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In this paper, we introduce a new class of association rules (ARs) named
“Multi-Relation Association Rules” which in contrast to primitive ARs (that
are usually extracted from multi-relational databases), each rule item consists
of one entity and several relations. These relations indicate indirect relationship
between entities. Consider the following Multi-Relation Association Rule where
the first item consists of three relations live in, nearby and humid: “Those who

live in a place which is near by a city with humid climate type and also are

younger than 20 — their health condition is good”. A new algorithm called
MRAR is proposed to extract such rules from directed graphs with labeled

edges which are constructed from RDBMSs or semantic web data. Also, the

question “how to convert RDBMS data or semantic web data to a directed graph

with labeled edges?” is answered. In order to evaluate the proposed algorithm,

some experiments are performed on a sample dataset and also a real-world drug

semantic web dataset. Obtained results confirm the ability of the proposed

algorithm in mining Multi-Relation Association Rules.

© 2014 JComSec. All rights reserved.

1 Introduction

In KDD process, the problem of finding frequent pat-
terns and association rules (ARs) has been studied in
different settings. The association rules mining (ARM)
problem has gained considerable interest among the
researchers as one of the most important data mining
components due to its usage in everyday life. One of
the ARM goals is to find frequent patterns from exist-
ing data. These patterns show what items occur more
frequently with each other. Employing these patterns,
the desired ARs would be generated. Each AR shows
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that if some items or events occur together, some other
specific items or events will also occur with a certain
probability which is known as confidence.

The problem of mining association rules focuses on
discovery episodes in a sequence of events [1, 2], us-
ing the hierarchies of items type, search for sequential
patterns in the collection of transactions [3—5] and
etc. In these cases, the required language to discover a
patterns is more complex than market-basket applica-
tions and hence specialized algorithms exist for these
tasks. ARM studies also have evolved from techniques
for discovery of functional dependencies [6, 7], causal
rules [8, 9], classification rules [10, 11], strong rules
[12], clustering rules [13, 14], etc. to tabular-based
[L5—17] or graph-based [5, 18-20] efficient methods for
ARM in large sets of transaction data.
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Each AR has one antecedent part and one conse-
quent part where each part consists of one or more
items. Current ARM algorithms generate primitive
ARs consisting of only one entity and at most, one
relation. For example the following rules are primitive
rules:

e Apple, Tomato — Cucumber, {C = 0.78}
e Buy(Apple), Buy(Tomato) —
Buy(Cucumber), {C = 0.78}
o AgeYoungerThan(20), MaritalState(Single),
FatherSalaryMore Than(20008) —
GraduatelnYears(4), {C = 0.78}

In these rules, italic words are relations and bold
words and numbers are entities. The first and the sec-
ond rules indicate that “Those who buy apple and buy
tomato — they also buy cucumber, with probability of
78%”. The last rule indicates that: “Those who are
younger than 20 and are bachelor and also their fa-
thers’ salary is more than 20008 — they are graduated
in 4 years, with probability of 78%”. There are 3 items
in the antecedent part of this rule and there is only
one in the consequent part with each item having only
one relation. In this example, Age YoungerThan(20) is
an item and Age YoungerThan, MaritalState, Father-
SalaryMore Than and GraduatelnYears are relations
of the entities “20”, “Bachelor”, “2000$” and “4”
respectively.

In this paper, a novel algorithm is proposed to ex-
tract Multi-Relation Association Rules from RDBMS
and semantic web data. These rules are a new class
of ARs with more than one relation in each item of
each rule. These new rules allow discovering indirect
relationships among entities. For example, consider
the following rule:

o Liveln(NearTo(Climate Type(Humid))),
AgeLessThan(20) — HealthCondition(Good),
(C=0.78)

This rule indicates that “Those who live in a place
which is near to a city with humid climate type and
also are younger than 20 — they have a good health
condition, with probability of 78%”. There are 3 rela-
tions in the first item of the antecedent part of this
rule. Details about Multi-Relation Association Rules
are addressed later in Section 2.3.

To the best of our knowledge, this is the first paper
that introduces this new class of ARs and proposes
a new algorithm to solve the problem. The proposed
algorithm receives a directed graph with labeled edges
as input data (these labels differ to edge’s weight)
and recursively traverses the graph to extract Multi-
Relation Association Rules. The input graph is a spe-
cial graph that the source vertices indicate entities,
the destination vertices indicate other entities or val-
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ues of an attribute of the source entity (source vertex),
and each edge indicates a relation between two enti-
ties or an attribute of the source entity. Any dataset
convertible to this graph can be employed by the algo-
rithm. Such data structure also makes it possible to
extract ARs from heterogeneous data. Heterogeneous
data, are those data that their entities (with same
type or different types) can take different attributes.
The input dataset could be heterogeneous semantic
web data or existing data in relational databases that
in both cases, data should be converted to a directed
graph with labeled edges. In this paper these types of
datasets and also how they are converted to directed
graphs with labeled edges are discussed.

To clarify the task of converting RDBMS and seman-
tic web data to a suitable directed graph with labeled
edges and also the problem of mining Multi- Relation
Association Rules, a simple and overt example will be
shown. Finally, to evaluate the proposed algorithm
behavior and also to prove its ability in mining Multi-
Relation Association Rules, several experiments have
been done on a real-world drugs dataset. The obtained
results show the usefulness of the proposed algorithm
and its ability in mining Multi- Relation Association
Rules from datasets convertible to directed graphs
with labeled edges.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes the concepts of association
rules, semantic web and Multi- Relation Association
Rules. Section 3 introduces a number of related work.
Section 4 investigates two different kinds of input
dataset, RDBMS and semantic web data, and shows
how to convert them to a directed graph with labeled
edges. Section 5 contains the general methodology
and foundations of the proposed method addition to
the related concepts and data structures. Section 77
presents the proposed algorithms pseudo code in detail.
Section 7 shows an example to clarify the proposed
algorithm and the employed data structures concepts.
Section 8 gives the experimental evaluations and de-
scribes the obtained results and finally the Section 9
concludes the paper and offers some future work.

2 Basic Concepts

This section briefly describes Association Rules, Se-
mantic Web and Multi-Relation Association Rules
concepts which are related to our work.

2.1 Association Rules

Frequent item set mining and association rules induc-
tion are powerful methods for so-called market bas-
ket analysis, which aims at finding regularities in the
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co-occurred items, such as sold products, prescript
biomedical drugs and etc. The problem of mining as-
sociation rules was first introduced in 1993 [15]. Let
us denote each item with I;, thus I = {I1, Is,, I, }
is set of all items which sometimes called the item
base. Each transaction T; is a subset of I and based on
transactions we define database as collection of trans-
actions denoted by D = {T1,T5,,T,}. Based on this
definition each transaction contains only items and
there is only one relation among items (e.g. bought
together) and thus this relation is not shown in the
transaction. Each itemset (S) is a non-empty subset
of I and an association rule (R) is a rule in the form
of X — Y which both X and Y are itemsets and
the relation among items is implicit. This rule means
that if in a transaction the itemset X occurs, with
certain probability the itemset Y will appears in the
same transaction too. We call this probability as con-
fidence and call X as rule antecedent and Y as rule
consequent.

e Support of an Item Set

The absolute support of the itemset S is the number
of transactions in D that contain S. Likewise, the
relative support of S is the fraction (or percentage) of
the transactions in D which contain S.

More formally, let S be an item set and U the
collection of all transactions in D that contain all
items in S. Then

Supabs (S) = ‘U|

Sup, (5) = ([U]/|D]) * 100%

For brevity we call Sup,..; (S) as Sup (S).
e Confidence of an Association Rule

The confidence of an association rule R =X — Y
is the support of the set of all items that appear in
the rule divided by the support of the antecedent of
the rule. That is,

Conf (R) = (Sup({X UY?}) /Sup (X)) * 100%

Rules are reported as association rules if their confi-
dence reaches or exceeds a given lower limit (minimum
confidence, to be specified by a user).

e Support of an Association Rule

As mentioned in [15, 16], the support of the rule is
the (absolute or relative) number of cases in which
the rule is correct. For example in the association rule
R: A, B — C, the support of R is equal to support
of {A, B, C}.

e Frequent Itemsets

Itemsets with greater support than a certain thresh-
old, so-called minimum support are frequent itemsets.
The goal of frequent itemset mining is to find all fre-
quent itemsets.

e Maximal Itemsets

A frequent itemset is called maximal if no superset is
frequent, that is, has a support exceeding the minimum
support.

e Items structure

In this paper, if there is only one relation between
items (such as bought together) each item is equal to
an entity (such as beard, cheese and etc.), otherwise
if there are different relations among items, each item
not only is equal to an entity but also it is equal to an
entity and one relation. Figure 1 shows two kinds of
Item Structure.

Item Structure

There are multi types of relations

Item Structure
Entity

There is one type of relation

Figure 1. Item Structure

2.2 Semantic Web

Semantic web data is one of the employed data sources
in this papers. Hence in this part some concepts of
semantic web are described briefly.

