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Abstract 10 

Background: Since the introduction of full field digital mammography (FFDM) a large number of 

UK breast cancer screening centers have reported blurred images, which can be caused by 

movement at the compression paddle during image acquisition. 

Purpose: To propose and investigate the use of position feedback from the breast side of the 

compression paddle to reduce the settling time of breast side motion. 15 

Method: Movement at the breast side of the paddle was measured using two calibrated linear 

potentiometers. A mathematical model for the compression paddle, machine drive and breast was 

developed using the paddle movement data. Simulation software was used to optimize the position 
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feedback controller parameters for different machine drive time constants and simulate the 

potential performance of the proposed system. 20 

Results: The results obtained are based on simulation alone and indicate that closed-loop control 

of breast side paddle position dramatically reduced the settling time from over 90 seconds to less 

than 4 seconds. The effect of different machine drive time constants on the open-loop response is 

insignificant. With closed-loop control, the larger the time constant the longer the time required 

for the breast side motion to settle. 25 

Conclusions: Paddle motion induced blur could be significantly reduced by implementing the 

proposed closed-loop control. 

Keywords: Paddle motion, motion blurring, breast compression, closed-loop control, breast side 

motion 
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Figure 1: Alternative control systems for breast compression: a) using only machine side position 

feedback; b) also using breast side position feedback. 

Figure 2: Schematic diagram of the experimental setup 

Figure 3: The simplest lumped parameter model of the paddle and breast 

Figure 4: Models of the alternative control systems: a) conventional open-loop; b) closed-loop 35 

using breast side position feedback. 

Figure 5: Experimental data for paddle movement against time for the Selenia Dimensions 18x24 

cm and 24x30 cm paddles  
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Figure 6: Experimental data for paddle movement against time for the Lorad Selenia 18x24 cm 

and 24x30 cm paddles  40 

Figure 7: The step responses of the Selenia Dimensions open-loop breast compression system for 

machine drive time constants (τ) of 0.1s, 0.2s and 0.4s (i.e. without breast side position 

feedback). The upper group of curves (τ1-τ3) are for the 24x30 cm paddle and the lower group 

of curves (τ4-τ6) are for the 18x24 cm paddle. Note that the differences between the three 

responses for each paddle are negligible. 45 

Figure 8: The step responses of the Lorad Selenia open-loop breast compression system for 

machine drive time constants (τ) of 0.1s, 0.2s and 0.4s (i.e. without breast side position 

feedback). The upper group of curves (τ1-τ3) are for the 24x30 cm paddle and the lower group 

of curves (τ4-τ6) are for the 18x24 cm paddle. Note that the differences between the three 

responses for each paddle are negligible. 50 

Figure 9: The step responses of the Selenia Dimensions closed-loop breast compression system 

for machine drive time constants (τ) of 0.1s, 0.2s and 0.4s (i.e. with breast side position 

feedback). The curves labelled τ1-τ3 are for the 24x30 cm paddle and the curves labelled τ4-τ6 

are for the 18x24cm paddle. 

Figure 10: The step responses of the Lorad Selenia closed-loop breast compression system for 55 

machine drive time constants (𝜏) of 0.1s, 0.2s and 0.4s (i.e. with breast side position feedback). 

The curves labelled τ1-τ3 are for the 24x30 cm paddle and the curves labelled τ4-τ6 are for the 

18x24cm paddle. 
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Notation 60 

𝑐𝑏  Breast viscous friction coefficient 

𝑐𝑚  Motor viscous friction coefficient 

C1 and C2 Arbitrary constants which depend on initial conditions at the start of the movement 

