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ABSTRACT 34	  

We synthesize findings from one of the world’s largest and longest-running experimental 35	  

investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an 36	  

area of ~1,000 km2 in central Amazonia, the BDFFP was initially designed to evaluate the 37	  

effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38	  

38-year history to date the project has far transcended its original mission, and now focuses 39	  

more broadly on landscape dynamics, forest regeneration, regional- and global-change 40	  

phenomena, and their potential interactions and implications for Amazonian forest 41	  

conservation. The project has yielded a wealth of insights into the ecological and 42	  

environmental changes in fragmented forests. For instance, many rainforest species are 43	  

naturally rare and hence are either missing entirely from many fragments or so sparsely 44	  

represented as to have little chance of long-term survival. Additionally, edge effects are a 45	  

prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, 46	  

carbon storage and a diversity of fauna.  47	  

Even within our controlled study area, the landscape has been highly dynamic: for 48	  

example, the matrix of vegetation surrounding fragments has changed markedly over time, 49	  

succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in 50	  
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turn, has influenced the dynamics of plant and animal communities and their trajectories of 51	  

change over time. In general, fauna and flora have responded differently to fragmentation: the 52	  

most locally extinction-prone animal species are those that have both large area requirements 53	  

and low tolerance of the modified habitats surrounding fragments, whereas the most 54	  

vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, 55	  

and that rely on vulnerable animals for seed dispersal or pollination.  56	  

Relative to intact forests, most fragments are hyperdynamic, with unstable or 57	  

fluctuating populations of species in response to a variety of external vicissitudes. Rare 58	  

weather events such as droughts, windstorms and floods have had strong impacts on 59	  

fragments and left lasting legacies of change. Both forest fragments and the intact forests in 60	  

our study area appear to be influenced by larger-scale environmental drivers operating at 61	  

regional or global scales. These drivers are apparently increasing forest productivity and have 62	  

led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree-63	  

community composition, and increases in liana (woody vine) abundance. Such large-scale 64	  

drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects 65	  

for some species and ecological phenomena. Hence, the impacts of fragmentation on 66	  

Amazonian biodiversity and ecosystem processes appear to be a consequence not only of 67	  

local site features but also of broader changes occurring at landscape, regional and even 68	  

global scales.  69	  

 70	  

Key words: Amazonia, biodiversity, carbon storage, climate change, drought, ecosystem 71	  

services, edge effects, environmental synergisms, habitat fragmentation, nature reserves. 72	  
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I. INTRODUCTION 125	  

The Biological Dynamics of Forest Fragments Project (BDFFP) is the world’s largest and 126	  

longest-running experimental study of habitat fragmentation (Lovejoy et al., 1986; 127	  

Bierregaard et al., 1992; Laurance et al., 2002, 2011). Located in central Amazonia (Fig. 1), 128	  

the BDFFP has evolved since its inception in 1979 into an epicenter for long-term research. 129	  

Beyond this, its research mission has gradually broadened to include not only forest 130	  

fragmentation but also studies of forest regeneration, landscape dynamics, climatic variation, 131	  

regional- and global-change phenomena and a variety of interdisciplinary research topics.  132	  

The BDFFP is strategically located at the heart of the Amazon, the world’s largest 133	  

tropical forest. The Amazon itself lies at the intersection of key questions in global change, 134	  

both for research and for action. It is believed to be one of the major regions that will be most 135	  

impacted by projected climatic change (Salazar et al., 2007; Dai, 2012; IPCC, 2013; Nobre et 136	  

al., 2016). If effectively conserved and managed, the Amazon has the potential to contribute 137	  

markedly to efforts to limit climate change during the narrow window of time we have 138	  

remaining to avert ‘dangerous’ global warming (Fearnside, 2000, 2012; Houghton et al., 139	  

2015). Because of its enormous carbon-storage capacity, it is also one of the places on Earth 140	  

where sharply reducing greenhouse-gas emissions could be achieved by limiting forest loss 141	  

and degradation, thereby delivering great global benefits for humankind (Stickler et al., 142	  

2009).  143	  

Today, the BDFFP is one of the most enduring, influential and highly cited 144	  

environmental investigations in the world (Gardner et al., 2009; Peres et al., 2010; Pitman et 145	  

al., 2011). Its wide-ranging research has involved hundreds of Brazilian and international 146	  

investigators and thousands of students and other trainees. Here we synthesize the 147	  

contributions of this singular project to the study of habitat fragmentation, including its 148	  

broader consequences for Amazonian ecosystems and biota. We emphasize that many of the 149	  
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local impacts of fragmentation in the Amazon are being modified or exacerbated by 150	  

environmental changes occurring at wider landscape, regional and even global scales. We 151	  

assert that the effects of fragmentation cannot be fully understood without considering the 152	  

influence of these larger-scale phenomena.  153	  

 154	  

II. LARGER-SCALE DRIVERS 155	  

(1) Landscape-scale phenomena 156	  

The correlated processes of forest loss and fragmentation are among the greatest threats to 157	  

tropical biodiversity (Lovejoy et al., 1986; Ewers & Didham, 2006; Laurance & Peres, 2006; 158	  

Gibson et al., 2011). Amazonia harbors more than half of the world’s surviving tropical 159	  

forest, and is currently being altered by large-scale agriculture (Fearnside, 2001a; Gibbs et al., 160	  

2010), industrial logging (Asner et al., 2005), proliferating roads (Laurance et al., 2001a; 161	  

Fearnside, 2002, 2007; Killeen, 2007), increasing biofuel production (Butler & Laurance, 162	  

2009), hydroelectric dams (Fearnside, 2016a) and oil, gas and mining developments (Finer et 163	  

al., 2008).  164	  

Large expanses of the Amazon have already been cleared, resulting in considerable 165	  

fragmentation. By the early 1990s, the area of forest that was fragmented (<100 km2) or 166	  

vulnerable to edge effects (<1 km from edge) was over 150% greater than the area that had 167	  

been deforested (Skole & Tucker, 1993). From 1999 to 2002, deforestation and industrial 168	  

selective logging in Brazilian Amazonia, respectively, created ~32,000 and ~38,000 km of 169	  

new forest edge annually (Broadbent et al., 2008). Prevailing land uses in Amazonia, such as 170	  

cattle ranching and small-scale farming, typically produce landscapes dominated by small 171	  

(<400 ha) and irregularly shaped forest fragments (Fig. 2)(Cochrane & Laurance, 2002; 172	  

Broadbent et al., 2008). Such fragments are especially vulnerable to a wide array of edge 173	  

effects and other external vicissitudes (Bierregaard et al., 1992; Laurance et al., 2002, 2011). 174	  
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Changes in forest cover can have important effects on local climate and vegetation. 175	  

Habitat fragmentation can promote forest desiccation via phenomena such as the “vegetation 176	  

breeze” (Fig. 3). This occurs because fragmentation leads to the juxtaposition of cleared and 177	  

forested lands, which differ greatly in their physical characteristics. Air above forests is 178	  

cooled by evaporation and especially plant evapotranspiration, but such cooling is greatly 179	  

reduced above clearings (Avissar & Schmidt, 1998). As a result, the air above clearings heats 180	  

up and rises, reducing local air pressure and drawing moist air from the surrounding forests 181	  

into the clearing. As the rising air cools, its moisture condenses into convective clouds that 182	  

can produce rainfall over the clearing (Avissar & Liu, 1996). The air is then recycled—as 183	  

cool, dry air—back over the forest. In this way, clearings of a few hundred hectares or more 184	  

can draw moisture away from nearby forests (Laurance, 2004a; Cochrane & Laurance, 2008; 185	  

Nobre et al., 2016). In eastern Amazonia, satellite observations of canopy-water content 186	  

suggest such desiccating effects can penetrate from 1.0-2.7 km into fragmented forests (Briant 187	  

et al., 2010). This moisture-robbing function of clearings, in concert with frequent burning in 188	  

adjoining pastures, could help to explain why fragmented forests are so vulnerable to 189	  

destructive, edge-related fires (Cochrane & Laurance, 2002, 2008; Barlow et al., 2006).  190	  

 191	  

(2) Regional-scale phenomena 192	  

Extensive forest clearing reduces the rate of evapotranspiration because pasture grasses and 193	  

croplands have far less leaf area and shallower roots than do rainforests (Jipp et al., 1998). At 194	  

regional scales, declining evapotranspiration could reduce rainfall and cloud cover and 195	  

increase albedo and soil-surface temperatures. Moisture recycling via evapotranspiration is 196	  

exceptionally important in the hydrological regime of the Amazon (Salati & Vose, 1984; 197	  

Eltahir & Bras, 1994), especially during the dry season (Malhi et al., 2008), because the forest 198	  

is both vast and far from the nearest ocean.  199	  
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However, the regional consequences of large-scale deforestation are far from fully 200	  

understood. Some modeling studies suggest that Amazonian deforestation could reduce basin-201	  

wide precipitation by roughly 20-30%, but these estimates rely on a simplistic assumption of 202	  

complete, uniform forest clearing (e.g. Nobre et al., 1991; Dickinson & Kennedy, 1992; Lean 203	  

& Rowntree, 1993). Model results based on actual (circa 1988) deforestation patterns in 204	  

Brazilian Amazonia have been less dramatic, with deforested regions predicted to experience 205	  

modest (6-8%) declines in rainfall, moderate (18-33%) reductions in evapotranspiration, 206	  

higher soil-surface temperatures and greater windspeeds (from reduced surface drag), which 207	  

could affect moisture convergence and circulation (Walker et al., 1995; Sud et al., 1996). It is 208	  

even possible that moderate forest loss and fragmentation could increase net regional 209	  

precipitation in the near term, as a result of increasing convectional storms driven by 210	  

vegetation breezes, although the main effect would be to remove moisture from forests and 211	  

redistribute it over adjoining clearings. The greatest concern is that if deforestation reaches 212	  

some critical threshold (see below), Amazonian rainfall might decline abruptly as the regional 213	  

hydrological system collapses (Avissar et al., 2002; Nobre et al., 2016).   214	  

Massive smoke plumes produced by forest and pasture fires cause two additional 215	  

effects of forest loss. Smoke hypersaturates the atmosphere with cloud condensation nuclei 216	  

(microscopic particles in aerosol form) that bind with airborne water molecules and thereby 217	  

inhibit the formation of raindrops (Rosenfeld, 1999). In addition, by absorbing solar radiation, 218	  

smoke plumes warm the atmosphere, inhibiting cloud formation. As a result of these two 219	  

effects, large fires can create rain shadows that extend for hundreds or even thousands of 220	  

kilometers downwind (Freitas et al., 2000). This can be a serious threat to forests because 221	  

tropical fires are lit during the critical dry-season months, when plants are already moisture 222	  

stressed and most vulnerable to fire.   223	  

 224	  
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(3) Global-change phenomena 225	  

