihood values (LnL) and corrected Akaike's information 

criterion (AICc, ΔAICc, AICc weight) for each of the BioGeoBEARS analyses. 

Model 
No. 

params 
 LnL AICc ΔAICc  

AICc 

weight  
p-value* 

DIVALIKE 2 -40.69 86.05 29.2 3.95E-07 
1.80E-06 

DIVALIKE+J 3 -29.28 65.98 9.13 9.00E-03 

DIVALIKE+X 3 -32.66 72.72 15.87 3.10E-04 
1.30E-05 

DIVALIKE+J+X 4 -23.17 56.85 0 0.86 

DEC 2 -45.78 96.24 39.39 2.42E-09 
4.70E-08 

DEC+J 3 -30.86 69.13 12.28 1.86E-03 

DEC+X 3 -38.75 84.91 28.06 6.98E-07 
1.80E-07 

DEC+J+X 4 -25.14 60.79 3.94 0.12 

BAYAREALIKE 2 -55.88 116.4 59.55 1.01E-13 
1.70E-11 

BAYAREALIKE+J 3 -33.24 73.88 17.03 1.73E-04 

BAYAREALIKE+X 3 -51.18 109.8 52.95 2.75E-12 
2.20E-11 

BAYAREALIKE+J+X 4 -28.78 68.07 11.22 3.17E-03 

*chi-squared test between LnL            

 

Among the Eastern clade taxa, P. bernhardi diverged when the ancestor of P. 

cf. moloch + P. vieirai + P. moloch dispersed into the Pará region, and subsequent 

divergence of these latter taxa occurred within Pará. The species of the Western clade 

of the P. moloch group showed the most complex pattern of spatial diversification 

characterised by four cladogenetic dispersal events. The initial divergence among 

Western clade taxa occurred when the ancestral population to the clade containing P. 

ornatus, P. caquetensis, P. discolor, and P. cupreus, dispersed from Inambari into 

Napo. Subsequent diversification of these taxa was largely explained by founder-

events between Napo and Inambari. The P. caligatus + P. brunneus ancestor 

remained in Inambari and subsequently diverged through a founder-event when the 

ancestor of P. brunneus dispersed back to Rondônia. Among the Cheracebus taxa, the 

DIVALIKE+J+X model inferred that the earliest divergence between C. lugens and 

C. purinus + C. lucifer occurred when the ancestor of C. lugens dispersed from the 

Napo into the Pantepui region, and subsequently, the two C. lugens lineages diverged 

when the right bank Rio Negro lineage moved back into the Napo region. The 

DEC+J+X model, however, recovered a slightly different pattern where the initial 

divergence between C. lugens and C. purinus + C. lucifer was within Napo, and the 

C. lugens lineages divided when the left bank Rio Negro ancestor dispersed into the 

Pantepui region. Under both models, C. purinus and C. lucifer diverged via a founder-

event when the ancestor of C. purinus colonised Inambari.    
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Figure 3.5 DIVALIKE+J+X reconstruction of ancestral areas for Callicebinae. 

 

 The above reconstruction of Callicebinae spatial diversification is based on the 

ancestral states with the greatest probability at each node under the best-fit models 

(DIVALIKE+J+X and DEC+J+X). The most probable ancestral areas recovered at 

most nodes under these models showed good support (see graphic depictions of state 

probabilities in Appendix 2, Figure A2.2, A2.4, and a summary of all probable states 

at each node in Table 3.8). The greatest uncertainty is found at the root node, which is 

often characteristic of biogeographic methods due to a lack of direct information 

about historical distributions and extinct taxa (Landis, 2017). Despite this ambiguity, 

all analyses within the DEC and DIVA model sets (including the RASP S-DIVA and 

S-DEC models) inferred the most likely ancestral area of origin for Callicebinae 

across Napo, Wet & Dry Savannas, and Atlantic Forest, and some included Rondônia. 

Furthermore, under the best-fit models, the second most probable state at the ancestral 

node included Rondônia along with the original areas. Taken together, these results 
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provide stronger support for an ancestrally widespread population to all modern titis 

across the Napo, Wet & Dry Savannas, and Atlantic Forest regions, and potentially 

Rondônia. For the BioGeoBEARS test analyses that included Cacajao calvus and 

Chiropotes israelita, the same models produced the best statistical fit to the data 

(DIVALIKE+J+X and DEC+J+X) and identical ancestral states were estimated for 

the origin of Callicebinae under these models as for the main analyses based on only 

ingroup taxa. Biogeographic studies focusing on the family Pitheciidae (with good 

taxonomic coverage) will likely increase our understanding of the geographic origin 

of Callicebinae owing to the added information at the root node derived from the 

estimated ancestral distributions of Pitheciinae. 

For each set of analyses (DEC, DIVALIKE, BAYAREALIKE), the addition 

of both the X and the J parameters conferred large improvements to likelihood 

compared to all the simpler analogous models. Importantly, DIVALIKE+J is highly 

comparable to the best-fit model, DIVALIKE+J+X, which is nested within it. Under 

the DIVALIKE+J model (where no assumptions are made about the relationship 

between distance and dispersal), slightly different ancestral areas were recovered at a 

small number of nodes, the most significant of which was the inclusion of Rondônia 

in the root ancestral states, as noted above (see Figure A2.5). The biogeographic 

processes recovered under both models, however, are identical: early vicariant events 

marking divergence of the genera, while all further cladogenetic events were 

explained by founder-event speciation or occurred within one geographic area.  

The impact of the J parameter on the likelihood across all analyses is 

significant (Table 3.9). It is evident that founder-event speciation is an important 

process in explaining current species distributions from both the statistical fit of the 

+J models and the proportion of jump dispersal events in the reconstructions. BSM 

simulations that estimate the overall probability of different biogeographic processes 

under the specified phylogeny, parameters and model, lend further support to jump 

dispersal (J) as a strong contributor to explaining the data. Event counts derived from 

1000 simulated histories under both the DIVALIKE+J+X and DEC+J+X models 

(where the J parameter is ~ 0.5) indicate that about 47–48% of the cladogenetic events 

were founder-events, 40% were within-area sympatry, and only around 11–12% were 

vicariance, while there were zero anagenetic dispersal events (Table 3.10). 
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Table 3.10 Biogeographic stochastic mapping event counts under DIVALIKE+J+X and 

DEC+J+X models in BioGeoBEARS. 

    
Founder-

event 
Vicariance 

Narrow 

sympatry 

Subset 

sympatry 

Anagenetic 

dispersal 

DIVALIKE+J+X 

Mean event 

counts 
9.43 2.5 8.07 0 0 

Standard 

deviation 
1.07 0.52 1.01 0 0 

% of 

cladogenetic 

events 

47.15% 12.49% 40.36% --- --- 

DEC+J+X 

Mean event 

counts 
9.59 2.21 8.09 0.1 0 

Standard 

deviation 
1.22 0.52 1.03 0.44 0 

% of 

cladogenetic 

events 

47.95% 11.07% 40.48% 0.50% --- 

 

3.5 Discussion 

3.5.1 Phylogenetic inference 

The most notable phylogenetic result is the strongly supported division of the P. 

moloch group into three clades, the Aripuanã-Tapajós, Eastern, and Western clades. 

The phylogenetic relationships between P. miltoni, P. cinerascens and all other P. 

moloch group taxa were previously unresolved, finding support as independent early 

diverging lineages based on nuclear loci or as the sister clade to the Eastern 

Amazonian taxa based on mitochondrial sequences (see Chapter 2). The species 

relationships and age estimates recovered are concordant with the proposal that all 

current P. moloch group taxa should continue to be recognized as a single species 

group (Chapter, 2; Carneiro et al., 2016; Hoyos et al., 2016). The descriptive names 

for each of the three major P. moloch group clades recovered in this study are 

suggested to aid communication given the absence of justification to erect additional 

species groups, and thus the necessity for formal classification. They are based upon 

the geographic centre of the distribution of each clade in the Amazon basin. The 

Eastern and Western P. moloch clades were estimated to have diverged at a similar 

time to P. cinerascens + P. miltoni and P. hoffmannsi (2 Ma vs. 1.92 Ma), however, it 

is helpful to denote the Eastern and Western clades separately given their taxonomic 

history and their general phenotypic and geographic differences.  

Although we are missing a small number of described species from the P. 

moloch group, namely P. baptista, P. toppini and P. aureipalatii (which may be a 
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synonym of P. toppini, see Vermeer & Tello-Alvarado, 2015), our dataset largely 

covers the spectrum of species diversity known within this group. We suggest that P. 

baptista is likely a member of the Aripuanã-Tapajós clade, while P. toppini and P. 

aureipalatii likely are members of the Western clade. We are also missing sequences 

for P. stephennashi, however, doubt surrounds the validity and species status of this 

taxon given the morphological and geographical affinities to P. caligatus. For the 

biogeographical analyses, P. dubius is best represented as P. caligatus, regardless of 

whether it is considered a synonym, geographic variant or subspecies (see Byrne et 

al., 2016; Carneiro et al., 2016; Hoyos et al., 2016; Serrano-Villavicencio et al., 

2017), and thus it was not included in this dataset. Vermeer & Tello-Alvarado (2015) 

placed P. urubambensis in the P. donacophilus group based on the metachromism 

hypothesis of Hershkovitz (1988), however as discussed, this is not generally a 

reliable predictor of species relationships. These authors also indicated that P. 

urubambensis could be most closely related to P. brunneus based on phenotypic 

similarities, and thus it may also be a member of the Western P. moloch clade. 

3.5.2 Historical biogeography 

The patterns of diversification reconstructed across both the genera and species are 

consistent with the predictions of the “Dynamic Young Amazon” model (Aleixo & 

Rosetti, 2007; Campbell et al., 2006; Latrubesse et al., 2010; Rosetti et al., 2005). 

Here we summarise our interpretation of the biogeography of Callicebinae under this 

model (Figure 3.6, 3.7). 

Prior to genus divergences, the ancestral population to all modern titis was 

widespread between the Napo, Wet & Dry Savannas and Atlantic Forest regions in 

the late Miocene (Figure 3.6i). Despite occurring in surrounding regions, titis were 

absent from the western Amazon (Inambari), which is consistent with the proposal 

that the western Amazon was inhospitable to upland forest lineages in the Miocene 

owing to the extensive Pebas wetlands system. These wetlands would have also 

extended into parts of Napo, thus this interpretation assumes that titi monkeys were 

restricted to the region around the lake in the current Andean foothills of the Napo 

region. The existence of Callicebinae towards the western extreme of the Napo region 

in the late Miocene is supported by the fossil Miocallicebus Takai et al., 2001, which 

is dated to c. 11–12 Ma (Kay et al., 2013). Miocallicebus belongs to the La Venta 

fauna of the modern day Tatacoa Desert, Magdalena Valley, Colombia, which would 
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have been contiguous with the Napo region in the late Miocene prior to the formation 

of the eastern Andes. Similar patterns in other Neotropical primates have been 

associated with a broad ancestral distribution in an arc along the west bank of the 

Pebas wetlands (Buckner et al., 2015), suggesting that Napo was at least 

intermittently connected to the southern regions through the Andean foothills west of 

the Inambari region. This is consistent with the proposal that land connections existed 

between the Andean foothills and Brazilian Shield around the southern rim of the 

Pebas system during the Miocene. Furthermore, the absence of titis from the Guiana 

Shield until the radiation of C. lugens in the Pleistocene suggests that connectivity 

around north of the Pebas system between the Guiana Shield/Pantepui region and 

Napo had ceased by the late Miocene (Wesselingh & Salo, 2006). 

 

Figure 3.6 Graphical depiction of approximate Callicebinae historical distributions and spatial 

diversification pattern in the late Miocene and Pliocene under the “Dynamic Young Amazon” model. 
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The earliest divergence within the subfamily Callicebinae at c. 10.25 Ma was 

characterized by a vicariant event that disrupted all connectivity between the Napo 

and southern regions, consistent with vicariance across relatively geologically stable 

terra firme centres of the Andean foothills (of the Napo) and the Brazilian Shield 

(parts of the Wet & Dry Savannas region) as predicted under this model (Figure 

3.6ii). This vicariance may have been associated with the period of strong and 

widespread Andean uplift that begun around the late Miocene (e.g., Garzione et al., 

2006, 2008; Ghosh et al., 2006; Gregory-Wodzicki, 2000). Once the link around the 

southern rim of the Pebas system disappeared, the region of the Napo occupied by the 

Cheracebus ancestor remained disconnected from all other areas until the floodplains 

of the western Amazon receded in the Pleistocene. The origin of Cheracebus in the 

Andean foothills of the Napo is consistent with the observation that older Amazonian 

avian taxa that diverged in the Miocene are mainly found in the north-western 

Amazon basin (and the Guianas), with the highest concentration found around the 

tropical Andes of Ecuador, Colombia and Peru (see Figure 1a in Batalha-Filho et al., 

2013). 

The Callicebus + Plecturocebus ancestor was widespread across the Wet & 

Dry Savannas and Atlantic Forest, which remained in connection whether 

continuously or intermittently, until another vicariant event at c. 8.3 Ma led to their 

disjunction, isolating the ancestor of Callicebus in the Atlantic Forest and 

Plecturocebus in the Wet & Dry Savannas region (Figure 3.6iii). As such, our results 

indicate that titis spread to the Atlantic Forest via a southern pathway in the Miocene, 

rather than in the Plio-Pleistocene from the eastern Amazon, providing support for the 

proposal that the Amazon and the Atlantic Forest were connected along the western 

edge of the Brazilian Shield and the transition towards the Chaco of Bolivia and 

Paraguay during the Miocene (Batalha-Filho et al., 2013). Our reconstruction suggests 

that this corridor disappeared in two stages in the late Miocene: first the Wet & Dry 

Savannas lost connectivity with the Napo region c. 11–10 Ma, and around 2 million 

years later, the Atlantic Forest became isolated following the closure of the link along 

the modern-day Chaco/southern Cerrado. Lineages of plants found in the Cerrado 

began to diversify around 9 Ma (Simon et al., 2009), and it is possible that ecological 

changes early in the transition to the Cerrado biome disrupted this connection to the 

Atlantic Forest and played a role in the divergence of Callicebus and Plecturocebus. 

Furthermore, this scenario suggests that the north-western Amazon was connected to 
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the southern Atlantic Forest, consistent with diversification patterns seen for avian 

taxa where most upland lineages found in the southern Atlantic Forest originated in 

the Miocene and have closely related taxa distributed around the Andes (see Fig 2. 

Batalha-Filho et al., 2013; see also Percequillo et al., 2011).  

After these major vicariant events, no further change to ancestral distributions 

occurred until the progenitor of the P. moloch group dispersed from the Wet & Dry 

Savannas region into Rondônia at c. 4 Ma (Figure 3.6iv). An alternative scenario 

(according to some models in the DEC and DIVA sets and the second most probable 

states under the best-fit models, see section 3.4.2) indicates that ancestral range 

extended further within the Brazilian Shield through the Wet & Dry Savannas into 

Rondônia since initial divergence in the late Miocene, which is still consistent with 

the “Dynamic Young Amazon” model. Here, the divergence of Plecturocebus species 

groups was characterised by vicariance between Rondônia and the Wet & Dry 

Savannas, which are separated by the Rio Madeira watershed suggesting a potential 

role for the formation of this river system. 

Species-level diversification in the Amazonian clades, Cheracebus and the P. 

moloch group, occurred in an explosive manner from the early Pleistocene to c. 0.5 

Ma (Figure 3.7). The P. moloch group showed a complex pattern of diversification 

with a non-monophyletic assemblage of taxa endemic to Rondônia, the area of origin 

for this group. The initial major division among P. moloch group taxa occurred within 

Rondônia at c. 2.2 Ma and current distributions correlate with the Rio Roosevelt-

Aripuanã such that the Aripuanã-Tapajós clade is restricted to the right bank and the 

Rondônian members of the Western and Eastern clade (P. brunneus and P. bernhardi) 

are found on the left bank (Figure 3.7i). Based on similar patterns in some avian taxa, 

Fernandes (2013) proposed several mini interfluvial areas of endemicity for Rondônia 

that correspond to the subdivisions found among P. moloch group taxa. The 

distributions of P. brunneus and P. bernhardi are contained within the regions 

denoted R1 and R2, on the left bank of the Rio Roosevelt-Aripuanã, while the regions 

denoted R3 and R4 correspond to the distribution of the Aripuanã-Tapajós clade from 

the right bank of the Rio Roosevelt-Aripuanã (see Figure 2 in Fernandes, 2013), 

although the range of P. cinerascens also extends upstream of the headwaters of the 

Rio Roosevelt.  
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Figure 3.7 Graphical depiction of the spatial diversification pattern for Amazonian titis of the genus 

Cheracebus and the P. moloch group in the Pleistocene under “Dynamic Young Amazon” model. 

Black arrows indicate dispersal events. Major Amazonian rivers are also shown. 

 

 One proposed explanation for the complex diversification patterns seen in this 

region is changing river dynamics in the Plio-Pleistocene, whereby current tributaries 

of the Rio Madeira such as the Rio Roosevelt-Aripuanã may have captured a 

significant part of the Madeira or even Tapajós drainages (Fernandes, 2013; Muniz et 

al., in revision). Furthermore, evidence for two large mega-fans from the late 

Pleistocene involving the Rios Roosevelt-Aripuanã and Jiparaná indicates the 

existence of a much wider and more complex drainage system in this interfluvium in 

the Pleistocene (Latrubesse, 2002). This complex history of river system evolution is 

likely to have played an important role in driving historical distributions in Rondônia. 

We reason that the initial division within the P. moloch group was associated with the 

Rio Roosevelt-Aripuanã, whether through a rare founder-event over this barrier or 

vicariance owing to river formation, restricting the ancestor to the Aripuanã-Tapajós 

clade on the right bank to the northern part of Rondônia. Species-level diversification 

of the Aripuanã-Tapajós clade taxa occurred within this region with a notably early 

divergence between P. hoffmannsi and P. cinerascens + P. miltoni dated at c. 1.9 Ma. 

The current distribution of this clade suggests that the lower Rio Amazonas, as well as 

the Rios Madeira and Tapajós were largely established by c. 2.2 Ma, providing 

barriers to the dispersal of this clade. We further suggest that the occurrence of P. 
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cinerascens upstream of the headwaters of the Rio Roosevelt-Aripuanã represents 

recent range expansion that could be related to fluvial dynamics associated with this 

river since the Late Pleistocene. Rondônia is the only geographic area with members 

from more than one of the P. moloch clades and is of evident importance to 

understanding the biogeographic history of this group. This pattern of shared lineages 

in the Rondônia region appears to be general as similar patterns are observed in birds 

(Fernandes, 2013; Thom & Aleixo, 2015) and lizards (Oliveira et al., 2016). Studies 

with a specific focus on the biogeography of the P. moloch group will provide insight 

into diversification dynamics within Rondônia at a finer scale. 

After the initial major divergence, the ancestral population to the Western + 

Eastern clade was isolated briefly in the southern section of Rondônia on the left bank 

of the Rio Roosevelt-Aripuanã. At around 2 Ma, the Western and Eastern clades 

diverged when the progenitor of Western taxa dispersed to Inambari via a founder-

event across the upper Rio Madeira (Figure 3.7ii). The Western clade subsequently 

spread westward across Inambari, reaching the Rio Solimões and dispersing into the 

Napo by c. 1.5 Ma. Western clade taxa had likely reached the Andean foothills in 

Colombia at the north-western extreme of current titi monkey distributions by around 

1.25 Ma based on the divergence of P. ornatus. This diversification pattern suggests 

that the wetlands had receded and suitable upland forest habitat had begun to be 

established in the western Amazon by the early Pleistocene allowing the rapid 

colonisation of Inambari and Napo. Species divergences within the Western clade 

were largely characterised by sequential “island hopping” between Inambari and 

Napo across the Rio Solimões-Amazonas, although a founder-event back across the 

upper Rio Madeira, from Inambari to southern Rondônia, led to the divergence of P. 

brunneus. Further details about the exact pattern of spatial diversification, however, 

should be interpreted with caution given the important taxa missing from this clade in 

this study, such as P. toppini, P. aureipalatii and potentially P. urubambensis (see 

Vermeer & Tello-Alvarado, 2015).  

The progenitor of the Eastern clade remained in Rondônia to the left bank of 

the Rio Roosevelt-Aripuanã where P. bernhardi diverged when the ancestor of the 

remaining Eastern clade taxa dispersed eastwards over or around the headwaters of 

the Rio Tapajós-Juruena into the Pará region (Tapajós area of endemism) at c. 1.35 

Ma. Plecturocebus cf. moloch is restricted to the Alta Floresta region between the 

Rios Juruena and São Manuel, and likely diverged from the ancestor of P. vieirai + P. 
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moloch as they dispersed eastwards from Rondônia. The phylogenetic and 

biogeographic relationship between P. moloch and P. vieirai requires further 

investigation given the low support for this node and the current lack of clear limits to 

their geographic distributions; Plecturocebus moloch is broadly distributed between 

the Rios Tapajós and Tocantins while the whiter phenotype classified as P. vieirai is 

known from various localities around the left bank of the Rio Xingu.  

The two best-fitting BioGeoBEARS models inferred slightly different 

scenarios for the spatial diversification of the genus Cheracebus; the DEC+J+X 

reconstruction, however, is more consistent with extant species distributions and thus 

discussed here. Under this model, the initial divergence between C. lugens and C. 

lucifer + C. purinus at c. 1.87 Ma occurred within the Napo region and current 

distributions suggest that it was associated with the Rio Caquetá-Japurá. As such, we 

propose that ancestral Cheracebus began to expand out of the Andean foothills of the 

north-western Amazon following the receding wetlands in the early Pleistocene. This 

population was divided when it reached and dispersed over the Rio Caquetá (in either 

direction), or by vicariance owing to river dynamics, leaving the ancestor to C. lugens 

to the north and C. lucifer + C. purinus to the south. These clades diversified as they 

spread eastwards on either side of the Rios Caquetá-Japurá and Solimões, with the C. 

lugens lineages diverging via a founder-event across Rio Negro into the Pantepui 

region (Figure 3.7ii–iv). The divergence of C. lucifer and C. purinus occurred when 

the ancestor to C. purinus dispersed across the Rio Solimões into Inambari at c. 1.26 

Ma. For the Cheracebus species for which no sequence data are available, this pattern 

suggests that C. regulus (Inambari) is the sister taxon to C. purinus, while C. medemi 

(Napo) is either sister to C. lucifer or the earliest diverging lineage within the clade 

south of the Rio Caquetá-Japurá.  

Amazonian titis (Cheracebus and the P. moloch group) are found in terra 

firme regions and occasionally in seasonally inundated black-water forests (Igapó), 

but they are generally absent from white-water flooded forest habitats (Varzéa). It is 

likely that the extensive lake and floodplains that existed in the Western Amazon 

were largely inhospitable to titi monkeys and colonisation of this region would have 

depended upon the availability of suitable lowland forest habitats. This is supported 

by the absence of ancestral range from Inambari throughout the late Miocene and 

Pliocene. Our reconstruction indicates that both Cheracebus and Plecturocebus taxa 

dispersed to Inambari from other regions between 2–1 Ma, thus suggesting that the 
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western Amazon transitioned from a lacustrine system to floodplain to lowland forest 

in the Pleistocene (“Dynamic Young Amazon” model).  

The largely cosmopolitan distribution of the P. moloch group across the 

Amazon is notable: from east of the Rio Tocantins in eastern Amazon, to the Rio Beni 

in northern Bolivia, and northwest as far as the Andean foothills of the Meta 

department in Colombia, entirely absent only from the Pantepui region. Differences in 

ecology/habitat preference and dispersal ability may have allowed the P. moloch 

group to spread much more widely across the Amazon than Cheracebus within a 

similar time period. Rather than soil type, the structure of forest vegetation is thought 

to best explain differences in habitat preference (Defler, 1994). Cheracebus species 

occur in forests that are tall and well-stratified, mostly in undisturbed highland terra 

firme regions but they have also been recorded in well-developed Igapó habitats. Taxa 

of the P. moloch group are frequently found in poorly stratified low forests including 

disturbed, secondary and liana-rich habitats in terra firme and seasonally inundated 

regions where they are often located at the edge of large gaps in the canopy (Defler, 

1994; Haugaasen & Peres, 2005; Peres, 1997; Van Roosmalen et al., 2002). As poorly 

stratified gallery forests are often in low-lying areas along waterways, rare founder-

events by passive transfer across riverbanks may occur more frequently among taxa 

of the P. moloch group, facilitating passive dispersal across major Amazonian rivers 

and the rapid colonisation of the greater part of the Amazon within the last 2 million 

years. This scenario is consistent with the complex diversification pattern based on 

sequential founder-events reconstructed in this study for the P. moloch group clade, 

including several dispersal events across major rivers such as the Solimões and 

Madeira. Additionally, owing to their ability to thrive at edge and in disturbed 

habitats, it is possible that P. moloch group taxa have been able to disperse more 

broadly through the use of temporary, secondary, or developing lowland forests and 

forests at the edge of their range, while the dispersal of Cheracebus species may 

depend upon the establishment of well-developed forests and connectivity between 

them. Our reconstruction implies that the Western P. moloch clade invaded Inambari 

and Napo slightly before Cheracebus dispersed out of the Napo region, which may 

also be explained by these differences in habitat preference, however the time 

difference is not significant when confidence intervals are considered (see 95% HPD 

intervals in Table 3.8). 

This biogeographic reconstruction sheds light on the present-day sympatry 
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between Cheracebus and Plecturocebus species across the Napo and Inambari 

regions. The ancestors to these clades were likely isolated at opposing extremes of the 

Amazon in the terra firme centres of the Andean foothills and Brazilian Shield by the 

Pebas system in the late Miocene, existing in isolation in these distinct regions for 8–9 

million years. Range expansion from the east (Plecturocebus) and west (Cheracebus) 

in the Pleistocene following the establishment of lowland forest in the western 

Amazon has led to sympatry (see Figure 2.5) with distinct ecological niches. 

Our biogeographic reconstruction supports a sequential, long-distance 

dispersal model of speciation by “island hopping” across pre-existing river barriers. 

These founder-events were sufficiently rare to allow divergence in isolation after 

dispersal, pointing to major rivers as relatively strong barriers to gene flow (riverine 

barrier hypothesis). Founder-events (jump dispersal) simply indicate that dispersal 

and speciation were coincident, but whether this could have been associated with the 

classic but controversial “founder effect” (Mayr, 1954) would depend on the number 

of individuals that dispersed, it is important to note that these two terms are not 

equivalent.  

In support of this mode of speciation, evidence also exists to indicate that 

dispersal across major rivers, or around the headwaters, is an on-going process albeit 

infrequent. A specimen classified as P. cupreus (FR 62) based on morphology and 

collection locality has a cytochrome b gene with the closest genetic affinity to P. 

hoffmannsi and P. moloch (Hoyos et al., 2016). Although no nuclear data was 

generated, this supports at least one relatively recent dispersal event by a member of 

either the Eastern or Aripuanã-Tapajós clade across the Rio Madeira, and potentially 

subsequent introgression with P. cupreus. A specimen collected near the UHE 

Rondon II in Rondônia (UFRO 354) identified as P. cinerascens based on pelage 

colouration, confirmed by genome-wide nuclear data (discussed in Chapter 4), has a 

P. bernhardi mitochondrial genome (e.g., it was classified as P. bernhardi based on 

mtDNA in Carneiro et al., 2016). This locality is situated at the upper reaches of the 

Rio Roosevelt, which forms the major barrier delimiting their geographic 

distributions, and may indicate more recent gene flow and a potential contact/hybrid 

zone in south-western Rondônia between these taxa. Considering only a relatively 

small number of specimens have been sequenced (nuclear or mitochondrial loci) for 

Callicebinae as a whole, two possible cases of gene flow between taxa divided by 

major rivers is significant and also particularly relevant to phylogenetic inferences 
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based solely on mitochondrial data. Dispersal of the Western P. moloch clade across 

the Rio Madeira and Rio Solimões was likely along the upper sections in higher 

regions of Amazon basin where titis are found closer to the edge of the river, rather 

than the lower reaches where these rivers are fringed with impenetrable Varzéa. 

Additionally, it is likely that other rivers not delineated in this study, such as the Rios 

Purus, Juruá and Caquetá, also played an important role in the diversification of the 

Amazonian clades. 

Our reconstruction suggests that major Amazonian tributaries were largely 

established prior to the beginning of species-level diversification in Amazonian 

clades, and supports no role for major rivers as vicariant agents potentially owing to 

the narrow ancestral ranges of both clades prior to Pleistocene range expansion. 

Although our results give little indication whether major elements of the current 

drainage system had formed by late Miocene or in the Plio-Pleistocene, they suggest a 

Pleistocene transition from floodplain to lowland forest in the Western Amazon, in 

support of the “Dynamic Young Amazon” geologic model, which itself suggests that 

the current Amazonian drainage system was established in the Plio-Pleistocene.  

