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Title 

The effects of transverse rotation angle on compression and effective lever arm of 

prosthetic feet during simulated stance. 
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Abstract 

Background and Aim: Unlike sagittal plane prosthesis alignment, few studies have 

observed the effects of transverse plane alignment on gait and prosthesis behaviour. 

Changes in transverse plane rotation angle will rotate the points of loading on the 

prosthesis during stance and may alter its mechanical behaviour. This study observed 

the effects of increasing the external transverse plane rotation angle, or toe-out, on 

foot compression and effective lever arm of three commonly prescribed prosthetic feet. 

Technique: The roll-over shape of a SACH, Flex, and single-axis foot was measured at 

four external rotation angle conditions (0°, 5°, 7°, and 12° relative to neutral). 

Differences in foot compression between conditions were measured as average 

distance between roll-over shapes. 

Discussion: Increasing the transverse plane rotation angle did not affect foot 

compression. However, it did affect the effective lever arm, which was maximised with 

the 5° condition, although differences between conditions were small. 

Word Count: 148 

 

Clinical Relevance 

Increasing the transverse plane rotation angle of prosthetic feet by up to 12° beyond 

neutral has minimal effects on their mechanical behaviour in the plane of walking 

progression during weight-bearing. 

Word Count: 30 
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Background and Aim 

Aligning trans-tibial prostheses is central to achieving stable, cosmetically acceptable 

and energy efficient amputee gait1,2. The majority of alignment studies, both in-vivo1 

and in-silico3,4, have investigated the effects of sagittal plane alignment on gait 

biomechanics. However, transverse plane alignment, in particular transverse plane 

rotation or toe-out, has received relatively little attention. Although prosthetists 

consider clinical transverse plane rotation to be acceptable within quite a large range 

of angles (12°)2, standard clinical transverse plane rotation is commonly defined by 

aligning the foot’s medial border with the line of walking progression. This results in an 

external rotation angle (ERA) of approximately 7°, an angle measured between the 

line of walking progression and the foot axis (a line connecting the midpoint of the end 

of the heel to the point between the distal ends of the second and third toe)5. 

 

Fridman et al.6 reported an association between excessive external foot rotation of 18 

to 36° beyond ‘optimal’ alignment and reduced stance time symmetry in unilateral 

trans-tibial amputees. Others reported that additional 6° external rotation beyond 

standard alignment increased maximum flexion and total work of the sound side knee7 

and hip8 during early stance phase, which they believed was due to reduced energy 

generation during prosthetic side push-off. Additionally, despite changes to the centre 

of pressure progression during late stance phase9 and medial-lateral forces under the 

prosthetic foot10, as well as reduced prosthetic side single support time6-8, little change 
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in prosthetic side joint dynamics were observed in unilateral trans-tibial amputees 

when ERA was increased to 6° beyond standard alignment7,8. 

 

Despite the ability of lower-limb amputees to accommodate a range of transverse 

plane rotation angles, deviations from the standard alignment generates changes in 

gait parameters on both the prosthetic and sound sides. This is as expected, 

considering that transverse plane rotation determines the sagittal plane foot lever arm 

during the stance phase of able-bodied individuals11, and the same should theoretically 

apply to amputees. This may explain the reported gait changes following changes in 

transverse plane rotation. However, it is unclear why there is minimal change in 

prosthetic side joint dynamics, which may be due to compensatory mechanisms 

employed by the user or aspects of experimental protocol, such as non-

standardisation of prosthetic feet amongst subjects or selection of tested ERAs7,8. 

 

Due to the inconclusive results of the above studies, information on changes to the 

mechanical behaviour of prosthetic feet (i.e., foot compression and lever arm) due to 

transverse plane rotation may provide additional insight, particularly for establishing 

guidelines for clinicians when aligning prostheses. Therefore, the purpose of this study 

was to measure the mechanical behaviour, independent of the amputee so as to 

eliminate confounding variables produced by compensatory gait mechanisms, of three 

commonly prescribed prosthetic feet during simulated stance phase at several ERAs. 

Based on previous studies of able-bodied individuals and prosthesis users, it was 
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assumed that the effective lever arm will increase to a maximum at a certain ERA and 

decrease beyond that angle. 