How will global-change drivers affect the Amazon? Although model predictions for future 226	  

climates in Amazonia vary considerably, it is generally expected that parts of the basin will 227	  

become hotter and drier under projected global warming (IPCC, 2013; Nobre et al., 2016). 228	  

What this portends for the Amazon is a matter of some controversy. Earlier studies assuming 229	  

CO2 concentrations about twice those in the pre-industrial atmosphere, notably by the UK 230	  

Hadley Centre, projected disastrous forest die-offs (Cox et al., 2000, 2004). However, this 231	  

conclusion has now been countered by new models from the same research group, suggesting 232	  

the Amazon forest will remain almost entirely intact at up to four times pre-industrial CO2 233	  

levels (Cox et al., 2013; Good et al., 2013; Huntingford et al., 2013). The main difference is 234	  

that the newer models include CO2-fertilization effects (Kimball et al., 1993), which are 235	  

assumed to increase plant growth and water-use efficiency. This is because the higher 236	  

atmospheric CO2 concentration should allow plants to conserve water by decreasing the 237	  

duration of stomatal-opening periods while still taking in adequate CO2 for photosynthesis.  238	  

Other global-change phenomena, such as extreme climatic events, could also 239	  

potentially have important impacts. For instance, droughts in the Amazon are normally 240	  

associated with El Niño events and are strongest in the southern, eastern and north-central 241	  

Amazon—areas of the basin that already experience pronounced dry seasons. However, 242	  

severe droughts in 2005 and 2010 arose from a completely different cause—exceptionally 243	  

high Atlantic sea-surface temperatures, which caused the rain-bearing inter-tropical 244	  

convergence zone to shift northward (Lewis et al., 2011). The resulting droughts affected not 245	  

just the drier, more seasonal parts of the basin but also its wettest areas in central and western 246	  

Amazonia. Because plant species in these wet areas are adapted to perennially humid 247	  

conditions, the new droughts caused massive plant mortality, killing tens of millions of trees 248	  

while releasing several billion tonnes of atmospheric carbon emissions (Lewis et al., 2011; 249	  
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Marengo et al., 2012). With mounting evidence that climatic extremes could become more 250	  

frequent and intense in a warming world (Vera et al., 2006; Herring et al., 2015; Jiménez-251	  

Muñoz et al., 2016), could the Amazon be driven into a new kind of climatic dynamic—one 252	  

for which its ecosystems and biodiversity are poorly adapted? 253	  

 254	  

III. STUDY AREA AND KEY DATASETS 255	  

(1) Study area 256	  

The experimental landscape of the BDFFP spans ~1000 km2 in area and is located 80 km 257	  

north of Manaus, Brazil. The topography is relatively flat (80-160 m elevation) but dissected 258	  

by numerous stream gullies. The heavily weathered, nutrient-poor soils of the study area are 259	  

typical of large expanses of the Amazon Basin. Rainfall ranges from 1900 to 3500 mm 260	  

annually with a moderately strong dry season from June to October. The forest canopy is 30-261	  

37 m tall, with emergent trees to 55 m. Species richness of trees (≥10 cm diameter at breast 262	  

height) often exceeds 280 species ha-1, which is among the highest known tree diversity in the 263	  

world (Oliveira & Mori, 1999; S. G. Laurance et al., 2010b). Comparably high levels of 264	  

diversity are seen in many other plant and animal taxa. 265	  

The study area includes three large cattle ranches (~5000 ha each) containing 11 forest 266	  

fragments (five of 1 ha, four of 10 ha and two of 100 ha), and large expanses of nearby 267	  

continuous forest that serve as experimental controls (Fig. 1). In the early 1980s, the 268	  

fragments were isolated from nearby intact forest by distances of 80-650 m through clearing 269	  

and burning of the surrounding forest. A key advantage was that pre-fragmentation censuses 270	  

were conducted for many animal and plant groups (e.g. trees, understory birds, small 271	  

mammals, primates, frogs, many invertebrate taxa), thereby allowing long-term changes in 272	  

these groups to be assessed far more confidently than in most other fragmentation studies. 273	  

Because of poor soils and low productivity, the ranches surrounding the BDFFP 274	  
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fragments were largely abandoned, especially after government fiscal incentives dried up 275	  

from 1988 onwards. Secondary forests—initially dominated by Vismia spp. in areas that were 276	  

cleared and burned, and by Cecropia spp. in areas that were cleared without fire—proliferated 277	  

in many formerly forested areas (Mesquita et al., 2001). Some regenerating areas initially 278	  

dominated by Cecropia later grew into structurally complex (>20 m tall), species-rich 279	  

secondary forests (Longworth et al., 2014). Vismia-dominated regrowth, however, which is 280	  

relatively species poor, is maturing far more slowly (Norden et al., 2011; Williamson et al., 281	  

2014).  282	  

To help maintain isolation of the experimental fragments, 100 m-wide strips of 283	  

regrowth were cleared and burned around each fragment on 4-5 occasions, most recently in 284	  

2013-2014. However, human disturbances that affect many fragmented landscapes in the 285	  

Amazon, such as major fires, logging and hunting (Michalski & Peres, 2005), are largely 286	  

prevented at the BDFFP.  287	  

 288	  

(2) Unique datasets 289	  

The BDFFP sustains some of the longest-running and highest-quality environmental datasets 290	  

in the Amazon. This includes a network of 69 1-ha forest-dynamics plots arrayed across intact 291	  

and fragmented forests in the study area, which has been monitored since the early 1980s, and 292	  

a permanent 25-ha plot in intact forest established in 2005. These plots have made important 293	  

contributions to reducing uncertainties in biomass and carbon-storage estimates for the 294	  

Amazon (e.g. Phillips et al., 1998; Baker et al., 2004; Nascimento & Laurance, 2002). For 295	  

example, in comparison to the 3000 1-ha plots surveyed by the RADAMBRASIL Project 296	  

(Nogueira et al., 2008, 2015), the BDFFP plots include data on nearly all other forest 297	  

components such as smaller (1-30 cm diameter) trees, palms, lianas, strangler figs, understory 298	  

vegetation and dead biomass (Nascimento & Laurance, 2002, 2004). These data allow one to 299	  
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assess spatial variability in aboveground biomass with a high degree of confidence. For 300	  

example, the aboveground biomass of trees varies considerably among the 69 1-ha plots in the 301	  

BDFFP landscape (mean ± SD = 356 ± 47 Mg ha-1; Laurance et al., 1999). This high 302	  

variability demonstrates a need for many plots that are spatially stratified, rather than only a 303	  

few plots of 1 ha or smaller scattered irregularly around the Amazon, for calibrating satellite 304	  

imagery for biomass mapping, and for estimating greenhouse-gas emissions from ongoing 305	  

deforestation (see Fearnside, 2016b). 306	  

Floristic data from the BDFFP are exceptional for their high quality of species 307	  

identifications, allowing better matching with plant functional and phylogenetic traits such as 308	  

wood density and tree form (e.g., Fearnside, 1997; Nogueira et al., 2005, 2007; Chave et al., 309	  

2006; Souza et al., 2016). Given their broad spatial extent and temporal depth, these data have 310	  

also contributed to knowledge of the diversity of Amazonian plant species and their 311	  

relationships to soil texture and chemistry, topography, forest dynamics and climatic variables 312	  

at both landscape and regional scales (e.g. Bohlman et al., 2008; S. G. Laurance et al., 2009, 313	  

2010a, 2010b; ter Steege et al., 2013). Biodiversity and ecosystem processes represent part of 314	  

what is lost when the forest is destroyed or degraded. Understanding these processes is 315	  

essential for assessing not only the vulnerability of forests, but also their potential resilience 316	  

in the face of global change and their rates of recovery following various perturbations 317	  

(Williamson et al., 2014; Souza et al., 2016). Datasets for a number of faunal groups, such as 318	  

birds, amphibians, primates and major invertebrate taxa, are of comparable quality and 319	  

duration.  320	  

 321	  

IV. CHANGES IN INTACT FORESTS 322	  

(1) Unexpected trends 323	  
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As part of its original mission to assess long-term changes in fragmented forests, the BDFFP 324	  

has two types of experimental controls (Lovejoy et al., 1986; Bierregaard et al., 1992). The 325	  

first is that standardized censuses of many plant and animal taxa were conducted in each 326	  

experimental fragment before it was isolated from the surrounding forest. The second is that 327	  

dozens of ‘control’ sites in nearby intact forests have been monitored for up to 38 years, to 328	  

assess the temporal dynamics of these sites. The intact-forest sites were expected to vary 329	  

randomly over time or respond to occasional vicissitudes such as droughts, but not to change 330	  

over time in a directional manner.  331	  

A major surprise, however, is that the BDFFP controls have changed in several 332	  

concerted ways (Laurance et al., 2014b). Before interpreting how fragmentation has altered 333	  

ecological communities in the BDFFP, it is first important to identify how the intact-forest 334	  

sites have changed—as these widespread effects are presumably altering the forest fragments 335	  

as well. The long-term monitoring of tens of thousands of trees and populations of many other 336	  

plant and animal groups has allowed researchers to identify synchronous changes in the 337	  

undisturbed forests at the intact sites—and to attempt to infer their environmental causes.  338	  

How have the intact forests changed? Over the past 2-3 decades, we have found that 339	  

(1) forest dynamics (tree mortality and recruitment) have accelerated significantly over time 340	  

(Laurance et al., 2004a, 2014b; S. G. Laurance et al., 2009); (2) tree-community composition 341	  

has shifted, generally in favor of faster-growing canopy trees and against shade-tolerant 342	  

subcanopy trees (Laurance et al., 2004a, 2005); (3) growth rates have increased for the large 343	  

majority (84%) of tree genera in our study area (Fig. 4)(Laurance et al., 2004a); (4) 344	  

aboveground tree biomass has increased significantly over time (although tree-stem numbers 345	  

have not changed significantly; S. G. Laurance et al., 2009); and (5) lianas have increased 346	  

markedly in abundance (Fig. 5)(Laurance et al. 2014a, 2014b).   347	  

 348	  
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(2) Potential environmental drivers 349	  

Why are the intact forests changing? The causes of such changes are incompletely understood 350	  

(Lewis et al., 2004a, 2009a) and often controversial (Clark, 2004; Fearnside 2004). 351	  

Nonetheless, the trends we detected appear broadly consistent with those observed elsewhere 352	  

in many Amazonian (Phillips & Gentry, 1994; Phillips et al., 1998, 2002; Baker et al., 2004; 353	  