The Semantic Web (or Web of Data), sometimes
called the third generation of the Web, emerges in
distinction to the traditional web of documents. The
goal of the Semantic Web is to standardize web page
formats so that the data becomes machine readable.
This data is described by ontologies. A well-known
definition by T.R.Gruber in 1995 is ” An ontology is an
explicit specification of a conceptualization” [21]. The
main purpose of the semantic web is to be machine
readable so this feature needs to make entities mean-
ingful and also describe entities by standard methods.

In order to describe entities, some means of entity
representation and entity storing are needed. There are
several methods for representing and storing semantic
web data. The first method is RDF ! which is based
on XML structure. XML is a powerful standard and
also is flexible for transmitting structured data. In
fact, the RDF documents are descriptions of semantic
web data so this data becomes machine readable. Each
RDF statement is a triple and each triple consists of
three parts: subject, predicate and object. Subjects and
predicates are resources that are identified by URI.

1 Resource Description Framework
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Objects can be resources and shown by URI or can be
constant values (literals) and represented as strings. In
each triple, one relation or typed link exists between
either two resources or between one resource and one
literal. A similar concept to the URL is the IRI, which
has been introduced to represent non-Latin text items
in order to internationalize DBPedia [22].

RDFS is an extension of RDF which allows to define
entities over classes, subclasses and properties. Hence
it is possible to apply some inference rules on these
RDFS structure entities.

Due to RDF and RDFS limitations the OWL? has
been introduced which has more powers of deduction.
OWL, which is based on DAML? and OIL [23], is
the most well-known language that applies descrip-
tion logic to the semantic web data. The first version
of this language has three versions, OWL Lite, OWL
DL and OWL Full, which differ in expressive ability
and deductive power. This language also allows tran-
sitive, symmetric, functional and cardinality relations
between entities.

These three OWL flavors (Lite/DL/Full) are a bit
old-fashioned. New profiles have been designed as
OWL2 [24]. OWL 2 profiles are defined by placing
restrictions on the structure of OWL 2 ontologies. Syn-
tactic restrictions can be specified by modifying the
grammar of the functional-style syntax and possibly
giving additional global restrictions. OWL 2 has three
subsets (EL, QL and RL). OWL 2 EL is particularly
useful in applications employing ontologies that con-
tain very large numbers of properties and/or classes
and has polynomial time reasoning complexity with
respect to the size of the ontology. OWL 2 QL is aimed
at applications that use very large volumes of instance
data, and where query answering is the most impor-
tant reasoning task. This profile is designed to enable
easier access and query to data stored in databases.
OWL 2 RL is aimed at applications that require scal-
able reasoning without sacrificing too much expres-
sive power. It is designed to accommodate OWL 2
applications that can trade the full expressivity of the
language for efficiency, as well as RDF(S) applications
that need some added expressivity.

As with traditional databases, which in order to re-
trieve information, need an endpoint language (SQL),
semantic web datasets need such a language too. For
this purpose, the SPARQL* [25, 26] language has
been introduced which is able to extract information
and knowledge from semantic web datasets. DBPedia
[27] is an example of a semantic web dataset. SPARQL

2 Ontology Web Language
3 http://www.daml.org/
4 http:// www.w3.org/TR/rdf-sparql-query/
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can be used to express queries across diverse data
sources, whether the data is stored natively as RDF
or viewed as RDF via middleware. SPARQL has ca-
pabilities for querying required and optional graph
patterns along with their conjunctions and disjunc-
tions. SPARQL also supports extensible queries based
on RDF graphs. The results of SPARQL queries can
be presented as result sets or RDF graphs.

In addition to RDF, semantic web data can be
stored in different kinds of dataset formats, such as
Turtle, Jason, NTriples, and etc. Regardless to dataset
format, it is possible to extract data from datasets
with different format and ontologies by SPARQL com-
mands and convert the extracted data to a directed
graph with labeled edges which is the standard input
dataset of the proposed algorithm.

2.3 Multi-Relation Association Rules

As mentioned in Section 2.1, antecedent part and
consequent part of ARs are constructed of itemset.
Each itemset consists of one or more items. In the
simplest form, each item contains only one entity and
has no relation (in fact relations are implicit). These
simple items are extracted from those datasets that
has only one type relation among entities and thus
this relation does not being put in items. For example
consider a market basket analyze problem that there is
only “buy together” relation among items. These data
are usually stored in a table of relational databases.
The following rule is a primitive AR that has been
extracted from a supermarket data and has only one
“buy together” relation that this relation is not shown
in the rule.

Bread, Cheese — Cucumber, {C = 0.78}

This rule indicates: “Those customers who buy Bread
and Cheese, may also buy Cucumber with probability
78%7. In order to extract Multi-Relation Association
Rules, this kind of data are not usable, since more
than one type relation among items is required.

There is another form of ARs that each item consists
of one entity and one relation. The image of such
item has been depicted in the right side of Figure 1.
These items can be discovered from those datasets that
have more than one type of relation among entities.
Relational databases, heterogeneous semantic web
data or graph structured data are the most important
data sources of such data. For example, in the following
rule, each item has one entity and one relation. This
rule means “Those who are younger than 20 and are
bachelor and also the salary of their father is more than
2000% — they are graduated in 4 years, with probability
78%”.
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Figure 2. An example of a directed graph with labeled edges

o AgeYoungerThan(20), MaritalState(Bachelor),
FatherSalaryMoreThan(20008) —
GraduateInYears(4) , {C = 0.78}

In the scientific societies, those rules that are ex-
tracted from multiple tables (multiple relation in rela-
tional databases) are referred to as “Multi Relational
Association Rules” [28-31] and means “those rules
that are extracted from multiple tables (multiple rela-
tions)” not “those rules that have several relations in
their items”.

Here we define “Multi-Relation Association Rules”
as “those rules that have more than one relation in at
least one of their items”. For example in the following
rule, there are three relations in the first item and
means “those who live in a place which is near to a city
with humid climate type and also are younger than 20,
they have a good health condition, with probability
of 78%":

e Liveln(NearTo (Climate Type(Humid))),
AgeLessThan(20) — HealthCondition(Good)

In this paper a new algorithm named MRAR has
been proposed to extract Multi-Relation Association
Rules from directed graphs with labeled edges. This
graph is constructed from various data sources, such
as RDBMS or semantic web data. In order to extract
these rules, regardless to the type of input dataset, the
input data should be converted to a directed graph
with labeled edges in a way that source vertices in-
dicate entities, destination vertices indicate other en-
tities or values of an attribute of the source entity
(source vertex), and edges indicate relations between
two entities or indicate an attribute of the source en-
tity.

In order to clarify the problem, consider the pre-
sented graph in Figure 2.

Table 1 shows the meaning of Figure 2 entities.

Now we define “primitive rules” as those rules that
have at most one relation in each item. By traversing
and mining the graph presented in Figure 2, these
primitive rules would be extracted:

(1) Those who Live in Isfahan — Study in IUT
too {Ali, Ahmad}

(2) Those who Study in TUT — are Supervised By
Saraee too {Ali, Ahmad}

In these primitive rules, each item has only one
relation. Such as Live in and Study in. In these rules,
italic words indicate relations and bold words indicate
entities.

Consider the following Multi- Relation Association
Rules that have been extracted from the graph pre-
sented in Figure 2:

(3) Those who their Health Condition is Good —
they Live In a place Near by a city which its
Climate Type is Humid {Hasan and Reza}

Those who Study in IUT — they are Supervised
By a person who is Cooperator with another per-
son who Works on a project which its Patronage
is MIT University. {Reza, Ali and Ahmad}

Those who Live in Isfahan — they are Super-
vised By a person who is Cooperator with an-
other person who Works on a project which its
Patronage is MIT University. {Ali and Ahmad}

(4)

(®)

In these rules, there is more than one relation in at
least one item.

And also if we add (Hasan Knows Ali) and (Reza
Knows Ahmad) to the graph presented in Figure 2,
the following rules would be generated too.

(6) Those who their Health Condition is Good —
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Table 1. Meaning of graph example entities

Entity

Meaning

Tehran, Shiraz, Isfahan, Yazd, Kerman City

Reza, Nematbakhsh, Saraece, Hasan, Ali, Ahmad | Person

IUT, MIT

University

they Know people who are Supervised By a
person who is Cooperator with another person
who Works on a project which its Patronage is
MIT University. {Hasan and Reza}

(7) Those who Live In a place Near by a city which
its Climate Type is Humid — they Know peo-
ple who are Supervised By a person who is Co-
operator with another person who Works on a
project which its Patronage is MIT University.
{Hasan and Reza}

As rules #3 to #7 show, in at least one item, there
is more than one relation. Also the rule #3 can be
rewritten in this form:

e HealthCondition(Good) —
LiveIn(Near( Climate Type(Humid)))

In a similar way, the rule #7 can be rewritten in
the below form:

o Liveln(Near(Climate Type(Humid))) —
Know(Supervised By ( Cooperator(
WorksOn( Patronage(MIT))))

3 Related Work

In the past years many machine-learning algorithms
have been applied to traditional datasets successfully
in order to discover useful and previously unknown
knowledge and patterns. Although these machine
learning algorithms are useful, in contrast to our pro-
posed algorithm they are not able to extract ARs with
multiple relations.

