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Abstract 
 

Machine learning is a research area within computer science that is mainly concerned with 

discovering regularities in data. Rule induction is a powerful technique used in machine learning 

wherein the target concept is represented as a set of rules. The attraction of rule induction is that 

rules are more transparent and easier to understand compared to other induction methods (e.g., 

regression methods or neural network). Rule induction has been shown to outperform other 

learners on many problems. However, it is not suitable to handle exceptions and noisy data in 

training sets, which can be solved by pruning. 

This thesis is concerned with investigating whether preceding rule induction with instance 

reduction techniques can help in reducing the complexity of rule sets by reducing the number of 

rules generated without adversely affecting the predictive accuracy.  

An empirical study is undertaken to investigate the application of three different rule 

classifiers to datasets that were previously reduced with promising instance-reduction methods. 

Furthermore, we propose a new instance reduction method based on Ant Colony Optimization 

(ACO). We evaluate the effectiveness of this instance reduction method for k nearest neighbour 

algorithms in term of predictive accuracy and amount of reduction. Then we compared it with 

other instance reduction methods. 

We show that pruning classification rules with instance-reduction methods lead to a 

statistically significant decrease in the number of generated rules, without adversely affecting 

performance. On the other hand, applying instance-reduction methods enhances the predictive 

accuracy on some datasets. Moreover, the results provide evidence that: (1) our proposed instance 

reduction method based on ACO is competitive with the well-known k-NN algorithm; (2) the 

reduced sets computed by our method offers better classification accuracy than those obtained by 

the compared algorithms. 
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Chapter 1: Introduction 
 

Machine learning is “a mature and well-recognized research area of computer science, 

mainly concerned with the discovery of models, patterns, and other regularities in data” (Fürnkranz 

et al., 2012). The field of machine learning has received a great deal of attention recently. The aim 

is to develop computational methods that implement various forms of learning. Induction is one 

type of learning that induces a concept description from a set of examples. This is especially 

important in ill-defined domains that lack algorithmic solution. 

 

In general, machine learning is concerned with the question of how to automatically 

improve performance for tasks associated with artificial intelligence (AI) (e.g., recognition, 

diagnosis, planning, robot control, prediction, etc.), based on experience, in order to teach 

computers to solve problems by merely “showing” them the selected examples. 

 

The importance of machine learning arises from the following (Nilsson, 1996): 

1. Some tasks cannot be defined well except by examples, because we can specify the 

input/output pairs but we cannot define the relation between input and desired output. 

2. The amount of knowledge available for a particular task might be too large for explicit 

manual encoding. 

3. Certain characteristics of the working environment might not be completely known at 

design time; thus, humans may produce machines that do not work as well as desired in the 

environment in which they are used. 

4. Many environments change over time, so machines that can adapt to a changing 

environment would reduce the constant need for redesign. 
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5. Machine learning helps us to understand how animals and humans learn. 

 

The machine learning community has expressed a need to improve the performance of 

learning algorithms with respect to predictive accuracy, and how to produce classifiers that can be 

understood by humans. 

 

This thesis is concerned with concept descriptions in the form of classification rules that 

can be easily understood by humans. However, most rule-based systems still tend to induce quite 

a large number of rules, making the description obtained difficult to understand. A variety of 

methods have been proposed to prune the produced rule sets. These methods help in reducing the 

complexity of generated rule sets, but can still suffer from critical problems due to the prevalence 

of large, noisy datasets in real-world applications and covering hard-to-learn instances.  

 

Furthermore, our work concerns the use of pruning to solve one of the most important 

problems in the field of machine learning – namely, overfitting, which affects the predictive 

accuracy. We say that the produced classifier overfits the data if we can find a different classifier 

with more errors over training examples but smaller errors over test data. Overfitting occurs in two 

situations: when the training set contains noisy instances and when the training set is not a 

representative sample from the instance space (Mitchell, 1997). Both of these situations are 

common in real-world applications. 