Lewis et al., 2004b; Schnitzer & Bongers, 2011) and African (Lewis et al., 2009a) tropical 354	  

forests. These trends are consistent with ecological patterns expected from rising forest 355	  

productivity—including faster plant growth, increasing forest biomass, intensifying 356	  

competition leading to greater plant mortality and turnover, and increasing abundances of 357	  

plant species that can attain high growth rates or are advantaged in dynamic forests (Laurance 358	  

et al., 2004a; Lewis et al., 2004b, 2009a).  359	  

The most frequently invoked driver of rising tropical forest productivity is CO2 360	  

fertilization (e.g. Lewis et al., 2004a, 2009b), presumably because many plants show faster 361	  

growth under enriched CO2 (Oberbauer et al., 1985; Granados & Körner, 2002; Körner 2004) 362	  

and because atmospheric CO2 levels have risen rapidly, especially in recent decades. This 363	  

view is supported by compelling evidence of a large carbon sink in the biosphere (Ballantyne 364	  

et al., 2013), a substantial part of which appears to be on land (Sarmiento et al., 2010) and in 365	  

the tropics (Lewis et al., 2009b; Huntingford et al., 2013). 366	  

Other explanations for the rising productivity, however, are not implausible. For 367	  

instance, droughts can influence forest dynamics and composition and appear to be increasing 368	  

in parts of the Amazon (Lewis et al., 2009b; Marengo et al., 2011; Chou et al., 2013; Fu et 369	  

al., 2013). The increase in forest dynamics we observed in intact forests appears to be driven 370	  

primarily by rising tree mortality, with recruitment and growth often lagging behind periods 371	  

of high mortality. These mortality pulses are positively associated with several factors, 372	  

including El Niño droughts and increasing rainfall seasonality (S. G. Laurance et al., 2009).  373	  
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Additionally, multi-decadal shifts in solar radiation or cloudiness could potentially 374	  

increase forest productivity, although evidence for such shifts in the tropics is limited (Lewis 375	  

et al., 2009b). Recovery from past disturbance has also been hypothesized to underlay 376	  

changes at some tropical forest sites, but there is no evidence of widespread disturbance in our 377	  

study area (Laurance et al., 2004a, 2005) aside from charcoal fragments that are at least four 378	  

centuries old (Bassini & Becker, 1990; Fearnside & Leal Filho, 2001), possibly indicating 379	  

major fires during past mega-El Niño events (Meggers, 1994).  380	  

The notable increases in liana abundance in our intact forests (Laurance et al., 2014a) 381	  

might arise because lianas appear to exploit rising CO2 concentrations and drier conditions 382	  

more effectively than do trees (Condon et al., 1992; Granados & Körner, 2002; but see 383	  

Marvin et al., 2015). Trees with heavy liana infestations are known to exhibit elevated 384	  

mortality and reduced growth (Ingwell et al., 2010). Notably, in our study area, liana 385	  

abundance is strongly and negatively correlated with live tree biomass (Fig. 6)(Laurance et 386	  

al., 2001b). Liana increases over time have also been observed in tropical forests in western 387	  

Amazonia, the Guianas, Central America and elsewhere (Schnitzer & Bongers, 2011), with 388	  

rising atmospheric CO2 and possibly increasing drought being the most frequent explanations 389	  

(see Laurance et al., 2014a and references therein). This potentially negative effect of CO2 390	  

enrichment on forest biomass via increasing liana infestations is not included in the latest 391	  

Hadley Centre models (Cox et al., 2013; Good et al., 2013; Huntingford et al., 2013), and 392	  

could cancel out some of the carbon-storage benefits suggested for a high-CO2 future (Körner, 393	  

2004, 2017).  394	  

Hence, for whatever the reason or reasons, it is apparent that the intact forests in our 395	  

study area are changing in a variety of ways. Such changes are likely to interact with, and 396	  

potentially complicate or amplify, the impacts of fragmentation on tropical forest 397	  

communities. 398	  
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 399	  

V. CONSEQUENCES OF FRAGMENT SIZE  400	  

The BDFFP’s original mission focuses on assessing the effects of fragment area on 401	  

Amazonian forests and fauna, and on key ecological and ecosystem processes. Here we 402	  

summarize major findings and conservation lessons that have been gleaned to date. 403	  

 404	  

(1) Sample effects 405	  

Many species in Amazonian forests are rare or patchily distributed. This phenomenon is 406	  

especially pronounced in the large expanses of the basin that overlay heavily weathered, 407	  

nutrient-poor soils (e.g. Radtke et al., 2008). In such areas resources such as fruits, flowers 408	  

and nectar are typically scarce and plants are heavily defended against herbivore attack 409	  

(Laurance, 2001).  410	  

Herein lies a key implication for understanding forest fragmentation: given their rarity, 411	  

many species may be absent from fragments not because their populations have vanished, but 412	  

because they were simply not present at the time of fragment creation—a phenomenon termed 413	  

the ‘sample effect’ (Wilcox & Murphy, 1985). Such sample effects are the hypothesized 414	  

explanation for the absence of many rare understory bird species from fragments (Ferraz et 415	  

al., 2007). In addition, many beetles (Didham et al., 1998a), bats (Sampaio, et al., 2003; 416	  

Farneda et al., 2015; Meyer et al., 2015; Rocha et al., 2016), ant-defended plants (Bruna, et 417	  

al., 2005) and trees (Bohlman et al., 2008; Laurance et al., 2010b) at the BDFFP exhibit high 418	  

levels of rarity, habitat specialization or patchiness.  419	  

 420	  

(2) Area effects 421	  

Understanding fragment-area effects has long been a central goal of the BDFFP (Lovejoy & 422	  

Oren, 1981; Lovejoy et al., 1984, 1986; Pimm, 1998). The species richness of many 423	  
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organisms declines with decreasing fragment area, even with constant sampling effort across 424	  

all fragments. Such declines are evident in leaf bryophytes (Zartman, 2003), tree seedlings 425	  

(Benítez-Malvido & Martinez-Ramos, 2003a), palms (Scariot, 1999), understory 426	  

insectivorous birds (Stratford & Stouffer, 1999; Ferraz et al., 2007), bats (Sampaio, 2000; 427	  

Rocha et al., 2016), primates (Gilbert & Setz, 2001; Boyle & Smith, 2010a) and larger 428	  

herbivorous mammals (Timo 2003), among others. For such groups, smaller fragments (<100 429	  

ha) are often unable to support viable populations. A few groups, such as ant-defended plants 430	  

and their ant mutualists, show no significant decline in diversity with fragment area (Bruna, et 431	  

al., 2005). 432	  

Fragment size also influences the rate of species losses, with smaller fragments losing 433	  

species more quickly (Lovejoy et al., 1986; Stouffer et al., 2008). Assuming that the 434	  

surrounding matrix is hostile to bird movements and precludes colonization, Ferraz et al. 435	  

(2003) estimated that a 1000-fold increase in fragment area would be needed to slow the rate 436	  

of local species extinctions by 10-fold. Even a fragment of 10,000 ha in area would be 437	  

expected to lose a substantial part of its bird fauna within one century (Ferraz et al., 2003). 438	  

Similarly, long-term mark-recapture studies suggest that very large fragments will be needed 439	  

to maintain fully intact assemblages of certain faunal groups, such as ant-following birds, 440	  

which forage over large areas of forest (Van Houtan et al., 2007). 441	  

 442	  

VI. EDGE EFFECTS 443	  

An important insight from the BDFFP is the extent to which edge effects—physical and biotic 444	  

changes associated with the abrupt, artificial margins of habitat fragments—influence the 445	  

dynamics and composition of plant and animal communities. Here we summarize key 446	  

findings from this work. 447	  

 448	  
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(1) Forest hydrology 449	  

The hydrological regimes of fragmented landscapes differ markedly from those of intact 450	  

forest (Kapos, 1989; Kapos et al., 1993). Pastures or crops surrounding fragments have much 451	  

lower rates of evapotranspiration than do forests, causing such areas to be hotter and drier 452	  

than forests (Camargo & Kapos, 1995). Field observations and heat-flux simulations suggest 453	  

that desiccating conditions can penetrate up to 100-200 m into fragments from adjoining 454	  

clearings (Malcolm, 1998; Didham & Lawton, 1999). Further, streams in fragmented 455	  

landscapes experience greater temporal variation in flow rate than do those in forests, because 456	  

clearings surrounding fragments have less evapotranspiration and rainfall interception and 457	  

absorption by vegetation (Trancoso, 2008). Rapid runoff promotes localized flooding in the 458	  

wet season and stream failure in the dry season, with potentially important impacts on aquatic 459	  

invertebrates (Nessimian et al., 2008) and fish assemblages.  460	  

 461	  

(2) Striking diversity of edge effects 462	  

At least over the first 3-4 decades after isolation, edge effects have been among the most 463	  

important drivers of ecological change in the BDFFP fragments. The distance to which 464	  

different edge effects penetrate into fragments varies widely, ranging from 10-300 m at the 465	  

BDFFP (Laurance et al., 2002) and considerably further (at least 2-3 km) in areas of the 466	  

Amazon where edge-related fires are common (Cochrane & Laurance, 2002, 2008; Briant et 467	  

al., 2010). 468	  

Edge phenomena are remarkably diverse (Fig. 7). They include increased desiccation 469	  

stress, wind shear and wind turbulence that sharply elevate rates of tree mortality and damage 470	  

(Laurance et al., 1997, 1998a). These in turn cause wide-ranging alterations in the community 471	  

composition of trees (Laurance et al., 2000, 2006a, 2006b) and lianas (Laurance et al., 472	  

2001b). Such stresses may also reduce germination (Bruna 1999) and establishment (Uriarte 473	  
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et al., 2010) of shade-tolerant plant species in fragments, leading to dramatic changes in the 474	  

composition and abundance of tree seedlings (Benítez-Malvido, 1998; Benítez-Malvido & 475	  

Martinez-Ramos, 2003a). 476	  

Many animal groups, such as numerous bees, wasps, flies (Fowler et al., 1993), 477	  

beetles (Didham et al., 1998a, 1998b), ants (Carvalho & Vasconcelos, 1999), butterflies 478	  

(Brown & Hutchings, 1997), understory birds (Quintela, 1985; S. G. Laurance, 2004) and 479	  

gleaning predatory bats (Rocha, 2016; Rocha et al., 2016), decline in abundance near forest 480	  

edges. Edge habitats of continuous forest and larger fragments (100 ha) have fewer species of 481	  

bats and higher levels of dominance by a few common species (Rocha, 2016; Rocha et al., 482	  

2016). Negative edge effects are apparent even along narrow forest roads (20-30 m width). 483	  

Among understory birds, for example, five of eight foraging guilds declined significantly in 484	  

abundance within 70 m of narrow roads, evidently in response to increased light and forest 485	  

disturbance near road edges (Laurance, 2004b). 486	  

Some groups of organisms remain stable or even increase in abundance near edges. 487	  

Leaf bryophytes (Zartman & Nascimento, 2006), wandering spiders (Ctenus spp; Rego et al., 488	  

2007; Mestre & Gasnier, 2008) and many frogs (Gascon, 1993) displayed no significant 489	  

response to edges. Organisms that favor forest ecotones or disturbances, such as many species 490	  

of gap-favoring and frugivorous birds (Laurance, 2004b), hummingbirds (Stouffer & 491	  

Bierregaard, 1995a), frugivorous bats that exploit early successional plants (Sampaio, 2000, 492	  