𝐺𝑑𝑟𝑖𝑣𝑒(𝑠)𝐶𝐿 Machine drive closed-loop transfer function 

𝐺𝑑𝑟𝑖𝑣𝑒(𝑠)𝑂𝐿 Machine drive open-loop transfer function 65 

𝐺𝑑𝑦𝑛  Paddle and breast 2nd order dynamics 

𝐺𝑔𝑎𝑖𝑛  Paddle and breast steady-state gain 

𝐺𝑃𝐼𝐷  PID controller transfer function 

𝐺𝑠𝑦𝑠  Paddle and breast transfer function 

𝐽𝑚  The machine’s effective inertia 70 

𝑘𝑏  Breast spring constant 

𝑘𝑐  Proportional gain for the machine drive control 

𝑘𝑚  Motor gain 

𝑘𝑝  Paddle spring constant 

𝑘𝑝𝑟𝑜𝑝  Proportional gain of the PID controller 75 

𝑘𝑖𝑛𝑡𝑒𝑔  Integral gain of the PID controller 

𝑘𝑑𝑒𝑟𝑖𝑣  Derivative gain of the PID controller 

𝑚𝑏  Effective mass of the breast and paddle 

R  Ratio between linear velocity of the paddle (�̇�𝑚) and motor angular velocity (�̇�𝑚) 

s   The Laplace variable 80 

𝑇𝑚  Motor torque 

𝑥𝑚  Machine side paddle position 
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𝑥𝑝  Breast side paddle position 

𝑥𝑝𝑠𝑠
  Steady-state breast side paddle position 

𝜏   Machine drive time constant 85 

𝜔𝑛   System natural frequency 

𝜁   System damping ratio 

�̇�𝑚  Motor angular velocity 

𝜆1 and 𝜆2  Empirically identified exponents that describe the motion of the paddle. 

 90 

1. Introduction 

Since the introduction of full field digital mammography (FFDM) a large number of UK breast 

cancer screening centers have identified blurred images during local audit; however, few reports 

have been published about the causes and possible solutions1,2. Blurring can be caused by a number 

of factors including inadequate breast compression, long exposures and patient movement3. 95 

Studies have also shown that image blurring can be caused by movement of the compression 

paddle during image acquisition4,5,6. Previous research into paddle motion has demonstrated that 

the settling time required for the compression paddle motion to become negligible is approximately 

30 seconds and most of the movement occurs within the first 10 seconds, which is when the 

mammography image would normally be formed6. 100 

Current breast compression systems control the position of the machine side of the paddle (i.e. the 

side on which it is attached to the machine) and, if position feedback is used, it is feedback from 

the machine side (e.g. in the manner shown in Figure 1a). Therefore, even if the machine side 

motion settles quickly, there is no guarantee that the remainder of the paddle and breast do not 
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continue to move during image acquisition causing motion blurring. In light of this and building 105 

on the work of Ma et al6 on paddle movement, we propose a new feedback control system with 

the aim of minimizing the settling time of the paddle as a whole and, hence, the breast. Referring 

to Figure 1b, we propose the use of position feedback from the breast side of the paddle (the right-

hand side in Figure 2) so that the machine drive is controlled in such a manner that the breast side 

motion settles quickly. This relies on the assumption that this better reflects breast motion as a 110 

whole because, when the machine side is stationary, any change in compressed breast thickness 

and shape will change the amount of paddle-bend and hence the position of the breast side of the 

paddle. 

Referring to Figure 1b, in the proposed solution, a proportional, integral and derivative (PID) 

controller is driven by the error in breast side paddle position. The PID controller determines the 115 

set-point for the machine side position control (inner feedback loop). PID controllers are 

commonly used when a fast settling time is required and can be tuned to deal with variability in 

the plant transfer function9 (see footnote). This is important in this application because female 

breasts vary widely in terms of size, compressed thickness and density and, hence, the plant (breast) 

transfer function will vary from woman to woman. 120 

 

Footnote: The transfer function of a linear system is defined as the ratio of the Laplace transform of the 

output variable to the Laplace transform of the input variable. It is an input-output description of the 

behavior of a system with all initial conditions assumed to be zero7. Transfer functions are widely used in 

the study of dynamic control systems because they are algebraic functions rather than differential equations, 125 

which makes the analysis simpler8. 
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In this paper we present the results of a simulation study to demonstrate the potential performance 

of the proposed system and, in particular, the benefits associated with using feedback of the breast 

side paddle position. 