The study of the biogeography of titis is limited by the absence of a species-

level phylogeny with all Callicebinae taxa represented. Explicit phylogenetic 

hypotheses are a necessary component of understanding the spatial patterns of 

diversification and the processes driving extant and historical distributions. The P. 

donacophilus group is particularly poorly represented in the current study owing to 

the lack of available sequence data for most taxa, and little information about their 

spatial diversification can be inferred from our reconstruction apart from the putative 

origin of this clade in the Wet & Dry Savannas region, which comprises the majority 

of their current geographic distribution (except P. oenanthe). Given the unusual and 

disjunct distributions of these species, in particular, P. oenanthe in the Andean 

foothills of Peru, a phylogenetic framework including these species will be essential 

for a comprehensive reconstruction of the biogeographic history of Callicebinae at 

species-level and to assess these biogeographic hypotheses. Until then, we advocate 

caution over strict interpretation of the results, however, we believe that the overall 

patterns of diversification recovered here are significant, i.e., major divergences 

between the genera occurred by vicariance of widespread ancestral populations, the 

connection between the northwestern Amazon and Atlantic Forest, and the divergence 

of Amazonian species through sequential founder-events from a narrow area of origin 
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(likely the northwestern Amazon for Cheracebus, and Rondônia for the P. moloch 

group).  

Similarly, further inferences regarding the Atlantic Forest Callicebus depend 

upon the inclusion of multiple distinct regions within the Atlantic Forest biome. Our 

biogeographic results suggest that Callicebinae spread to the Atlantic Forest prior to 

10.25 Ma via the present-day Chaco likely to the southern Atlantic Forest and 

subsequently northwards through this region. As such, they indicate that Callicebus 

originated in this region, rather than the Amazon (see Jameson Kiesling et al., 2015), 

diverging from the progenitor of Plecturocebus by vicariance of a geographically 

widespread ancestor. Age estimates suggest that diversification among Callicebus 

species represented in this study begun at c. 2.85 Ma, earlier than among Cheracebus 

or P. moloch group taxa, and it is likely that the pattern of diversification differs from 

the Amazonian clades. Forests in the southern Atlantic Forest are cooler than lowland 

forests in the northern Atlantic Forest and studies have shown that the distinction 

between these regions is important for many primates (Kinzey, 1982), corresponding 

to the limit between the geographic distributions of C. nigrifrons and C. personatus + 

C. coimbrai (see Figure 5 in Printes et al., 2013). Future studies focusing specifically 

on each of the major titi monkey clades, with increased sampling and further 

geographic delineations within each region, will allow a more in-depth investigation 

of their biogeographic history and the processes promoting their diversification at a 

finer scale. 

3.6 Conclusions 

In this study, we reconstructed a well-supported phylogeny for Callicebinae that 

supports the diversification of the P. moloch group into three major clades (Aripuanã-

Tapajós, Eastern, Western). Our phylogenetic results clarify several questions 

regarding Callicebinae evolutionary history and species relationships, such as the 

relationship between P. cinerascens + P. miltoni and the other taxa of the P. moloch 

group. Our biogeographic reconstruction indicates that the diversification of titi 

monkey genera initiated in the late Miocene via the fragmentation of a widespread 

ancestor distributed across the north-western Amazon (Cheracebus), Wet & Dry 

Savannas (Plecturocebus), and Atlantic Forest (Callicebus). Species-level 

diversification of taxa of the Amazonian clades, Cheracebus and the P. moloch group, 
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occurred in an explosive manner from the early Pleistocene to c. 0.5 Ma, and was 

largely characterised by sequential founder-events across rivers. These founder-events 

were sufficiently rare to allow divergence in isolation after dispersal, supporting the 

role of major Amazonian rivers as relatively strong barriers to gene flow. Our 

biogeographic reconstruction suggests that the evolution of the Pebas system in the 

western Amazon may have influenced the diversification and distribution of extant 

Callicebinae lineages, which were absent from the western Amazon until the 

recession of these wetlands and the establishment of suitable forest habitat starting in 

the Pleistocene (“Dynamic Young Amazon” model).  

This study comprises one of the first reconstructions of the biogeography of 

titis based on explicit phylogenetic hypotheses and investigations into their 

evolutionary history in the context of Amazonian and South American biogeography. 

Although this research provides only a large-scale reconstruction of callicebine 

biogeography and should be interpreted with caution, it represents a critical starting 

point for future research investigating the biogeographic history of Callicebinae and 

of each of the major clades, and the processes promoting their diversification at a 

finer scale. Increased taxonomic sampling (particularly for the P. donacophilus 

group) and geographic delineations within each region (especially within the Atlantic 

Forest biome and Rondônia centre of endemism) will allow more in-depth 

investigation of titi monkey biogeography and testing of the biogeographic scenarios 

recovered in this study. 
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Chapter 4: Phylogenomics of titi monkeys (Callicebinae) 

using ddRADseq data with a focus on the Plecturocebus 

moloch group 

 

4.1 Abstract 

Recent molecular phylogenetic studies have revealed an increasingly comprehensive 

picture of the evolutionary history of titi monkeys (Callicebinae), one of the most 

species-rich groups of New World primates. Across these studies, however, 

conflicting phylogenetic relationships were recovered among some species of the 

Plecturocebus moloch group. Restriction-site associated DNA sequencing (RADseq) 

has become an important method of generating genome-wide molecular data for non-

model organisms in order to address difficult phylogenetic questions. Here, reduced 

representation genome-wide data were generated for 12 Callicebinae species (45 

specimens) using a double digest RADseq (ddRADseq) approach to infer 

phylogenetic relationships and to test for introgressive hybridisation. Phylogenetic 

analyses recovered a strongly supported topology for Callicebinae with species of the 

P. moloch group divided into three major clades; Aripuanã-Tapajós, Eastern, and 

Western clades. D-statistic tests detected a pattern of genetic introgression between P. 

cinerascens and P. bernhardi that was supported by independent evidence of 

mitochondrial introgression, and together, strongly suggested that P. cinerascens 

individuals from the left bank of upstream Rio Roosevelt, Rondônia, are admixed 

with P. bernhardi. We discuss putative sources of topological incongruence across 

loci and across previous studies, and the complicated nature of lineage diversification 

in the P. moloch group. Despite the strong resolution among the recovered species 

relationships, we advocate that strict interpretation of the phylogenetic results should 

conducted with caution until assessed using a multispecies coalescent-based model 

with the ddRADseq data.  
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4.2 Introduction 

The evolutionary history of titi monkeys (Callicebinae) has only very recently 

received renewed scientific attention, with a number of molecular phylogenetic 

studies advancing our understanding of the relationships among the many species 

(Byrne et al., 2016; Carneiro et al., 2016; Hoyos et al., 2016;). Although genetic data 

are still lacking for many taxa, an increasingly comprehensive picture of the 

evolutionary history of this diverse group is being uncovered. All molecular evidence 

presented in these studies supports the monophyly and distinction of the three genera 

(Cheracebus, Callicebus, Plecturocebus), and molecular dating analyses suggest that 

these genera diverged in the late Miocene (Chapter 2; Hoyos et al., 2016). Species 

relationships recovered among taxa of the Plecturocebus moloch group, however, 

vary across the phylogenies inferred to date.  

 Phylogenetic conflict is most often associated with the relationship between P. 

hoffmannsi, as well as the sister species, P. cinerascens and P. miltoni, and the 

remaining members of the P. moloch group. The combined phylogenetic signal from 

nuclear and mitochondrial loci typically recovers P. hoffmannsi as the earliest 

diverging lineage and P. cinerascens + P. miltoni as sister to a clade containing P. 

moloch, P. bernhardi and closely related taxa (e.g., see Chapter 2, Figure 2.2 ; 

Carneiro et al., 2016). However, combined nuclear and mitochondrial data matrices 

have also recovered a monophyletic clade containing P. hoffmannsi, P. cinerascens 

and P. miltoni (Aripuanã-Tapajós clade, Chapter 3). Based on 20 nuclear loci, P. 

cinerascens and P. miltoni form independent early diverging lineages within the P. 

moloch group (Chapter 2, Figure 2.2), and when only mitochondrial loci are included, 

P. hoffmannsi is sister to the western Amazonian species (i.e., P. cupreus and closely 

related taxa; Chapter 2), or eastern Amazonian species with low support (represented 

by P. moloch; Hoyos et al., 2016). Difficulties in resolving the phylogenetic 

relationships among these species may be associated with an insufficient quantity of 

phylogenetically informative nuclear data, or topological incongruence could be a 

result of discordant phylogenetic signals owing stochastic processes such as 

incomplete lineage sorting and interspecific gene flow.  

 The generation of large genome-wide molecular datasets for non-model 

organisms has been revolutionised by the advent of next generation sequencing 

(NGS) technologies and genome complexity reduction methods (Davey et al., 2011; 
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Pukk et al., 2015). Restriction-site associated DNA sequencing (RADseq) is one of 

the most broadly used and cost-effective methods for generating reduced 

representation libraries, targeting DNA sequences adjacent to specific restriction 

enzyme recognition sites throughout the genome (Baird et al., 2008). The utility of 

RADseq data to address difficult phylogenetic problems was clearly demonstrated 

with Lake Victoria’s cichlids, an adaptive radiation of over 500 species which 

diversified within the last 15,000 years (Wagner et al., 2013). Phylogenetic analyses 

employing up to 5.8 million base pairs of RADseq data recovered well-supported 

species relationships and reciprocal monophyly for the cichlid species included. Since 

then, RADseq data has been applied to questions in phylogenetics at interspecific 

level for many groups of organisms (e.g., Cruaud et al., 2014; Díaz-Arce et al., 2016; 

Hipp et al., 2014; Manthey et al., 2016;), and provided insight into species limits (e.g., 

Herrara & Shank, 2016; Pante et al., 2015; Razkin et al., 2016) and evidence for 

introgressive hybridisation (e.g., Chattopadhyay et al., 2016; Combosch & Vollmer, 

2015; Eaton et al., 2015; Rheindt et al., 2014).  

In the present study, double digest restriction-site-associated DNA sequencing 

(ddRADseq) (Peterson et al., 2012) was employed to sample unlinked genomic 

regions across 45 Callicebinae samples (12 species). Concatenated data matrices were 

generated by assembling the ddRADseq loci de novo using the pyRAD pipeline 

(Eaton & Ree, 2013; Eaton, 2014). ddRADseq data were then used to reconstruct 

phylogeny using maximum likelihood and Bayesian methods, generate a fossil-

calibrated phylogeny to estimate divergence times, assess whether genetic structure 

among P. moloch group taxa corresponds with taxonomic classification using 

Bayesian clustering analyses (Pritchard et al., 2000), and test for introgression 

between P. moloch group lineages using the D-statistic test (Green et al., 2010). A 

multispecies coalescent model as implemented in StarBEAST2 (Ogilvie et al., 2016a) 

was employed to infer a species tree and estimate divergence times for Callicebinae 

from multiple gene trees based on the multi-locus Sanger sequenced dataset generated 

in Chapter 2. To assess putative mitochondrial introgression, a molecular dataset 

comprising two mitochondrial loci was assembled for some species of the P. moloch, 

and a maximum-likelihood tree was inferred. The primary aims of this study were to 

add to our understanding of the evolutionary history of Callicebinae using genome-

wide data, increase the resolution of species relationships among the P. moloch group 

taxa, and assess potential factors influencing discordance across studies and across 
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loci (e.g., combined vs. mitochondrial vs. nuclear topologies). Parts of this study were 

inspired by the applications of the pyRAD pipeline and the investigation of 

introgression among the American live oaks by Eaton et al. (2015).  

4.3 Methods 

4.3.1 Taxon sampling 

A total of 45 fresh tissue samples were collected from museum voucher specimens 

from the following Brazilian institutions: National Institute of Amazonian Research 

(INPA), Federal University of Pará (UFPA), Federal University of Rondônia (UNIR), 

Federal University of Amazonas (UFAM), the Goeldi Museum (MPEG), and the Rio 

de Janeiro Primate Center (CNRJ). The majority of these specimens were obtained in 

the context of an Amazonian-wide faunal inventory project (CNPq/SISBIOTA) 

carried out in accordance with the appropriate collection permits (IBAMA 483 license 

No. 005/2005 – CGFAU/LIC). This research adhered to the American Society of 

Primatologists’ and American Society of Mammalogists' principles for the ethical 

treatment of primates, and Brazilian laws that govern primate research.  

Twelve currently recognised Callicebinae species (45 specimens) were 

sampled from the Plecturocebus moloch group (eight), Cheracebus (three), and 

Callicebus (one) (Table 4.1). Individuals from diverse lineages within these species, 

most of which are identifiable in the phylogenetic trees in Chapter 2, were sampled; 

P. cupreus (clade A + B), P. cinerascens (clade A + B), P. bernhardi (clade A + 

UFRO + CCM), and C. lugens from the left and right banks of the Rio Negro (LN + 

RN), as well as a newly collected C. lugens specimen from the left bank of the Rio 

Japurá (LJ). Following Serrano-Villavicencio et al. (2017), P. caligatus caligatus and 

P. caligatus dubius are labelled as subspecies of P. caligatus, and samples from both 

taxa were included in the dataset. In addition, one sample included in the dataset 

represents P. cf. moloch, a new taxon (Boubli et al., in prep) of the P. moloch group 

from the Alta Floresta region of Mato Grosso, Brazil (see Chapter 2; Carneiro et al., 

2016). All of the samples used in this study were from wild-caught specimens, nearly 

all of which are of known provenance (see Table 4.1).  
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Table 4.1 Genetic samples included in the ddRADseq analyses including ID, museum collection, and 

geographic origin. 

Species (clade) Sample ID Col. Geographic origin 

Plecturocebus hoffmannsi CTGAM248 UFAM Cametá Community, L bank of the Rio 

Tapajós, Pará, Brazil 

Plecturocebus hoffmannsi CTGAM249 UFAM Cametá Community, L bank of the Rio 

Tapajós, Pará, Brazil 

Plecturocebus hoffmannsi CTGAM290 UFAM Cametá Community, L bank of the Rio 

Tapajós, Pará, Brazil 

Plecturocebus miltoni 42991 MPEG Novo Aripuanã, L bank of the Rio Aripuanã, 

Amazonas, Brazil 

Plecturocebus miltoni 42992 MPEG Novo Aripuanã, L bank of the Rio Aripuanã, 

Amazonas, Brazil 

Plecturocebus cinerascens (B) UFRO352 UNIR Rondon II Dam, Pimenta Bueno, Rondônia, 

Brazil 

Plecturocebus cinerascens (B) UFRO354 UNIR Rondon II Dam, Pimenta Bueno, Rondônia, 

Brazil 

Plecturocebus cinerascens (B) UFRO355 UNIR Rondon II Dam, Pimenta Bueno, Rondônia, 

Brazil 

Plecturocebus cinerascens (A) UFRO499 UNIR Cabixi, Rondônia, Brazil 

Plecturocebus cinerascens (A) WRS03 INPA Apuí, Apuí, Amazonas, Brazil 

Plecturocebus cinerascens (A) WRS04 INPA Apuí, Apuí, Amazonas, Brazil 

Plecturocebus bernhardi (A) 42961 MPEG São Francisco do Guaporé, Guaporé 

Biological Reserve, Rondônia, Brazil 

Plecturocebus bernhardi (A) 42964 MPEG São Francisco do Guaporé, Guaporé 

Biological Reserve, Rondônia, Brazil 

Plecturocebus bernhardi UFRO413 UNIR Machadinho D’Oeste, Rondônia, Brazil  

Plecturocebus bernhardi CCM173 INPA Rio Mariepauá, R bank tributary of the Rio 

Madeira, Amazonas, Brazil 

Plecturocebus cf. moloch RVR73 INPA Novo Horizonte Community, Alta Floresta, 

Mato Grosso, Brazil 

Plecturocebus moloch CTGAM420 UFAM Belterra, R bank of the Rio Tapajós, Pará, 

Brazil 

Plecturocebus moloch CTGAM421 UFAM Belterra, R bank of the Rio Tapajós, Pará, 

Brazil 

Plecturocebus brunneus 4505 UFPA Samuel Dam, R bank of the Rio Jamari, 

Rondônia, Brazil 

Plecturocebus brunneus UFRO327 UNIR Cujubim, Fazenda Manoa, Rondônia, Brazil 

Plecturocebus brunneus UFRO541 UNIR Porto Velho, R bank of the Rio Madeira, 

Rondônia, Brazil 

Plecturocebus cupreus (A) AAM15 INPA RESEX Catuá-Ipixuna, Lago do Ipixuna, 

Coari, Amazonas, Brazil 

Plecturocebus cupreus (A) JLP15920 INPA Itamarati, L bank of the Rio Juruá, Amazonas, 

Brazil 

Plecturocebus cupreus (A) CTGAM210 UFAM Rebio Abufari, Turiaçu, L bank of the Rio 

Purus, Amazonas, Brazil 

Plecturocebus cupreus (B) 4987 UFPA No location data 

Plecturocebus cupreus (B) 4988 UFPA No location data 

Plecturocebus cupreus (B) 4990 UFPA No location data 

Plecturocebus c. caligatus CTGAM181 UFAM Tapauá, Igarapé do Jacinto, R bank of the Rio 

Purus, Amazonas, Brazil  

Plecturocebus c. caligatus CTGAM182 UFAM Tapauá, Igarapé do Jacinto, R bank of the Rio 

Purus, Amazonas, Brazil  

Plecturocebus c. caligatus CCM248 INPA No location data 

Plecturocebus c. caligatus MVR58 INPA No location data 
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Table 4.1 cont’d Genetic samples included in the ddRADseq analyses including ID, museum 

collection, and geographic origin. 

Species (clade) Sample ID Col. Geographic origin 

Plecturocebus c. dubius UFRO403 UNIR Porto Velho, L bank of the Rio Madeira, 

Rondônia, Brazil 

Plecturocebus c. dubius UFRO427 UNIR L bank of the Rio Mucuim, Canutama, 

Amazonas, Brazil 

Plecturocebus c. dubius UFRO544 UNIR Porto Velho, L bank of the Rio Madeira, 

Rondônia, Brazil 

Plecturocebus c. dubius 2804 CNRJ No location data 

Callicebus personatus 2466 CNRJ Aracruz, Espirito Santo, Brazil 

Cheracebus lugens (LN) JPB160 INPA São Gabriel da Cachoeira, L bank of the Rio 

Negro, Amazonas, Brazil 

Cheracebus lugens (LN) JPB161 INPA São Gabriel da Cachoeira, L bank of the Rio 

Negro, Amazonas, Brazil 

Cheracebus lugens (RN) JPB81 INPA Igarapé Mandiquie, R bank of the Rio 

Negro, Amazonas, Brazil 

Cheracebus lugens (LJ) CTGAM733 UFAM L bank of the Rio Japurá, Amazonas, Brazil 

Cheracebus lucifer CTGAM703 UFAM R bank of the Rio Japurá, Amazonas, Brazil 

Cheracebus lucifer CTGAM726 UFAM R bank of the Rio Japurá, Amazonas, Brazil 

Cheracebus purinus CTGAM154 UFAM Rebio Abufari, Turiaçu, L bank of the Rio 

Purus, Amazonas, Brazil 

Cheracebus purinus CTGAM195 UFAM Rebio Abufari, Turiaçu, L bank of the Rio 

Purus, Amazonas, Brazil 

Cheracebus purinus CTGAM209 UFAM Rebio Abufari, Turiaçu, L bank of the Rio 

Purus, Amazonas, Brazil 

Pithecia mittermeieri CTGAM215 UFAM L bank of the Rio Tapajós, Aveiro, Pará, 

Brazil 

Chiropotes albinasus CTGAM213 UFAM L bank of the Rio Tapajós, Aveiro, Pará, 

Brazil 

Chiropotes israelita CTGAM5713 UFAM Marari, Carauari, Amazonas, Brazil 

Chiropotes sagalatus CTGAM515 UFAM Floresta Nacional de Saracá-Taquera, Pará, 

Brazil 

Cacajao calvus INPA5241 INPA Tarauacá, Acre, Brazil 

Cacajao melanocephalus CTGAM0065 UFAM Rio Daraá, L bank of the Rio Negro, 

Amazonas, Brazil 

Cacajao ayresi CTGAM5667 UFAM L bank of the Rio Acará, Barcelos, 

Amazonas Brazil 

Cacajao hosomi CTGAM5698 UFAM Serra do Imeri, Xamata, Amazonas, Brazil 

Collection abbreviations: UFPA = Federal University of Pará; UFAM = Federal University of Amazonas; 

INPA = National Institute for Amazonian Research; UNIR = Federal University of Rondônia; MPEG = 

Goeldi Museum; CNRJ = Rio de Janeiro Primate Center 

 

4.3.2 Library preparation and sequencing 

Laboratory procedures were performed at the Evolution and Animal Genetics 

Laboratory (LEGAL) in the Federal University of Amazonas (UFAM), Manaus, 

Brazil. Total genomic DNA was extracted from blood and muscle tissues using the 

standard phenol-chloroform extraction protocol of Sambrook et al. (1989). The 

concentration of the extracted DNA was quantified using a Nanodrop 2000 

spectrophotometer (Thermo Scientific), and the DNA was diluted to 50 ng/μL.  
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 A reduced representation genomic library was constructed using the double 

digest restriction-site-associated DNA sequencing protocol (ddRADseq) (Peterson et 

al., 2012). The ddRADseq library preparation protocol was modified by Tomás Hrbek 

and LEGAL (UFAM) to allow simultaneous digestion and ligation and for sequencing 

on the Ion Torrent PGM (https://github.com/legalLab). ddRAD sequencing allows 

extreme genome complexity reduction by double digesting DNA with two restriction 

enzymes, a “common-cutter” and a “rare-cutter”, followed by strict size selection of 

the library to standardize the size of the sequenced fragments. Here, the 8-base pair 

cutter SdaI (recognition site CCTGCA^GG), and the 4-base pair cutter Csp6I 

(recognition site G^TAC), were used as the rare and common cutting restriction 

enzymes, respectively. These enzymes create cohesive ends on the digested DNA 

fragments allowing ligation of complementary IonTorrent P and A adapters. The P1 

adapter is common to all samples and binds to the sticky-end created by the SdaI 

restriction enzyme. The A adapter contains a unique molecular barcode for 

identification of individuals (to allow post-sequencing demultiplexing), it binds to the 

sticky-end created by the Csp6I restriction enzyme and is a divergent “Y” adapter to 

ensure that only fragments with one P1 and one A adapter are enriched. The SdaI and 

Csp6I restriction enzymes were chosen because we expected to observe up to 12,000 

ddRADseq fragments in the range of 320 to 400 bp based on the in-silico digestion of 

complete primate genomes deposited in GenBank (Boubli et al., in prep). This 

information was used to optimize the number of individuals to be analysed in one run 

of the IonTorrent PGM. 

DNA digestion and ligation were carried out simultaneously in the same 

reaction in a final volume of 50 uL: 4 μL of DNA (200ng) was digested with 0.1 μL 

(1 U) of restriction enzymes SdaI and Csp6I (Thermo Scientific), and ligated with 2 

μL of the IonTorrent adapters, P1 (0.1 μM) and A (5 μM; individual barcode adapter), 

0.5 μL of T4 DNA ligase (5 U), 0.5 μL of ATPs (5 mmol), and 5 μL of 10X Tango 

Buffer. The digestion and ligation step was carried out at 37 °C for 180 minutes, 

followed by heat-inactivation at 68 °C for 15 minutes. A PCR test was then carried 

out to check the performance of the digestion. The PCR test was carried out in a final 

volume of 15 μL: 1.5 μL of 10X NH4SO4 buffer (Thermo Scientific), 1.5 μL of 

primer P1 (2 mM), 1.5 μL of primer A-amp (2 mM), 1.2 μL of dNTPs (10 mM), 1.2 

μL MgCl2 (25 mM), 0.35 μL of DNA Taq polymerase (1 U), and 1 μL of the digested 

https://github.com/legalLab
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adapter-ligated DNA. PCR conditions were as follows: 2 minutes at 94 °C; followed 

by 35 cycles of 15 s at 94 °C, 35 s at 55 °C, and 90 s at 68 °C. The PCR tests were 

checked by electrophoresis on 1% agarose gel stained with GelRedTM (Biotium, Inc.).  

The next step involves enrichment of the digested adapter-ligated DNA 

fragments, which were amplified in five separate PCRs for each sample. The 

enrichment PCRs were carried out at final volume of 25 μL: 2.0 μL of MgCl2 (25 

mM), 2.0 μL of dNTPs (10 mM), 2.5 μL of 10X NH4SO4 buffer (Thermo Scientific), 

2.5 μL of primer P1 (2 mM), 2.5 μL of primer A-amp (2 mM), 0.1 μL of KlenTaq 

(0.5 U KlenTaq DNA Polymerase Technology), and 1 μL of the digested adapter-

ligated DNA. Enrichment PCR conditions were as follows: 1 minute at 68°C; 

followed by 18 cycles of 10 s at 93°C, 35 s at 52°C, and 90 s at 68°C; and a final 

cycle of 7 minutes at 68°C. Each of the five enriched PCR products for each sample 

were then combined in a single tube to a total volume of 100 μL (20 μL each), and 

purified using 0.8-fold volume of solid-phase reversible immobilization (SPRI) bead 

solution (AMPure). The concentration of the enriched DNA samples were then 

measured using a Qubit 2.0 Fluorometer (Invitrogen) and all samples were pooled 

together equimolarly in a single tube. DNA fragments in the range of 320 to 400 bp 

were selected using the Pippin Prep (2% agarose cartridge; Sage Science), owing to 

the ability of the IonTorrent PGM to sequence fragments up to 400 bp. The 

ddRADseq library was purified again using AMPure beads (0.7-fold volume) and 

sequenced on an Ion Torrent PGM (Life Technologies) using the 400-bp PGI 318 Ion 

PGM sequencing kit following manufacturers’ recommendations.  

 

4.3.3 ddRADseq assembly  

Raw sequence data were demultiplexed, quality filtered and assembled into de novo 

loci using the pyRAD v3.0.63 pipeline (Eaton & Ree, 2013; Eaton, 2014). pyRAD 

assembles ddRADseq data into clusters of similar sequences, which are considered 

different loci (i.e. orthologs), without the use of a reference genome. The pyRAD 

pipeline was used as it was developed to search for homologies among divergent 

samples/taxa and allows the presence of insertions and deletions (indel variation) 

owing to use of global alignment clustering methods. It is also suitable for processing 

ddRADseq data generated by the Ion Torrent PGM, which has an increased indel 

error rate relative to other sequencing platforms (Laehnemann et al., 2016) and 

otherwise high-quality sequence data can be discarded when using pipelines where 
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indels are not considered [e.g., Stacks (Catchen et al., 2011), which was developed for 

population-level analyses]. 

 ddRADseq data from eight Pitheciinae species (eight specimens) that were 

sampled by Bertuol et al. (in prep.) to investigate species relationships among black 

uakaris were added to the dataset after demultiplexing. These specimens were 

sequenced at the same laboratory (LEGAL, UFAM) using the same protocol for 

ddRADseq library preparation as described above (see section 4.3.2 Library 

preparation and sequencing) with one exception; the purification step was carried out 

with the GFX™ PCR DNA and Gel Band Purification Kit (GE Healthcare Life 

Sciences, USA) rather than SPRI bead purification.  

Sequence data from the 53 individuals were separated by pyRAD using the 

sample-specific molecular barcodes that were attached during library preparation. 

IonTorrent adapters, individual barcodes and restriction sites were removed with the 

filter setting “1”. Bases with a Phred quality score of less than 15 were turned into 

undetermined sites (Ns), and reads with more than ten undetermined sites (Ns) were 

discarded. This minimum quality score was chosen to account for the slight 

systematic underestimation of base call accuracy (Phred score) by the IonTorrent 

PGM (e.g., Bragg et al., 2013). The maximum number of ten undetermined sites (Ns) 

in a read was set in consideration of the 300–400 bp length of the sequenced 

fragments. The optimal value for the clustering threshold parameter (the minimum 

similarity required to consider sequences as orthologs) depends on various study-

specific factors such as the amount of polymorphism and sequencing error (Catchen 

et al., 2013). In order to assess the impact on the assembled data matrices and 

downstream phylogenetic inference, two different clustering thresholds were tested 

for within- and across-sample clustering (85% and 92%). Quality-filtered reads were 

clustered within samples at 85% or at 92% sequence similarity using the VSEARCH 

algorithm (Rognes et al., 2016) and then aligned using MUSCLE (Edgar, 2004). 

Heterozygosity and error rate were estimated for each individual from the aligned 

clusters and used to make base calls in the consensus sequence for each within-sample 

cluster. Clusters were retained if the minimum depth of coverage was at least 5X, and 

if the consensus sequence contained no more than six heterozygous sites, ten 

undetermined sites (Ns), and two alleles after error correction (as all taxa in the study 

are diploid). Consensus sequences were then clustered across samples at 85% or at 

92% sequence similarity using the VSEARCH algorithm and aligned using 
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MUSCLE. In the final filtering step, loci were discarded as putative paralogs if more 

than five individuals shared a heterozygous site, as excessive shared heterozygosity 

across species may represent fixed differences among paralogs rather than shared 

heterozygosity within orthologs.  