Rocha et al., 2016), light-loving butterflies (Leidner et al., 2010) and fast-growing lianas 493	  

(Laurance et al., 2001b), increase in abundance near edges, sometimes dramatically. 494	  

 495	  

(3) Impacts of multiple edges 496	  

BDFFP research demonstrates that plots near two or more edges suffer more severe edge 497	  

effects than do those near just one edge (Fig. 8). This conclusion is supported by studies of 498	  
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edge-related changes in forest microclimate (Kapos, 1989; Malcolm, 1998), vegetation 499	  

structure (Malcolm 1994), tree mortality (Laurance et al., 2006a), abundance and species 500	  

richness of tree seedlings (Benítez-Malvido, 1998; Benítez-Malvido & Martinez-Ramos, 501	  

2003a), liana abundance (Laurance et al., 2001b) and the density and diversity of disturbance-502	  

loving pioneer trees (Laurance et al., 2006a, 2006b, 2007). The additive effects of nearby 503	  

edges probably help to explain why small (<10 ha) or irregularly shaped forest remnants are 504	  

often so severely altered by forest fragmentation (Zartman, 2003; Laurance et al., 2006a). 505	  

Some fauna are likewise sensitive to multiple edges. For instance, the number of nearby forest 506	  

edges was found to be an important predictor of local bat abundance (Rocha et al., 2016). 507	  

 508	  

(4) Effects of edge age and adjoining vegetation 509	  

When a forest edge is newly created, it is open to fluxes of wind, heat and light, creating 510	  

sharp edge-interior gradients in forest microclimate that stress or kill many rainforest trees 511	  

(Lovejoy et al., 1986; Sizer & Tanner, 1999). As the edge ages, however, proliferating vines 512	  

and lateral branch growth tend to ‘seal’ the edge, making it less permeable to microclimatic 513	  

changes (Camargo & Kapos, 1995; Didham & Lawton, 1999). Tree death from microclimatic 514	  

stress is likely to decline over the first few years after edge creation (D’Angelo et al., 2004) as 515	  

the edge becomes less permeable, because many drought-sensitive individuals die 516	  

immediately and because surviving trees may acclimate to drier, hotter conditions near the 517	  

edge (Laurance et al., 2006a). Tree mortality from wind turbulence, however, probably 518	  

increases as the edge ages and becomes more closed because, as suggested by wind-tunnel 519	  

models, downwind turbulence increases if edges are less permeable (Laurance, 2004a). 520	  

Regrowth forest adjoining fragment edges can also lessen edge-effect intensity. 521	  

Microclimatic changes (Didham & Lawton, 1999), tree mortality (Mesquita et al., 1999) and 522	  

edge avoidance by understory birds (Develey & Stouffer, 2001; Laurance, 2004b, S. G. 523	  



	   22	  

Laurance et al., 2004) and gleaning animal-eating bats (Sampaio, 2000; Meyer et al., 2016; 524	  

Rocha, 2016; Rocha et al., 2016) are all reduced when forest edges are buffered by adjoining 525	  

regrowth forest, relative to edges bordered by cattle pastures. Mature regrowth can be 526	  

particularly benign for some fauna; for example, diverse assemblages of aerial-feeding 527	  

insectivorous bats showed similar activity patterns in primary forest and in adjoining 30-year-528	  

old secondary forests (Navarro, 2014). 529	  

 530	  

VII. FOREST ISOLATION AND THE MATRIX 531	  

Unlike true islands encircled by water, habitat fragments are surrounded by a matrix of 532	  

modified vegetation that can be highly variable in space and time. Here we highlight key 533	  

factors that can influence the matrix and how, in turn, the matrix influences fragment 534	  

dynamics and composition.  535	  

 536	  

(1) Matrix structure and composition 537	  

The BDFFP landscape has experienced considerable dynamism over time. In particular, 538	  

secondary forests have gradually overgrown most pastures in the study area. This regrowth 539	  

lessens the effects of fragmentation for some species, with the matrix becoming less hostile to 540	  

faunal use and movements. Several species of insectivorous birds that had formerly 541	  

disappeared from fragments have recolonized them as surrounding secondary forests 542	  

regenerated (Stouffer & Bierregaard, 1995b; Stouffer et al., 2011). The rate of local 543	  

extinctions of birds has also declined (Stouffer et al., 2008).  544	  

The regenerating forest in the matrix now permits fragments as small as 100 ha to 545	  

support bird and bat assemblages similar to those in continuous forest (Wolfe et al., 2015; 546	  

Rocha et al., 2016). For bats, matrix recovery has resulted in marked compositional changes 547	  

in fragments and shifts in the rank order of the most abundant species (Meyer et al., 2016; 548	  



	   23	  

Rocha, 2016). Gleaning animal-eating bats, which formerly occurred at low abundances in 549	  

fragments (Sampaio, 2000) and young regrowth (Bobrowiec & Gribel, 2010), have increased 550	  

over the past 10-15 years as the surrounding regrowth has expanded and matured (Meyer et 551	  

al., 2016; Rocha, 2016; Rocha et al., 2016). A number of other species, including certain 552	  

forest spiders (Mestre & Gasnier, 2008), dung beetles (Quintero & Roslin, 2005), euglossine 553	  

bees (Becker et al., 1991) and monkeys such as red howlers, bearded sakis and brown 554	  

capuchins (Boyle & Smith, 2010a), have also recolonized some of the fragments. 555	  

The surrounding matrix also has a strong effect on plant communities in fragments by 556	  

reducing edge effects (see above), influencing the movements of pollinators (Dick, 2001; 557	  

Dick et al., 2003) and seed dispersers (Jorge, 2008; Bobrowiec & Gribel, 2010; Boyle & 558	  

Smith, 2010a) and strongly influencing the seed rain that arrives in fragments. For instance, 559	  

pioneer trees regenerating in fragments differed strikingly in composition between fragments 560	  

surrounded by Cecropia-dominated regrowth and those encircled by Vismia-dominated 561	  

regrowth (Nascimento et al., 2006). In this way plant and animal communities in fragments 562	  

may increasingly tend to mirror the composition of the surrounding matrix (Laurance et al., 563	  

2006a, 2006b), a phenomenon observed elsewhere in the tropics (Janzen, 1983; Diamond et 564	  

al., 1987; Laurance, 1991). 565	  

 566	  

(2) Factors influencing the matrix 567	  

Land-use history is a key driver of secondary succession in Amazonia, resulting in distinct 568	  

trajectories of regeneration that differ in structure, composition, biomass and dynamics 569	  

(Mesquita et al., 1999; Williamson et al., 2014). The recurring use of fire to maintain pastures 570	  

reduces regenerative potential, leaving lands dominated by scrubby trees in the genus Vismia, 571	  

which are prodigious resprouters that stall succession by inhibiting growth of other tree 572	  

species (Jakovac et al., 2015). Compared to slash-and-burn agriculture, vegetation biomass 573	  
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recovers much more slowly in lands previously used as pasture, which is currently the 574	  

predominant land use in Amazonia (Wandelli & Fearnside, 2015). However, where land and 575	  

fire use has been less intensive, a more diverse vegetation dominated by the genus Cecropia 576	  

fosters relatively rapid plant succession (Longworth et al., 2014).  577	  

In regenerating forests, plant density and species diversity both decline with distance 578	  

from primary forest, and also differ between Vismia- and Cecropia-dominated regrowth. 579	  

These differences were initially attributed to differential seed-dispersal limitations (Mesquita 580	  

et al., 2001; Puerta, 2002). However, it now appears that the seed rains are similar in both 581	  

types of regrowth and are strongly dominated by pioneer species (Wieland et al., 2011). This 582	  

suggests that birds and bats, the primary seed dispersers, are feeding mainly in regrowth and 583	  

rarely transporting primary-forest seeds into the regrowth. Instead, the legacy of past land use 584	  

endures as abandoned pastures—especially those dominated by Vismia—remain depauperate 585	  

for at least a quarter of a century (Massoca et al., 2013; Mesquita et al., 2015).  586	  

 587	  

(3) Narrow forest clearings 588	  

Many Amazonian species avoid forest clearings, even those that are surprisingly narrow. A 589	  

number of understory insectivorous birds exhibit depressed abundances near roads of just 20-590	  

40 m width (S. G. Laurance, 2004b) and their rate of movements across those roads is 591	  

strongly reduced (S. G. Laurance et al., 2004). Experimental translocations of resident adult 592	  

birds reveal that such species can be compelled to cross a highway (50-75 m width) but not a 593	  

small pasture (250 m width) to return to their territory (Laurance & Gomez, 2005). 594	  

Individuals of some other vulnerable bird species, however, have traversed clearings to escape 595	  

from small fragments to larger forest areas (Harper, 1989; Van Houtan et al., 2007). Captures 596	  

of understory birds declined dramatically in fragments when a 100 m-wide swath of regrowth 597	  

forest was cleared around them, suggesting that species willing to traverse regrowth had a 598	  
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strong aversion to such clearings (Stouffer et al., 2006).  599	  

Aside from birds, clearings of just 100-200 m width can evidently reduce or halt the 600	  

movements of many forest-dependent organisms (Laurance et al., 2009), ranging from 601	  

herbivorous insects (Fáveri et al., 2008), euglossine bees (Powell & Powell, 1987) and dung 602	  

beetles (Klein, 1989) to the spores of epiphyllous lichens (Zartman & Nascimento, 2006; 603	  

Zartman & Shaw, 2006). Narrow clearings can also provide invasion corridors into forests for 604	  

exotic and non-forest species (Gascon et al., 1999; Laurance et al., 2009). 605	  

 606	  

VIII. DYNAMICS OF FOREST FRAGMENTS 607	  

Here we highlight some factors that can influence the dynamics of Amazonian forest 608	  

fragments and the unusual ecological communities than can arise as a consequence.  609	  

 610	  

(1) Rare disturbances 611	  

Rare events such as droughts, local flooding and windstorms have strongly influenced the 612	  

ecology of BDFFP fragments. Rates of tree mortality rose abruptly in both fragmented 613	  

(Laurance et al., 2001c) and intact forests (Williamson et al., 2000) in the year after the 614	  

intense 1997 El Niño drought and heavy 1998 La Niña rains. Such pulses of tree death can 615	  

drive changes in the floristic composition and carbon storage of fragments (Laurance et al., 616	  

2007). Leaf-shedding by drought-stressed trees also increases markedly during droughts, 617	  

especially within ~60 m of forest edges, increasing the quantity of leaf litter on the forest floor 618	  

(Laurance & Williamson, 2001). Such dense litter elevates the susceptibility of fragments to 619	  

intrusion by destructive surface fires (Cochrane & Laurance, 2002, 2008) and can slow forest 620	  

regeneration by suppressing seed germination and seedling establishment (Bentos et al., 621	  

2013). Local flooding caused tree mortality in one of our plots to rise five-fold (S. G. 622	  