The ARM problem as first introduced in [15, 32]
has goal to find frequent itemsets and to generate
primitive and simple ARs. Nowadays there are many
ARM algorithms which can work with traditional
datasets [33-35]. These algorithms are classified into
two main categories: Apriori based [16, 36] and FP-
Tree based [18-20]. FP-Tree based approaches extract
ARs from graph structured data by using frequent sub-
graph and frequent sub-tree techniques [18, 37]. The
logic behind these algorithms is based on identifying
repeated sub graphs in the entire graph. Although this
is an interesting approach but it is not appropriate for
our work, because these algorithms do not consider
relations among entities and also in our proposed
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scheme, each entity is not replicated in the entire
graph more than once.

ARM problem has different settings. The most
related work to our problem are categorized into
three groups: multi-level ARM methods, several rela-
tional database based methods and semantic web data
based methods. Among these three settings, multi-
level ARM is the most similar problem to the problem
of Mining Multi- Relation Association Rules.

The problem of mining multi-level association rules
was first introduced in [38]. Many studies on ARM
find rules at single concept level. Mining association
rules at multiple concept levels may lead to the dis-
covery of more specific and concrete knowledge from
data and often carry more specific and concrete in-
formation than primitive ARs. Mining multi-level as-
sociation rules uses concept hierarchies, also called
taxonomies and defined as relations of type ’is-a’ be-
tween objects, to extract rules whose items belong to
different levels of abstraction. There are applications
which need to find associations at multiple concept
levels. For example, besides finding “80% of customers
that purchase milk, may also purchase bread”, it also
could be informative to show that “75% of people buy
wheat bread if they buy 2% milk” or even “75% of peo-
ple buy Dairyland 2% milk if they buy Wonder wheat
bread”. To discover multi-level association rules, one
needs to provide data at multiple levels of abstraction,
and also provide efficient methods for multiple-level
rule mining. Figure 3 shows an example of items tax-
onomy [38]. Hierarchy levels can be conceptual and
attribute based or can be time/place based [39].

Nowadays there are many algorithms and variations
for mining multi-level ARs that almost all of them
are based on data hierarchy and tree structure with
different settings [40, 41]. For instance, [42] proposes
a fast and an efficient algorithm (SC-BF Multilevel)
with single scan of database for mining multi-level as-
sociation rules in large databases to finding maximum
frequent itemset at lower level of abstraction. Similar
to primitive ARs, in multiple-level ARs, datasets can
be extracted in a way that only positive and negative
rules are extracted [30] or only rules related to special
items are extracted [13, 44]. These rules can be re-
stricted to the concepts at same level of a hierarchy or
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Old Mills

food

Wonder

Figure 3. A taxonomy for the relevant data items [38]

at multiple concept level to extract level-crossing asso-
ciation rules. This items hierarchy can also be used to
extract multi-level association rules from previously
generated primitive association rules [45].

Multi-level association rules are different to Multi-
Relation Association Rules in the sense that in multi-
level association rules, in rules’ items, there is only
one relation but there are more than one entities that
are derived from data hierarchy. Thus, the proposed
algorithms for mining multi-level association rules are
not applicable to mining Multi- Relation Association
Rules.

Studies for AR discovery in Multi-Relational Data
Mining [15, 46] are rooted in the field of Inductive
Logic Programming (ILP) [47]. In ILP both relational
data and relational patterns are expressed in first-
order logic and the logical notions of generality order
and of the downward/upward refinement operator
on the space of patterns are used to define both the
search space and the search strategy. WMRAR [28)]
and its variants [29] are the most popular approaches
that use ILP to extract ARs. However, with larger
search spaces and more complex evaluation of a single
candidate pattern, these approaches are inherently
computation-wise and thus efficient methods such as
[18] could be used.

There are many other works on mining ARs from
relational databases that are not rely on ILP. Some
works use SQL commands to extract ARs [19]. In these
work instead of frequent itemsets, frequent queries
are used where a query support is the number of tu-
ples that it returns [50]. Other works use other algo-
rithms or use extended SQL to extract ARs [51, 52].
Some improvements on query based ARM techniques
have been proposed in [53, 54]. In fact all these work
hoard data from multiple relations (tables) by differ-
ent queries and based on the relations among queries,

launch to discover ARs with at most one relation in
each item. For example, the following rules are ex-
tracted from a multi-relational database [28] (likes,
has and prefers are database tables):

e likes(KID, piglet), likes(KID, ice-cream) —
likes(KID, dolphin)
e likes(KID, A), has(KID, B) — prefers(KID, A,B)

In many ARM researches, the researchers work on
data with tabular structure. In [36, 55, 56] a number
of methods have been introduced that receive data
in graph structure and extract ARs from these data.
Unfortunately, these works are not suitable for our
problem since they find only maximal frequent item-
sets instead of all frequent itemsets and also, like other
ARM algorithms, do not consider relations among en-
tities and generate ARs with at most one relation in
each item.

A transaction in a database typically consists of
transaction identifier, customer identifier, transaction
date (or transaction time), and the items purchased to-
gether in the transaction. In semantic web data there
is no exact definition of transactions and traditional
ARM algorithms are not able to extract ARs from
semantic web data directly. In [57], an algorithm has
been introduced to extract association rules from se-
mantic web data through mining patterns following an
extended SPARQL syntax provided by the end user.
In fact, this work converts semantic web data into
traditional transactions and then employs traditional
algorithms to extract primitive and simple ARs.

Asmentioned earlier in section 2.2, in RDF structure
each data statement is called a triple and is identified
by three values: subject, predicate and object. In order
to generate transactions, it is possible to use one of
these three values to group transactions (transaction
identifier) and use one of the remaining values as
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transaction items. Six different combinations of these
values along with their usage are shown in Table 2
[58]. For example, grouping triples by predicates and
using objects for generating transactions has usage in
clustering. This approach has two drawbacks. First, it
extracts primitive and simple ARs not Multi- Relation
Association Rules, and also it eliminates one part of
triples parts and does not consider it in mining process.

Table 2. Combinations of triple parts [58]

Row | Context | Target | Use Case
1 Subject | Predicate| Schema discovery
2 Subject | Object | Basket analysis
3 | Predicate| Subject | Clustering
4 | Predicate| Object | Range discovery
5 Object Subject | Topical clustering
6 Object | Predicate| Schema matching

Linked Data is an effort to implement semantic
web data. There are a number of methods to extract
ARs from linked data [59, 60]. The first one is based
on transactions and extracts primitive ARs in a way
that the items of the generated rules do not have any
relation. The second one considers the input data as
a directed graph with labeled edges and regardless to
transactions concept, extracts primitive ARs in a way
that the items of the generated rules consist of one
entity and one relation.

All of the above work have a common feature: the
generated rules do not have several relations in their
items. To the best of our knowledge, this paper is
the first work that introduce the problem of Multi-
Relation Association Rules and proposes an algorithm
to solve it.

4 Data Sources

The proposed algorithm receives the required data as
a directed graph with labeled edges like the presented
graph in Figure 2, in a way that vertices identify enti-
ties or values and edges identify a relation between cor-
responding vertices. It then extracts frequent itemsets
by traversing the input graph recursively. The input
dataset can be in different structures, such as rela-
tional databases or heterogeneous semantic web data,
which should be converted to the mentioned graph.

In this section, we will show how relational
databases and semantic web data are converted to
the required format of the proposed algorithm which
is a directed graph with labeled edges. Next sections
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present the proposed algorithms and related data
structures.

4.1 Relational Databases

Relational database refers to those databases that
data are distributed over several tables (schemes) and
there are some relations among them.

We define a new concept named “Copulative Entity”
which refers to those entities which have edges in the
input graph from some entities and also have edges to
some other entities. In order to extract Multi- Relation
Association Rules, the existence of such copulative
entities is essential. In relational databases, copulative
entities are those entities that are stored in a table
and have primary key (independent entities) and also
their key is used in other tables as foreign key of other
entities. In our approach, each table describes at most
one type of copulative entity (e.g. Persons) and the
name of fields construct edges between the copulative
entity and the value of the field. For example, in Table 4
there are some information about “Kerman” and
also in Table 3 “Kerman” is the value of attribute
Live in of entity “Reza”. In fact, “Kerman” is a
primary key in Table 4 and a foreign key in Table 3
and hence it is a copulative entity. As another example,
in Table 3 which describes persons, “Nematbakhsh”
is a copulative entity, because it has a primary key
and also its key is the foreign key of attribute Knows
of entity “Saraee” at the same table.

In the proposed algorithm, the existence of copula-
tive entities is crucial. Because they act as median ver-
tices (connector) between adjacent edges (relations)
in the input graph and if they do not exist, mining
Multi- Relation Association Rules is impossible.