Steps one to five in pyRAD (the generation of quality-filtered consensus 

sequences for within-sample clusters) were performed once for each clustering 

threshold (85% and 92%) for all sequenced individuals. Final datasets with different 

combinations of samples/taxa for downstream analyses were then constructed by 

running steps six and seven of pyRAD (clustering of consensus sequences across 

samples at 85% or 92% and subsequent filtering) with only the target individuals 

included. A locus was only represented in a dataset if it was recovered for at least 

~50% of the ingroup individuals in that dataset. The minimum number of individuals 

required at a locus for each dataset is listed in Table 4.2. 

 

Table 4.2 List of the data matrices assembled in pyRAD including clustering threshold and 

minimum coverage parameter settings, sample information and dataset usage.  

Dataset 

Clust. 

thresh. Description 

No. 

ingroup  

Min. 

cov. 

Outgroup 

addon  Usage 

A85 85% All samples 45 22 8 Pitheciidae 
RAxML, 

MrBayes 

A92 92% All samples 45 22 8 Pitheciidae 
RAxML, 

MrBayes 

B85 85% 
One sample per 

taxon 
19 9 8 Pitheciidae 

BEAST, 

RAxML, 

MrBayes 

P85 85% Plecturocebus 33 16 -- STRUCTURE 

Pi85 85% 
Aripuanã-

Tapajós clade 
11 5 -- STRUCTURE 

Pii85 85% Eastern clade 7 4 -- STRUCTURE 

Piii85 85% Western clade 16 8 -- STRUCTURE 

PD85 85% 
Plecturocebus 

+ Cheracebus 
32 16 9 Cheracebus 

D-statistics, 

RAxML, 

MrBayes 

 

A total of eight ddRADseq datasets were assembled (Table 4.2). Initially, data 

matrices including all sequenced individuals were assembled using both 85% and 

92% clustering thresholds (referred to as the A85 and A92 datasets). All further 

datasets used a clustering threshold of 85%. A dataset including one well-sequenced 

individual from each Callicebinae taxon or lineage, as well as all Pitheciinae outgroup 

taxa, was constructed (B85 datasets) primarily for use in divergence dating analyses 

(see section 4.3.4). Four datasets containing different combinations of individuals 
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from the Plecturocebus moloch group were assembled for downstream clustering 

analyses with STRUCTURE (Pritchard et al., 2000) (see section 4.3.5): a) all taxa 

from the Plecturocebus moloch group (P85); b) Aripuanã-Tapajós clade taxa only 

(Pi85); c) Eastern clade taxa only (Pii85); and d) Western clade taxa only (Piii85). A 

dataset was also constructed for the investigation of introgression between species of 

the P. moloch group using D-statistics (see section 4.3.6) that included all P. moloch 

group individuals as ingroup taxa (except three poorly sequenced individuals that 

were excluded) and all Cheracebus individuals as outgroups (PD85).  

In order to assess the distribution and source of missing data between samples, 

a heatmap of shared ddRADseq loci between samples across the two datasets 

including all individuals was generated, and a Mantel correlation test was performed 

with 9999 permutations. The mantel test measured Spearman’s rank correlation 

between the Jaccard’s distance of the proportion of shared loci between samples, 

pairwise phylogenetic distance, and the number of raw input reads (Eaton et al., 

2015). Pairwise genetic distances between individuals were calculated (K80 model) 

using the R package “adegenet” (Jombart, 2008). 

 

4.3.4 Phylogenetic analysis of ddRADseq data 

Phylogenetic inference was conducted using maximum-likelihood (ML) and Bayesian 

methods for four of the concatenated ddRADseq loci data matrices assembled in 

pyRAD: A85 and A92 (all individuals); B85 (select individuals from each taxon); and 

PD85 (only individuals of the P. moloch group and Cheracebus). Maximum-

likelihood trees were inferred using RAxML v. 8.2.10 (Stamatakis, 2006, 2014) with 

the GTR + G (gamma) substitution model and 1,000 bootstrap replicates integrated 

with 200 searches for the optimal tree. Bayesian analyses were performed using 

MrBayes 3.2.3 (Ronquist et al., 2012) with the GTR + G substitution model. MCMC 

(Markov Chain Monte Carlo) convergence was checked aſter two independent four-

chain runs of 2 million generations for each Bayesian inference. Convergence was 

assessed by examining LnL, the average standard deviation of the split frequencies 

between the two simultaneous runs (< 0.01), and the Potential Scale Reduction Factor 

(PSRF) diagnostic in MrBayes, after a burn-in of 10%.  

Phylogeny and diversification times were jointly estimated for the B85 dataset 

under an uncorrelated lognormal relaxed clock model in the program BEAST v. 1.8.2 

(Drummond et al., 2012). A Yule speciation process and the GTR + G substitution 
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model were used, and the ucld.mean prior was set to a gamma distribution (shape = 

0.001; scale = 1000). Two replicate runs of 100 million MCMC generations, sampling 

every 10,000 generations, were conducted. The sampling distributions of each run 

were visualized using Tracer v. 1.6 to evaluate convergence and to verify that the 

effective sample size was > 200 for all parameters after a burn-in of 10%. 

Independent runs were combined with the first 1000 (10%) samples of the posterior 

distribution discarded as burn-in using LogCombiner v. 1.8.2 and the maximum 

credibility tree was generated in TreeAnnotator v. 1.8.2. To obtain the posterior 

distribution of the estimated divergence times, one calibration point on the root node 

(Callicebinae/Pitheciinae) was implemented with a lognormal distribution to set hard 

minimum and soft maximum bounds. A minimum age of 15.7 Ma was used based on 

the fossil Proteropithecia Kay et al., 1998, (Kay et al., 1998, 1999) and a soft 

maximum bound was set at 26 Ma based on the fossil Branisella boliviana 

Hoffstetter, 1969, from the Deseadan fauna of La Salla (McFadden, 1990). The 

standard deviation (= 0.5) and mean (= 1.51) were set such that 95% of the prior 

distribution falls before the maximum age to create the soft maximum bound. All 

phylogenetic analyses (using RAxML, MrBayes, and BEAST) were run on the 

CIPRES Science Gateway v 3.3 server (Miller et al., 2010).  

 

4.3.5 Bayesian clustering analyses  

A Bayesian model-based clustering method was applied to investigate genetic 

structure among members of the P. moloch group, as implemented in the software 

STRUCTURE v. 2.3.2 (Falush et al., 2003; Pritchard et al., 2000). STRUCTURE 

allocates individuals into clusters (K) as to minimize deviations from Hardy–

Weinberg equilibrium and maximise linkage equilibrium, independent of population 

information. Individuals are assigned probabilistically into each of the K clusters 

based on their membership coefficient (Q value), and joint membership in two or 

more clusters may be an indication of admixture. STRUCTURE analyses were 

initially performed using the P85 dataset (all taxa of the P. moloch group), and 

subsequently using the subsampled Pi85, Pii85, and Piii85 datasets to evaluate the 

existence of finer structure which may be obscured by major axes of structure (e.g., 

among the major clades) in the overall P85 dataset. One SNP (single nucleotide 

polymorphism) per locus was selected at random and data matrices of unlinked SNPs 

(assuming that SNPs of different ddRADseq loci are effectively unlinked) in coded 
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SNP STRUCTURE-format files were generated for each dataset by pyRAD. All 

STRUCTURE analyses were conducted with the admixture model, correlated allele 

frequencies, and no putative origins specified for individuals. For the P85 dataset 

including all P. moloch group taxa, six runs at each value of K (ranging from one to 

sixteen) were performed with a burn-in of 200,000 steps and MCMC length of 

800,000 steps. Between eight and thirteen clusters were predicted a priori since nine 

described taxa of the P. moloch group are included in the dataset, as well as 

individuals from divergent lineages for at least four species (P. moloch, P. bernhardi, 

P. cinerascens, P. cupreus). For the subsampled datasets (Pi85, Pii85, and Piii85), 

five runs at each value of K (ranging from one to six or seven) were performed with a 

burn-in of 100,000 steps and MCMC length of 500,000. Between three and five 

clusters were suspected a priori for each of the subsampled P. moloch group datasets.  

The model choice criterion implemented in STRUCTURE to infer the most 

probable number of clusters is an estimate of the posterior probability of the data for a 

given K; the number of clusters that provides the highest likelihood, LnP(D), across 

runs is considered the most likely K value (Pritchard et al., 2000). As the primary goal 

of these analyses was to detect genetic structure that was suspected a priori based on 

taxonomic classification and phylogenetic results, the optimum number of clusters for 

each dataset was primarily assessed by LnP(D). If several K values had similar 

LnP(D) scores, the assignment of the additional clusters was evaluated to check if 

they were informative or assigned equally to the putative populations (Pritchard & 

Wen, 2004). The ad hoc statistic ΔK (Evanno et al., 2005) implemented in the 

program STRUCTUREHARVESTER (Earl & vonHoldt, 2012) was also considered 

to attempt to detect the most appropriate number of clusters, in particular for the 

subsampled datasets. The Evanno method chooses the optimum number of clusters 

based on the second order rate of change in the log probability of data between 

successive K values, however, when there is strong hierarchical structure it often 

returns only the top level of stratification (Evanno et al., 2005). For the full P85 

dataset, it is likely that ΔK will strongly detect the major axes of structure 

representing deeper divergences within the P. moloch group, possibly obscuring finer 

structure within or even among species, and resulting in a smaller value (e.g., three) 

than expected (eight or above) for the optimum number of clusters using this method.  

STRUCTUREHARVESTER (Earl & vonHoldt, 2012) was used to examine 

LnP(D) and ΔK for each possible number of clusters (K) for each dataset. The 
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program CLUMPP (Jakobsson & Rosenberg 2007) was used to combine and average 

individual assignments probabilities across all replicates, and individual Q values 

were plotted and visualised using DISTRUCT 1.1 (Rosenberg, 2004).  

 

4.3.6 Introgression analyses 

The D-statistic (Durand et al., 2011; Green et al., 2010) was used to evaluate whether 

ancestral admixture has occurred between species of the P. moloch group. This test 

was first employed to assess introgression between Homo sapiens sapiens and 

Neanderthals (Green et al., 2010) based on whole genome data, and has since been 

applied to non-model organisms using partial representation genome-wide data (e.g., 

Eaton & Ree, 2013; Eaton et al., 2015). Based on the assumption of a true four-taxon 

tree with the topology (((P1, P2) P3) Outgroup), the four-taxon D-statistic evaluates 

the occurrence of two biallelic site patterns, ABBA and BABA (A = ancestral allele, 

B = derived allele), which are incongruent with this species tree. ABBA and BABA 

represent sites in which an allele is derived in the P3 lineage, and in either of the P2 

(ABBA) or the P1 (BABA) sister lineages, but not in both (i.e., BBBA, which agrees 

with the species tree). These discordant allele patterns are expected to occur at equal 

frequencies (D = 0) if they arise through stochastic processes such as incomplete 

lineage sorting, whereas one discordant pattern is expected to occur more frequently 

than the other if introgression has occurred between P3 and either P1 or P2 (measured 

by the significant deviation of D from 0).   

For the four-taxon D-statistic test, taxa were assigned at species-level and 

selected as follows: P1 and P2 were set as species of the same P. moloch group clade 

(Western, Eastern, or Aripuanã-Tapajós); P3 was set as each of the remaining P. 

moloch group species, providing the hypothesised species tree was not violated (e.g., 

when P1 and P2 were set as P. hoffmannsi and P. miltoni, P3 could not be P. 

cinerascens); and all Cheracebus individuals (n = 9) were used as the outgroup. The 

hypothesised species tree followed the topology of the ddRADseq phylogenetic trees, 

however, given the absence of strong support across the phylogenetic analyses the 

only assumption made species relationships among the Western clade taxa was that P. 

brunneus and P. cupreus couldn’t form a clade to the exclusion of P. caligatus. D was 

calculated over all possible combinations of species assigned to P1, P2 and P3 that 

satisfied these conditions (tests 1 – 39). A select set of four-taxon D-statistic tests 

were performed in which the two distinct P. cinerascens lineages (clade A and clade 
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B) were differentiated (tests 40 – 44), as clade B individuals were suspected to have 

mixed ancestry (see section 4.3.7). A final set of tests were performed in which the 

two P. cupreus clades (A and B) and the P. caligatus subspecies (P. c. dubius and P. 

c. caligatus) were defined separately to assess introgression between these lineages.  

 All ingroup taxa contain multiple individuals in the four-taxon D-statistic tests 

and D was calculated separately for all possible combinations of different individuals 

for P1, P2 and P3 in each of the tests. All samples were pooled for the outgroup taxon 

and a locus can be used if the three ingroup taxa and at least one outgroup individual 

are represented. Input files for the D-statistic tests were generated with modified 

python scripts and all tests were performed in pyRAD v. 3.0.63 (Eaton, 2014; Eaton 

et al., 2015) using the ddRADseq loci generated for the PD85 dataset (P. moloch 

group and Cheracebus taxa). The standard deviation of the D-statistic was calculated 

from 1000 bootstrap replicates. The measured D was converted to a Z-score (the 

number of standard deviations from zero) and significance was assessed from a two-

tailed p-value using α = 0.01 as a conservative cutoff for significance after Holm-

Bonferoni correction for multiple testing. A significant Z-score indicates that gene 

flow may have occurred between P3 and P1 or P2. 

The partitioned D-statistic (Eaton & Ree, 2013) is an extension to the four-

taxon D-statistic test (Durand et al., 2011) based on a five-taxon species tree, (((P1, 

P2), (P31, P32)) Outgroup), with two lineages from the P3 clade (P31, P32). The 

partitioned D-statistic test evaluates the occurrence of derived alleles (B) which are 

present in P2 or P1 (but not both) and in P31 (D1), or P32 (D2), or both P3 sublineages 

(D12). Three D-statistics are estimated in this test, one for each pair of discordant 

biallelic site patterns: D12 for ABBBA/BABBA; D1 for ABBAA/BABAA; and D2 for 

ABABA/BAABA. In the partitioned D-statistic, P3 is defined as the donor lineage 

and the D12 statistic indicates which direction gene flow occurred; if introgression 

occurred from P3 into P2 or P1, then both P3 lineages (P31 and P32) will share 

derived alleles with the recipient taxon, regardless of which P3 lineage was involved, 

because it is likely that some derived alleles arose in the ancestor to the P3 clade. A 

significant Z-score for D12 indicates that introgression occurred from the P3 clade into 

P2 or P1, and a significant Z-score for D1 or D2 signals whether the P31 or P32 lineage 

(or both) was involved. A significant Z-score for D1 or D2, but not D12, suggests that 

gene flow occurred in the opposite direction, i.e., from P1 or P2 into P3. Thus, 

partitioned D-statistic tests assess the direction of gene flow and which lineages were 
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involved, and they are particularly useful when considering older species trees, 

interspecific hybridisation, and diverse species that include distinct intraspecific 

lineages which may have admixed independently (Eaton et al., 2015).  

For the four-taxon D-statistic tests with a significant Z-score, partitioned D-

statistic tests were performed in order to infer the direction of gene flow and assess 

which intraspecific clades were involved for species represented by multiple 

divergent lineages. Partitioned D-statistics were employed to evaluate two scenarios, 

admixture involving P. cinerascens and P. bernhardi + P. moloch (I), and involving 

P. cinerascens and P. c. caligatus (II). In the latter case (II), P. cinerascens clade A 

and another taxon from the Aripuanã-Tapajós clade (P. cinerascens clade B, P. 

miltoni, or P. hoffmannsi) were selected for P1 and P2, while P31 and P32 were set as 

P. c. caligatus and another taxon from the Western clade (P. c. dubius, P. brunneus, 

or P. cupreus), based on the combination of individuals with a significant Z-score in 

the four-taxon test. Partitioned D-statistic tests were performed with all possible 

combinations of these taxa (tests 60 – 68).  

For scenario I, four-taxon tests show evidence of admixture involving P. 

cinerascens and both P. bernhardi and P. moloch, and thus it was of interest to test 

whether these taxa hybridised independently and also to assess which lineages were 

involved (e.g., P. cinerascens clade A or clade B; P. bernhardi clade A or UFRO; P. 

moloch or P. cf. moloch). For these tests, P1 and P2 were set as one of the P. 

cinerascens lineages and another member of the Aripuanã-Tapajós clade, while taxa 

from the Eastern clade (P. moloch, P. cf moloch, P. bernhardi clade A, or P. 

bernhardi UFRO) were selected as P31 and P32. Partitioned D-statistic tests were 

performed with all possible combinations of these taxa (tests 45 – 59).  

As in the four-taxon tests, the outgroup taxa is represented by the pooled 

Cheracebus samples for all partitioned tests, however, the ingroup taxa (terminals P1, 

P2, P31 and P32) were defined as a single individual per taxon to reduce redundancy 

and divergent intraspecific lineages of interest were also defined separately. There are 

six incongruent allele patterns measured in the five-taxon test and each site must be 

represented across the five taxa included (versus two patterns across four taxa for the 

four-taxon D-statistic). Because fewer sites will meet these conditions than for the 

four-taxon test, the individual representing each taxon was chosen based on the 

number of loci recovered in the ddRADseq dataset to maximise the statistical power 

of the partitioned D-statistic test. The standard deviation of the D-statistics were 
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calculated from 1000 bootstrap replicates. The measured D (D1, D2, D12) were 

converted to Z-scores and significance was assessed from a two-tailed p-value using α 

= 0.01 as a conservative cutoff for significance (Z-score > 2.55).  

 

4.3.7 Mitochondrial phylogeny 

A recent study investigating the evolutionary history of Callicebinae taxa (Carneiro et 

al., 2016) classified one of the P. cinerascens individuals included in this ddRADseq 

dataset (UFRO354) as a P. bernhardi. This specimen along with two other individuals 

(UFRO352, UFRO355) collected from the same locality form a sister clade (labeled 

clade B) to other P. cinerascens samples in the ddRADseq phylogenies. Photos 

obtained of the UFRO354 specimen confirms that it phenotypically resembles P. 

cinerascens, however, these specimens were collected on the left bank of upstream 

Rio Roosevelt at the Rondon II dam, near Pimenta Bueno, Rondônia, which is outside 

the known geographic distribution for P. cinerascens, within an interfluvium where P. 

bernhardi is found. The phylogeny reconstructed in Carneiro et al. (2016) is based on 

two mitochondrial loci (COI and CYTB) as well as alu markers, and it is possible that 

the phylogenetic signal from the mitochondrial sequences overwhelmed the 

information contained in the nuclear sequences owing to the higher mutation rate and 

significantly greater number of informative sites. In this case, the UFRO354 

individual may truly have a P. bernhardi mitochondrial genome, which is especially 

interesting in light of the nuclear (ddRADseq) and phenotypic evidence that 

UFRO354 is more closely related to P. cinerascens.  

To independently verify that UFRO354 has a P. bernhardi mitochondrial 

genome, and also because the molecular data used by Carneiro et al. (2016) were not 

published, new mitochondrial sequences (for COI and CYTB) were generated for this 

specimen. To infer phylogeny and compare sequence identity, sequence data were 

also generated for three other P. cinerascens and two P. bernhardi individuals. These 

six tissue samples were collected from museum voucher specimens (Table 4.3) DNA 

was extracted from muscle tissues using the Qiagen DNeasy Blood & Tissue Kit 

according to manufacturer's protocol. Eleven new sequences were generated for COI 

(5), and CYTB (6) (see primer information for COI and CYTB in Table 2.3, Chapter 

2). The PCR reactions were carried out in a total volume of 50 μL, containing 

approximately 30 ng of genomic DNA, 4 μL of dNTPs (200μM each), 5 μL 10X PCR 

buffer (100 mM Tris-HCL, 500 mM KCL, 15 mM Mg2+), 1 μL of each forward and 
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reverse primer (0.2 μM), and 0.25 μL of TaKaRa Taq DNA polymerase (1 Unit). The 

amplification cycles were carried out under the following conditions; initial 

denaturation at 95 °C for 5 min; followed by 35 cycles of denaturing at 94 °C for 1 

min, primer annealing for 1 min at 45°C (COI) or 60°C (CYTB), and extension at 72 

°C for 1 min; a final extension was carried out at 72 °C for 5 min. PCR products were 

analysed on 1.5 % agarose gels and then Sanger sequenced commercially. Consensus 

sequences were generated from forward and reverse reads using Geneious R7.1 

(Biomatters).  

The complete cytochrome b (CYTB) locus (1140 bp) and 660 bp of the 

cytochrome c oxidase subunit I (COI) locus were aligned using the MUSCLE 

algorithm in Geneious R7.1 and subsequently concatenated. Twelve further 

individuals sampled in the multi-locus dataset in Chapter 2 were also added, including 

some P. miltoni, P. moloch and P. cf. moloch specimens (see Table 4.3). Sequences 

for COI and CYTB were extracted from a whole mitochondrial genome sequence that 

was retrieved from GenBank for one P. donacophilus specimen in order to root the 

tree (accession number = FJ785423). All specimens were represented at both loci 

except P. cinerascens FR31 and P. bernhardi 42961, which are missing data for COI. 

A maximum-likelihood tree was reconstructed using RAxML v. 8.1 (Stamatakis, 

2014) with the GTR + G (gamma) substitution model. Node support was estimated 

using the rapid-bootstrapping algorithm (−f a -x option) for 1000 non-parametric 

bootstrap replicates (Stamatakis et al., 2008).  
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Table 4.3 Genetic samples included in the mtDNA phylogenetic analysis including ID, museum 

collection, data source, and geographic origin. 

Species (clade) Sample ID Col. Data  Geographic origin 

Plecturocebus miltoni 42991 MPEG Ch. 2 Novo Aripuanã, L bank of the Rio 

Aripuanã, Amazonas, Brazil 

Plecturocebus miltoni 42992 MPEG Ch. 2 Novo Aripuanã, L bank of the Rio 

Aripuanã, Amazonas, Brazil 

Plecturocebus cinerascens (B) UFRO352 UNIR Ch. 2 Rondon II Dam, Pimenta Bueno, 

Rondônia, Brazil 

Plecturocebus cinerascens (B) UFRO354 UNIR New Rondon II Dam, Pimenta Bueno, 

Rondônia, Brazil 

Plecturocebus cinerascens (B) UFRO355 UNIR Ch. 2 Rondon II Dam, Pimenta Bueno, 

Rondônia, Brazil 

Plecturocebus cinerascens (A) UFRO499 UNIR Ch. 2 Cabixi, Rondônia, Brazil 

Plecturocebus cinerascens (A) FR31 INPA New Novo Aripuanã, R bank of the Rio 

Aripuanã, Amazonas, Brazil  

Plecturocebus cinerascens (A) FR50 INPA New Sucunduri, Apuí, Amazonas, Brazil 

Plecturocebus cinerascens (A) FR123 INPA New Novo Aripuanã, R bank of the Rio 

Aripuanã, Amazonas, Brazil  

Plecturocebus bernhardi (A) 42960 MPEG Ch. 2 São Francisco do Guaporé, Guaporé 

Biological Reserve, Rondônia, 

Brazil 

Plecturocebus bernhardi (A) 42961 MPEG Ch. 2 São Francisco do Guaporé, Guaporé 

Biological Reserve, Rondônia, 

Brazil 

Plecturocebus bernhardi (A) 42964 MPEG Ch. 2 São Francisco do Guaporé, Guaporé 

Biological Reserve, Rondônia, 

Brazil 

Plecturocebus bernhardi UFRO413 UNIR Ch. 2 Machadinho D’Oeste, Rondônia, 

Brazil  

Plecturocebus bernhardi FR26 INPA New Novo Aripuanã, L bank of the Rio 

Aripuanã, Amazonas, Brazil  

Plecturocebus bernhardi CCM173 INPA New Rio Mariepauá, R bank tributary of 

the Rio Madeira, Amazonas, Brazil 

Plecturocebus cf. moloch RVR73 INPA Ch. 2 Novo Horizonte Community, Alta 

Floresta, Mato Grosso, Brazil 

Plecturocebus moloch CTGAM420 UFAM Ch. 2 Belterra, R bank of the Rio Tapajós, 

Pará, Brazil 

Plecturocebus moloch MCB63 UFPA Ch. 2 Senador José Porfírio, R bank of the 

Rio Xingu, Pará, Brazil 

Collection abbreviations: UFPA = Federal University of Pará; UFAM = Federal University of 

Amazonas; INPA = National Institute for Amazonian Research; UNIR = Federal University of 

Rondônia; MPEG = Goeldi Museum. 

 

4.3.8 Coalescent-based species tree analysis: StarBEAST2  

A multispecies coalescent model as implemented in StarBEAST2 (Ogilvie et al., 

2016a) was employed to infer a species tree for Callicebinae from multiple gene trees 

based on the multi-locus Sanger sequenced dataset generated in Chapter 2. One of the 

goals of this analysis was to assess whether the species relationships inferred using 
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the multi-locus sequences under a multi-species coalescent model are congruent with 

the results from the ddRADseq phylogenetic analyses.  

StarBEAST2 is a newly developed version of *BEAST (Heled & Drummond, 

2010) with several improvements such as novel MCMC operators to allow more 

accurate inference of species trees, divergence times, and substitution rates (Ogilvie et 

al., 2016a). As information for each locus is used to infer the species tree, it is 

important to minimise missing data as it may affect the estimation of the gene and 

species trees (e.g., Townsend et al., 2011). Thus, thirteen loci (11 nuclear and 2 

mitochondrial; Table 4.4) were chosen that were represented by at least one individual 

for all Callicebinae taxa included, with two exceptions (C. coimbrai was missing 

mitochondrial data and the RAG2 locus; and C. nigrifrons was not represented at the 

ZFX locus). Chapter 2 contains information on each of the loci (Table 2.3). Between 

one and three individuals were included for each Callicebinae taxon, depending on the 

number available from the original dataset and sequencing coverage, and three 

Pitheciinae taxa were included as outgroups. Most of the sequences included were 

generated for Chapter 2, although some were retrieved from GenBank (see Table 4.4 

and accession numbers in Table 4.5).  

Each locus was aligned using the MUSCLE algorithm in Geneious R7.1 

(Biomatters) and substitution models were set according to the model selected for 

each alignment using Bayesian information criterion (BIC) in jModelTest v 2.1.6 

(Darriba et al., 2012) as follows; HKY+G for CYTB and ABCA1; HKY+I for FES; 

K80 for DENND5A; K80+I for RAG1 and RAG2; TRN+G for COI; and HKY for the 

other six loci. The multispecies coalescent model was applied as implemented in 

StarBEAST2, an extension of BEAST v 2.4.4 (Bouckaert et al., 2014). Callicebinae 

individuals were grouped into 16 terminals representing 14 described species (P. c. 

caligatus / P. c. dubius and P. moloch / P. cf. moloch were defined separately), and 

Pitheciinae taxa were set as an outgroup terminal. The clock, site and tree models 

were unlinked across loci, except the two mitochondrial loci which shared a gene tree. 

All clock models were set as lognormal uncorrelated relaxed clocks and a Yule 

speciation process was applied. The Analytical Population Size Integration model was 

set as the population size model. A lognormal distribution (default settings) was set 

for the species-population mean prior.  
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Table 4.4 Locus coverage for the samples included in the StarBEAST2 analysis. Colour indicates 

source of the data: grey = Chapter 2; orange = Perelman et al. (2011); and purple = other sequences 

from GenBank. 

Species Sample ID 

No. 

loci 

(13) 

Locus 

C
O

I 

C
Y

T
B

 

A
B

C
A

1
 

D
E

N
N

D
5

A
 

D
M

R
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1
 

E
R

C
2
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E

S
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O

X
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1
 

M
A

P
K

A
P

1
 

N
P

A
S

3
.2

 

R
A

G
1

 

R
A

G
2

 

Z
F

X
 

P. hoffmannsi CTGAM248 11                           

P. hoffmannsi CTGAM290 13                           

P. miltoni 42991 13                           

P. miltoni 42992 13                           

P. miltoni 42993 12              

P. cinerascens UFRO355 13                           

P. cinerascens UFRO499 12                           

P. bernhardi UFRO413 12                           

P. bernhardi 42960 12                           

P. bernhardi 42964 13                           

P. moloch MCB64 13                           

P. moloch MCB79 12                           

P. moloch CTGAM420 11                           

P. cf. moloch RVR22 13                           

P. cf. moloch RVR68 12              

P. cf. moloch RVR73 13                           

P. brunneus 4009 13                           

P. brunneus 4346 13              

P. brunneus 4505 13                           

P. cupreus AAM15 10                           

P. cupreus CTGAM210 12                           

P. cupreus 4988 13              

P. cupreus 4990 13                           

P. cupreus 4993 12                           

P. c. caligatus CTGAM181 13                           

P. c. caligatus CTGAM182 13                           

P. c. dubius UFRO403 13                           

P. c. dubius UFRO544 12                           

P. donacophilus CDO* 13                           

C. lugens JPB119 13                           

C. lugens JPB124 13                           

C. lugens JPB136 13                           

C. lugens JPB81 12                           

C. purinus CTGAM154 13                           

C. purinus CTGAM195 11                           

C. purinus CTGAM209 11                           

C. personatus CLP1* 12                           

C. personatus CNRJ2466 2                           

C. coimbrai CCO1 10                           

C. nigrifrons CNI1* 10                           

C. nigrifrons CPE04 8                           

Cacajao calvus CCL1* 11                           

Chiropotes 

israelita CIS1* 13                           

Pithecia 

pithecia  PPT1* 13                           

* = composite individual 
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Table 4.5 Accession numbers for the GenBank sequences included in the StarBEAST2 analysis. 