 130 

Figure 1a 

 

Figure 1b 

Figure 1: Alternative control systems for breast compression: a) using only machine side 

position feedback; b) also using breast side position feedback. 
 

 

2. Methods 

2.1 Measurement of paddle movement 135 
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A Selenia Dimensions mammography unit (Hologic Incorporated, Bedford, MA, USA) and a Lorad 

Selenia mammography unit (Hologic Incorporated, Bedford, MA, USA) were used in this study, 

fitted with either an 18x24 cm or a 24x30 cm compression paddle. Routine equipment quality 

assurance (QA) was performed and the results complied with the manufacturer specifications10. A 

deformable breast phantom (Trulife, Sheffield, United Kingdom) with compression characteristics 140 

similar to a female breast11 was compressed manually to approximately 80 N, after which the 

movement of the breast side of the paddle was recorded at 0.5 second intervals for 90 seconds. The 

machine side of the paddle was stationary during measurement. The movement of the breast side 

of the paddle was measured using two calibrated linear potentiometers (Activesensors, Dorset, 

United Kingdom). Figure 2 shows the experimental setup. The measurement was repeated three 145 

times to minimize the experimental uncertainties. 

 
Figure 2: Schematic diagram of the experimental setup 

 

2.2 Modeling the paddle and breast  

Previous work by the authors6 suggests that the paddle motion is that of either a 1st order system 

or an over-damped 2nd order system. This is also supported by the data presented in this study. To 150 



Compression paddle motion control 

9 
 

the more appropriate of these two models, the simplest lumped parameter model was considered 

as shown in Figure 3. The breast is represented as being viscoelastic (𝑐𝑏 and 𝑘𝑏). The effective 

mass of the breast and paddle is represented by 𝑚𝑏. The paddle is represented by the spring 𝑘𝑝. In 

this model 𝑥𝑚  is the machine side paddle position and 𝑥𝑝  is the breast side paddle position. 

Applying Newton’s 2nd law we obtain: 155 

𝑘𝑝(𝑥𝑚 − 𝑥𝑝) − 𝑘𝑏𝑥𝑝 − 𝑐𝑏�̇�𝑝 = 𝑚𝑏�̈�𝑝    (1) 

where the three terms on the left of the equation are the paddle elastic force, the breast elastic 

force, and the breast viscous force respectively. Rearranging equation 1 we obtain: 

𝑚𝑏�̈�𝑝 + 𝑐𝑏�̇�𝑝 + (𝑘𝑝 + 𝑘𝑏)𝑥𝑝 = 𝑘𝑝𝑥𝑚    (2) 

Therefore we adopted an over-damped 2nd order model of the paddle and breast. Furthermore, 160 

equation 2 can be written in standard form as follows: 

�̈�𝑝 + 2𝜁𝜔𝑛�̇�𝑝 + 𝜔𝑛
2𝑥𝑝 =

𝑘𝑝

(𝑘𝑝+𝑘𝑏)
𝜔𝑛

2𝑥𝑚      (3) 

Where 𝜁 =
𝑐𝑏

2√(𝑘𝑝+𝑘𝑏)𝑚𝑏
 is the system’s damping ratio and 𝜔𝑛 = √

(𝑘𝑝+𝑘𝑏)

𝑚𝑏
 is the system's 

natural frequency. 

