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Abstract Electrokinetic transport of fluids through microchannels by micro-pumping and micro-

peristaltic pumping has stimulated considerable interest in biomedical engineering and other areas

of medical technology. Deeper elucidation of the fluid dynamics of such transport requires the

continuous need for more elegant mathematical models and numerical simulations, in parallel with

laboratory investigations. In this article we therefore investigate analytically the unsteady viscous

flow driven by the combined effects of peristalsis and electro-osmosis through microchannel. An

integral number of waves propagating in the microchannel are considered as a model for trans-

portation of fluid bolus along the channel length. Debye-Hückel linearization is employed to

evaluate the potential function. Low Reynolds number and large wavelength approximations

are employed. Closed-form solutions are derived for the non-dimensional boundary value prob-

lem. The computations demonstrate that magnitude of electric potential function is increased with

a decrease in the thickness of the electrical double layer (EDL). Stronger electric field also

decelerates the flow and decreases local wall shear stress. Hydrodynamic pressure is increased with

EDL thickness whereas it is suppressed with electric field. Streamline visualization reveals that the

quantity of trapped bolus is decreased with increase in EDL thickness and also with higher exter-

nal electric field.
� 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Electro-osmosis refers to the transport of liquids by means of

an applied electrical potential across a fluid conduit [1]. The
velocities associated with electro-osmosis are not controlled
by the conduit size, provided that the electrical double layer

(EDL) is significantly smaller than the characteristic length
scale of the conduit e.g. channel. Electro-osmosis is a natural
phenomenon in numerous medical and biological processes.
It arises in botanical processes [2], canalicular fluid flow in

bone functioning [3] (interstitial fluid rich in ions), porous
membranes [4], transport in the human skin [5], and dialysis
mechanisms [6]. This phenomenon has been exploited in
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Nomenclature

a half width at the inlet

b wave amplitude
c wave velocity
�t time
L channel length
�u axial velocity
�p pressure
En electrokinetic body force

nþ number of densities of cations

n� number of densities of anions

e electronic charge

z charge balance
KB Boltzmann constant
T average temperature of the electrolytic solution

Re Reynolds number

m electro-osmotic parameter

UHS Helmholtz-Smoluchowski velocity

Q volumetric flow rate

Q time-averaged volumetric flow rate

Greek symbols
k wavelength
�n axial coordinate

g transverse coordinate
q fluid density
�v transverse velocity

l viscosity
U electric potential
qe density
e permittivity

d wave number
f zeta potential
kd Debye length

sw local wall shear stress
w stream function
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industrial separation techniques in biotechnology [7] and in
particular in medical micro-pumps [8]. Micro-pumps have

become popular in microfluidics, and electro-osmotic designs
can generate significant pressures and flux without moving
mechanical parts. In capillary electrophoresis devices,

electro-osmotic pumping can achieve high efficiencies in capil-
laries lower than 100 lm and this is beneficial to deployment in
miniaturized chemical analysis systems. Electro-osmotic

pumps offer similar advantages to electrohydrodynamic
(EHD) pumps and traveling wave pumps since the electrical
force imposed generates the pumping effect without any
mechanical parts and thereby maintenance and other part-

replacement issues can be mitigated. The ongoing refinement
in electro-osmotic pump design has stimulated great interest
in both experimental prototype testing and also computational

and mathematical modelings. These two approaches have
proved to be extremely complimentary in accelerating the arri-
val of next-generation electro-osmotic micro-pumps. Ngoma

and Erchiqui [9] studied the dynamics of two immiscible fluids
in a microchannel incorporating interfacial viscous shear
stress, pressure gradient and electro-osmosis effects. They
solved the Poisson–Boltzmann equation and modified

Navier–Stokes equations for a steady fully-developed laminar
flow and computed the electric potential, pressure difference,
wall and interfacial zeta potentials. Zhao and Liao [10] consid-

ered non-isothermal electro-osmotic- and pressure-driven flow
behavior in a straight microchannel, evaluating via a numerical
finite difference method, the charge distribution density based

on the nonlinear, two-dimensional Poisson–Boltzmann equa-
tion, and full Navier–Stokes equations with applied electrical
potential field. They observed that maximum hydraulic head

generated by the electro-osmotic force corresponds to an opti-
mal dimensionless parameter which is the product of the
inverse Debye length and the channel size.

The above studies considered the channel to be non-

deformable. However a separate biological mechanism, peri-
stalsis, has also been exploited in the development of high-
efficiency and low-maintenance pumps in medical engineering.
Please cite this article in press as: D. Tripathi et al., Unsteady viscous flow driven by t
http://dx.doi.org/10.1016/j.aej.2017.05.027
Peristalsis, which arises in swallowing, digestive propulsion
and phloem trans-location in plants, comprises an automatic

periodic series of muscle contractions and relaxation, which
can efficiently pump fluids, generally at low velocities (creeping
flows). The literature on viscous peristaltic flows is extensive.