Laurance et al., 2009), a pattern also observed in other low-lying plateaus and microsites in 623	  
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the BDFFP study area (Mori & Becker, 1991).   624	  

Intense windblasts from convectional thunderstorms have occasionally flattened parts 625	  

of the BDFFP landscape and caused intense forest damage and tree mortality, especially in 626	  

the fragments. Fragments in the easternmost cattle ranch at the BDFFP have had substantially 627	  

lower rates of tree mortality than those in the other two ranches (Fig. 1), because the former 628	  

have so far escaped major windstorms (Laurance et al., 2007). These differences have 629	  

strongly influenced the rate and trajectory of change in tree-community composition in 630	  

fragments (Laurance et al., 2006b). Hence, by altering forest dynamics, composition, 631	  

structure and carbon storage, rare disturbances have left an enduring imprint on the ecology of 632	  

fragmented forests. 633	  

 634	  

(2) Hyperdynamism  635	  

Relative to intact forest, the BDFFP fragments experience exceptional variability in 636	  

population and community dynamics, despite being largely protected from ancillary human 637	  

threats such as fires, logging and overhunting. Having a small resource base, a habitat 638	  

fragment is inherently vulnerable to stochastic effects and external vicissitudes. Species 639	  

abundances can thus fluctuate dramatically in small communities, especially when 640	  

immigration is low and disturbances are frequent (Hubbell, 2001). Edge effects, reduced 641	  

dispersal, external disturbances and changing herbivore or predation pressure can all elevate 642	  

the dynamics of plant and animal populations in fragments (Laurance, 2002, 2008). 643	  

Many examples of hyperdynamism have been observed in the BDFFP fragments. 644	  

Some butterfly species have experienced dramatic population irruptions in response to a 645	  

proliferation of their favored host plants along fragment margins (Brown & Hutchings, 1997), 646	  

and butterfly communities in general are hyperdynamic in fragments (Fig. 9)(Leidner et al., 647	  

2010). Bat assemblages also show atypically high species turnover (Meyer et al., 2016), as do 648	  
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understory birds (Stouffer et al., 2008, 2011), especially in smaller fragments. Streamflows 649	  

are far more variable in fragmented than forested watersheds (Trancoso, 2008). Rates of tree 650	  

mortality and recruitment are chronically elevated in fragments (Laurance et al., 1998a, 651	  

1998b), with major mortality pulses associated with rare disturbances (see above). These 652	  

pulses of tree death followed by accelerated recruitment of young trees lead to large 653	  

fluctuations in the number of trees per plot (Fig. 10). Further, tree species disappear and turn 654	  

over far more rapidly in fragments than intact forest, especially within ~100 m of forest 655	  

margins (Laurance et al., 2006b). These and many other instabilities plague small, dwindling 656	  

populations in the BDFFP fragments. 657	  

 658	  

(3) Diverging trajectories of fragments 659	  

A key insight from our long-term experiment is that different fragmented landscapes— even 660	  

those as alike as the three large cattle ranches in the BDFFP, which have very similar forests, 661	  

soils, climate, fragment ages and land-use histories—can diverge to a surprising degree in 662	  

species composition and dynamics. Although spanning just a few dozen kilometers, the three 663	  

ranches are following unexpectedly different trajectories of change. 664	  

At the outset, small initial differences among the ranches multiplied into much bigger 665	  

differences. Parts of the western and eastern ranches were cleared in 1983, when an early wet 666	  

season prevented burning of the felled forest. Tall, floristically diverse Cecropia-dominated 667	  

regrowth quickly developed in these areas, whereas areas cleared with fire in the years just 668	  

before or after became cattle pastures or, eventually, scrubby Vismia-dominated regrowth 669	  

(Williamson & Mesquita, 2001). For example, these different successional trajectories led to 670	  

distinct bat assemblages: Cecropia-dominated regrowth retained a considerably higher 671	  

fraction of the forest-specialist bat species found in continuous forest, compared to Vismia 672	  

regrowth (Bobrowiec & Gribel, 2010). As discussed above, the differing matrix vegetation 673	  
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strongly affected the dynamics of plant and animal communities in the nearby fragments. 674	  

These differences were magnified by subsequent windstorms, which heavily damaged most 675	  

fragments in the central and western ranches, yet left fragments in the eastern ranch 676	  

unscathed. Even identically sized fragments in the three ranches have had remarkably 677	  

different dynamics and trajectories of compositional change (Laurance et al., 2007). 678	  

The apparently acute sensitivity of fragments to local landscape and weather dynamics—even 679	  

within a study area as initially homogeneous as ours—prompted us to propose a “landscape-680	  

divergence hypothesis” (Laurance et al., 2007). We argue that fragments within the same 681	  

landscape will tend to have similar dynamics and trajectories of change in species 682	  

composition, which will often differ from those in other landscapes. Over time, this process 683	  

will tend to homogenize fragments within the same landscape, and promote ecological 684	  

divergence among fragments in different landscapes. Evidence for this hypothesis is provided 685	  

by tree communities in our fragments, which appear to be diverging in composition among 686	  

the three cattle ranches (Fig. 11). Pioneer and opportunistic trees are increasing in all 687	  

fragments, but the composition of these secondary plant species and their rates of increase 688	  

differ markedly among the three ranches (Scariot, 2001; Laurance et al., 2006a, 689	  

2007; Nascimento et al., 2006). A similar pattern of biotic divergence is evident in the 690	  

secondary-forest bat assemblages found at the different ranches (Bobrowiec & Gribel, 2010). 691	  

 692	  

(4) Ecological distortions 693	  

Many ecological interactions are altered in fragmented landscapes. For instance, in mixed-694	  

species bird flocks, interspecific interactions are lower, both in number and frequency, in 10-695	  

ha fragments and the secondary forest matrix than in more preserved habitats (continuous 696	  

forest and 100-ha fragments), resulting in reduced flock cohesion and stability (Mokross et 697	  

al., 2014). Fragmented communities can pass through unstable transitional states that may not 698	  
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otherwise occur in nature (Terborgh et al., 2001; Gibson et al., 2013). Moreover, species at 699	  

higher trophic levels, such as predators and parasites, are often more vulnerable to 700	  

fragmentation than are herbivores, thereby altering the structure and functioning of food webs 701	  

(Didham et al., 1998b; Terborgh et al., 2001). 702	  

BDFFP findings suggest that even forest fragments that are unhunted, unlogged and 703	  

unburned have reduced densities of key mammalian seed dispersers. As a result, seed 704	  

dispersal for the endemic, mammal-dispersed tree Duckeodendron cestroides was far lower in 705	  

fragments, with just ~5% of the number of seeds being dispersed >10 m away from parent 706	  

trees than in intact forest (Cramer et al., 2007a). Leaf herbivory appears reduced in fragments, 707	  

possibly because of lower immigration of insect herbivores (Fáveri et al., 2008). Dung beetles 708	  

exhibit changes in biomass and guild structure in fragments (Radtke et al., 2008) that could 709	  

alter rates of forest nutrient cycling and secondary seed dispersal (Klein, 1989; Andresen, 710	  

2003). Exotic Africanized honeybees, a generalist pollinator, are abundant in matrix and edge 711	  

habitats and can alter pollination success and gene flow for some tree species (Dick, 2001; 712	  

Dick et al., 2003). A bewildering variety of ecological distortions can pervade fragmented 713	  

habitats, and a challenge for conservation biologists is to identify those of greatest importance 714	  

and generality. 715	  

 716	  

(5) Forest-carbon dynamics 717	  

Habitat fragmentation affects far more than biodiversity and interactions among species; 718	  

many ecosystem functions, including forest hydrology (see above) and biochemical cycles, 719	  

are also being altered. Among the most important of these are fundamental alterations in 720	  

forest biomass and carbon storage. 721	  

A suite of interrelated changes affects carbon stocks in fragmented forests. Many trees 722	  

die near forest edges (Laurance et al., 1997, 1998a), including an alarmingly high proportion 723	  
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of large (≥60 cm dbh) canopy and emergent trees that store a large fraction of the total forest 724	  

carbon (Laurance et al., 2000). Compared to the mature-phase trees they replace, fast-growing 725	  

pioneer trees and lianas that proliferate in fragments are smaller and have lower wood density 726	  

and thereby sequester much less carbon (Laurance et al., 2001b, 2006a). Based on current 727	  

rates of forest fragmentation, the edge-related loss of carbon storage in the tropics could 728	  

produce tens of millions of tons of atmospheric carbon emissions annually, above and beyond 729	  

that caused by deforestation per se (Laurance et al., 1998c; Groeneveld et al., 2009).  730	  

In addition, biomass is being fundamentally redistributed in fragmented forests (Fig. 731	  

12). Less biomass is stored in large, densely wooded old-growth trees and more in fast-732	  

growing pioneer trees, disturbance-loving lianas, woody debris and leaf litter (Sizer et al., 733	  

2000; Nascimento & Laurance, 2004; Vasconcelos & Luizão, 2004). Soil carbon also 734	  

increases as the abundant dead biomass in fragments decomposes (Barros & Fearnside, 2016). 735	  

Finally, carbon cycling accelerates. The large, old-growth trees that predominate in intact 736	  

forests can live for many centuries or even millennia (Chambers et al., 1998; Laurance et al., 737	  

2004b), sequestering carbon for long periods of time. However, the residence time of carbon 738	  

in early successional trees, vines and necromass (wood debris, litter), which proliferate in 739	  

fragments, is far shorter (Nascimento & Laurance, 2004). Other biochemical cycles, such as 740	  

those affecting key nutrients such as phosphorus (Sizer et al., 2000) and calcium 741	  

(Vasconcelos & Luizão, 2004), might also be altered in fragmented forests, given the striking 742	  

changes in biomass dynamics, hydrology and thermal regimes they experience there. 743	  

 744	  

IX. SPECIES RESPONSES TO FRAGMENTATION 745	  

Individual species and ecological groups can differ greatly in their responses to habitat 746	  

fragmentation. Some decline or disappear, others remain roughly stable and yet others 747	  

increase, sometimes dramatically. Understanding how and why different species vary so 748	  
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dramatically in their responses has been a major goal of conservation researchers. Here we 749	  

underscore key conclusions from the BDFFP. 750	  

  751	  

(1) Non-random extinctions 752	  

Local extinctions of species in the BDFFP fragments have occurred in a largely predictable 753	  

sequence, with certain species being consistently more vulnerable than others. Among birds, 754	  

various species of understory insectivores, including army ant-followers, solitary species, 755	  

terrestrial foragers and obligate mixed-flock members, are most susceptible to fragmentation. 756	  

Others, including edge/gap species, insectivores that use mixed flocks facultatively, 757	  

hummingbirds and many frugivores, are far less vulnerable (Antongiovanni & Metzger, 2005; 758	  