 165 
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Figure 3: The simplest lumped parameter model of the paddle and breast. 170 

 

Because the machine side of the paddle was stationary during our experimental measurements, the 

resulting motion represents the transient response only (i.e. there was no forcing function). This 

transient motion of the paddle and breast is the solution to the following homogeneous (or 

complementary) equation12: 175 

�̈�𝑝+ 2𝜁𝜔𝑛�̇�𝑝 +𝜔𝑛
2𝑥𝑝= 0            (4) 

Where 𝜔𝑛 is the system’s natural frequency and 𝜁 is its damping ratio 

For over-damped 2nd order dynamics, the general solution to equation 4 is given by: 

𝑥𝑝(𝑡) = 𝐶1𝑒𝜆1t + 𝐶2𝑒𝜆2t       (5) 

Where the two exponents are given by: 180 

   𝜆1,2 = −ζωn ± 𝜔𝑛√ζ2 − 1      (6) 

And C1 and C2 are arbitrary constants that depend on the initial conditions of the system at the start 

of the movement. The four constants in equation 5 were identified using the experimental motion 

data and the Mathworks curve fitting tool, which minimizes the sum of the square errors. The two 

values found for 𝜆1 and 𝜆2 were substituted in equations 6, which were then solved to find 𝜔𝑛 185 

and ζ. 

Laplace transforming both sides of equation 3 and solving for the transfer function9 we obtain: 
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Gsys(s) =
𝑥𝑝

𝑥𝑚
=

𝑘𝑝

(𝑘𝑏+𝑘𝑝)

𝜔𝑛
2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2
     (7) 

Where Gsys(s) is the paddle and breast transfer function, with the breast side paddle position (𝑥𝑝) 190 

as output, the machine side paddle position (𝑥𝑚) as input, and where s is the Laplace variable. 

Considering equation 7, it is clear that the model of the paddle and breast can be divided into two 

parts representing: a) a steady-state gain (obtained by substituting 𝑠 = 0); and b) the 2nd order 

dynamics. These two parts have the following transfer functions: 

   𝐺𝑔𝑎𝑖𝑛 =
𝑥𝑝𝑠𝑠

𝑥𝑚
=

𝑘𝑝

(𝑘𝑏+𝑘𝑝)
 195 

   𝐺𝑑𝑦𝑛(𝑠) =
𝑥𝑝

𝑥𝑝𝑠𝑠

=
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2
 

Where 𝑥𝑝𝑠𝑠
 is the steady-state breast side paddle position. This assumes the breast has a linear 

elastic relationship which is unlikely. Furthermore, we have adopted an estimate of 𝐺𝑔𝑎𝑖𝑛 = 0.9 

(i.e. we assume the paddle is much stiffer than the breast). However, these assumptions have little 

impact on the conclusions of this study as we are primarily concerned with the dynamics (𝐺𝑑𝑦𝑛(𝑠)), 200 

the parameters of which (𝜁 and 𝜔𝑛) we can determine from our experimental data as described 

above. 

2.3 Modeling the machine drive 

Our aim here was to develop the simplest model of the machine drive that would allow us to 

compare the open-loop and closed-loop alternatives shown in Figure 1. Assuming that changes in 205 

the motor torque (𝑇𝑚) propelling the machine drive can occur very quickly, and that the motor 
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torque overcomes viscous friction (𝑐𝑚) and accelerates the machine’s effective inertia (𝐽𝑚), as 

seen by the motor, it can be shown that the following equation of motion applies: 

𝐽𝑚�̈�𝑚 + 𝑐𝑚�̇�𝑚 = 𝑇𝑚         (8) 

As a first approximation, if we neglect the acceleration term and include the ratio (R) between the 210 

linear velocity of the paddle (�̇�𝑚) and the motor angular velocity (�̇�𝑚), this simplifies equation 8 

to �̇�𝑚 = 𝑘𝑚𝑇𝑚, where 𝑘𝑚 = 𝑅/𝑐𝑚. This leads to the following open-loop transfer function for the 

machine drive: 

   𝐺𝑑𝑟𝑖𝑣𝑒(𝑠)𝑂𝐿 =
𝑥𝑚

𝑇𝑚
=

𝑘𝑚

𝑠
         (9) 

If we assume simple closed-loop proportional control (with gain 𝑘𝑐), then the transfer function is 215 

given by9: 

