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Abstract 

This paper presents a mathematical model for simulating viscous, incompressible, steady-state 

blood flow containing copper nanoparticles and coupled heat transfer through a composite 

stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects 

are included. The artery is simulated as an isotropic elastic tube, following Joshi et al (2009), and 

a variable viscosity formulation is employed for the flowing blood. The equations governing the 

transport phenomena are non-dimensionalized and the resulting boundary value problem is 

solved analytically in the steady state subject to physically appropriate boundary conditions. 

Numerical computations are conducted to quantify the effects of relevant hemodynamic, 

thermophysical and nanoscale parameters emerging in the model on velocity and temperature 

profiles, wall shear stress, impedance resistance and also streamline distributions. The model 

may be applicable to drug fate transport modeling with nanoparticle agents and also the 

optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory 

systems.   

 

Keywords: Blood flow; Copper Nanofluid; Composite Stenosed Arteries, Permeable Wall, Drug 

Delivery. 

 

#Corresponding author- email: dharmendra.tripathi@jaipur.manipal.edu  



2 

 

1. INTRODUCTION 

The significant complexity of blood flow and the ever-increasing incidence of cardiovascular 

diseases, continue to stimulate significant interest in developing improved medication delivery 

and infusion devices.  Often blood vessels (arteries and capillaries) or other tubular physiological 

organs can become abnormally narrow, a characteristic known in physiology and medical 

engineering literature as stenosis. Stenoses are usually caused by atherosclerosis, a condition 

where a blood vessel supplying blood to the brain (and other organs) is narrowed due to fatty 

deposits, known as plaques, on the interior walls of the vessel. Several factors influence how 

stenosis can be treated, including the percentage of blood vessel blockage and the patient’s 

overall risk of a first or second stroke. Although numerous clinical studies of stenotic blood 

flows have been communicated, considerable work has also emerged in fluid dynamic simulation 

(theoretical and numerical) in this intriguing area of medical hydrodynamics. An excellent 

overview of this field has been given by Berger and Jou [1]. Misra et al. [2] presented an 

analytical study of blood flow through an arterial segment having a mild stenosis, simulating the 

artery as a thin-walled and initially stressed orthotropic non-linear viscoelastic cylindrical tube 

filled with a non-Newtonian fluid representing blood. Ellahi et al.[3] investigated the unsteady 

flow of non-Newtonian blood through composite stenosis with Eringen’s micropolar fluid. Akbar 

et al. [4] derived closed-form solutions for nanofluid flow through composite stenosed arteries 

with permeable walls. Akbar et al. [5] further discussed the nanostructure effects on the 

physiological flow of CNT nanofluids where base fluid is considered as viscous fluid of 

temperature dependent variable viscosity. They observed that the velocity of CNT fluid 

diminishes with increasing the Grashof number. Mekheimer et al. [6] mathematically studied the 

blood flow through an elastic artery with overlapping stenosis under the effect of induced 

magnetic field. Ellahi et al. [7] investigated theoretically the transient blood flow of a Jeffery 

viscoelastic fluid through two types of arteries, namely (i) composite stenosed artery and (ii) 

anisotropically tapered stenosed artery with permeable walls. Chakravarty and Sannigrahi [8] 

discussed the flow-field in a porous stenotic artery when it is subjected to a single cycle of body 

acceleration and the simulated artery is taken as an isotropic elastic tube containing a viscous 

incompressible fluid representing the flowing blood. Nadeem and Ijaz [9] studied the physical 

characteristics of blood flow in the presence of stenosis and nanoparticles through a curved 
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channel with permeable walls. Back et al. [10] measured the pressure distributions through a 

hollow vascular axisymmetric replica of a segment of the left circumflex human coronary artery 

with the mildly atherosclerotic diffuse disease. Chakraborty et al. [11] studied blood flow 

through an inclined mild stenosis artery with slip present at the stenotic wall and blood analyzed 

as a particle-fluid suspension. Owida et al. [12] suggested vascular grafts that are small in 

diameter as an initiating factor for the progress of wall thickening along the suture line, 

observing that they tend to occlude rapidly. Schneiderman et al. [13] simulated the oxygen 

transfer in fully developed, pulsating, laminar flow in rigid and distensible tubes. Mekheimer et 

al. [14] deployed a particle-fluid suspension model for the axisymmetric blood flow through 

curved coaxial tubes where the outer tube has a mild overlapping stenosis while the inner tube is 

uniform and rigid and represents a catheter. Akbar et al. [15] investigated theoretically the 

unsteady rheological blood flow fluid through composite stenosed arteries with permeable walls, 

using the Williamson viscoelastic model. Mollica et al. [16] demonstrated that tumor blood flow 