Similarly in recent years many researchers have examined peri-
staltic magnetohydrodynamic flows from a theoretical stand-
point i.e. where electromagnetic body force is present and

the pumping fluid is electrically-conducting. Representative
works in this regard are Tripathi and Bég [11] who also consid-
ered couple stress non-Newtonian effects. Kothandapani and
Prakash [12] studied magnetized nanofluid peristalsis with

radiative heat transfer. Akbar et al. [13] who considered mag-
netic induction and heat transfer effects in peristaltic pumping
of carbon nanotube suspensions. Bhatti et al. [14] analyzed the

endoscopic effects on blood flow in the presence of Titanium
magneto-nanoparticles. They concluded that with increasing
the magnitude of Sisko fluid parameter and Grashof number,

the velocity of fluid flow alters. Same authors [15] again dis-
cussed the effects of variable magnetic field on peristaltic flow
of viscoelastic fluid through non-uniform rectangular duct.
They have reported that with increasing the magnetic field,

the velocity of fluid flow diminishes. Most recently, Bhatti
et al. [16] investigated the blood clotting effects on MHD peri-
staltic flow of viscoelastic nanofluids through annulus. They

reported that the velocity reduces with increasing height of
blood clot.

These studies however did not examine electric fields or

electro-osmotic effects in peristaltic fluid dynamics. Appar-
ently the first such investigation was communicated by Chak-
raborty [17] who developed analytical solutions to demonstrate

that axial electric field can significantly elevate microfluidic
transport rates in peristaltic flows in microtubes. He further
elaborated on the modes of interaction between the electro-
osmotic and peristaltic wave mechanisms, determining the

pressure rise as a function of occlusion number, characteristic
electro-osmotic velocity and the peristaltic wave speed. Tri-
pathi et al. [18] further investigated electro-osmotic interaction
he combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),
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with peristaltic wave propagation in microtubes for a range of
values of axial electric field. Goswami et al. [19] studied the
electro-kinetically modulated peristaltic transport of power

law fluids through a narrow deformable tube, observing that
electro-osmosis has a more dramatic effect on pressure rise
at lower occlusion values and furthermore that trapping is effi-

ciently controlled via electric field and in fact is eliminated at
sufficiently strong electrical field strengths as is the reflux
phenomenon.

The combination of peristaltic pumping and electro-osmosis
is attractive from the viewpoint of developing more effective
micro-pumps [20,21]. In the present work we present a new
hydrodynamic model to simulate the influence of external elec-

tric field and thickness of electric double layer (EDL) on peri-
staltic pumping of viscous fluids through a microchannel. We
consider the more general case when an integral number of

fluid boluses are propagating along the microchannel length.
The model explored herein therefore aims to address the key
questions of how to optimize the design of peristaltic electro-

osmotic pumps via key parameters such as the thickness of
Debye length and external electric field strength. The work is
envisaged to shed further light on novel applications in

microfluidic pumping processes and it is hoped that it will also
stimulate other researchers to exploring this intriguing area of
biomedical engineering.

2. Mathematical model

We consider transport in an electro-osmotic micro-pump with
deformable channel walls. The geometric model for the electro-

osmotic peristaltic pumping through a finite length (L) chan-
nel, under an axial imposed electrical field, En, as illustrated
in Fig. 1, is taken as follows:

�hð�n; �tÞ ¼ a� b cos2
p
k
ð�n� c�tÞ 8 �n 2 ½0;L�; ð1Þ

where �h,a; b; k; �n; c; �t and L are the transverse displacement of
the walls, the half width at the inlet, wave amplitude, wave-

length, axial coordinate, wave velocity, time and channel
length respectively. The electrical field vector retains only the
axial electrical field component, and En, Electrical induced field

is neglected since we are considering electrokinetic flow, not
electrohydrodynamic (EHD) flow. In the latter electrical fields
Figure 1 Physical model for peristaltic wave p
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are large enough to generate electrical induction phenomenon

due to low thermal conductivity of fluids used in EHD. How-
ever they are not invoked in electrokinetic flows.The governing
equations for unsteady, two-dimensional, viscous, incompress-

ible flow with an axially-applied electrokinetic body force in

the (�n; �g) coordinate system, are given as follows:

@�u

@�n
þ @�v

@�g
¼ 0; ð2Þ

q
@

@�t
þ �u

@

@�n
þ �v

@

@�g

� �
�u ¼ � @�p

@�n
þ l

@2�u

@�n2
þ @2�u

@�g2

� �
þ �qeEn; ð3Þ

where q; �u; �v; �p; l, and En denote the fluid density, axial veloc-
ity, transverse velocity, pressure, fluid viscosity, and axial elec-

trical field (in the electrokinetic body force term). The Poisson
equation for electric potential distribution is employed due to
the presence of EDL in the micro-channel and is defined as
follows:

r2 �U ¼ � �qe

e
; ð4Þ

Here qe is the density of the total ionic change and e is the per-
mittivity. For a symmetric (z:z) electrolyte, the density of the
total ionic energy, qe is given by, qe ¼ ezðnþ � n�Þ, in which
nþ and n� are the number of densities of cations and anions

respectively.Nernst-Planck equation is defined to determine
the potential distribution and describe the charge number den-
sity as follows:

@�n�
@�t

þ ðq:rÞ�n� ¼ Dr2�n� � Dze

kBT
ðr � ð�n�r�UÞÞ; ð5Þ

where D represents the diffusivity of the chemical species, kB is
the Boltzmann constant, and T is the average temperature of

the electrolytic solution.
To facilitate analytical solutions it is advantageous to intro-

duce a group of non-dimensional parameters

n ¼
�n
k
; g ¼ �g

a
; t ¼ c�t

k
; u ¼ �u

c
; v ¼ �v

cd
;

d ¼ a

k
; h ¼

�h

a
; / ¼ b

a
; p ¼ �pa2

lck
;