Species 
Sample 

ID 

Locus 

COI CYTB ABCA1 DENND5A DMRT1 

P. donacophilus CDO1* FJ785423 FJ785423 HM765289 HM759315 HM762536 

C. personatus CLP1* --- AF289988 HM765298 HM759320 HM762544 

C. coimbrai CCO1 --- --- HM765284 HM759312 HM762531 

C. nigrifrons CNI1* --- AF524884 --- HM759318 HM762550 

Pithecia pithecia  PPT1* JF459229 KR902424 HM765380 HM759323 HM762634 

Cacajao calvus CCL1* NC021967 NC021967 HM765283 HM759286 HM762530 

Chiropotes israelita CIS1* NC024629 NC024629 HM765295 HM759295 HM762542 

Species 
Sample 

ID 

Locus   

ERC2 FES FOXP1 MAPKAP1 
 

P. donacophilus CDO1* HM762211 HM761804 HM761533 HM760634 
 

C. personatus CLP1* HM762187 HM761807 HM761542 HM760643 
 

C. coimbrai CCO1 HM762175 HM761802 HM761528 HM760631 
 

C. nigrifrons CNI1* HM762178 HM761806 HM761547 HM760647 
 

Pithecia pithecia  PPT1* HM762204 HM761808 HM761627 HM760722 
 

Cacajao calvus CCL1* HM762297 --- HM761527 --- 
 

Chiropotes israelita CIS1* HM762183 HM761786 HM761539 HM760640 
 

Species 
Sample 

ID 

Locus 
 

NPAS3.2 RAG1 RAG2 ZFX 
 

P. donacophilus CDO1* HM759924 HM759135 HM758967 HM757151 
 

C. personatus CLP1* HM759933 HM759138 HM758970 HM757153 
 

C. coimbrai CCO1 HM759919 HM759134 --- HM757149 
 

C. nigrifrons CNI1* HM759938 HM759137 HM758969 --- 
 

Pithecia pithecia  PPT1* HM760023 HM759140 HM758971 HM757155 
 

Cacajao calvus CCL1* HM759918 HM759113 HM758942 HM757126 
 

Chiropotes israelita CIS1* HM759930 HM759120 HM758950 HM757133 
 

* = composite individual 

      

The species tree was calibrated by applying a lognormal distribution on the 

root node with a hard minimum bound of 15.7 Ma based on the fossil Proteropithecia 

Kay et al., 1998, and a soft maximum bound of 26 Ma based on the fossil Branisella 

boliviana Hoffstetter, 1969, implemented as described for the ddRADseq divergence 

dating analysis in section 4.3.4. Each of the nuclear gene trees were loosely calibrated 

based on the average substitution rates found for Callicebinae taxa across the 54 

nuclear loci employed by Perelman et al. (2011) (including the 11 loci used in this 

analysis). The clock rate calibrations were applied as a uniform distribution with 

broad upper and lower bounds (3.06 × 10-4 – 12.5 × 10-4 substitutions per site per 

million years) set based on the average upper and lower 95% HPD values estimated 

for the substitutions rate across the eight Callicebinae species included in the 
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Perelman et al. (2011) phylogeny. Clock rates for the mitochondrial loci were 

estimated relative to the this substitution rate under a broad exponential distribution 

(default settings). Note that the broad substitution rate calibrations were applied to the 

gene tree clock rates whereas the root node fossil calibration was applied to the 

species tree.  

The StarBEAST2 analysis was conducted for 200 million MCMC generations, 

sampling every 10,000 generations, and run on the CIPRES Science Gateway v 3.3 

server (Miller et al., 2010). The sampling distributions were visualized using Tracer v. 

1.6 to evaluate convergence and to verify that the effective sample size was > 200 for 

all parameters after a burn-in of 10%. The maximum clade credibility species tree and 

gene trees were generated in TreeAnnotator v. 2.4.4. DensiTree (Bouckaert, 2010) 

was used to visualise uncertainty in the species tree.  

4.4 Results 

4.4.1 ddRADseq data assembly 

The samples sequenced for this study (i.e., Callicebinae taxa) had an average of 155K 

raw reads (total = 7 million), which were reduced to an average 80K quality filtered 

reads per sample. These clustered into an average of 2342 and 2407 stacks (85% and 

92% clustering threshold, respectively), with a mean depth of around 12.8X, and 

subsequently filtered to an average 2199 (85%) and 2250 (92%) consensus sequences 

per sample (Table 4.6).  

 

Table 4.6 Summary of the ddRADseq data assembly: comparison of average sequencing effort 

for Callicebinae vs. Pitheciinae samples. 

Samples 

Clust. 

thresh. Reads 

Reads 

passed Clusters1 

Avg. 

depth1 

Cons. 

loci 

No. 

sites H2 

Callicebinae 85% 154863 79762 2342 12.80 2199 655204 0.0022 

Callicebinae 92% -- -- 2407 12.77 2250 670320 0.0022 

Pitheciinae 85% 86138 40606 1124 8.27 1030 294005 0.0012 

Pitheciinae 92% -- -- 1144 8.29 1049 299304 0.0012 

All 85% 144490 73852 2159 12.11 2022 600684 0.0020 

All 92% -- -- 2217 12.09 2068 614317 0.0020 
1After excluding loci with depth <5 

      2 Heterozygosity measured as the proportion of called sites 
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Sequencing effort was comparatively low for the outgroup samples 

(Pitheciinae taxa) that were added to the dataset. These had an average of 41K quality 

filtered reads per sample (86K raw reads/sample) which clustered into an average of 

1124 (85%) and 1144 (92%) clusters, with a mean depth of around 8.3X, and filtered 

to an average of 1030 (85%) and 1049 (92%) consensus sequences per sample (Table 

4.6).  

The generation of consensus sequences per sample (steps 1 – 5 in pyRAD) 

was highly comparable across both clustering thresholds (85% and 92%) in relation to 

the number of clusters, average depth, the number of filtered putative loci, and the 

heterozygosity of each individual (Tables 4.7, A3.1). Clustering of consensus 

sequences across samples (steps 6 + 7 in pyRAD) at both thresholds also resulted in a 

similar number of total loci included in the final datasets (1178 versus 1129 loci in 

A85 and A92 datasets, respectively). However, the outgroup samples are represented 

at fewer loci in the A92 dataset, with around a 40% decrease (compared to A85) in 

the average number of loci sequenced for the outgroup taxa as a percentage of the 

total number of loci (e.g., see Table 4.8). 

 This trend is also found for Cheracebus and Callicebus individuals (around a 

5% decrease), while Plecturocebus samples have around the same ratio of sequenced 

to total loci in both datasets. Given that all taxa had similar numbers of consensus 

sequences per sample under both thresholds (Tables 4.7, A3.1), it is likely that 

clustering across samples at 92% similarity resulted in fewer loci included for the 

outgroup taxa owing to the relatively old divergence (early Miocene) and thus, higher 

sequence divergence between Callicebinae and Pitheciinae. In light of this, all further 

datasets were assembled using a clustering threshold of 85% to maximise sequence 

coverage across all clades, each of which contained between 1805 and 3048 loci 

(545K – 932K total bp). Information about each assembled dataset is listed in Table 

4.9. 
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Table 4.7 Summary of the ddRADseq data assembly (85% clustering threshold): sequencing 

information per sample. 

Species Sample ID Reads 

Reads 

passed Clusters1 

Avg. 

depth1 

Cons. 

loci 

No. 

sites H2 

P. hoffmannsi CTGAM248 306337 151852 3500 16.85 3302 978010 0.0028 

P. hoffmannsi CTGAM249 111856 55727 2643 12.51 2489 742761 0.0029 

P. hoffmannsi CTGAM290 102270 52813 2636 12.12 2462 734999 0.0028 

P. miltoni 42991 103221 52457 2472 12.05 2344 698258 0.0019 

P. miltoni 42992 26936 13386 765 7.40 696 209065 0.0020 

P. cinerascens UFRO352 273113 139449 3487 18.42 3284 967058 0.0030 

P. cinerascens UFRO354 340623 206741 4004 22.96 3820 1162308 0.0026 

P. cinerascens UFRO355 345291 184024 3168 15.74 2945 890986 0.0031 

P. cinerascens UFRO499 290049 175012 3825 21.36 3651 1117138 0.0024 

P. cinerascens WRS03 282987 178158 3897 21.96 3737 1141566 0.0025 

P. cinerascens WRS04 289893 174354 3722 21.72 3567 1087395 0.0026 

P. bernhardi 42961 54657 27783 1621 9.17 1494 446649 0.0019 

P. bernhardi 42964 162111 84364 3170 15.19 2996 891006 0.0022 

P. bernhardi UFRO413 276283 133737 2159 12.05 2000 591162 0.0023 

P. bernhardi CCM173 38910 20194 959 8.18 872 258247 0.0026 

P. cf. moloch RVR73 131902 66449 2710 13.36 2552 761102 0.0012 

P. moloch CTGAM420 150107 73122 2733 12.79 2553 768096 0.0015 

P. moloch CTGAM421 253243 120890 3326 17.71 3136 926124 0.0015 

P. brunneus 4505 136376 68082 2731 13.72 2580 765038 0.0018 

P. brunneus UFRO327 403145 199843 2709 13.26 2518 736335 0.0019 

P. brunneus UFRO541 58000 29213 1584 10.18 1475 441644 0.0021 

P. cupreus AAM15 239043 119942 3654 16.38 3423 1011058 0.0016 

P. cupreus JLP15920 165045 85552 3147 15.02 2999 890722 0.0021 

P. cupreus CTGAM210 53988 25065 698 6.84 619 175367 0.0019 

P. cupreus 4987 126201 60676 2508 12.95 2355 700502 0.0018 

P. cupreus 4988 39680 19363 1168 8.36 1071 321155 0.0022 

P. cupreus 4990 146403 75103 2840 13.31 2688 799467 0.0018 

P. c. caligatus CTGAM181 73412 33052 753 7.15 679 191748 0.0019 

P. c. caligatus CTGAM182 203884 104355 3279 16.24 3105 919765 0.0023 

P. c. caligatus CCM248 64071 30994 1830 9.65 1686 504487 0.0023 

P. c. caligatus MVR58 241597 118306 3430 16.41 3234 951910 0.0020 

P. c. dubius UFRO403 252706 124259 3284 16.34 3109 920152 0.0023 

P. c. dubius UFRO427 134817 62740 1208 8.93 1098 309948 0.0023 

P. c. dubius UFRO544 107090 47568 1895 11.78 1777 531692 0.0025 

P. c. dubius 2804 127611 63963 2744 12.86 2585 767292 0.0023 

C. personatus 2466 13162 6331 155 7.33 135 40451 0.0023 

C. lugens JPB160 85568 41459 1112 7.81 1025 290127 0.0017 

C. lugens JPB161 111957 51591 1022 8.43 930 260906 0.0016 

C. lugens JPB81 160013 78654 3024 14.41 2834 843338 0.0017 

C. lugens CTGAM733 101580 46833 2192 10.29 2018 616928 0.0019 

C. lucifer CTGAM703 50854 24646 1421 8.51 1299 403499 0.0025 

C. lucifer CTGAM726 47586 24161 1490 8.63 1379 413427 0.0027 

C. purinus CTGAM154 29785 13879 736 6.93 654 202980 0.0024 

C. purinus CTGAM195 82079 37058 969 7.55 882 250041 0.0019 

C. purinus CTGAM209 173405 86094 3032 15.04 2876 852287 0.0019 

Pithecia mittermeieri CTGAM215 49088 22116 1068 8.15 975 302059 0.0012 

Cacajao ayresi 5667 75721 35587 1159 8.02 1054 298552 0.0007 

Cacajao calvus 5241 109827 52274 1035 8.40 955 267997 0.0010 

Cacajao hosomi 5698 94259 44687 1220 8.76 1122 316673 0.0011 

Cacajao 

melanocephalus 
0065 75938 35650 1007 7.79 921 260177 0.0013 

Chiropotes albinasus CTGAM213 82121 38938 1009 8.01 920 259987 0.0011 

Chiropotes israelita 5713 105778 50461 1331 8.70 1241 349903 0.0013 

Chiropotes sagalatus CTGAM515 96369 45135 1166 8.37 1051 296689 0.0018 
1After excluding loci with depth <5 

       
2 Heterozygosity measured as the proportion of called sites 
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Table 4.8 Summary of ddRADseq locus coverage per sample for each dataset. 

Species Sample ID 
Dataset // total loci 

A85  A92 B85 PD85 P85 Pi85 Pii85 Piii85 PW85 PS85 

  
 

1178 1129 1987 1931 1944 3048 1805 1959 2259 2306 

P. hoffmannsi CTGAM248 827 792 1396 1291 1306 1931 -- -- -- -- 

P. hoffmannsi CTGAM249 971 938 -- 1445 1448 1894 -- -- -- 1674 

P. hoffmannsi CTGAM290 966 932 -- 1415 1418 1852 -- -- -- 1638 

P. miltoni 42991 941 897 1424 1371 1365 1760 -- -- -- 1583 

P. miltoni 42992 382 359 -- 461 465 575 -- -- -- 532 

P. cinerascens UFRO352 877 849 1452 1377 1386 1965 -- -- -- -- 

P. cinerascens UFRO354 937 900 -- 1451 1457 2399 -- -- -- 1692 

P. cinerascens UFRO355 535 515 -- 808 808 1497 -- -- -- -- 

P. cinerascens UFRO499 958 931 -- 1419 1426 2332 -- -- -- -- 

P. cinerascens WRS03 976 942 1502 1480 1490 2407 -- -- -- 1708 

P. cinerascens WRS04 935 903 -- 1417 1425 2338 -- -- -- -- 

P. bernhardi 42961 700 670 -- 970 966 -- 1030 -- -- -- 

P. bernhardi 42964 1002 956 1642 1567 1567 -- 1598 -- -- 1846 

P. bernhardi UFRO413 500 476 818 776 779 -- 858 -- -- 914 

P. bernhardi CCM173 409 394 -- 546 -- -- 609 -- -- -- 

P. cf. moloch RVR73 941 897 1463 1408 1417 -- 1498 -- -- 1641 

P. moloch CTGAM420 905 881 -- 1359 1367 -- 1451 -- -- -- 

P. moloch CTGAM421 924 884 1563 1466 1479 -- 1519 -- -- 1745 

P. brunneus 4505 957 933 1492 1448 1457 -- -- 1503 1676 1677 

P. brunneus UFRO327 532 508 -- 798 812 -- -- 846 953 -- 

P. brunneus UFRO541 647 622 -- 905 907 -- -- 973 1058 1030 

P. cupreus AAM15 964 936 1588 1522 1533 -- -- 1605 1812 1788 

P. cupreus JLP15920 1010 970 -- 1580 1589 -- -- 1666 1860 -- 

P. cupreus CTGAM210 199 188 -- -- -- -- -- -- -- -- 

P. cupreus 4987 949 921 -- 1405 1415 -- -- 1490 1649 -- 

P. cupreus 4988 544 527 -- 714 716 -- -- 757 814 -- 

P. cupreus 4990 989 953 1552 1519 1527 -- -- 1584 1769 1781 

P. c. caligatus CTGAM181 172 162 -- -- 250 -- -- 309 -- -- 

P. c. caligatus CTGAM182 951 921 1578 1506 1522 -- -- 1587 1783 1802 

P. c. caligatus CCM248 790 759 -- 1101 1102 -- -- 1157 1259 -- 

P. c. caligatus MVR58 921 884 -- 1476 1490 -- -- 1562 1763 1757 

P. c. dubius UFRO403 953 926 -- 1488 1501 -- -- 1567 1762 1764 

P. c. dubius UFRO427 232 222 -- -- 341 -- -- 407 -- -- 

P. c. dubius UFRO544 801 783 1173 1134 1138 -- -- 1234 1334 1305 

P. c. dubius 2804 981 941 -- 1468 1479 -- -- 1558 1734 -- 

C. personatus 2466 48 38 58 -- -- -- -- -- -- -- 

C. lugens JPB160 174 156 280 208 -- -- -- -- -- -- 

C. lugens JPB161 167 145 -- 198 -- -- -- -- -- -- 

C. lugens JPB81 704 657 1111 879 -- -- -- -- -- -- 

C. lugens CTGAM733 530 486 777 630 -- -- -- -- -- -- 

C. lucifer CTGAM703 334 306 -- 386 -- -- -- -- -- -- 

C. lucifer CTGAM726 460 407 647 527 -- -- -- -- -- -- 

C. purinus CTGAM154 180 164 -- 210 -- -- -- -- -- -- 

C. purinus CTGAM195 188 163 -- 208 -- -- -- -- -- -- 

C. purinus CTGAM209 691 636 1063 856 -- -- -- -- -- -- 

Pithecia 

mittermeieri CTGAM215 151 103 201 -- -- -- -- -- -- -- 

Cacajao ayresi 5667 101 74 172 -- -- -- -- -- -- -- 

Cacajao calvus 5241 82 47 117 -- -- -- -- -- -- -- 

Cacajao 

hosomi 5698 116 77 180 -- -- -- -- -- -- -- 

Cacajao 

melanocephalus 0065 109 58 167 -- -- -- -- -- -- -- 

Chiropotes 

albinasus CTGAM213 100 47 145 -- -- -- -- -- -- -- 

Chiropotes 

israelita 5713 110 63 167 -- -- -- -- -- -- -- 

Chiropotes 

sagalatus CTGAM515 102 60 150 -- -- -- -- -- -- -- 
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Sequencing coverage for some ingroup individuals was low. In particular, 

Callicebus personatus had only 155 clusters and 135 consensus sequences before 

across sample clustering and was represented in < 5% of the total loci in the final 

datasets where it is included (Table 4.8). Based on this, it was tempting to exclude 

this specimen entirely from the phylogenetic analyses, however, it is the only 

representative of the genus Callicebus sequenced in this study and the extremely low 

sequencing coverage appeared to have little impact on the inferred phylogenetic 

relationships (see section 4.4.2). Three Plecturocebus samples also had notably low 

sequencing coverage (CTGAM210, CTGAM181, UFRO427) in comparison to other 

individuals from this clade (e.g., see Figure 4.1), and they were excluded from some 

datasets (e.g., PD85, assembled for introgression analyses).  

 

                    Table 4.9 Summary of the final assembled ddRADseq datasets, including 

number of loci, concatenated length, and percentage missing data.  

Dataset 

Clust. 

thresh. 

No. 

Loci 

Length 

(bp) 

Variable 

(bp) 

Pis 

(bp) 

Missing 

data 

A85 85% 1178 360499 25394 13138 49.8% 

A92 92% 1129 345045 21889 11166 50.3% 

B85 85% 1987 602518 32263 15076 55.9% 

P85 85% 1944 591179 21011 8692 37.5% 

Pi85 85% 3048 932098 14475 5655 37.9% 

Pii85 85% 1805 545483 5142 1608 32.5% 

Piii85 85% 1959 590357 9821 3080 37.2% 

PD85 85% 1931 588527 30509 15364 44.6% 

 

In the final datasets including Pitheciinae, each outgroup sample is represented 

in only around 6 – 9 % of the total loci (although a much greater % of loci contain at 

least one outgroup sample). The low number of shared loci recovered between the 

outgroups and Callicebinae (Figure 4.1) is influenced by two main factors; the 

number of raw reads and the relatively deep divergence between these clades (Eaton 

et al., 2017). The average number of raw and quality filtered reads, within-sample 

clusters and consensus sequences for the Pitheciinae individuals was much lower 

(close to half) than for the Callicebinae taxa, as discussed above (see Tables 4.6, 4.7), 

and the mean number of raw reads was a significant predictor of the number of shared 

loci between samples across the three datasets tested (Mantel r⇢ = 0.44 – 0.5, p-value 

< 0.0006; see Figure 4.2 and Table 4.10).   
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Figure 4.1 Heatmap showing the number of shared ddRADseq loci between samples across two 

datasets assembled with different clustering thresholds (85% or 92%). The A85 dataset (total 

ddRADseq loci = 1178) is below the diagonal and the A92 dataset (total ddRADseq loci = 1129) is 

above the diagonal. 

 

The number of shared loci between Pitheciinae and Callicebinae may have 

been influenced by the slight modification to the sequencing protocol (SPRI bead 

versus kit purification), which could account for some of the difference in the mean 

number of raw reads across these clades. Variation between ddRADseq libraries can 

also be attributed to the use of fragment size selection to adjust the quantity of loci, 

however, this is minimised with size selection tools such as the Pippin Prep (Sage 

Science), which was used in both protocols (Puritz et al., 2014).   
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Figure 4.2 The correlation between Jaccard’s distance of   the proportion of shared loci between 

samples and (i) the number of   raw input reads or (ii) pairwise phylogenetic distance. The A85 dataset 

(all individuals) is on top and the B85 dataset (one individual per taxon) is below. Coloured circles on 

the B85ii plot indicate loci shared across taxa, as follows: closely related species (red); Cheracebus and 

Plecturocebus (pink); C. personatus and Plecturocebus/Cheracebus (dark blue); Cacajao and 

Chiropotes (light green); Pithecia and Cacajao/Chiropotes (light blue); and taxa from different 

subfamilies (dark green). 

 

The second factor is related to the decrease in shared RADseq loci between 

taxa with increasing phylogenetic distance as a result of the disruption of restriction 

recognition sites owing to mutations (“locus dropout”). Mantel correlation tests 

indicate that there was strong hierarchical structure in the distribution of missing data 

(Mantel r⇢ = -0.73 – -0.76, p-value = 0.0001; see Table 4.10), regardless of the 

clustering threshold used. The occurrence of locus dropout could be overestimated if 



 

129 

the number of shared loci between the Pitheciinae and Callicebinae libraries is 

impacted by other sources of variation. Variation between these libraries, however, 

could not account entirely for the strong hierarchical structure given that pairwise 

phylogenetic distance predicts the number of shared loci at all phylogenetic scales. 

This is clearly demonstrated in Figure 4.2; closely related species from the same 

genus share the most loci (red circle on the B85ii plot, Figure 4.2) and the least loci 

are generally shared across taxa from the different subfamilies (dark green) [but also 

for C. personatus vs. Plecturocebus / Cheracebus (dark blue) owing to the extremely 

low sequencing coverage for C. personatus]. Intermediate amounts of shared loci are 

typically found across the genera [Cacajao vs. Chiropotes (light green); Cheracebus 

vs. Plecturocebus (pink); Pithecia vs. Cacajao / Chiropotes (light blue)].  

 

 Table 4.10 Mantel correlation tests. 

Dataset 
No. of raw reads Phylogenetic distance 

Mantel r⇢  p-value Mantel r⇢  p-value 

A85 0.447 0.0003 -0.743 0.0001 

A92 0.442 0.0003 -0.764 0.0001 

B85 0.5 0.0006 -0.734 0.0001 

 

Because Plecturocebus taxa have better sampling in terms of number of 

individuals and number of raw reads, there is a bias towards loci recovered across 

Plecturocebus samples (see Figure 4.1), whereas loci found only in Cheracebus, 

Callicebus, or Pitheciinae will not be represented. Thus, nearly all Plecturocebus 

individuals have a higher number of loci sequenced in the final datasets (Table 4.8). 

The potential loss of loci as a result of locus dropout formed part of the justification 

for constructing specific datasets with only the target individuals included for each 

analysis in order to maximise the number of loci assembled. Finally, a test run (data 

not included) conducted in pyRAD that included the Pitheciinae samples in the 

minimum coverage per locus (rather than as add-on taxa) resulted in much fewer loci 

overall, and no significant impact on the proportion of loci for these samples, thus it is 

unlikely that this assembly option is adding further bias in the number of shared loci.  

 Heterozygosity varies significantly across Callicebinae taxa (85% clustering 

threshold: 0.0012 – 0.0031, mean = 0.0022), and is much higher than for Pitheciinae 

(0.0007 – 0.0018, mean = 0.0012). Plecturocebus cinerascens (especially clade B) 

and P. hoffmannsi individuals are the most polymorphic, while P. moloch and P. cf. 
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moloch are the least, and among Cheracebus taxa, C. lucifer individuals show the 

highest heterozygosity (Tables 4.7, A3.1). 

 

4.4.2 Phylogenetic inference: ddRADseq  

Four of the concatenated ddRADseq loci data matrices assembled in pyRAD were 

used for phylogenetic inference: A85 and A92 (all samples); B85 (select individuals 

from each taxon); and PD85 (only individuals of the P. moloch group and 

Cheracebus). These datasets contained between 1129 and 1987 ddRADseq loci, with 

a total concatenated length of between 345K and 603K bp, and around 11K to 15.4K 

parsimony informative sites across all samples (Table 4.9). A total of nine 

phylogenetic trees were reconstructed using the ddRADseq data; maximum-

likelihood and Bayesian (MrBayes) trees were inferred for each of the datasets, and 

phylogeny and diversification times were jointly estimated for the B85 dataset using 

BEAST. Species relationships recovered across all trees for all datasets are identical, 

with only minor topological conflict at some intraspecific nodes (e.g., within P. 

bernhardi and P. caligatus). As most nodes show perfect support (bootstrap 

percentage, BP = 100%; posterior probability, PP = 1.0) or strong support (e.g., BP > 

95%; PP > 0.99) across the analyses (see Table 4.11), only insignificant (BP < 70%; 

PP < 0.95) or intermediate support values are mentioned below. Note posterior 

probability values for the B85 BEAST and MrBayes analyses are not included in 

Table 4.11 because all nodes show perfect support (PP = 1.0). 

 In agreement with all previous molecular phylogenies (e.g., Chapter 2 + 3, 

Carneiro et al., 2016), Cheracebus is recovered as the earliest diverging lineage 

within Callicebinae, and Callicebus (represented by C. personatus) and Plecturocebus 

are sister clades (Figure 4.3). Despite the extremely low sequencing coverage, the 

divergence between C. personatus and Plecturocebus is strongly resolved in most 

analyses (moderate support in A92, BP = 86%). Among taxa of the genus 

Cheracebus, C. lucifer and C. purinus are sister species, and for C. lugens, individuals 

from the left and right bank of the Rio Negro (LN and RN) form a clade to the 

exclusion of the left bank Rio Japurá (LJ) sample, but with low support at the LN/RN 

node in some ML trees (e.g., A85 + A92, BP = 53%).  
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Figure 4.3 Maximum likelihood tree inferred with the ddRADseq PD85 dataset (Plecturocebus and 

Cheracebus). Unmarked nodes were strongly supported (BP = 100%), nodes marked with a black 

circle received significant support (BP = 80 – 99%), while the nodes marked with white circles were 

recovered without significant support (BP < 70%). Support values are listed according to node numbers 

in Table 4.11.  

 

The Plecturocebus moloch species group is divided into three major clades, as 

recovered in the BEAST phylogeny based on seven loci in Chapter 3, and the 

informal clade names suggested are followed here; the Aripuanã-Tapajós clade 

containing P. hoffmannsi, P. miltoni and P. cinerascens; the Eastern clade containing 
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P. bernhardi, P. cf. moloch, and P. moloch; and the Western clade comprised of P. 

brunneus, P. caligatus, and P. cupreus. The Aripuanã-Tapajós clade is the earliest 

diverging lineage within the P. moloch group, while the Eastern and Western clades 

are sister (B85 BP = 91%; PD85 BP = 87%). Among the Aripuanã-Tapajós species, 

Plecturocebus hoffmannsi is sister to a P. cinerascens + P. miltoni clade, and among 

Eastern clade taxa, P. bernhardi is sister to a clade containing P. moloch and P. cf. 

moloch. Three relatively divergent lineages are represented by the four P. bernhardi 

specimens in the ddRADseq datasets, and most analyses recover the UFRO(413) and 

CCM(173) individuals as successive sister lineages to the P. bernhardi clade A 

specimens (note, the CCM173 sample wasn’t included in the B85 dataset), but with 

low support at the CCM vs. clade A node in the ML trees (A85 BP = 63%; PD85 BP 

= 65%). An alternative topology, however, suggests that the UFRO and CCM P. 

bernhardi individuals are sister (A92 BP = 87%; Figure A3.1, A3.2). This is the only 

notable conflict between the A85 and A92 analyses, and thus, the clustering threshold 

used to assemble the ddRADseq datasets appears to have had minimal impact on the 

recovered species relationships.  

Among Western clade taxa, P. cupreus and P. caligatus are recovered as sister 

species but with low support in the ML trees (A85 BP = 60%; A92 BP 78%; B85 BP 

= 61%), while P. brunneus is the earliest diverging lineage within the clade. In the 

A85 and A92 analyses including all samples, P. c. dubius is paraphyletic, although 

some of the nodes within the P. caligatus complex are poorly supported (see Figure 

A3.1 – A3.4). Subsequently, one P. c. dubius (UFRO427) and one P. c. caligatus 

(CTGAM181) sample were excluded from the PD85 dataset because of low 

sequencing coverage and, in these analyses, P. c. dubius and P. c. caligatus are 

recovered as monophyletic sister taxa (note, only one sample from each was included 

in the B85 analyses). Overall, the topology recovered across the ddRADseq 

phylogenetic analyses is identical to the BEAST phylogeny based on seven 

concatenated loci in Chapter 3, except P. caligatus is sister to P. cupreus in the 

former and P. brunneus in the latter.  