(TBF) plays a fundamental role in tumor growth and treatment, and is characterized by spatial 

and temporal heterogeneities. Joshi et al. [17] discussed the porosity effects on Boundary Layer 

Bodewadt Flow of magnetic nanofluids with geothermal viscosity. They observed that with 

increasing the magnitude of Prandtl number from 20 to 80, the heat transfer rate increases by 

93.35%.  Manimaran [18] presented detailed numerical simulations for rheological blood flow 

with a power-law model, considering arterial stenoses with 48 % areal occlusion., observing that 

pressure drop across a stenosed artery is insignificantly modified by surface irregularities at low 

Reynolds numbers, whereas a substantial influence is computed at higher Reynolds numbers. 

Rabby et al. [19] investigated computationally the non-Newtonian hemodynamics in unsteady 

periodic flows in a two-dimensional vessel with two idealized stenoses of 75% and 50% degrees, 

respectively, employing four different rheological models (Carreau, Cross, modified Casson and 

Quemada constitutive equations). They presented extensive visualizations for streamwise 

velocity, pressure distribution, and wall shear stress (WSS) as well as the vorticity and examined 

carefully the recirculation zones at the post-stenotic region. They noted that the risk of 

thrombogenesis is minimized at the downstream location from the stenoses but that reduced 

blood supply is predicted in the Newtonian model relative to the non-Newtonian models. Akber 

et al. [20] reported the nanofluids flow driven by the combined effects of 
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magnetohydrodynamics and peristalsis in presence of velocity and slip effects. Two types of 

nanoparticles (Ag and SiO2) have been considered. They found that the pressure gradient for Ag 

nanofluid is minimum and it is maximum for pure water. That means the nanoparticles oppose 

the peristaltic flow however they enhance the thermal conductivity of base fluid. Molla and Paul 

[21] investigated computationally the 3-D pulsatile transition-to-turbulent non-Newtonian blood 

flow through an arterial stenosis with five different blood viscosity models including the 

modified-Casson model and a large eddy simulation numerical code. They evaluated the 

influence of different rheology on global maximum shear rate, post-stenotic re-circulation zone, 

mean shear stress, mean pressure, and turbulent kinetic energy. They observed that the non-

Newtonian formulations increased significantly the length of the post-stenotic re-circulation 

region by a displacement of the shear layer reattachment point, whereas the turbulent kinetic 

energy at the immediate post-lip of the stenosis was reduced with greater non-Newtonian 

viscosity. More recently Zaman et al. [22] studied combined heat and mass diffusion in non-

Newtonian blood flow in an overlapping stenosed artery. They used the Cross viscoelastic model 

and observed that the velocity, temperature, and species concentration fields are substantially 

modified with Weissenberg viscoelastic number, Brinkman and also Soret (thermo-diffusive) 

number, over a range of Prandtl numbers. Neofytou and Drikakis [23] studied the influence of 

non-Newtonian behaviour on unsteady periodic flows in a two-dimensional channel with a 

stenosis, deploying Casson, power-law and Quemada models, and observing that several vortices 

downstream of the stenosis arise and that the strength and location of vortex formation, wall 

shear stress magnitudes and separation behind the stenosis is greatly affected by the specific 

rheology considered. Further studies of peristaltic flow in presence electroosmosis phenomenon 

using rheological models (couple stress fluids) have been presented by, for example, Tripathi et 

al. [24] who observed that the physiological flow may modulate with applying the external 

electric field.  