 

Technique 

Three prosthetic feet were tested: a SACH foot (1S49, Otto Bock, Duderstadt, 

Germany), Flex foot (Assure, Össur, Reykjavik, Iceland) and single-axis foot (1H32, 

Otto Bock). The amputee-independent mechanical behaviour of each foot was 

characterised with the roll-over shape (ROS) model using a pylon-based local 

reference frame12 (Figure 1), and measured at four ERAs: 0°, 5°, 7°, and 12°, which 

are within the reported range of ERAs prescribed during clinical prosthesis 

alignment2,5. Five ROS measurements were taken at each ERA using a motion 

capture system and a custom loading device (Figure 1). 

 

Insert Figure 1 

 

The prosthetic foot lever arm was determined from the ‘Effective Foot Length Ratio’ 

(EFLR)13, defined as the ratio of the sagittal plane distance between the posterior end 

of the foot and the anterior end of the ROS relative to the total foot length. EFLR data 

normality was assessed with the Shapiro-Wilk test, and within-foot statistical 

differences were analysed using a one-way ANOVA with Bonferroni adjustment for 

multiple comparisons (α=0.05) within SPSS version 13.0 (IBM, Armonk, NY). 
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Differences in foot compression were analysed through a process of: 1) resampling 

each ROS to 100 points using a spline function in Matlab (Mathworks, Natick, MA); 2) 

calculating the average ROS for each ERA condition; and 3) calculating the distance 

between each corresponding point along two ROSs (d) and averaging over all 100 

points14. Thus, the average distance (AveD) between two shapes S1 and S2 in the 

local reference frame (x-y) is calculated as follows: 
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where k is the number of ROS points, S1xi and S2xi are the x-coordinates of the ith 

point, and S1yi and S2yi are the y-coordinates of the ith point for shapes S1 and S2, 

respectively. ROSs are considered more identical (i.e., similar level of foot 

compression) as AveD approaches zero. Each successive ROS point corresponds 

approximately to a particular pylon angle as each ROS was estimated over the same 

range of pylon angles and at the same angular velocity. So each di is the distance 

between corresponding ROS points, which is not necessarily the shortest distance 

between the curves.  

 

Discussion 

Referring to Figure 2, no noticeable differences were observed in ROS geometry 

between ERA conditions for all feet and the maximum AveD between all conditions 
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was 3, 3 and 2 millimetres for the SACH, Flex and single-axis foot, respectively. These 

differences are relatively small compared to the total foot compression under load 

(Figure 2a). Therefore, the foot’s normal, sagittal plane stiffness corresponding to the 

plantar surface points of loading during stance phase are similar across conditions. 

This indicates that the amount of energy absorption and return is not greatly affected 

by ERA, which is contrary to the suggestion that increased total work of the sound side 

knee and hip results from reduced energy generation during prosthetic side push-off7,8. 

 

Insert Figure 2 

 

In support of our hypothesis, the EFLR of all feet increased due to increasing ERA, 

reaching a maximum EFLR at 5°, a reduced EFLR at 7° and a minimum at 12° (Table 

1). As with able-bodied individuals, external rotation increases the lever arm by 

aligning the longitudinal axis of the big toe with the plane of walking progression11, 

whereby further external rotation subsequently decreases the lever arm. If the goal of 

prosthesis alignment is to achieve a maximum anterior lever arm, then the prosthetic 

foot should be rotated externally to approximately 5° from neutral. However, the 

greatest change observed in lever arm (i.e., difference between the 5° and 12° 

condition) was only 5 and 3 millimetres or 3 and 2% of the ROS length for the SACH 

and single-axis foot, respectively, indicating that ERA up to 12° had no profound 

effects on the lever arm and hence may have no clinical significance. This may be true 

in the sagittal plane, but changes in ERA may have clinical significance in the coronal 
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plane as it could be linked to progressive knee osteoarthritis. For example, increasing 

the ERA decreases external knee adduction moments15-18 in non-amputee gait, 

thereby decreasing the load on the medial compartment of the knee and hence 

progression of medial knee osteoarthritis19-21, but this will in turn increase the load on 

the lateral compartment16. Changing the prosthetic foot ERA may therefore also have 

implications for amputee gait and could be exploited as a way to minimise prosthetic 

side knee joint stress for amputees with progressive knee osteoarthritis. However, 

additional studies need to confirm that such relationships apply to amputee gait.  

