
1

Pruning Methods for Rule Induction

Osama M. Othman

Informatics Research Centre
University of Salford, Salford, UK

Submitted in fulfilment of the Requirements of the Degree of
Doctor of Philosophy, 2016

2

Contents

CONTENTS... 2

LIST OF FIGURES .. 4

LIST OF TABLES .. 5

ACKNOWLEDGEMENTS ... 6

LIST OF ABBREVIATIONS .. 7

ABSTRACT ... 8

CHAPTER 1: INTRODUCTION .. 9

1.1 RESEARCH QUESTION ... 11

1.2 MOTIVATION .. 11

1.3 CONTRIBUTION TO KNOWLEDGE .. 12

1.4 STRUCTURE OF THIS THESIS .. 14

2.1 INTRODUCTION ... 17

2.2 DEFINITIONS ... 18

2.3 AN OVERVIEW OF LEARNING ALGORITHMS ... 19

2.3.1 Instance-Based Learning .. 20

2.3.2 Rule-Induction Algorithms .. 22

2.4 AN OVERVIEW OF PRUNING ALGORITHMS ... 28

2.4.1 Instance Pruning ... 28

2.4.2 Rule Induction Pruning ... 34

2.5 SUMMARY ... 41

CHAPTER 3: LITERATURE REVIEW: ANT COLONY OPTIMIZATION 43

3.1 ANT COLONY OPTIMIZATION OVERVIEW .. 43

3.2 APPLICATION OF ACO TO CLASSIFICATION RULE INDUCTION .. 49

3.2.1 Ant-Miner Algorithm ... 49

3.2.2 Feature Subset Selection ... 55

3.3 SUMMARY ... 59

CHAPTER 4: EXPERIMENTAL FRAMEWORK .. 60

4.1 PROBLEM STATEMENT .. 60

4.2 BENCHMARK DATASETS ... 62

4.3 RULE-INDUCTION CHARACTERISTICS ... 63

4.4 ESTIMATING THE PREDICTIVE ACCURACY OF RULES .. 65

4.5 COMPARISON EVALUATION .. 66

4.6 EXPERIMENTAL SETUP .. 67

4.6.1 Cross-validation .. 67

4.6.2 Choosing K for K-NN algorithm ... 68

4.6.3 Number of Ants in Ant Colony Optimization ... 69

3

4.6.4 Experiment Implementation .. 69

4.6.5 Summary .. 70

CHAPTER 5: PRECEDING RULE INDUCTION WITH INSTANCE-REDUCTION

METHODS .. 71

5.1 EXPERIMENTATION ... 71

5.2 ANALYSIS OF RESULTS ... 72

5.3 CONCLUSION .. 81

CHAPTER 6: INSTANCE-REDUCTION METHOD BASED ON ANT COLONY

OPTIMIZATION .. 83

6.1 ACO-IR .. 84

6.1.1 Initialization of Pheromone Values ... 86

6.1.2 Selecting Subset of Instances (Generation of Solutions) ... 87

6.1.3 Heuristic Function... 88

6.1.4 Fitness Function .. 88

6.1.5 Pheromone Updating .. 89

6.1.6 Number of Ants .. 90

6.2 EXPERIMENTAL RESULTS FOR INSTANCE REDUCTION USING THE ACO ALGORITHM 90

6.3 PRUNING CLASSIFICATION RULE USING ACO-IR ... 96

6.4 CONCLUSION .. 98

CHAPTER 7: DISCUSSION AND FUTURE WORKS .. 103

7.1 THESIS SUMMARY ... 103

7.2 MAIN FINDINGS .. 104

7.3 FUTURE WORK ... 106

REFERENCES .. 107

4

List of Figures

Figure 1 Pseudo-code for PRISM algorithm ...27

Figure 2 Pseudo-code for ENN algorithm ..32

Figure 3 Pseudo-code for AllKnn algorithm ..33

Figure 4 Pseudo-code for DROP5 algorithm ..33

Figure 5 A weighted graph for TSP with 5 cities ...46

Figure 6 Pheromone values for the graph in Figure 5 after the first ant finishes a tour 48

Figure 7 Ant – miner algorithm ..50

Figure 8 Feature subset selection based on ACO ...59

Figure 9 the line or curve separates instances from different classes ...61

Figure 10 Framework for instance-reduction method preceding rule induction 61

Figure 11 AllKnnDROP5 algorithm ...62

Figure 12 estimating the predictive quality of learning algorithms using cross-validation 68

Figure 13 comparing the average number of generated rules before and after applying instance-

reduction methods for different rule induction ...77

Figure 14 Framework for ACO-IR ...85

Figure 15 ACO-IR algorithm ..86

Figure 16 Comparing elapsed time for ACO-IR with size of training set. 95

Figure 17 Amount of reduction in number of generated rules using different instance-reduction

methods ...98

5

List of Tables

Table 1 Review some rule induction methods ..29

Table 2 Description of datasets used in empirical study, the columns in order: No. order the

datasets, Name of dataset, No. of examples in dataset, No. of classes in dataset, No. of continuous

attributes, No. of discrete attributes ..63

Table 3 Comparison of rule-induction methods ..65

Table 4 Empirical results comparing generated rules for using AllKnn ENN, DROP5 and

AllKnnDrop5 with CN2 ..74

Table 5 Empirical results comparing generated rules for using AllKnn ENN, DROP5 and

AllKnnDrop5 with RISE ...75

Table 6 Empirical results comparing generated rules for using AllKnn ENN, DROP5 and

AllKnnDrop5 with PRISM ...76

Table 7 Empirical results comparing predictive accuracy using AllKnn ENN, DROP5 and

AllKnnDrop5 pre-pruning with CN2 ..78

Table 8 Empirical results comparing predictive accuracy using AllKnn ENN, DROP5 and

AllKnnDrop5 pre-pruning with RISE ...79

Table 9 Empirical results comparing predictive accuracy using AllKnn ENN, DROP5 and

AllKnnDrop5 pre-pruning with PRISM ...80

Table 10 Results from application of ENN, AllKnn, and AllKnnDrop5 as pre-pruning techniques

with CN2, RISE, and PRISM algorithms ...82

Table 11 Empirical results comparing prediction accuracy for instance based learning using

different instance-reduction method ...92

Table 12 Empirical results comparing percentage of instances retained using different instance-

reduction methods ...93

Table 13 Comparison of elapsed time (in minutes) when using ACO-IR (with 250, 500, 750, 1,000,

and 1,250 ant. ...95

Table 14 Empirical results comparing predictive accuracy using AllKnn, ENN, DROP5,

AllKnnDROP5 and ACO-IR (with 250, 500, 750, 1000 and 1250 ants) Pre-pruning with CN2.

..100

Table 15 Empirical results comparing predictive accuracy using AllKnn, ENN, DROP5,

AllKnnDROP5 and ACO-IR (with 250, 500, 750, 1000 and 1250 ants) pre-pruning with RISE.

..101

Table 16 Empirical results comparing predictive accuracy using AllKnn, ENN, DROP5,

AllKnnDROP5 and ACO-IR (with 250, 500, 750, 1000 and 1250 ants) pre-pruning with PRISM

..102

6

Acknowledgements

I gratefully acknowledge my PhD supervisor, Dr Chris Bryant, for his continuous

encouragement and support during this whole project, from the start of the literature review to the

thesis’ conclusion. His advice and expertise in the field of machine learning were crucial to the

success of this work. His feedback and explanations also helped me understand how to present

ideas and demonstrate the results and analyses.

I would like to thank my local advisor, Dr Khalil el Hindi, for his advice and suggestions

in the early stages of this project. Next, I would like to express my sincere thanks to Robin Boswell,

who implemented the code for CN2 algorithm in 1990, from which Francisco Reinaldo and Marcus

Siqueira created the executable file for Windows XP.

Finally, I would like to dedicate this work to my parents and my wife, who taught me things

that no school can teach.

7

List of abbreviations

AI – Artificial Intelligence.

ACO – Ant Colony Optimization.

IBL – Instance Based Learning.

ANN – Artificial Neural Network.

NN – Nearest Neighbour.

VDM – Value Difference Metric.

FSS – Forward Sequential Selection.

BSS – Backward Sequential Selection.

RISE – Rule Induction from Set of Examples.

IREP – Incremental Reduced Error Pruning.

RIPPER – Repeated Pruning to Produce Error Reduction.

CNN – Condensed Nearest Neighbour.

SNN – Selective Nearest Neighbour.

TRKNN – Template Reduction KNN.

RNN – Reduced Nearest Neighbour Rule.

SSRR – Sort then Select Rule Reduction.

SLIPPER – Simple Learner with Iterative Pruning to Produce Error Reduction.

AS – Ant System.

NP hard - Non-Polynomial.

TSP – Traveling Salesman Problem.

ACO-IR – Instance Reduction method using Ant Colony Optimization.

DROP5 - Decremental Reduction Optimization Procedure.

8

Abstract

Machine learning is a research area within computer science that is mainly concerned with

discovering regularities in data. Rule induction is a powerful technique used in machine learning

wherein the target concept is represented as a set of rules. The attraction of rule induction is that

rules are more transparent and easier to understand compared to other induction methods (e.g.,

regression methods or neural network). Rule induction has been shown to outperform other

learners on many problems. However, it is not suitable to handle exceptions and noisy data in

training sets, which can be solved by pruning.

This thesis is concerned with investigating whether preceding rule induction with instance

reduction techniques can help in reducing the complexity of rule sets by reducing the number of

rules generated without adversely affecting the predictive accuracy.

An empirical study is undertaken to investigate the application of three different rule

classifiers to datasets that were previously reduced with promising instance-reduction methods.

Furthermore, we propose a new instance reduction method based on Ant Colony Optimization

(ACO). We evaluate the effectiveness of this instance reduction method for k nearest neighbour

algorithms in term of predictive accuracy and amount of reduction. Then we compared it with

other instance reduction methods.

We show that pruning classification rules with instance-reduction methods lead to a

statistically significant decrease in the number of generated rules, without adversely affecting

performance. On the other hand, applying instance-reduction methods enhances the predictive

accuracy on some datasets. Moreover, the results provide evidence that: (1) our proposed instance

reduction method based on ACO is competitive with the well-known k-NN algorithm; (2) the

reduced sets computed by our method offers better classification accuracy than those obtained by

the compared algorithms.

9

Chapter 1: Introduction

Machine learning is “a mature and well-recognized research area of computer science,

mainly concerned with the discovery of models, patterns, and other regularities in data” (Fürnkranz

et al., 2012). The field of machine learning has received a great deal of attention recently. The aim

is to develop computational methods that implement various forms of learning. Induction is one

type of learning that induces a concept description from a set of examples. This is especially

important in ill-defined domains that lack algorithmic solution.

In general, machine learning is concerned with the question of how to automatically

improve performance for tasks associated with artificial intelligence (AI) (e.g., recognition,

diagnosis, planning, robot control, prediction, etc.), based on experience, in order to teach

computers to solve problems by merely “showing” them the selected examples.

The importance of machine learning arises from the following (Nilsson, 1996):

1. Some tasks cannot be defined well except by examples, because we can specify the

input/output pairs but we cannot define the relation between input and desired output.

2. The amount of knowledge available for a particular task might be too large for explicit

manual encoding.

3. Certain characteristics of the working environment might not be completely known at

design time; thus, humans may produce machines that do not work as well as desired in the

environment in which they are used.

4. Many environments change over time, so machines that can adapt to a changing

environment would reduce the constant need for redesign.

10

5. Machine learning helps us to understand how animals and humans learn.

The machine learning community has expressed a need to improve the performance of

learning algorithms with respect to predictive accuracy, and how to produce classifiers that can be

understood by humans.

This thesis is concerned with concept descriptions in the form of classification rules that

can be easily understood by humans. However, most rule-based systems still tend to induce quite

a large number of rules, making the description obtained difficult to understand. A variety of

methods have been proposed to prune the produced rule sets. These methods help in reducing the

complexity of generated rule sets, but can still suffer from critical problems due to the prevalence

of large, noisy datasets in real-world applications and covering hard-to-learn instances.

Furthermore, our work concerns the use of pruning to solve one of the most important

problems in the field of machine learning – namely, overfitting, which affects the predictive

accuracy. We say that the produced classifier overfits the data if we can find a different classifier

with more errors over training examples but smaller errors over test data. Overfitting occurs in two

situations: when the training set contains noisy instances and when the training set is not a

representative sample from the instance space (Mitchell, 1997). Both of these situations are

common in real-world applications.

On other hand, our work concerns with applying Ant Colony optimization (ACO) method

in proposing Instance reduction technique. ACO algorithm involve simple ants that cooperate with

11

each other to achieve a unified behaviour for the system, allowing the design of a robust system

able to find a high-quality solution for problems.

1.1 Research Question

The research questions addressed in this thesis are as follows:

Is it possible to reduce the number of generated rules by training rule classifiers on datasets

that have previously been reduced with instance-reduction methods? What is the effect of this on

the predictive accuracy?

This thesis investigates a reduction in the complexity of rule sets by decreasing the number

of generated rules. We investigate new pre-pruning techniques for rule-induction methods by

applying the promising instance-reduction methods, specifically instance-reduction methods that

eliminate border instances, which tend to be noisy, or difficult to learn and untypical. The aim is

to simplify the induced rule set by removing some of the rules without adversely affecting the

predictive performance. It also investigates how Ant Colony Optimization (ACO) can be used as

an instance-reduction method and using it as a pre -processing technique for rule-induction

methods.

1.2 Motivation

El Hindi and Alakhras (2009) showed that filtering out border instances before training an

artificial neural network improves the predictive accuracy and speeds up the training process by

reducing the training epochs. Previous research on pre-pruning has focused on simplifying the

rules during induction. Gamberger et al. (1996) investigated the effect of a new noisy instance

12

detection method before rule induction on a specific dataset (i.e., early diagnosis of rheumatic

diseases) (Gamberger et al., 1996); this method is suitable for datasets with just two classes. In

another case, Grudzinski et al. (2010) concentrated on the EkP system (Grudzinski, 2008) as an

instance-reduction method before rule induction, and illustrated that it is possible to extract simpler

sets of rules from reduced datasets (Grudzinski et al., 2010). However, no study to date has

investigated the effect of preceding rule induction with instance reduction, in terms of predictive

accuracy and complexity of the rule set produced. Here, we investigate whether there is any

advantage to preceding the rule induction with instance-reduction methods in terms of the

complexity of a rule set (roughly represented here by the number of generated rules), taking into

consideration the effect on predictive accuracy.

On the other hand, we propose a new instance-reduction method using ACO (Dorigo et al.,

1996), and how to use it as a pre-pruning technique for rule induction. The main idea of ACO is

to use repeated simulations of artificial ants to generate new solutions to the problem at hand. The

“ants” use information collected at a previous time to direct their search. They deposit

“pheromones” on the ground in order to mark a favourable path that should be followed by other

members of the colony.

1.3 Contribution to Knowledge

The contributions to knowledge made by this thesis are in the field of machine learning,

specifically in the area of rule induction and pruning. As far as the author is aware, this is the first

13

work to investigate whether the number of generated rules can be reduced by preceding rule

induction with instance-reduction methods.

This thesis considers rule-induction methods that learn a set of propositional rules where

the target concept is represented as a set of “if... then...” rules. Each rule consists of an antecedent

(or body of rule) and a consequent. The consequent represents the predicted class; the antecedent

part is composed of a conjunction of conditions, each involving one attribute. We focus on rule-

induction methods that produce an unordered set of rules because we are interested in rule sets

where each rule can be understood independently. Moreover, we consider instance-reduction

methods that eliminate border instances, which tend to be noisy or difficult to learn and untypical.

The results presented in this thesis show that training three rule classifiers on datasets that have

previously been reduced with instance-reduction methods leads to a statistically significant

decrease in the number of generated rules, without adversely affecting the predictive performance.

This study:

• Investigates whether the number of generated rules can be reduced by preceding rule

induction with instance-reduction methods;

• Investigates the effect of preceding rule induction with instance-reduction methods on the

predictive performance, compared to using an unpruned training set;

• Proposes a new instance-reduction method based on ACO; and finally

• Compares the achievement of the proposed method with other different instance-reduction

methods, in terms of predictive accuracy and number of generated rules.

14

The work described in this thesis has not been submitted previously as part of requirements

for another degree and it is the result of my own independent work, unless otherwise stated. Some

of the ideas described in Chapter 5, and most of the work and results presented in Chapter 5, have

been proposed and published in the following:

Othman, O. and Bryant, C. (2013), “Preceding rule induction with instance-reduction

methods”, Perner, Petra (eds.) in Proc. of the 9th International Conference on Machine Learning

and Data Mining in Pattern Recognition, Springer-Verlag, Berlin, pp. 209–218.

Othman, O., and Bryant, C. (2015). “Pruning classification rules with instance reduction

methods”, International Journal of Machine Learning and Computing, Vol. 5 No. 3, pp. 187–191.

1.4 Structure of this Thesis

The remainder of this thesis is structured as follows:

• Chapter 2: Literature Review: Rule induction and Pruning

Provides an introduction and background to pruning and an overview for

learning algorithms related to this thesis – namely, IBL and rule induction method.

Some of the different rule-induction methods are compared and discussed.

Additionally, the different instance-reduction methods are mentioned. Moreover, we

provide an overview of pruning algorithms, including a description of different pruning

methods related to our works

• Chapter 3: Literature Review: Ant Colony Optimization

Provides an introduction and background to Ant Colony Optimization (ACO).

The main focus of this section is the concept of ACO and its applications in the AI

field.

15

• Chapter 4: Experimental Framework

Introduces all materials required to run our experiments; this chapter outlines our

work and clarifies the methodology for comparing different algorithms.

a. Problem statement: Provides a brief description of the problem we are interested

in.

b. Aims: Describes the idea behind our work, and clarifies this using diagrams.

c. Comparison of methodologies.

d. Evaluation measure.

e. Rule-induction characteristics: Specifies the characteristics of the rule-

induction methods we are interested in during our experiments.

f. Experimental setup: Outlines the datasets and programs used in the

experiments.

g. Experiment implementation.

• Chapter 5: Preceding Rule Induction by Instance-Reduction Methods

Explains the experiments and algorithms used for instance reduction, and outlines

the different rule inductions we are testing.

• Chapter 6: Instance-Reduction Method Based on ACO

Explains the motivation behind the proposed method based on ACO.

a. Problem representation.

b. Methodology: Present our algorithm for instance reduction based on ACO.

c. Comparison of results (with IBL and other instance-reduction methods) in

terms of:

1- Predictive accuracy.

2- Reductions in number of instances.

16

d. Comparison of results (with different instance-reduction methods, such as pre-

pruning for rule induction) in terms of:

1- Predictive accuracy.

2- Reductions in number of rules produced.

• Chapter 7: Discussion and Future Works

Discusses the conclusions and main findings drawn from the comparison and

evaluation and whether the research hypothesis has been proven, and suggests future

development, which may be necessary.

• References.

17

Chapter 2: Literature Review: Rule Induction and

Pruning

This chapter starts by providing an overview of the field of machine learning, focusing

mainly on its subfields relevant to this work. This is followed by an introduction to rule induction

and instance-based learning methods. The concepts of pruning are also explained.

2.1 Introduction

Information accumulated over thousands of years has exceeded the capacity of human

brains. Hence, the concern in the science world has always been how to derive useful information

from such huge amounts of data. Machine learning has the central purpose of learning from data.

Learning refers to any change in a system that causes its performance to improve (Simon, 1983).

The aim of machine learning is to develop computational methods that implement various

forms of learning. Most research in machine learning has focused on conceptual learning or

classification learning. Induction is a type of learning that induces a concept description from a set

of examples. This is especially important in ill-defined domains that lack algorithmic solution.

The study of inductive learning is mainly motivated by the desire to automate the process

of knowledge acquisition during the construction of expert systems.

18

2.2 Definitions

To learn a concept is to infer its general definition from a set of examples (instances)

(Domingos, 1997). Learning can be considered a method to generate an approximation to the

function, f(x), where the domain is defined by a set of examples, while the range of f(x) is the set

of concepts or classes in which the examples are classified.

Inductive methods can be divided into two categories. The first is called supervised concept

learning, or classification learning, in which each example appears with its corresponding

classification. The other is called unsupervised learning, or clustering, which involves learning

from a set of unclassified examples where the goal is to form a new concept description that has

certain desired properties (Domingos, 1997).

Important terms must be defined to make the remainder of this review understandable.