 Age estimates in the ddRADseq timetree (Figure 4.4, Table 4.11) are 

generally younger than those recovered in the combined and nuclear dataset analyses 

in Chapter 2, especially at species-level, but broadly concordant with the results from 

Chapter 3. The most recent common ancestor (MRCA) of extant Callicebinae taxa is 

estimated to have diverged in the late Miocene (10.7 Ma; 95% HPD = 7.9 – 13.9), 
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giving rise to the progenitor of the genus Cheracebus and of the 

Callicebus+Plecturocebus clade. The divergence between Callicebus and 

Plecturocebus also occurred in the late Miocene at c. 7.4 Ma (95% HPD = 5.2 – 

10.0). All other diversification events among the Callicebinae taxa represented 

occurred in the Pleistocene. The MRCA of extant Cheracebus taxa is estimated to 

have lived in the early Pleistocene (1.9 Ma; 95% HPD = 1.3 – 2.4), while C. purinus 

and C. lucifer diverged at c. 1.4 Ma (95% HPD = 1.0 – 1.9), and the C. lugens 

lineages diverged at around 0.9 Ma [(95% HPD = 0.6 – 1.2) LJ vs. RN+LN], and 0.7 

Ma [(95% HPD = 0.5 – 1.0) RN vs. LN].  

The major P. moloch group clades diversified relatively rapidly in the early 

Pleistocene, with the Aripuanã-Tapajós clade diverging from the ancestor of the 

Eastern and Western clades at c. 2.0 Ma (95% HPD = 1.5 – 2.6), the Eastern and 

Western clades diverging at c. 1.8 Ma (95% HPD = 1.3 – 2.3), and P. hoffmannsi 

diverging from other species of the Aripuanã-Tapajós clade also at c. 1.8 Ma (95% 

HPD = 1.4 – 2.4). Thus, within around 200K years, four distinct P. moloch group 

lineages had emerged which likely gave rise to all known extant taxa. The sister taxa 

of the Aripuanã-Tapajós clade (P. cinerascens and P. miltoni) and the Eastern clade 

(P. bernhardi and P. moloch/P. cf. moloch) are estimated to have diverged at 1.5 Ma 

(95% HPD = 1.1 – 2.0) and 1.3 Ma (95% HPD = 1.0 – 1.7), respectively, while the P. 

cinerascens (clade A and B), P. moloch (vs. P. cf. moloch), and P. bernhardi (UFRO 

and clade A) lineages all diverged between c. 0.8 – 0.9 Ma. The earliest diverging 

lineage within the Western clade, P. brunneus, is estimated to have diverged at c. 1.0 

Ma (95% HPD = 0.7 – 1.3), followed by the divergence between P. cupreus and P. 

caligatus at c. 0.9 Ma (95% HPD = 0.6 – 1.1), and subsequently, the P. cupreus 

lineages (clade A and B) and the P. caligatus subspecies (P. c. caligatus and P. c. 

dubius) diverged at c. 0.6 Ma (95% HPD = 0.4 – 0.8) and 0.7 Ma (95% HPD = 0.5 – 

0.9), respectively. Individual trees including outgroups and node support values for 

each MrBayes and RAxML analysis are found in Appendix 3 (Figure A3.1 – A3.8) 

and the full timetree including outgroups is found in Appendix 3 (Figure A3.9) A 

summary of node support for all analyses (except the B85 BEAST and MrBayes 

analyses, PP = 1.00 for all nodes) and divergence date estimates and 95% HPD 

intervals for the B85 dataset BEAST analysis is presented in Table 4.11.  
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Table 4.11 Summary of node support for the ddRADseq phylogenetic analyses and age estimates from 

the B85 dataset BEAST analysis. Node numbers correspond to those on Figure 4.3, 4.4. Bold indicates 

low support (PP < 0.95; BP < 70%). Note, PP = 1.00 for all ingroup nodes in the B85 BEAST and 

MrBayes analyses. 

Node Divergence 

B85 A85 A92 PD85 

Mean 

age  

95% HPD 
ML 

BP 

MB 

PP 

ML 

BP 

MB 

PP 

ML 

BP 

MB 

PP 

ML 

BP Lower Upper 

1 

Cheracebus vs. 

Callicebus (personatus) 

+ Plecturocebus 

10.7 7.86 13.9 100 1.00 100 1.00 100 1.00 100 

2 
Callicebus (personatus) 

vs. Plecturocebus 
7.41 5.22 9.97 99 1.00 96 1.00 86 NA NA 

3 
C. purinus + C. lucifer 

vs. C. lugens 
1.85 1.31 2.43 100 1.00 100 1.00 100 1.00 100 

4 C. purinus vs. C. lucifer 1.42 0.98 1.94 100 1.00 100 1.00 100 1.00 100 

5 

C. lugens: L bank Rio 

Japurá vs. R bank Rio 

Negro + L bank Rio 

Negro 

0.92 0.64 1.24 100 1.00 100 1.00 100 1.00 100 

6 

C. lugens: R bank Rio 

Negro vs. L bank Rio 

Negro 

0.7 0.47 0.97 86 0.95 53 0.99 53 1.00 87 

7 

Aripuanã-Tapajós clade 

vs. Eastern + Western P. 

moloch clades 

2.01 1.51 2.6 100 1.00 100 1.00 100 1.00 100 

8 
P. hoffmannsi vs. P. 

cinerascens + P. miltoni 
1.84 1.35 2.37 97 1.00 98 1.00 97 1.00 100 

9 
P. cinerascens vs. P. 

miltoni 
1.49 1.09 1.95 100 1.00 100 1.00 100 1.00 100 

10 
P. cinerascens: clade A 

vs clade B 
0.85 0.56 1.18 100 1.00 100 1.00 100 1.00 100 

11 
Eastern vs. Western P. 

moloch clades 
1.8 1.34 2.33 91 1.00 95 1.00 95 1.00 87 

12 
P. bernhardi vs. P. cf. 

moloch + P. moloch 
1.32 0.97 1.73 100 1.00 100 1.00 100 1.00 100 

13 
P. cf. moloch vs. P. 

moloch 
0.77 0.52 1.04 100 1.00 100 1.00 100 1.00 100 

14 
P. bernhardi: UFRO413 

vs. remaining 
0.91 0.61 1.25 100 1.00 97 NA NA 1.00 100 

19 
 P. bernhardi: CCM173 

vs. clade A 
NA 1 NA 1 NA 1 

NA 
1 

1.00 63 NA NA 1.00 65 

-- 
P. bernhardi: UFRO413 

+ CCM173 vs. clade A 
NA 1 NA 1 NA 1 

NA 
1 

NA NA 1.00 87 NA NA 

15 
P. brunneus vs. P. 

cupreus + P. caligatus 
1 0.74 1.31 100 1.00 100 1.00 100 1.00 100 

16 
P. cupreus vs. P. 

caligatus 
0.86 0.63 1.14 61 1.00 60 1.00 78 1.00 94 

17 
P. c. caligatus vs. P. c. 

dubius 
0.67 0.47 0.9 100 

0.69 
2 

43 2 
1.00 

2 
63 2 1.00 100 

18 
P. cupreus: clade A vs 

clade B 
0.58 0.39 0.78 1.00 1.00 100 1.00 100 1.00 100 

1 CCM173 was not included in the BEAST analysis 

        2 P. c. dubius is paraphyletic 
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Figure 4.4 A time-calibrated phylogeny for Callicebinae inferred with the ddRADseq B85 dataset. All 

nodes received full support (PP = 1.00). Node bars indicate the 95% highest posterior density (HPD). 

Estimated divergence ages and 95% HPDs are listed according to node numbers in Table 4.11. See 

Figure A3.9 for the full timetree with outgroups. Illustrations by Stephen D. Nash ©Conservation 

International. 

 

4.4.3 Phylogenetic inference: StarBEAST2 

In comparison to the concatenated multi-locus phylogenies based on 22 loci (Chapter 

2), the StarBEAST2 coalescent-based species tree (Figure 4.5) is relatively 

concordant with the relationships among the P. moloch group species recovered in the 

ddRADseq analyses.   
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Figure 4.5 A time-calibrated coalescent-based species tree for Callicebinae inferred with multi-locus 

data using StarBEAST2. Unmarked nodes received full support (PP = 1.00), the node marked with a 

black circle received significant support (PP = 0.95), while the nodes marked with white circles were 

recovered without significant support (PP < 0.95). Node bars indicate the 95% highest posterior density 

(HPD). See Figure A3.10 for the full timetree with outgroups.  
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Both the StarBEAST2 and ddRADseq trees suggest that the P. moloch group 

is divided into the same three major clades, however, the Eastern and Aripuanã-

Tapajós clades are sister lineages in the StarBEAST2 species tree instead of the 

Eastern and Western clades (ddRADseq and Chapter 3). Species relationships among 

Western clade taxa are identical in the coalescent-based species tree and concatenated 

multi-locus (combined) phylogenies, i.e., P. brunneus and P. caligatus are sister 

species, rather than P. cupreus and P. caligatus (ddRADseq). Thus, the ddRADseq 

trees and the StarBEAST2 species tree are only in disagreement as to whether the 

Western clade or Aripuanã-Tapajós clade is sister to the Eastern clade, and whether P. 

brunneus or P. cupreus is the sister taxon to P. caligatus. Notably, these nodes are 

recovered with low support in the StarBEAST2 phylogeny [P. brunneus vs. P. 

caligatus (PP = 0.59); Aripuanã-Tapajós vs. Eastern clade (PP = 0.79)]. Species 

relationships within the Aripuanã-Tapajós clade are also inferred with low support [P. 

hoffmannsi vs. P. cinerascens + P. miltoni (PP = 0.85); P. cinerascens vs. P. miltoni 

(PP = 0.79)], which might be expected in light of the lack of resolution in the 

concatenated datasets owing to the strong discordance in the phylogenetic signal in 

the nuclear vs. mitochondrial loci (see Chapter 2). All other nodes are recovered with 

full support (PP = 1.0) except the divergence between P. cf. moloch and P. moloch 

(PP = 0.95).  

Uncertainty in the species tree is illustrated by the DensiTree plot (Figure 4.6) 

showing the four most probable topologies (out of a total of 172 topologies). The 

second (10.05% of trees) and third (8.75%) most probable topologies are in conflict 

with the consensus species tree (i.e., first, 29.37%) regarding the relationships among 

the Western clade species; either P. cupreus and P. brunneus (2nd; light blue in Figure 

4.6) or P. cupreus and P. caligatus (3rd; purple in Figure 4.6; same as ddRADseq 

trees) are recovered as sister species. The fourth most probable topology (dark blue in 

Figure 4.6) differs from the consensus species tree in placing the Aripuanã-Tapajós 

clade as the earliest diverging lineage within the P. moloch group (8.3%), in 

agreement with the ddRADseq phylogeny. Thus, species relationships recovered in 

the StarBEAST2 consensus species tree that are in conflict with the ddRADseq 

phylogeny are characterised by low support, and both conflicts are resolved in one of 

the three most probable alternative species tree topologies. 
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Figure 4.6 DensiTree plot illustrating uncertainty in the coalescent-based species tree. The four most 

probable topologies are shown: the most probable in green (29.37%); 2nd in light blue (10.05%); 3rd in 

purple (8.75%); and 4th in dark blue (8.3%). Nodes recovered without significant support (PP < 0.95) 

are indicated in the figure. 

 

All 172 possible topologies for the species tree differ only in the relationships 

among the P. moloch group species, with all other nodes identical across 100% of the 

trees. Most of the remaining alternative species tree topologies are found in < 1% of 

the trees (topologies 16–172), or 1–2% (9–15). This high number of possible 

topologies for the P. moloch group is likely to be partially associated with the weak 

phylogenetic signal in the nuclear loci, most of which contain only a few informative 

sites that distinguish taxa within this group. This is reflected in the low support for 

most of the recovered species relationships within the P. moloch group across the 

individual nuclear gene trees (some examples are shown in Figure 4.7). In contrast, 

the mitochondrial gene tree is significantly supported (PP > 0.95) at all nodes except 

one, and the number of informative sites across the two mitochondrial loci is much 

greater (e.g., more PI sites in the two mitochondrial loci than all 20 nuclear loci in 
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Chapter 2, see Table 2.7). There is strong discordance among most gene trees, in 

particular regarding the placement of the Aripuanã-Tapajós clade taxa (e.g., see 

Figure 4.7). Overall, these results suggest that there may be significant gene tree 

heterogeneity potentially owing to stochastic processes such as incomplete lineage 

sorting or more recent gene flow between species of the P. moloch group.  

 

 

Figure 4.7 Individual gene trees for select loci inferred in the coalescent-based species tree analyses: 

(A) COI and CYTB, mitochondrial gene tree; (B) MAPKAP1; (C) ZFX; and (D) ERC2. Nodes marked 

with white circles were recovered without significant support (PP < 0.95).  
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Divergence dating estimates across the StarBEAST2 phylogeny (Figure 4.5) 

are consistently younger than those inferred in the concatenated multi-locus (Chapter 

2 + 3) and generally younger than the ddRADseq analyses. It is well-documented that 

the multispecies coalescent model typically recovers younger estimated divergence 

dates than concatenation owing to implicit differences in the two approaches (e.g., 

McCormack et al., 2011; Meyer et al., 2016; Ruane et al., 2014); coalescent-based 

species tree estimation accounts for genetic divergence that arose prior to speciation, 

and thus, provides more realistic estimates of divergence times, while concatenation 

assumes that all gene trees and the species tree are identical (Edwards et al., 2016) 

and it is likely to overestimate speciation ages (Burbrink & Pyron, 2011). In both the 

StarBEAST2 and ddRADseq analyses, Callicebus and Plecturocebus are estimated to 

have diverged in the late Miocene at c. 7.4 Ma (StarBEAST2 95% HPD = 6.0 – 9.0) 

which may be related to the amount of missing data for C. personatus in the 

ddRADseq dataset given that all other dating estimates are older in the ddRADseq 

timetree.  

The most notable of the StarBEAST2 age estimates is the much younger 

divergence between the P. moloch group and P. donacophilus (2.62 Ma; 95% HPD = 

1.8 – 3.5) than the concatenated multi-locus dating analyses (c. 4 Ma; not represented 

in the ddRADseq datasets), as well as the comparatively recent divergence between P. 

c. caligatus and P. c. dubius (0.2 Ma; 95% HPD = 0.07 – 0.3). The major P. moloch 

group clades are estimated to have diverged in the Pleistocene at c. 1.5 Ma (95% HPD 

= 1.2 – 2.0) and 1.2 Ma (95% HPD = 0.9 – 1.6), and all other taxa of the P. moloch 

group diverged between c. 0.5 – 0.9 Ma. Notably, the divergence between P. 

hoffmannsi and P. cinerascens + P. miltoni is estimated to have occurred at 0.68 Ma 

(95% HPD = 0.3 – 1.2). The earliest diverging lineage among Callicebus taxa, C. 

nigrifrons, is estimated to have diverged at the start of the Pleistocene, c. 2.4 Ma 

(95% HPD = 1.6 – 3.2), while C. coimbrai and C. personatus diverged at c. 1.1 Ma 

(95% HPD = 0.4 – 1.9). Finally, the Cheracebus vs. Callicebus + Plecturocebus 

divergence occurred in the late Miocene around 9.4 Ma (95% HPD = 7.8 – 11.0), and 

species of the genus Cheracebus, C. lugens and C. purinus, are estimated to have 

diverged at 1.23 Ma (95% HPD = 0.67 – 1.79). The full timetree with outgroups is 

presented in Appendix 3, Figure A3.10. 
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4.4.4 Bayesian clustering analyses 

Bayesian clustering analyses (STRUCTURE) were performed using four of the 

ddRADseq datasets; P85 with all P. moloch group species (1944 SNPs); Pi85 with 

taxa of the Aripuanã-Tapajós clade (2943 SNPs); Pii85 with Eastern Amazonian taxa 

(1569 SNPs); and Piii85 with Western Amazonian taxa (1905 SNPs).  

For the P85 dataset with all P. moloch group taxa, likelihood was maximised 

at K = 10 – 12 (see Figure 4.8 a), although the Evanno ΔK method strongly selected K 

= 2 with small peaks at K = 3 and K = 10 (see Figure 4.8 b), likely as a result of the 

evident hierarchical structure.  

 

 

Figure 4.8 (a) Mean likelihood [LnP(D) ± SD] and (b) ΔK calculated for the P85 dataset (all P. moloch 

group taxa) from 6 independent runs for each value of K from 1 to 16. 

 

When K = 2 is assumed, the genetic clusters correspond to the Western clade 

vs. the Eastern + Aripuanã-Tapajós clade (Figure 4.9) and all individuals are assigned 

perfectly to each group (Q value = 1.0). When a third cluster is added (K = 3), P. 

hoffmannsi and the Eastern clade taxa are also clearly differentiated, while P. 

cinerascens and P. miltoni show ancestry in both the P. hoffmannsi cluster (mean Q 

value = 0.82 / 0.77) and the Eastern clade cluster (mean Q value = 0.18 / 0.23). At K 

= 10, each of the five species of the Eastern and Aripuanã-Tapajós clades form near 

distinct clusters, and most individuals have very high membership coefficients (> 

0.97) with the exception of the two P. bernhardi samples and one P. miltoni 

individual that share ancestry with the Western clade (Q value = 0.11 – 0.28) as well 

as one P. cinerascens clade B individual that shares ancestry with P. bernhardi (Q 

value = 0.11).   
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Figure 4.9 Genetic structure of the P. moloch group inferred from the P85 dataset (including all P. 

moloch group taxa) using Bayesian clustering analyses. Sample IDs are shown. 

 

In contrast, all individuals of the Western clade show high proportions of 

ancestry in the same cluster (mean Q value = 0.67 – 0.78), and each taxon is only 

differentiated by a moderate proportion of ancestry. The remaining four clusters are 

assigned to the Western clade taxa as follows; (1) P. brunneus (mean Q value = 0.33); 

(2) P. cupreus clade A (mean Q value = 0.24); (3) P. cupreus clade B (mean Q value 
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= 0.19) and P. c. dubius (mean Q value = 0.07); and (4) P. c. caligatus (mean Q value 

= 0.25) and P. c. dubius (mean Q value = 0.16). When K = 12 is assumed, P. c. 

dubius shows a comparative proportion of ancestry in a distinct cluster (mean Q value 

= 0.25), rather than shared with P. c. caligatus or P. cupreus clade B. The P. 

bernhardi UFRO lineage is differentiated from P. bernhardi clade A with an 

intermediate level of ancestry (mean Q value = 0.42) in a cluster in which two P. 

cinerascens (clade A) individuals also show a small proportion of ancestry (mean Q 

value = 0.04), while P. cf. moloch shares ancestry with P. bernhardi clade A 

individuals (mean Q value = 0.09). Posterior probabilities for K = 10 – 12 are almost 

identical (mean LnP(D) ~ -8320), and although the variation between replicate runs is 

smallest at K = 10, the additional clusters assigned at K = 11 + 12 are informative and 

differentiate distinct lineages (P. c. dubius and P. bernhardi UFRO) in agreement 

with phylogenetic and geographic evidence. The strong hierarchical structure among 

P. moloch group taxa is evident: at low K values, the genetic clusters correspond 

largely to the major clades; at intermediate values, the deepest divergence within each 

clade is typically identified; and at higher values, all species and some intraspecific 

clades are differentiated to some extent. The Western clade taxa share a high 

proportion of ancestry at all K values, P. cupreus and P. caligatus are 

indistinguishable until K = 7 – 8, and it is not possible to differentiate P. c. dubius 

from P. c. caligatus until around K = 10.  

 

4.4.4.1 Aripuanã-Tapajós clade (Pi85) 
 

When only the Aripuanã-Tapajós clade taxa are included (Pi85 dataset), likelihood 

was maximised with relatively small variance between runs at K = 4 to 5 (LnP(D) = -

14228 and -14237), while ΔK supported K = 2 with decreasing support for each added 

cluster (Figure 4.10 I.a + I.b). The difference in the most probable K between these 

methods may be a result of the comparatively deep divergence between P. hoffmannsi 

and P. miltoni + P. cinerascens, and thus, LnP(D) is considered above ΔK. At K = 4, 

P. hoffmannsi and P. miltoni are assigned to clusters and all P. cinerascens 

individuals share ancestry across the remaining two clusters (Figure 4.11), while at K 

= 5, the P. cinerascens clade (A + B) are differentiated showing a proportion of their 

ancestry in distinct clusters (mean Q value = 0.34). In addition to showing lower 

variance between runs, K = 5 is consistent with phylogenetic evidence and thus taken 

as the most likely K.   



 

144 

 

Figure 4.10 (a) Mean likelihood [LnP(D) ± SD] and (b) ΔK calculated for the subsampled datasets 

from 5 independent runs for each value of K from 1 to 6 or 7. Results for the Pi85 dataset are shown at 

the top (I: Aripuanã-Tapajós clade), Pii85 dataset are shown in the middle (II: Eastern clade), and 

Piii85 dataset are shown at the bottom (III: Western clade).  
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Figure 4.11 Genetic structure of the P. moloch group inferred from the subsampled datasets using 

Bayesian clustering analyses. Results for the Pi85 dataset are shown on the left (Aripuanã-Tapajós 

clade), Pii85 dataset are shown in the centre (Eastern clade), and Piii85 dataset are shown on the right 

(Western clade). Sample IDs are shown.  

 

4.4.4.2 Eastern clade (Pii85) 

For the analyses including only Eastern clade taxa (Pii85 dataset), likelihood was 

maximised at K = 5 (LnP(D) = -5110), although K = 4 and K = 6 have similar mean 
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LnP(D) values (-5355 and -5188) with equally low variance between replicate runs 

(see Figure 4.10 II.a). The Evanno ΔK method selected K = 4, but also showed 

support for K = 3 and K = 5 (see Figure 4.10 II.b). At K = 4, P. moloch, P. cf. moloch, 

P. bernhardi clade A, and P. bernhardi UFRO + CCM form distinct genetic clusters, 

while at K = 5, the P. bernhardi CCM lineage is distinguished from the P. bernhardi 

UFRO cluster (Figure 4.11). When six or seven clusters are assumed, the results 

follow K = 5 with the additional clusters assigned in tiny proportions to all 

individuals. For two out of three datasets used for phylogenetic inference, the UFRO 

and CCM individuals are recovered as successive sister lineages to the P. bernhardi 

clade A, which is more consistent with the individual assignments when five clusters 

are assumed, and thus, K = 5 is taken as the most likely. At lower values of K, P. cf. 

moloch (RVR73) shares almost equal ancestry with P. moloch and P. bernhardi, 

whereas in the analyses based on the P85 dataset, P. cf. moloch is almost 

indistinguishable from P. moloch until K = 12. Thus, for both the Aripuanã-Tapajós 

clade (Pi85) and Eastern clade (Pii85) subsampled analyses, evident substructure is 

recovered within some taxa that is concordant with phylogenetic evidence but not 

found in the overall dataset including all individuals (P85). The results from these 

analyses are otherwise strongly in agreement about the assignment of genetic clusters 

across these clades, and generally correspond well with taxonomic classification.  

 

4.4.4.3 Western clade (Piii85) 

When only the Western clade taxa are included (Piii85 dataset), both ΔK and LnP(D) 

suggest that K = 3 is the most likely (see Figure 4.10 III.a + III.b), with P. brunneus, 

P. cupreus, and P. caligatus each forming a distinct genetic cluster (Figure 4.11). The 

variation between runs increases and the likelihood decreases at higher values of K, 

and all individuals show some degree of shared ancestry in the same cluster, as in the 

P85 analyses. The assignment of individuals to clusters at K = 5 and K = 6 is 

generally strongly concordant with the results obtained for Western Amazonian taxa 

in the P85 analysis at K = 10 and K = 12, respectively, except P. c. dubius shares 

ancestry with P. cupreus clade A (K = 5, Piii85), rather than P. cupreus clade B (K = 

10, P85). Although K = 3 is evidently the “true” K, interesting clustering patterns are 

uncovered at higher values of K, which may be informative. When four clusters are 

assumed, one cluster is shared among all individuals, while P. caligatus and P. 

cupreus clade A (i.e., AAM15 + JLP1590 samples) share most of their remaining 
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ancestry in same cluster (in differing proportions), and it is notable that this 

arrangement has a higher likelihood than when the P. cupreus lineages, P. c. caligatus 

and P. c. dubius show partial ancestry in distinct genetic clusters (i.e., K = 6). The 

latter is more consistent with the current taxonomic classification, while the former is 

defensible in a geographic context (i.e., all Western clade individuals from between 

the Rio Jutaí and Rio Madeira share a proportion of ancestry in one cluster). 

To assess the possibility of underlying substructure shared between taxa, three 

additional datasets were assembled in pyRAD with one Western clade species 

selectively excluded as follows; P. cupreus + P. brunneus (2118 unlinked SNPs); P. 

caligatus + P. brunneus (1889 unlinked SNPs); and P. caligatus + P. cupreus (2136 

unlinked SNPs). It is expected that P. brunneus and P. cupreus will be clearly 

differentiated at all values of K when P. caligatus is excluded from the dataset if their 

shared ancestry is owing to the relationship between both these species and P. 

caligatus, rather than a putative independent shared history between P. brunneus and 

P. cupreus. In this scenario, P. caligatus is expected to share ancestry with both P. 

cupreus and P. brunneus at higher K values, even when one of these lineages is 

excluded. These analyses were conducted from K = 1 – 5 under the same settings as 

the main Western clade STRUCTURE analysis (Piii85; see section 4.3.5). When only 

P. cupreus + P. brunneus are included, ΔK suggests that K = 2 is most likely, with 

each species assigned to a distinct cluster (Figure 4.12), while likelihood is 

maximised at K = 4 with the additional clusters assigned to the AAM15 and 

JLP15920 P. cupreus individuals.  

No shared ancestry is recovered between P. brunneus and P. cupreus, 

regardless of the number of clusters assumed. When P. caligatus and either P. 

brunneus or P. cupreus are considered, the LnP(D) and ΔK suggest K = 2 is most 

likely, with each species forming a distinct genetic cluster, although likelihood is 

similar at K = 3. For both, when more than two clusters are assumed, all P. caligatus 

individuals show a proportion of shared ancestry with the other species (P. brunneus 

or P. cupreus). Further analyses such as alternatives to model-based clustering 

methods, for example, discriminated analysis of principle components (DAPC; 

Jombart et al., 2010), may shed further light on these results, as well as the inclusion 

of other taxa from the Western clade.   
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Figure 4.12 Genetic structure of the Western clade taxa of the P. moloch group inferred using 

Bayesian clustering analyses. Results for the analyses with only P. cupreus and P. caligatus are on the 

left (A), only P. brunneus and P. caligatus are in the middle (B), and only P. cupreus and P. brunneus 

are on the right (C).  

 

Overall, these results are taken to suggest that although the three species form 

relatively well-defined genetic clusters, there is significant heterogeneity in the 

relationships among the Western clade taxa and among different lineages within and 

across these species, which may be explained by stochastic processes such as 

incomplete lineage sorting or more recent gene flow/introgression (particularly 

between adjacent taxa i.e., P. caligatus and the other two species). This is reflected in 

the topological conflict among the phylogenetic trees inferred based on the multi-

locus vs. ddRADseq datasets regarding the species relationships among the Western 

clade taxa (i.e., if P. cupreus or P. brunneus is the sister taxon to P. caligatus), and 

also in the StarBEAST2 coalescent-based species tree.  
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Pairwise genetic distances between individuals of the Western clade calculated 

from the ddRADseq data show that P. caligatus shows closer genetic similarity to the 

other two species (see Appendix 3, Table A3.2); P. cupreus or P. brunneus 

individuals show the highest genetic distances (mean = 0.0022), with intermediate 

values between P. caligatus and P. cupreus or P. brunneus (mean = 0.0018 and 0.002, 

respectively), and members of the same species showed similar genetic distances on 

average for each of the species (mean = 0.0013). Pairwise distances between P. c. 

dubius individuals or P. c. caligatus individuals (mean = 0.0013 and 0.0012, 

respectively) are only slightly lower on average than those between P. c. dubius and 

P. c. caligatus (mean = 0.0014), and lower pairwise distances are often found across 

the taxa (e.g., 0.0011 between P. c. dubius UFRO403 and P. c. caligatus 

CTGAM182, and 0.0014 between the former individual and P. c. dubius UFRO544).  

 

4.4.5 Introgression analyses 

Four of the initial four-taxon D-statistic tests (1 – 39) returned significant Z-scores 

(alpha = 0.01) after correction for multiple testing, and inspection of the 

ABBA/BABA patterns identified P. cinerascens as the recipient lineage (P2) in each 

test. The results indicate that P. bernhardi shares derived alleles with P. cinerascens 

to the exclusion of P. miltoni and P. hoffmannsi (tests 3 + 8, Table 4.12), and the 

other member of the Eastern clade, P. moloch, also shares derived alleles with P. 

cinerascens to the exclusion of P. hoffmannsi (test 7). The final test suggests that P. 

caligatus and P. cinerascens are admixed (test 11), but only one combination of 

individuals (out of 108) is significant. Note, the P1 and P2 taxa are arranged such that 

P2 is the recipient lineage in the significant tests, i.e., ABBA > BABA in the four-

taxon test and ABBBA > BABBA in the partitioned tests (Table 4.12). No significant 

four-taxon D-statistic tests detected admixture uniformly across all iterations of 

individuals, partially owing to the inclusion of multiple divergent lineages within 

many of the defined taxa.  