Re ¼ qca
l

; U ¼ U
f
; ð6Þ
ropagation induced by electro-osmotic flow.

e combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),

http://dx.doi.org/10.1016/j.aej.2017.05.027


4 D. Tripathi et al.
where d is wave number, Re is the Reynolds number. The

potential function is non-dimensionalized with constant zeta
potential (f). After non-dimensionalization, the nonlinear

terms are appeared in the form of OðPed2Þ, where

Pe ¼ ReSc represents the ionic Peclet number and
Sc ¼ l=qfD denotes the Schmidt number. Using the limita-

tions Re, Pe, d � 1, the Poisson equation is obtained as

follows:

@2U
@y2

¼ �j2 nþ � n�
2

� �
ð7Þ

and Nernst Planck equation is simplified to:

0 ¼ @2n�
@y2

� @

@y
n�

@U
@y

� �
; ð8Þ

subjected to boundary conditions n� ¼ 1 at U ¼ 0 and
@n�=@y ¼ 0 where @U=@y ¼ 0 (bulk conditions). These yield:

n� ¼ e�U: ð9Þ
Using Eqs. (7) and (9), the Poisson–Boltzmann paradigm is

obtained as follows:

@2U
@y2

¼ m2 sinhðUÞ: ð10Þ

where m ¼ aez
ffiffiffiffiffiffiffiffiffiffi
2n0

e KBT

q
¼ a

kd
, is known as the electro-osmotic

parameter, kd is Debye length or characteristic thickness of
the electrical double layer (EDL). The Poisson–Boltzmann
equation for zeta potential f < 25 mV (Debye–Hückel lin-

earization i.e. sinhðUÞ � U), is expressed as follows:

@2U
@y2

¼ m2U: ð11Þ

Employing the boundary conditions: Uyð0Þ ¼ 0 and UðhÞ ¼ 1,

the potential function is obtained as follows:

U ¼ coshðjyÞ
coshðjhÞ : ð12Þ

Implementing non-dimensional variables in Eqs. (2) and

(3), lead to the following non-dimensional conservations
equations:

@u

@n
þ @v

@g
¼ 0; ð13Þ

Red
@

@t
þ u

@

@n
þ v

@

@g

� �
u ¼ � @p

@n
þ d2

@2u

@n2
þ @2u

@g2

� �

þm2UUHS; ð14Þ

where UHS ¼ � Enef
lc is the Helmholtz-Smoluchowski velocity or

maximum electro-osmotic velocity. Applying long wave length
and low Reynolds number approximations, as is customary for
peristaltic hydrodynamics [22,23] the above Eqs. (8) and (9)

reduce to the following linearized group of coupled partial dif-
ferential equations:

@u

@n
þ @v

@g
¼ 0; ð15Þ

@p

@n
¼ @2u

@g2
þm2UHSU; ð16Þ
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The associated normalized boundary conditions are as
follows:

@u

@g

����
g¼0

¼ 0; ujg¼h ¼ 0; vjg¼0 ¼ 0;

vjg¼h ¼
@h

@t
; pjn¼0 ¼ p0 and pjn¼L ¼ pL; ð17Þ

The boundary value problem is completely defined by the
Eqs. (15)–(17). An analytical solution is sought and is elabo-
rated in due course. Although non-linearity has been elimi-
nated from the present model, nevertheless important

phenomena associated with peristaltic wave interaction and
electro-osmotic transport can still be studied. This furthermore
provides a reasonable benchmark for more sophisticated non-

linear simulations with numerical methods.

3. Analytical solutions

Integrating Eq. (16) and using boundary conditions (17), the
axial velocity is obtained as follows:

u ¼ 1

2

@p

@n
ðg2 � h2Þ �UHS

coshðmgÞ
coshðmhÞ � 1

� 	
: ð18Þ

Using Eq. (18) and boundary condition (17), the transverse
velocity by virtue of the continuity (mass conservation) Eq.

(15) is obtained as follows:

v ¼ � 1

6

@2p

@n2
ðg3 � 3gh2Þ þ gh

@p

@n
@h

@n
�UHS sinhðmgÞ

	 tanhðmhÞ
coshðmhÞ

@h

@n
: ð19Þ

Using Eq. (19) and boundary conditions (17), the axial
pressure gradient is determined as follows:

@p

@n
¼ 1

h3
G0ðtÞ þ 3

Z
@h

@t
dnþUHS h� tanhðmhÞ

m

� �� 	
 �
; ð20Þ

where G0ðtÞ is arbitrary function of t to be evaluated using the

finite length boundary conditions (17). The pressure difference
can be computed along the axial length by

Dp ¼ pðn; tÞ � pð0; tÞ ¼
Z n

0

@p

@s
ds; ð21Þ

and G0ðtÞ is expressed as follows:

G0ðtÞ ¼
ðpL � p0Þ � 3

R L

0
h�3

R
@h
@t
dnþUHS h� tanhðmhÞ

m

� �n o
dnR L

0
h�3dn

:

ð22Þ
The local wall shear stress is defined following Li and Bras-

seur [24]:

sw ¼ @u

@g

����
g¼h

¼ @p

@n
h�mUHS tanhðmhÞ: ð23Þ

The volumetric flow rate is defined as follows:

Qðn; tÞ ¼
Z h

0

udg ¼ � 1

3

@p

@n
h3 þUHS h� tanhðmhÞ

m

� �
: ð24Þ

The transformations between a wave frame ðnw; gwÞ moving
with velocity (c) and the fixed frame ðn; gÞ are given by
he combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),
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Figure 2 Electric potential profile at n ¼ 1:0; t ¼ 0 for (a)

u ¼ 0:6, (b) m ¼ 1.
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n ¼ nw � ct; g ¼ gw; u ¼ uw þ c; v ¼ vw; ð25Þ
where ðuw; vwÞ and ðu; vÞ are the velocity components in the
wave and fixed frame respectively.

The volumetric flow rate in the wave frame is given by

qw ¼
Z h

0

uwdgw ¼
Z h

0

ðu� 1Þdgw; ð26Þ

which, on integration, yields:

qw ¼ Q� h: ð27Þ
Averaging volumetric flow rate along one time period, we

get

�Q ¼
Z 1

0

Qdt ¼
Z 1

0

ðqw þ hÞdt; ð28Þ

which, on integration, yields:

�Q ¼ qw þ 1� /=2 ¼ Qþ 1� h� /=2: ð29Þ
Using Eq. (18), the stream function in the wave frame (obey-

ing the Cauchy-Riemann equations, uw ¼ @w
@gw

and vw ¼ � @w
@nw

)

takes the form:

w ¼ 1

6

@p

@nw
ðg3w � 3gwh

2Þ �UHS

sinhðmgwÞ
m coshðmhÞ � gw

� �
ð30Þ

All the above expressions will reduce to the corresponding
expressions for peristaltic transport of viscous fluids through a
finite length channel with UHS ¼ 0. Furthermore the special

case of peristalsis in the presence of electrokinetic transport
through a very thin electric double layer may be retrieved with
m ! 1.
4. Numerical results and discussion

In this section, numerical results obtained based on the closed-

form solutions presented earlier, via symbolic code computa-
tion (Mathematica software), are described. We consider the
effects of characteristic thickness of electric double layer

(kd / 1=m) and external electric field (En / UHS) on electrical
potential, axial velocity, pressure distribution, local wall shear
stress and trapping and representative plots are illustrated

through Figs. 2–8.
Fig. 2(a & b) depicts the electrical potential profiles i.e.

potential function vs. transverse coordinate. Evidently the

potential profile exhibits a consistently symmetric parabolic
shape across the width of the micro-channel i.e. it is minimum
at the origin and exhibits maximum values at the channel
walls. Fig. 2(a) shows the effect of thickness of EDL

(kd / 1=m) on the potential profile and it is noticed that mag-
nitude of potential function (U) is elevated with reducing the
thickness of EDL i.e. with decreasing values of m (m has an

inverse relationship with kd).
In other words with greater values of the electro-osmotic

parameter (m) the electric potential is elevated. Since m ¼ a
kd
,

the electro-osmotic parameter is inversely proportional to the

kd i.e. Debye length or characteristic thickness of the electrical
double layer (EDL). Reducing Debye length therefore results
in increasing the electrical potential. Similar observations have

been reported in electro-kinetic simulations by for example
Saville [25]. The electrical potential diminishes with every
increase in Debye length since a greater quantity of
Please cite this article in press as: D. Tripathi et al., Unsteady viscous flow driven by th
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ions take the place of the counter ions as we progress away
from the charged surface. Debye length is therefore a critical
design parameter in controlling the electrical potential distri-

bution. Fig. 2(b) depicts that the influence of amplitude of
wave on potential profile. The snapshot depicted is at the ini-
tiation of flow i.e. t = 0. It is pointed out that potential func-
tion enhances with increasing the amplitude of the wave,

indicating that the nature of the peristaltic wave can accentu-
ate electrical potential in the micro-pump. Judicious selection
of wave amplitude can therefore assist in elevating electrical

potential magnitudes which in turn will encourage better per-
formance of the micro-pump. These observations concur with
the findings of for example Manz et al. [8] and also Chakra-

borty [17]. The potential distributions are, in both Fig. 2
(a and b), observed to be symmetrical parabolas with the min-
imum magnitudes arising at the channel centerline i.e. at the
furthest location from the charged surface. The distributions

in Fig. 2(a) are however sharper profiles whereas in Fig. 2(b)
they are more dispersed.