𝐺𝑑𝑟𝑖𝑣𝑒(𝑠)𝐶𝐿 =
𝑥𝑚

𝑥𝑚𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

=
𝑘𝑐𝑘𝑚

𝑠⁄

1+
𝑘𝑐𝑘𝑚

𝑠⁄
=

1

1+𝜏𝑠
     (10) 

where the time constant 𝜏 = 1
𝑘𝑐𝑘𝑚

⁄ . Although a more complex model of the machine drive could 

be used, for our purposes we simply needed to model the machine drive’s speed of response, which 

is determined by the time constant. Because we don’t have experimental data for machine drive 220 

response and also because it will differ between machine suppliers, we have included simulation 

results for a range of time constants to show the effect of different machine drive dynamics. 

2.4 Controller modeling and design 
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Referring to Figure 4, we considered two scenarios: a) conventional control where the motion of 

the breast side of the paddle is controlled in an open-loop manner; and b) closed-loop PID control 225 

using position feedback from the breast side of the paddle. 

 
Figure 4a 

 
Figure 4b 

 

Figure 4: Models of the alternative control systems: a) conventional open-loop; b) closed-loop 

using breast side position feedback. 
 

Both scenarios were modeled in Mathworks Simulink and the PID controller parameters tuned to 

minimize the settling time of the breast side paddle motion. For the purposes of this study, in both 

scenarios we compare the system responses with machine drive time constants (𝜏) of 0.1s, 0.2s 230 

and 0.4s to determine the importance of machine drive response. In this context, 𝜏 = 0.4𝑠  is 

considered a conservative value, corresponding to a 95% rise time of 1.2 seconds and hence not 

requiring a fast servo-system. The transfer function of the PID controller is given by: 

𝐺𝑃𝐼𝐷 = 𝑘𝑝𝑟𝑜𝑝 + 𝑘𝑖𝑛𝑡𝑒𝑔
1

𝑠
+ 𝑘𝑑𝑒𝑟𝑖𝑣𝑠        (11) 
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Where 𝑘𝑝𝑟𝑜𝑝 is the proportional gain, 𝑘𝑖𝑛𝑡𝑒𝑔 is the integral gain, and 𝑘𝑑𝑒𝑟𝑖𝑣 is the derivative gain. 235 

The PID controller was tuned using the Mathworks Simulink response optimization tool to 

minimize the integral square error and also satisfy the constraint that the overshoot should be zero 

(because overshoot might cause breast pain). 

3. Results 

3.1 Experimental data and model fitting 240 

As we expected, the paddle movement on the breast side decreased in an over-damped 2nd order 

manner and took approximately 80 seconds to settle (Figures 5 and 6). 

  
Figure 5: Experimental data for paddle 

movement against time for the Selenia 

Dimensions 18x24 cm and 24x30 cm paddles 

Figure 6: Experimental data for paddle 

movement against time for the Lorad Selenia 

18x24 cm and 24x30 cm paddles 
 

Using the curve fitting method described previously, this data was used to derive the following 

equations for the motion of the Selenia Dimensions and Lorad Selenia 18x24 cm and 24x30 cm 245 

paddles.  

𝑥𝑝 18𝑥24𝑐𝑚 Selenia(𝑡) = 0.58𝑒−0.036t + 0.27𝑒−0.28t     (12) 

𝑥𝑝 24𝑥30𝑐𝑚 Selenia(𝑡) = 0.48𝑒−0.034t + 0.18𝑒−0.27t     (13) 
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𝑥𝑝 18𝑥24𝑐𝑚 Lorad(𝑡) = 0.22𝑒−0.036t + 0.11𝑒−0.39t     (14) 

𝑥𝑝 24𝑥30𝑐𝑚 Lorad(𝑡) = 0.21𝑒−0.045t + 0.16𝑒−0.32t     (15) 250 

The coefficients of correlation (R-squared) for the Selenia Dimensions and Lorad Selenia paddles 

are listed in table 1.  