The process of converting a relational database to
a directed graph with labeled edges is as simple as
follows: first, for each copulative entity, a vertex is
constructed. Afterwards, for each attribute of each
copulative entity, an edge is made out from the corre-
sponding vertex. Finally, the value of attribute con-
structs the target vertex of the edge and the name of
the attribute constructs the label of the edge. If the
value of the attribute is a copulative entity (foreign
key), the edge is connected to the vertex correspond-
ing to that copulative entity.

For example, consider data depicted in Table 3 to
Table 5. In these tables, the underlined attributes
stand for copulative entities. These tables are equiva-
lent to the graph presented in Figure 2.
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Table 3. Example of persons

Health Study .. Supervised Work
Person Condition in Live in By Cooperator On Knows
Hasan Good Null Yazd Null Null Null Null
Reza Good IUT Kerman Saraee Null Null Hasan
Ali Null IuT Isfahan Saraee Null Null Ahmad
Ahmad Null IuT Isfahan | Nematbakhsh Null Null Null
Saraee Null Null Kerman Null Mr A Null Nematbakhsh
Nematbakhsh Null Null Isfahan Null Mr B Null Mr A
Mr A Null Null Shiraz Null Null Project A Null
Mr B Null Null Null Null Null Project B | Nematbakhsh
Table 4. Example of cities The conversion of semantic web data to an appro-
priate directed graph with labeled edges is very simple
City Climate Type | Near and straightforward. The subject and object parts of
Yazd Null Teh triples construct graph vertices and predicates con-
az v ehran struct graph edges to connect corresponding subject to
Kerman Null Shiraz corresponding object. The result of converting seman-
) tic web data presented in Table 6 to a directed graph
Tehran Humid Null with labeled edges, has been depicted in Figure 2.
Shiraz Humid Null

5 Methodology, Concepts and Data

Table 5. Example of projects Structures

Project Patronage In this section, the proposed methodology for solving

Project A MIT the problem .of mining Multi-Relation Association
Rules along with related concepts and data structures

Project B MIT are discussed in detail.

Project B IUT

4.2 Semantic Web Data

As mentioned earlier in Section 2.2, each instance of
semantic web data would has a subject-predicate-object
format. These data are stored in files with different
syntaxes. Regardless to the syntax of semantic web
data, they can be extracted by SPARQL commands

and be shown in simple subject-predicate-object format.

Suppose the semantic web data of Table 6 which are
in triple format.

In semantic web data, copulative entities are those
entities that are laid in both subject and object parts,
hence in this paper only those semantic web data are
suitable to be used that some entities are appear in
subjects of some triples and also in objects of some
other triples too. For example, in the data presented
in Table 6 “Saraee” is a copulative entity, because
it is located in both subject and object parts.

5.1 Problem Description

In this section, some details and concepts related to
the Multi-Relation Association Rules are presented.

As rules #3 to #7 in Section 2.3 show, in Multi-
Relation Association Rules only median relations
and endpoint entities are shown and median en-
tities are not shown.

For example, consider rule #3 which indicates
“Those who their Health Condition is Good — they
Live In a place Near by a city which its Climate Type
is Humid {Hasan and Reza}”. Figure 4 is a sub-
graph of Figure 2 and also is the data source of rule #3.
In Figure 4, Humid and Good are endpoint enti-
ties; Liveln, Near, ClimateType and HealthCondition
are median relations; Yazd, Tehran, Shiraz and
Kerman are median entities (copulative enti-
ties) and finally Hasan and Reza are the entities
which satisfy rule #3. As mentioned before, in Multi-
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Table 6. Example of semantic web data in triple format

Subject Predicate Object
Hasan Health Condition Good
Hasan Live in Yazd
Reza Health Condition Good
Reza Live in Kerman
Reza Study in IuT
Reza Supervised By Saraee
Reza Knows Hasan

Ali Study in uT

Ali Live in Isfahan
Ali Supervised By Saraee
Ali Knows Ahmad

Ahmad Study in IUT
Ahmad Live in Isfahan
Ahmad Supervised By | Nematbakhsh
Saraee Cooperator Mr A
Saraee Live in Kerman

Nematbakhsh Cooperator Mr B
Nematbakhsh Knows Mr A
Nematbakhsh Live in Isfahan
Mr A Work On Project A
Mr A Live in Shiraz
Mr B Work On Project A
Mr B Knows Nematbakhsh
Yazd Near Tehran

Kerman Near Shiraz
Tehran Climate Type Humid
Shiraz Climate Type Humid

Project A Patronage MIT

Project B Patronage MIT

Project B Patronage IUT

Relation Association Rules, only median relations and
endpoint entities are shown and median entities are
not shown. Hence in rule #3, entities Yazd, Kerman,
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Tehran and Shiraz are not shown, because they are
median entities and only endpoint entities Humid
and Good along with median relations Liveln, Near,
Climate Type and HealthCondition are shown.

e Rule #3: HealthCondition(Good) —
Liveln(Near( Climate Type(Humid)))

In the proposed algorithms, endpoint entities differ
to conventional sink entities. In each iteration of the
main algorithm, endpoint entities change and are
become the entities where the process of extracting
ItemChains is started from. As it will be stated later,
the algorithm GenerateltemChains for each vertex
is called only once. By calling GenerateltemChain
on a vertex, that vertex becomes an endpoint entity
(vertex). For example, in graph Figure 2 even if an
edge is made out from the entity Humid to the entity
IUT; by calling algorithm GenerateltemChain on
entity Humid, this entity still remains as an endpoint
entity even though it has a relation to another entity.

Each ItemChain is a set of entities that are con-
nected to an endpoint entity with common relations.
Details of data structures will be discussed later.

5.2 Working Process

The proposed algorithm is in fact an extended version
of Apriori algorithm which extracts Multi-Relation
Association Rules from directed graphs with labeled
edges. As mentioned earlier, in the proposed problem,
there are different relations among entities that must
be considered in the mining process. Also the input
data are heterogeneous and there are no exact defini-
tions of transactions and hence the Apriori algorithm
must be changed so that it does not need transactions
and would also generate rules with several relations
from heterogeneous data. For this purpose, the pro-
posed algorithm regardless of the concept of transac-
tions and by considering relations among entities, after
generating ItemChains generates 2-Large ItemChains
and feeds them to the extended Apriori algorithm to
generate Larger ItemChains. Finally, Multi- Relation
Association Rules are generated from L-Large Item-
Chains (L > 2).

Figure 5 shows the workflow of the mining Multi-
Relation Association Rules process.

5.3 ItemChains

ItemChain is a new and important concept which
is employed in this paper. Each ItemChain shows
that a set of entities are connected to an endpoint
entity via common relations. For example, in Figure 4
{Hasan and Reza} construct an ItemChain, because
the entities Hasan and Reza are both connected to
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Figure 5. The Workflow of Mining Multi-Relation Association Rules

the endpoint entity Humid through relations Liveln,
Near and Climate Type. Each ItemChain includes a list
of connected entities (LOE), a list of median relations
(LOR), an endpoint entity and the support value of
the ItemChain. In fact, the concept ItemChain is
equivalent to the concept Itemset in Apriori algorithm.

Figure 6 shows the structure of ItemChain. Consider
rule #3 in Section 2.3 whose data source has been
depicted in Figure 4. The consequent part of this rule
is an ItemChain:

e “Those who Liveln a place Near by a city which
its Climate Type is Humid” {Hasan and Reza}

This ItemChain contains these parts:

e ChainID: a numerical ID for identifying Item-
Chain. This number starts incrementally from 1.

e List of Entities (LOE): a set of entities which
are connected to the endpoint entity with com-
mon relations (LOR). In the above example,
Hasan and Reza are laid in this part.

e List of Relations (LOR): a set of relations
which connect several entities (LOE) to the end-
point entity. In above example, Live in, Near and
Climate Type are laid in this part.

e Endpoint Entity: identifies an endpoint entity
which several entities (LOE) are indirectly con-
nected to it through common relations (LOR). In
above example Humid is an endpoint entity.

e Support: the frequency rate of ItemChain. That
is what percent of entities are connected to the
endpoint entity via LOR. This value is equivalent
to the number of LOE part’s entities divided
by the number of entire graph entities. In above

2

example, Support = 5.

5.4 2-Large ItemChain

The second step of mining Multi- Relation Association
Rules is to generate 2-Large ItemChains from the
extracted ItemChains. Two ItemChains that their
LOE parts have many common entities are combined
to generate a 2-ItemChain. A 2-ItemChain is large
when the intersection count of LOE parts of its two
ItemChains is equal to or greater than the predefined
minimum support value (MinSup) that means these
two ItemChains are co-occurred abundantly.