Fig. 3(a & b) illustrates that the effects of EDL thickness

and external electric field on velocity profile. Axial velocities
consistently exhibit inverted parabolic profiles, demonstrating
that as with purely viscous laminar channel flow –see Schlicht-

ing [26]- the maximum velocity arises at the channel centerline
(i.e. at the greatest distance from the channel walls, where fric-
tion is a maximum). Fig. 3(a) depicts the effect of EDL thick-

ness (indirectly again via the electro-osmotic parameter, m) on
velocity profile and a distinct displacement in profiles from
parabolic to oblate parabolas (with the central plateau) which
e combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),
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are termed ‘‘trapezoidal” is witnessed, as electro-osmotic
parameter (m) is elevated i.e. as EDL thickness (kd) is reduced.
This shifting tendency is characteristic of the electrokinetic
effect which modifies the velocity distribution from the Stokes’
flow profile (parabolic) to the electro-osmotic flow profile (flat-
tened). This phenomenon has been reported in many studies

including Gregersen et al. [27] and Bruus [28]. Fig. 3 (b) pre-
sents the different velocity profiles computed with and without
external electric field. External electric field is simulated via the

Helmholtz-Smoluchowski velocity or maximum electro-

osmotic velocity, UHS ¼ � Enef
lc . Evidently greater electric field

(with all other parameters constrained) enhances the
Helmholtz-Smoluchowski velocity. This in turn increases the

electro-kinetic body force term, in the transformed linearized

momentum Eq. (11) i.e. þm2UHSU. This body force is assistive

to flow in the channel core region but inhibitive in the near-
wall region, as elaborated by Probstein [29], among others.
The result is that with greater UHS values the velocity is
enhanced dramatically in the core region, as seen in Fig. 3b.

Velocity profile is positively parabolic without external electric
field whereas it is negatively parabolic (inverted) with external
electric field. Hence the presence of increasing electrical field

via greater UHS values (1, 2) not only elevates velocities in
the core region i.e. accelerates the core electro-osmotic flow,
but also reverses and significantly sharpens the rather flat veloc-

ity profile without electro-kinetic effect (UHS = 0). The vertex
of the parabolic velocity profile dramatically increases with
increasing magnitude of external electric field. This trend is
Please cite this article in press as: D. Tripathi et al., Unsteady viscous flow driven by t
http://dx.doi.org/10.1016/j.aej.2017.05.027
therefore consistent with the findings of Chakraborty [17]
who has also demonstrated the beneficial nature of electric
field to flow acceleration in electro-kinetics and has further-

more emphasized the great sensitivity of electro-osmotic flow
to relatively low alterations in electric field strength. This has
implications in practical electro-osmotic micro-pumps since
he combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),
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very good acceleration can be attained in the core flow with

relatively minor adjustments in electric field, simultaneously
reducing costs and addressing electromagnetic compatibility
issues.

Fig. 4(a–d) is plotted for pressure distribution along the

length of channel to evaluate the influence of EDL thickness
and external electric field. To achieve more realistic simula-
Please cite this article in press as: D. Tripathi et al., Unsteady viscous flow driven by th
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tions, in line with practical micro-pump behavior [30], an inte-
gral number of train waves are considered to propagate along
the channel length i.e. length of the channel is considered as 2
times the wavelength of the peristaltic wave. The pressures at

both ends of the channel are taken to be zero and four differ-
ent steps of moving fluid bolus are visualized at different time
e combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),
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instants, namelyt ¼ 0; t ¼ 0:2; t ¼ 0:4 and finally t ¼ 0:6. It is
apparent from inspection of the figures, that the pressure dis-

tribution is not uniform at the fully contracted walls. For
example in Fig. 4(a), the pressure at the first contracted walls
location is somewhat lower in magnitude than the subsequent
Please cite this article in press as: D. Tripathi et al., Unsteady viscous flow driven by t
http://dx.doi.org/10.1016/j.aej.2017.05.027
pressure computed at the second contracted walls. However
the reverse pattern is observed in Fig. 4(b) and furthermore,
in Fig. 4(c), pressure distribution is consistently uniform along
the channel length. Conversely in Fig. 4(d), the pressure pro-

files are similar to Fig. 4a but the values are opposite i.e. wher-
ever peaks and troughs arise in Fig. 4(a) the contrary is the
case in Fig. 4(d). Generally it is also observed that the pressure

enhances with increasing the magnitude of EDL thickness. In
other words, as the electro-osmotic parameter (m) is decreased
and simultaneously EDL thickness (kd) is increased, the pres-

sure magnitudes are boosted in the channel. Therefore pressure
can be sustained in the micro-pump performance with stronger
electro-osmotic effect, which concurs with the computations of
Ngoma and Erchiqui [9], among others.

Fig. 5(a–d) presents pressure distribution along the length
of channel to compute the effects of external electric field,
again via the variation in Helmholtz-Smoluchowski velocity

UHS ¼ � Enef
lc . As this parameter is increased from 0 (purely vis-

cous flow) through 1 to a maximum value of 2, the increase in
electric field is observed to consistently reduce the pressure
magnitudes. Distinct from the velocity distributions presented

earlier, there is no significant shift in nature of the pressure dis-
tribution profile from the non-electrical to the electro-osmotic
cases. Electrical field therefore physically lowers pressures and
this also contributes to acceleration in the core region, as elab-

orated earlier. The magnitudes are also depleted weakly with
axial distance and with progression of time. Effectively greater
pressure is achieved for peristaltic pumping without external

electric field and vice versa, and again this trend agrees with
the earlier studies of Chakraborty [17]. The periodic nature
of pressure profiles is clearly captured in Fig. 5(a–d), and is

associated with the propagation of peristaltic waves.
he combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),
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Fig. 6(a–d) illustrates the response in local wall shear stress
(sw) along the channel length to variation in electro-osmotic
parameter (m) and indirectly the Debye EDL thickness (kd).
The same conditions are imposed as in Fig. 4. Local wall shear
stress distribution is uniform and exhibits the classical W-
shape, identified even in non-electro-osmotic (purely viscous)