Instance space refers to the set of all possible examples. Each example can be described in a variety

of forms; however, the most common description is as a vector of attributes. An attribute is a

variable that can be symbolic (nominal) or continuous. Symbolic attributes can take a finite number

of values, which have no ordered relationship. For example, the attribute colour with values {red,

white, and blue} is a symbolic attribute. A continuous attribute (e.g., length, weight) is an ordered

set of values, such as age and temperature, and it occupies any value over a real number. Each

example may contain a combination of the two kinds of attributes, in addition to a categorical

attribute (class attribute) that may either be symbolic or continuous.

19

A training set is a set of examples used to build a classifier – i.e., the function that maps

previously unseen examples into predicted classes. These unseen examples are called test

examples. They are used to test the accuracy of a generated classifier.

In supervised learning, the concept to be learned is called the target. The examples in the

training set that have the same class as the concept are called positive examples and others are

called negative examples with respect to that class.

2.3 An overview of learning algorithms

Concept learning can be viewed as having three components: representation, search, and

evaluation. Representation is the means of representing the knowledge (e.g., decision trees, sets of

rules, instances, graphical models, neural networks, etc.). The search procedure is the process by

which the learning algorithm finds the concept description in a space of possible descriptions

defined by the representation language. The evaluation component takes a candidate concept

description and returns a measure of its quality (Domingos, 1997).

There is a great variety of learning algorithms in terms of knowledge representation. The

general definition for the concepts can be represented in different forms, which can be a set of

rules (e.g., CN2 [Clark & Niblett, 1989] and AQ algorithms), decision trees (e.g., C4.5 [Quinlan,

1993] and ID3 [Quinlan, 1986]), artificial neural networks (McClelland & Rumelhart, 1986), or

the same representation as the training examples (e.g., IBL).

In this section, we will review two well-known learning algorithms that are related to our

work in this thesis – namely, IBL and rule-induction methods. In Section 2.3.1 we will discuss the

20

framework for the instance-reduction method, and in Section 2.3.2 we will outline the different

kinds of rule-induction methods.

2.3.1 Instance-Based Learning

IBL (Aha et al., 1991) is based on the idea of letting the examples themselves form the

implicit representation of the target concept. The simplest case is the nearest neighbour (NN) (or

k-nearest neighbour [k-NN]) algorithm, which simply stores all the examples in a training set. NN

classifies a new instance by predicting that it has the same class as its nearest stored instance (or

the majority class of its k-nearest stored instances), according to some similarity metric. The best

value of k for a given application is difficult to predict, and is typically determined via cross-

validation.

The performance of IBL depends critically on the similarity metric used. For numeric

attributes (e.g., age, price, and weight), Manhattan distance is a natural candidate; thus, the

distances between the two values are, simply, the absolute difference between them. However,

different attributes may not have the same range, so two distant values may appear to be near to

each other because of a small value range. The obvious solution is to normalize the attribute values

as follows:

 Normalize (xi) =
𝑥𝑖− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
 (1)

Where

xi: is the ith value of the attribute x,

xmax:is the maximum value of the attribute x,

xmin:is the minimum value of the attribute x.

21

If the attributes are nominal (e.g., colour, shape), we can use the value difference metric

(Stanfill & Waltz, 1986). Using this metric, two values are considered to be similar if they result

in similar classifications. It finds the distance between two values for a specific attribute via:

(𝑥, 𝑦) = 𝑉𝐷𝑀(𝑥, 𝑦) = ∑ |(𝑝(𝑐ℎ|𝑥) − 𝑝(𝑐ℎ|𝑦))|𝑞𝐶

ℎ=1
= ∑ | (

𝑁𝑎,𝑥,𝑐

𝑁𝑎,𝑥
−

𝑁𝑎,𝑦,𝑐

𝑁𝑎,𝑦
) |𝑞

𝐶

ℎ=1

 (2)

Where

C is the number of classes,

Na,x is the number of instances in the training set, T, that has value x for attribute a,

Na,x,c is the number of instances in the training set, T, that has value x for attribute a and class C,

q is a constant, and

 p(ch |x) is the conditional probability that the output class is (c), given that attribute (a) has the

value x.

If there are n attributes, E1 = (e11, e12... e1n) is the first instance and E2 = (e21, e22... e2n) is

the second instance; then, the distance between the two instances is measured using:

 ∆ (E1 ,E2)= √∑  2(𝑒1𝑖 , 𝑒2𝑖)𝑛
𝑖=1 (3)

NN is conceptually simple and “learns” very quickly because it needs only to read the

training set without much further processing. However, its output (concept description) is difficult

for humans to understand, takes a long execution time (during classification) and is sensitive to

irrelevant attributes because these attributes will contribute to computing the distance between two

examples, and may “swamp” out the relevant component. It is also sensitive to noisy instances,

because when such instances are stored they create a region around themselves, which consists of

22

all the examples that consider them as one of the k-NN, so we have to choose the value for the k

parameter carefully when using the NN algorithm (in Section 4.6.2, we will explain our k value

selection). Finally, the NN algorithm may have large memory requirements (after training).

One solution to NN’s sensitivity to irrelevant attributes is to remove it before instances are

stored. Several methods have been proposed whereby this can be achieved, of which the most

widely used are forward sequential selection and backward sequential selection (Domingos, 1997;

AlBalas, 2000). On the other hand, there are several methods that focus on reducing the size of the

stored set of instances while trying to maintain, or even improve, predictive accuracy.

2.3.2 Rule-Induction Algorithms

Rule induction (Clark & Niblett, 1989; Domingos, 1997) is another paradigm for learning

algorithms. Throughout this thesis, we will consider rule-induction methods that learn a set of

propositional rules where the target concept is represented as a set of “if... then...” rules. Each rule

consists of an antecedent (or body of rule) and a consequent. The consequent represents the

predicted class; the antecedent part is composed of a conjunction of conditions, each involving one

attribute. If the attribute is nominal, this condition is usually an equality test. Some algorithms use

the negation and the disjunction of values. If the attribute is numeric, the condition is an inclusion

test in a one-sided interval. A rule is said to cover an example, or the example is said to satisfy it,

if all conditions in the body of the rule are true for the example.

There are many rule-induction algorithms. Among them are AQ (Michalski et al., 1986;

Cervone et al., 2001; Michalski & Kaufman, 2001), CN2 (Clark & Niblett, 1989; Clark & Boswell,

1991) and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) (Cohen, 1995).

23

All these algorithms employ the same general method that was used for the first time in the AQ

algorithm. AQ21 is the most recent addition to the AQ family (Wojtusiak et al., 2006). The AQ

family and some of the algorithms mentioned above have been improved from time to time. They

employ a set of covering, or “separate and conquer”, algorithms, because they form the class

definition by building a rule that covers many positive examples, and then separate out the covered

positive examples and start again. However, since they extract rules and then remove the covered

examples from a training set of examples, fragmentation has been one of the problems of such

algorithms caused by the existence of some rules covering a small number of instances.

In the search for the best rule covering the set of positive examples, we add an antecedent

that maximizes certain heuristics. The heuristic is usually a function of the number of positive

examples covered by the rule, and the number of negative examples covered by the same rule. We

can use the beam search strategy to search for the best rule (Clark & Niblett, 1989), and maintain

a list of b best rule antecedents found so far. In each step, specialization of those antecedents with

each possible condition is attempted, and the best b antecedents are selected to continue the search

until no better antecedents can be found with respect to the heuristic used. Finally, the best rule

antecedent is selected and all examples covered by the selected rule are removed from the training

set.

The choice of evaluation heuristic H for the rule is most important to the performance of

the “separate and conquer” algorithm. AQ algorithms use “apparent accuracy”:

H (e+, e-) =
𝑒+

𝑒++ 𝑒−
 (4)

24

Where

e+ is the number of positive examples covered by the rule .

e- is the number of negative examples covered by the rule.

The CN2 system (Clark & Niblett, 1989) originally used the entropy of the rule:

Entropy = -∑ (𝑃𝑖 𝑙𝑜𝑔2(𝑃𝑖))
𝑛

𝑖=1
 (5)

Where

n is the number of classes represented in the training set.

Pi is the probability distribution of covered examples that have predicted class = classi

among all covered examples.

The lower the entropy, the better the rule. This function prefers rules that cover a large

number of examples of a single class and few examples of other classes, and thus score well on

the training data when used to predict the majority class covered.

Both the entropy and apparent accuracy favour overly specific rules (those that cover a

single positive example with no negative examples), and they achieve their maximum value with

a rule covering a single example. This can be overcome by using Laplace accuracy (Clark &

Boswell, 1991):

H (e+, e-) =
1+𝑒+

𝐶+ 𝑒++ 𝑒−
 (6)

Where

C is the number of classes.

25

When we classify a new unseen example, it is matched against the set of rules. If there is

only one rule covering the example, the class of the new example will be the rule’s class. If there

is no rule, then we can use a default rule (which usually predicts the class that is the most frequent

in the training set). However, if there are many rules covering the example, we have two solutions.

The first is to order the rules in a decision list (according to the Laplace or apparent accuracy), and

select the first rule that covers the example (Rivest, 1987). The second solution is to let each rule

vote and then select the class with the highest number of votes (Clark & Boswell, 1991).

The RULE Extraction System (RULES) is a family of simple inductive learning algorithms

inspired by ideas from both AQ and CN2. The RULES family is different from the other algorithms

in that it does not induce rules on a class-per-class basis, but instead considers the class of the

selected seed example as the target class (Shehzad, 2009). It then attempts to induce rules that

cover as many examples of the target class as possible using the rule evaluation function. At

present, the RULES family has extended to Rules-7 (Pham, 2012). Among members of the RULES

family, Rules-5 is a noteworthy, simple, but efficient algorithm. RULES-5 also employs a more

efficient search mechanism, as well as a new post-pruning technique (Pham & Bigot, 2003) in

order to handle noisy data.

Other rule-induction methods unify the rule induction with IBL. Rule Induction from Set

of Examples (RISE) (Domingos, 1994) is one approach to induction that attempts to tackle some

disadvantages of IBL and rule induction. The basic characteristic of RISE is that rules and

instances are treated uniformly; thus, an instance is simply a rule, and the rule’s extension becomes

a set of instances most similar to that rule.

26

There are rule-induction methods that investigate the application of pruning methods

during rule generations. Fürnkranz and Widmer (1994) proposed a novel learning algorithm called

Incremental Reduced Error Pruning (IREP). IREP prunes each individual rule right after it has

been generated: after learning a rule from the growing set, a condition is deleted in a greedy fashion

until any further deletion would decrease the accuracy of this rule in the pruning set. The resulting

rule is added to the concept description and all positive and negative instances covered by the

generated rule are removed from the training “growing and pruning set”. Cohen (1995) also

introduced some improvements to IREP that enhance its performance. Three modifications are

made to the IREP algorithm:

1. An alternative metric for assessing the value of the rules in the pruning phase of IREP,

2. A new heuristic for determining when to stop adding rules to a rule set, and

3. A post-processing of the generated rules that optimize a rule set in an attempt to more

closely approximate IREP.

This algorithm that produces a new optimized rule set is called RIPPER (Cohen, 1995).

 Other rule-induction methods try to solve drawbacks via other induction methods. PRISM

(Cendrowska, 1987) is a rule-induction method based on ID3 in selecting the attributes for the

induced rule set. This algorithm is simple and easy to understand. Cendrowska’s original PRISM

algorithm selects one class as the target class (TC) at the beginning, and induces all rules for that

class. It then selects the next class as TC and resets the whole training data to its original size, and

induces all rules for the next TC. This is repeated until all classes have been selected as TC. Figure

27

1 shows the pseudo code for the PRISM algorithm, where p (ch | ax) is the conditional probability

that the output class is (ch), given that attribute (a) has the value ax.

 Figure 1. Pseudo-code for PRISM algorithm.

PART (Eibe & Ian, 1998) induces a decision list. This algorithm can be viewed as a

combination of C4.5 and RIPPER, and attempts to avoid their respective problems. Unlike both

C4.5 and RIPPER, it does not need to perform global optimization to produce accurate rule sets.

It adopts the separate and conquer strategy in that it builds a rule, removes the instances it covers,

and continues creating rules recursively for the remaining instances until none are left. It differs

from the standard approach in the way in which each rule is created. In essence, to make a single

rule, a pruned decision tree is built for the current set of instances; the leaf with the largest coverage

is made into a rule, and the tree is discarded.

ACO has been applied for rule induction in the Ant-Miner algorithm (Parepinelli et al.,

2002). The Ant-Miner algorithm was developed by simulating the foraging of real ants, so it is a

good idea to think about the problem as a search for the best path through a graph, where the nodes

represent the partial solution and the edges represent the translation between these partial solutions.

The edges are associated with measurements that qualify the selected partial solutions. When

28

applying the Ant-Miner algorithm to classification rule induction, the basic element of a solution

is an attribute term. An attribute term, termij is in the form of Ai = Vij, where Ai is the ith attribute

and Vij is the jth value of domain A. Therefore, we can consider the classification rule induction

problem as a graph, with nodes representing attribute terms and edges modelling the quality of the

attribute terms. A complete path is a constructed rule. The quality of the path is assessed by a

global fitness function, while the quality of the node is evaluated by a heuristic value and a

pheromone level value associated with the node.

Table 1 presents an enumeration of rule induction methods reviewed in this section. The

name, reference and key features are provided for each rule induction method.

2.4 An overview of pruning algorithms

This section will overview different kinds of pruning methods related to our work. As our

concern is to precede rule induction with instance-reduction methods, we will introduce different

methods for instance pruning that aim to obtain representative training sets with lower sizes

compared to the original one, and with similar or even higher predictive accuracy for new incoming

instances. Moreover, we will overview different ways of pruning rule-induction methods and the

motivation for carrying out that pruning.

2.4.1 Instance Pruning

Instance pruning aims to prune the original training set to get a smaller subset of it.

Searching for a subset, S, of instances to keep, instead of the original training set, T, can

proceed in a variety of directions, including incremental, decremental, and batch (Wilson &

Martinez, 1997).

29

 Table 1: Review some of rule induction methods.

Incremental methods begin with an empty subset, S, and add instances (from training set

T) to S if it fulfils some criteria. Thus, if new instances are made available later (after training

is completed), they can continue to be added to S according to the same criteria. Incremental

methods are sensitive to the order of presentation of the instances. Condensed nearest

neighbour (CNN) (Hart, 1968) and selective nearest neighbour (Ritter et al., 1975) are

examples of incremental methods. On the other hand, decremental methods begin with all the

Rule Induction

method
Reference Key feature(s)

PRISM Endrowska, 1987 Based on ID3 in selecting the attributes for the

induced rule set.

CN2 Clark & Niblett, 1991 Incorporates ideas from both Michalski's (1986)

AQ and Quinlan's (1983) ID3 algorithm.

IREP Fürnkranz, 1994 Integrates reduced error pruning with a separate

and conquer rule learning algorithm.

RISE Domingos, 1994 Proceeds by gradually generalizing rules,

starting with one rule per example.

RIPPER Cohen, 1995 Optimized version of IREP. This algorithm is

especially more efficient on large noisy datasets.

It builds a set of rules that identify the classes

while minimizing the amount of error.

PART Eibe & Ian, 1998 Combination of C4.5 and RIPPER. This

algorithm extracts rules faster than decision trees

algorithm.

Ant-miner Parepinelli, Lopez & Freitas, 2002 An Ant Colony Optimization algorithm for rule

discovery in database.

RULEs-5 Pham & Bigot, 2003 The first RULES version that handles continuous

attributes without discretization.

AQ21 Wojtusiak et al., 2006 It can discover different types of regularities in

data, and can generate an optimized collection of

alternative models from the same data.

RULEs-7 Pham, 2012 An extension of RULES-6

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

30

instances in the training set (i.e., T = S), and search for instances to remove; they are often

computationally more expensive than incremental methods. Reduced nearest neighbour (RNN)

(Gates, 1972) and the decremental reduction optimization procedure (DROP 1-5) (Wilson, &

Martinez, 2000) represent examples of decremental methods. Finally, batch methods, like

decremental methods, begin with all instances in a training set; however, before they remove

any, they find all instances that meet the removal criteria and then remove them all at once

(Tomek, 1976). Batch methods also suffer from increased time complexity compared with

incremental methods. In our experiments, we will use decremental and batch methods because,

in comparison to incremental methods, they have been shown to give rise to higher predictive

accuracies (Wilson & Martinez, 2000).

Instance-reduction methods can be categorized as retaining either internal or border

instances:

• Border instances (condensation approach): The intuition for retaining border instances

is that internal instances do not affect the decision boundaries, and can thus be removed

with relatively little effect on classification. Several well-known methods belong to the

condensation approach and the algorithms that offer the best performance, including:

- CNN (Hart, 1968): Hart was the first to propose a method for reducing the size of

stored data for the NN decision rule.

- RNN (Gates, 1972) is an extension of the CNN rule. The RNN algorithm uses the CNN

resulting set and removes every instance for which deletion does not cause

misclassification of another instance in the initial set.

- The Fast Condensed Nearest Neighbour rule (Angiulli, 2005) is a scalable algorithm

on large multidimensional datasets.

31

- TRKNN (Fayed & Atiya, 2009): This reduces the computational requirement to

classify prototypes using the k-NN when the sets of data are large. The aim of this

approach is to eliminate instances that cause unnecessary calculations and do not

contribute to improving the classification.

- The Class Boundary Preserving Algorithm (Nikolaidis et al., 2011) is a multistep

method for pruning the training set.

- DROP 1-5 (Wilson & Martinez, 2000) is a series of six algorithms for set reduction

based on the k-NN algorithm, where each algorithm improves the previous one.

• Internal instances (edition approach): The intuition for retaining internal instances is

that removing border instances should remove noisy instances. The effect obtained is

related to the improvement of generalization accuracy in test data, although the reduction

rate obtained is lower than the rate achieved by condensation approaches, since there are

fewer border instances as compared to internal instances (Gadodiya & Chandak, 2013).

Few edition methods have been proposed in comparison to condensation methods. The

main reason for this is that the first edition method, edited nearest neighbour (ENN),

obtains good results in conjunction with k-NN (Gadodiya & Chandak, 2013) (Grochowski

& Jankowski, 2004). An extension of ENN is the RENN (Repeated ENN) method which

repeatedly applies ENN until all instances in training set have the same class that the

majority of their k Nearest Neighbours. Another variant of ENN is the AllKnn method

(Tomek 1976). In Vázquez et al. (2005) a method for instance selection is proposed, which

consists in applying ENN but using the probability of belonging to a class instead of the k-

NN rule.

32

In our experiments, we focus on methods that obtain a representative training set with a

lower size compared to original one, and with similar or even higher classification accuracy for

new data. Thus, we choose three reduction algorithms that perform well in reducing the number

of instances (Wilson & Martinez, 1997), and provide good results before applying neural network

learning (El Hindi & Al Akhras, 2009) (Sun & Chan, 2014). These algorithms eliminate border

instances, which tend to be noisy, or difficult to learn and untypical. Each algorithm is discussed

in further detail below.

2.4.1.1 The edited nearest neighbour algorithm

ENN (Wilson, 1972) is a decremental algorithm that removes an instance if it does not

agree with the majority of its k nearest neighbours (with k = 3). This removes noisy instances, as

well as near border instances, and retains all internal instances. Figure 2 shows the pseudo code

for the ENN algorithm.

2.4.1.2 AllKnn

AllKnn (Wilson & Martinez, 1997) is a batch algorithm that makes k iterations. At the ith

iteration, it flags as bad any instance that is not classified correctly by its i nearest neighbours.

After completing all iterations, the algorithm removes all instances flagged as bad. Figure 3 shows

the pseudo code for AllKnn algorithm.

 Figure 2. Pseudo-code for ENN algorithm.

33

 Figure 3. Pseudo-code for AllKnn algorithm.

 Figure 4. Pseudo-code for DROP5 algorithm.

2.4.1.3 DROP5

DROP5 (Wilson & Martinez, 2000) is a decremental algorithm that removes an instance,

“S”, if at least as many of its associates (i.e., instances that have “S” on their NN list) are classified

correctly without it. This algorithm removes noisy instances, because a noisy instance, “S”, usually

has associates that are mostly of a different class, and such associates will be at least as likely to

be classified correctly without “S”.

 First, the algorithm considers removing the instances that are closest to their nearest enemy

(i.e., instance from a different class), and proceeds outward. By removing points near the decision

boundary first, the decision boundary is smoothed. Figure 4 shows the pseudo code for the DROP5

algorithm.

34

Another method related to the associate set was proposed by Brighton and Mellish (2002),

this method is the Iterative Case Filtering algorithm (ICF), based on the Reachable(S) and

Coverage(S) sets which are the neighbour and associate sets respectively. ICF discards instance(S)

If |Reachable(S)| > | Coverage(S)| which means that some instances in training set (T) can classify

instances similar to (S) without considering it in the training set; as initial step, ICF applies ENN.