In order to generate 2-Large ItemChains, the pro-
posed algorithm compares all extracted ItemChains
two by two and adds those two Item Chains which their
LOE parts intersection count is equal to or greater
than MinSup value, to the LargeltemChains list. In
order to store L-Large ItemChains (L > 2), a data
structure is employed that its image is depicted in
Figure 7.
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ChainlD

List Of Entities (LOE) | List Of Relations (LOR)

Endpoint Entity = Support

Figure 6. ItemChain Structure

‘ ChainID ‘ ‘ ChainID H ChainID ‘ Intersection Count | Support
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|
List of ChainIDs (LOC)
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Figure 7. Large ItemChaitn Structure

5.5 Larger ItemChains

Apriori algorithm generates a (L+1)-candidate itemset
by combining two L-large itemsets that their L-1 first
items are equal and then makes a candidate itemset
with length L+1 [16]. A candidate itemset is large
when its occurrence is equal to or greater than MinSup
value.

In our approach, each L-Large ItemChain has L
ChainIDs in its LOC part (see Figure 7). In order to
generate (L+1)-Large ItemChains, the proposed al-
gorithm employs those two L-Large ItemChains that
their L-1 first ChainIDs of LOC parts are equal. For
example suppose {1, 2} and {1, 3} are LOC parts of
two 2-Large ItemChains. Combining {1, 2} and {1, 3}
results {1, 2, 3} as LOC part of a new 3-ItemChains. If
ItemChains with ChainID 1, 2 and 3 have many com-
mon entities in their LOE part, these three ItemChains
construct a new 3-Large ItemChains. Also suppose {1,
2,3} and {1, 2, 5} are LOC parts of two 3-Large Item-
Chains. Combining {1, 2, 3} and {1, 2, 5} results {1,
2,3, 5} as LOC part of a new 4-ItemChains. Similarly
if ItemChains with ChainID 1, 2, 3 and 5 have many
common entities in their LOE part, these four Item-
Chains make a new 4-Large ItemChains. Inter bracket
numbers indicate ChainIDs in LOC part. Generating
larger ItemChains is continued until generating new
candidate ItemChains is not possible.

The image of an L-Large ItemChain (L > 2) is
depicted in Figure 7

Each Large ItemChain has three parts:

e List of ChainIDs (LOC): ChainIDs of Item-
Chains that have many common entities.

e Intersection Count: the intersection count
of LOFE parts of those ItemChains that their
ChainlIDs are laid in the LOC part.

e Support: the frequency rate of this Large Item-
Chain which is accounted by this formula:

Intersection Count of LOE Parts
Entire Graph Entities Count

Support =
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5.6 Association Rules

Finally the proposed algorithm generates Multi-
Relation Association Rules by employing Large
ItemChains. Each generated rule includes several
ItemChain and each ItemChain contains one or more
relations in LOR part. The algorithm generates rules
with only one ItemChain in the consequent part. The
logic behind this work is that usually the number
of generated rules is enormous, thus with only one
item in the consequent part, this number would be
reduced. Additionally when complex rules are gener-
ated (rules with several items in the consequent part)
it is hard to use them in the real world applications.
Finally generated rules with confidence equal to or
greater than predefined confidence value (MinConf)
are marked as Multi-Relation Association Rules.

Multi- Relation Association Rules are generated by
using Large ItemChains in a way that one ChainlD
of LOC part makes consequent part and the rest
ChainIDs make antecedent part of the rule. For each
Large ItemChain this process is repeated until each
ChainlID is laid in the consequent part once.

Figure 8 shows the structure of a Multi-RRelation
Association Rule.

Each Multi-Relation Association Rule consists of
these fields:

(1) Antecedent: list of ItemChains as antecedent
(2) Consequent: an ItemChain as consequent
(3) Rule Confidence value

(4) Rule Support value

Rule confidence is equal to the intersection count
of existing entities in the LOE parts of all Item Chains
in the whole rule divided by the intersection count of
existing entities in the LOE parts of all ItemChains
in the rule’s antecedent part. Rule support is equal to
the support of the Large ItemChain which has been
employed to generate this rule.
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5.7 EntityInfo Data Structure

The simplest and the fastest way to retain the input
graph (which is a directed graph with labeled edges)
in main memory is to use cube (3D array) as data
structure, in a way that the first dimension stores
source vertices, the second dimension stores destina-
tion vertices and the third dimension stores relation
between two vertices. Each entry value is 0 or 1. If
the value of the (4,5,k)th entry is equal 1, that is there
is a relation of type k from the ith vertex to the jth
vertex. Although cube structure is too fast and easy
to use, to retain such cube, a large memory space is
required. The solution of this problem is to use linked
list as data structure. To store information about each
entity (including relations and other entities that are
connected to the entity), there is an EntityInfo struc-
ture with these attributes:

(1) EndpointEntity (Vertex): identifies an entity
which is a vertex of graph.
(2) A Linked List that its entries have two parts:

(a) Relations (Edges): identifies relations
(edges) that are entered to the EndpointEn-
tity.

(b) Input Entities (Vertices): pointer to a
list of entities (vertices) which refer to the
EndpointEntity through corresponding re-
lation (edge).

The image of EntityInfo structure is depicted in
Figure 9.

By this data structure policy, in fact data are
grouped based on destination vertices (endpoint enti-
ties), because for each vertex of graph, the algorithm
defines an EntityInfo instance and then specifies that
based on each edge (relation), what other vertices
(entities) refer to this vertex (endpoint entity). This
grouping reason is to make the mining process faster,
based on the proposed algorithm. Finally there is a
linked list named List_EntityInfo that its entries refer
only to Large EntitylInfo instances. An EntityInfo is
large when the number of entities connected to it di-
vided by the number of vertices in the input graph is
more than MinSup value.

5.8 MinLevel and MaxLevel

As mentioned earlier, the proposed algorithm is able
to generate ItemChains with several relations in LOR
part. To determine the number of relations, the algo-
rithm receives the minimum and the maximum num-
ber of relations in LOR part as input parameters.
These parameters are named MinLevel and MazLevel
respectively.
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6 Algorithms

In this section, the proposed algorithms pseudo codes
are described in detail. The name of the main pro-
posed algorithm is MRAR. (Multi-Relation Associ-
ation Rules). The MRAR algorithm (Algorithm 1)
calls three other sub-algorithms and its workflow is
as follows: First, after constructing large Entitylnfo
instances, the GenerateItem Chains algorithm (Al-
gorithm 2) is called to traverse the input graph re-
cursively and generate all possible ItemChains. After-
wards the Generate2Largeltem Chains algorithm
(Algorithm 3) is invoked to generate 2-Large Item-
Chains and feed them to the MRAR algorithm. Then
the MRAR algorithm generates Larger ItemChains
in a repetitive process. Finally the GenerateRules
algorithm (Algorithm 4) is called to generate Multi-
Relation Association Rules based on the generated
Large ItemChains. These algorithms are as follow:

6.1 Algorithm 1: MRAR

Algorithm MRAR is the main algorithm that
after invoking GenerateltemChains and Gener-
ate2LargeltemChains, generates Large ItemChains
and finally invokes GenerateRules to generate Multi-
Relation Association Rules. The pseudo code of this
algorithm is depicted in Algorithm 1.

MRAR algorithm receives a dataset convertible to
a directed graph with labeled edges, along with min-
imum support and minimum confidence values and
minimum and maximum number of relations in ltem-
Chains as input parameters. The pre-process step is
done in lines 20 and 21. In pre-process, the input
data are converted to appropriate graph and Large
EntityInfo instances are constructed from the graph.
An EntityInfo is large when the number of entities
connected to it divided by the number of vertices in
the input graph is more than MinSup value. After
pre-process, all ItemChains are generated by Gener-
ateltemChains algorithm. This algorithm starts its
process from a vertex and an incoming edge of that
vertex and discovers all entities that with common
edges are directly or indirectly connected to that ver-
tex. This vertex is called EndpointEntity. This process
is done in lines 22 to 26. After generating all Item-
Chains, all 2-Large ItemChains are generated by in-
voking Generate2LargeltemChains algorithm in
line 27. Then the loop between lines 29 to 45 gener-
ates all Large ItemChains and this generation is con-
tinued until generating Larger ItemChains is impos-
sible. In each run of this loop, all Large ItemChains
with L ChainIDs in LOC part are assessed and new
candidate ItemChains with L+1 ChainIDs in LOC
part are generated. Each loop’s run (lines 32-36), uses
previous loop’s run results which is stored in LLICs.
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Lines 32 and 33 state that all Large ItemChains with
L ChainIDs in LOC part have to be compared two by
two and this comparison is done in line 33. If two Large
ItemChains with L ChainlIDs in LOC' part are com-
binable (their L-1 first ChainIDs are equal), they are
combined with CombineAndSort function generat-
ing new candidate ItemChains with L+1 ChainlIDs in
LOC part. After generating all candidate ItemChains
with L+1 ChainIDs in LOC, in lines 38 to 43 all Large
ItemChains are selected from candidate ItemChains
collection and then added to the Large ItemChains
collection (LLICs). Finally, line 44 adds generated
Large ItemChains with L+1 ChainIDs in LOC part
to the collection of all Large ItemChains (AlLICs).
After generating all possible Large ItemChains, Multi-
Relation Association Rules are generated by invoking
GenerateRules algorithm in line 46.