The above studies have generally not considered nanoscale effects, despite the important 

potential of nanoparticles in pharmacodynamics, treatment of ailments and other applications in 

medicine [25-29]. Motivated by such developments in the current investigation we present a new 

model for blood flow employing a variable-viscosity copper-nanofluid formulation. Heat transfer 

effects are also considered including thermal buoyancy and heat generation. The geometry 
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studied comprises a composite stenosed artery with permeable walls. Hydrodynamic wall slip 

conditions are also taken into account as these have been identified as being significant in certain 

clinical situations[30]. Analytical solutions are developed for the transformed boundary value 

problem. The influence of key thermophysical, nanoscale and hemodynamic parameters on 

velocity, temperature, wall shear stress, streamline distributions and impedance are examined in 

detail. Considering the wide applications of nanofluids flow, most recently, some relevant works 

[31-35] on nanofluid flow with various applications have been reported in the literature. 

 

2. MATHEMATICAL MODEL FOR NANOFLUID HEMODYNAMICS  

Consider an axisymmetric flow of blood through a vertical composite stenosis in a circular tube 

of finite length, L , with permeable wall as shown in Fig.1. Gravity is therefore invoked in the 

physics. The geometry of arterial wall with composite stenosis is described by Joshi et al. [36] 

as: 
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Fig.1. Geometry of the nanofluid blood flow through a composite stenosed artery. 
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where  )(zR   is the radius of the artery in the obstructed region, 0R  designates the radius of 

normal artery, ,0L  ,d    denote the length, location and height of the stenosis, respectively. The 

governing equations for mass, momentum and heat conservation for an incompressible variable-

viscosity nanofluid with heat source present, can be written as: 
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The appropriate boundary conditions prescribed are: 
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Here r  and z  are the coordinates, z  is taken as the center line (longitudinal axis) of the tube 

and  r   transverse to it,  Bu   represents the wall slip velocity,  u   and v  are the velocity 

components in r and z  directions, respectively,  T   is the local temperature of the fluid. Also,   

nf   is the effective density, nf  is the effective dynamic viscosity, nfpc )(   is the heat 

capacitance, nf  is the effective thermal diffusivity and nfk  is the effective thermal conductivity 

of the nanofluid, which are defined as follows: 
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Proceeding with the analysis, to facilitate analytical solutions, we introduce the following non-

dimensional variables: 
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where  U   is the velocity averaged over the section of the tube with radius 0R  . Invoking the 

variables defined in eq.(8) in eqs. )52(    and applying the additional condition  0
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where ,    and rG   are the viscosity parameter, heat absorption (source) parameter and Grashof 

(thermal buoyancy effect) number, respectively. The non-dimensional boundary conditions for 
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velocity and temperature at the permeable wall become: 
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Da  refers to the Darcy number which is employed to simulate the permeable wall. 

 

3. ANALYTICAL SOLUTION 

Solving eqs. (9) to (12) together with boundary conditions (13 a & b), we obtain the solution for 

the velocity field, viz:  
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The solution for the temperature field emerges as: 
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The volumetric flux, Q , can be calculated as rudrQ

R

0
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The appropriate expression for axial pressure gradient is determined as: 
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Impedance resistance     is defined as ,
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4. RESULTS AND DISCUSSION 

Extensive numerical evaluation of the solutions derived in section 3 has been performed. On the 

basis of numerical evaluation, the computational graphs are illustrated in the Figs.2-6. The 

effects of pertinent parameters on velocity profile, temperature profile, wall shear stress, 

Impedance resistance, and streamlines are discussed in this section. 
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Fig.2. Velocity profile against the radial axis for different values of (a) Slip parameter,  (b) 

Heat absorption parameter,    (c)  Grashof Number, rG  (d) Viscosity parameter,  .  
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Fig.3. Temperature profile for different values of (a) Heat absorption parameter,  .  (b)  

Stenosis height, .   