C-Pruner (Zhao et al, 2003) is another method based on the Reachable (S) and Coverage (S). In

this method, the Coverage (S) concept only considers the associates with the same class as instance

(S) in order to discard instances in the same class. Before discarding an element, this technique

determines whether an instance is noisy, superfluous or critical. In this context, an instance is

critical when its deletion affects the classification of other instances; in particular, this method

discards either noisy or superfluous (but non-critical) instances. When |Coverage (S)| < |Reachable

(S)| then “S” is considered as noisy; “S” is superfluous when it is correctly classified by Reachable

(S) (Olvera-Lopez et al., 2010).

2.4.2 Rule Induction Pruning

The main weakness with rule learning systems is that they often scale relatively poorly

with the sample size of a training set, particularly in the context of noisy data (Cohen, 1993). This

is a critical problem due to the prevalence of large, noisy datasets in real-world applications. A

variety of methods has been proposed to prune the produced rule sets, and can be categorized as

follows:

• Pre-pruning These algorithms either use heuristics (i.e., stopping criteria) to relax the

constraint that completely satisfies the training instances, such as CN2 (Clark & Niblett,

1989) and FOSSIL (Fürnkranz, 1994), or reduce the number of training examples before

35

generating a classifier; the hope is that using fewer training examples will produce fewer

rules.

• Post-pruning This takes a rule set that is consistent with the training instances and removes

rules and conditions that do not reflect true regularities of domain, such as the Reduced

Error Pruning (REP) algorithm (Brunk & Pazzani, 1991) and the GROW algorithm

(Cohen, 1993).

• Integration pre-pruning and post-pruning. Instead of learning the entire rule set and

then conducting the pruning, this category prunes a single rule right after the rules have

been learned, akin to IREP (Fürnkranz & Widmer, 1994), RIPPER (Cohen, 1995), and

Simple Learner with Iterative Pruning to Produce Error Reduction (SLIPPER) (Cohen &

Singer, 1999).

2.4.2.1 Pre-pruning

In a rule-induction process, the more conditions we have in the rule, the fewer instances it

can cover. Thus, some algorithms employ stopping criteria for noise handling; in addition, to avoid

overfitting, there should be a trade-off between covering and accuracy. The pre-pruning for rule

inductions can be conducted in two ways:

1. Condition reductions: This can be achieved by pruning each rule independently in the

course of learning by using a heuristic to determine when to stop adding conditions to the

rule.

2. Rule reductions: These aim to reduce the number of rules produced by either decreasing

the instances used to build the rules, or removing the most specific produced rules (which

should be those that cover the noisy instances).

36

2.4.2.2 Post-pruning

 While pre-pruning algorithms try to avoid overfitting during rule generation (or before

applying the rule-induction method), the post-pruning approach initially ignores the problem of

overfitting and learns a complete and consistent rule set. It then estimates the quality of this rule

set using some quality measurement (usually apparent or Laplace accuracy). If the accuracy can

be improved by simplifying the rule set, then this will be repeatedly done until any further

simplification would harm the quality of the rule set.

The post-pruning can be done either by checking the effect of removing the condition from

each rule and investigating the effect of this removal, or by considering the effect of removing the

whole rule from the rule set and checking its effect on the accuracy.

REP is the most common method used for post-pruning. Pagallo and Haussler (1990),

Weiss and Indurkhya (1991), and Brunk and Pazzani (1991) employed straightforward adoption

of REP to separate and conquer rule-learning frameworks. Initially, the training set is split into

two subsets, a “growing set” and a “pruning set”. Then, in the first phase, REP learns the concept

that covers all positive and no negative examples from the growing set (no attention is paid to the

noise in the data). The resulting rule set is then repeatedly simplified by deleting conditions and

rules from the set until any further deletion would result in a decrease of predictive accuracy as

measured on the pruning set. A variant of REP can employ a variety simplifications to the rule set,

such as deleting each condition of a rule, deleting final sequences of conditions1 (Cohen, 1993), or

finding the best replacement condition (Weiss & Indurkhya, 1991).

1 For example, the “if w and x and y and z then class = a” might be simplified to either “if w and x and y then

class = a” or “if w and x then class = a” or “if w then class = a”.

37

REP for rules usually does improve generalization performance on noisy data (Pagallo &

Haussler, 1990), and its search strategy can be regarded as bottom-up as it performs pruning on

the resulting rule set. However, it has several shortcomings (Fürnkranz & Widmer, 1994):

• Complexity: REP’s time complexity has been shown to be O (n4) for noisy data, where n

is the number of examples (Cohen, 1993).

• Pruning of conditions in a “separate and conquer” rule will affect all subsequent rules. As

pruning conditions from a rule can only generalize the concept – i.e., increase the set of

covered examples – a post-pruning algorithm has no means for adjusting the subsequent

rules to this new situation. Thus, the learner may be deceived, because the set of examples

that remain uncovered by the unpruned rules at the beginning of learning may yield a

different evaluation of candidate conditions for subsequent rules compared to the set of

examples that remain uncovered by the pruned versions of these rules.

• Generated rules are simplified so that the predictive accuracy on the pruning set will be

maximized, but in noisy domains REP will have to do a lot of pruning, and therefore has

ample opportunity to get caught in the local maximum.

GROW is introduced to solve some of the drawbacks of the REP algorithm, and replace

the bottom-up search of REP with a top-down approach. GROW initially finds a rule set (R0) by

overfitting the growing set, then each rule, ri ∈ (R0), is taken, and repeatedly simplified in such a

way that the error on the growing set goes up the least; the result will be a series of generalizations,

ri,1, …..,ri,k, of original the rule, ri. All the generalizations in this series are then added to the rule

38

set (R0). After the initial rule set (R0) has been expanded, we start with an empty rule set and add

rule ri,j from (R0), which improves the predictive accuracy the most on the pruning set. Ties are

broken by choosing the smaller rule. It has been experimentally confirmed that this results in

significant gain efficiency on learning time, along with a slight gain in accuracy (Cohen, 1993).

Another methodology for post-pruning is to use Laplace accuracy as a measurement to

decide either to remove or retain the produced rules. Sort then Select Rule Reduction (SSRR)

(Othman & El Hindi, 2004) concentrates on retaining rules with the highest Laplace accuracy. For

each class, it chooses a rule from the produced rule set with the highest Laplace accuracy. Then, it

incrementally augments the pruned rule set with all necessary rules in order to make the same

classification derived from the original produced rules on the training set. The rules are tried in

order, with the one with best Laplace accuracy first. It has been shown (Othman & El Hindi, 2004)

that SSRR slightly improves the accuracy in some datasets while achieving good reduction in

produced rules.

Pham et al. (2004) introduced another method for reducing the generated rules by merging

them in order to handle expected noise. The main objective of this merging is to create new, more

general rules, with a consistency level equal to or higher than a specified value Th (Thresh hold).

Th is a user-defined parameter equal to (1 – expected noise level [NL]). This method works by

taking one rule at a time from the generated rules (RSet), called the rule to merge (R2M). This rule

is merged with each of the other rules for the same class within the RSet. If the consistency

measurement of the best resulting rule from these mergers is equal to or higher than Th, then it is

added to the RSet. Otherwise, if the consistency of the best rule is lower than Th, the algorithm

39

stores R2M in a new rule set (NEW_Rset) and removes it from the RSet. If there are still rules

within the RSet that are not processed, the algorithm takes one of them as R2M and repeats the

procedure. However, within this approach the NL is specified by the user.

2.4.2.3 Integration pre-pruning and post-pruning

 While post-pruning first grows a complete concept description and prunes it thereafter,

Fürnkranz and Widmer (1994) proposed a novel learning algorithm called IREP. IREP prunes each

individual rule right after it has been generated: after learning a rule from the growing set, the

condition is deleted in a greedy fashion until any further deletion would decrease the accuracy of

this rule in the pruning set. The resulting rule is added to the concept description and all positive

and negative instances covered by the generated rule are removed from the training set “growing

and pruning set”. The remaining training set is then split again to form a new growing and pruning

set. When the accuracy of the pruned rule is below predictive accuracy of the empty rule (rule with

body fail), the rule will not be added to the concept description and IREP returns the learned rule

set. The accuracy of an empty rule is N/(N + P), and the accuracy of the pruned rule is (p + (N -

n)) / (P + N), where p (n) is the number of positive (negative) examples covered by the rule from

a total of P (N) positive (negative) examples in the current pruning set.

 IREP solves some of the drawbacks of the REP method, such as the efficiency on learning

time and the effect of pruning on the subsequent rule by completing the pruning on each rule and

removing covered examples before the subsequent rules are learned. In addition, IREP uses a top-

down, instead of a bottom-up, search. Nevertheless, IREP is flawed since whenever the pruned

rule’s accuracy is not above the accuracy of the empty rule, no more rules will be learned. In

addition, IREP is prone to overgeneralization if the accuracy is not estimated correctly.

40

Experimentally, it seems that GROW outperforms REP, while IREP is better than REP and GROW

whenever a fairly general concept has to be found, whereas REP is appropriate when the

underlying concept is specific (Fürnkranz & Widmer, 1994).

Cohen (Cohen, 1995) introduced a modification to IREP that allows it to handle multiple

classes by placing them in increasing order of prevalence. IREP is then used to find a rule set that

separates certain class Ci from the remaining classes. Next, all instances covered by a learned

rule set are removed from the dataset. Cohen also introduced some improvements to IREP that

enhance its performance. This included three modifications to the IREP algorithm:

1. An alternative metric for assessing the value of the rules in the pruning phase of IREP;

2. A new heuristic for determining when to stop adding rules to a rule set; and

3. A post-process to generate the rules that optimize a rule set in an attempt to more closely

approximate IREP.

This is the RIPPER algorithm. RIPPER significantly improves the generalization

performance over IREP (Cohen, 1995).

Cohen and Singer (1999) introduced another algorithm similar to the IREP and RIPPER

algorithms, called SLIPPER. However, SLIPPER does not remove examples covered by a new

rule; instead, it uses boosting to reduce the weight of these examples.

Using the SLIPPER algorithm, a single rule is generated using one subset of the data (the

growing set), and the rules are then pruned using the other subset (the pruning set). The ad hoc

41

metrics used to guide the growing and pruning of rules are replaced with metrics based on formal

analysis of boosting algorithms, specifically Freund and Schapire’s (1997) AdaBoot, which

employs confidence-rated predictions (Schapire & Singer, 1998).

Other efforts have been applied to generate faster learning. IREP++ (Dain et al., 2004) is

one such initiative. It starts by using RIPPER and attempts to develop an algorithm to achieve

comparable accuracy by functioning more quickly. The speed improvements are achieved by

making several changes to the RIPPER algorithm, including better pruning metrics, a novel data

structure, and more efficient stopping criteria. IREP++ (Dain et al., 2004) has been shown to be

slightly more accurate than RIPPER, and functioning faster. In addition, IREP++ learns fewer

generated rules.

In chapter 5, we compare different rule induction methods based on some important

characteristics and choose the methods to be used in our experiments accordingly. Furthermore,

we think that the technique of preceding rule induction with instance reduction can achieve a good

result with rule induction algorithms which do not use pruning.

2.5 Summary

Rule induction is an attractive learning method, as rules become much more transparent

and easier to interpret compared to other induction methods. There are different kinds of rule-

induction method algorithms that vary in terms of the type and direction of search. Nevertheless,

these methods can suffer when using noisy datasets. Furthermore, most rule-based systems tend to

induce quite a large number of rules, making the solution difficult to understand.

42

Pruning is a common framework to avoid the problem of overfitting noisy data. Rule-

induction methods can be entail different types of pruning, including pre-pruning (e.g., CN2; Clark

& Niblett, 1989) and FOSSIL (Fürnkranz, 1994), post-pruning (e.g., REP algorithm; Brunk &

Pazzani, 1991), and integration pre-pruning and post-pruning (e.g., RIPPER; Cohen, 1995). On

other hand, training set can be reduced using different instance reduction methods and retain subset

of it. In this thesis, we are investigating different instance-reduction methods to precede rule-

induction approaches.

43

Chapter 3: Literature Review: Ant Colony
Optimization

This chapter presents a review of ACO, which is a metaheuristic proposed as a method for

solving hard problems, and inspired by the behaviour of real ants.

ACO algorithms are considered to be part of swarm intelligence, which is the study of

computational systems inspired by “collective intelligence”. Collective intelligence emerges

through the cooperation of large numbers of homogeneous agents in the environment.

This chapter is organized as follows. Section 3.1 presents a formal description of the ACO

metaheuristic. Section 3.2 overviews the most popular variants of ACO and gives examples of

their application. Section 3.2.1 explains the Ant-Miner algorithm and Section 3.2.2 describes how

ACO is applied to feature selection.

3.1 Ant Colony Optimization overview

ACO is a branch of the newly developed form of AI called swarm intelligence. Swarm

intelligence is a field that designs algorithms inspired by the collective behaviour of social insects

and other animal societies (Bonabeau et al., 1999).

The potential benefits of imitating social insects’ structural models and behaviour in

designing solutions to a problem include:

• Robustness, because a colony as a whole may succeed where an individual may fail.

44

• Flexibility, in terms of adaptation to changing environments.

In groups of insects that live-in colonies, such as ants and bees, individuals can only

accomplish simple tasks on their own, while the colony, working cooperatively, can perform

complex tasks. Ants also have the ability to find the shortest path from their nest to a food source.

When a food source is first located, several ants may have taken several different paths to reach

that food source. When an ant moves, it lays a chemical substance called a pheromone along its

path. When foraging for food and taking it back to its nest it follows the path with the greatest

amount of a pheromone laid upon it. Pheromone trails evaporate if more ants do not come along

to reinforce it, and ants that find the shortest route to the food will arrive back at the nest quicker

than others; thus, the greater the number of ants on one path, the greater the amount of pheromone

on that path. When new ants seek to travel to the food source they then take the shortest route

(since they are guided by the amount of pheromone on the path). It has been observed that all

foraging ants eventually converge on the shortest route to the food source (Galea, 2002).

ACO is a technique used with combinatorial optimization problems, which consist of

finding an optimal solution from a finite set of solutions. In many such problems, exhaustive search

is not feasible. There are, however, some important differences between real and artificial ants

(Socha, 2008):

• Artificial ants live in a discrete world – they move sequentially through a finite set of

problem states.

• The pheromone update (i.e., pheromone depositing and evaporation) is not accomplished

in exactly the same way by artificial ants as by real ones. Sometimes, the pheromone update

https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Exhaustive_search

45

is carried out only by some of the artificial ants, and often only after a solution has been

constructed.

• Some implementations of artificial ants use additional mechanisms that do not exist in the

case of real ants. Examples include look-ahead, local search, backtracking, etc.

The first ACO was developed by Marco Dorigo and published under the name of Ant

System (AS) in (Dorigo et al., 1996). The application was the traveling salesman problem (TSP),

which is classified as NP-hard combinatorial optimization because the solution cannot be found in

polynomial time. The goal of TSP is to find the shortest possible route through a set of connected

(N) cities, with each city visited once and only once. The ants find a solution to the TSP by

traversing a problem graph from one city to another, depositing pheromone, until they solve the

TSP. During an iteration of the AS algorithm, each ant builds a tour comprising N steps:

For each ant, the transition from city i to city j depends on:

1. Whether the city has been visited.

2. The inverse of distance α = 1/dij, which is based on local information and represents

the heuristic desirability of choosing city j when in city i.

3. The amount of pheromone trail, µij, on the edge connecting city i to city j.

ACO can solve any problem for which the following elements can be defined (Socha,

2004):

1. An appropriate problem representation is required that allows the artificial ants to

incrementally build a solution using a probabilistic transition rule. The main idea is

to model the problem of searching for the best path through a graph. In the TSP, we

46

have a fully connected weighted graph, where the set of nodes, N, represent the

cities and the set of edges represent the connection between the cities, as shown in

Figure 5.

2. A local heuristic provides guidance to the ant in choosing the next node for the path

it is building. In the TSP, the local heuristic is the inverse of distance, which

represents the heuristic desirability of choosing city j when in city i.

3. The probabilistic transition rule determines which node an ant should visit next.

The transition rule is dependent on the heuristic value and pheromone level

associated with an edge joining two nodes.

4. A fitness function determines the fitness of the solution built by an ant in the TSP,

where the fitness function is the length of the whole path traversed by the ant.

5. A pheromone update rule specifies how to modify the pheromone trail laid along

edges of the graph.

 Figure 5. A weighted graph for TSP with five cities.

Figure 5 considers the weighted graph for five cities. An ant at city A has to choose

probabilistically one of the four cities to visit. The pheromone, which will be referred to as (µ), is

47

initially set to be equal to 1. The initial visibility for each city is the inverse of the distance between

the cities. Thus, the probability of choosing cities B, C, D and E are:

P1
AB =

1/100

(
1

100
)+(

1

75
)+(

1

100
)+(

1

125
)
 = .242

P1
AC = .323

P1
AD = .194

P1
AE = .242

Therefore, the ant chooses to visit city C. Continuing the iteration, the ant completes the

tour by visiting the cities E, B, and D, in that order, for a tour of length 250. After completing the

tour, the ant lays pheromone along the path of the tour. The amount of pheromone added is equal

to the inverse of the total length of the tour. Thus,

 ∆µ =
1

75+50+75+50
 = .004

Furthermore, the pheromone is decreased along all edges to simulate pheromone decay

according to the pheromone evaporate rate. The pheromone for the edges in the path is therefore

updated by (assuming that the pheromone evaporate rate is 0.1):

µ = (1- .1) + .1 (.004) = .9004.

And the pheromone for edges not in the path will be updated by,

µ = (1- .1) + .1 (0) = .9.

The new pheromone values along the edges of the graph in Figure 5 are given in Figure 6.

The second ant, starting from city B, would complete the tour by visiting cities D, E, C, and A.

48

Now, the total length of the tour is 275, and hence this tour is taken as the shortest path so far

(when the starting point is city B). The pheromone updates are completed as earlier. The algorithm

continues to find the shortest path until the terminating condition is met, which is a certain number

of solution constructions fixed at the beginning of the algorithm.

The great advantage of ACO over the use of exact methods is that the ACO algorithm

provides relatively good results via a comparatively low number of iterations, and is therefore able

to find an acceptable solution in a comparatively short time.

Figure 6. Pheromone values for the structure shown in Figure 5 after the first ant finishes a tour.

The ACO algorithms have also been applied to solve graph colouring (Costa & Hertz,

1997), job-shop scheduling (Colorni et al., 1994), sequential ordering (Gambardella & Dorigo,

1996), and vehicle routing (Bullnheimer, 1999). Results obtained with ant-based algorithms are

often as good as those obtained with other algorithms.

49

 3.2 Application of ACO to Classification Rule Induction

Parpinelli et al. (2002) were the first to propose using ACO to discover classification rules

with the Ant-Miner system; they argued that an ant-based search is more flexible compared to

traditional methods.

 Ant algorithms simulate the foraging of real ants, so it is a good idea to think about the

problem as a search for a best path through a graph, where the nodes represent the partial solution

and edges represent the transition between these partial solutions. The edge labels are

measurements that qualify the selected partial solutions.

In this section, we will review two interesting applications for ACO that have achieved good

results in their field. We will demonstrate how ACO has been applied to solve these kinds of

applications.

3.2.1 Ant-Miner Algorithm

Ant-Miner is an algorithm that incorporates the principles of ACO and rule induction. It

starts with the full training dataset and then generates a set of ordered rules through iteratively

finding a “best” rule that covers a subset of training data. It then removes the examples covered by

the rule until the stop criterion is reached. Figure 7 shows the Ant-Miner algorithm proposed by

Parepinelli et al. (2002).

50

Figure 7. Ant-Miner algorithm.

When applying the Ant-Miner algorithm to classification rule induction, the basic element

of the solution is attribute terms. An attribute term, termij, is in the form Ai = Vij, where Ai is the

ith attribute and Vij is the jth value of domain A. Thus, an appropriate problem for ACO

representation regarding the induction of classification rules is a graph whose nodes represent

attribute terms. A complete path is a constructed rule, and the quality of the path is assessed by a

global2 fitness function. The quality of node is evaluated by heuristic value and pheromone level

value associated with the node.

In Ant-Miner, each ant starts with an empty rule – i.e., with no term in its rule antecedent

– and adds one term at a time. The choice of term to be added to the current partial rule antecedent

depends on both the heuristic value (based on term entropy) and the pheromone level associated

2 The scope of the global fitness function extends only to the current constructed rule, and not to full execution of

Ant-Miner.