6.2 Algorithm 2: GenerateltemChains

Algorithm GenerateltemChains traverses the input
graph recursively and generates ItemChains. This al-
gorithm receives a vertex as endpoint entity and one
of its incoming edges and then finds entities connected
to the endpoint entity directly or indirectly with com-
mon relations. If the number of relations from the en-
tities to the endpoint entity is between MinLevel and
MazxLevel, the algorithm adds generated ItemChain
to the List_ItemChains. This algorithm is depicted in
Algorithm 2.

GenerateltemChains generates ItemChains with
the number of relations between MinLevel and
MazLevel. This algorithm is invoked by MRAR algo-
rithm and starts its process from a vertex of graph
and one of its incoming relations. Parameter End-
pointEntity indicates start vertex and parameter
Relations_Parameter indicates one or more edges be-
tween vertices in parameter Entities.Parameter and
the EndpointEntity. In line 16, all vertices that are
connected to the EndpointEntity through relations in
Relations_Parameter are extracted. In lines 17 and
19, it is determined if the current level is between
valid levels and also the support value of connected
vertices is equal to or greater than MinSup value. If
so, a new ItemChain is generated in line 21. Lines 24
to 29 re-traverse the input graph to generate more
ItemChains. Line 24 assesses if the number of cur-
rent relations (Level) is less than maximum possible
relations (MazLevel). If so, all incoming edges of
the connected vertices are extracted in line 25 and
unified by UnionIncomingEdgesOf function and
then GenerateltemChains algorithm is re-called by
adding all of the extracted edges to the current rela-
tions set. All generated ItemChains are retained in
List_ItemChains.
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Algorithm 1 MRAR: Mining Multi-Relation Association Rules

1: function MRAR(DS, MinSup, MinConf, MinLevel, MaxLevel)
2: Inputs
3: DS > a dataset convertible to a directed graph with labeled edges
4: MinSup > Minimum support value
5: MinConf > Minimum confidence value
6: MinLevel, MazxLevel > Minimum and maximum number of relations in each ItemChain
7 EndInputs
8: Outputs
9: AlILICs[] > List of Large ItemChains
10 Rules[] > Multi-Relation Association Rules
11: EndOutputs
12: Variables
13: LLICs[] > List of Large ItemChains
14: Candidates[] > Lists that maintain ChainlIDs Set
15: CcIs > Set of ChainIDs
16: LIC1, LIC?2 > Large ItemChain
17: List_EntityInfo[] > List of large EntityInfo instances
18: List_ItemChains/] > Global list of ItemChains
19: EndVariables
20: convert input data to a directed graph with labeled edges
21: construct Large EntitylInfo instances from the input graph and add to List_EntityInfo
22: for all (EntityInfo in List_EntityInfo) do
23: for all (Relation in EntitylInfo.Relations) do
24: GenerateltemChains (EntityInfo. EndpointEntity, Relation, EntityInfo. EndpointEntity, 1) >
adds ItemChains to List_ItemChains
25: end for
26: end for
27 LLICs = AlILICs = Generate2LargeltemChains(List_ItemChains)
28: L=1
29: repeat
30: L=L+1
31: Candidates = null
32: for all (LIC1, LIC2 in LLICs) do
33: if (LIC1.LOC[1..L-1] = LIC2.LOC[1..L-1]) then
34: Candidates.Add(CombineAndSort(LIC1.LOC[1..L], LIC2.LOCIL]))
35: end if
36: end for
37: LLICs = null
38: for all (CIS in Candidates) do
39: Calculate IntersectionCount and Support of CIS
40: if (Support(CIS) > MinSup AND all subsets of CIS are Large) then
41: LLICs = LLICs U CIS
42: end if
43: end for
44: AlILICs = AllILICs U LLICs

45: until (Candidates. Lenght = 0)

46: Rules = GenerateRules(AlILICS)
47: return AlILIC, Rules

48: end function
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Algorithm 2 GenerateltemChains: generating ItemChains

e e e e

V]
—_
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23:
24:
25:
26:
27:
28:
29:

30

%)
T2

: function GENERATEITEMCHAINS(EndpointEntity, Relations_Parameter[], Entities_Parameter]], Level)

Inputs
EndpointEntity > A vertex of graph which the algorithm starts search from it
Relations_Parameter][] > Common relations between several vertices and the EndpointEntity
Entities_Parameter/] > Vertices connected to EndpointEntity through Relations_Parameter
Level > Number of relations in ItemChain, initially it is 1
EndInputs
Outputs
List_ItemChains|[] > List of all ItemChains
EndOutputs
Variables
Entities_Var[] > List of entities
Relations_Var/] > List of relations
Support > Support value of an ItemChain
EndVariables

Entities_Var = List of vertices that are connected To EndpointEntity through Relations_Parameter
if (Level > MinLevel AND Level < MazLevel) then
Support = Entities_Var.Count -~ Graph.NumberOfVertices
if (Support > MinSup) then
ChainID = ChainID + 1

tity, Support))
end if
end if
if (Level < MazLevel) then
Relations_Var = UnionIncomingEdgesOf ( Entities_Var)
for all (Relation in Relations_Var) do

end for
end if
: end function

Algorithm 3 Generate2LargeltemChains: generating 2-Large ItemChains

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20

1
2
3
4:
5:
6
7
8
9

: function GENERATE2LARGEITEMCHAINS(List_TtemChains|])
: Inputs

EndInputs
Outputs

EndOutputs
Variables

EndVariables
for all (IC1, IC2 in List_ItemChains) do
LOFE = Intersect(IC1.LOE, IC2.LOE)
Support = LOE.Length + Graph.NumberOfVertices
if (Support> MinSup) then
LLICs.Add(new LargeItemChain({/C1.ChainID U IC2.ChainID}, LOE.Length, Support))
end if
end for
return LLICs
: end function
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List_ItemChains.Add(new ItemChain( ChainlD, Entities_Var, Relations_Parameter, EndpointEn-

GenerateltemChains( EndpointEntity, Relations_Parameter U Relation, Entities_Var, Level + 1)

List_ItemChains|[] > List of all ItemChains

LLICs|] > List of all Large ItemChains with two ChainIDs in LOC part

IC1, IC2 > ItemChain
LOE]] > List of Entities
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Algorithm 4 GenerateRules: generating ARs by using Large ItemChains

> List of all Large ItemChains

> List of Multi-Relation Association Rules

> Large ItemChain

> ItemChains that appear in the rule antecedent part

> An ItemChain that appears in the rule consequent

Rules.Add(new Rule(Antecedent, Consequent, Confidence, LIC.Support))

1: function GENERATERULES(List_LargeltemChains|])
2 Inputs
3 List_LargeItemChains|]
4: EndInputs
5: Outputs
6 Rules[]
7 EndOutputs
8 Variables
9: LIC
10 Antecedent|]
11: Consequent
12: EndVariables
13: for all (LIC in List_LargeltemChains) do
14: for all (ChainID in LIC.ListofChainIDs ) do
15: Consequent = ChainID
16: Antecedent = LIC.ListOfChainlDs — Consequent
17: Confidence = LIC.Support = Support(Antecedent)
18: if (Confidence > MinConf) then
19:
20: end if
21: end for
22: end for
23: return Rules

24: end function

6.3 Algorithm 3: Generate2LargeltemChains

Algorithm Generate2LargeltemChains traverses the
List_ItemChains (all ItemChains) and generates all
possible Large ItemChains with two ChainIDs in the
LOC vpart. These 2-Large ItemChains are then em-
ployed by the MRAR algorithm to generate Larger
ItemChains. This algorithm is depicted in Algorithm 3.

This algorithm receives all ItemChains as the input
parameter and then generates all possible 2-Large
ItemChains. In line 12, all ItemChains are traversed
two by two. In line 13, an intersection is made from
entities (LOE) of two ItemChains. This intersection
returns the common entities of two ItemChains. If the
number of common entities divided by the number of
all entities is equal to or greater than MinSup value,
these two ItemChains generate a 2-Large ItemChains.
This algorithm is finished when all ItemChains are
compared to each other. After generating all 2-Large
ItemChains, the MRAR algorithm generates L-Large
ItemChains (L > 3) to be used for generating Multi-
Relation Association Rules.

6.4 Algorithm 4: GenerateRules

Algorithm GenerateRules receives all L-Large Item-
Chains (L > 2) and generates candidate rules with
only one ItemChain in the consequence part. If the con-
fidence of a candidate rule is equal to or greater than
MinConf value, it is identified as a Multi-Relation

Association Rule. This algorithm is depicted in Algo-
rithm 4.

This algorithm receives L-Large ItemChains (L >
2) as input parameter. In line 13, the Large ItemChains
are selected one by one. In line 14, all ChainlDs of the
selected Large ItemChain are traversed. Lines 15 and
16 construct the antecedent and the consequent parts
of a new candidate rule based on the selected Large
ItemChain and ChainID, and then line 17 calculates
the confidence of this new candidate rule. Line 18
assesses the rule’s confidence. If the confidence value
is equal to or greater than MinConf value, then this
candidate rule is strong and it is added to the strong
rules collection in line 19. Notice that the algorithm
puts only one Item in the consequent part in line 15.
Finally, all the generated strong rules are returned as
Multi-Relation Association Rules.