Inspection of the results for each significant iteration in the above four tests 

indicated that specific P. cinerascens lineages may have been involved, and as such, a 

further set of four-taxon D-statistic tests were conducted in which the two P. 

cinerascens lineages (clade A and clade B) were differentiated (tests 40 – 44, Table 

4.12). Tests 42 – 44 also served to rule out misleading D-statistics if the incorrect 

species tree was assumed (discussed below).   
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Table 4.12 Four-taxon D-statistic tests for admixture. Taxa are arranged such that ABBA>BABA. 

Bold indicates significance at alpha = 0.01 after correction for multiple testing.  

Test 

no. P1 taxon P2 taxon P3 taxon Range Z

Sign./total 

(pre-correct) 1
No. loci

1 P. miltoni P. cinerascens P. hoffmannsi 0.0 - 3.1 0/36 (1) 78 - 566

2 P. miltoni P. cinerascens P. moloch 0.0 - 3.4 0/36 (3) 97 - 558

3 P. miltoni P. cinerascens P. bernhardi 0.1 - 4.1 3/48 (11) 62 - 577

4 P. miltoni P. cinerascens P. brunneus 0.0 - 1.9 0/36 (0) 71 - 555

5 P. miltoni P. cinerascens P. cupreus 0.0 - 2.3 0/60 (0) 80 - 584

6 P. miltoni P. cinerascens P. caligatus 0.0 - 2.1 0/72 (0) 89 - 557

7 P. hoffmannsi P. cinerascens P. moloch 0.6 - 5.1 3/54  (23) 252 - 568

8 P. hoffmannsi P. cinerascens P. bernhardi 0.5 - 7.2 19/72 (35) 84 - 604

9 P. hoffmannsi P. cinerascens P. cupreus 0.1 - 3.4 0/90 (12) 117 - 617

10 P. hoffmannsi P. cinerascens P. brunneus 0.0 - 3.1 0/54 (2) 176 - 574

11 P. hoffmannsi P. cinerascens P. caligatus 0.2 - 4.3 1/108 (26) 189 - 582

12 P. hoffmannsi P. miltoni P. moloch 0.4 - 2.7 0/18 (2) 143 - 568

13 P. hoffmannsi P. miltoni P. bernhardi 0.1 - 2.6 0/24 (1) 73 - 585

14 P. hoffmannsi P. miltoni P. brunneus 0.6 - 3.1 0/18 (3) 78 - 570

15 P. hoffmannsi P. miltoni P. cupreus 0.2 - 2.9 0/30 (5) 106 - 584

16 P. hoffmannsi P. miltoni P. caligatus 0.3 - 3.3 0/36(7) 121 - 562

17 P. bernhardi P. moloch P. hoffmannsi 0.0 - 2.2 0/36 (0) 172 - 602

18 P. bernhardi P. moloch P. miltoni 0.0 - 1.3 0/24 (0) 92 - 593

19 P. bernhardi P. moloch P. cinerascens 0.0 - 2.7 0/72 (1) 94 - 613

20 P. bernhardi P. moloch P. brunneus 0.0 - 2.0 0/36 (0) 89 - 623

21 P. bernhardi P. moloch P. cupreus 0.1 - 2.8 0/60 (2) 123 - 659

22 P. bernhardi P. moloch P. caligatus 0.0 - 2.7 0/72 (2) 170 - 643

23 P. caligatus P. cupreus P. hoffmannsi 0.0 - 2.0 0/90 (0) 182 - 623

24 P. caligatus P. cupreus P. cinerascens 0.0 - 3.0 0/180 (3) 137 - 637

25 P. caligatus P. cupreus P. miltoni 0.0 - 3.0 0/60 (2) 132 - 578

26 P. caligatus P. cupreus P. bernhardi 0.0 - 3.1 0/120 (1) 123 - 685

27 P. caligatus P. cupreus P. moloch 0.0 - 2.4 0/90 (0) 230 - 629

28 P. caligatus P. cupreus P. brunneus 0.0 - 3.1 0/90 (2) 141 - 620

29 P. brunneus P. caligatus P. hoffmannsi 0.0 - 3.0 0/54 (1) 184 - 593

30 P. brunneus P. caligatus P. cinerascens 0.0 - 2.7 0/108 (2) 148 - 587

31 P. brunneus P. caligatus P. miltoni 0.0 - 2.3 0/36 (0) 94 - 565

32 P. brunneus P. caligatus P. bernhardi 0.0 - 3.4 0/72 (3) 78 - 636

33 P. brunneus P. caligatus P. moloch 0.0 - 2.1 0/54 (0) 218 - 568

34 P. brunneus P. caligatus P. cupreus 0.0 - 2.9 0/90 (1) 141 - 620

35 P. brunneus P. cupreus P. hoffmannsi 0.0 - 3.4 0/45 (1) 119 - 609

36 P. brunneus P. cupreus P. cinerascens 0.0 - 3.2 0/90 (7) 95 - 610

37 P. brunneus P. cupreus P. miltoni 0.2 - 2.1 0/30 (0) 88 - 578

38 P. brunneus P. cupreus P. bernhardi 0.0 - 3.4 0/60 (4) 66 - 663

39 P. brunneus P. cupreus P. moloch 0.0 - 2.0 0/45 (0) 147 - 595

40 P. hoffmannsi P. cinerascens (A) P. bernhardi 0.5 - 3.5 0/36 (5) 174 - 603

41 P. hoffmannsi P. cinerascens (B) P. bernhardi 1.8 - 7.2 20/36 (30) 84 - 604

42 P. cinerascens (A) P. cinerascens (B) P. bernhardi 0.5 - 7.0 7/36  (17) 106 - 639

43 P. cinerascens (A) P. cinerascens (B) P. moloch 0.4 - 3.6 1/27 (8) 283 - 591

44 P. cinerascens (B) P. cinerascens (A) P. caligatus 0.0 - 2.4 0/54 (0) 224 - 610  
1 Significant tests over possible sampled individuals  
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When introgression is suggested between P. cinerascens and an Eastern 

Amazonian taxon (tests 3, 7 + 8,), the iterations with P. cinerascens clade B 

individuals as the P3 lineage almost always had higher Z-scores formed nearly all of 

the significant iterations across these tests. This is demonstrated in tests 40 + 41 

which equate to test 8 split into two separate runs whereby P3 is defined as only P. 

cinerascens clade A or clade B, respectively. Only P. cinerascens clade B individuals 

share a significant proportion of derived alleles with P. bernhardi to the exclusion of 

P. hoffmannsi (note, one less iteration is significant in test 8 than test 41 because more 

combinations are tested). When P1 and P2 are each set as the P. cinerascens lineages, 

P. cinerascens clade B individuals share derived alleles with P. bernhardi to the 

exclusion of P. cinerascens clade A (test 42), as well as with P. moloch to lesser 

extent (test 43). Among P. cinerascens clade B individuals, the highest Z-scores in 

each test were typically recovered for iterations including UFRO352.  

In contrast, significant iterations in test 11 generally include P. cinerascens 

clade A as the P3 lineage, however, P. cinerascens clade A individuals don’t share 

derived alleles with P. caligatus to the exclusion of P. cinerascens clade B (test 44). 

No significant D-statistics were recovered when intraspecific lineages among the 

Western clade taxa were differentiated (see Appendix 3, Table A3.3). Every possible 

iteration of individuals in the significant four-taxon tests (tests 7, 8, 11, 40, 41, 42. 

Table 4.12) showed more ABBA site patterns than BABA (positive D), and almost all 

iterations in test 3, thus although the degree of asymmetry varied, the pattern of 

shared derived alleles between the P2 and P3 lineages to the exclusion of the P1 is 

consistent across all individuals of each taxon in these tests. Furthermore, other tests 

which have many iterations of individuals with moderately high but non-significant 

Z-scores show consistent ABBA > BABA patterns across nearly all combinations of 

samples, especially for tests involving the Eastern clade as the P3 lineage and the P2 

lineage defined as P. cinerascens/P. miltoni (e.g., tests 2 + 12).  

Partitioned (five-taxon) D-statistic tests were performed to assess two putative 

scenarios: (I) admixture between Eastern clade taxa and P. cinerascens; and (II) 

admixture between P. caligatus and P. cinerascens. No significant results (Z-score > 

2.55) were recovered for latter (II) scenario in the partitioned D-statistic tests (tests 60 

– 68, Table 4.13). In fact, the highest (nearly significant) Z-score obtained indicates 

admixture between P. cinerascens clade B and P. brunneus rather than P. cinerascens 

clade A and P. caligatus (negative D, Z2 = 2.52, test 65). Thus, overall, the results are 
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inconclusive regarding whether introgression has occurred between the Western and 

Aripuanã-Tapajós clades, the lineages involved, and the direction of gene flow. 

Future analyses with greater sampling, including more loci, individuals and Western 

clade species, may be required to reconstruct the history of introgression among these 

clades.  

 In contrast, partitioning shared versus uniquely derived alleles among the 

Eastern and Aripuanã-Tapajós taxa reveals consistent support for admixture between 

P. cinerascens clade B and P. bernhardi. For these tests, P. bernhardi clade A 

(Guaporé Biological Reserve) and UFRO (Machadinho D’Oeste) lineages, as well as 

P. moloch (east of the Tapajós and Teles Pires rivers) and P cf. moloch (Alta 

Floresta), are defined as the P3 taxa. Test 45 – 50 (Table 4.13) found that P. 

bernhardi clade A shares uniquely derived alleles with P. cinerascens clade B 

(relative to P. cinerascens clade A, P. hoffmannsi, and P. miltoni) that are not shared 

with P. moloch or P. bernhardi UFRO (significant D1). Derived alleles which arose in 

the ancestor of P. bernhardi and P. moloch are also shared with P. cinerascens clade 

B to the exclusion of the other Aripuanã-Tapajós lineages (significant D12, tests 45 – 

50). However, P. moloch and P. bernhardi UFRO do not share a set of uniquely 

derived alleles with P. cinerascens clade B which are not also shared with P. 

bernhardi clade A (non-significant D2, tests 45 – 50).  

Together, these results indicate that introgression has occurred from P. 

bernhardi clade A into P. cinerascens clade B, and that the set of derived alleles 

shared between P. cinerascens clade B and the other Eastern Amazonian taxa (P. 

moloch or P. bernhardi UFRO) most likely arose in the ancestor to the Eastern clade, 

rather than as a result of independent admixture between each of the lineages. In this 

scenario, it is also expected that P. cf. moloch (as the sister taxon to P. moloch) will 

share the set of derived alleles with P. cinerascens clade B that arose in the ancestor 

of the Eastern clade. The results of tests 51 – 53 (Table 4.13) are in agreement with 

this expectation, such that both P. moloch and P. cf. moloch share the same set of 

derived alleles with P. cinerascens clade B (significant D12, non-significant D1 and 

D2), although D12 in test 53 is slightly below significance (Z12 = 2.39). 
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Table 4.13 Partitioned D-statistic tests for admixture. For significant tests, taxa are arranged such that introgression of shared P3 alleles (D12) is into P2 

(ABBBA>BABBA). Bold indicates significant Z-scores at alpha = 0.01.  

  

Test 

No. P1 taxon P2 taxon P31 taxon P32 taxon D12 D1 D2 Z12 Z1 Z2 

No. 

loci 

I 

45 P. cinerascens (A) P. cinerascens (B) P. bernhardi (A) P. moloch 0.51 0.70 0.28 5.81 6.49 1.49 426 

46 P. hoffmannsi P. cinerascens (B) P. bernhardi (A) P. moloch 0.49 0.56 0.18 5.51 3.82 0.97 405 

47 P. miltoni P. cinerascens (B) P. bernhardi (A) P. moloch 0.33 0.50 -0.08 3.52 3.96 0.43 401 

48 P. cinerascens (A) P. cinerascens (B) P. bernhardi (A) P. bernhardi (UFRO) 0.46 0.67 -0.02 4.19 4.54 0.09 217 

49 P. hoffmannsi P. cinerascens (B) P. bernhardi (A) P. bernhardi (UFRO) 0.57 0.59 0.13 6.47 3.71 0.53 219 

50 P. miltoni P. cinerascens (B) P. bernhardi (A) P. bernhardi (UFRO) 0.49 0.59 0.02 5.01 3.50 0.10 200 

51 P. cinerascens (A) P. cinerascens (B) P. moloch P. cf. moloch 0.37 -0.21 0.25 3.58 0.88 0.92 391 

53 P. hoffmannsi P. cinerascens (B) P. moloch P. cf. moloch 0.36 -0.29 -0.07 3.48 1.14 0.28 354 

53 P. miltoni P. cinerascens (B) P. moloch P. cf. moloch 0.24 -0.18 -0.20 2.39 0.84 0.82 386 

54 P. hoffmannsi P. cinerascens (A) P. bernhardi (A) P. moloch 0.13 -0.08 -0.04 1.17 0.40 0.16 394 

55 P. miltoni P. cinerascens (A) P. bernhardi (A) P. moloch 0.08 -0.12 -0.17 0.73 0.57 0.79 417 

56 P. hoffmannsi P. cinerascens (A) P. bernhardi (A) P. bernhardi (UFRO) 0.18 -0.01 0.27 1.35 0.04 1.20 197 

57 P. miltoni P. cinerascens (A) P. bernhardi (A) P. bernhardi (UFRO) 0.19 0.28 -0.18 1.49 1.08 0.75 199 

58 P. hoffmannsi P. cinerascens (A) P. moloch P. cf. moloch 0.17 0.39 -0.14 1.43 1.28 0.50 353 

59 P. miltoni P. cinerascens (A) P. moloch P. cf. moloch 0.08 -0.24 -0.29 0.72 1.24 1.11 416 

II 

60 P. hoffmannsi P. cinerascens (A) P. c. caligatus P. c. dubius 0.25 0.08 0.12 2.04 0.22 0.32 418 

61 P. hoffmannsi P. cinerascens (A) P. c. caligatus P. cupreus 0.29 0.24 -0.01 2.43 0.70 0.03 414 

62 P. hoffmannsi P. cinerascens (A) P. c. caligatus P. brunneus 0.05 0.37 -0.24 0.33 0.64 0.67 236 

63 P. cinerascens (B) P. cinerascens (A) P. c. caligatus P. c. dubius -0.19 0.25 0.00 1.45 0.56 0.00 429 

64 P. cinerascens (B) P. cinerascens (A) P. c. caligatus P. cupreus -0.20 0.57 -0.83 1.67 2.03 2.47 433 

65 P. cinerascens (B) P. cinerascens (A) P. c. caligatus P. brunneus -0.34 -0.13 -0.81 2.08 0.24 2.52 245 

66 P. miltoni P. cinerascens (A) P. c. caligatus P. c. dubius 0.02 -0.56 0.54 0.13 1.88 1.60 413 

67 P. miltoni P. cinerascens (A) P. c. caligatus P. cupreus 0.00 -0.19 -0.50 0.01 0.67 1.39 420 

68 P. miltoni P. cinerascens (A) P. c. caligatus P. brunneus -0.22 0.35 -0.26 1.50 1.06 0.73 262 
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Finally, if no recent significant gene flow has occurred between the P. 

cinerascens lineages (clade A and clade B), then none of the Eastern clade taxa are 

expected to share derived alleles with P. cinerascens clade A, which is the exact 

result obtained (tests 54 – 59). Thus, for scenario (I), all partitioned D-statistic tests 

are in agreement, and together they strongly suggest that P. cinerascens clade B and 

P. bernhardi clade A individuals share uniquely derived alleles to the exclusion of 

other members of their clades. The slight negative D1 and D2 in some of the latter 

tests (51 – 59) may be an indication of a complex history of introgression between 

these clades involving other taxa such as P. moloch and P. miltoni.  

D-statistic tests were originally applied to whole genome data (Green et al., 

2010), and most examples to date using reduced representation genome-wide data 

typically included a much greater number of shorter loci (e.g., Chattopadhyay et al., 

2016; Eaton et al., 2015). Despite the reduced statistical power in the present analyses 

owing to the comparatively low number of loci, significant results were obtained that 

are strongly concordant across the tests and with independent sources of evidence (see 

section 4.4.6). In combination, the conservative alpha value (0.01) and the moderate 

number of included loci may lead to a lack of significance when introgression has 

occurred, especially in the case of more ancient admixture, however, the conservative 

alpha value also serves to minimise spurious results if the discordant site patterns are 

found at few loci.  

A significant D-statistic can be recovered in the absence of introgression if an 

incorrect species tree is assumed (i.e., if the P3 lineage forms a clade with the P2 

lineage, to the exclusion of P1) as the P2 and P3 lineages will share more derived 

alleles owing to their closer shared history. As such, some of the D-statistics tests may 

be misleading if the species relationships assumed based on the ddRADseq phylogeny 

do not reflect the true species tree. For example, if the Aripuanã-Tapajós clade is not 

monophyletic (i.e., P. hoffmannsi is not the sister taxon to P. cinerascens and P. 

miltoni), then the D-statistic could be detecting shared alleles owing to a more recent 

shared history between P. bernhardi and P. cinerascens, rather than introgression 

between these species. Relatively high Z-scores are found for some iterations of 

individuals in all four-taxon tests with P1 defined as P. hoffmannsi and P2 as P. 

cinerascens or P. miltoni (e.g., see the number of significant iterations pre-correction, 

tests 7 – 16, Table 4.12), and this could be an indication that P. hoffmannsi, P. 

cinerascens and P. miltoni do not form a clade to the exclusion of the Eastern or 
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Western Amazonian taxa. This scenario, however, does not explain the significant D-

statistics when P1 and P2 are defined as the two P. cinerascens lineages (clade A and 

B), or when P1 is P. miltoni, and it is unlikely that these arrangements violate the true 

species tree. Plecturocebus cinerascens and P. miltoni could also share a set of 

derived alleles with the Western clade to the exclusion of P. hoffmannsi owing to a 

complex history of gene flow between P. cinerascens/P. miltoni and the Eastern taxa 

and the closer shared history between the Eastern and Western clades.  

 

4.4.6 Mitochondrial introgression  

The new mitochondrial sequences (CYTB and COI) obtained for the P. cinerascens 

clade A UFRO354 individual confirm it has a P. bernhardi mitochondrial genome, 

which was suspected based on the classification of this sample as P. bernhardi by 

Carneiro et al. (2016). Inspection of the alignments indicates that UFRO354 shows 

99.84% sequence identity (1 bp change) for COI and 99.39% sequence identity (7 bp 

changes) for CYTB with P. bernhardi clade A individuals (42960, 42961, 42964). In 

the maximum-likelihood tree inferred based on the mitochondrial loci, UFRO354 is 

sister to P. bernhardi clade A samples and nested within P. bernhardi (Figure 4.13). 

These results are in strong agreement with the conclusions drawn from the D-statistic 

tests and provide an independent source of evidence that P. cinerascens clade B is 

admixed with P. bernhardi, and specifically, most likely with individuals relatively 

closely related to the P. bernhardi clade A specimens in this study. 

Figure 4.14 shows the collection localities for the P. cinerascens, P. miltoni, 

and P. bernhardi samples included in the mitochondrial and ddRADseq datasets. The 

putative donor lineage individuals, P. bernhardi clade A, were collected in the 

Guaporé Biological Reserve to the west of São Francisco do Guaporé, a considerable 

distance from all other P. bernhardi specimens and outside the known geographic 

distribution of this species. These are the closest P. bernhardi specimens included in 

this study to the P. cinerascens clade B individuals, followed by the P. bernhardi 

UFRO specimen. The admixed P. cinerascens clade B specimens (UFRO352, 354, 

355) were also collected outside the known geographic distribution of the species, at 

the Rondon II dam between the left bank of upstream Rio Roosevelt and the two 

rivers that form the Rio Jiparaná (Rios Barão de Melgaço and Pimenta Bueno).  
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Figure 4.13 Maximum likelihood tree inferred with the mitochondrial data. The admixed P. 

cinerascens clade B individual with a P. bernhardi mitochondrial genome is highlighted in red.  

 

This locality is at the edge of the southern tip of the proposed range for P. 

bernhardi, which was delineated based on these major rivers (Van Roosmalen et al., 

2002), and P. bernhardi individuals have been recorded near to this location (around 

Cacoal and Pimenta Bueno, Ferrari et al., 2000). Thus, it is likely that admixture 

between these species occurred when P. cinerascens dispersed over or around the 

Rios Aripuanã and Roosevelt into the range of P. bernhardi, and in fact, may still be 

an ongoing process. This further suggests that the D-statistic tests may be detecting 

more recent introgression among the P. moloch group taxa included.  
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Figure 4.14 Collection localities for the P. cinerascens, P. bernhardi and P. miltoni samples included 

in this study. Major rivers are shown approximately. 

 

Although UFRO354 is the specimen with the P. bernhardi mitochondrial 

genome, UFRO352 is more significantly admixed based on inspection of the Z-scores 

for each iteration of individuals in the four-taxon D-statistic tests. In the Bayesian 

clustering analyses including all P. moloch group taxa (P85 dataset), the same P. 

cinerascens clade B individual (UFRO352) shows shared ancestry (Q-value = 0.11) 

with P. bernhardi at K = 10 + 12 (see Figure 4.9). Furthermore, P. cinerascens clade 

B samples have much lower genetic distances (based on the ddRADseq data, see 

Appendix 3, Table A3.4) than P. cinerascens clade A to all P. bernhardi individuals 

(mean = 0.0028 vs. 0.0035), with UFRO352 showing the lowest genetic distances 

(mean = 0.0026). Two of the admixed P. cinerascens individuals are also the most 

heterozygous of all samples included in the ddRADseq dataset (UFRO352, H = 

0.0030; UFRO355, H = 0.0031), while the third specimen is among the most 

heterozygous (UFRO354, H = 0.0026).  
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Images obtained of the UFRO354 specimen (Figure 4.15) indicate that it 

resembles typical P. cinerascens in the overall grey colour but with some small 

notable differences; creamy-white hairs on the hands, wrists and, to a lesser extent, 

the toes, as well as the tip of the tail; reddish-brown pelage on the dorsum; and 

creamy-white hairs on the chin and encircling the face. The white hands, wrists, tail 

tip, and toes (sometimes), as well as reddish-brown dorsal pelage, are typically found 

in P. bernhardi specimens and, therefore, some of these phenotypic differences may 

be a consequence of admixture. Overall, there is consistent support regarding 

introgressive hybridisation between P. cinerascens and P. bernhardi, and taken 

together, these results strongly suggest that P. cinerascens clade B individuals are 

admixed and they should be properly listed as P. cinerascens x P. bernhardi.  

 

 

Figure 4.15 Dorsal (top) and ventral (bottom) images of the admixed P. cinerascens UFRO354 

individual.  
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4.5 Discussion 

The ddRADseq data matrices assembled in this study contained up to ~ 3K loci, with 

a maximum concatenated length of ~ 930K bp and up to ~ 15K parsimony 

informative sites, a massive increase in comparison to the data generated for the 

multi-locus phylogeny in Chapter 2 (22 loci, ~ 14K bp).  

The assembled ddRADseq datasets contained between 33% and 56% missing 

data (see Table 4.9), with the outgroup samples (Pitheciinae) particularly poorly 

represented. Both phylogenetic distance and the mean number of raw reads 

significantly predicted the number of shared loci between taxa, and thus, both 

sequencing effort and the inclusion of disparate lineages (owing to “locus dropout”) 

had an impact on the amount of missing data in the final matrices. Recent studies, 

however, have suggested that large amounts of missing data in RADseq data matrices 

had little impact on phylogenetic inference, with both smaller near-complete datasets 

and larger sparse datasets recovering similar topologies and the latter showed stronger 

statistical support (e.g., Eaton et al., 2015; Hou et al., 2015; Rubin et al., 2012; 

Wagner et al., 2013). RADseq data matrices with more loci and more missing data 

have been shown to provide greater statistical power and more biologically relevant 

information than smaller matrices with minimal missing data (Chattopadhyay et al., 

2016; Huang & Knowles, 2016).  

 

4.5.1 Phylogeny and dating estimates: concordance and conflict 

Our ddRADseq phylogenetic analyses recovered a strongly supported topology for 

Callicebinae species that is consistent across the four datasets used for phylogenetic 

inference. All ddRADseq analyses support the monophyly of the three major clades 

within the P. moloch group, as well as the sister relationship between the Eastern and 

Western clades, in agreement with the phylogeny based on seven concatenated loci in 

Chapter 3. Overall, the largest conflicts among all competing phylogenetic hypotheses 

inferred based on the multi-locus or ddRADseq data (Chapters 2, 3 + 4) are regarding 

the relationship between Aripuanã-Tapajós clade taxa (P. hoffmannsi, P. cinerascens, 

P. miltoni) and the rest of the P. moloch group, as well as those among Western clade 

taxa. This uncertainty is strongly reflected in the most probable species tree 

topologies and the topological incongruence among the gene trees under the 

multispecies coalescent model (StarBEAST2; see Figure 4.6, 4.7). Despite this 
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uncertainty, the Aripuanã-Tapajós clade is recovered as monophyletic in the 

coalescent-based analysis of multi-locus data and the ddRADseq analyses, as well as 

based on the seven concatenated loci (nuclear and mitochondrial) included in Chapter 

3. Both vastly increasing the quantity of data (ddRAD) or employing a more realistic 

model (multispecies coalescent model) resulted in greater resolution of species 

relationships among the P. moloch group taxa than concatenation of the 22 loci in 

Chapter 2 (which poorly supported P. cinerascens + P. miltoni as sister to the Eastern 

clade). However, the incongruence between the results obtained based on the 

concatenation of 22 vs. 7 of these loci (Chapter 2 vs. Chapter 3) suggests that the 

amount of informative sites nor the use of concatenation solely explain the conflicting 

results, although other factors may have also played a role such as the individuals/taxa 

sampled or potentially model misspecification (e.g., over-partitioning).  

Although low levels of variation may also account for some of the 

incongruence among the StarBEAST2 gene trees, overall, these results suggest that 

there is significant gene tree heterogeneity owing to gene flow between species of the 

P. moloch group (e.g., admixture between P. cinerascens and P. bernhardi), or 

stochastic processes such as incomplete lineage sorting (Edwards, 2009; Maddison, 

1997), presenting a challenge to the reconstruction of species relationships across this 

clade. Given the enormous difference in the quantity of data between the ddRADseq 

and StarBEAST2 datasets (~2000 vs. 13 loci), the ddRADseq topology is tentatively 

considered as more likely to represent the true species tree, i.e., the sister relationship 

between the Eastern and Western clades rather than the Eastern and Aripuanã-Tapajós 

clades. This conflict between the StarBEAST2 consensus species tree and the 

ddRADseq topology is resolved in one of the three most probable alternative species 

tree topologies. However, there is still evident uncertainty regarding the monophyly 

of the Aripuanã-Tapajós clade, and it is noteworthy that P. cinerascens and P. miltoni 

share some derived alleles with all taxa of the Eastern and Western clades to the 

exclusion of P. hoffmannsi in the D-statistic tests. D-statistic tests have previously 

been employed to assess competing phylogenetic hypotheses by comparing the 

number of shared and derived alleles among lineages under alternative species tree 

topologies, finding evidence of shared ancestry between taxa through testing for 

introgression on an incorrect species tree (Eaton et al., 2015). Given that short internal 

branches are problematic for the concatenation model (as discussed below), the D-

statistics results may indeed indicate that P. hoffmannsi is sister to the remaining P. 
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moloch group taxa, rather than the earliest diverging lineage within the Aripuanã-

Tapajós clade. This was also suggested in the nuclear and combined dataset multi-

locus analyses in Chapter 2, and also by Carneiro et al. (2016). 

Part of the difficulty in establishing the relationships between the P. moloch 

group species is that the initial divergences are estimated to have occurred over a 

relatively short period. Incomplete lineage sorting is particularly pronounced when 

lineages diverge rapidly, especially relative to effective population size (Edwards, 

2009), and it is notable that the topological incongruences across these analyses are 

associated with the shortest internal branches in the phylogeny (e.g., in the ddRADseq 

timetree, see nodes numbered 7 + 11 or 15 + 16 + 17, Figure 4.4). Concatenated 

approaches can perform particularly poorly with even moderately short branches in 

the tree (Kubatko & Degnan, 2007), however, while the concatenated ddRADseq 

topology must be considered provisional, it is likely to be a more reliable estimate of 

species relationships than the smaller concatenated datasets given the enormous 

increase in the number of genomic regions sampled. Coalescent-based species tree 

analyses using the ddRADseq data (e.g., using genome wide SNPs with SNAPP; 

Bryant et al., 2012) will further test this phylogenetic hypothesis using a more 

appropriate model than concatenation. Coalescent-based methods can account for 

gene-tree discordance owing to incomplete lineage sorting (e.g., Linkem et al., 2016), 

and result in better estimates at short internodes (Edwards et al., 2016). Even these 

approaches, however, can be misleading in the presence of substantial gene flow 

between taxa (Leaché et al., 2014b), and thus, caution should be employed if 

putatively introgressed lineages, such as P. cinerascens clade B, are included (as in 

the StarBEAST2 tree). Alternatively such individuals should be excluded from 

coalescent-based analyses (e.g., Meyer et al., 2016).  