Stouffer et al., 2006, 2008, 2011).  759	  

In a similar vein, among bats, gleaning predators are consistently the most vulnerable 760	  

species whereas many frugivores respond positively to fragmentation and other types of forest 761	  

disturbance (Sampaio, 2000; Bobrowiec & Gribel, 2010; Farneda et al., 2015; Rocha, 2016; 762	  

Rocha et al., 2016). Many animal-eating bat species rarely persist in small (<100 ha) 763	  

fragments and in the secondary-forest matrix, reflecting trait-mediated environmental filters 764	  

that selectively benefit smaller fruit- and nectar-feeding species (Farneda et al., 2015). 765	  

Primates exhibit similarly predictable patterns of species loss, with wide-ranging frugivores, 766	  

especially the black spider-monkey, being most vulnerable (Boyle & Smith, 2010a). Hence, 767	  

local extinctions in fragments follow a foreseeable pattern, with species assemblages in 768	  

smaller fragments rapidly forming a nested subset of those in larger fragments (Stouffer et al., 769	  

2008). Random demographic and genetic processes may help to drive tiny populations into 770	  

oblivion, but the species that reach this precarious threshold are far from random. 771	  

 772	  

 773	  
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(2) Non-neutral extinctions 774	  

An important corollary of nonrandom species loss is that fragmented forests are not neutral. 775	  

Neutral theory (Hubbell, 2001) assumes that species in diverse, space-limited communities, 776	  

such as tropical trees, are roughly equivalent in competitive and demographic terms. Making 777	  

these assumptions allows one to make predictions about phenomena such as species-area 778	  

curves, the relative abundances of species in communities, and the rate of species turnover in 779	  

space. Hubbell (2001) emphasizes the potential utility of neutral theory for predicting 780	  

community responses to habitat fragmentation: for isolated communities, locally abundant 781	  

species should be least extinction prone, with rare species being lost more frequently from 782	  

random demographic processes. Over time, fragments should become dominated by the 783	  

initially abundant species, with rare species gradually vanishing; other ecological traits of 784	  

species are considered unimportant.  785	  

Gilbert et al. (2006) tested the efficacy of neutral theory for predicting changes in tree 786	  

communities at the BDFFP. Neutral theory effectively predicted the rate of local extinctions 787	  

of species from plots in fragmented and intact forest, as a function of the local diversity and 788	  

mortality rate of trees. However, in most fragments, the observed rate of change in species 789	  

composition was 2-6 times faster than predicted by the theory. Moreover, the theory was 790	  

wildly erroneous in predicting which species are most prone to local extinction. Rather than 791	  

becoming increasingly dominated by initially common species, fragments in the BDFFP 792	  

landscape have experienced striking increases over time in disturbance-loving pioneer species 793	  

(Fig. 13) (Laurance et al., 2006a), which were initially rare when the fragments were created. 794	  

As a model for predicting community responses to habitat fragmentation, neutral theory 795	  

clearly failed, demonstrating that ecological differences among species strongly influence 796	  

their responses to fragmentation.  797	  

 798	  



	   33	  

(3) Key correlates of animal vulnerability 799	  

In the BDFFP landscape, the responses of animal species to fragmentation appear largely 800	  

governed by two key sets of traits. The first is their spatial requirements for forest habitat. 801	  

Among birds (Van Houtan et al., 2007) and mammals (Timo, 2003), wide-ranging forest 802	  

species  are more vulnerable than are those with localized ranges and movements. Species 803	  

with limited spatial needs, such as many small mammals (Malcolm, 1997), hummingbirds 804	  

(Stouffer et al., 2008), frogs (Tocher et al., 1997) and ants (Carvalho & Vasconcelos, 1999), 805	  

are generally less susceptible to fragmentation.  806	  

The second key trait for fauna is their tolerance of matrix habitats (Gascon et al., 807	  

1999), which comprises regrowth forest and cattle pastures in the BDFFP landscape. 808	  

Populations of species that entirely avoid the matrix will be demographically and genetically 809	  

isolated in fragments, and therefore vulnerable to local extinction, whereas those that tolerate 810	  

or exploit the matrix often persist (Laurance, 1991; Malcolm, 1997; Antongiovanni & 811	  

Metzger, 2005; Ferraz et al., 2007; Bobrowiec & Gribel, 2010).  812	  

At least among terrestrial vertebrates, matrix use is positively associated with 813	  

tolerance of edge habitats (Laurance, 2004b; Farneda et al., 2015), an ability to traverse small 814	  

clearings (S. G. Laurance et al., 2004; S. G. Laurance & Gomez, 2005), behavioral flexibility 815	  

(Neckel-Oliveira & Gascon, 2006; Stouffer et al., 2006; Van Houtan et al., 2006; Boyle & 816	  

Smith, 2010b) and a capacity to feed on early successional plants that thrive in the matrix 817	  

(Farneda et al., 2015; Rocha et al., 2016; Meyer et al., 2016). Within particular animal 818	  

groups, such as beetles or small mammals, traits such as body size and natural abundance are 819	  

generally poor or inconsistent predictors of vulnerability (Laurance, 1991; Didham et al., 820	  

1998a; Jorge, 2008; Boyle & Smith, 2010a; but see Jorge et al., 2015).  821	  

 822	  

 823	  
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(4) Key correlates of plant vulnerability 824	  

Among plants, a different suite of factors is associated with vulnerability to fragmentation. 825	  

Because fragments suffer chronically elevated tree mortality, faster-growing pioneer trees and 826	  

lianas that favor treefall gaps are favored at the expense of slower-growing old-growth trees 827	  

(Laurance et al., 2006a, 2006b). Pioneer species often flourish in the matrix and produce 828	  

abundant small fruits that can be carried into fragments by frugivorous birds and bats that 829	  

move between the matrix and nearby fragments (Sampaio, 2000; Nascimento et al., 2006; 830	  

Rocha et al., 2016). Especially vulnerable in fragments are the diverse assemblages of smaller 831	  

subcanopy trees that are physiologically specialized for growth and reproduction in dark, 832	  

humid, forest-interior conditions (Laurance et al., 2006b). Tree species that have obligate 833	  

outbreeding systems, rely on animal seed dispersers or have relatively large, mammal-834	  

dispersed seeds also appear vulnerable (Laurance et al., 2006b; Cramer et al., 2007b).  835	  

These combinations of traits suggest that plant communities in fragmented forests are 836	  

structured primarily by chronic disturbances and microclimatic stresses, and possibly also by 837	  

alterations in animal pollinator and seed-disperser communities. For long-lived plants such as 838	  

many mature-phase trees, demographic models suggest that factors that reduce adult survival 839	  

and growth—such as recurring wind disturbance and edge-related microclimatic stresses—840	  

have a strong negative influence on population growth (Lindenmayer & Laurance, 2016).  841	  

 842	  

X. HORIZONS FOR NEW RESEARCH 843	  

Although BDFFP researchers have attacked a diversity of research themes, some topics 844	  

remain poorly explored or enigmatic. For instance, there has been relatively little work to date 845	  

on the effects of fragmentation on the phylogenetic and functional composition of forests (but 846	  

see Didham et al., 1998b; Andresen, 2003). A study that examined changes in the 847	  

phylogenetic structure of trees at the BDFFP concluded that most study sites—including 848	  
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small and large fragments as well as intact-forest plots—exhibited a progressive decline over 849	  

time in phylogenetic diversity (Fig. 14)(Santos et al., 2014). This evidently occurred because 850	  

tree genera that have increased in abundance across the study area are more closely related 851	  

phylogenetically than are those that have declined. Do such changes reflect community-wide 852	  

responses to large-scale drivers, such as global-change phenomena (Laurance et al., 2004b), 853	  

shifts in regional rainfall (S. G. Laurance et al., 2009), or some other widespread event? 854	  

Further study is needed. 855	  

 Similarly, ecological interactions such as pollination and seed dispersal have been 856	  

poorly studied at the BDFFP. Changes in pollinator assemblages (Dick, 2001; Dick et al., 857	  

2003) might be expected to alter plant pollination, seed set, and gene flow among plants, but 858	  

such effects are largely unknown. Could shifts in the abundance of old-growth tree species—859	  

such the decline of obligate outbreeders and species that require animal seed dispersers 860	  

(Laurance et al., 2006b)—reflect losses of key fauna in fragmented forests? Other ecological 861	  

interactions, such as predator-prey, host-pathogen, and plant-mycorrhizal relationships, are 862	  

virtually unstudied (but see Benitez-Malvido et al., 1999).  863	  

Species invasions are also poorly understood in the BDFFP landscape. Taxon-specific 864	  

studies suggest that the matrix supports a variety of plant, vertebrate, and invertebrate species 865	  

that are foreign to Amazon rainforests, many of which are also detected in forest fragments 866	  

(e.g. Brown and Hutchings, 1997; Tocher et al., 1997; Dick, 2001; Scariot, 2001; Laurance et 867	  

al., 2002, 2011). Do such invaders have significant ecological effects? Are they increasing in 868	  

diversity or abundance over time, as might be expected as new invasive species colonize the 869	  

study area? Are expanding roads and powerline clearings providing avenues for species 870	  

invasions (Laurance et al., 2009)? Are some species capable of invading intact forests? Are 871	  

foreign pathogens arriving? An array of such questions remains unanswered. 872	  

 Finally, there is considerable scope to use modeling approaches with BDFFP data to 873	  
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generate long-term (³100-year) projections about the fate of fragmented forests. One such 874	  

study, using a novel neural-network approach, suggested that tree communities in forest 875	  

fragments will become increasingly dominated by early successional species but that seed rain 876	  

from forest interiors will continue to maintain a mix of pioneer and old-growth species, even 877	  

near heavily disturbed forest edges (Ewers et al., 2017). Another modeling study used data on 878	  

elevated tree mortality and floristic changes from the BDFFP to make projections of long-879	  

term carbon-storage declines and shifts in plant-functional groups in fragmented forests 880	  

(Groeneveld et al., 2009). 881	  

 882	  

XI. GENERAL LESSONS 883	  

The BDFFP provides a number of valuable lessons for environmental researchers and those 884	  

working in developing nations. Here we highlight two conclusions of particular relevance.   885	  

 886	  

(1) Values of long-term research 887	  

Many insights from the BDFFP would have been impossible in a shorter-term study. The 888	  

exceptional vulnerability of large trees to fragmentation (Laurance et al., 2000) only became 889	  

apparent after two decades of fragment isolation. Likewise, the importance of ephemeral 890	  

events such as El Niño droughts (Williamson et al., 2000; Laurance et al., 2001c) and major 891	  

windstorms (Laurance et al., 2007) would not have been captured in a less-enduring project. 892	  

Many other key phenomena, such as the kinetics of species loss in fragments (Ferraz et al., 893	  

2003), the strong effects of matrix dynamics on fragmented bird and bat assemblages 894	  

(Antongiovanni & Metzger, 2005; Stouffer et al., 2006, 2011; Meyer et al., 2016; Rocha, 895	  

2016), the divergence of fragments in different landscapes (Laurance et al., 2007) and the 896	  

effects of fragmentation on rare or long-lived species (Benítez-Malvido & Martinez-Ramos, 897	  