7 Example

Let us make an example to show how the proposed
algorithms work and how the related data structures
are filled by corresponding values during the mining
process. In this example, the graph depicted in Figure 2
is employed as data source.

7.1 Data Structure

Some parameters of the example are as follows:
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Table 7. Some generated ItemChains after traversing EntityInfo instances

ChainID | List of Entities (LOE) List of Relations (LOR) E]Iédf,(t)mt Support
ntity

1 Hasan, Reza Health Condition Good 2/19

2 Ali, Ahmad, Nematbakhsh | Live in Isfahan 3/19

3 Ali, Ahmad, Reza Study in IUT 3/19

4 Yazd, Kerman Near, Climate Type Humid 2/19

5 Hasan, Reza Live in, Near, Climate Type Humid 2/19

6 Ali, Ahmad, Reza Supervised By, Cooperator, Work MIT 3/19

On, Patronage

o MinSup = 0.1 are generated by Generate2LargeltemChains al-
o MinConf = 0.7 gorithm. This algorithm compares all ItemChains two
e MinLevel = 1 by two and calculates their List of Entities (LOE)s
e MaxLevel = intersection count. Based on this count, the algorithm

Before any computation on the input data, they
should be discretized and infrequent entities should
be eliminated. In this section, appropriate images of
the used data structures are depicted.

After reading the contents of the input data source
and converting them to a suitable graph, data struc-
tures are filled by this policy: First, the software de-
fines an EntityInfo instance for each vertex. After-
wards, it groups the vertices connected to the vertex
by the edges (relations). In other words, it indicates
that based on each incoming edges of the vertex, what
other vertices are connected to the vertex.

Figure 10 shows the EntityInfo data structure state
after reading the content of the graph depicted in
Figure 2. In order to reduce the display space, some
entities such as Hasan, Yazd, Kerman, Isfahan,
Ahmad and etc. have been eliminated from the Entity
(Vertex) part of Figure 10.

Other data structures are filled with corresponding
data when the algorithm starts the mining process.

7.2 Algorithms

When the EntityInfo instances are filled with the input
data, the MR AR algorithm traverses them in a way
that for each EntityInfo instance and for each relation
of the instance, Generateltem Chains algorithm is
invoked. This algorithm generates ItemChains with
relations count between MinLevel to MazLevel.

Table 7 shows some ItemChains that have been
extracted from the graph presented in Figure 2 (some
ItemChains are not shown).

After generating ItemChains, 2-Large ItemChains

9€S

decides whether these two ItemChain can make a 2-
Large ItemChain or not. If so, their ChainlIDs along
with their intersection count and support value is
added to the Large ItemChains collection to generate
Larger ItemChains in next step.

For example, consider Table 7. If the algorithm
compares ItemChains with ChainID 1 and 2, since the
intersection count of their entities ({Hasan, Reza},
{Ali, Ahmad, Nematbakhsh}) is zero, they are
not identified as a 2-Large ItemChain. But Item Chains
with ChainID 1 and 5, would generate a 2-Large
ItemChain because the intersection count for their
entities ({Hasan, Reza}, {Hasan, Reza}) divided
by the number of all entities is equal to MinSup value
(their intersection result is {Hasan, Reza} and the
support value is 2/19 which is equal to MinSup).

Table 8 shows the 2-Large ItemChains that can be
extracted from Table 7.

In order to generate 3-Large ItemChains, MRAR
algorithm combines two by two those 2-Large Item-
Chains that the first ChainID of their List of ChainIDs
(LOC) part are equal. If the number of common enti-
ties of the combined ItemChains is equal to or greater
than MinSup value and all subsets of the combined
ChainsIDs are large too, the combination is identified
as a 3-Large ItemChains. In Table 8, the combina-
tion of {2, 3} and {2, 6}, would generate a 3-Large
ItemChain, because the result of intersecting their en-
tities parts (LOE) is {Ali, Ahmad} and its support
is 2/19 that is equal to MinSup value. {2, 3, 6} con-
stitute the LOC' part of this new 3-Large ItemChain.
Consider that all subsets of {2, 3, 6} are large too.

In order to generate a (L+1)-Large ItemChain, the
algorithm combines two L-Large ItemChains which




April 2014, Volume 1, Number 2 (pp. 133—158)

Entity (Vertex) Relation (Edge) List of Incoming Entities (Vertices)
<— Supervised by <— Ahmad
Nematbakhsh
< Knows < Saraee, Mr B
<— Study in <— Reza, Ali, Ahmad
T
<— Patronage < Project B
<—  Cooperator < Sarace
Mr A
<— Knows < Nematbakhsh
Good <— Health State <—— Hasan, Reza
Sarace <— Supervised By <—— Ali, Reza
MIT < Patronage < Project A, Project B

Figure 10. EntityInfo instances state after reading Figure 2 graph

Table 8. 2-Large ItemChains Extracted From Table 7

List of ChainIDs (LOC) | Intersection Count | Support
1,5 2 {Hasan, Reza} 2/19
2,3 2 {Ali, Ahmad} 2/19
2,6 2 {Ali, Ahmad} 2/19
3,6 3 {Ali, Ahmad, Reza} 3/19

their first L-1 ChainIDs of their List of ChainlDs
(LOC) part are equal and then makes a candidate set
with L+1 ChainIDs in the LOC part. This candidate
set is large if the intersection count of its ItemChains’
entities divided by the number of all entities is equal to
or greater than MinSup value and also all the subsets
of the L+1 ChainsIDs are large too.

After generating all Large ItemChains, the algo-
rithm generates candidate rules. The candidate rules
are identified as Multi- Relation Association Rules if
their confidence is equal to or greater than MinConf
value. As mentioned before, the algorithm generates
rules with only one ItemChain in the consequence
part.

For example if {2, 3, 6} is the LO C part of a 3-Large
ItemChain, the following items are Multi-Relation
Association Rules:

Antecedent | Consequent | Support | Confidence
2,3 6 2/19 1.00
2,6 3 2/19 1.00
3,6 2 2/19 0.66

For example, the first rule indicates that:
“Those who Live in Isfahan and also Study in TUT
— they are Supervised By a person who is Cooperator
with another person who Works on a project which
its Patronage is MIT University. {Ali and Ahmad}”
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8 Experimental Results

In order to evaluate the proposed algorithm’s useful-
ness and its ability in extracting Multi- Relation As-
sociation Rules, some experiments have been made
on Drugbank dataset that show the proposed method
is able to convert the input data to a directed graph
with labeled edges, make ItemChains and L-Large
ItemChains from the graph and finally generate Multi-
Relation Association Rules based on the L-Large Item-
Chains.

8.1 Dataset

To make experiments on a real-world dataset, Drug-
bank dataset was used which “is a detailed database
on small molecules and biotech drugs. Fach drug entry
(“DrugCard”) has extensive information on proper-
ties, structure, and biology (what the drug does in the
body). Each drug can have 1 or more targets, enzymes,
transporters, and carriers associated” [61]. Drugbank
is a semantic web dataset that has many heterogonous
semantic annotations. This dataset has these informa-
tion:

e Number of triples: 766,920
e Number of entities (graph vertices): 288,871
e Number of relations (predicates): 119

Before feeding the pure extracted data to the algo-
rithm, first they were discretized and then infrequent
entities were eliminated. The discretization was ap-
plied on objects and it was done by dividing the differ-
ence between the minimum value and the maximum
value of objects of each predicate into five segments
and the value of objects of the predicate was changed
to the start value of the segment which they lie in.
Then subjects, predicates, and objects that were repli-
cated in less than 10 triples, were identified as infre-
quent entities and their containing triple was elimi-
nated from the triple set.

After input data were discretized and infrequent
entities were eliminated, these new information were
obtained:

e Number of triples: 291,082

e Number of entities (graph vertices): 22,952

e Number of relations (predicates): 57

e Number of copulative entities: 546

e Average relation count per endpoint entity: 76

8.2 Experimental set-up

In order to generate ItemChains, the input data should
be converted to the algorithm’s standard input format.
This conversion is automatically done by our program.
The input dataset may be a relational database, a
complete semantic web dataset or a subset of it. The
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input dataset can also be a concatenation of multiple
semantic web datasets made by SPARQL commands
and linked by data standards [62]. Also, any dataset
convertible to the algorithm’s standard format could
be employed by the algorithm.

If the input data is a relational database, copulative
entities and values of attributes (fields) generate graph
vertices and attributes’ names generate graph edges.
If the input data is a semantic web dataset, subjects
and objects generate graph vertices and predicates
generate edges between corresponding subjects and
objects.