peristaltic hydrodynamics. The maximum shear stress arises
at fully contracted walls while it is minimum at fully relaxed
walls. This is directly attributable to the maximum impedance

being encountered by the flow at the fully contracted walls and
the opposite behavior when the walls are fully relaxed. The
constriction in the walls when fully contracted significantly
inhibits the flow and this increases the shear resistance at the

walls i.e. boosts local wall shear stress. Four steps of local
shear stress distribution computed at different time instants
show the continuous chronological progress of the shear stress

distribution. It is also evident that the local wall shear stress is
enhanced with increasing magnitude of EDL thickness i.e.
lower values of electro-osmotic parameter (m). Decreasing m

is known to accelerate the flow which results in greater shear-
ing effects at the channel walls i.e. higher local wall shear
stresses.

Fig. 7(a–d) depicts the impact of external electric field on
local wall shear stress. It is depicted that local wall shear stress
is suppressed for peristaltic pumping with increasing external
electric field i.e. increasing UHS (Helmholtz-Smoluchowski

velocity or maximum electro-osmotic velocity is directly pro-
portional to the electrical field strength, En). This indicates that
the flow is decelerated at the walls with greater electric field

strength, an observation consistent with the velocity distribu-
tions described earlier in which flow acceleration was observed
in the core flow, with simultaneous deceleration at the bound-

aries of the channel i.e. walls. The implication is that axial elec-
tric field can be deployed to accelerate and decelerate different
zones in the flow. This allows designers to boost velocities in

the core region and concurrently reduce them at the walls.
Efforts in this regard have been communicated also by
McKnight et al. [21].

Fig. 8(a, b) depicts the variation in volumetric flow rate

(Q(n,t)) with axial pressure gradient (@p=@n) for different values

of (a) electro-osmotic parameter (i.e. m ¼ aez
ffiffiffiffiffiffiffiffi
2n0
eKBT

q
¼ a

kd
), and

(b) Helmholtz-Smoluchowski velocity (UHS ¼ � Enef
lc ) i.e. maxi-

mum electro-osmotic velocity. The inverse relationship
between flow rate and pressure gradient is evident from inspec-
tion of both graphs. As pressure gradient increases, flow rate

decreases. The decay clearly follows a linear pattern. Fig. 8
(a) shows that increasing electro-osmotic parameter (i.e. m) sig-
nificantly elevates the volumetric flow rate. Magnitudes remain
positive for both m= 1.5, 2; however at higher pressure gradi-

ent volumetric flow is negative for m = 1. With increasing
Helmholtz-Smoluchowski velocity (UHS), Fig. 8(b) demon-
strates that there is also a significant enhancement in volumet-

ric flow rate. However, whereas for UHS = 1 values are
generally positive for all but very high values of the axial pres-
sure gradient, for UHS = 0.5 they are initially positive and then

assume negative values at intermediate values of the pressure
gradient. For the case of vanishing electro-osmosis i.e.
UHS = 0, values are consistently negative for all pressure gra-

dients. Furthermore it is noteworthy that magnitudes com-
puted in Fig. 8(b) are substantially lower (an order of
Please cite this article in press as: D. Tripathi et al., Unsteady viscous flow driven by th
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magnitude) than those in Fig. 8(a), at all values of axial pres-
sure gradient.

Fig. 9(a and b) illustrates the evolution in volumetric flow

rate (Q(n,t)) with axial coordinate (n) and with different val-
ues of (a) electro-osmotic parameter, m (inversely proportional
to Debye length) and (b) Helmholtz-Smoluchowski velocity.

In both plots well-dispersed periodic profiles are captured
which illustrate clearly the sinusoidal nature of the peristaltic
flow. Flow rates are observed to alternate i.e. attaining respec-

tive peaks then troughs. However the peaks are significantly
greater in magnitude than the troughs as we progress from
the channel entry (n = 0) along the channel. With an increase
in m, (Fig. 9a) there is a consistent enhancement in the volu-

metric flow rate. Effectively therefore greater electro-osmotic
effect (smaller Debye length) markedly boosts flow rates.
Fig. 9b shows that with increasing Helmholtz-Smoluchowski

velocity there is also a marked elevation in flow rates. In other
words greater axial electrical field enhances flow rate along the
channel since the Helmholtz-Smoluchowski velocity is directly

proportional to axial electrical field (UHS ¼ � Enef
lc ).

Fig. 10(a–f) illustrates streamline distributions at prescribed
values of amplitude and averaged volumetric flow rate

u ¼ 0:5; �Q ¼ 0:6 for different combinations of electro-

osmotic parameter (m) and also Helmholtz-Smoluchowski
velocity (UHS). Via these two electro-kinetic parameters we
can again examine the influence of EDL thickness and also

external electric field on trapping phenomenon associated with
peristaltic propulsion in the micro-channel. Trapping is an
important phenomenon of peristaltic pumping in which the
e combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),

http://dx.doi.org/10.1016/j.aej.2017.05.027


η

η
η

ξ
ξ

ξ ξ

ξ ξ

(a)

(c)

(b)

(d)

(e) (f)

η
η

η

Figure 10 Streamlines at u ¼ 0:5; �Q ¼ 0:6, (a) m ¼ 5;UHS ¼ 0, (b) m ¼ 5;UHS ¼ 1, (c) m ¼ 5;UHS ¼ 2, (d) m ¼ 5;UHS ¼ 3, (e)

m ¼ 8;UHS ¼ 1, (f) m ¼ 10;UHS ¼ 1.