2003b; Ferraz et al., 2007) and alternative successional pathways (Mesquita et al., 2015), are 898	  
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only becoming understood after decades of effort.  899	  

Far more remains to be learned. For example, forest-simulation models parameterized 900	  

with BDFFP data suggest that even small (<10 ha) fragments will require a century or more to 901	  

stabilize in floristic composition and carbon storage (Groeneveld et al., 2009), given the long-902	  

lived nature of many tropical trees. Eventually, these fragments might experience a 903	  

fundamental reorganization of their plant communities, given major shifts in the composition 904	  

of their tree, palm, liana and herb seedlings (Scariot, 2001; Benítez-Malvido and Martinez-905	  

Ramos, 2003a; Brum et al., 2008) relative to those in intact forest. If these newly recruited 906	  

plants represent the future of the forest, then the BDFFP fragments could eventually 907	  

experience dramatic changes in floristic composition—comparable to those observed in some 908	  

other tropical forests that have long been fragmented (e.g. da Silva & Tabarelli, 2000; Girão 909	  

et al., 2007; Santos et al., 2010).  910	  

 911	  

(2) Training is vital 912	  

Among the most enduring legacies of the BDFFP has been its leading role in training students 913	  

and environmental decision-makers. To date, the project has yielded over 700 technical 914	  

publications (http://pdbff.inpa.gov.br) and more than 200 Ph.D. and M.Sc. theses. It has also 915	  

trained more than 700 graduate students and conservation professionals in sponsored courses, 916	  

and hosted over 1,000 student interns to date. Many of those who have benefited from BDFFP 917	  

training are from Brazil or other Latin American nations. Among these are numerous 918	  

individuals who have now advanced professionally to hold important positions in government 919	  

agencies, universities and nongovernmental conservation organizations.   920	  

 These training programs have had manifold benefits. For example, former BDFFP 921	  

students and researchers have led opposition to a Brazilian government scheme to settle 922	  

colonists in and around the BDFFP study area—an initiative that could bisect the Central 923	  
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Amazonian Conservation Corridor, a complex of protected and indigenous lands that is one of 924	  

the most important conservation networks in Amazonia (Laurance & Luizão, 2007). BDFFP 925	  

trainees have also been leaders in documenting the impacts of major highways and 926	  

infrastructure projects that are crisscrossing the Amazon (e.g. Laurance et al., 2001a; 927	  

Fearnside & Graça, 2006) and that could promote large-scale human migration and forest 928	  

disruption (Barni et al., 2015). A near-term threat to the BDFFP is a nearly completed 929	  

highway (BR-319) that will link the ‘arc of deforestation’ in southern Amazonia to Manaus 930	  

and the BDFFP, potentially promoting large-scale invasions or settlement of the study area 931	  

(Fearnside, 2015).  932	  

 933	  

XII. LESSONS FOR CONSERVATION 934	  

We conclude by highlighting some important general lessons from the BDFFP for conserving 935	  

the Amazon and other tropical forests. 936	  

 937	  

(1) The BDFFP is a best-case scenario 938	  

Although the BDFFP’s forest fragments are experiencing a wide array of ecological 939	  

alterations, it is important to emphasize that it is a controlled experiment. The fragments are 940	  

square, not irregular, in shape. They are isolated by clearings of only 80-650 m width from 941	  

large tracts of surrounding mature forest. They are embedded within a relatively benign 942	  

matrix dominated by forest regrowth, not harsher anthropogenic habitats. In addition, these 943	  

fragments are largely free from ancillary threats, such as selective logging, wildfires and 944	  

overhunting, which plague many fragmented landscapes and wildlife populations elsewhere 945	  

in the tropics (e.g. Moura et al., 2014). Such threats can interact additively or synergistically 946	  

with fragmentation, creating even greater perils for the rainforest biota (Laurance & 947	  

Cochrane, 2001; Michalski & Peres, 2005; Brook et al., 2008). For these reasons, the effects 948	  
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of fragmentation at the BDFFP are clearly modest, relative to many human-dominated 949	  

landscapes elsewhere in the tropics.  950	  

 951	  

 (2) Reserves should be large and numerous 952	  

A key conclusion from BDFFP research is that nature reserves in Amazonia should ideally be 953	  

very large—on the order of thousands to tens of thousands of square kilometers in area 954	  

(Laurance, 2005; Peres, 2005). Only at this size will they be likely to maintain natural 955	  

ecological processes and sustain viable populations of the many rare and patchily distributed 956	  

species in the region (Ferraz et al., 2007; Radtke et al., 2008). Such large reserves will also 957	  

provide greater resilience from rare calamities such as droughts (Feldpausch et al., 2016) and 958	  

intense storms (Laurance et al., 2007), facilitate persistence of terrestrial and aquatic animals 959	  

that migrate seasonally (Bührnheim & Fernandes, 2003) and buffer the reserve from external 960	  

threats such as fires, large-scale forest desiccation and human encroachment (Cochrane & 961	  

Laurance, 2002; Briant et al., 2010).  962	  

Large reserves will also maximize forest carbon storage (Laurance et al., 1997, 1998c) 963	  

and provide greater resilience to future climatic and atmospheric changes (Laurance, 2005, 964	  

2016; Peres, 2005). Further, on the ancient, nutrient-starved soils of central and eastern 965	  

Amazonia, low plant productivity translates into low population densities of many animals, 966	  

especially as one moves up the food chain, so reserves must be proportionately larger to 967	  

harbor viable populations of these species (Radtke et al., 2008; Deichmann et al., 2011, 968	  

2012). The recent observation that within-species genetic variation of terrestrial vertebrates is 969	  

higher in wilderness areas than in human-disturbed habitats further underscores the value of 970	  

large nature reserves for sustaining biological diversity and the capacity of species to adapt to 971	  

future environmental insults (Miraldo et al., 2016).  972	  

Beyond large size, nature reserves in Amazonia should also be numerous and stratified 973	  
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across major river basins and climatic and edaphic gradients in order to preserve 974	  

biophysically distinctive ecoregions (Olson et al., 2001; Tscharnke et al., 2012) and locally 975	  

endemic species (Bierregaard et al., 2001; Laurance, 2007). In addition, the core areas of 976	  

nature reserves should ideally be free of roads, which facilitate human encroachment and 977	  

hunting, internally fragment wildlife populations and promote invasions of exotic species 978	  

(Laurance et al., 2009). 979	  

 980	  

(3) No fragment is unimportant 981	  

Tropical forests are being rapidly lost and fragmented (e.g. Myers et al., 2000; Sloan et al., 982	  

2014), and a key question is whether smaller (e.g. <10 ha) forest fragments have much value 983	  

for nature conservation. We assert that there is no such thing as an ‘unimportant’ forest 984	  

fragment. In heavily fragmented landscapes, protecting remaining forest remnants is highly 985	  

desirable, as they are likely to be key sources of plant propagules and animal seed dispersers 986	  

and pollinators (Mesquita et al., 2001; Chazdon et al., 2008). They may also act as stepping 987	  

stones for animal movements in human-dominated lands (Laurance & Bierregaard, 1997; 988	  

Lima & Gascon, 1999; Dick et al., 2003). In regions where forest loss is severe, forest 989	  

fragments could sustain the last surviving populations of locally endemic species, 990	  

underscoring their potential value for nature conservation (Arroyo-Rodríguez et al., 2009). 991	  

Finally, the observation that regenerating forests recover floristic diversity far faster in 992	  

regions where small fragments of primary forest remain than in those lacking such fragments 993	  

underscores the vital role of retaining even tiny fragments of the original forest (Van Breugel 994	  

et al., 2013). 995	  

 996	  

(4) Wounded landscapes can recover 997	  

A further lesson is that fragmented landscapes, if protected from fires and other major 998	  
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disturbances, can begin to recover in just a decade or two. Newly created forest edges tend to 999	  

‘seal’ themselves in a few years, reducing the intensity of deleterious edge effects (Camargo 1000	  

& Kapos, 1995; Didham & Lawton, 1999; Mesquita et al., 1999). Secondary forests can 1001	  

develop quite rapidly in the surrounding matrix (Mesquita et al., 2001), especially if soils and 1002	  

their seedbanks are not depleted by repeated burning and grazing (Ribeiro et al., 2009; 1003	  

Norden et al., 2011). Secondary forests facilitate movements of many animal species (Gascon 1004	  

et al., 1999; Powell et al., 2013), allowing them to recolonize fragments from which they had 1005	  

formerly disappeared (Becker et al., 1991; Quintero & Roslin, 2005; Stouffer et al., 2008; 1006	  

Bobrowiec & Gribel, 2010; Boyle & Smith, 2010a; Rocha, 2016; Rocha et al., 2016). Species 1007	  

clinging to survival in fragments can also be rescued from local extinction via the genetic and 1008	  

demographic contributions of immigrants (Pimm & Jenkins, 2005; Zartman & Nascimento, 1009	  

2006; Stouffer et al., 2008). Compared to the BDFFP landscape, rates of forest recovery are 1010	  

probably slower in localities with severe forest loss, but such regions are likely to be of 1011	  

particular conservation significance and thereby worthy of efforts to reduce their recurring 1012	  

threats. 1013	  

 1014	  

XIII. FRAGMENTATION AND LARGER-SCALE DRIVERS 1015	  

(1) Interacting drivers 1016	  

Taken in its entirety, it seems apparent from the large-scale, long-term research effort at the 1017	  

BDFFP that forest fragments and their biodiversity are being influenced by a variety of local 1018	  

and larger-scale factors. The intrinsic attributes of a fragment, such as its size, shape and 1019	  

degree of isolation from intact forest, are unquestionably important. However, these attributes 1020	  

are clearly modified by the features of the surrounding landscape and its dynamics over time. 1021	  

Such landscape features can influence the nature and magnitude of edge effects in fragments 1022	  

(Fig. 7), the permeability of the matrix for faunal movements, the composition of the seed 1023	  
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rain entering fragments, the likelihood of destructive surface fires penetrating into fragments, 1024	  

and the intensity of abiotic forces such as microclimatic changes, wind turbulence and 1025	  

vegetation breezes (Fig. 3) that in turn can strongly influence fragment biodiversity and 1026	  

ecosystem processes.  1027	  

External vicissitudes, such as rare droughts, windstorms and intense rainfall events, 1028	  

can also leave a lasting imprint. Such phenomena might be influenced both by landscape-1029	  

scale features as well as regional and possibly global climatic drivers. More generally, it is 1030	  

apparent that even intact forests in the BDFFP are experiencing concerted long-term changes 1031	  

in their composition and dynamics, which seem to reflect increasing forest productivity. 1032	  