13 

 

z



0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

14

 = 0.5,  = 0.2, D


= 0.1

 = 0.5 = 0.2, G
r
= 0.3, Q = 0.5

Pure Water

Cu Water

 = 0.1, 0.2, 0.3

Fig.4(a)

 





0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

D


= 0.35,  = 0.2, z = 0.5,

 = 0.2, G
r
= 0.3, Q = 0.2

Pure Water

Cu Water

 = 0.1, 0.2, 0.3

Fig.4(b)

 



14 

 





0 0.05 0.1 0.15 0.2 0.25 0.3

0.5

1

1.5

2

 = 0.35,  = 0.2, z = 0.5,

 = 0.2 = 0.2, G
r
= 0.3,

Q = 0.2

Pure Water

Cu Water

D


= 0.1, 0.2, 0.3

Fig.4(c)

 

Fig.4. Wall shear stress for different values of (a) Stenosis height,   (b) Slip parameter,   (c) 
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 Fig.5. Impedance resistance for different values of (a) Stenosis height,   (b) Darcy number, aD  

 

     

              (a) Pure water ( 0.4  )                                        (b) Copper water ( 0.8  ) 
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              (c) Pure water ( 1rG  )                                        (d) Copper water ( 2rG  ) 

 

 

              (e) Pure water ( 1  )                                          (f) Copper water ( 3  ) 
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              (g) Pure water ( 0.4Da  )                                        (h) Copper water ( 0.8Da  ) 

Fig.6. Streamlines for pure and copper water with different values of flow parameter i.e. (a)-(b)  

viscosity parameter,    (c)-(d) Grashof number rG  (e)-(f) Heat absorption parameter ,    (g)-

(h) Darcy number,  aD  .   

Fig.2 depicts the influence of selected parameters on the longitudinal (axial) velocity evolution, u 

(r,z) with radial coordinate (r), for the two cases of pure water and copper water nanofluid.  In all 

the profiles velocities grow from the lower radial coordinate (inner wall) to peak at the central 

core region, and thereafter diminish to zero at the outer permeable wall. With increasing slip 

parameter (fig. 2a) there is a marked acceleration in axial flow with increasing hydrodynamic 

wall slip effect. The slip parameter is only simulated via the boundary condition imposed at the 

inner surface of the outer permeable wall. The presence of slip inevitably induces a momentum 

boost at the zone of imposition which leads to elevation in velocities. Consistently the copper-

water nanofluid achieves greater magnitudes than the pure water case, implying that the presence 

of copper nano-particles accelerates the blood flow. Absence of nanoparticles therefore leads to 

the converse effect i.e. hemodynamic deceleration. A similar observation has been computed by 

Nadeem and Ijaz [9], among others. The presence of nano-particles is therefore beneficial to the 

transport of blood.  In fig. 2b the presence of increasingly strong heat sink is observed also to 

generate substantial acceleration in the blood flow in the core region between the permeable 
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walls, for both pure water and copper water nanofluid. However the contrary behavior is evident 

near the walls where lesser thermal energy introduced via the heat absorption is found to weakly 

decelerate axial velocity. The presence of a heat source may correspond clinically to, for 

example, a localized cooling of the artery via external mechanisms [37]. It works in the same 

way as a passive heat exchanger and due to the heat-conducting nature of real blood, can exert a 

significant role on temperature distributions also. The computations appear to be supported by 

actual clinical observations including the experiments of Petersen et al. [38]. The opposite effect 

i.e. heat source (thermal energy generation) is not considered due to limited applications in 

clinical hemodynamics. In the core region, copper water nanofluids attain higher velocities than 

pure water, with the reverse behavior computed in the proximity of the permeable walls. Fig. 2c 

illustrates the influence of the thermal buoyancy parameter i.e. Grashof number (Gr) on axial 

velocity distributions. Gr as defined in eqn. (8) effectively embodies the relative role of the  

thermal buoyancy (natural convection) force to the viscous hemodynamic force. For Gr <1 the 

viscous force dominates whereas for Gr  > 1 the thermal buoyancy force dominates. When Gr  

equals unity both forces contribute equally. As Gr increases the flow is observed to decelerate 

significantly, in particular in the core region. The values considered span from 0.1 to 0.9 and 

therefore for every profile there is a dominance of the viscous force over the thermal buoyancy 

force. This results in significant retardation of the axial flow. The converse effect may therefore 