10 D. Tripathi et al.
streamlines circulate and form a trapped bolus. It allows the
determination of reflux characteristics and also vortex growth

and circulation intensity in peristaltic flows. In Fig. 10(a–d), it
is evident that the number of trapped boluses is markedly
depleted with increasing external electric field i.e. increasing

UHS values. In particular significant distortion of streamlines
arises in Fig. 8(a) at high transverse coordinate and intermedi-
ate axial coordinate values. Fig. 10(a, e & f) illustrates the

impact of EDL thickness on trapping and reveal that the num-
ber of trapped bolus is also significantly reduced with increase
in the thickness of EDL i.e. decreasing electro-osmotic param-

eter (m).

5. Conclusions

Motivated by novel developments in electro-osmotic micro-
pumps, a new mathematical model has been presented for
Please cite this article in press as: D. Tripathi et al., Unsteady viscous flow driven by t
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unsteady electro-osmotic peristaltic flow in a micro-channel,
under the action of an axial electric field. Using creeping flow

approximations, the electro-kinetic transport equations have
been simplified via the Debye linearization and a non-
dimensional, linearized boundary value problem derived.

Closed-form solutions have been derived for axial velocity,
electrical potential, local wall shear stress, axial pressure gradi-
ent and pressure difference. Numerical computations executed

in symbolic software have been visualized to elucidate the
influence of electro-kinetic, geometric and peristaltic wave
parameters on the flow variables. The present computations

have shown that:


 With increasing axial electrical field (i.e. increasing
Helmholtz-Smoluchowski velocity) the axial flow is signifi-

cantly accelerated in the core region of the micro-channel
whereas it is decelerated at the micro-channel walls.
he combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),
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 With decreasing electro-osmotic parameter and increasing

Debye length (electric double layer thickness, EDL), the
axial flow is strongly accelerated in the core region whereas
local wall shear stress is reduced.


 The number of trapped boluses is decreased with increasing
external electric field i.e. increasing Helmholtz-
Smoluchowski velocity values, and similarly it is reduced
with increasing the thickness of EDL i.e. decreasing

electro-osmotic parameter.

 With decreasing electro-osmotic parameter (m) and simul-
taneous increase in EDL thickness, the pressure magnitudes

are elevated. Similarly an increase in Helmholtz-
Smoluchowski velocity and therefore axial electrical field,
is found to reduce the pressure magnitudes.


 With increasing electrical field, axial flow is strongly accel-
erated in the core region. Furthermore velocity profile is
positively parabolic without external electric field whereas
it is negatively parabolic (inverted) with external electric

field.

 The electrical potential is decreased with increasing EDL
thickness i.e. decreasing electro-osmotic parameter.

References

[1] K.P. Tikhomolova, Electro-Osmosis, Ellis Horwood, London,

1993.

[2] H. Ginsburg, Analysis of plant root electro-potentials, J. Theor.

Biol. 37 (1972) 389–412.

[3] V. Sansalone, J. Kaiser, S. Naili, T. Lemaire, Interstitial fluid

flow within bone canaliculi and electro-chemo-mechanical

features of the canalicular milieu, Biomech. Model.

Mechanobiol. 12 (2013) 533–553.

[4] E.A. Marshall, The osmotic flow of an electrolyte through a

charged porous membrane, J. Theor. Biol. 66 (1977) 107–135.

[5] S. Grimnes, Skin impedance and electro-osmosis in the human

epidermis, Med. Biol. Eng. Compu. 21 (1983) 739–749.

[6] T.A. Davis, Electrodialysis, in: M.C. Porter (Ed.), Handbook of

Industrial Membrane Technology, Noyes Publications, New

Jersey, USA, 1990.

[7] V. Orsat, G.S.V. Raghavan, E.R. Norris, Food processing waste

dewatering by electro-osmosis, Can. Agric. Eng. 38 (1996) 063–

067.

[8] A. Manz, C.S. Effenhauser, N. Burggraf, D.J. Harrison, K.

Seiler, K. Fluri, J. Micromech. Microeng. 4 (1994) 257.

[9] G.D. Ngoma, F. Erchiqui, Pressure gradient and electroosmotic

effects on two immiscible fluids in a microchannel between two

parallel plates, J. Micromech. Microeng. 16 (2005) 83–90.

[10] T.S. Zhao, Q. Liao, Thermal effects on electro-osmotic pumping

of liquids in microchannels, J. Micromech. Microeng. 12 (2002)

962.

[11] D. Tripathi, O. Anwar Bég, Transient magneto-peristaltic flow

of couple stress biofluids: a magneto-hydro-dynamical study on

digestive transport phenomena, Math. Biosci. 246 (2013) 72–83.
Please cite this article in press as: D. Tripathi et al., Unsteady viscous flow driven by th
http://dx.doi.org/10.1016/j.aej.2017.05.027
[12] M. Kothandapani, J. Prakash, Effect of radiation and magnetic

field on peristaltic transport of nanofluids through a porous

space in a tapered asymmetric channel, J. Magn. Magn. Mater.