51

with each term. The entropy in Ant-Miner is computed for a specific attribute value, which is

defined by:

 H (C| Ai = Vij) = - ∑ 𝑃(𝑐|𝐴𝑖 = 𝑉𝑖𝑗) ∗
𝑘

𝑐=1
𝑙𝑜𝑔2𝑃(𝑐|𝐴𝑖 = 𝑉𝑖𝑗) (7)

Where:

c is the class attribute and k is the number of class values.

Ai is the ith attribute and Vij is the jth attribute value of the ith attribute.

P(c | Ai = Vij) is the probability of observing class c, conditional on observing Ai = Vij.

The higher the entropy value of a term, the more uniformly distributed the classes are, and,

thus, the smaller the probability that the current ant chooses this term to add to its partial rule. In

Equation 8, H (C| Ai = Vij) is subtracted from 1 because the ant is seeking a term that will

distinguish between the class values, since it is building a classification rule. The entropy values

are normalized using Equation 8 (Swaminathan, 2006).

 Ħ ij = (1 − 𝐻(𝐶|𝐴𝑖 = 𝑉𝑖𝑗))/(∑ 𝑥𝑙 ∗ 𝑎
𝑙=1 (1 − ∑ 𝐻 (𝐶|

𝑏𝑖
𝑚=1 𝐴𝑙 = 𝑉𝑙𝑚))) (8)

a is the total number of attributes.

xl is set to 1 if attribute Al has not yet been selected; otherwise, it is set to 0.

bi is the number of domain values for ith attribute.

The choice is biased towards terms that have relatively higher heuristic and pheromone

values. Ant-Miner uses the transition rule in Equation 9, given an attribute–value pair; the

52

transition rule gives the probability of adding the attribute–value pair to the rule. The one with

highest probability is added to the rule.

Pij= (Ħ𝑖𝑗 ∗ µ𝑖𝑗(𝑡))/(∑ (𝑥𝑙 ∗
𝑎

𝑙=1
 ∑

𝑏𝑖
𝑚=1 Ħ𝑙𝑚 ∗ µ𝑙𝑚(𝑡))) (9)

Where:

Pij is the probability that termij is selected for addition to the current partial antecedent.

Ħ ij is the heuristic value associated with termij.

µij (t) is the amount of pheromone associated with termij at iteration t.

a is the total number of attributes.

bi is the number of domain values of the ith attribute.

xl is set to 1 if attribute Al has not yet been selected; otherwise, it is set to 0.

Once an ant has stopped building a rule antecedent, a rule consequent is chosen. The rule

consequent is assigned the class label of the majority class among the instances covered by the

antecedent.

After constructing the rule, the artificial ant performs the rule-pruning procedure. The

purpose of rule pruning is to increase the quality and comprehensibility of the built rule by

simplifying the rule antecedent. The rule is pruned by removing one term at a time, until the rule

cannot be improved further by removing another term. The term that most improves the quality of

the rule is chosen. The pruning stops when there is no term whose removal would improve the rule

quality. The accuracy of a rule consists of both accuracy among positive examples (called

53

sensitivity) and accuracy among negative examples (called specificity). Thus, the quality of the

rule is defined by the following:

Q =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
∗

𝑇𝑁

𝐹𝑃+ 𝑇𝑁
 (10)

Where:

TP, true positive, is the number of examples covered by the rule that belong to the class predicted by

the rule.

FP, false positive, is the number of examples covered by the rule that belong to a class that is

different from the class predicted by the rule.

FN, false negative, is the number of examples that are not covered by the rule, but that belong to the

class predicted by the rule.

TN, true negative, is the number of examples that are not covered by the rule and do not belong to

the class predicted by the rule.

Other variations from Ant-Miner use Laplace accuracy to estimate the constructed rule. It

has been observed that Ant-Miner achieves better prediction accuracy when using Laplace

accuracy, compared to using the sensitivity/specificity fitness function (Xuepeng, 2004).

Once rule pruning is complete, the pheromone levels are updated for the terms by

increasing the pheromone for the terms that appear in the rule antecedent according to the rule

quality given by:

µij (t+1) = µij (t) + µij (t) * Q. (11)

Where

µij (t) is the pheromone level of termij.

Q is the quality of the rule constructed.

54

The ant then normalizes the pheromone level of all terms (each pheromone level is divided

by the sum of all pheromone levels), which reinforces the pheromone levels of the terms occurring

in the rule antecedent and decreases the pheromone levels of other terms that are not selected in

the rule.

The process by which an ant creates a rule is repeated for, at most, a predefined number of

ants. However, the process may stop if the current ant has just created a rule that is exactly the

same as a previous (maxRulesConverge -1) rule. MaxRulesConverge is a user-defined parameter

for testing the convergence of ants, which simulates the convergence of real ants to the shortest

path between a food source and their nest. The best rule created is added to the InducedRuleSet,

the training set is appropriately reduced, and another run generates a best rule to cover more

instances from remaining training instances.

Ant-Miner employs an ACO approach that provides a mechanism for conducting a global

search that is more effective than those provided by traditional covering algorithms. It copes better

with attribute interaction than greedy rule-induction algorithms do. Ant-Miner has been shown to

have the best results compared to C4.5 and CN2 in terms of predictive accuracy and simplicity of

rule sets (that is, the number of rules in the rule set), using six datasets from the University of

California at Irvine (UCI) machine learning repository and a total number of ants equal to 3,000

(Parepinelli et al., 2002).

55

3.2.2 Feature Subset Selection

Feature subset selection is a method for selecting a subset of relevant features in order to

generate good classifiers. The importance of the feature subset selection technique lies in its ability

to provide a better understanding of the data and reduce the training time of the learning algorithm,

because it helps in reducing the complexity of a given training set. It is computationally expensive

and infeasible to implement feature subset selection via exhaustive evaluation of all possible

subsets, especially as there may be thousands of features present in real-world datasets.

The feature subset selection algorithms can be categorized into two groups:

1. The filter approach, which is a feature subset selection technique applied independently of

the learning algorithm. These methods apply some ranking over features. The ranking

denotes how ’useful’ each feature is likely to be for classification. a number of performance

criteria have been proposed for filter-based feature selection such as fisher score (Duda et

al., 2012), methods based on mutual information (Koller & Sahami, 1996) and ReliefF

(Kira & Rendell, 1992).

2. The wrapper approach, wherein the evaluation criteria is tied to the learning algorithm. It

considers feature subsets by the quality of the performance on a learning algorithm, which

is taken as a black box evaluator. (e.g. Naïve Bayes or SVM) (Maldonado et al., 2014).

Shahzad (2010) proposed a hybrid feature subset selection using ACO and a decision tree

(ID3) learning algorithm. This is a wrapper feature subset selection approach, in which each ant

incrementally constructs a candidate solution that is a subset of the features in the dataset. These

features are selected based on pheromone level and the heuristic value of each feature. The main

idea of the proposed approach is to provide connected nodes graph (where N is the total number

of features present in the dataset) (Shahzad, 2010). In the graph, the nodes represent the features

56

and links represent the connection between these features. Each ant constructs a solution by

traversing a path in the graph. This path represents the selected features. After the ant has

completed the feature selection, the fitness of the traversed path is calculated by running the ID3

algorithm using the selected features and estimating the predictive accuracy of the resulting

classifier using 10-fold cross-validation (Kohavi, 1995). This estimate is the fitness function that

is used to update the pheromone values. After termination of the algorithm, the feature set that has

the best accuracy is returned as the solution (Shahzad, 2010).

Like the Ant-Miner algorithm, the ant starts with empty an subset. The ant uses two

components to calculate the probability of moving from the present node to the next. The first

component is the amount of pheromone present on the edge between nodei and nodej, and the

second is the heuristic value (e.g., the information gain) that describes the worth of a node. The

probability with which the ant chooses node j as the next node, after it has arrived at node i, is

shown in equation 12. Node j has to be in the set S of nodes that have not been visited.

Pij = ((Ħ𝑖𝑗)
𝛼

∗ (µ𝑖𝑗)
𝛽

)/(∑ 𝑆
𝑘 (Ħ𝑖𝑘)𝛼 ∗ (µ𝑖𝑘)𝛽)) (12)

Where

µij is the pheromone level between nodei and nodej.

Ħ𝑖𝑗 is the heuristic value for choosing node j when arriving node i.

α, β are influencing factors of pheromone value and heuristic value, respectively.

Initially, the pheromone values in all edges between nodes are initialized with the same

amount. In this way, no attribute is preferred over other attributes by the first ant. Equation 13

represents the initial pheromone for all attributes:

57

µ (t=1) =
1

𝑁
 (13)

Where

N is the total number of features (attributes).

The heuristic value used to qualify each node is the information gain for each attribute. The

information gain of attribute (A) is the reduction in entropy caused by partitioning the set of

examples (S). When an ant selects the next node, it uses Equation 14 to calculate the information

gain of a feature (attribute), where values (A) is the set of all possible values for attribute A and Sv

is the subset of S for which attribute A has value v . Equation 14 is used to calculate the entropy:

Gain(S,A) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − (∑
|𝑆𝑣|

|𝑆|
 ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑣

𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

𝑣
)) (14)

Where

V is the set of all possible values for feature (attribute) A.

|Sv| is the size of the subset from S, where attribute A takes the value v.

|S| is the number of training instances.

To evaluate the worth of the selected set of features, Shahzad (Shahzad, 2010). used ID3

to build a classifier using the selected features subset and evaluate the generated classifier. He

performed this procedure 10 times using 10-fold cross-validation, where the dataset is randomly

divided into 10 equally sized subsets. Each of the subsets is used once for testing, and the

remaining nine are used as the training set. Further, the fitness function is calculated by:

58

µ (t=1) =
𝑵𝒄𝒐𝒓𝒓

𝑁
 (15)

Where

N is the total number of test instances.

Ncorr is the number of test instances correctly classified by the generated classifier.

This fitness is calculated for each fold, and then averaged.

The pheromone rates are updated after the ant has completed its route. The amount of

pheromone on each link occurring in the current feature subset selected by the ant is updated

according to:

µ (t+1) = ((𝟏 − Þ) ∗ µ (t)) + ((1 −
1

1+𝑓𝑖𝑡𝑛𝑒𝑠𝑠
) ∗ µ (t)) (16)

Where

µ (t+1) is the pheromone value between nodei and nodej.

Þ is the pheromone evaporation rate.

fitness is the quality of the current path constructed by the ant.

The pheromone on the other paths is updated by normalization.

Figure 8 presents the algorithm of the proposed feature subset selection based on ACO.

The process continues until the stopping criteria are met. There are two stopping criteria:

1. Completion of a user-specified number of iterations (ants).

2. 10 consecutive ants returning the same set of features.

59

The experiments have been executed with 1,000 ants, using 32 datasets from the UCI

machine learning repository with diverse characteristics. The experimental results reveal that the

proposed feature subset selection method selects relevant features from datasets, causing an

increase in the predictive accuracy on almost all of the datasets. Shahzad (Shahzad, 2010).

compared the proposed approach with the naive Bayes approach for feature selection in terms of

predictive accuracy after selecting the features using both approaches. Furthermore, the

experimental results indicate that the proposed approach is better at finding features that improve

predictive accuracy for the learned classifier.

Figure 8. Feature subset selection based on ACO.

3.3 Summary

ACO is a meta-heuristic algorithm that has been proven to be a successful technique and

applied to different combinatorial optimization problems, such as rule induction (Ant-Miner

algorithm) and feature subset selection. It is an attractive approach, and requires careful definition

of five elements: appropriate problem representation, a local heuristic, the probabilistic transition

rule, a fitness function, and the pheromone update rule.

60

Chapter 4: Experimental Framework

This chapter presents the methodology and experimental framework followed in this thesis

to assess the effect of preceding rule induction with instance-reduction methods in terms of the

number of generated rules and the predictive accuracy. In this methodology, a new algorithm for

instance-reduction method based on ACO is implemented to achieve a good results when

preceding rule induction methods.

Section 4.1 explains the problem we are interested in and the pre-processing framework

that we are suggesting in our research. In Section 4.2, we explain the datasets used in this research

for conducting the experiments, and Section 4.3 compares different rule-induction characteristics

and specifies the rule-induction methods that we are interested in in our experiments. Section 4.4

presents how we estimate the prediction accuracy in our experiments. Then, Section 4.5 explains

the evaluation measurement and the comparison methodology used in our experiments. Finally,

Section 4.6 outlines the experimental setup and methodology we used with different datasets.

4.1 Problem Statement

This thesis is concerned with pruning rule induction by filtering out the border instances

by applying instance-reduction methods before rule induction. We will apply three methods for

instance reduction: (AllKnn, ENN and DROP5). These instance-reduction methods have been

shown to perform well in the context of neural network learning (El Hindi & Alakhras, 2009).

Moreover, ENN has been evaluated with ANN and shown that it is the most effective one

compared to many other instance reduction methods (Sun & Chan, 2014).

61

Figure 9 illustrates the idea of eliminating near-border instances and how the decision

boundary has been smoothed. Figure 10 explains the framework for the main idea of our work.

 Before filtering out border instances After eliminating border instances

Figure 9. The line or curve separates instances from different classes.

Figure 10. Framework for instance-reduction method preceding rule induction.

62

We will also apply the DROP5 method in instances flagged by AllKnn to be removed, and

will call this the AllKnnDROP5 method. Figure 11 shows the suggested method.

Figure 11. AllKnnDROP5 algorithm.

Instance selection is classified as an NP-hard problem (Babu & Murty, 2001), which means

that there is no polynomial algorithm able to find an optimal solution. Moreover, in Chapter 6 we

will investigate a new instance-selection method based on ACO principles, and will specify how

to set up different elements of ACO (i.e., problem representation, local heuristic, probabilistic

transition rule, fitness function and pheromone update rule).

4.2 Benchmark Datasets

Results on a single dataset are typically not very meaningful. Therefore, machine learning

techniques are often evaluated on a large set of benchmark datasets. We conduct experiments on a

collection of machine learning datasets available from the repository at UCI (Murphy & Aha,

1994). We have chosen datasets with diverse characteristics: some of them have binary classes and

others are multi-class; some of them have a lesser number of attributes while others have a

relatively higher number; and some have a lesser number of examples while others have more. A

summary of the properties of these datasets is given in Table 2.

63

ID# Data Sets No. of examples No. of classes Con.

Attributes

Disc.

attributes

1 Iris 150 3 4 -

2 Voting 435 2 - 16

3 Vowels 528 11 10 -

4 Heart Cleveland 303 2 7 6

5 Glass 214 7 9 -

6 Liver disorders 345 2 6 -

7 Wine 178 3 13 -

8 Pima Indians diabetes 768 2 8 -
9 Promoters 106 2 - 57

10 Hepatitis 155 2 6 13

11 Vehicle 848 4 18 -

12 Pole-and-cart 3481 2 4 -

13 Blood transfusion service 748 2 5 -

14 E-coli 336 8 7 -

15 Soybean 307 9 - 35

16 ZOO 101 7 1 15

17 Yeast 1484 10 8 -

18 Led creator 1000 10 - 7

19 Vertebral column 310 2 6 -

20 Ionosphere 352 2 34 -

21 Wave 5000 3 21 -

 Table 2. Description of datasets used in empirical study Notes: Columns show, in order: serial number, name of

dataset, no. of examples in dataset, no. of classes in dataset, no. of continuous attributes, no. of discrete attributes.

4.3 Rule-Induction Characteristics

We will consider rule-induction methods that learn a set of propositional rules where the

target concept is represented as a set of “if... then...” rules. . We focus on rule-induction methods

that produce an unordered set of rules, because we are interested in rule sets where each rule can

be understood independently.

In this section, we categorize some rule-induction methods according to the following

criteria:

1. Type of pruning: This criterion specifies whether the rule induction applies pruning

when generating a rule set. The pruning can be:

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

64

a. Post-pruning: The pruning procedure is applied after the rule set has been

induced.

b. Pre-pruning: A reduction or filtering method is applied before starting to

generate the rule set.

c. During rule set generation: The rule is simplified as it is generated and

before generating the next rule.

2. Direction of the search: There are three kind of search strategies for rule-induction

methods (Pappa & Freitas, 2008):

a. Specific-to-general (bottom-up strategy): Starts the search with a very

specific rule, and iteratively generalizes it.

b. General-to-specific (top-down strategy): Starts the search with the most

general rule and iteratively specializes it.

c. Hybrid (bi-directional strategy): A bi-directional search is allowed to

generalize or specialize the candidate rules

3. Types of search include the following:

a. Greedy search: Creates an initial rule, specializes or generalizes it, evaluates

the extended rules created by the specialization or generalization operation,

and keeps only the best extended rule.

b. Beam search: Tries to eliminate the drawbacks of greedy search by

selecting, instead of one, the b best extended rules at each iteration (where

b is the width of the beam).

65

Table 3 uses these criteria to compare the rule-induction methods described in Chapter 2.

This will guide us in selecting the algorithm that will be used in our experiments with the pre-

pruning process. We think that pre-pruning can achieve good results with rule-induction

algorithms that do not use pre-pruning, such as CN2 (modified), RISE, PRISM, the AQ family,

the RULEs family, and IREP. In addition, we can choose methods that have different search types

and directions. Accordingly, we choose to investigate pruning on CN2 (modified), PRISM, and

RISE, as they have different search types and directions.

Rule-induction method Type of pruning Direction of search Type of search

AQ family Post-pruning Hybrid Beam search

CN2 (modified) During rule generation General to specific Beam search

RIPPER Pre- and post-pruning

integration.

General to specific Greedy search

IREP During rule generation General to specific Greedy search

RULEs family Post-pruning General to specific Beam search

RISE No Specific to general Greedy search

PRISM No General to specific Greedy search

 Table 3. Comparison of rule-induction methods.

4.4 Estimating the Predictive Accuracy of Rules

The predictions that really matter to researchers are those for “future” data, whose classes

are unknown at the time the classification algorithm is applied. We use predictive accuracy in the

test set as an estimate of the predictive accuracy in future data. In this thesis, the classification

quality of the rule set is measured by the predictive accuracy, which is defined as the percentage

of the total number of correctly classified examples in all classes relative to the total number of

tested examples. It has been by far one of the most commonly used metric for assessing

performance of classifiers (Witton & Frank, 2005).

66

Accuracy =
𝑵𝒄𝒐𝒓𝒓

𝑁
 X 100% (17)

Where

N is the total number of test instances.

Ncorr is the number of test instances correctly classified by the generated classifier.

4.5 Comparison Evaluation

This thesis reports on experiments that have been conducted to compare the application of

different instance-reduction methods prior to rule induction. The comparison is conducted in terms

of the predictive accuracy and comprehensibility. For predictive accuracy, the results are

compared using statistical paired t-test with confidence at 0.05. A statistically significant

improvement in predictive accuracy is referred to as a win, and a statistically significant reduction

as a loss. For each pre-pruning method, we count the number of datasets that resulted in a win and

the number of datasets that resulted in a loss.

 On other hand, when dealing with learning algorithms it is important to be bear in mind

that the most desirable property is comprehensibility. Furthermore, in some cases

comprehensibility tends to be more important than predictive accuracy because:

1. The discovered knowledge (rule set) will be used for supporting a decision to be

made by a human.

2. If the discovered knowledge (rule set) is not comprehensible, nobody will be able

to validate it, and a human may not trust it.

67

In general, the shorter (the fewer number of conditions in) a rule, the more comprehensible

it is. The same principle applies to rule sets. In general, the lower the number of generated rules in

a rule set, the more comprehensible it is (Shirbhate & Gupta, 2015; Blanco-Vega et al., 2004).

4.6 Experimental Setup

This section explains the different experimental setups used in this thesis. For each

evaluation, we conduct testing in all datasets mentioned in Table 2.

4.6.1 Cross-validation

Cross-validation (Kohavi, 1995) is a common method for estimating different learning

algorithms. The accuracy of the resulting classifier is estimated by dividing the data into n parts.

In each experiment, n -1 parts are combined into a training set and the remaining part is used for

testing. A model is then learned on the training set and evaluated on the test set. This is repeated

until each part (and thus each training example) has been used once for testing. The final accuracy

is then estimated as an average of the accuracy estimates computed in each such experiment. The

cross-validation algorithm is shown in Figure 12. This algorithm can be used to estimate any

learning algorithm. It is thus shown with generic functions for learning (LearnAlgorithm) and

evaluating (Evaluate).

In this thesis, the predictive accuracy is estimated using 10-fold cross-validation. Each of

the folds is used once for testing, and the remaining nine are used as a training set.

68

Figure 12. Estimating the predictive quality of learning algorithms using cross-validation.