 

On other hand, our work concerns with applying Ant Colony optimization (ACO) method 

in proposing Instance reduction technique. ACO algorithm involve simple ants that cooperate with 
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each other to achieve a unified behaviour for the system, allowing the design of a robust system 

able to find a high-quality solution for problems. 

  

1.1 Research Question 
 

The research questions addressed in this thesis are as follows: 

Is it possible to reduce the number of generated rules by training rule classifiers on datasets 

that have previously been reduced with instance-reduction methods? What is the effect of this on 

the predictive accuracy? 

This thesis investigates a reduction in the complexity of rule sets by decreasing the number 

of generated rules. We investigate new pre-pruning techniques for rule-induction methods by 

applying the  promising instance-reduction methods, specifically instance-reduction methods that 

eliminate border instances, which tend to be noisy, or difficult to learn and untypical. The aim is 

to simplify the induced rule set by removing some of the rules without adversely affecting the 

predictive performance. It also investigates how Ant Colony Optimization (ACO) can be used as 

an instance-reduction method and using it as a pre  -processing technique for rule-induction 

methods. 

 

1.2 Motivation 
 

 

El Hindi and Alakhras (2009) showed that filtering out border instances before training an 

artificial neural network improves the predictive accuracy and speeds up the training process by 

reducing the training epochs. Previous research on pre-pruning has focused on simplifying the 

rules during induction. Gamberger et al. (1996) investigated the effect of a new noisy instance 
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detection method before rule induction on a specific dataset (i.e., early diagnosis of rheumatic 

diseases) (Gamberger et al., 1996); this method is suitable for datasets with just two classes. In 

another case, Grudzinski et al. (2010) concentrated on the EkP system (Grudzinski, 2008) as an 

instance-reduction method before rule induction, and illustrated that it is possible to extract simpler 

sets of rules from reduced datasets (Grudzinski et al., 2010). However, no study to date has 

investigated the effect of preceding rule induction with instance reduction, in terms of predictive 

accuracy and complexity of the rule set produced. Here, we investigate whether there is any 

advantage to preceding the rule induction with instance-reduction methods in terms of the 

complexity of a rule set (roughly represented here by the number of generated rules), taking into 

consideration the effect on predictive accuracy.  

 

On the other hand, we propose a new instance-reduction method using ACO (Dorigo et al., 

1996), and how to use it as a pre-pruning technique for rule induction. The main idea of ACO is 

to use repeated simulations of artificial ants to generate new solutions to the problem at hand. The 

“ants” use information collected at a previous time to direct their search. They deposit 

“pheromones” on the ground in order to mark a favourable path that should be followed by other 

members of the colony.  

 

1.3 Contribution to Knowledge  
 

 

The contributions to knowledge made by this thesis are in the field of machine learning, 

specifically in the area of rule induction and pruning. As far as the author is aware, this is the first 
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work to investigate whether the number of generated rules can be reduced by preceding rule 

induction with instance-reduction methods.  

 

This thesis considers rule-induction methods that learn a set of propositional rules where 

the target concept is represented as a set of “if... then...” rules. Each rule consists of an antecedent 

(or body of rule) and a consequent. The consequent represents the predicted class; the antecedent 

part is composed of a conjunction of conditions, each involving one attribute. We focus on rule-

induction methods that produce an unordered set of rules because we are interested in rule sets 

where each rule can be understood independently. Moreover, we consider instance-reduction 

methods that eliminate border instances, which tend to be noisy or difficult to learn and untypical. 

The results presented in this thesis show that training three rule classifiers on datasets that have 

previously been reduced with instance-reduction methods leads to a statistically significant 

decrease in the number of generated rules, without adversely affecting the predictive performance. 