be achieved with Gr exceeding unity in which case thermal buoyancy will drive the axial flow 

with greater vigour and will lead to significant acceleration. Similar results have been reported 

for Newtonian viscous fluids by Abd elmabouda and Mekheimer [39]. The present solutions also 

show that copper nanofluids sustain greater accelerations in the core inter-wall region compared 

with pure water, even with low thermal buoyancy, again demonstrating the assistive nature of 

nano-particles to momentum transfer in hemodynamic transport.  The impact of viscosity 

parameter, , on velocity profiles is plotted in fig. 2d. The model used for viscosity variation, viz 

eqn. (12) i.e. 
 

 
      ,1    ,

1

2

5.2

0




 


Oe
enf









is that of an exponentially decaying 

viscosity with temperature increase. It is also a function of nanoparticle volume fraction. Larger 

values of , will therefore imply decreasing viscosity and this will lead to an acceleration in the 

blood flow for copper nanofluids, as testified to by the growth in profiles (dotted lines). However 
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the converse effect is imparted to the pure water fluid case where with decreasing viscosity 

(increasing  values) the blood flow is in fact decelerated. The presence of a volume fraction in 

the denominator in eqn. (8) results in greater effective values of viscosity at any value of  for 

pure water compared with copper nanofluid. The presence of nano-particles therefore results in 

acceleration of blood flow at all values considered for viscosity parameter.  

Figs.3a,b present the temperature evolution for various values of heat absorption and stenosis 

height, with radial coordinate. Immediately it is apparent that at the permeable walls only zero 

values of temperature arise, unlike the non-zero velocity values present in figs.2a-d. In the 

velocity plots, the wall slip results in the non-zero wall values, whereas since thermal slip is 

absent this characteristic does not arise in temperature distributions. Although thermal slip may 

be incorporated into the present model, we defer studying this to the future, since the present 

model contains numerous multi-physical effects as it is. With greater heat absorption, there is a 

strong elevation in temperatures. Symmetric profiles are generated across the inter-wall gap. 

Pure water is observed to however attain greater temperature magnitudes than copper water, 

since the nature of heat absorption is to remove thermal energy which the nano-particles achieve 

better than pure base fluid (water). The plots in fig.3a correspond to relatively low stenotic 

height ( =0.05) and an intermediate axial location (z = 0.5), the latter being selected to be as 

representative of the general scenario as possible. In fig. 3b  an increase in stenotic height ( ) is 

found to significantly reduce the temperature values across the blood vessel radial dimension, 

and again smooth parabolic symmetric distributions are consistently computed. The copper water 

nanofluid again produces lower temperatures than the pure water with heat absorption (sink) 

effect present (β=0.5). 

Figs.4a-c illustrate the wall shear stress profiles for variation in various control parameters. Fig. 

4a shows that increasing stenotic height is found to elevate the shear stress magnitudes  and the 

peak shear stress surfaces at intermediate axial coordinate values (z ~0.5)  Shear stress profiles 

are pinched and generally symmetrical about the peak value. With copper water nanofluid 

significantly greater wall shear stress is computed as compared with the pure water case. Fig. 4b 

demonstrates that shear stress is elevated significantly with wall slip parameter () and this is 

attributable to the acceleration in the axial flow. A steady growth in shear stress also 

accompanies increasing stenotic height values. Shear stress is minimized in the pre-stenotic 
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region, implying that greatest flow deceleration arises here. With larger stenotic height, the shear 

stress will grow in the post-stenotic region where lesser impedance is experienced in the blood 

vessel. Generally copper-water nanofluid attains higher shear stress values than the pure water 

case. The influence of wall permeability on wall shear stress, as simulated via Darcy number 

(Da) is given in fig. 4c. With increasing Darcy number, the shear stress is observed to be 

decreased, implying that the flow is retarded. This is due to the greater influx of fluid into the 

vessel which destroys momentum and decelerates the flow. With increase in stenotic height, 

there is a strong growth in the wall shear stress at any Darcy number, for both copper water 

nanofluid and pure water.  