4.6.2 Choosing K for K-NN algorithm

The k-NN algorithm is amongst the simplest of all machine learning algorithms. An

instance is classified by a majority vote of its neighbours, with the instance being assigned to the

class that is most common amongst its k nearest neighbours (k is a positive integer that is typically

small). If k = 1, then the instance is simply assigned to the class of its NN.

How should one go about choosing the value of k? In fact, there may not be an obvious

best solution. Consider choosing a small value for k. In such a case, it is possible that the

classification may be unduly affected by outliers or noise. On the other hand, choosing a value of

k that is not too small will tend to smooth out any idiosyncratic behaviour learned from the training

set. However, if we take this too far and choose a value of k that is too large, locally interesting

behaviour will be overlooked (Larose, 2005). Furthermore, the value of k must set to an odd

number to avoid ties.

In this thesis, we avoid using k = 1 in experiments for evaluating the behaviour of the k-

NN algorithm, based on the earlier discussion. We set k to 3, the next smallest odd number.

https://www.google.ae/search?biw=1327&bih=634&tbm=bks&q=inauthor:%22Daniel+T.+Larose%22&sa=X&ved=0ahUKEwjk-emy0ePJAhWEGB4KHblBBnoQ9AgIITAB

69

Furthermore, the additional complexity required to use a larger number of neighbours than three

is not warranted due to the small decrease in the error rate when more than three are used (Wilson,

1972).

4.6.3 Number of Ants in Ant Colony Optimization

ACO is a promising new approach to solving various problems. Many factors affect the

ability of ACO to achieve good solutions to these problems. One of these factors is the number of

ants. Finding the exact number of ants required to solve a problem remains an empirical problem

based on fine tuning.

In our experiments, we test the effect of changing the number of ants on the predictive

accuracy and the number of generated rule sets. We evaluate the ACO with 250, 500, 750, 1,000,

and 1,250 ants.

4.6.4 Experiment Implementation

In our experiments, we used the code for the CN2 algorithm implemented by Robin

Boswell in 1990, from which Francisco Reinaldo (Univ. Porto, Portugal) and Marcus Siqueira

(UnilesteMG, Minas Gerais, and Brazil) created the executable file for Windows XP. We used the

version of CN2 that produces an unordered list of rules. We implemented the RISE algorithm using

the C programming language. Furthermore, for the PRISM algorithm we used the Inducer rule-

induction workbench (Bramer, 2000); this is one of a suite of packages developed to facilitate

experiments with different techniques for generating classification rules. Inducer is implemented

in Java (version 1.1) in the interests of portability and is available both as a standalone application

and as an applet.

70

We also implemented the proposed ACO using Microsoft visual studio, again using the C

programming language.

4.6.5 Summary

This chapter introduced all the items needed to run our experiments, including our test

strategy. It also outlined how to compare and evaluate the achieved results in terms of predictive

accuracy and comprehensibility (i.e., number of generated rules). We compared and characterized

different rule-induction methods, then clarified our chosen methods to be used in our experiments.

Moreover, we introduced the parameters for implementing the instance-reduction method based

on the ACO concept.

The next chapter describes the details of the experiments conducted, and the results that

were obtained.

71

Chapter 5: Preceding Rule Induction with
Instance-Reduction Methods

This chapter presents the empirical results for investigating preceding three different types

of rule induction with instance-reduction methods (CN2, PRISM, and RISE). Section 5.1 explains

the basic ideas behind the experiments and the setup used to complete them. In Section 5.2, we

present our analysis of the results obtained in terms of predictive accuracy and number of generated

rules on the 22 datasets described in Section 4.2. Section 5.3 presents our conclusions.

5.1 Experimentation

We focus on instance-reduction methods that have been proven capable of reducing the

size of training sets while maintaining as much predictive accuracy as possible (Wilson &

Martinez, 1997, 2000). More specifically, we apply algorithms that aim to reduce the border

instances before applying the induction method. This can achieve good results as removing border

instances should remove instances that are noisy, which may improve the predictive accuracy for

the induction method. Furthermore, we investigate the effect of preceding instance-reduction

methods on the complexity of rule set (roughly represented here by the number of generated rules).

El Hindi and Alakhras (2009) showed that filtering out border instances before training an artificial

neural network will improve the predictive accuracy in some cases and speed up the training

process by reducing training epochs.

Our experiments concern three reduction algorithms that performed well in reducing the

number of instances (Wilson & Martinez, 1997). We applied the three methods for instance

72

reduction (AllKnn, ENN, and DROP5) that are intended to remove the border and noisy instances

before using CN2, PRISM, and RISE. We also applied the DROP5 (Wilson, & Martinez, 2000)

method for instances flagged by AllKnn to be removed; we call this method AllKnnDROP5.

.

The CN2 (Clark & Niblett, 1989) algorithm induces an ordered list of classification rules

from examples, using entropy as its heuristic. Clark and Boswell improved CN2 by using a

Laplacian error estimate as an alternative evaluation function, and producing unordered

classification rules (Clark & Boswell, 1991). One of our objectives was to apply some instance-

reduction methods before applying the modified CN2 algorithm and compare the results with and

without applying the reduction.

5.2 Analysis of Results

Table 4 presents the average number of generated rules by preceding the CN2 algorithm

with different instance-reduction methods. Moreover, we compare the amount of reduction with

respect to the average number of rules generated by applying CN2 (RCN2) without pre-pruning.

From Table 4, it is clear that all of the instance-reduction techniques reduced the number of rules

generated by CN2. We can see that DROP5 achieved the largest reduction, as the ratio of the

average number of rules between preceding CN2 with DROP5 and applying CN2 without pre-

pruning (RDROP5/ RCN2) is 0.34, which means that the reduction was 64% on average. On the other

hand, applying ENN, AllKnnDrop5, and AllKnn reduced the generated rules by 51%, 50%, and

55% on average, respectively.

73

 Table 5 reveals the results of the average number of generated rules by applying the

instance-reduction techniques prior to the RISE algorithm. We computed the ratio of average

number of rules between preceding RISE with different instance-reduction methods and applying

RISE without pre-pruning, so we were able to investigate the amount of reduction in the average

number of generated rules. It is clear that applying DROP5 still achieved the highest reduction in

the number of generated rules followed by applying AllKnn, which achieved 55% on average.

Furthermore, AllKnnDrop5 and ENN reduced the generated rules by 51% and 47% on average,

respectively.

Finally, Table 6 shows the average number of generated rules by preceding the PRISM

algorithm with different instance-reduction techniques. We can see that DROP5 achieved the

largest reduction in the number of generated rules, as the ratio of the average number of rules

between preceding PRISM with DROP5 and applying PRISM without pre-pruning is 0.28, which

means that the reduction was 72% on average. Moreover, AllKnnDrop5, AllKnn, and ENN

reduced the generated rules by 46%, 54%, and 47% on average, respectively.

Figure 13 shows that for all rule-induction methods, the number of generated rules reduced

after applying different instance-reduction methods. It is clear that applying DROP5 achieved the

largest reduction in the number of generated rules of the four rule-induction methods. AllKnn

achieved the next best reduction in the number of generated rules, followed by AllKnnDrop5 and

ENN.

74

Table 4. Empirical results comparing the average number of generated rules for preceding CN2 with ENN (RENN),

AllKnn (RAllKnn), DROP5 (RDROP5), and AllKnnDrop5 (RAllKnnDROP5), and comparing the amount of reduction with respect

to the average number of rules generated by applying CN2 (RCN2) without pre-processing.

 ENN AllKnn DROP5 AllKnnDROP5

Datasets RCN2 RENN RENN

/RCN2

RAllKnn RAllKnn/

RCN2

RDROP5 RDROP5/

RCN2

RAllKnnDROP5 RAllKnnDROP5/

RCN2

Iris 6.30 3.9 0.62 3.6 0.57 3 0.48 3.6 0.57

Voting 17.3 6.2 0.36 5.7 0.33 3 0.17 6.1 0.35

Vowels 46.2 42.2 0.91 41.5 0.9 31.7 0.69 44.3 0.96

Heart Cleveland 21.3 11.2 0.53 9.4 0.44 7 0.33 10.6 0.5

Glass 22.0 12.8 0.58 12.1 0.55 9.2 0.42 10.3 0.47

Liver disorders 31.3 17.6 0.56 15.2 0.49 12.6 0.4 18.1 0.58

Wine 8.60 7.4 0.86 6.9 0.8 3 0.35 6.9 0.8

Pima Indians diabetes 44.4 20.8 0.47 18.1 0.41 15.6 0.35 21.3 0.48

Promoters 12.4 10.4 0.84 9.6 0.77 2.7 0.22 9.7 0.78

Hepatitis 17.8 1.80 0.1 4.2 0.24 1.7 0.1 4.7 0.26

Vehicle 48.4 29.3 0.61 25.9 0.54 27.2 0.56 29.3 0.61

Pole-and-cart 109.8 56.9 0.52 46.7 0.43 51.7 0.47 50.8 0.46

Blood transfusion service 61.2 13.0 0.21 11.9 0.19 13.2 0.22 16.5 0.27

E-coli 24.7 12.7 0.51 10.5 0.43 7.7 0.31 12.3 0.5

Soybean 32.7 15.9 0.49 24.8 0.76 21.3 0.65 27.2 0.83

ZOO 8.70 6.1 0.7 6.3 0.72 6.2 0.71 6.3 0.72

Yeast 121.2 40.7 0.34 37.0 0.31 40.5 0.33 47.3 0.39

Led creator 79.9 21.8 0.27 19.9 0.25 23.4 0.29 24.3 0.3
Vertebral column 16.7 10.4 0.62 9.1 0.54 6.9 0.41 10.1 0.6

Ionosphere 17.6 6.5 0.37 7.2 0.41 4.9 0.28 9.7 0.55

Wave 204.8 118.0 0.58 102.3 0.5 60.3 0.29 111.6 0.54

Balance scale 150.1 75.4 0.5 63.0 0.42 21.6 0.14 65.2 0.43

Average 50.15 24.59 0.49 22.31 0.45 17.02 0.34 24.83 0.50

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

75

Table 5. Empirical results comparing the average number of generated rules for preceding RISE with ENN (RENN),

AllKnn (RAllKnn), DROP5 (RDROP5), and AllKnnDrop5 (RAllKnnDROP5), and comparing the amount of reduction with

respect to the average number of rules generated by applying RISE (RRISE) without pre-processing.

 ENN AllKnn DROP5 AllKnnDROP5

Datasets RRISE
RENN RENN/R

RISE

RAllKnn RAllKnn/

RRISE

RDROP5 RDROP5/

RRISE

RAllKnnDROP5 RAllKnnDROP5/

RRISE

Iris 22.50 10.90 0.48 4.70 0.21 4.80 0.21 4.60 0.2

Voting 88.10 56.30 0.64 46.90 0.53 7.60 0.09 48.00 0.41

Vowels 72.10 51.30 0.71 49.40 0.69 77.10 1.07 50.10 0.69

Heart Cleveland 97.30 55.30 0.57 44.40 0.46 20.30 0.21 44.30 0.46

Glass 67.30 42.20 0.63 34.50 0.51 19.60 0.29 35.10 0.52

Liver disorders 183.7 101.6 0.55 74.10 0.4 48.60 0.26 91.40 0.5

Wine 20.50 17.60 0.86 15.40 0.75 5.80 0.28 18.80 0.92

Pima Indians diabetes 379.6 181.3 0.48 146.0 0.38 65.20 0.17 172.90 0.46

Promoters 60.80 55.10 0.91 58.40 0.96 6.00 0.1 59.30 0.98

Hepatitis 71.60 9.00 0.13 8.80 0.12 1.50 0.02 36.30 0.51

Vehicle 267.5 166.8 0.62 127.2 0.48 97.60 0.36 164.60 0.62

Pole-and-cart 3133 368 0.11 370.5 0.12 329.5 0.11 435.10 0.14

Blood transfusion service 212.2 64.00 0.3 43.50 0.2 33.60 0.16 57.80 0.27

E-coli 128.1 63.40 0.49 36.40 0.28 18.10 0.14 43.50 0.34

Soybean 68.00 50.30 0.74 38.60 0.57 45.60 0.67 45.80 0.67

ZOO 8.90 6.70 0.75 6.70 0.75 9.10 1.02 6.90 0.78

Yeast 774.5 366.5 0.47 250.3 0.32 175.5 0.23 330.90 0.43

Led creator 271.7 30.10 0.11 26.00 0.1 42.90 0.16 35.20 0.13

Vertebral column 129.6 87.80 0.68 75.10 0.58 22.30 0.17 83.70 0.65

Ionosphere 147.7 36.10 0.24 33.70 0.23 14.70 0.1 69.20 0.47

Wave 4500 3685 0.82 3213 0.71 515.9 0.11 3348.90 0.74

Balance scale 350.6 303.2 0.85 252.8 0.72 44.10 0.13 257.50 0.73

Average 502.5 264.8 0.53 225.3 0.45 73 0.15 247.3 0.49

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

76

Table 6. Empirical results comparing the average number of generated rules for preceding PRISM with ENN

(RENN), AllKnn (RAllKnn), DROP5 (RDROP5), and AllKnnDrop5 (RAllKnnDROP5), and comparing the amount of reduction

with respect to the average number of rules generated by applying PRISM (RPRISM) without pre-processing.

 ENN AllKnn DROP5 AllKnnDROP5

Datasets RRISE
RENN RENN/R

RISE

RAllKnn RAllKnn/

RRISE

RDROP5 RDROP5/

RRISE

RAllKnnDROP5 RAllKnnDROP5/

RRISE

Iris 16.30 7.40 0.45 7.50 0.46 4.00 0.25 7.50 0.46

Voting 31.20 10.50 0.34 7.90 0.25 4.80 0.15 8.50 0.27

Vowels 198.6 186.9 0.94 188.2 0.95 105.9 0.53 189.20 0.95

Heart Cleveland 80.30 35.70 0.44 28.20 0.35 15.10 0.19 33.70 0.42

Glass 84.20 41.50 0.49 39.60 0.47 26.40 0.31 48.40 0.57

Liver disorders 122.9 57.90 0.47 47.10 0.38 39.50 0.32 58.30 0.47

Wine 18.40 18.00 0.98 18.20 0.99 3.40 0.18 18.30 0.99

Pima Indians diabetes 221.2 86.00 0.39 62.60 0.28 49.50 0.22 84.30 0.38

Promoters 15.90 14.30 0.9 14.00 0.88 3.50 0.22 14.40 0.91

Hepatitis 33.70 1.90 0.06 69.30 2.06 1.00 0.03 6.30 0.19

Vehicle 259.6 146.7 0.57 103.0 0.4 91.50 0.35 142.80 0.55

Pole-and-cart 829.9 475.3 0.57 395.2 0.48 408.0 0.49 562.50 0.68

Blood transfusion service 187.9 30.4 0.16 23.40 0.12 27.40 0.15 36.10 0.19

E-coli 80.50 41.80 0.52 37.00 0.46 17.70 0.22 40.50 0.5

Soybean 71.50 51.00 0.71 48.70 0.68 34.60 0.48 52.40 0.73

ZOO 14.10 10.20 0.72 10.30 0.73 6.70 0.48 10.20 0.72

Yeast 698.8 240.2 0.34 197.6 0.28 171.7 0.25 264.30 0.38

Led creator 75.40 27.50 0.36 24.20 0.32 30.90 0.41 30.80 0.41

Vertebral column 67.50 33.10 0.49 27.20 0.4 14.90 0.22 32.20 0.48

Ionosphere 42.00 12.90 0.31 14.50 0.35 10.10 0.24 23.50 0.56

Wave 1416 915.8 0.65 762.8 0.54 280.7 0.2 846.50 0.6

Balance scale 270.1 115.1 0.43 86.20 0.32 29.30 0.11 90.80 0.34

Average
219.8 116.4 0.53 100.6 0.46 62.6 0.28 118.3 0.54

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

77

Figure 13. Comparison of the average number of generated rules before and after applying instance-reduction

methods for different rule-induction methods.

We are comparing the results using paired t-test with confidence 0.5 to have better

interpretation. Table 7 shows the results obtained for CN2 and applying the four pre-pruning

methods with respect to the predictive accuracy. The bold results with a superscript of + means

that applying pre-pruning resulted in a statistically significant increase in predictive accuracy,

while those bold with - showed a statistically significant decrease in predictive accuracy. Our

experiments show that there was no statistically significant effect on predictive accuracy after

applying ENN, AllKnn, and AllKnnDrop5 on 19, 19, and 20 datasets, respectively. On other hand,

there was a statistically significant increase in predictive accuracy for two datasets. We can

conclude that preceding CN2 with these instance-reduction methods did not adversely affect the

predictive accuracy on most datasets and, for two datasets, it enhanced the predictive accuracy.

However, when using DROP5, there was no statistically significant increase in predictive accuracy

for any of the datasets. Furthermore, for 15 of the 22 datasets, using DROP5 led to a statistically

significant decrease.

78

Table 8 summarizes the effect of instance selection (pruning training data) on

generalization of the RISE algorithm. Our experiments show that the predictive accuracy is not

statistically affected after applying ENN, AllKnn, DROP5, and AllKnnDrop5 on 17, 16, 8, and 17

datasets, respectively. Furthermore, applying ENN, AllKnn, and AllKnnDrop5 yielded statistically

significant increases in predictive accuracy on 3, 4, and 3 datasets, respectively. Applying DROP5

produced the worst results, and is thus not recommended as a pre-pruning method for RISE rule

induction.

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5

Iris 89.98 92.00 92.67 80.67 93.34
Voting 95.34 95.10 95.33 -85.35 95.57

Vowels 67.11 65.97 66.75 - .0765 67.31

Heart Cleveland 80.66 76.66 77.33 -71.66 79.34

Glass 64.76 58.05 61.98 -51.92 66.22

Liver disorders 66.77 64.11 65.64 -60.30 66.52
Wine 91.77 94.11 93.52 - 70.00 95.28

Pima Indians diabetes 70.30 73.16 74.70 73.40 72.10

Promoters 85.00 81.00 80.00 - 63.00 80.00

Hepatitis 78.65 80.00 80.00 -52.67 79.34

Vehicle 57.85 60.10 60.71 54.99 60.10

Pole-and-cart 61.68 63.88 +66.24 62.56 63.51

Blood transfusion service 75.68 76.61 76.35 73.11 75.96

E-coli 79.10 + 83.31 80.91 -73.34 80.90

Soybean 86.32 82.67 83.01 -63.00 83.32
ZOO 92.00 87.00 90.00 - 81.00 89.00
Yeast 48.98 + 55.47 +56.43 51.82 +56.56

Led creator 72.30 72.30 71.30 -68.90 71.90

Vertebral column 80.96 83.21 81.28 81.28 82.24

Ionosphere 89.43 - 85.71 - 86.56 -53.71 85.71
Wave 69.70 70.38 70.74 -67.96 + 71.38

Balance scale 75.30 74.70 74.34 -67.10 74.34

Average 76.35 76.16 76.63 66.95 76.82
Win/tie/loss 2/19/1 2/19/1 0/7/15 2/20/0

Table 7. Empirical results comparing predictive accuracy using ENN, AllKnn, DROP5, and AllKnnDrop5 pre-

pruning with CN2.

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

79

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5

Iris 95.33 94.00 94.67 94.01 94.67

Voting 95.10 95.32 95.79 93.25 95.32
Vowels 92.68 - 88.87 - 89.25 -85.97 -89.63

Heart Cleveland 77.00 77.01 75.32 -71.01 75.01

Glass 67.14 62.85 64.77 -52.37 65.70

Liver disorders 65.29 61.18 62.00 -57.05 65.23

Wine 97.64 95.28 96.46 -88.83 97.64

Pima Indians diabetes 67.63 68.29 68.37 68.56 67.70

Promoters 86.00 92.00 88.00 -67.00 87.00

Hepatitis 80.67 80.67 80.66 - 52.00 80.67
Vehicle 70.35 68.47 - 66.55 65.36 ــ 67.62 - ــــ

Pole-and-cart 61.87 62.18 + 65.49 58.81 64.24
Blood transfusion service 73.92 +79.19 + 77.84 74.87 + 77.34

E-coli 84.76 85.75 85.46 83.02 86.35

Soybean 91.00 87.67 87.66 -82.67 88.33

ZOO 96.00 -89.00 93.00 - 89.00 93.00
Yeast 52.97 + 57.56 +58.25 -53.99 + 56.83

Led creator 72.60 72.40 72.60 -69.40 72.80

Vertebral column 82.91 81.60 81.93 81.30 82.90

Ionosphere 92.56 91.42 91.71 - 77.42 90.56
Wave 81.84 82.18 + 83.26 - 79.06 + 82.82

Balance scale 78.06 +81.13 80.97 77.75 81.62

Average 80.15 79.73 80 73.76 80.14

Win/tie/loss 3/17/2 4/16/2 0/8/14 3/17/2

Table 8. Empirical results comparing predictive accuracy using ENN, AllKnn, DROP5, and AllKnnDrop5

pre-pruning with RISE.