Table 1: Coefficients of correlation (R-squared) for Selenia Dimensions and Lorad Selenia 

paddles 

 255 

Mammography 
machine 

Selenia Dimensions Lorad Selenia 

Paddle size  18x24 cm 24x30 cm 18x24 cm 24x30 cm 
R-squared 0.9968 0.9943 0.9874 0.9864 

 

The two exponents in equations 12 to 15 were then used to solve for the natural frequency (𝜔𝑛) and 

damping ratio (𝜁) of the paddle and breast. For the Selenia Dimensions paddles 𝜔𝑛 and 𝜁 were 

found to be 0.101 rad/s and 1.565 respectively for the 18x24 cm paddle; and 0.096 rad/s and 1.591 

respectively for the 24x30 cm paddle.  For the Lorad Selenia paddles 𝜔𝑛 and 𝜁 were found to be 260 

0.117 rad/s and 1.799 respectively for the 18x24 cm paddle; and 0.121 rad/s and 1.531 respectively 

for the 24x30 cm paddle.  Hence, the transfer functions for the Selenia Dimensions and Lorad 

Selenia paddles and breast are given by: 

𝐺𝑑𝑦𝑛(𝑠)18𝑥24𝑐𝑚 𝑆𝑒𝑙𝑒𝑛𝑖𝑎 =
𝑥𝑃

𝑥𝑃𝑆𝑆
=

0.0102

𝑠2+0.3168𝑠+0.0102
      (16) 

𝐺𝑑𝑦𝑛(𝑠)24𝑥30𝑐𝑚 𝑆𝑒𝑙𝑒𝑛𝑖𝑎 =
𝑥𝑃

𝑥𝑃𝑆𝑆
=

0.0092

𝑠2+0.3049𝑠+0.0092
      (17) 265 

𝐺𝑑𝑦𝑛(𝑠)18𝑥24𝑐𝑚 𝐿𝑜𝑟𝑎𝑑 =
𝑥𝑃

𝑥𝑃𝑆𝑆
=

0.0138

𝑠2+0.4223𝑠+0.0138
      (18) 

𝐺𝑑𝑦𝑛(𝑠)24𝑥30𝑐𝑚 𝐿𝑜𝑟𝑎𝑑 =
𝑥𝑃

𝑥𝑃𝑆𝑆
=

0.0146

𝑠2+0.3697𝑠+0.0146
     (19) 
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3.2 Controller performance 

Using the Mathworks Simulink response optimization tool, PID controller gains for the Selenia 

Dimensions and Lorad Selenia 18x24 cm and 24x30 cm paddles were established for both 270 

scenarios (open-loop and closed-loop using breast side position feedback) and also for machine 

drive time constants (𝜏) of 0.1s, 0.2s and 0.4s. The PID gains and corresponding step responses 

for the open-loop and closed-loop systems are shown in Tables 2 and 3 and Figures 7 to 10. 

Referring to Tables 2 and 3 and Figures 7 and 8, for each paddle, the open-loop step response 

curves for all machine drive time constants overlay one another as there are no 275 

significant differences between the curves. In other words, the effect of different machine drive 

time constants on the open-loop response is insignificant. However, there is a small difference 

between the two paddle sizes; but in both cases the settling time is very long. 

Referring to Tables 2 and 3 and Figures 9 and 10, closed-loop control of breast side paddle position 

dramatically reduces the settling time from over 90 seconds to less than 4 seconds for a machine 280 

drive time constant of 0.4s. Furthermore, the smaller the machine drive time constant, the shorter 

the rise and settling times; but this effect is not as important as switching to closed-loop control in 

the first place. Although there are small differences between the two paddle sizes, these do not 

alter the observed trends or the conclusions drawn.  