Figs.5a-c depict the impedance resistance for different values of slip parameter, stenotic height 

and Darcy number. With increasing stenotic height the impedance magnitude is significantly 

elevated, as shown in fig. 5a. However it is also markedly increased with increasing slip 

parameter. Copper water nanofluid produces greater impedance magnitudes than the pure water 

fluid. Fig. 5b reveals that at low values of Darcy number, the impedance is initially greater for 

pure water as compared with copper water nanofluids compared with pure water. However at 

higher Darcy numbers, the opposite behavior is observed and copper water nanofluid achieves 

greater impedance magnitudes relative to pure water. Generally with increasing stenotic height, 

the impedance magnitudes are markedly elevated, as expected.  

Figs.6a-h illustrate the streamlines in the r-z plane for a variety of different parameters, and 

vortices are clearly visualized in these plots. In all the figures there are generally three lines of 

vortices, one along the longitudinal axis (r =0) and two parallel streets of vortices on either side. 

The distributions are generally symmetrical about the line r = 0 and are plotted along the entire 

length of the vessel (0 z 4). With increasing viscosity parameter, , there is a significant 

modification in the streamline plots in figs 6a,b. The central vortex region grows and the vortex 

size is enhanced pushing out into the dual parallel vortex streams on either side. Vorticity of the 

flow in the central region of the vessel is therefore intensified with greater viscosity parameter 

(lower effective viscosity of nanofluid). Figs 6c, d demonstrate that as the thermal buoyancy i.e. 

Grashof number, Gr, is increased from 1 to 2 (corresponding to a doubling in thermal buoyancy 

effect relative to viscous hemodynamic effect), the central vortex region is dramatically 

intensified and large vortices appear. Also there is a narrowing in streamlines in the parallel 
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vortex streets on either side and vorticity is also intensified here. Buoyancy therefore exerts a 

very substantial effect on the hemodynamic process. The distortion to streamlines, in particular 

in the central zone is more severe than when viscosity is altered (figs 6a,b). Circulation is 

therefore more strongly affected by buoyancy than by viscosity effect. Figs 6e,f demonstrate that 

heat absorption (β) has the opposite effect to increasing buoyancy. Instead of intensifying 

circulation in the central zone, vortices here are completely eliminated and the flow is intensified 

on either side. Finally with increasing Darcy number (Da) a similar effect is achieved in that the 

circulation zones along the r = 0 line vanish and greater distortion in streamlines migrates 

outwards towards the parallel zones. The sensitivity of the hemodynamics to modifications in 

viscosity, buoyancy, heat absorption and wall permeability is therefore substantial and 

demonstrate the importance of including these multi-physical effects in realistic stenotic flow 

simulation.   

 

5. CONCLUSIONS 

A mathematical model has been developed to study variable-viscosity hemodynamic flow 

containing nano-particles (copper) and heat transfer in a vertical composite stenosed artery with 

permeable walls. Slip effects at the permeable walls of the blood vessel have been incorporated 

and also thermal buoyancy effects arising from density differences. The problem has been 

motivated by possible applications in nano-particle drug delivery in stenotic flows using a more 

realistic viscosity-variation model. Closed-form solutions for the transformed boundary value 

problem have been derived. A parametric study of the influence of copper nano-particles (via 

volume fraction), viscosity, heat absorption, stenotic height, slip parameter and Grashof number 

on  velocity, temperature, wall shear stress, impedance resistance and also stream-line 

distributions, has been conducted. The present analysis has shown that:  

 Greater buoyancy and reduced viscosity effect results in intensification of vorticity along 

the axis of the vessel, whereas greater wall permeability and heat absorption manifest in a 

decrease in circulation along the vessel longitudinal axis.   

 An increase in wall shear stress is induced with greater stenotic height whereas 

temperature magnitudes are decreased. 

 An elevation in heat absorption generates a strong boost in blood temperatures. 
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 Increasing thermal buoyancy i.e. Grashof number, decelerates the core flow. 

 Greater hydrodynamic wall slip strongly accelerates the flow in the core region. 

 For copper water nanofluids the flow is accelerated in the core region compared with 

pure water.  
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