Table 9 clearly shows that applying ENN, AllKnn, DROP5, and AllKnnDrop5 prior to

PRISM did not statistically affect the predictive accuracy on 11, 14, 9, and 15 datasets,

respectively. On other hand, the results reveal that applying ENN, AllKnn, and AllKnnDrop5

yielded statistically significant increases on 9, 7, and 6 datasets, respectively. Applying DROP5

still produced the worst results, and is not recommended as a pre-pruning method for PRISM rule

induction.

Based on the previous results, we observed that applying DROP5 yielded poor results for

all investigated rule-induction methods in terms of predictive accuracy. Thus, we focused more on

the results achieved by the other instance-reduction methods. Table 10 summarizes the

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

80

Table 9: Empirical results comparing predictive accuracy using ENN, AllKnn, DROP5, and AllKnnDrop5 pre-

pruning with PRISM.

characteristics of the different datasets used in our experiments. The “total attributes” column

specifies the summation of discrete and numerical attributes for a certain dataset, while the

“missing attributes?” column specifies whether the dataset had attributes with missing values. We

study the application of ENN, AllKnn, and AllKnnDrop5 to different rule-induction methods by

summarizing the statistically significant increase or decrease in predictive accuracy for each

dataset in the “No. wins/losses” column, which subtracts the number of datasets that had a

statistically significant decrease in predictive accuracy from the number of datasets with a

statistically significant increase. We then sorted the datasets accordingly. We observed that, for

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5

Iris 91.40 88.20 88.80 -79.20 88.80

Voting 92.50 + 95.50 + 95.70 93.10 + 96.20

Vowels 52.40 50.70 51.10 -42.40 51.10

Heart Cleveland 68.00 + 74.00 + 73.90 -62.70 + 72.40

Glass 43.90 47.20 48.70 -32.90 48.30

Liver disorders 47.90 + 56.90 53.60 51.20 52.40

Wine 86.30 83.90 83.90 - 69.80 86.30

Pima Indians diabetes 62.80 63.20 64.00 60.40 63.40

Promoters 73.00 77.00 74.00 - 52.00 72.00

Hepatitis 69.30 78.70 77.30 + 79.30 74.60

Vehicle 58.70 57.60 59.30 - 50.00 59.30

Pole-and-cart 52. 50 + 56.20 + 56.60 48.70 55.00

Blood transfusion service 71.70 76.4 72.70 69.20 + 73.20

E-coli 73.30 + 79.00 + 78.40 69.60 + 78.40

Soybean 79.50 - 73.90 - 73.40 - 56.30 -74.20
ZOO 92.00 - 84.00 88.00 -85.00 87.00

Yeast 43.80 + 49.30 +46.40 41.70 46.70

Led creator 71.70 72.40 71.60 67.40 72.10

Vertebral column 73.40 + 78.00 74.20 75.40 75.50

Ionosphere 86.90 87.50 89.30 - 53.30 88.80

Wave 59.30 +63.10 +63.10 - 54.30 + 63.50

Balance scale 62.70 + 72.10 + 73.00 -52.30 +73.00

Average 69.55 71.13 70.77 61.19 70.55

Win/tie/loss 9/11/2 7/14/1 1/9/12 6/15/1

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

81

each dataset, if one or more of the combinations of an instance-reduction method and rule-

induction method resulted in a statistically significant increase in predictive accuracy then none of

the combinations resulted in a statistically significant decrease, and vice versa. In addition, we

noticed that the best results were achieved with datasets with a low number of total attributes with

respect to the number of instances. On other hand, we observed that the “Heart Cleveland” and

“Voting” datasets had statistically significant increases even though they had a high number of

attributes with respect to number of instances. The cause for this may have been the presence of

missing values for certain attributes in these datasets.

5.3 Conclusion

In our experiments, we investigated preceding three different types of rule induction with

instance-reduction methods. The search strategies used by the three algorithms varied in terms of

both type (greedy or beam search) and direction (general-to-specific or specific-to-general). We

highlighted several instance-reduction techniques, and applied them as pre-processing. Our

experiments show that for most datasets, pruning the training set using AllKnn, ENN, or

AllKnnDrop5 significantly reduced the number of rules generated by CN2, RISE, and PRISM,

without adversely affecting the predictive performance.

82

ID# Datasets No. of

examples

No. of

classes
Con.

Attributes
Disc.

attributes
Total

attributes

Missing
attributes?

No. wins/

losses

No. of attributes/

No. of examples

3 Vowels 528 11 10 0 10 n -3 0.0189

15 Soybean 307 9 0 35 35 y -3 0.114

11 Vehicle 848 4 18 0 18 n -2 0.0212

16 Zoo 101 7 1 15 16 n -2 0.1584

20 Ionosphere 352 2 34 0 34 n -2 0.0966

1 Iris 150 3 4 0 4 n 0 0.0267

5 Glass 214 7 9 0 9 n 0 0.0421

7 Wine 178 3 13 0 13 n 0 0.073

8 Pima Indians diabetes 768 2 8 0 8 y 0 0.0104

9 Promoters 106 2 0 57 57 n 0 0.5377

10 Hepatitis 155 2 6 13 19 y 0 0.1226

18 Led creator 1000 10 0 7 7 n 0 0.007

6 Liver disorders 345 2 6 0 6 n 1 0.0174

19 Vertebral column 310 2 6 0 6 n 1 0.0194

2 Voting 435 2 0 16 16 y 3 0.0368

4 Heart Cleveland 303 4 7 6 13 y 3 0.0429

12 Pole-and-cart 3481 2 4 0 4 n 4 0.0011

13 Blood transfusion service 748 2 5 0 5 n 4 0.0067

14 E-coli 336 8 7 0 7 n 4 0.0208

22 Balance scale 626 3 0 4 4 n 4 0.0064

21 Wave 5000 3 21 0 21 n 6 0.0042

17 Yeast 1484 10 8 0 8 n 8 0.0054

Table 10: Results from application of ENN, AllKnn, and AllKnnDrop5 as pre-pruning techniques with CN2, RISE, and PRISM algorithms.

83

Chapter 6: Instance-Reduction Method based
on Ant Colony Optimization

This chapter investigates a new instance-reduction method based on ACO. Section 6.1

describes the proposed method in detail. In Section 6.2 we investigate the performance of the new

method by applying the k-NN classification method, and compare the results of the experiments

conducted with those obtained using other instance-reduction methods. In Section 6.3, we present

the analysis of the results achieved by preceding the three different types of rule induction with

the new instance-reduction method based on ACO, in terms of predictive accuracy and number of

generated rules. Section 6.4 presents our conclusions.

The k-NN classification enables classification of unknown instances by using a set of

classified training instances. In order to build an efficient k-NN classifier, two principle objectives

have to be reached:

1. Achieve high predictive accuracy, and

2. Reduce the set of instances.

Instance-reduction methods are used to find suitable representative instances from data,

which can help in reducing the size of the retained instances. This problem is classified as an NP-

hard problem (Babu & Murty, 2001), which means that there is currently no polynomial algorithm

able to find an optimal solution. In Section 2.4.1, we mentioned different kinds of instance-

reduction methods that provide an acceptable solution in reasonable time.

84

Recently, ACO has been successfully applied in solving different types of combinatorial

optimization problems. ACO simulates the natural behaviour of ants, especially their mechanisms

of adaptation and cooperation. The basic idea of our proposed algorithm is to retain the internal

instances from each class to smooth the decision boundaries by filtering out near-border instances

from the training set, as these instances are a major source for overfitting. Furthermore, we

concentrate on the most important instances using the predictive accuracy for the original training

set as a fitness function. In our proposed approach, we use the ACO principle in instance reduction.

An ant will decide whether to select the instance as part of its subset. We consider the training set

as a weighted graph with connected nodes where the set of nodes (N) represents the instances and

the set of edges represents the distance between pairs of nodes. Moreover, each ant incrementally

constructs a solution from an original training set. The selected instances will be training set for

the k-NN classifier. Hereinafter, we call our proposed algorithm ACO-IR.

6.1 ACO-IR

This section describes our proposed ACO-IR method. The main idea in our proposed

method is that each ant constructs a candidate reduced set from the original training set. After an

ant has completed its tour, the fitness of the reduced set is calculated by classifying (using the k-

NN algorithm) all instances in the original training set and checking the predictive accuracy. Figure

14 describes the framework for our proposed approach.

85

Figure 14. Framework for ACO-IR.

In our method, each ant starts by randomly choosing one instance from each class, and then

searching for the instances to be selected. Selection of the instance is based on two parameters:

1. The local heuristic, which is the distance between the candidate instance at time t

and the nearest chosen instance at that time with a different class, which represent

the heuristic desirability of choosing instance j when we have selected certain

instances.

86

2. The pheromone level associated with an instance.

In our approach, the basic ACO algorithm is used. Figure 15 describes the ACO-IR method.

Figure 15. ACO-IR algorithm.

The main factors involved in our ACO-IR method are setting up initialization of pheromone

values, selecting subset of instances (generation of solutions), heuristic function, fitness evaluation

of the generated solutions, pheromone evaporation, pheromone update, and number of ants. All

these steps for our proposed approach are discussed in the following subsections.

6.1.1 Initialization of Pheromone Values

The presence of pheromone values is the basic component of ACO. It is initialized with

some small random values. In our approach, the pheromone is attached to each instance in the

training set. The pheromone values on all instances are initialized with same amount of

pheromone. In this way, no instance is preferred over other instances by the first ant. The initial

pheromone is calculated using Equation 18:

87

µi (1) =
𝟏

𝑁
 (18)

Where

N is the total number of instances.

µi (1) is initial pheromone for the ith instance.

6.1.2 Selecting Subset of Instances (Generation of Solutions)

In our method, each ant starts by randomly choosing one instance from each class. It then

chooses the instances according to their probability. We generate a “bootstrap dataset” by sampling

instances from the original training set with a replacement of the same size as our original dataset.

As a result, some instances may appear more than once in a given bootstrap dataset, and some not

at all.

An ant uses two components to calculate the probability of choosing an instance from set

of instances. The first component is the amount of pheromone present in the instance, and second

is the heuristic describing the worth of the instance. The probability with which the ant chooses

instance i as the next instance is defined by:

 P𝑖 = (Ħ𝑖 ∗ µ𝑖(t))/(∑ Ħ𝑗 ∗
a

𝑗=1
µ𝑗(t)) (19)

Where:

𝑃𝑖 is the probability that instance i is selected.

Ħ𝑖(𝑜𝑟 𝑗) is the heuristic value associated with instance i (or j).

µ𝑖(𝑜𝑟𝑗)(𝑡) is the amount of pheromone associated with instance i (or j) at iteration t.

a is the total number of instances.

88

The process by which the ant selects instances is repeated for, at most, a predefined number

of ants.

6.1.3 Heuristic Function

The heuristic function indicates the quality of an instance. Its value greatly influences the

ant’s decision to move and select the next instance to be retained in the reduced set. A good

heuristic function is very helpful in solving problems using ACO. In our proposed algorithm, we

choose to retain inner instances that are far from enemy instances (instances with a different class).

We use the distance between instances and its nearest enemy in the reduced set. This heuristic can

be calculated using Equation 20:

Ħi = MinEnemy (d𝑖(t)) (20)

Where:

Ħi is the heuristic value associated with instance i.

di(t) is the distance between instance i and the instances in the reduced set at time t.

6.1.4 Fitness Function

The fitness function helps to identify the worth of selected instances in a reduced set. We

choose to classify the instances in the original training set using the reduced set (by applying the

k-NN algorithm), and calculate the predictive accuracy accordingly.

89

6.1.5 Pheromone Updating

The pheromone values are updated after each ant completes it tour, so that future ants can

make use of this information in their search. The amount of pheromone in each instance selected

in the current reduced set by each ant is updated according to equation 21:

µi(t+1) = (1 − α) ∗ µ𝑖(t) + (1 −
1

1 +(Q(t)– Q(t−1))
) ∗ µ𝑖(t) (21)

Where:

µi (t) is the pheromone level of instance at time t.

Q (t) is the quality of the selected instance to classify the instances in the original set at iteration t.

α is the evaporation rate (we choose 0.1 in our method).

Using Equation 21, the pheromone levels are updated for the instances by increasing the

pheromone for the selected instances in the reduced set if their selection enhances the quality

compared to the previous ant, and vice versa (the quality of selected instances is computed using

the fitness function mentioned in 6.1.4). If these instances are good, they become more attractive

for future ants and more likely to be chosen. Furthermore, the pheromone values decrease for

unselected instances using Equation 22.

µi (t+1) = (1-α) * µi (t) (22)

Where:

α is the evaporation rate (we choose 0.1 in our method).

90

6.1.6 Number of Ants

Selecting the number of ants to be used in ACO is one of the most important factors in this

method. We think that the higher this value is, the better the results that can be expected, since the

more ants that are used the more likely it is that the most important instances are kept. In our

method, we investigate different values for the number of ants, starting from 250 ants and repeating

the experiments by increasing by 250 ants each time, until we reach 1,250 ants. Below, we analyse

the results obtained to consider the effect of varying the size of the ants.

6.2 Experimental Results for Instance Reduction using the ACO Algorithm

We investigated using the proposed algorithm as an instance-reduction method and

compare it to the k-NN algorithm (Cover & Hart, 1967) and other instance-reduction methods.

Each test consisted of 10 trials, each of which used one of 10 partitions of the data randomly

selected from the datasets – i.e., 10-fold cross-validation (Kohavi, 1995). For each trial, 90% of

the training instances were used for the training set, subset S was determined using each reduction

technique (except for the k-NN algorithm, which retains all instances), and the remaining 10% of

the instances were classified using only the instances remaining in S. The results were compared

using a statistical paired t-test with confidence of 0.05. For each instance-reduction method, we

counted the number of datasets in which the predictive accuracy was statistically improved (win)

or statistically reduced (loss).

Table 11 compares the predictive accuracy using the k-NN algorithm and different

instance-reduction methods. Our experiments show that there is no statistically significant effects

on predictive accuracy after applying ENN, AllKnn, and AllKnnDrop5 on 13 datasets, and on 15

datasets after applying the ACO-IR method with 250 and 1,000 ants, on 16 datasets with 500 ants,

91

and on 14 datasets with 750 ants. Moreover, ACO-IR with 750, 1,000, and 1,250 ants achieved the

highest number of datasets with a statistically significant increase in predictive accuracy. On the

other hand, there was a statistically significant decrease after applying ENN, AllKnn,

AllKnnDrop5, and ACO-IR with 250 ants on five datasets, and on two datasets when applying the

ACO-IR method with 500 and 750 ants. There was a statistical decrease in predictive accuracy on

only one dataset when using the ACO-IR method with 1,000 and 1,250 ants. It is clear that applying

the DROP5 method achieved the worst results. When using DROP5, there was a statistically

significant increase in predictive accuracy for only one dataset. Furthermore, for nine of the 22

datasets, using DROP5 led to a statistically significant decrease.

We can see that the average predictive accuracy after applying the ACO-IR method with

1,000 and 1,250 ants is the highest among the other instance-reduction methods, and the

performance of ACO-IR is improved when increasing the number of ants used. However, from a

certain threshold on, a flat-maximum effect is reached; increasing the number of ants only results

in more execution time and no significant increase in predictive accuracy.

Another most interesting point pertains to the E-coli dataset, wherein there was a serious

negative impact on the prediction accuracy after applying all instance-reduction methods except

for the ACO-IR method. This means that applying ACO-IR yielded better results than the other

methods did.

92

Table 11. Empirical results comparing prediction accuracy using ENN, AllKnn, DROP5, AllKnnDROP5, and ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants) pre-

processing with k-NN.

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 ACO-IR(250) ACO-IR(500) ACO-IR(750) ACO-IR(1000) ACO-IR(1250)

Iris 95.33 96.00 94.67 96.00 95.33 94.00 94.67 94.67 94.67 94.00

Voting 95.35 95.35 95.35 94.00 95.12 96.05 96.05 96.05 96.51 96.55

Vowels 96.79 92.12 - 93.65 - 90.00 - 93.08 - 93.46 - 94.62 - 96.15 95.77 95.77

Heart Cleveland 79.00 79.67 81.00 75.33 80.00 77.33 79.33 77.33 78.33 79.00

Glass 69.52 60.95 - 61.90 - 60.48 - 62.86 - 66.19 69.05 67.62 70.95 70.50

Liver disorders 62.06 57.35 60.29 60.59 60.88 60.29 59.12 60.59 61.18 61.50

Wine 95.88 93.53 94.12 96.47 94.12 95.88 95.29 95.88 96.47 96.00

Pima Indians diabetes 73.29 71.18 - 73.95 70.26 - 72.24 72.63 70.92 - 71.32 70.92 - 71.00 -

Promoters 92 93.00 94.00 74.00 - 94.00 95.00 93.00 94.00 94.00 95.00

Hepatitis 78.00 80.00 80.00 77.00 79.33 80.67 79.33 82.00 + 82.67 + 82.67 +

Vehicle 70.36 66.55 - 66.19 - 63.93 - 67.26 - 70.92 70.63 71.00 + 71.20 + 71.4 +

Pole-and-cart 58.59 60.29 60.20 56.90 57.61 57.00 58.39 59.20 60.20 60.29

Blood transfusion service 72.84 78.38 + 77.70 + 70.95 76.49 + 70.41 - 73.65 72.16 73.24 73.65

E-coli 79.39 13.94 - 13.94 - 15.76 - 13.94 - 82.73 + 82.73 + 81.52 + 81.21 + 81.52 +

Soybean 92.33 89.33 90.00 76.67 - 90.33 - 87.00 - 89.00 86.33 - 88.00 89.33

ZOO 92.00 88.00 89.00 - 91.00 90.00 93.00 94.00 94.00 94.00 94.00

Yeast 50.54 56.15 + 56.82 + 53.65 + 53.65 + 52.64 - 54.66 + 53.00 + 52.90 + 53.00 +

Led creator 66.60 72.20 + 71.80 + 68.10 72.00 + 71.10 - 70.60 + 71.00 + 71.22 + 71.80 +

Vertebral column 79.03 77.42 79.68 81.94 78.06 70.25 78.39 73.00 - 78.71 78.39

Ionosphere 64.00 64.00 64.00 38.57 - 64.00 63.50 64.00 63.90 64.00 63.90

Wave 80.26 81.84 + 82.08 + 80.88 82.12 + 81.84 + 82.28 + 82.40 + 82.40 + 82.28 +

Balance scale 83.23 82.58 82.58 78.06 - 83.06 81.61 83.06 80.65 84.00 84.56

Average 78.47 74.99 75.59 71.39 75.25 77.89 78.76 78.35 79.21 79.37

Win/tie/loss 4/13/5 4/13/5 1/12/9 4/13/5 2/15/5 4/16/2 6/14/2 6/15/1 6/15/1

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

93

Table 12. Empirical results comparing the percentage of instances retained using different instance-reduction methods.

Datasets ENN

(%)

AllKnn

(%)

DROP5

(%)

AllKnnDrop5

(%)

ACO-IR (250)

(%)

ACO-IR (500)

(%)

ACO-IR (750)

(%)

ACO-IR

(1000) (%)

ACO-IR (1250)
(%)

Iris 85 84 12 84 85 81 80 70 68
Voting 86 85 11 85 87 86 80 78 75
Vowels 86 86 42 87 90 89 86 82 81

Heart Cleveland 75 66 16 69 81 78 71 55 53
Glass 64 59 23 65 91 83 73 54 50
Liver disorders 59 46 26 54 74 73 61 53 51
Wine 85 85 10 85 93 86 78 71 71
Pima Indians diabetes 69 60 19 65 78 77 71 67 65

Promoters 88 86 16 86 99 89 85 78 76
Hepatitis 70 69 11 67 93 86 75 61 60
Vehicle 66 57 24 64 88 82 77 68 64
Pole-and-cart 72 60 29 68 77 68 62 57 55
Blood transfusion service 71 60 10 63 70 68 62 58 55
E-coli 78 70 13 72 78 76 73 67 64
Soybean 82 79 23 81 87 86 79 73 70
ZOO 82 81 15 82 97 95 77 60 58
Yeast 53 42 23 49 71 65 49 39 35
Led creator 67 65 11 66 83 63 58 52 50
Vertebral column 73 67 18 70 68 65 61 56 56
Ionosphere 75 73 9 77 73 74 71 68 67
Wave 83 72 17 76 81 76 70 65 65
Balance scale 77 72 10 73 74 83 74 70 68

Average 75 69 18 72 83 79 72 64 62

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

94

Table 12 shows the reduction in the number of instances after applying different instance-

reduction methods. It is clear that applying DROP5 yielded the greatest reduction in the number

of instances. Furthermore, when using ACO-IR, the reduction in the number of instances increased

as more ants were used. We can see that ACO-IR (1,250) achieved the highest reduction among

all methods except for DROP5. Furthermore, we there was no major difference in the amount of

instance reduction when we increased the number of ants from 1,000 to 1,250.