After providing input data, these steps should be
passed to generate Multi-Relation Association Rules:

e Convert data to suitable graph

e Discretize data and eliminate infrequent entities
e Define EntityInfo instances

e Generate ItemChains

e Generate 2-Large ItemChains

e Generate L-Large ItemChains (L > 3)

e Generate Multi-Relation Association Rules

8.3 Results

The proposed algorithm would extract Multi-RRelation
Association Rules from a directed graph with labeled
edges. Since there are no exact definition of transac-
tions in the input graph, the end user should interpret
the generated rules and use them in the real world
applications himself/herself.

Following are some results obtained by mining Multi-
Relation Association Rules from Drugbank dataset
[61]. In these results, the range of MinSup values is
between 0.04 and 0.28, the MinConf value is 0.8, the
MinLevel value is 1 and the MazLevel value is 3.

Table 9 shows some Multi-Relation Association
Rules along with their corresponding confidence and
support values discovered by the proposed algorithms
from Drugbank dataset. Each generated rule is con-
structed of several ItemChains. In the ItemChains of
the generated rules, the last inner parentheses word
identifies an endpoint entity (vertex) and the words
before endpoint entity identify relations (LOR). For
example, in the antecedent part of the first rule in
Table 9, Enzymes is an endpoint entity and Type, En-
zyme and InteractionDrug2 are relations (LOR). This
rule indicates the relationship between interactions of
two enzymes of some drugs and the interaction type
of the drugs. As it was mentioned earlier, in case of
generated rules, those entities (LOE) that refer to the
endpoint entity via relations in the LOR part, are not
shown because their values are not important. The
only important goal is to discover similarity of several
entities behavior.
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Table 9. Examples of discovered association rules along with their confidence and support

Rule Confidence| Support
Type, enzyme, interactionDrug2(enzymes) — Type(drug_interactions) 0.91 0.237
goClassificationComponent, target, interactionDrug2(membrane) — 0.85 0.212
Type(drug_interactions)

goClassificationComponent, target, interactionDrug2(membrane) — Type, target, 0.86 0.212
interactionDrug2(targets)

goClassificationComponent, target, interactionDrugl(cell) — Type, target, 0.80 0.228
interactionDrugl (targets)

goClassificationComponent, target, interactionDrug2(cell) & 0.79 0.212
Type(drug-interactions) — goClassificationComponent, target,

interactionDrug2(membrane)

goClassificationComponent, target, interactionDrugl(cell) & Type, target, 0.77 0.221
interactionDrugl (targets) & Type(drug-interactions) —

goClassificationComponent, target, interactionDrugl(membrane)

goClassificationComponent, target, interactionDrugl(membrane) & Type, target, 0.74 0.221
interactionDrugl (targets) & Type(drug-interactions) —

goClassificationComponent, target, interactionDrug1(cell)

Table 10. Statistical Results for the Performed Experiments

[

Minimum zuﬁ ?;Z Number.of N;_ rf::;eOf NE-IEZI(?;?Of Number of éiveellz‘:‘zigjnosf
Support Entitios ItemChains ItemChains ItemChains Rules Count
(L> 3)

0.04 22 65 470 154780 990186 2.82
0.06 20 59 387 99227 639413 2.82
0.08 12 51 278 34449 214643 2.81
0.1 11 38 178 11825 71863 2.83
0.12 10 34 147 5406 31684 2.82
0.14 9 27 111 1262 6181 2.78
0.16 7 24 66 101 443 2.65
0.18 6 17 37 32 193 2.61
0.2 5 17 32 5 93 2.52
0.22 5 14 23 1 28 2.35
0.24 4 7 6 0 9 2.13
0.26 3 3 2 0 2 1.75
0.28 3 1 0 0 0 0
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Some statistical results of the performed experi-
ments have been depicted in Table 10. The following
concepts exist in this table:

e Minimum Support: shows the MinSup value
of different experiments.

e Number of Large Entities: shows the number
of large endpoint entities. In fact, this column in-
dicates the number of Large EntityInfo instances
that have been defined by the program and also
have been used to generate ItemChains. As these
numbers show, even for little MinSup values, a
few number of EntityInfo instances have been
defined.

e Number of ItemChains: indicates the number
of ItemChains generated by GenerateltemChains
algorithm. These ItemChains are employed to
generate 2-Large ItemChains.

e Number of 2-Large ItemChains: indicates
the number of 2-Large ItemChains generated by
Generate2LargeltemChains algorithm. These 2-
Large ItemChains are employed to generate 3-
Large ItemChains.

e Number of L-Large ItemChains (L > 3):in-
dicates the number of L-Large ItemChains (L >
3) generated by the main algorithm. For different
values of L, L-Large ItemChains are constructed
of (L-1)-Large ItemChains. All Large ItemChains
are employed to generate Multi-Relation Associ-
ation Rules.

e Number of Rules: shows the number of rules
generated by GenerateRules algorithm from all
Large Item Chains. The number of generated rules
is several times more than the number of Large
ItemChains, which is because of permutation of
the ItemChain in the rules.

e Average number of Relations Count: shows
the average number of relations in the ItemChains
of the generated rules. As this column shows, the
proposed algorithm is able to extract association
rules with several relations.

The results presented in Table 10 indicate that as the
value of MinSup decreases, the number of generated
L-Large ItemChains increase exponentially. That’s
because of Large ItemChain definition. A Candidate
L-TtemChain is large when L-ItemChain itself and all
of its subsets are large too. When the value of MinSup
decreases, L-ItemChains and all of their subsets have
more chance to become large and generate L-Large
ItemChains and as a result, the number of Larger
ItemChains (Large ItemChains with more ChainlIDs)
increases. By increasing the number of ChainlIDs, the
number of generated rules would also increase.

For different MinSup values, the number of Item-
Chains generated by GenerateltemChains algo-
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rithm has been depicted in Figure 11. In this figure,
ItemChains[K] indicates the number of ItemChains
that contain K relations in their LOR part. These
numbers show an unexpected result: in many cases, the
number of ItemChains/3] is more than ItemChains/1]
and they are both more than ItemChains[2].

Figure 12 shows two important ratios between the
numbers of generated items by the proposed algo-
rithms as:

e The Ratio of 2- Large Item Chains Count to
Item Chains Count: shows the number of gen-
erated 2-Large ItemChains divided by the num-
ber of generated ItemChains. As this curve shows,
by decreasing the value of MinSup, the combined
ITtemChains have more chance to become large
and generate a 2-Large ItemChain.

e The Ratio of Rule Count to Large Item-
Chains Count: shows the number of generated
Multi-Relation Association Rules divided by the
number of generated Large ItemChains. In fact,
these values show that for different MinSup val-
ues, how many rules is generated from each Large
ItemChain. This curve shows that by decreasing
the value of MinSup, the number of ChainlDs
in the LOC part of Large ItemChains increases
and as a result the number of generated Multi-
Relation Association Rules also increases. This
is because rule generation is based on permuting
ChainIDs in the antecedent and consequent parts.

Finally, Figure 13 shows the run time of the exper-
iments in seconds. The experiments were done on a
Core 15 M450 2.40GHz Laptop with windows 7. As
this figure shows, by decreasing the value of Min-
Sup, the required time to generate ItemChains, Large
ItemChains and Multi- Relation Association Rules in-
creases. That’s because, as Table 10 shows, whenever
the value of MinSup decreases, the number of Large
Entities (EntityInfo), ItemChains and Large Item-
Chains involved in the computations will also increase.

9 Conclusions & Future Work

In the past years many ARM algorithms have been
developed which differ in the structure of their input
data, their problem solving methodology, and their
goal of ARM or the structure of the generated rules.

In this paper, a new class of association rules namely
Multi-Relation Association Rules was proposed. The
intuition behind this new kind of rules is to employ
direct and indirect relations among entities to generate
ARs. Each Multi-Relation Association Rule includes
several items in which each item is constructed of one
entity and several relations concerned to the entity. In
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contrast to traditional ARs, these rules show indirect
events related to entities which cause the occurrence
of special patterns in data.

The name of the main proposed algorithm is
MRAR which employs a chain of relations or events
to generate ARs with several relations. In addition
to considering indirect relations among entities, an-
other facet of the proposed algorithms is its ability
in mining Multi-Relation Association Rules from
heterogeneous datasets with no exact definition of
well-defined transactions. Any dataset convertible to
a directed graph with labeled edges (such as semantic
web and relational databases), can be employed by
the proposed algorithm. In this graph, source vertices
indicate entities, destination vertices indicate other
entities or attribute values of the source entity (source
vertex), and edges indicate relations between two
entities or indicate an attribute of an entity.

The obtained results show information about the
proposed algorithm behavior from different aspects
and prove its ability in mining Multi-Relation Associ-
ation Rules by considering indirect relations among
entities from heterogeneous datasets with no exact
definition of well-defined transactions. As the results
show, the number of generated patterns is usually
high, hence selecting and employing suitable rules for
real-world applications may be hard. For future work,
as in this work we employed ontologies at instance
level, proposing a method for mining and selecting the
most interested and useful patterns and ARs by con-
sidering the semantics of data provided by ontologies
is suggested.
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