Mitochondrial data (mtDNA) are particularly unsuitable for phylogenetic 

inference when incomplete lineage sorting is caused by short internal branches, or 

when contemporary introgression is suspected, owing to both the lack of intragenic 

recombination and the matrilineal inheritance of the mitochondrial genome. The 

mtDNA introgression found in the admixed P. cinerascens UFRO354 individual 

included in this study is also clear evidence that the assignment of Callicebinae 

specimens to species based primarily on mtDNA should be avoided [e.g., this 

individual was classified as P. bernhardi in Carneiro et al., (2016)], and that mtDNA 

phylogenies for Callicebinae taxa should be interpreted with caution. Overall, these 
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results add to the ever-growing evidence that mtDNA can mislead phylogenetic 

inference (e.g., Leaché, 2010; Roos et al., 2011; Yu et al., 2011). Furthermore, given 

the low levels of genetic differentiation between some taxa, resolution of the species 

relationships among all P. moloch group taxa, in the presence of incomplete lineage 

sorting and in a cost-effective manner, will likely require the generation of genome-

wide molecular data.  

Ages estimates recovered in the ddRADseq BEAST analysis are younger than 

the concatenated multi-locus analyses (Chapter 2), but generally up to 1 million years 

older than the StarBEAST2 tree. Across these datasets, however, age estimates were 

broadly comparable, with the Callicebinae genera estimated to have diverged in the 

late Miocene, the Plecturocebus species group in the Pliocene-Pleistocene, and most 

species divergences are dated to the Pleistocene. As discussed, younger divergence 

dates are expected in coalescent-based species trees owing to the implicit assumptions 

made by multispecies coalescent vs. concatenation models (Burbrink & Pyron, 2011; 

McCormack et al., 2010; Meyer et al., 2016). The timeline estimated with the 

multispecies coalescent model is likely to provide more realistic divergence dates 

across Callicebinae than previous estimates using the concatenation model in the 

present and other studies (Hoyos et al., 2016; Perelman et al., 2011).   

 

4.5.2 Western clade taxa of the P. moloch group 

In addition to the initial P. moloch group divergences, there is significant conflict 

across analyses regarding the relationships among Western clade species, with two 

main phylogenetic hypotheses recovered; P. brunneus is the earliest diverging 

lineage, while P. cupreus and P. caligatus are sister taxa (all ddRADseq analyses); or 

a sister relationship between P. brunneus and P. caligatus, with P. cupreus as the 

earliest diverging lineage (concatenated and StarBEAST2 multi-locus analyses). 

Statistical support varies across the analyses and all possible arrangements are 

recovered in the alternative most probable topologies in the StarBEAST2 species tree. 

Bayesian clustering results indicate that these three Western clade species form well-

defined genetic clusters when only these taxa are included in the dataset (Piii85), 

however, all individuals are significantly admixed at all K values when other P. 

moloch group taxa are included (P85 dataset), as well as higher values of K for the 

subsampled datasets. When only two species are included, no admixture between P. 

brunneus and P. cupreus is detected, while P. caligatus shares ancestry with both 
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species at K > 2. No pair of taxa, however, show a significant proportion of shared 

derived alleles to the exclusion of the other taxon, regardless of which topology is 

assumed in the D-statistic test. This could be a consequence of the moderate number 

of ddRADseq loci and, therefore, the reduced statistical power of the D-statistic in 

this study, which may only be able to detect recent introgressive hybridisation when 

the lineages involved are included. Short internal branches are also found between 

Western clade species, and thus, topological incongruence across analyses may be a 

result of incomplete lineage sorting, as well as the low genetic variation among the 

taxa within this clade.  

In support of the ddRADseq topology, P. cupreus and P. caligatus share more 

phenotypic resemblance (e.g., Hershkovitz, 1988), and geographic evidence may also 

suggests that these taxa are more likely to be sister than P. caligatus and P. brunneus 

given that the Rio Madeira (one of the largest tributaries of the Amazon) forms a 

more significant barrier to gene flow than the Rio Purus. Plecturocebus brunneus is 

thought to be restricted to the right bank of the Rio Madeira, while the populations of 

brown titis in Peru that were previously classified as P. brunneus are now attributed to 

a new taxon, P. urubambensis (Vermeer & Tello-Alvarado, 2015). If the P. moloch 

group originated in the Rondônia centre of endemism, as suggested in the 

biogeographical analyses in Chapter 3, then a sister relationship between P. caligatus 

and P. cupreus requires only one dispersal event across or around the Rio Madeira, 

whereas two are necessary for a sister relationship between P. brunneus and P. 

caligatus. Many Western clade species are not represented in these analyses and 

further studies are required with increased taxonomic sampling, as well as more 

individuals per lineage, in order to adequately reconstruct the evolutionary history of 

this clade.  
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4.5.3 The dubious nature of Plecturocebus caligatus dubius 

Serrano-Villavicencio et al. (2017) recently reintroduced the subspecies rank to 

Callicebinae taxonomy, suggesting that P. dubius should be considered a subspecies 

rather than a synonym of P. caligatus (Byrne et al., 2016; see also Carneiro et al., 

2016; Hoyos et al., 2016) because it represented a geographically restricted phenotype 

(white blaze). Although we agree with these authors that that the use of subspecies 

may benefit the taxonomy of Callicebinae (Serrano-Villavicencio et al., 2017), we 

advocate that inconclusive molecular evidence in support of monophyly, in 

combination with poor sampling in all molecular and taxonomic studies, extremely 

low genetic variation, and a lack of field data to confirm the restricted distribution of 

these phenotypes, should not be entirely disregarded and warrants consideration when 

delimiting P. c. dubius and P. c. caligatus. We also note a misinterpretation; Byrne et 

al. (2016) suggested that the differences between P. c. caligatus and P. c. dubius 

likely represented geographic variation in pelage colouration, rather than individual 

variation (as stated by Serrano-Villavicencio et al., 2017). 

Plecturocebus c. dubius and P. c. caligatus, show the lowest genetic 

differentiation of all intraspecific lineages included in this study (e.g. lower than the 

P. bernhardi, P. moloch, and even P. cupreus lineages), with pairwise genetic 

distances between individuals often lower across the subspecies than within them. 

Both taxa form monophyletic clades in the ddRADseq phylogenetic analyses when 

the two poorly sequenced individuals are excluded, and therefore, paraphyly among 

P. c. dubius samples when all individuals are included may be a consequence of 

missing data. However, it is notable that the A85 and A92 MrBayes and RAxML 

trees suggest the same relationships among all P. caligatus individuals with varying 

statistical support (see Figure A 3.1 – 3.4), and expected species relationships are 

recovered for other specimens with equally poor sequencing and a closely related 

sister lineage, such as P. cupreus clade A CTGAM210. Wagner et al. (2013) 

recovered reciprocal monophyly among species of the Lake Victoria cichlid radiation, 

which originated within the last 15,000 years, using RADseq data matrices with 43% 

missing data. Furthermore, as discussed above, RADseq data matrices with more loci 

and more missing data have been shown to provide greater statistical power with little 

impact on phylogenetic results (e.g., Eaton et al., 2015; Huang & Knowles, 2016; 

Rubin et al., 2012), and thus, the putative paraphyly recovered among P. c. dubius 

individuals in some ddRADseq analyses should be investigated rather than dismissed. 
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Given the short internal branches within P. caligatus, paraphyly could also be 

a result of the concatenation model. Thus, coalescent-based methods will be the most 

appropriate for resolving the relationship between these taxa, as well as assessing 

alternative taxonomic hypotheses in a statistical framework using coalescent-based 

species delimitation approaches such as Bayes Factor Delimitation of Species (*with 

genomic data; BFD*; Leaché et al., 2014a). Serrano-Villavicencio et al. (2017) 

suggested that increasing the number of samples may resolve paraphyly recovered in 

mitochondrial phylogenies (see Chapter 2) as a result of potential inference error, and 

this is equally important in order to adequately assess monophyly of these lineages 

across their geographic distribution, especially given the scattered nature of the 

sampling in this and all previous molecular studies.  

In the Bayesian clustering analyses, it is not possible to distinguish these taxa 

until the highest K values, and even when they are assigned partially to distinct 

clusters, they share most of their ancestry in the same cluster. Interestingly, all three 

analyses that include both P. caligatus and P. cupreus indicate that P. c. dubius shares 

a proportion of ancestry with only P. c. caligatus and with only P. cupreus (see K = 

10, Figure 4.9; Western clade K = 5, Figure 4.11; P. cupreus + P. caligatus K = 3, 

Figure 4.12). Hershkovitz (1988) stated that, phenotypically, P. c. dubius was a 

mosaic of both P. cupreus and P. c. caligatus and may be a hybrid of these taxa. 

Although none of the D-statistic tests found a significant signal of introgression 

among these lineages (see Tables 4.12, A3.3), P. c. dubius and P. cupreus shared 

derived alleles to the exclusion of P. c. caligatus in the majority of iterations, with 

some combinations of individuals showing high but insignificant Z-scores. These 

results may reflect a weak signal of introgressive hybridisation between P. c. dubius 

and P. cupreus, or between either of the P. caligatus lineages and a taxon not 

included in this study, for example, the recently resurrected P. toppini (Vermeer & 

Tello-Alvarado, 2015).  

As a further note, based on phenotypic variation, Serrano-Villavicencio et al. 

(2017) suggested that P. stephennashi is a hybrid of P. c. caligatus and P. c. dubius, 

and therefore the name P. stephennashi should be considered a homonym for these 

taxa. This is likely a misinterpretation of the International Code of Zoological 

Nomenclature (ICZN); if P. stephennashi is truly a hybrid, then the name should be 

considered as invalid rather than as a homonym. Although there is warranted doubt 

surrounding this taxon, there are also several curiosities not addressed by this 



 

166 

hypothesis, for example, the smaller size of the P. stephennashi specimens and the 

biogeographical context. With only four known specimens, no type locality and very 

little distributional data, we suggest that field studies within the proposed range of P. 

stephennashi [between the Rios Mucuim and Ipixuna, Amazonas (Van Roosmalen et 

al., 2002)], as well as the generation of molecular data, are required in order to 

adequately assess the relationship between these lineages and test this taxonomic 

hypothesis.   

 

4.5.4 Introgressive hybridisation 

Hybridisation among New World primates (NWP) lineages has been primarily 

studied in howler monkeys (Alouatta), with the first genetic evidence of hybridisation 

among NWP reported for A. palliata and A. pigra at a hybrid zone in Mexico (Cortés-

Ortiz et al., 2007). There are few well-documented cases of hybridisation among all 

other NWP clades, and many proposed examples of interspecific hybridisation based 

on phenotypic evidence involve very closely related lineages, for example, as noted in 

the above, among the P. moloch group taxa of the Western clade (Hershkovitz, 1988; 

Serrano-Villavicencio et al., 2017). Given the lack of study systems, the evidence of 

introgressive hybridisation between P. cinerascens and P. bernhardi presented in this 

study is significant not only to Callicebinae, but also for the study of hybridisation 

among NWP more generally. Titi monkeys are monogamous pair-bonding primates 

and present a particularly interesting case to assess the dynamics of introgressive 

hybridisation among different primate mating systems.  

Molecular (e.g., based on D-statistics, mitochondrial introgression, genetic 

distances, heterozygosity estimates, etc.), geographic and even phenotypic data 

provide independent sources of evidence, and together, strongly suggest that P. 

cinerascens clade B individuals are admixed with P. bernhardi. Hybridisation 

between these species is particularly notable given that the divergence between the 

progenitors to P. bernhardi and P. cinerascens may represent the deepest divergence 

within the P. moloch group i.e., Aripuanã-Tapajós clade vs. Eastern + Western clade. 

These species are also phenotypically distinct; typical P. cinerascens individuals are 

almost entirely grey agouti (the ashy titi), and along with P. brunneus, they are the 

only P. moloch group taxa that do not generally show dorsal-ventral contrast in pelage 

colouration, while P. bernhardi has contrasting orange ventral pelage and sideburns, 

and white hands. In future studies, “P. cinerascens clade B” should be properly 
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referred to as P. cinerascens x P. bernhardi in light of the above evidence. 

Furthermore, this information is important as this lineage should not be formally 

described as a valid taxon.  

 The admixed P. cinerascens specimens (UFRO352, 354, 355) were collected 

between the left bank of upstream Rio Roosevelt and the two rivers that form the Rio 

Jiparaná (Rios Barão de Melgaço and Pimenta Bueno). Field studies and molecular 

data for more individuals from this region will be essential to establish more 

information about the extent of gene flow between these species, for example, to 

assess; if hybridisation of the parental forms is ongoing or ancient; the extent of the 

hybrid zone; if the direction of introgression is biased i.e., only from P. bernhardi to 

P. cinerascens; and the spread of the introgressed alleles, i.e., whether gene flow is 

occurring between the admixed and parental population(s) outside this region or 

introgressed alleles are largely restricted to the hybrid/contact zone. It is clear from 

the sampling in the present study (see Figure 4.14), as well as several other field 

studies (e.g., Ferrari et al., 1996, 2000; Monção et al., 2008; Quintino & Bicca-

Marques, 2013), that the geographic distributions of P. bernhardi and P. cinerascens 

are much broader than has been traditionally recognised (e.g., IUCN; Van Roosmalen 

et al., 2002). 

 Overall, this scenario is defensible in a biogeographic context and is 

concordant with the complex pattern of diversification among P. moloch group taxa in 

the Rondônia area of endemism suggested in the biogeographical reconstructions in 

Chapter 3. If the initial P. moloch group divergences were associated with Rio 

Roosevelt-Aripuanã such that the ancestor to the Aripuanã-Tapajós clade was 

restricted on the right bank to the northern part of Rondônia, the occurrence of P. 

cinerascens on left bank and upstream of the headwaters of the Rio Roosevelt-

Aripuanã may represent relatively recent range expansion associated with fluvial 

dynamics since the Late Pleistocene (e.g., Latrubesse, 2002) In this scenario, range 

expansion then led to secondary contact and hybridisation between these two species 

when P. cinerascens dispersed into the geographic distribution of P. bernhardi. Given 

that these individuals are much more closely related to P. cinerascens than P. 

bernhardi based on nuclear data, it is evident that they are not first generation 

hybrids, and thus, that at least some P. cinerascens x P. bernhardi individuals are 

fertile. This may suggest that many P. moloch group species have not attained 
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reproductive isolation and that gene flow between species is primarily restricted by 

geographical barriers such as the larger rivers across Amazonia.  

 The identification of these individuals as admixed is also important for 

phylogenetic inference; some of the topological incongruence recovered across these 

analyses could be related to the unknowing inclusion of the admixed lineage in each 

study as gene flow between species isn’t accounted for in concatenation or even most 

coalescent-based models. The effect of introgression on phylogenetic inference can be 

difficult to detect, however, sampling admixed individuals can have an impact on the 

order of species divergences and the timeline of diversification (Leaché et al., 2014b). 

Conducting some of the ddRADseq and multi-locus phylogenetic analyses again 

without the admixed P. cinerascens x P. bernhardi individuals may provide insight 

into their influence on phylogeny.  

4.6 Conclusions 

The quantity of data generated for the reduced representation ddRADseq data 

matrices represented a massive increase compared to the data generated for the multi-

locus phylogeny, which was previously the largest molecular dataset for Callicebinae 

and among the largest multi-locus datasets for any group of New World primates. 

Phylogenomic analyses recovered a strongly supported phylogeny which, along with 

the coalescent-based species tree based on multi-locus data, allowed the identification 

of two main conflicts among the P. moloch group taxa that are associated with short 

internal branches and are still considered unresolved. Overall, our results suggest that 

gene flow between species of the P. moloch group, as well as stochastic processes 

such as incomplete lineage sorting, present a challenge to the reconstruction of 

species relationships across this species group. Phylogenetic inference with the 

ddRADseq data using multispecies coalescent-based models will provide the most 

appropriate and reliable estimation of species relationships and divergence times. 

Coalescent-based species tree estimation methods using large genome-wide datasets 

are computationally intense which has limited their application in this study, however, 

they will likely become more broadly accessible as multispecies coalescent models 

become more advanced and diverse.    

 This study presents the first known application of the D-statistic test to assess 

introgression among New World primates, one of the only known cases where genetic 
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evidence has been presented regarding introgressive hybridisation between any New 

World primates lineages other than for the howler monkeys, and also, one of the only 

known cases of introgression involving monogamous primates. Increasing our 

understanding of the nature of introgression between these species is, therefore, also 

of broad interest to primatologists and of particular relevance to the study of 

Amazonian biogeography. 
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Chapter 5: General discussion 

 

A few decades of the “molecular revolution” had passed and titi monkeys had still not 

been the focus of any molecular phylogenetic study, in fact, the field of phylogenetics 

was already in the midst of a second revolution owing to next generation sequencing 

(McCormack et al., 2012) before this doctoral thesis had begun. Many primate 

species, in particular Hominidae, had assembled annotated genomes and genome-

wide data for many individuals (Marques-Bonet et al., 2009; Prado-Martinez et al., 

2013; Rogers & Gibbs, 2014), while the only available molecular data for 

Callicebinae was generated for high-level primate phylogenies and interpreting 

species relationships was hindered by a lack of taxonomic coverage (see Chapter 2, 

Perelman et al., 2011; Springer et al., 2012). When primate phylogenetic studies were 

already embracing the genomics era (e.g., Pecon-Slattery, 2014), the only species-

level phylogeny available for titi monkeys was Kobayashi’s (1995) morphological 

phylogenetic analysis. This doctoral thesis was borne out of the paucity of 

information regarding the evolutionary history of Callicebinae, as well as the 

availability of genetic material obtained through years of field expeditions conducted 

by Jean P. Boubli and many other primatologists across Brazil, without which this 

research would not have been possible.  

5.1 Main findings 

The goal of my doctoral thesis was to employ molecular data to provide insight into 

the evolutionary history and biogeography of Callicebinae, one of the most strikingly 

poorly studied and among the most species-rich groups of primates. To achieve this 

goal, large sequence data matrices were generated using multi-locus Sanger 

sequencing (20 nuclear and 2 mitochondrial loci) and reduced representation, 

genome-wide double-digest restriction-associated DNA sequencing (ddRADseq). In 

Chapter 2, we inferred phylogeny and diversification times using the multi-locus 

data and revised the taxonomy of Callicebinae based on molecular, morphological 

and biogeographic evidence. In Chapter 3, we employed a statistical biogeographical 

approach to perform ancestral-area estimations across the phylogeny of Callicebinae 
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based on time-calibrated trees inferred using the multi-locus data. In Chapter 4, we 

conducted phylogenetic analyses, assessed genetic structure and tested for 

interspecific gene flow using genome-wide ddRADseq data matrices, as well as 

performed coalescent-based species-tree estimation using the multi-locus sequences.   

 In Chapter 2, we assembled one of the largest multi-locus Sanger sequenced 

molecular datasets for any group of platyrrhine primates (22 loci, >14K bp in length; 

15 titi species, 59 specimens), reconstructed the first comprehensive species-level 

molecular phylogeny for Callicebinae, and provided the first molecular review of the 

subfamily. Our phylogenetic analyses (based on concatenated data matrices) clarified 

a number of issues on the taxonomic and phylogenetic relationships among the 

species. We provided evidence for an early divergence (late Miocene) of three major 

Callicebinae lineages, reconstructed a timeline for Callicebinae diversification, and 

inferred a well-supported phylogeny for all species included, with the exception of P. 

miltoni and P. cinerascens, which required further investigation. Based on new 

molecular evidence and well-established differences in morphology, karyology, and 

biogeography, we proposed a new genus-level taxonomy for titi monkeys: 

Cheracebus (Byrne et al., 2016) in the Orinoco, Negro and upper Amazon basins, 

Callicebus Thomas, 1903, in the Atlantic Forest and neighbouring Caatinga regions, 

and Plecturocebus (Byrne et al., 2016) in the Amazon basin and Chaco region. We 

also reviewed the taxonomic history for Callicebinae, suggested the reintegration of 

cupreus group species (sensu Kobayashi, 1995) into the moloch group, and 

questioned the designation of P. dubius (Hershkovitz, 1988) as a valid species. This 

work illustrates the value of considering molecular evidence in taxonomic 

classification, provides a basis for future studies on the evolutionary history and 

taxonomy of titis, and has opened a dialogue on other taxonomic issues that had been 

left unattended for quite some time. The new taxonomic proposal for Callicebinae 

brings concordance to the classification of genera across New World primates and 

better describes the great diversity of this poorly studied group. 

In Chapter 3, we provided the first known statistical biogeographical 

approach applied to reconstruct the biogeography of Callicebinae in an explicit 

phylogenetic framework. We recovered evidence for the divergence of titi monkey 

genera in the late Miocene via the fragmentation of a widespread ancestor distributed 

across the modern-day northwestern Amazon (Cheracebus), wet and dry savanna 

ecosystems (Plecturocebus), and Atlantic Forest (Callicebus). Our reconstruction 
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indicated that species-level diversification among the Amazonian clades initiated 

from a narrow area of origin (Napo, Cheracebus; Rondônia, P. moloch group), and 

was characterised by a sequential, long-distance dispersal model of speciation by 

“island-hopping” across pre-existing river barriers. These founder-events (jump 

dispersal) were sufficiently rare to allow diversification in isolation after dispersal, 

emphasising the role of major Amazonian rivers as strong barriers to gene flow 

among allopatric species, with notable comparisons to island biogeography. We 

uncovered a complex pattern of diversification among species of the P. moloch group, 

with a non-monophyletic assemblage of taxa endemic to Rondônia (area of 

endemism), suggesting that a complex history of river system evolution may have 

played an important role in driving historical distributions in this region. Our results 

are taken to suggest that the evolution of the Pebas system in the western Amazon 

may have influenced the diversification and distribution of extant Callicebinae 

lineages, which were absent from the western Amazon until the recession of these 

wetlands and the establishment of suitable forest habitat in the Pleistocene (“Young 

Amazon” model). This work comprises one of the first investigations of the 

evolutionary history of titi monkeys in the context of Amazonian and South American 

historical biogeography based on an explicit phylogenetic hypothesis, and sheds light 

on the processes that generated the great diversity found among Callicebinae taxa. 

Although this research provides only a large-scale reconstruction of callicebine 

biogeography and should be interpreted with caution, it represents a critical starting 

point for future research that aims to understand diversification within this subfamily. 

In Chapter 4, we propelled research on titi monkey evolutionary history into 

the phylogenomics era using double digest restriction-site associated DNA 

sequencing (ddRADseq) to generate reduced representation genome-wide molecular 

data for 12 Callicebinae species (45 specimens). This work is among the first 

phylogenomic analyses employing genome-wide data for any New World primate 

group. Here, we began to address more difficult questions regarding the phylogenetic 

relationships among the lineages, particularly among the species of the P. moloch 

group. The ddRADseq data matrices contained up to ~ 3K loci, with a maximum 

concatenated length of ~ 930K bp and up to ~ 15K parsimony informative sites; a 

massive leap in the quantity of data in comparison to all previous molecular studies 

on Callicebinae. Our ddRADseq phylogenetic analyses recovered a strongly 

supported topology (perfect support at all nodes in some analyses) for Callicebinae 
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with species of the P. moloch group divided into three major clades (Aripuanã-

Tapajós, Eastern, and Western clades). Although we advocate that the ddRADseq 

topology must be considered provisional until assessed using multispecies coalescent-

based analyses with genome-wide data, we consider it the most reliable estimate of 

the P. moloch group species relationships currently available. We provide evidence of 

introgressive hybridisation using D-statistic tests that is supported by mitochondrial 

introgression. Collectively, our results indicate that P. cinerascens individuals from 

the left bank of upstream Rio Roosevelt, Rondônia, are admixed with P. bernhardi, a 

significant discovery of broad interest to primatologists, specifically for research on 

New World primates given the lack of natural hybridising study systems. This 

research represents the first known application of the D-statistic test among New 

World primates, and one of the only known cases where genetic evidence has been 

presented regarding admixture between any New World primates other than howler 

monkeys. Finally, we discuss putative sources of topological incongruence across loci 

and across previous studies (analytical and biological, e.g., interspecific gene flow, 

incomplete lineage sorting), and the complicated nature of lineage diversification 

across the P. moloch group.  

Collectively, the chapters of this thesis provide a detailed picture of the 

evolutionary history of titi monkeys and add to our understanding of what makes the 

subfamily Callicebinae, the genera, and the many titi species unique. Within a few 

years, our knowledge of the evolutionary relationships among Callicebinae taxa has 

progressed rapidly, perhaps in a relatively manner unprecedented among New World 

primates; from species relationships based almost entirely upon Kobayashi’s (1995) 

morphological phylogeny, to phylogenetic hypotheses derived from multi-locus or 

genome-wide molecular datasets that are among the largest known for any New 

World primate group.  

5.2 Priorities and future directions 

Naturally, new questions arise and inconsistencies or gaps in our knowledge are made 

apparent as research delves deeper into the evolutionary history of titi monkeys. 

Below, I highlight other avenues of scientific enquiry and areas in need of further 

attention, some of which emerged in this dissertation and others are longstanding 

issues that require addressing.  
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Among the most crucial of priorities for molecular phylogenetic studies, and 

more generally, is to responsibly collect samples to generate molecular data for 

Callicebinae species with no sequence data currently available in order to reconstruct 

a fully comprehensive species-level phylogeny. This is particularly applicable to the 

Plecturocebus donacophilus group; P. donacophilus is the only member of this group 

with data available on GenBank. Perhaps the most intriguing species lacking 

molecular data is P. modestus, which was placed in its own species group and 

regarded as the most primitive titi monkey species by Hershkovitz (1988, 1990) 

owing to its unusual elongated skull. Several species are also only represented by 

mitochondrial data which is unreliable for both phylogenetic inference and species 

assignments, as highlighted in this dissertation. Furthermore, no known population 

genetics studies have been conducted on any titi species, and relatively few species 

have habituated study populations that are the focus of long-term established field 

projects, which are integral to our ability to collect non-invasive samples and genetic 

material for enough individuals to conduct such analyses. Genetic material for many 

species is limited to a handful of individuals, sometimes from the same locality, 

which severely hinders our understanding of their genetic diversity. Given the broad 

distribution of titi monkeys, developing field projects and expeditions, collecting 

samples, and generating molecular data for these species/lineages will require an 

international collaborative effort. Our understanding of the diversity and the 

evolutionary relationships among Callicebinae will remain glaringly incomplete until 

this is achieved. To obtain a more comprehensive picture of the evolutionary history 

of Callicebinae, test the various phylogenetic hypotheses constructed to date, and 

address more complex phylogenetic questions, species relationships and divergence 

times should also be estimated using multispecies coalescent-based models with 

genome-wide data (e.g., using genome wide SNPs with SNAPP; Bryant et al., 2012; 

see also Stange et al., 2017). 

 Explicit phylogenetic hypotheses are a necessary component of understanding 

the spatial patterns of diversification, and thus, the study of the biogeography of titis 

is also hindered by the absence of a species-level phylogeny for all described 

Callicebinae taxa. This is particularly important for the species of the P. donacophilus 

group given their unusual and disjunct geographic distributions, and above all, P. 

oenanthe in the Andean foothills of Peru. Future studies with increased taxonomic 

sampling and geographic delineations within each region will allow a more in-depth 
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investigation of the biogeographic history of Callicebinae, and is essential in order to 

test the biogeographic scenarios and diversification patterns recovered in this work. 

Of particular interest are studies with a focus on the biogeography of the P. moloch 

group to provide insight into the complex diversification dynamics within the 

Rondônia centre of endemism, the non-monophyletic assemblage of P. moloch group 

taxa found in this region, and secondary contact between P. cinerascens and P. 

bernhardi in southwestern Rondônia upstream of the Rio Roosevelt-Aripuanã, which 

elsewhere forms a barrier to gene flow between these species. More generally, this 

research is important to increase our understanding of the diversification of 

Amazonian biota given that similar patterns of shared lineages in Rondônia are 

observed in other vertebrate groups such as birds (Fernandes, 2013; Thom & Aleixo, 

2015) and lizards (Oliveira et al., 2016).  

 The identification of admixture between P. cinerascens and P. bernhardi 

warrants further investigation and additional molecular, phenotypic and distributional 

data are required to establish more information about the extent of gene flow between 

the two species. Field studies should initially focus on the region between the left 

bank of upstream Rio Roosevelt and the tributaries of the Rio Jiparaná (Rios Barão de 

Melgaço and Pimenta Bueno), where the P. cinerascens x P. bernhardi individuals 

were collected. Sampling more individuals from within this region and from the 

putative parental populations are required in order to assess; if hybridisation of the 

parental forms is ongoing; the distribution of the admixed individuals and extent of 

the hybrid zone; if the direction of introgression is biased i.e., only from P. bernhardi 

to P. cinerascens; and the spread of the introgressed alleles, i.e., whether gene flow is 

occurring between the admixed and parental population(s) outside this region or 

introgressed alleles are largely restricted to the hybrid/contact zone.  