 

This study: 

 

• Investigates whether the number of generated rules can be reduced by preceding rule 

induction with instance-reduction methods; 

• Investigates the effect of preceding rule induction with instance-reduction methods on the 

predictive performance, compared to using an unpruned training set; 

• Proposes a new instance-reduction method based on ACO; and finally 

• Compares the achievement of the proposed method with other different instance-reduction 

methods, in terms of predictive accuracy and number of generated rules. 
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The work described in this thesis has not been submitted previously as part of requirements 

for another degree and it is the result of my own independent work, unless otherwise stated. Some 

of the ideas described in Chapter 5, and most of the work and results presented in Chapter 5, have 

been proposed and published in the following: 

 

Othman, O. and Bryant, C. (2013), “Preceding rule induction with instance-reduction 

methods”, Perner, Petra (eds.) in Proc. of the 9th International Conference on Machine Learning 

and Data Mining in Pattern Recognition, Springer-Verlag, Berlin, pp. 209–218. 

 

Othman, O., and Bryant, C. (2015). “Pruning classification rules with instance reduction 

methods”, International Journal of Machine Learning and Computing, Vol. 5  No. 3, pp. 187–191. 

 

1.4 Structure of this Thesis 
 

The remainder of this thesis is structured as follows: 

• Chapter 2: Literature Review: Rule induction and Pruning 

Provides an introduction and background to pruning and an overview for 

learning algorithms related to this thesis – namely, IBL and rule induction method. 

Some of the different rule-induction methods are compared and discussed. 

Additionally, the different instance-reduction methods are mentioned. Moreover, we 

provide an overview of pruning algorithms, including a description of different pruning 

methods related to our works  

• Chapter 3: Literature Review: Ant Colony Optimization 

Provides an introduction and background to Ant Colony Optimization (ACO). 

The main focus of this section is the concept of ACO and its applications in the AI 

field.  
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• Chapter 4: Experimental Framework 

Introduces all materials required to run our experiments; this chapter outlines our 

work and clarifies the methodology for comparing different algorithms.  

a. Problem statement: Provides a brief description of the problem we are interested 

in.  

b. Aims: Describes the idea behind our work, and clarifies this using diagrams.  

c. Comparison of methodologies. 

d. Evaluation measure.  

e. Rule-induction characteristics: Specifies the characteristics of the rule-

induction methods we are interested in during our experiments.  

f. Experimental setup: Outlines the datasets and programs used in the 

experiments.  

g. Experiment implementation.  

• Chapter 5: Preceding Rule Induction by Instance-Reduction Methods 

Explains the experiments and algorithms used for instance reduction, and outlines 

the different rule inductions we are testing. 

• Chapter 6: Instance-Reduction Method Based on ACO 

Explains the motivation behind the proposed method based on ACO. 

a. Problem representation.  

b. Methodology: Present our algorithm for instance reduction based on ACO.  

c. Comparison of results (with IBL and other instance-reduction methods) in 

terms of: 

1- Predictive accuracy.  

2- Reductions in number of instances. 
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d. Comparison of results (with different instance-reduction methods, such as pre-

pruning for rule induction) in terms of: 

1- Predictive accuracy.  

2- Reductions in number of rules produced. 

• Chapter 7: Discussion and Future Works 

Discusses the conclusions and main findings drawn from the comparison and 

evaluation and whether the research hypothesis has been proven, and suggests future 

development, which may be necessary.  

• References.  
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Chapter 2: Literature Review: Rule Induction and 

Pruning 

 

This chapter starts by providing an overview of the field of machine learning, focusing 

mainly on its subfields relevant to this work. This is followed by an introduction to rule induction 

and instance-based learning methods. The concepts of pruning are also explained.  

 

2.1 Introduction 
 

Information accumulated over thousands of years has exceeded the capacity of human 

brains. Hence, the concern in the science world has always been how to derive useful information 

from such huge amounts of data. Machine learning has the central purpose of learning from data. 

Learning refers to any change in a system that causes its performance to improve (Simon, 1983).  