 285 
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Table 2: PID controller gains and step response performance for Selenia Dimensions 18x24 cm 

and 24x30 cm paddles 

 290 

 Machine drive time constant (𝜏) 

Open-loop system Closed-loop system 
24x30 cm 18x24 cm 24x30 cm 18x24 cm 

𝜏1=0.1 𝜏2=0.2 𝜏3=0.4 𝜏4=0.1 𝜏5=0.2 𝜏6=0.4 𝜏1=0.1 𝜏2=0.2 𝜏3=0.4 𝜏4=0.1 𝜏5=0.2 𝜏6=0.4 

𝑘𝑝𝑟𝑜𝑝 - - - - - - 91.96 51.39 25.99 100.77 49.66 27.11 

𝑘𝑖𝑛𝑡𝑒𝑔 - - - - - - 2.75 1.54 0.79 3.28 1.61 0.88 

𝑘𝑑𝑒𝑟𝑖𝑣  - - - - - - 304.89 168.35 85.27 329.63 158.43 86.26 

10-90% rise time 65.68 65.68 65.69 61.03 61.04 61.05 0.67 1.18 2.32 0.53 1.12 2.01 

98% settling time 119.44 119.54 119.74 111.03 111.13 111.33 1.16 1.98 3.89 0.89 1.87 3.27 

 

Table 3: PID controller gains and step response performance for Lorad Selenia 18x24 cm and 

24x30cm paddles  

 Machine drive time constant (𝜏) 

Open-loop system Closed-loop system 
24x30 cm 18x24 cm 24x30 cm 18x24 cm 

𝜏1=0.1 𝜏2=0.2 𝜏3=0.4 𝜏4=0.1 𝜏5=0.2 𝜏6=0.4 𝜏1=0.1 𝜏2=0.2 𝜏3=0.4 𝜏4=0.1 𝜏5=0.2 𝜏6=0.4 

𝑘𝑝𝑟𝑜𝑝 - - - - - - 42.78 33.13 22.26 98.20 51.55 28.41 

𝑘𝑖𝑛𝑡𝑒𝑔 - - - - - - 1.69 1.31 0.90 3.20 1.73 0.95 

𝑘𝑑𝑒𝑟𝑖𝑣  - - - - - - 114.61 89.30 61.30 232.03 123.28 69.04 

10-90% rise time 49.78 49.78 49.78 62.11 62.11 62.10 1.24 1.45 2.00 0.56 1.06 1.87 

98% settling time 90.60 90.70 90.90 112.65 112.75 112.95 2.22 2.55 3.26 0.94 1.74 3.01 

 
 

  

18x24 cm paddle 

24x30 cm paddle 



Compression paddle motion control 

18 
 

Figure 7: The step responses of the Selenia Dimensions open-loop breast compression system for 

machine drive time constants (𝜏) of 0.1s, 0.2s and 0.4s (i.e. without breast side position feedback). The 

upper group of curves (𝜏1- 𝜏3) are for the 24x30 cm  paddle and the lower group of curves (𝜏4- 𝜏6) are 

for the 18x24 cm paddle. Note that the differences between the three responses for each paddle are 

negligible. 

 

 

 
Figure 8: The step responses of the Lorad Selenia open-loop breast compression system for 

machine drive time constants (𝜏) of 0.1s, 0.2s and 0.4s (i.e. without breast side position 

feedback). The upper group of curves (𝜏1- 𝜏3) are for the 24x30 cm  paddle and the lower 

group of curves (𝜏4- 𝜏6) are for the 18x24 cm paddle. Note that the differences between the 

three responses for each paddle are negligible. 

 295 

24x30 cm paddle 

18x24 cm paddle 
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Figure 9: The step responses of the Selenia Dimensions closed-loop breast compression 

system for machine drive time constants (𝜏) of 0.1s, 0.2s and 0.4s (i.e. with breast side position 

feedback). The curves labelled 𝜏1- 𝜏3 are for the 24x30 cm paddle and the curves labelled 𝜏4-

 𝜏6 are for the 18x24 cm paddle. 