378 (2015) 152–163.

[13] N.S. Akbar, M. Raza, R. Ellahi, Influence of induced magnetic

field and heat flux with the suspension of carbon nanotubes for

the peristaltic flow in a permeable channel, J. Magn. Magn.

Mater. 381 (2015) 405–415.

[14] M.M. Bhatti, A. Zeeshan, R. Ellahi, Endoscope analysis on

peristaltic blood flow of Sisko fluid with Titanium magneto-

nanoparticles, Comput. Biol. Med. 78 (2016) 29–41.

[15] M.M. Bhatti, A. Zeeshan, R. Ellahi, Simultaneous effects of

coagulation and variable magnetic field on peristaltically

induced motion of Jeffrey nanofluid containing gyrotactic

microorganism, Microvasc. Res. 110 (2017) 32–42.

[16] M.M. Bhatti, A. Zeeshan, R. Ellahi, Study of variable magnetic

field on the peristaltic flow of Jeffrey fluid in a non-uniform

rectangular duct having compliant walls, J. Mol. Liq. 222 (2016)

101–108.

[17] S. Chakraborty, Augmentation of peristaltic microflows through

electro-osmotic mechanisms, J. Phys. D Appl. Phys. 39 (2006)

5356–5363.

[18] D. Tripathi, S. Bushan, O.A. Beg, Analytical study of electro-

osmosis modulated capillary peristaltic hemodynamics, J. Mech.

Med. Biol. 17 (2017) 1750052 (22 pages).

[19] P. Goswami, J. Chakraborty, A. Bandopadhyay, S.

Chakraborty, Electrokinetically modulated peristaltic transport

of power-law fluids, Microvasc. Res. 103 (2015), http://dx.doi.

org/10.1016/j.mvr.2015.10.004.

[20] J. Goulpeau, D. Trouchet, A. Ajdari, P. Tabeling, Experimental

study and modelling of polydimethylsiloxane peristaltic

micropumps, J. Appl. Phys. 98 (2005) 044914.

[21] T.E. McKnight, C.T. Culbertson, S.C. Jacobson, J.M. Ramsey,

Electro-osmotically induced hydraulic pumping with integrated

electrodes on microfluidic devices, Anal. Chem. 73 (2001) 4045–

4049.

[22] Y.C. Fung, C.S. Yih, Peristaltic transport, ASME J. Appl.

Mech. 35 (1968) 669–675.

[23] D. Tripathi and O. Anwar Bég, A study on peristaltic flow of

nanofluids: application in drug delivery systems, Int. J. Heat

Mass Transfer 70 (2014) 61–70.

[24] M. Li, J.G. Brasseur, Non-steady peristaltic transport in finite-

length tubes, J. Fluid Mech. 248 (1993) 129–151.

[25] D.A. Saville, Electrokinetic effects with small particles, Ann.

Rev. Fluid Mech. 9 (1977) 321–337.

[26] H. Schlichting, Boundary-Layer Theory, sixth ed., McGraw-

Hill, New York, 1979.

[27] M.M. Gregersen, M.B. Andersen, G. Soni, C. Meinhart, H.

Bruus, Numerical analysis of finite Debye-length effects in

induced-charge electro-osmosis, Phys. Rev. E 79 (2009) 066316.

[28] H. Bruus, Theoretical Microfluidics, Oxford University Press,

Oxford, 2008.

[29] R.F. Probstein, Physico-Chemical Hydrodynamics, MacGraw-

Hill, New York, 1989.

[30] X. Zhang, Z. Chen, Y. Huang, A valve-less microfluidic

peristaltic pumping method, Biomicrofluidics 9 (2015) 014118.
e combined effects of peristalsis and electro-osmosis, Alexandria Eng. J. (2017),

http://refhub.elsevier.com/S1110-0168(17)30191-6/h0005
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0005
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0005
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0010
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0010
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0015
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0015
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0015
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0015
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0020
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0020
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0025
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0025
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0030
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0030
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0030
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0030
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0030
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0035
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0035
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0035
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0040
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0040
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0045
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0045
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0045
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0050
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0050
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0050
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0055
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0055
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0055
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0060
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0060
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0060
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0060
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0065
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0065
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0065
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0065
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0070
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0070
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0070
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0075
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0075
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0075
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0075
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0080
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0080
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0080
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0080
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0085
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0085
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0085
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0090
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0090
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0090
http://dx.doi.org/10.1016/j.mvr.2015.10.004
http://dx.doi.org/10.1016/j.mvr.2015.10.004
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0100
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0100
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0100
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0105
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0105
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0105
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0105
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0110
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0110
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0120
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0120
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0125
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0125
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0130
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0130
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0130
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0135
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0135
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0135
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0140
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0140
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0140
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0145
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0145
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0145
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0150
http://refhub.elsevier.com/S1110-0168(17)30191-6/h0150
http://dx.doi.org/10.1016/j.aej.2017.05.027

	Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis
	1 Introduction
	2 Mathematical model
	3 Analytical solutions
	4 Numerical results and discussion
	5 Conclusions
	References