From the above results, it is clear that applying the ACO-IR method achieved the best outcome

in terms of predictive accuracy and the amount of instance reduction, compared to the other

instance-reduction methods. Furthermore, the influence of increasing the number of ants used

reached a flat-maximum effect.

Usually, the learning process is carried out just once on the training set, so it seems not to

be a very important evaluation method. However, if the learning process takes too long it can

become impractical for real applications. Table 13 shows a comparison of the average elapsed time

(in minutes) when using ACO-IR for different numbers of ants. The average elapsed time was

estimated using 10-fold cross-validation and computing the average total time taken by each fold.

The experiments were conducted on an 8 GB machine and the CPU specification was i5 with speed

equal to 2.5 GHz.

From Table 13, it is clear that for each dataset the average elapsed time increased as the

number of ants increased. Furthermore, the average elapsed time was affected by the number of

95

instances and number of attributes for each dataset. We can observe that datasets with a large

number of instances and attributes takes longer than other datasets.

Datasets ACO-IR (250) ACO-IR (500) ACO-IR (750) ACO-IR (1000) ACO-IR (1250)

Iris 0.25 0.40 0.75 0.99 1.17

Voting 21.74 31.61 68.68 92.56 109.41

Vowels 20.96 33.75 62.24 83.88 99.15

Heart Cleveland 5.88 9.47 17.36 22.22 26.26

Glass 1.24 2.00 3.77 4.81 5.69

Liver disorders 3.75 6.05 10.83 14.88 17.59

Wine 1.18 1.90 3.49 4.62 5.42

Pima Indians diabetes 52.15 83.98 157.85 210.96 249.36

Promoters 1.39 2.24 4.13 5.51 6.51

Hepatitis 1.38 2.22 4.25 5.64 6.67

Vehicle 116.97 188.36 352.93 475.65 562.23

Pole-and-cart 781.25 1258.05 2358.99 3179.24 3757.96

Blood transfusion service 22.93 36.92 68.20 91.26 107.87

E-coli 3.81 6.14 11.70 15.37 18.17

Soybean 19.01 30.61 56.89 76.33 90.22

ZOO 0.47 0.76 1.46 1.95 2.29

Yeast 390.63 629.03 1179.50 1589.62 1878.98

Led creator 114.94 185.09 354.44 477.68 564.64

Vertebral column 2.61 4.21 7.38 9.81 11.59

Ionosphere 19.96 32.14 59.41 79.18 93.59

Wave 1718.75 2767.71 5189.79 6994.32 8267.52

Balance scale 20.23 32.58 61.13 82.41 97.41

Table 13: Comparison of elapsed time (in minutes) when using ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants).

Figure 16. Comparing elapsed time for ACO-IR with size of training set.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

ACO-IR (250) ACO-IR (500) ACO-IR (750) ACO-IR (1000) ACO-IR (1250)

N
o

. o
f in

stan
ces

Elapsed time (minutes)

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

96

Figure 16 shows the comparison between the elapsed time and number of instances in training

set. It is clear the elapsed time is increased as the number of instances is increased.

6.3 Pruning Classification Rule using ACO-IR

We will now investigate the new method for instance reduction using ACO-IR as a pre-

pruning method before applying different rule-induction methods with different numbers of ants.

We also compare the results achieved for preceding rule induction with other instance-reduction

methods in terms of the predictive accuracy and number of generated rules.

Table 14 shows the results obtained for CN2 and applying the pre-pruning methods with

respect to the predictive accuracy. Our results show that there was no statistically significant

decrease on predictive accuracy after applying AllKnnDrop5 and ACO-IR with different numbers

of ants. Furthermore, there was a statistically significant increase in predictive accuracy for 4, 5,

7, 11, and 2 datasets when using ACO-IR (250), ACO-IR (500), ACO-IR (750), ACO-IR (1,000

or 1,250), and AllKnnDrop5, respectively, which means that ACO-IR with 1,000 and 1,250 ants

achieved the best result of the methods. Moreover, we can conclude that preceding CN2 with

instance-reduction methods did not adversely affect the predictive accuracy on most datasets.

However, when using DROP5, there was no statistically significant increase in predictive accuracy

for any of the datasets. Furthermore, for 15 of the 22 datasets, using DROP5 led to a statistically

significant decrease.

97

Table 15 summarizes the effect of instance selection (pruning training data) on generalization

of the RISE algorithm. Our experiments show that the predictive accuracy did not statistically

decrease after applying ACO-IR with 750, 1,000, and 1,250 ants. Furthermore, ACO-IR with 1,000

and 1,250 ants yielded statistically significant increases in predictive accuracy on six datasets,

which is the highest achievement among the methods. It is clear that the achievement of ACO-IR

improved as the number of ants increased.

Table 16 clearly shows that applying AllKnn, AllKnnDrop5, and ACO-IR (1,000) before

PRISM yielded a statistically significant decrease in the predictive accuracy for only one dataset,

and when applying ACO-IR (1,250), none of the datasets were adversely statistically affected. The

results reveal that applying ACO-IR (1,000) and ACO-IR (1,250) gave the best result regarding

the number of datasets where the predictive accuracy had a statistically significant increase.

Moreover, we observed that the predictive accuracy for ACO-IR was improved as the number of

ants used increased.

 From the previous results, we can see that applying ACO-IR is the safest method among

the other instance-reduction methods in terms of statically decreasing in predictive accuracy.

Figure 17 shows the amount of reduction in the number of rules using different instance-reduction

methods for each rule-induction approach. It is clear that the most reduction rate was achieved by

using DROP5 for all rule-induction methods, followed by ACO-IR (1000) and ACO-IR (1,250).

Furthermore, when using ACO-IR we noticed that the reduction in the number of generated rules

increased by increasing the number of ants used. However, there was no major difference in the

amount of reduction when we increased the number of ants from 1,000 to 1,250

98

Figure 17. Amount of reduction in number of generated rules using different instance-reduction methods.

6.4 Conclusion

We proposed a new method for instance reduction based on the principles of ACO, and

called this ACO-IR. We compared ACO-IR with various instance-reduction methods using k-NN

algorithm. Moreover, we investigated the effect of varying the number of ants when using the

ACO-IR method. The results of our experiments reveal that the ACO-IR with 1,250 and 1,000

ants achieved the best results in terms of predictive accuracy and the amount of instance reduction.

We then investigated preceding three different types of rule induction with ACO-IR. Our

experiments show that for most datasets, pruning the training set using ACO-IR significantly

reduced the number of rules generated by CN2, RISE, and PRISM, without adversely affecting

predictive performance. Furthermore, ACO-IR improved in terms of its predictive accuracy and

reduction of generated rules as the number of ants increased. The results show that using ACO-IR

with 1,000 and 1,250 ants achieved the best results of the instance-reduction methods in terms of

reduction in generated rules, and predictive accuracy, for the three rule-induction methods.

43%
40%38%

45%
42%40%

60%
55%54%

67%66%
63%

76%
71%71%

37%

28%27%

54%53%53%
50%

46%

55%
52%

60%

51%

0%

10%

20%

30%

40%

50%

60%

70%

80%

A
xi

s
Ti

tl
e

ACO-IR(1250) ACO-IR(1000) ACO-IR(750) ACO-IR(500) ACO-IR(250)

Drop5 AllKnnDrop5 AllKnn ENN

CN2RISEPRISM

99

However, there was no major improvement when increasing the number of ants from 1,000 to

1,250, and a flat-maximum effect appeared to be reached.

100

Table 14: Empirical results for predictive accuracy using ENN, AllKnn, DROP5, AllKnnDROP5, and ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants) pre-

pruning with CN2.

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 ACO-IR

(250)
ACO-IR

(500)
ACO-IR

(750)
ACO-IR

(1,000)
ACO-IR

(1,250)
Iris 89.98 92.00 92.67 80.67 93.34 92.67 + 94.00 + 93.33 + 93.32 + 94.00 +

Voting 95.34 95.10 95.33 85.35 95.57 94.19 95.11 94.64 95.34 95.11

Vowels 67.11 65.97 66.75 85.07 67.31 70.00 67.90 69.61 + 71.17 + 71.17 +

Heart Cleveland 80.66 76.66 77.33 71.66 79.34 75.00 81.68 76.33 81.34 81.68

Glass 64.76 58.05 61.98 51.92 66.22 66.66 65.23 63.82 68.58 + 68.58 +

Liver disorders 66.77 64.11 65.64 60.3 66.52 62.11 63.21 63.54 63.82 63.21

Wine 91.77 94.11 93.52 70.00 95.28 91.76 95.28 + 94.10 + 95.28 + 95.28 +

Pima Indians diabetes 70.30 73.16 74.70 73.40 72.10 72.76 72.64 73.03 73.95 73.03

Promoters 85.00 81.00 80.00 63.00 80.00 81.00 86.00 81.00 85.00 86.00

Hepatitis 78.65 80.00 80.00 52.67 79.34 82.65 + 79.32 77.33 84.00 + 82.65 +

Vehicle 57.85 60.10 60.71 54.99 60.10 60.37 + 58.22 60.40 + 61.00 + 61.00 +

Pole-and-cart 61.68 63.88 66.24 62.56 63.51 62.20 64.80 + 64.90 + 64.70 + 64.90 +

Blood transfusion service 75.68 76.61 76.35 73.11 75.96 73.12 76.08 74.70 76.60 76.61

E-coli 79.10 83.31 80.91 73.34 80.90 79.99 79.99 80.56 80.60 80.90

Soybean 86.32 82.67 83.01 63.00 83.32 81.33 84.65 85.67 85.00 85.67

ZOO 92.00 87.00 90.00 81.00 89.00 93.00 94.00 + 93.00 94.00 + 94.00 +

Yeast 48.98 55.47 56.43 51.82 56.56 51.09 + 49.66 51.41 + 51.09 + 51.09 +

Led creator 72.30 72.30 71.30 68.90 71.90 72.70 71.30 72.60 72.40 72.70

Vertebral column 80.96 83.21 81.28 81.28 82.24 78.39 81.62 81.93 82.57 + 82.24+

Ionosphere 89.43 85.71 86.56 53.71 85.71 89.52 92.00 91.13 91.42 91.13

Wave 69.70 70.38 70.74 67.96 71.38 70.38 71.64 + 72.00 + 72.10 + 72.00 +

Balance scale 75.30 74.70 74.34 67.10 74.34 74.19 76.30 76.19 76.51 76.30

Average 76.35 76.16 76.63 67.86 76.82 76.87 77.30 76.87 78.17 78.15

Win/tie/loss 2/19/1 2/19/1 0/7/15 2/20/0 4/18/0 5/17/0 7/15/0 11/11/0 11/11/0

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

101

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 ACO-IR

(250)
ACO-IR

(500)
ACO-IR

(750)
ACO-IR

(1,000)
ACO-IR

(1,250)

Iris 95.33 94.00 94.67 94.01 94.67 95.33 94.00 95.33 94.66 95.33

Voting 95.10 95.32 95.79 93.25 95.32 94.87 95.10 95.32 95.56 95.10

Vowels 92.68 88.87 89.25 85.97 89.63 90.01 90.77 92.32 92.69 92.69

Heart Cleveland 77.00 77.01 75.32 71.01 75.01 76.33 77.65 74.35 74.34 75.32

Glass 67.14 62.85 64.77 52.37 65.70 65.72 69.05 64.75 68.10 67.05

Liver disorders 65.29 61.18 62.00 57.05 65.23 59.70 62.65 61.47 63.52 63.52

Wine 97.64 95.28 96.46 88.83 97.64 95.28 97.64 96.46 96.46 95.28

Pima Indians diabetes 67.63 68.29 68.37 68.56 67.70 71.71 + 71.32 + 72.25 + 72.10+ 72.25 +

Promoters 86.00 92.00 88.00 67.00 87.00 92.00 + 94.00 + 92.00 + 94.00+ 94.00+

Hepatitis 80.67 80.67 80.66 52.00 80.67 80.00 78.01 + 78.67 79.35 79.35

Vehicle 70.35 68.47 66.55 65.36 67.62 69.88 70.71 70.00 70.50 70.71

Pole-and-cart 61.87 62.18 65.49 58.81 64.24 60.50 62.46 62.10 62.40 62.46

Blood transfusion service 73.92 79.19 77.84 74.87 77.34 70.41 71.74 72.03 72.57 73.92

E-coli 84.76 85.75 85.46 83.02 86.35 85.76 86.35 86.37 + 86.97 + 86.36+

Soybean 91.00 87.67 87.66 82.67 88.33 84.67 85.65 89.66 88.33 89.66

ZOO 96.00 89.00 93.00 89.00 93.00 94.00 94.00 94.00 94.00 94.00

Yeast 52.97 57.56 58.25 53.99 56.83 55.14 + 57.24 + 52.03 57.03 + 57.24 +

Led creator 72.60 72.40 72.60 69.40 72.80 72.80 71.90 73.00 + 73.10 + 73.00 +

Vertebral column 82.91 81.60 81.93 81.30 82.90 76.43 - 79.04 - 81.60 82.25 82.90

Ionosphere 92.56 91.42 91.71 77.42 90.56 90.27 90.57 90.27 90.01 90.01

Wave 81.84 82.18 83.26 79.06 82.82 80.40 83.00 82.80 83.50 + 83.00+

Balance scale 78.06 81.13 80.97 77.75 81.62 77.60 78.86 78.38 78.38 78.86

Average 80.15 79.73 80.00 73.76 80.14 79.04 80.08 79.78 80.45 80.55

Win/tie/loss 3/17/2 4/16/2 0/8/14 3/17/2 3/18/1 4/17/1 4/18/0 6/16/0 6/16/0

Table 15: Empirical results for predictive accuracy using ENN, AllKnn, DROP5, AllKnnDROP5, and ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants) pre-

pruning with RISE.

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

102

Table 16: Empirical results for predictive accuracy using ENN, AllKnn, DROP5, AllKnnDROP5, and ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants) pre-

pruning with PRISM.

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 ACO-IR

(250)
ACO-IR

(500)
ACO-IR

(750)
ACO-IR

(1000)
ACO-IR

(1250)

Iris 91.40 88.20 88.80 79.20 88.80 100.0 + 89.30 100.0 + 100.0 + 100.0 +

Voting 92.50 95.50 95.70 93.10 96.20 92.70 93.80 + 93.50 + 94.50 + 93.80 +

Vowels 52.40 50.70 51.10 42.40 51.10 53.00 52.60 53.10 52.60 52.60

Heart Cleveland 68.00 74.00 73.90 62.70 72.40 66.60 71.30 + 68.90 72.20 + 73.90 +

Glass 43.90 47.20 48.70 32.90 48.30 51.50 + 49.00 + 49.00 + 51.10 + 51.50 +

Liver disorders 47.90 56.90 53.60 51.20 52.40 49.10 + 53.00 + 52.70 + 52.90 + 53.00 +

Wine 86.30 83.90 83.90 69.80 86.30 84.89 85.20 85.20 87.50 86.30

Pima Indians diabetes 62.80 63.20 64.00 60.40 63.40 68.90 + 64.00 + 70.30 + 70.30 + 70.30 +

Promoters 73.00 77.00 74.00 52.00 72.00 68.00 70.00 70.00 70.50 72.00

Hepatitis 69.30 78.70 77.30 79.30 74.60 79.90 + 69.90 80.20 + 81.20 + 81.20 +

Vehicle 58.70 57.60 59.30 50.00 59.30 56.43 58.00 59.1.0 59.30 59.30

Pole-and-cart 52. 50 56.20 56.60 48.70 55.00 54.00 + 56.30 + 56.80 + 56.60 + 56.80 +

Blood transfusion service 71.70 76.4 72.70 69.20 73.20 67.50 67.30 - 67.00 - 67.00 - 69.00

E-coli 73.30 79.00 78.40 69.60 78.40 75.40 + 76.60 + 77.20 + 78.10 + 78.40 +

Soybean 79.50 73.90 73.40 56.30 74.20 72.90 - 74.70 - 76.30 76.00 76.60

ZOO 92.00 84.00 88.00 85.00 87.00 90.00 86.20 90.00 90.00 90.00

Yeast 43.80 49.30 46.40 41.70 46.70 38.00 - 51.20 39.00 - 41.00 46.40

Led creator 71.70 72.40 71.60 67.40 72.10 71.70 71.70 71.10 71.30 71.70

Vertebral column 73.40 78.00 74.20 75.40 75.50 71.70 - 77.60 + 76.00 + 77.60 + 76.00 +

Ionosphere 86.90 87.50 89.30 53.30 88.80 87.00 84.30 87.10 87.60 87.00

Wave 59.30 63.10 63.10 54.30 63.50 65.00 + 76.80 + 76.40 + 76.80 + 76.40 +

Balance scale 62.70 72.10 73.00 52.30 73.00 55.00 - 66.30 + 65.30 + 66.50 + 66.50 +

Average 69.55 71.13 70.77 61.19 70.55 69.06 70.23 71.1 71.83 72.21

Win/tie/loss 9/11/2 7/14/1 1/9/12 6/15/1 8/10/4 10/10/2 11/9/2 12/9/1 12/10/0

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center

103

Chapter 7: Discussion and Future Works

7.1 Thesis Summary

In Chapter 2, we introduced the field of machine learning, and provided insights into some

of the learning algorithms that can be used. Furthermore, we reviewed the different kinds of

pruning techniques and explained the advantages of using these to reduce the complexity of

learned classifiers. Our work was concerned with investigating whether new pre-pruning

techniques for rule-induction methods can help in reducing the complexity of rule sets by reducing

the number of generated rules, without adversely affecting the predictive accuracy. ACO is a

relatively new metaheuristic, which means that there is certainly still significant potential for

improvement and development. Chapter 3 discussed the principles of ACO. We described how

ACO mimics the behaviour of real ant colonies, and differentiated between real and artificial ants.

Moreover, we defined the elements related to the ACO method for solving combinatorial

optimization problems. Finally, we reviewed different applications in which ACO achieved

impressive results. In Chapter 4, we formalized our proposed method for reducing the complexity

of the produced rules set from rule-induction methods, taking into consideration the effect on

predictive accuracy. We introduced all the materials required to undertake a series of experiments

to address this proposal.

In Chapter 5, we began by formalizing our proposed technique to precede the rule-

induction method with instance-reduction methods that try to remove border instances, which can

smooth the decision boundaries between different instances. We went on to undertake an empirical

104

study to determine the effect on the complexity of rule sets (roughly represented here by the

number of generated rules) and predictive accuracy. The remainder of Chapter 5 presented the

experiments that were conducted in this study, and analysed their results.

Chapter 6 explained in detail how to apply the concept of ACO as an instance-reduction

method, and presented the experiments used to investigate the performance of the new algorithm.

We then investigated the results obtained from preceding the different types of rule induction with

the new instance-reduction method based on ACO, in terms of predictive accuracy and number of

generated rules.

7.2 Main Findings

The results presented in Chapters 5 and 6 indicate that preceding rule-induction methods

with instance-reduction methods is indeed a promising technique for reducing the generated rule

set without adversely affecting the predictive accuracy. Throughout our experiments, we ensured

that the predictive performance was measured on unseen test data. We did this by applying a 10-

fold stratified cross-validation testing strategy.

The main contributions and findings of this thesis may be summarized as follows:

• Preceding rule-induction methods with instance-reduction methods was found to

significantly reduce the number of generated rules without adversely affecting the

predictive accuracy, and may even improve the accuracy in some cases.

105

• The best results achieved by preceding rule induction with instance-reduction methods

was with datasets that had a low number of total attributes with respect to the number

of instances.

• For each dataset, if one or more of the combinations of instance-reduction and rule-

induction method resulted in statistically significant increases in predictive accuracy,

then none of the combinations resulted in a statistically significant decrease, and vice

versa.

• ACO can be used to solve combinatorial optimization problems, and we succeeded in

designing a novel instance-reduction method based on ACO principles (ACO-IR).

• When applying ACO-IR with different numbers of ants, we observed that better results

are achieved when increasing the number of ants before reaching the flat-maximum

effect.