 

Insert Table 1 

 

Presumably, the EFLR will continue to decrease with increased ERA beyond 12° and 

this might explain findings of previous studies. Hansen et al.22 found a relationship 

between reduced prosthetic foot EFLR (from 82 to 62%) and reduced step length of 

the sound side, and believe this is a result of the shorter lever arms producing a ‘drop-

off’ effect, meaning rapid prosthetic side unloading during late stance phase. This 

‘drop-off’ effect would presumably reduce stance phase time of the prosthetic side, 

which was indeed observed in a previous study when the prosthetic foot was 

externally rotated 18° to 36° beyond the standard alignment6. In turn, an external 

rotation of 6° beyond standard alignment had no effect on prosthetic side stance 

time7,8. 
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The results from this study might explain why previous studies reported minimal 

change in prosthetic side joint dynamics7,8, as there was minimal change in the 

mechanical behaviour of the three prosthetic feet during weight-bearing resulting from 

changes in ERA. Prosthetists may then be confident that external rotation up to 12° 

will not noticeably compromise foot function or profoundly affect prosthetic side 

dynamics. However, external foot rotation may still affect shear forces applied to the 

residuum, as an externally rotated foot might cause the socket to rotate externally 

during push-off, thus potentially causing discomfort and tissue damage, whereby this 

should be further investigated. 

 

One limitation of this study is that only three prosthetic feet were tested, whereby a 

greater number of different designs would likely produce different results. However, the 

selection was felt to encompass designs of the most commonly used passive feet. 

Another limitation is that the chosen feet were, for safety of the custom loading device 

operators, loaded at only half the body weight of a typical male, which may explain 

why the EFLR values are greater than those published on similar feet13. However, this 

was considered appropriate, because the primary objective of this study was to 

compare within-foot differences of their mechanical behaviour. Additionally, the 

approximated linear force-displacement behaviour of prosthetic keels under quasi-

static loads in previous mechanical characterisation studies12,23-25 would indicate that 

the relationship between ERA and EFLR demonstrated in this study would hold for 

other effective loads. 
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Key Points 

Changes in external rotation of the three prosthetic feet, which were tested within the 

range of typical ERAs, did: 

 Not noticeably change the overall compression and prosthetic foot lever arm; 

 Increase the effective lever arm up to 5° of external rotation beyond neutral and 

decrease with further external rotation. 

 

Word Count: 1640 (Background and Aim – Key Points) 
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Figure 1. Schematic illustration of the custom loading device. A constant vertical load 

of 400 Newtons is applied via weights as the custom loading device operators slowly 

rotate the prosthetic foot within the sagittal plane (13±4 °/second to minimise time-

dependent effects on foot compression) through the approximate range of forward 

progression experienced by the tibia during normal gait (-20° to 30°). ROS was 

estimated by transforming the instantaneous centre of pressure (calculated from the 

force and moment data from a load-cell (JR3 Inc, Woodland, CA) and marker motion 

data (Vicon Ltd, Oxford, UK)) from the laboratory (global) reference frame to the 

prosthesis pylon-based (local) reference frame (origin at the centre of the distal end of 

the pylon with local x-axis and y-axis always aligned with the plane of simulated 

walking progression and longitudinal axis of the pylon, respectively)12. Motion and 

kinetic data were sampled at 100 Hz and filtered using a Butterworth low-pass filter at 

6 and 5 Hz cut-off frequency, respectively.
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Figure 2. Average ROSs for the SACH foot (0° = solid line, 5° = dash line, 7° = dot 

line, 12° = dash-dot line), displayed with foot outline (a) and as a zoomed-in section 

representative of greatest deviation between ROSs (b). 

a) 
 
 
 
 
 
 
 
 
 
 
 

b) 
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Table 1. Prosthesis EFLR for each ERA condition. Only statistically significant 

differences are noted. 

 

ERA (°) 
EFLR (%) 

SACH foot Flex foot Single-axis foot 

0 86.4 94.4 84.6 

5 87.0 94.4 85.2 

7 85.5 94.1 84.3 

12 84.7 92.8 83.6 

Statistical 
Significance 

0° & 12° (p<0.001) 
5° & 12° (p<0.001) 
7° & 12° (p=0.039) 
0° & 7° (p=0.017) 
5° & 7° (p<0.001) 

0° & 12° (p<0.001) 
5° & 12° (p<0.001) 
7° & 12° (p<0.001) 
0° & 7° (p=0.032) 
5° & 7° (p=0.020) 

0° & 12° (p=0.007) 
5° & 12° (p<0.001) 
5° & 7° (p=0.014) 

 