 

The aim of machine learning is to develop computational methods that implement various 

forms of learning. Most research in machine learning has focused on conceptual learning or 

classification learning. Induction is a type of learning that induces a concept description from a set 

of examples. This is especially important in ill-defined domains that lack algorithmic solution. 

 

The study of inductive learning is mainly motivated by the desire to automate the process 

of knowledge acquisition during the construction of expert systems.  
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2.2 Definitions 
 

To learn a concept is to infer its general definition from a set of examples (instances) 

(Domingos, 1997). Learning can be considered a method to generate an approximation to the 

function, f(x), where the domain is defined by a set of examples, while the range of f(x) is the set 

of concepts or classes in which the examples are classified.   

 

Inductive methods can be divided into two categories. The first is called supervised concept 

learning, or classification learning, in which each example appears with its corresponding 

classification. The other is called unsupervised learning, or clustering, which involves learning 

from a set of unclassified examples where the goal is to form a new concept description that has 

certain desired properties (Domingos, 1997). 

 

Important terms must be defined to make the remainder of this review understandable. 

Instance space refers to the set of all possible examples. Each example can be described in a variety 

of forms; however, the most common description is as a vector of attributes. An attribute is a 

variable that can be symbolic (nominal) or continuous. Symbolic attributes can take a finite number 

of values, which have no ordered relationship. For example, the attribute colour with values {red, 

white, and blue} is a symbolic attribute. A continuous attribute (e.g., length, weight) is an ordered 

set of values, such as age and temperature, and it occupies any value over a real number. Each 

example may contain a combination of the two kinds of attributes, in addition to a categorical 

attribute (class attribute) that may either be symbolic or continuous. 
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A training set is a set of examples used to build a classifier – i.e., the function that maps 

previously unseen examples into predicted classes. These unseen examples are called test 

examples. They are used to test the accuracy of a generated classifier.  

 

In supervised learning, the concept to be learned is called the target. The examples in the 

training set that have the same class as the concept are called positive examples and others are 

called negative examples with respect to that class. 

 

2.3 An overview of learning algorithms 
 

Concept learning can be viewed as having three components: representation, search, and 

evaluation. Representation is the means of representing the knowledge (e.g., decision trees, sets of 

rules, instances, graphical models, neural networks, etc.). The search procedure is the process by 

which the learning algorithm finds the concept description in a space of possible descriptions 

defined by the representation language. The evaluation component takes a candidate concept 

description and returns a measure of its quality (Domingos, 1997). 

 

There is a great variety of learning algorithms in terms of knowledge representation. The 

general definition for the concepts can be represented in different forms, which can be a set of 

rules (e.g., CN2 [Clark & Niblett, 1989] and AQ algorithms), decision trees (e.g., C4.5 [Quinlan, 

1993] and ID3 [Quinlan, 1986]), artificial neural networks (McClelland & Rumelhart, 1986), or 

the same representation as the training examples (e.g., IBL). 

 

In this section, we will review two well-known learning algorithms that are related to our 

work in this thesis – namely, IBL and rule-induction methods. In Section 2.3.1 we will discuss the 
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framework for the instance-reduction method, and in Section 2.3.2 we will outline the different 

kinds of rule-induction methods.   

 

2.3.1 Instance-Based Learning 
 

IBL (Aha et al., 1991) is based on the idea of letting the examples themselves form the 

implicit representation of the target concept. The simplest case is the nearest neighbour (NN) (or 

k-nearest neighbour [k-NN]) algorithm, which simply stores all the examples in a training set. NN 

classifies a new instance by predicting that it has the same class as its nearest stored instance (or 

the majority class of its k-nearest stored instances), according to some similarity metric. The best 

value of k for a given application is difficult to predict, and is typically determined via cross-

validation.  