 

 

Figure 10: The step responses of the Lorad Selenia closed-loop breast compression system for 

machine drive time constants (𝜏) of 0.1s, 0.2s and 0.4s (i.e. with breast side position feedback). 

The curves labelled 𝜏1- 𝜏3 are for the 24x30 cm paddle and the curves labelled 𝜏4- 𝜏6 are for 

the 18x24 cm paddle.  
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4. Discussion 

4.1 Clinical implications of the results 

Current breast compression systems use open-loop control of breast side paddle position and, 300 

referring to Tables 2 and 3, our simulation results indicate a settling time of almost 2 minutes. This 

means that it is highly likely that there will still be paddle movement during image acquisition, 

which could cause blurring of the mammogram. Conversely, we have shown that closed-loop 

control of breast side paddle position dramatically reduces the settling time to less than 4 seconds 

(even for a slow machine drive where 𝜏 = 0.4𝑠). Therefore, it is possible that paddle motion 305 

induced blur could be significantly reduced by implementing the proposed closed-loop control of 

breast side paddle position. 

4.2 Study limitations 

This preliminary study is based on simulation alone and the results will need to be validated against 

in-vivo measurements taken during mammogram acquisition. However, this would require a 310 

physical prototype of a closed-loop controller using breast side paddle position feedback. The aim 

of the simulation study reported here was to justify the creation of such a prototype for the next 

stage of our work. Furthermore, we assume that the motion of the breast side of the paddle reflects 

breast motion as a whole. Again, physical prototyping and an experimental study would be 

required to confirm this. 315 

A simple machine drive model was used in this study and this was not validated against 

experimental results. However, it can be reasonably assumed that the response of the machine 
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drive will be much faster than that of the paddle and breast (e.g. a machine drive time constant of 

0.4s or less). This means that changes in the machine drive dynamics have only a small effect 

compared to the dramatic reduction in settling time (over 80 seconds) achieved by using closed-320 

loop control and, therefore, such changes do not alter the overall conclusions of this study. We 

have included results for three different machine drive time constants to demonstrate this. 

The breast and paddle model used in this study is a simplified linear model. In reality, the breast 

is likely to have non-linear visco-elastic characteristics. However, the experimental results shown 

in Figures 5 and 6 support our decision to approximate the dynamic response (𝐺𝑑𝑦𝑛) to that of a 325 

linear 2nd order system. The steady-state gain (𝐺𝑔𝑎𝑖𝑛 = 0.9) is less relevant in the context of 

settling time and changing its value would not alter the results as the PID gains would simply 

change accordingly. 

In practice, female breasts vary widely in terms of size, compressed thickness and density (which 

depends on the mix of glandular and fatty tissues) and, hence, the plant (breast) transfer function 330 

will vary from woman to woman. Therefore, the proposed closed-loop controller would have to 

be able to deal with this. It may be possible to tune the PID controller so that it is robust to this 

variability in the plant transfer function. If this is not possible, then adaptive control techniques 

could be investigated. In adaptive control, the controller gains are automatically adjusted to suit 

different system dynamics (breast characteristics in this case). These could be based on a gain 335 

scheduling approach that uses fixed look-up tables that define how the controller gains should vary 

as a function of certain system parameters (breast characteristics). Alternatively, an automatic 

model estimation approach could be adopted using sensor data captured during breast compression. 

5. Conclusions 



Compression paddle motion control 

22 
 

Paddle motion induced blur could be significantly reduced by implementing the proposed closed-340 

loop control of breast side paddle position. With a machine drive time constant of 0.4s, the settling 

time is reduced from over 90 seconds for the open-loop system to less than 4 seconds for the 

closed-loop system. Reducing the machine drive time constant further reduces the settling time of 

the closed-loop system, but this effect is not as important as switching to closed-loop control in 

the first place. Although there are small differences between the two paddle sizes, these do not 345 

alter the observed trends or the conclusions drawn.  
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