These changes appear broadly consistent with those expected from increasing CO2 1033	  

fertilization, although other environmental causes, such as declining cloudiness and increasing 1034	  

forest insolation, are also plausible. Whatever their causes, it is likely that the suite of changes 1035	  

observed in Amazonian forest fragments are partly a consequence of drivers operating at 1036	  

much larger spatial scales. 1037	  

 In some cases, large-scale drivers could exacerbate ecological changes in forest 1038	  

fragments. For instance, elevated forest dynamics and proliferating lianas could result both 1039	  

from edge effects in fragments (microclimatic stresses and elevated wind turbulence that kill 1040	  

many trees) as well as from larger-scale drivers that increase forest productivity and 1041	  

dynamism while favoring fast-growing plant species (Laurance et al., 2014b). In other cases, 1042	  

the larger-scale drivers might operate in opposition to local fragmentation effects. For 1043	  

example, the dramatic ‘biomass collapse’ observed in fragments from the mortality of many 1044	  

trees (Laurance et al., 1997, 2000) might be partially countered by increasing forest 1045	  

productivity that in turn promotes faster tree growth—although this is likely to have only a 1046	  

modest effect given the pronounced loss of large, old-growth trees in fragments and their 1047	  
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replacement by smaller, lighter-wooded trees and vines (Fig. 6) that store much less carbon 1048	  

(Laurance et al., 2006a, 2006b).  1049	  

 That fragments are being influenced by multiple drivers operating at widely varying 1050	  

spatial scales underscores serious complications for those seeking to understand and predict 1051	  

the effects of habitat fragmentation. Such drivers could interact in complex and potentially 1052	  

synergistic ways (Laurance & Useche, 2009), and it is virtually impossible to establish 1053	  

reliable experimental controls for global phenomena that may be operating everywhere 1054	  

(Laurance et al., 2014b). Indeed, it is quite possible that even the most remote and seemingly 1055	  

pristine regions of the Earth are being influenced by certain global-change phenomena.  1056	  

A further complicating matter is that even relatively modest differences between 1057	  

landscapes, such as rare weather events or subtle differences in land-use practices, could 1058	  

potentially multiply over time into far more pervasive changes. This idea is supported by the 1059	  

marked differences in trajectories of floristic change in forest fragments in the different cattle 1060	  

ranches (Fig. 11), even in a landscape as nearly uniform in its soils, climate, vegetation and 1061	  

land-use history as the BDFFP. This observation leads to the prediction that fragments within 1062	  

the same landscape will tend to converge in composition and dynamics over time, whereas 1063	  

those in different landscapes will tend to diverge. That such minor differences can seemingly 1064	  

provoke large consequences sends a strong note of caution for conservation biologists: it may 1065	  

be possible to make general predictions about the consequences of habitat fragmentation, but 1066	  

the interplay of local and larger-scale phenomena could render efforts to make precise local 1067	  

predictions or draw broad generalizations virtually impossible. 1068	  

 1069	  

(2) The Amazon and climate change 1070	  

Amazonian forests store roughly 150-200 billion tonnes of carbon in their live biomass 1071	  

(Malhi et al., 2006, Feldpausch et al. 2012), the release of which could seriously hinder 1072	  
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efforts to limit harmful climate change. Beyond this, Amazonian forests play vital roles in 1073	  

regional and global hydrological regimes, transporting massive quantities of moisture and 1074	  

heat to higher latitudes (Avissar & Worth, 2006; Nobre et al., 2016). For such reasons, 1075	  

conserving tropical forests such as the Amazon is likely to have markedly greater benefits for 1076	  

limiting global warming than would protecting higher-latitude forests (Bala et al., 2007).  1077	  

 Efforts to sustain the Amazon as a viable biophysical system can be guided by current 1078	  

research, which while constrained by uncertainties provides provisional guidelines for 1079	  

conserving the basin’s forests (Nagy et al., 2016). The best available information suggests 1080	  

that the destruction of more than 30-40% of all Amazonian forests could sharply increase the 1081	  

chances of a collapse of the crucial water-recycling functions that help to sustain Amazonian 1082	  

rainfall, especially during the critical dry-season months when forests are most susceptible to 1083	  

fire (Malhi et al., 2008; Nobre et al., 2016). With current Amazon deforestation levels at 1084	  

about 20% and large areas of additional forest being degraded by logging and surface fires 1085	  

and penetrated by new roads, hydroelectric dams, mining and other developments, there is 1086	  

clearly a real potential for further large-scale forest loss (Laurance et al., 2001a; Fearnside, 1087	  

2002, 2007, 2016a).  1088	  

The ongoing fragmentation of the Amazon at a large spatial scale will clearly increase 1089	  

the chances of both planned and unplanned forest destruction, because fragmented forest 1090	  

tracts are far more vulnerable than intact forests to predatory logging, wildfires, climate 1091	  

change and other anthropogenic impacts (Cochrane & Laurance, 2002, 2008). Hence, a 1092	  

blueprint for conserving the Amazon and thereby reaping its bioclimatic benefits for humanity 1093	  

and the global ecosystem would be to greatly discourage further large-scale fragmentation 1094	  

while maintaining large, intact forest blocks that could potentially persist in perpetuity.   1095	  

 1096	  

 1097	  
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XIV. CONCLUSIONS 1098	  

(1) In the heart of the Amazon, a large-scale, 38-year research project has revealed 1099	  

that the dynamics and community composition of fragmented rainforests cannot be 1100	  

understood simply as a consequence of local site attributes, such as fragment size or the 1101	  

surrounding topography. Rather, at least some ecological changes appear to result from 1102	  

interactions among local features and larger-scale changes occurring at landscape, regional 1103	  

and even global scales. 1104	  

(2) In undisturbed forests, observed changes are consistent with those expected from 1105	  

rising forest productivity, and include accelerating forest dynamics, concerted shifts in tree-1106	  

community composition, elevated growth rates for most tree species, and increasing 1107	  

abundances of disturbance-loving lianas. Plant fertilization from rising atmospheric CO2 1108	  

levels might explain these trends, although other causes are not implausible. 1109	  

(3) In general, ecological changes in forest fragments are strongly influenced by edge 1110	  

and sample effects, the dynamics of the surrounding matrix of modified vegetation, and rare 1111	  

disturbances such as droughts and windstorms. Because of their high sensitivity to local 1112	  

vicissitudes, forest fragments in different landscapes are predicted to diverge over time in 1113	  

dynamics and community composition, whereas those in the same landscape may converge. 1114	  

(4) Different species vary markedly in their vulnerability to forest fragmentation. 1115	  

Animal species that decline in abundance or disappear in forest fragments frequently have 1116	  

large area requirements and avoid the surrounding matrix, whereas susceptible plant species 1117	  

fare poorly in disturbed or edge-altered forests and often require vulnerable animal species for 1118	  

seed dispersal or pollination.   1119	  

(5) Much of the Amazon overlays nutrient-starved soils where most plant and animal 1120	  

species are both rare and patchily distributed. This, combined with the increased vulnerability 1121	  

of fragmented forests to various human disturbances, suggests that Amazonian nature reserves 1122	  
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should be large (ideally >104 km2) and numerous to ensure their long-term viability. Larger 1123	  

reserves will also be more resilient to future climatic change and extreme weather events. 1124	  
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FIGURE CAPTIONS 1911	  

 1912	  

Fig. 1. Map of the Biological Dynamics of Forest Fragments Project in central Amazonia. 1913	  

 1914	  

Fig. 2. Habitat fragmentation in eastern Amazonia caused by a forest-colonization project 1915	  

(Tailândia) and cattle ranching (Paragominas). Forests are black and cleared areas are grey. 1916	  

Each scene shows an area of about 600 km2 (adapted from Cochrane & Laurance, 2002). 1917	  

 1918	  

Fig. 3. The vegetation-breeze phenomenon, which can promote forest desiccation in the 1919	  

general vicinity of pastures and clearings (from Cochrane & Laurance, 2008). 1920	  

 1921	  

Fig. 4. Rates of tree growth in intact forests of the BDFFP accelerated over time for the large 1922	  

majority (84%) of tree genera (from Laurance et al., 2004a). Data shown are mean rates of 1923	  

trunk-diameter growth for genera that increased or decreased significantly in abundance over 1924	  

time in the plots, as well as those that showed no significant trend. Interval 1 was 1984-1991, 1925	  

and interval 2 was 1992-1999. 1926	  

 1927	  

Fig. 5. Increase in the abundance of lianas in intact-forest plots of the BDFFP (from Laurance 1928	  

et al., 2014a).  The solid line shows y=x whereas the dotted line is a linear regression fitted to 1929	  

the data. 1930	  

 1931	  

Fig. 6. Negative association between liana abundance and the aboveground biomass of live 1932	  

trees in BDFFP forest-dynamics plots (from Laurance et al., 2001b). 1933	  

 1934	  

Fig. 7. The diversity of edge-effect phenomena studied at the BDFFP and the distance to 1935	  
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which each was found to penetrate into fragment interiors (adapted from Laurance et al., 1936	  

2002). 1937	  

 1938	  

Fig. 8. The effects of single versus multiple nearby forest edges on (a) stand-level tree 1939	  

mortality and the (b) density and (c) species richness of disturbance-loving pioneer tree 1940	  

species. Values shown are the mean ± SD (from Laurance et al., 2006a). 1941	  

 1942	  

Fig. 9. Elevated temporal variation in butterfly species richness in fragmented forests. Shown 1943	  

is an index of variability in species richness for fragmented and intact sites sampled in 1944	  

consecutive years (adapted from Leidner et al., 2010).  1945	  

 1946	  

Fig. 10. Elevated temporal variation (coefficient of variation) in the number of tree stems per 1947	  

plot, shown as a function of distance from the nearest forest edge. 1948	  

 1949	  

Fig. 11. Increasing divergence over time of tree-community composition in three fragmented 1950	  

landscapes at the BDFFP. Tree communities in forest-edge plots (<100 m from the nearest 1951	  

edge) are shown before forest fragmentation and 13-18 years after fragmentation, based on an 1952	  

ordination analysis. The ordination used importance values for all 267 tree genera found n the 1953	  

study plots (from Laurance et al., 2007).  1954	  

 1955	  

Fig. 12. Plots near forest edges (<100 m from edge) generally have higher tree mortality, 1956	  

more small trees, and more woody debris, relative to plots in forest interiors. Data shown are 1957	  

from an ordination analysis of 14 forest-biomass and necromass variables from 50 BDFFP 1958	  

plots (from Nascimento and Laurance, 2004).  1959	  

 1960	  
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Fig. 13. Striking increases over time in the density of 52 species of early successional trees in 1961	  

forest fragments in the BDFFP study area. Note that vertical axes are log10-transformed (after 1962	  

Laurance et al., 2006a). 1963	  

 1964	  

Fig. 14. Changes over time in the phylogenetic diversity of tree communities in 1-ha plots in 1965	  

the BDFFP study area (adapted from Santos et al., 2014). Points with positive values (above 1966	  

the horizontal line) exhibited declining phylogenetic diversity over time, whereas those with 1967	  

negative values had opposite trends. 1968	  

 1969	  

  1970	  
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