For some species, clarifying the often contradictory taxonomic history is 

another challenging but necessary task. The long-term blanket use of C. torquatus to 

refer to all Cheracebus species has hindered our understanding of the lineage that C. 

torquatus now represents (see Hershkovitz, 1988), and the identity and geographic 

limits of this taxon requires attention. More generally, Callicebinae taxonomy would 

benefit from an integrative approach where all available data are considered (Padial et 

al., 2010; Zapata & Jiménez, 2012). It is generally accepted that species are separately 

evolving lineages of populations (de Queiroz, 1998; de Queiroz, 2007; Wiley, 1978; 

but see also Willis, 2017), with most conflict regarding the point at which you 
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distinguish species when divergence is continuous (Hey, 2006; Mallet, 2008). Given 

that the geographic distributions of Callicebinae taxa are typically delineated by 

rivers, and rivers throughout Amazonia appear to form barriers to gene flow to 

varying degrees, many titi species are expected to show hierarchical substructure 

(genetic and phenotypic variation) between smaller interfluves across their 

distribution, and this may also be exaggerated when sampling is scattered. If very 

small fixed geographically restricted phenotypic or genetic differences are the sole 

defining criterion for delimiting lineages (even at subspecific level), without 

considering the extent of divergence, then the number of Callicebinae taxa may 

increase dramatically. The full spectrum of diversity among Callicebinae, or any 

group of organisms, cannot be reflected in discrete units in a hierarchical 

classification system. Alternative taxonomic hypotheses should also be assessed in a 

statistical framework, for example, using coalescent-based species delimitation 

approaches (Fujita et al., 2012) such as Bayes Factor Delimitation of Species (*with 

genomic data; BFD*; Leaché et al., 2014a).  

Species-level taxonomic revisions are required for each of the genera, with 

updated information on species distributions to account for recent discoveries. It is 

evident that the limits to the distributions of many species are uncertain or unknown, 

and filling those gaps in our knowledge requires extensive field studies and 

collaborative research efforts. Plecturocebus bernhardi has now been recorded or 

collected between the Rios Jiparaná and Aripuanã-Roosevelt (original proposed 

distribution; Van Roosmalen et al., 2002), several localities along the left bank of the 

Jiparaná, and further south in the Guaporé Biological Reserve (both sampled here; see 

also Ferrari et al., 2000; Monção et al., 2008; Quintino & Bicca-Marques, 2013). The 

limits of the disparate P. bernhardi lineages recovered in this work are currently 

unknown. The sampling in this work as well as other studies (Ferrari et al., 1996, 

2000) also suggests that the known distribution of P. cinerascens should be extended, 

and in a similar manner, Dalponte et al. (2014) indicated that the newly described 

taxon, P. miltoni, occurs between the Rios Roosevelt and Aripuanã rather than P. 

cinerascens.  

In truth, I have already started working and collaborating on some of these 

topics, but that is a story for another day.  
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5.3 Final conclusions 

This doctoral thesis provides a fascinating picture of the evolutionary history of titi 

monkeys and represents a major contribution to our knowledge of the phylogenetic 

relationships among the lineages, and the timeline, spatial patterns and mode of 

diversification. The revised genus-level classification for Callicebinae brings 

concordance to the designation of genera across New World primates and more 

accurately reflects titi monkey evolutionary and biogeographic history, the 

hierarchical relationship between the major clades, and the previously 

underappreciated genetic diversity represented by the “titi monkey” moniker. 

Callicebine researchers across many fields have started adopting the new 

nomenclature and it has also triggered further discussion and scientific attention 

towards these primates (e.g., Allgas et al., 2017; Araújo et al., 2017; Martínez & 

Wallace, 2016; Serrano-Villavicencio et al., 2017).  

 Titis are as comparatively diverse as their sister clade, the Pitheciinae, which 

has long included three genera, yet, this diversity is rarely recognised. This is visually 

exemplified on the front cover of a collection of research on the family Pitheciidae by 

an image including four members of this group, but only one of these is a titi monkey 

(Veiga et al., 2013). I believe that a lack of insight into the great diversity found 

among titi monkeys has had implications well-beyond how we name and classify 

them, however, I am reassured by the seemingly renewed interest and increasing 

volume of research involving these enigmatic primates over the past number of years.  
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Appendix 1: Supplementary material for Chapter 2: Phylogenetic 

relationships of the New World titi monkeys (Callicebus): First 

appraisal of taxonomy based on molecular evidence 
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Table A1.1 List of sequence characteristics per locus including length, 

variation, and sample coverage. Site information and sample coverage 

represent Callicebus taxa only. 
 

Locus 
Length 

(bp)  

Constant 

sites 

Variable 

sites 

Parsimony 

informative 

sites 

Sample 

coverage 

bp % bp % bp % 
No. 

(53) 
% 

ABCA1 851 803 94.4 48 5.6 41 85.4 45 84.9 

ADORA3 402 393 97.8 9 2.2 8 88.9 51 96.2 

APP 702 691 98.4 11 1.4 4 36.4 52 98.1 

COI 660 498 75.5 162 24.5 141 87 45 84.9 

COI 660 488 73.9 172 26.1 142 82.6 47 88.7 

CREM 414 406 98.1 8 1.9 5 62.5 46 86.7 

CYTB 1140 850 74.6 290 25.4 244 84.1 47 88.7 

CYTB 1140 824 72.3 316 27.7 278 88 53 100 

DENND5A 705 680 96.5 25 3.5 18 72 48 90.6 

DMRT1 492 481 97.8 11 2.2 8 72.7 39 73.6 

ERC2 762 727 95.4 35 4.6 25 71.4 46 86.7 

FAM123B 711 691 97.2 20 2.8 15 75 41 77.4 

FES 456 430 94.3 26 5.7 21 80.8 52 98.1 

FOXP1 552 534 96.7 18 3.2 14 77.8 52 98.1 

MAPKAP1 639 630 98.6 9 1.4 9 100 51 96.2 

MBD5 531 524 98.7 7 1.3 4 57.1 53 100 

NEGR1 537 528 98.3 9 1.7 7 77.8 43 81.1 

NPAS3.2 585 563 96.2 22 3.8 18 81.8 50 94.3 

RAG1 1038 1002 96.5 36 3.5 24 66.7 44 83 

RAG2 675 652 96.6 23 3.4 16 69.6 46 86.7 

RPGRIP1 675 659 97.6 16 2.4 13 81.3 47 88.7 

SGMS1 582 573 98.5 9 1.5 6 66.7 47 88.7 

SIM1 632 619 97.9 13 2.1 6 46.2 52 98.1 

ZFX 837 801 95.7 36 4.3 31 86.1 42 79.2 



 

180 

Table A1.2 Partitioning schemes and substitution models selected by PartitionFinder. The selected 

partitioning schemes were implemented in RAxML v. 8.1, MrBayes 3.2.3 or BEAST v 1.8.1. Numbers 

in parentheses refer to codon position for exonic mitochondrial and nuclear sequences. 

Analysis  
Total 

partitions 

Partition 

number 
Model  Loci 

Nuclear Dataset 

RAxML 6 

1 GTR+G ABCA1 

2 GTR+G 
ADORA3 (1), APP, DMRT1, FAM123B (1), FAM123B (3), FOXP1, 
MAPKAP1, MBD5, NEGR1, RAG1 (1), RAG1 (3), RAG2 (1), RAG2 (2), 

RPGRIP1 (1), RPGRIP1 (2), SGMS1, SIM1 

3 GTR+G ADORA3 (2), CREM, DENND5A, FAM123B (2), FES, RPGRIP1 (3) 

4 GTR+G ADORA3 (3), ERC2, RAG2 (3), ZFX  

5 GTR+G NPAS3.2 

6 GTR+G RAG1 (2) 

MrBayes 5 

1 K80+G ABCA1, CREM, DENND5A, RAG1 (2) 

2 GTR+I 
ADORA3 (1), ADORA3 (3), APP, DMRT1, FOXP1, MAPKAP1, MBD5, 

NEGR1, RAG1 (1), RAG2 (2), RPGRIP1 (2), SGMS1, SIM1 

3 HKY+G ADORA3 (2), FAM123B (1), FAM123B (2), FES, RPGRIP1 (3) 

4 HKY+G ERC2, NPAS3.2, RAG2 (3), ZFX 

5 K80 FAM123B (3), RAG1 (3), RAG2 (1), RPGRIP1 (1) 

BEAST 6 

1 K80+G ABCA1, CREM, DENND5A, RAG1 (2) 

2 HKY+I ADORA3 (1), ADORA3 (3), APP, MAPKAP1, RPGRIP1 (2), SGMS1, SIM1 

3 HKY+G ADORA3 (2), FAM123B (1), FAM123B (2), FES, RPGRIP1 (3) 

4 HKY DMRT1, FOXP1, MBD5, NEGR1, RAG1 (1), RAG2 (2) 

5 HKY+G ERC2, NPAS3.2, RAG2 (3), ZFX 

6 K80 FAM123B (3), RAG1 (3), RAG2 (1), RPGRIP1 (1) 

Combined dataset 

RAxML 7 

1 GTR+G 
ABCA1, ADORA3 (3), CREM, CYTB (2), DENND5A, ERC2, RAG1 (2), 
RAG2 (3), ZFX 

2 GTR+G 
ADORA3 (1), APP, COI (2), DMRT1, FOXP1, MAPKAP1, MBD5, NEGR1, 

NPAS3.2, RAG1 (1), RAG2 (2), RPGRIP1 (2), SGMS1, SIM1 

3 GTR+G ADORA3 (2), FAM123B (2), FES, RPGRIP1 (3) 

4 GTR+G FAM123B (1), FAM123B (3), RAG1 (3), RAG2 (1), RPGRIP1 (1) 

5 GTR+G COI (1), CYTB (1) 

6 GTR+G COI (3) 

7 GTR+G CYTB (3) 

MrBayes 8 

1 K80+G ABCA1, CREM, DENND5A, RAG1 (2) 

2 GTR+I 
ADORA3 (1), ADORA3 (3), APP, DMRT1, FOXP1, MAPKAP1, MBD5, 

NEGR1, RAG1 (1), RAG2 (2), RPGRIP1 (2), SGMS1, SIM1 

3 HKY+G ADORA3 (2), FAM123B (1), FAM123B (2), FES 

4 HKY+G ERC2, NPAS3.2, ZFX 

5 K80 FAM123B (3), RAG1 (3), RAG2 (1), RPGRIP1 (1) 

6 HKY+I COI (2), CYTB (2), RAG2 (3), RPGRIP1 (3) 

7 K80+I COI (1), CYTB (1) 

8 GTR+I+G COI (3), CYTB (3) 

BEAST 9 

1 K80+G ABCA1, CREM, DENND5A, RAG1 (2), RPGRIP1 (2), RPGRIP1 (3) 

2 HKY+I ADORA3 (1), APP, COI (2) 

3 HKY+I ADORA3 (2), FAM123B (1), FAM123B (2), FES 

4 GTR+G ADORA3 (3), DMRT1, ERC2, FOXP1, NPAS3.2, ZFX 

5 K80+I FAM123B (3), RAG1 (3), RAG2 (1), RPGRIP1 (1) 

6 HKY+I MAPKAP1, MBD5, NEGR1, RAG1 (1), RAG2 (2), SGMS1, SIM1 

7 HKY+I CYTB (2), RAG2 (3)  

8 TrNef+G COI (1), CYTB (1) 

9 TrN+I+G COI (3), CYTB (3) 

Mitochondrial dataset 

RAxML 3 

1 GTR+G COI (1), CYTB (1) 

2 GTR+G COI (2), CYTB (2) 

3 GTR+G COI (3), CYTB (3) 

MrBayes 5 

1 K80+1 COI (1) 

2 F81 COI (2) 

3 GTR+G COI (3), CYTB (3) 

4 HKY+G CYTB (1) 

5 HKY+I CYTB (2) 
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Table A1.3 Divergence matrix for the cytochrome b locus for selected Callicebus species. Bold indicates distance values < 0.01. 

  

Species ID 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
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1 C. brunneus UFRO541 -                                 

2 C. brunneus 4019 0.008 -                               

3 C. brunneus 4346 0.005 0.004 -                             

4 C. brunneus 4505 0.005 0.004 0.000 -                           

5 C. brunneus 4009 0.005 0.004 0.000 0.000 -                         

6 C. caligatus CTGAM181 0.030 0.029 0.025 0.025 0.025 -                       

7 C. caligatus CTGAM182 0.028 0.029 0.025 0.025 0.025 0.002 -                     

8 C. caligatus MVR58 0.027 0.028 0.024 0.024 0.024 0.003 0.001 -                   

9 C. caligatus CCM248 0.029 0.028 0.024 0.024 0.024 0.001 0.001 0.002 -                 

10 C. dubius UFRO403 0.033 0.032 0.028 0.028 0.028 0.005 0.005 0.006 0.004 -               

11 C. dubius UFRO544 0.029 0.028 0.024 0.024 0.024 0.003 0.003 0.004 0.002 0.006 -             

12 C. cupreus (B) 4990 0.032 0.031 0.029 0.029 0.029 0.031 0.029 0.028 0.030 0.032 0.032 -           

13 C. cupreus (B) 4984 0.032 0.031 0.029 0.029 0.029 0.031 0.029 0.028 0.030 0.032 0.032 0.004 -         

14 C. cupreus (B) 4993 0.030 0.029 0.027 0.027 0.027 0.029 0.027 0.026 0.028 0.030 0.030 0.002 0.002 -       

15 C. cupreus (B) 4988 0.031 0.030 0.028 0.028 0.028 0.030 0.028 0.027 0.029 0.031 0.031 0.004 0.004 0.002 -     

16 C. cupreus (A) AAM15 0.035 0.036 0.034 0.034 0.034 0.036 0.034 0.033 0.035 0.037 0.037 0.018 0.018 0.016 0.018 -   

17 C. cupreus (A) CTGAM210 0.038 0.037 0.035 0.035 0.035 0.037 0.035 0.034 0.036 0.038 0.038 0.019 0.019 0.017 0.019 0.012 - 

18 C. cupreus (A) JLP15920 0.038 0.037 0.035 0.035 0.035 0.035 0.033 0.032 0.034 0.035 0.036 0.017 0.017 0.015 0.017 0.012 0.007 
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Figure A1.1 Maximum likelihood phylogeny inferred from the combined dataset. Node numbers 

represent nodes of interest listed in Table 2.9. 
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Figure A1.2 Bayesian phylogeny inferred from the combined dataset (MrBayes). Node numbers 

represent nodes of interest listed in Table 2.9. 
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Figure A1.3 Bayesian phylogeny inferred from the combined dataset (BEAST). Node numbers 

represent nodes of interest listed in Table 2.9, 2.10. 
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Figure A1.4 Maximum likelihood phylogeny inferred from the nuclear dataset. Node numbers 

represent nodes of interest listed in Table 2.9. 
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Figure A1.5 Bayesian phylogeny inferred from the nuclear dataset (MrBayes). Node numbers 

represent nodes of interest listed in Table 2.9. 
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Figure A1.6 Bayesian phylogeny inferred from the combined dataset (BEAST). Node numbers 

represent nodes of interest listed in Table 2.9, 2.10. 
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Figure A1.7 Maximum likelihood phylogeny inferred from the mitochondrial dataset. Node numbers 

represent nodes of interest listed in Table 2.9. 
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Figure A1.8 Bayesian phylogeny inferred from the mitochondrial dataset (MrBayes). Node numbers 

represent nodes of interest listed in Table 2.9. 
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Figure A1.9 BEAST time-calibrated phylogeny inferred from the combined dataset. Node bars 

indicate the 95% highest posterior density. Red numbers represent nodes of interest listed in Table 2.9, 

2.10.  
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Figure A1.10 BEAST time-calibrated phylogeny inferred from the nuclear dataset. Node bars indicate 

the 95% highest posterior density. Red numbers represent nodes of interest listed in Table 2.9, 2.10. 

 



 

192 

Appendix 2: Supplementary material for Chapter 3: Biogeography of 

the titi monkeys (Callicebinae)   
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 Figure A2.1 A time-calibrated phylogeny of Callicebinae with outgroups. Node bars indicate the 95% 

highest posterior density (HPDs). 
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Figure A2.2 DIVALIKE+J+X ancestral area reconstruction state probabilities. 
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Figure A2.3 DEC+J+X reconstruction of ancestral areas for Callicebinae.  
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Figure A2.4 DEC+J+X ancestral area reconstruction state probabilities. 
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Figure A2.5 DIVALIKE+J reconstruction of ancestral areas for Callicebinae.  
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Appendix 3: Supplementary material for Chapter 4: Phylogenomics 

of titi monkeys (Callicebinae) using ddRADseq data with a focus on 

the Plecturocebus moloch group 
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Table A3.1 Summary of the ddRADseq data assembly (92% clustering threshold): sequencing 

information per sample. 

Species Sample ID Reads 

Reads 

passed Clusters1 

Avg. 

depth1 

Cons. 

loci No. sites H2 

P. hoffmannsi CTGAM248 306337 151852 3626 16.72 3380 1001045 0.0030 

P. hoffmannsi CTGAM249 111856 55727 2701 12.49 2534 756042 0.0029 

P. hoffmannsi CTGAM290 102270 52813 2709 12.05 2515 750658 0.0029 

P. miltoni 42991 103221 52457 2521 12.05 2388 711329 0.0019 

P. miltoni 42992 26936 13386 774 7.43 702 210833 0.0020 

P. cinerascens UFRO352 273113 139449 3612 18.30 3385 996413 0.0030 

P. cinerascens UFRO354 340623 206741 4100 22.90 3898 1186116 0.0026 

P. cinerascens UFRO355 345291 184024 3320 15.51 3059 924006 0.0032 

P. cinerascens UFRO499 290049 175012 3905 21.36 3725 1139938 0.0023 

P. cinerascens WRS03 282987 178158 3981 21.91 3811 1164332 0.0024 

P. cinerascens WRS04 289893 174354 3801 21.68 3651 1112864 0.0024 

P. bernhardi 42961 54657 27783 1648 9.18 1514 452463 0.0020 

P. bernhardi 42964 162111 84364 3250 15.12 3053 907678 0.0022 

P. bernhardi UFRO413 276283 133737 2271 11.88 2088 615852 0.0023 

P. bernhardi CCM173 38910 20194 992 8.21 891 263922 0.0025 

P. cf. moloch RVR73 131902 66449 2766 13.33 2598 774822 0.0012 

P. moloch CTGAM420 150107 73122 2833 12.85 2641 794610 0.0014 

P. moloch CTGAM421 253243 120890 3426 17.61 3216 949606 0.0015 

P. brunneus 4505 136376 68082 2819 13.68 2650 785664 0.0019 

P. brunneus UFRO327 403145 199843 2869 13.16 2637 770095 0.0021 

P. brunneus UFRO541 58000 29213 1624 10.20 1508 451519 0.0021 

P. cupreus AAM15 239043 119942 3759 16.38 3505 1035099 0.0017 

P. cupreus JLP15920 165045 85552 3224 15.01 3047 904992 0.0023 

P. cupreus CTGAM210 53988 25065 710 6.81 626 177410 0.0016 

P. cupreus 4987 126201 60676 2569 12.93 2411 717087 0.0018 

P. cupreus 4988 39680 19363 1190 8.35 1087 325986 0.0021 

P. cupreus 4990 146403 75103 2902 13.28 2734 813133 0.0019 

P. c. caligatus CTGAM181 73412 33052 776 7.13 695 196204 0.0022 

P. c. caligatus CTGAM182 203884 104355 3385 16.15 3182 942583 0.0025 

P. c. caligatus CCM248 64071 30994 1858 9.65 1705 510282 0.0023 

P. c. caligatus MVR58 241597 118306 3523 16.31 3295 969515 0.0021 

P. c. dubius UFRO403 252706 124259 3383 16.34 3180 940994 0.0024 

P. c. dubius UFRO427 134817 62740 1253 8.91 1141 321840 0.0023 

P. c. dubius UFRO544 107090 47568 1944 11.83 1820 544637 0.0023 

P. c. dubius 2804 127611 63963 2795 12.84 2626 779391 0.0023 

C. personatus 2466 13162 6331 156 7.32 135 40451 0.0025 

C. lugens JPB160 85568 41459 1143 7.80 1048 296484 0.0018 

C. lugens JPB161 111957 51591 1065 8.42 966 270817 0.0017 

C. lugens JPB81 160013 78654 3080 14.39 2892 860491 0.0016 

C. lugens CTGAM733 101580 46833 2242 10.29 2061 630121 0.0018 

C. lucifer CTGAM703 50854 24646 1451 8.51 1326 411845 0.0024 

C. lucifer CTGAM726 47586 24161 1512 8.65 1405 421313 0.0026 

C. purinus CTGAM154 29785 13879 750 6.99 666 206696 0.0023 

C. purinus CTGAM195 82079 37058 997 7.58 902 255596 0.0020 

C. purinus CTGAM209 173405 86094 3108 15.00 2941 871620 0.0019 

Pithecia mittermeieri CTGAM215 49088 22116 1079 8.19 989 306427 0.0011 

Cacajao ayresi 5667 75721 35587 1181 8.01 1069 302724 0.0009 

Cacajao calvus 5241 109827 52274 1056 8.39 975 273653 0.0010 

Cacajao hosomi 5698 94259 44687 1243 8.78 1146 323431 0.0009 

Cacajao 
melanocephalus 0065 75938 35650 1025 7.83 937 264654 0.0012 

Chiropotes albinasus CTGAM213 82121 38938 1026 8.02 941 265761 0.0012 

Chiropotes israelita 5713 105778 50461 1355 8.69 1263 356047 0.0014 

Chiropotes sagalatus CTGAM515 96369 45135 1188 8.41 1069 301732 0.0019 
1After excluding loci with depth <5 

       2 Heterozygosity measured as the proportion of called sites 
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Table A3.2 Pairwise genetic distances between individuals of the Western clade. 

Species Sample ID 4505 UFRO327 UFRO541 CCM248 CTGAM182 MVR58 UFRO403 UFRO544 2804 AAM15 JLP15920 4987 4988 

P. brunneus 4505 --                         

P. brunneus UFRO327 0.0013 --                       

P. brunneus UFRO541 0.0012 0.0013 --                     

P. c. caligatus CCM248 0.0020 0.0019 0.0021 --                   

P. c. caligatus CTGAM182 0.0021 0.0018 0.0020 0.0013 --                 

P. c. caligatus MVR58 0.0021 0.0019 0.0023 0.0012 0.0011 --               

P. c. dubius UFRO403 0.0019 0.0017 0.0020 0.0015 0.0011 0.0012 --             

P. c. dubius UFRO544 0.0021 0.0021 0.0020 0.0016 0.0014 0.0015 0.0014 --           

P. cupreus (A) 2804 0.0019 0.0019 0.0021 0.0015 0.0013 0.0014 0.0011 0.0013 --         

P. cupreus (A) AAM15 0.0022 0.0021 0.0025 0.0020 0.0018 0.0019 0.0016 0.0020 0.0018 --       

P. cupreus (A) JLP15920 0.0021 0.0020 0.0022 0.0018 0.0016 0.0018 0.0014 0.0019 0.0016 0.0012 --     

P. cupreus (B) 4987 0.0021 0.0020 0.0024 0.0018 0.0017 0.0019 0.0015 0.0018 0.0017 0.0014 0.0012 --   

P. cupreus (B) 4988 0.0022 0.0021 0.0022 0.0019 0.0020 0.0021 0.0019 0.0019 0.0019 0.0017 0.0014 0.0012 -- 

P. cupreus (B) 4990 0.0022 0.0021 0.0022 0.0019 0.0017 0.0018 0.0014 0.0018 0.0017 0.0014 0.0012 0.0010 0.0010 
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Table A3.3 Additional four-taxon D-statistic tests among Western clade taxa. 

P1 taxon P2 taxon P3 taxon Range Z Sign./total No. loci 

P. c. caligatus P. c. dubius P. brunneus 0.0 - 1.7 0/26  78 - 566 

P. c. caligatus P. c. dubius P. cupreus 0.0 - 3.6 0/44  97 - 558 

P. cupreus (A) P. cupreus (B) P. c. dubius 0.0 - 2.4 0/17  62 - 577 

P. cupreus (A) P. cupreus (B) P. c. caligatus 0.1 - 1.3 0/17  71 - 555 

P. cupreus (A) P. cupreus (B) P. brunneus 0.0 - 2.5 0/17  80 - 584 
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Table A3.4 Pairwise genetic distances between individuals of the Eastern and Aripuanã-Tapajós clades. Red indicates distances between P. bernhardi and admixed 

P. cinerascens individuals. 

Species Sample ID CTGAM420 CTGAM421 RVR73 CCM173 UFRO413 42961 42964 UFRO352 UFRO354 UFRO355 UFRO499 

P. moloch CTGAM420 --                     

P. moloch CTGAM421 0.0008 --                   

P. cf. moloch RVR73 0.0021 0.0021 --                 

P. bernhardi CCM173 0.0029 0.0030 0.0027 --               

P. bernhardi UFRO413 0.0027 0.0027 0.0027 0.0023 --             

P. bernhardi (A) 42961 0.0031 0.0033 0.0029 0.0024 0.0025 --           

P. bernhardi (A) 42964 0.0027 0.0029 0.0028 0.0021 0.0020 0.0014 --         

P. cinerascens (B) UFRO352 0.0033 0.0032 0.0033 0.0028 0.0024 0.0027 0.0025 --       

P. cinerascens (B) UFRO354 0.0036 0.0037 0.0036 0.0032 0.0029 0.0035 0.0031 0.0008 --     

P. cinerascens (B) UFRO355 0.0034 0.0036 0.0036 0.0030 0.0023 0.0030 0.0027 0.0011 0.0009 --   

P. cinerascens (A) UFRO499 0.0040 0.0039 0.0040 0.0033 0.0034 0.0037 0.0035 0.0014 0.0012 0.0014 -- 

P. cinerascens (A) WRS03 0.0040 0.0040 0.0040 0.0034 0.0034 0.0036 0.0035 0.0015 0.0013 0.0016 0.0013 

P. cinerascens (A) WRS04 0.0039 0.0041 0.0040 0.0035 0.0034 0.0038 0.0035 0.0015 0.0014 0.0015 0.0014 

P. miltoni 42991 0.0043 0.0043 0.0042 0.0038 0.0037 0.0039 0.0038 0.0029 0.0030 0.0033 0.0032 

P. miltoni 42992 0.0046 0.0045 0.0044 0.0036 0.0038 0.0038 0.0041 0.0029 0.0032 0.0032 0.0032 

P. hoffmannsi CTGAM248 0.0042 0.0042 0.0044 0.0042 0.0038 0.0041 0.0038 0.0031 0.0033 0.0032 0.0035 

P. hoffmannsi CTGAM249 0.0042 0.0042 0.0041 0.0037 0.0037 0.0039 0.0037 0.0032 0.0033 0.0034 0.0035 

P. hoffmannsi CTGAM290 0.0040 0.0041 0.0041 0.0034 0.0035 0.0038 0.0037 0.0033 0.0033 0.0033 0.0034 

Species Sample ID WRS03 WRS04 42991 42992 CTGAM248 CTGAM249 

     
P. cinerascens (A) WRS03 --           

     
P. cinerascens (A) WRS04 0.0011 --         

     
P. miltoni 42991 0.0031 0.0032 --       

     
P. miltoni 42992 0.0034 0.0033 0.0011 --     

     
P. hoffmannsi CTGAM248 0.0033 0.0034 0.0040 0.0044 --   

     
P. hoffmannsi CTGAM249 0.0033 0.0035 0.0035 0.0038 0.0009 -- 
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Figure A3.1 Bayesian tree inferred with the ddRADseq A92 dataset. 
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Figure A3.2 Maximum likelihood tree inferred with the ddRADseq A92 dataset. 
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Figure A3.3 Bayesian tree inferred with the ddRADseq A85 dataset. 
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Figure A3.4 Maximum likelihood tree inferred with the ddRADseq A85 dataset. 
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Figure A3.5 Bayesian tree inferred with the ddRADseq PD85 dataset. 
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Figure A3.6 Maximum likelihood tree inferred with the ddRADseq PD85 dataset. 
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Figure A3.7 Bayesian tree inferred with the ddRADseq B85 dataset. 
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Figure A3.8 Maximum likelihood tree inferred with the ddRADseq B85 dataset. 
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Figure A3.9 A time-calibrated phylogeny for Callicebinae with outgroups inferred with the ddRADseq 

B85 dataset. All nodes received full support (PP = 1.00). Node bars indicate the 95% highest posterior 

density (HPD). 
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Figure A3.10 A time-calibrated coalescent-based species tree for Callicebinae with outgroups inferred 

with multi-locus data using StarBEAST2. Unmarked nodes received full support (PP = 1.00), the node 

marked with a black circle received significant support (PP = 0.95), while the nodes marked with white 

circles were recovered without significant support (PP < 0.95). Node bars indicate the 95% highest 

posterior density (HPD).  
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