• When applying ACO-IR, a flat-maximum effect was reached when increasing the

number of ants, at which point there was no major reduction in the number of generated

rules, or improvement in the predictive accuracy. Moreover, we expect that the

predictive accuracy may be adversely affected as the number of ants is increased after

reaching the flat-maximum effect. This may be the cause of overfitting and exaggerated

focus on certain instances in the training set.

Summing up these results, we come to the final conclusion that applying instance reduction

techniques as a pre-pruning process for rule induction reduces the number of rules generated, and

may improve the predictive accuracy in some cases.

106

7.3 Future Work

This section presents several suggestions on how the work presented in this thesis might

be extended. Some of the ideas presented here could not be incorporated in this thesis because the

author did not have the required access to resources or data; however, most of the ideas were left

unaddressed simply due to a lack of time available for the project.

• There are several design decisions and several possible parameters when applying

ACO-IR, which can be used to fine-tune the performance of the algorithm. More

research is needed to better understand the interactions between these, and how each of

them influences the algorithm performance (i.e., the evaporation rate, using another

heuristic function, using pheromone update function, etc.).

• More research is needed to understand the best situation and dataset characteristics for

applying ACO-IR as a pre-pruning process.

• Investigations are needed to understand the effect of preceding different learning

algorithms with the ACO-IR algorithm.

• There is a need to investigate other instance-reduction methods that conduct instance

pruning more carefully, such as c-pruner (Zhao et al., 2003).

• Investigation of the effect of preceding instance-reduction methods with rule induction

on noisy datasets is also highly recommend.

107

References

Aha, D. W., Kibler, D. and Albert, M. K. (1991). “Instance-based learning

algorithm”, Machine Learning, Vol. 6, pp. 37–66.

AlBalas, F. (2000). Developing new feature selection methods for discrete and

continuous class prediction, Unpublished MSc Thesis, Computer science

department, Jordan University.

Angiulli F. (2005). Fast condensed nearest neighbor rule, Technical report,

Proceedings of the 22nd International Conference on Machine Learning, Bonn,

Germany.

Babu, T. R. and Murty, M. N. (2001). "Comparison of genetic algorithm based

prototype selection schemes", Pattern Recognition, Vol. 34, pp. 523–525.

Blanco-Vega, R., Hernández-Orallo, J. and Ramírez-Quintana, M. (2004).

“Analysing the trade-off between comprehensibility and accuracy in mimetic

models”, Lecture Notes in Computer Science. Einoshin Suzuki and Setsuo Arikawa

(eds.). 7th International Conference, Padova, Italy, Vol. 3245, Springer-Verlag,

Berlin. pp. 338–346.

Bonabeau, E., Dorigo, M. and Theraulez, G. (1999). Swarm Intelligence: From

natural to artificial intelligence, Oxford University Press, New York.

Bramer, M. A. (2000). “Inducer: A rule induction workbench for data mining”, in Z.

Shi, B. Faltings and M. Musen (eds), Proceedings of the 16th IFIP World Computer

108

Congress Conf. Intelligent Information Processing, Publishing House of Electronics

Industry, Beijing, pp. 499–506.

Brighton H. and Mellish C. (2002) Advances in instance selection for instance-based

learning algorithms. Data mining and knowledge discovery, vol. 6, no. 2, pp. 153–

172.

Brunk, C. A., and Pazzani, M. J. (1991). An investigation of noise-tolerant relational

concept learning algorithms. Lawrence A. Birnbaum and Gregg C. Collins (eds).

Proceedings of the 8th International Workshop on Machine Learning (ML-91),

Morgan Kaufmann, Evanston, IL, pp. 389–393.

Bullnheimer, B. (1999). Ant Colony Optimization in vehicle routing. Doctoral thesis,

University of Vienna, Jan.

Cendrowska, J. (1987). "PRISM: An Algorithm for Inducing Modular

Rules", International Journal of Man-Machine Studies Vol. 27 No. 4, pp. 349–370.

Cervone, G., Panait, L. A. and Michalski, R. S. (2001). "The development of the

AQ20 learning system and initial experiments", Mieczysław A. Kłopotek,

Maciej Michalewicz and Sławomir T. Wierzchon (eds). Proc. of the 10th Int.

Symposium on Intelligent Information Systems, Poland, pp. 13-29.

Clark, P. and Boswell, R. (1991). "Rule induction with CN2: Some recent

improvement", in Kodratoff, Y. (ed.), Machine Learning – Proceedings of the Fifth

European Conference (EWSL-91), Springer-Verlag, Berlin, pp. 151–163.

Clark, P. and Niblett, T. (1989). "The CN2 induction algorithm", Machine Learning,

Vol. 3, pp. 261–283.

http://www.informatik.uni-trier.de/~ley/db/journals/ijmms/ijmms27.html#Cendrowska87

109

Cohen, W. (1993). “Efficient pruning methods for separate-and-conquer rule

learning systems”, in Bajcsy, R. (ed.), Proceedings of the 13th international joint

conference on Artificial Intelligence, Morgan Kaufmann, Chambery, France, pp.

988–994.

Cohen, W. (1995). "Fast effective rule induction". Armand Prieditis and Stuart J.

Russell. (ed.), Proc. of the 12th Int. Conf. on Machine Learning, Tahoe City, CA, pp.

115–123.

Cohen, W. and Singer Y. (1999). "A simple, fast and effective rule learner", in

Hendler, J. and Subramanian, D. (eds.), Proceedings of the Sixteenth National

Conference on Artificial Intelligence. AAAI/MIT Press, Menlo Park, CA, pp.335–

342.

Colorni, A., Dorigo, M., Maniezzo V. and Trubian M. (1994). "Ant system for job

shopping scheduling", Belgian Journal of Operations Research, Statistics and

Computer Science, Vol. 34 No. 1, pp. 39–53.

Costa, D. and Hertz, A. (1997). "Ants can color graphs", Journal of the Operational

Research Society, Vol. 48, pp. 295–305.

Cover, T. and Hart, P. (1967). "Nearest neighbor pattern classification", in IEEE

Transaction. Volume (13) Issue 1, pp. 21-27.

Dain, O., Cunningham R. and Boyer S. (2004). "IREP++ a faster rule learning

algorithm", in Michael w, Dayal, U., Kamath, C. and Davis, B. (eds.), Proceeding

Fourth SIAM Int. Conf. Data Mining, Lake Buena Vista, FL, pp. 138–146.

Domingos, P. (1994). "The RISE system: Conquering without separating",

Proceedings of the Sixth IEEE International Conference on Tools with Artificial

Intelligence, IEEE Computer Society Press, New Orleans, LA, pp. 704-707.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hendler:Jim.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Subramanian:Devika.html

110

Domingos, P. (1997). A Unifying Approach to Concept Learning, Unpublished PhD

thesis, University of California, Irvine.

Dorigo, M., Maziezzo, V. and Colorni A., (1996). "The Ant System: Optimization

by Colony of cooperating Ants", IEEE Transaction on SML 26(1), pp. 29–41.

Dorigo, M., Birattari, M., Blum, C., Gambardella, L. M., Mondada, F. and Stützle,

T. (eds), Ant Colony Optimization and Swarm Intelligence, 4th International

Workshop, Vol. 3172 of LNCS, Springer-Verlag, Berlin, Germany, pp. 25–36.

Duda R.O., Hart P.E. and D.G. Stork. Pattern classification. Wiley interscience,

2012.

Eibe F. and Ian H. W. (1998). "Generating accurate rule sets without global

optimization", in Shavlik, J. (ed.), Fifteenth International Conference on Machine

Learning, Morgan Kaufmann, pp. 144–151.

El Hindi, K. and Alakhras, M. (2009). “Eliminating border instance to avoid

overfitting”, in Alakhras, A. P. and dos Reis, A. (eds.), Proceeding of Intelligent

Systems and Agents, IADIS Press, Algarve, Portugal, pp. 93–99.

Fayed, H. A. and Atiya A. F. (2009). A novel template reduction approach for the

K-nearest neighbor method. IEEE Transactions On Neural Networks , vol. 20, N. 5,

pp. 890–896.

Freund, Y. and Schapire, R. E. (1997). "A decision-theoretic generalization of on-

line learning and an application to boosting", Journal of Computer and System

Sciences, Vol. 55 No. 1, pp. 119–139.

111

Fürnkranz, J. (1994). FOSSIL: a robust relational learner. In the Proceedings of the

European conference on Machine Learning. pp. 122 – 137. Catania, Italy: Springer-

Verlag.

Fürnkranz, J., Gamberger, D. and Lavrac, N. (2012). Foundations of Rule Learning,

Springer-Verlag, Berlin.

Fürnkranz, J. and Widmer, G. (1994). "Incremental reduced error pruning", in

Cohen. W. and Hirsh H. (eds.), Proceedings of the 11th International Conference on

Machine Learning (ML-94), Morgan Kaufmann, New Brunswick, NJ, pp. 70–77.

Gadodiya, S.V. and Chandak, M.B. (2013). Prototype Selection Algorithms for kNN

Classifier: A Survey. in International Journal of Advanced Research in Computer and

Communication Engineering Vol.2, Issue 12, December 2013.

Galea, M. (2002), Applying Swarm Intelligence to Rule Induction, MS thesis,

University of Edinburgh, Edinburgh, UK.

Gambardella L. M. and Dorigo (1996). "Has SOP: A hybrid ant system for sequential

ordering problem", Technical report 11-97, AAAI Press, CA, pp. 114–119.

Gamberger, D., Lavrac, N. and Dzerski, S (1996). “Noise elimination in inductive

concept learning: A case study in medical diagnosis”, Lecture Notes in Computer

Science, 7th International Workshop, ALT ’96 Sydney, Vol. 1160, Springer-Verlag,

Berlin, pp. 199–212.

Gates, G. W. (1972). “The reduced nearest neighbor rule”, Institute of Electrical and

Electronics Engineers Transactions on Information theory, Vol. 18 No. 3, pp. 431–

433.

http://link.springer.com/search?facet-author=%22Dragan+Gamberger%22

112

Grochowski M. and Jankowski N. (2004), Comparison of instance selection

algorithms. ii. results and comments, LNCS 3070, pp. 580–585

Grudzinski, K. (2008), “EkP: A fast minimization-based prototype selection

algorithm”, Intelligent Information System XVI, Academic Publishing House EXIT,

Warsaw, pp. 45-53

Grudzinski, K., Grochowski, M. and Duch, W (2010). "Pruning classification rules

with reference vector selection methods", Artificial Intelligence and Soft Computing

Vol. 6113, Springer LNCS, pp. 347–354.

Hart, P. E. (1968). "The condensed nearest neighbor rules", Institute of Electrical

and Electronics Engineers Transactions on Information Theory, Vol. 14 No. 3, pp.

515–516.

Kira K. and Rendell L. (1992). A practical approach to feature selection. In

Proceedings of the ninth international workshop on Machine learning, pp. 249–256.

Morgan Kaufmann Publishers Inc., 1992.

Kohavi, R. (1995). “A study of cross-validation and bootstrap for accuracy

estimation and model selection”, in Mellish, C. (ed.), Proceedings of 14th

International Joint Conference on Artificial Intelligence, Morgan Kaufmann. San

Francisco, CA, pp. 1137–1143.

Koller D. and Sahami M. (1996). Toward optimal feature selection. International

Conference on Machine Learning.

Larose, D. (2005). Discovering Knowledge in Data, an Introduction to Data Mining,

1st ed., Wiley-Blackwell.

https://www.google.ae/search?biw=1327&bih=634&tbm=bks&q=inauthor:%22Daniel+T.+Larose%22&sa=X&ved=0ahUKEwjk-emy0ePJAhWEGB4KHblBBnoQ9AgIITAB

113

Maldonado S., Weber R., and Famili F. (2014). "Feature selection for high-

dimensional class-imbalanced data sets using Support Vector Machines,"

Information Sciences, vol. 286, pp. 228–246.

Maloof M. A. and Michalski R. S. (2000). Selecting examples for partial memory

learning. Machine Learning. 41. pp. 27-52.

McClelland, J. L., and Rumelhart, D. E. (1986). Parallel Distributed Processing.

Explorations in the Microstructure of Cognition, Vol. 2: Psychological and

Biological Models, MIT Press, Cambridge, MA.

Michalski, R. S. and Kaufman, K.A. (2001). "The AQ19 system for machine

learning and pattern discovery: A general description and user guide", Reports of the

Machine Learning and Inference Laboratory, MLI 01-2, George Mason University,

Fairfax, VA.

Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N. (1986). The Multi-Purpose

Incremental Learning System AQ15 and its Testing Application to Three Medical

Domains, American Association of Artificial Intelligence, Los Altos, CA, Morgan

Kaufmann, pp. 1041–1045.

Mitchell T. M. (1997). Machine Learning, McGraw-Hill, New York, NY.

Murphy P. M., and Aha D. W. (1994). UCI Repository of Machine Learning

Databases, available via anonymous ftp at ics.uci.edu in the pub/machine-learning-

databases directory.

Nikolaidis K., Wu Q.H. and Goulermas J.Y. (2011), A class boundary preserving

algorithm for data condensation, Pattern Recognition, vol. 44, pp. 704-715.

114

Nilsson, N. J. (1996). Introduction to Machine Learning, available at

http://robotics.stanford.edu/people/nilsson/MLBOOK.pdf.

Olvera-Lopez J.A., Kittler J. and Carrasco-Ochoa J.A. (2010), “A review of instance

selection methods”, Journal of Artificial Intelligence Review, Springer Netherlands,

vol.34, no.2, pp. 133-143.

Othman, O. and Bryant, C. (2013), “Preceding rule induction with instance-

reduction methods”, Perner, Petra (eds.) in Proc. of the 9th International Conference

on Machine Learning and Data Mining in Pattern Recognition, Springer-Verlag,

Berlin, pp. 209–218.

Othman, O., and Bryant, C. (2015). “Pruning classification rules with instance

reduction methods”, International Journal of Machine Learning and Computing,

Vol. 5 No. 3, pp. 187–191.

Othman, O. and El Hindi, K. (2004). "Rule reduction technique for RISE algorithm",

Advances in Modeling, Series B: Signal Processing and Pattern Recognition, Vol.

47, pp. 2.

Pagallo, G. and Haussler, D. (1990). "Boolean feature discovery in empirical

learning", Machine Learning, Vol. 5, Kluwer Academic Publishers, Boston, pp. 71-

99.

Pappa, G. L. and Freitas, A. (2008). "Discovering new rule-induction algorithms

with grammar-based genetic programming", in Soft Computing for Knowledge

Discovery and Data Mining. Part II, Springer, pp. 133–152.

http://robotics.stanford.edu/people/nilsson/MLBOOK.pdf
http://www.amazon.com/Soft-Computing-Knowledge-Discovery-Mining/dp/0387699341/ref=sr_1_1?ie=UTF8&s=books&qid=1228769411&sr=1-1
http://www.amazon.com/Soft-Computing-Knowledge-Discovery-Mining/dp/0387699341/ref=sr_1_1?ie=UTF8&s=books&qid=1228769411&sr=1-1

115

Parepinelli, R. S., Lopez, H. S. and Freitas, A. (2002). "Ant Colony Algorithm for

classification rule discovery", in Newton, H. A. a. S. a. C. (ed.), Data Mining:

Heuristic Approach, pp. 191-208. Idea Group Publishing, London.

Pham, D. (2012). A novel rule-induction algorithm with improved handling of

continuous valued attributes. PhD Dissertation, Cardiff Univ., Cardiff.

Pham, D. T. and Bigot, S. (2003). "Rules-5: A rule-induction algorithm for

classification problems involving continuous attributes", Proc. Inst. Mechanical

Engineers, Part C, Vol. 217, pp. 1273–1285, SAGE.

Pham, D. T., Bigot, S. and Dimov, S. (2004). "A rule merging technique for handling

noise in inductive learning", Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science, Vol. 218 (C), pp. 1255–1268,

SAGE.

Quinlan, J. R. (1986). "Induction of decision trees", Machine Learning, Vol. 1, pp.

81–106.

Quinlan, J. R. (1993). C4.5: A program for machine learning, Morgan Kauffmann,

San Mateo, CA.

Ritter, G. L., Woodruff, H. B., Lowry, S. R. and Isenhour, T. L. (1975). “An

algorithm for a selective nearest neighbor decision rule”, IEEE Transactions on

Information Theory, Vol. 21 No. 6, pp. 665–669.

Rivest, R. (1987). "Learning decision lists", Machine Learning, Vol. 2, pp. 229–

246.

Schapire, R. and Singer, Y. (1998). “Improved boosting algorithms using

confidence-rated predictions”, in Bartlett, P. L. and Mansour, Y. (eds), Proceeding

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bartlett:Peter_L=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mansour:Yishay.html

116

COLT' 98 Proceedings of the Eleventh Annual Conference on Computational

Learning Theory, ACM Press, New York, NY, pp. 80–91.

Shahzad, W. (2010). Classification and Associative Classification Rule Discovery

using Ant Colony Optimization, National University, Islamabad, Pakistan.

Shehzad, K. (2009). New Rule Induction Algorithms with Improved Noise Tolerance

and Scalability, PhD thesis, Systems Engineering Division, University of Wales

Cardiff, Cardiff.

Shirbhate, D. and Gupta, R. (2015). Data mining and knowledge discovery,

International Journal of Research in Science & Engineering, Vol. 1 Special issue 1,

pp. 384–389.

 Simon, H. A. (1983). "Why should machines learn?" in Michalski, R. S., Garbonell

J. G. and Mitchell, T. M. (eds.), Machine Learning: An Artificial Intelligence

Approach, Tiogo, Palo Alto, CA, pp. 25–37.

Socha, K. (2008). Ant Colony Optimization for Continuous and Mixed-Variable

Domains. Unpublished doctoral dissertation, University Libre de Bruxelles,

Belgium.

Socha, K., (2004). ACO for continuous and mixed-variable optimization, in M.

Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada and T. St¨utzle (eds),

Ant Colony Optimization and Swarm Intelligence, 4th International Workshop,

ANTS 2004, Vol. 3172 of LNCS, Springer-Verlag, Berlin, Germany, pp. 25–36.

Stanfill, C. and Waltz, D. (1986). "Toward memory-based reasoning",

Communications of the ACM, Vol. 29 No. 12, pp. 1213–1228.

117

Sun X. and Chan P. K. (2014), An Analysis of Instance Selection for Neural

Networks to Improve Training Speed.13th International Conference on Machine

Learning and Applications , Detroit, MI, USA

Swaminathan, S. (2006). Rule Induction Using Ant Colony Optimization for mixed

variable attributes, Master's thesis, University of Texas Tech.

Tomek, I. (1976). “An experiment with the edited nearest-neighbor rule”, IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 6 No. 6, pp. 448–452.

Vázquez F., Sánchez S. and Pla F. (2005) A stochastic approach to Wilson’s editing

algorithm. In: Marques JS et al (eds) IbPRIA 2005, LNCS 3523. Estoril, Portugal,

pp 35–42.

Weiss, S. and Indurkhya, N. (1991). "Reduced complexity rule induction", in

Mylopouslos, J. and Reiter, R. (eds.), Proceedings of 12th International joint

conference on Artificial Intelligence, Morgan Kauffmann, Sydney, Australia, pp.

678–684.

Wilson, D. L. (1972). “Asymptotic properties of nearest neighbor rules Using Edited

Data”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 2 No. 3, pp. 408–

421.

Wilson, D. L. and Martinez, T. (1997). “Instance pruning technique”, Fisher, D. M.

(ed.), Machine Learning: Proceedings of the Fourteenth International Conference

(ICML'97), Morgan Kauffmann, San Francisco, CA, pp. 403–411.

Wilson, D. L. and Martinez, T. (2000). “Reduction techniques for instance based

learning algorithms”, Machine Learning, Vol. 38 No. 3, pp. 257–286.

118

Witten I.H. and Frank E. (2005). Data Mining: Practical Machine Learning Tools

and Techniques, 2nd edition. Morgan Kaufmann, San Francisco.

Wojtusiak, J., Michalski, R. S., Kaufman, K. A., and Pietrzykowski, J. (2006). "The

AQ21 natural induction program for pattern discovery: Initial version and its novel

features", In: Proceedings of the 18th IEEE International conference on tools with

Artificial Intelligence. Washington DC.

Xuepeng X. (2004). Classification rule induction with an ant colony optimization

algorithm, Master's thesis, University of Texas Tech, USA.

Zhao, K., Zhou, S., Guan, J. and Zhou, A. (2003). "C-Pruner: An improved instance

pruning algorithm", Proceedings of the 2th International Conference on Machine

Learning and Cybernetics, Vol. 1, Sheraton Hotel, Xi'an, China: Piscataway, pp. 94–

99, NJ: IEEE, piscataway.