The performance of IBL depends critically on the similarity metric used. For numeric 

attributes (e.g., age, price, and weight), Manhattan distance is a natural candidate; thus, the 

distances between the two values are, simply, the absolute difference between them. However, 

different attributes may not have the same range, so two distant values may appear to be near to 

each other because of a small value range. The obvious solution is to normalize the attribute values 

as follows: 

 

     Normalize (xi) = 
𝑥𝑖− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
                                                          (1) 

Where  

xi: is the ith value of the attribute x,  

xmax:is the maximum value of the attribute x,  

xmin:is the minimum value of the attribute x. 

 



21 

 

If the attributes are nominal (e.g., colour, shape), we can use the value difference metric 

(Stanfill & Waltz, 1986). Using this metric, two values are considered to be similar if they result 

in similar classifications. It finds the distance between two values for a specific attribute via: 

(𝑥, 𝑦) = 𝑉𝐷𝑀(𝑥, 𝑦) = ∑ |(𝑝(𝑐ℎ|𝑥) − 𝑝(𝑐ℎ|𝑦))|𝑞𝐶

ℎ=1
= ∑ | (

𝑁𝑎,𝑥,𝑐

𝑁𝑎,𝑥
− 

𝑁𝑎,𝑦,𝑐

𝑁𝑎,𝑦
) |𝑞

𝐶

ℎ=1

                (2) 

Where  

C is the number of classes,  

Na,x is the number of instances in the training set, T, that has value x for attribute a,  

Na,x,c is the number of instances in the training set, T, that has value x for attribute a and class C,  

q is a constant, and 

 p(ch |x) is the conditional probability that the output class is (c), given that attribute (a) has the 

value x.  

 

If there are n attributes, E1 = (e11, e12... e1n) is the first instance and E2 = (e21, e22... e2n) is 

the second instance; then, the distance between the two instances is measured using: 

                              

 ∆ (E1 ,E2)= √∑  2(𝑒1𝑖 , 𝑒2𝑖)𝑛
𝑖=1                                                                                (3) 

                   

 

NN is conceptually simple and “learns” very quickly because it needs only to read the 

training set without much further processing. However, its output (concept description) is difficult 

for humans to understand, takes a long execution time (during classification) and is sensitive to 

irrelevant attributes because these attributes will contribute to computing the distance between two 

examples, and may “swamp” out the relevant component. It is also sensitive to noisy instances, 

because when such instances are stored they create a region around themselves, which consists of 
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all the examples that consider them as one of the k-NN, so we have to choose the value for the k 

parameter carefully when using the NN algorithm (in Section 4.6.2, we will explain our k value 

selection). Finally, the NN algorithm may have large memory requirements (after training). 

 

One solution to NN’s sensitivity to irrelevant attributes is to remove it before instances are 

stored. Several methods have been proposed whereby this can be achieved, of which the most 

widely used are forward sequential selection and backward sequential selection (Domingos, 1997; 

AlBalas, 2000). On the other hand, there are several methods that focus on reducing the size of the 

stored set of instances while trying to maintain, or even improve, predictive accuracy.  

 

2.3.2 Rule-Induction Algorithms 
 

Rule induction (Clark & Niblett, 1989; Domingos, 1997) is another paradigm for learning 

algorithms. Throughout this thesis, we will consider rule-induction methods that learn a set of 

propositional rules where the target concept is represented as a set of “if... then...” rules. Each rule 

consists of an antecedent (or body of rule) and a consequent. The consequent represents the 

predicted class; the antecedent part is composed of a conjunction of conditions, each involving one 

attribute. If the attribute is nominal, this condition is usually an equality test. Some algorithms use 

the negation and the disjunction of values. If the attribute is numeric, the condition is an inclusion 

test in a one-sided interval. A rule is said to cover an example, or the example is said to satisfy it, 

if all conditions in the body of the rule are true for the example. 

 

There are many rule-induction algorithms. Among them are AQ (Michalski et al., 1986; 

Cervone et al., 2001; Michalski & Kaufman, 2001), CN2 (Clark & Niblett, 1989; Clark & Boswell, 

1991) and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) (Cohen, 1995). 
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All these algorithms employ the same general method that was used for the first time in the AQ 

algorithm. AQ21 is the most recent addition to the AQ family (Wojtusiak et al., 2006). The AQ 

family and some of the algorithms mentioned above have been improved from time to time. They 

employ a set of covering, or “separate and conquer”, algorithms, because they form the class 

definition by building a rule that covers many positive examples, and then separate out the covered 

positive examples and start again. However, since they extract rules and then remove the covered 

examples from a training set of examples, fragmentation has been one of the problems of such 

algorithms caused by the existence of some rules covering a small number of instances. 

 

In the search for the best rule covering the set of positive examples, we add an antecedent 

that maximizes certain heuristics. The heuristic is usually a function of the number of positive 

examples covered by the rule, and the number of negative examples covered by the same rule. We 

can use the beam search strategy to search for the best rule (Clark & Niblett, 1989), and maintain 

a list of b best rule antecedents found so far. In each step, specialization of those antecedents with 

each possible condition is attempted, and the best b antecedents are selected to continue the search 

until no better antecedents can be found with respect to the heuristic used. Finally, the best rule 

antecedent is selected and all examples covered by the selected rule are removed from the training 

set.  

 

The choice of evaluation heuristic H for the rule is most important to the performance of 

the “separate and conquer” algorithm. AQ algorithms use “apparent accuracy”: 

 

H (e+, e-) = 
𝑒+

𝑒++ 𝑒−
                                                                                                          (4) 
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Where 

e+ is the number of positive examples covered by the rule . 

e-  is the number of negative examples covered by the rule. 

 

The CN2 system (Clark & Niblett, 1989) originally used the entropy of the rule: 

                                      

Entropy = -∑  (𝑃𝑖  𝑙𝑜𝑔2(𝑃𝑖))
𝑛

𝑖=1
                                                                               (5) 

 

Where 

n is the number of classes represented in the training set. 

Pi is the probability distribution of covered examples that have predicted class = classi 

among all covered examples. 

 

The lower the entropy, the better the rule. This function prefers rules that cover a large 

number of examples of a single class and few examples of other classes, and thus score well on 

the training data when used to predict the majority class covered.  

 

Both the entropy and apparent accuracy favour overly specific rules (those that cover a 

single positive example with no negative examples), and they achieve their maximum value with 

a rule covering a single example. This can be overcome by using Laplace accuracy (Clark & 

Boswell, 1991): 

H (e+, e-) =
1+𝑒+

𝐶+ 𝑒++ 𝑒−
              (6) 

Where 

C is the number of classes. 
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When we classify a new unseen example, it is matched against the set of rules. If there is 

only one rule covering the example, the class of the new example will be the rule’s class. If there 

is no rule, then we can use a default rule (which usually predicts the class that is the most frequent 

in the training set). However, if there are many rules covering the example, we have two solutions. 

The first is to order the rules in a decision list (according to the Laplace or apparent accuracy), and 

select the first rule that covers the example (Rivest, 1987). The second solution is to let each rule 

vote and then select the class with the highest number of votes (Clark & Boswell, 1991). 

 

The RULE Extraction System (RULES) is a family of simple inductive learning algorithms 

inspired by ideas from both AQ and CN2. The RULES family is different from the other algorithms 

in that it does not induce rules on a class-per-class basis, but instead considers the class of the 

selected seed example as the target class (Shehzad, 2009). It then attempts to induce rules that 

cover as many examples of the target class as possible using the rule evaluation function. At 

present, the RULES family has extended to Rules-7 (Pham, 2012). Among members of the RULES 

family, Rules-5 is a noteworthy, simple, but efficient algorithm. RULES-5 also employs a more 

efficient search mechanism, as well as a new post-pruning technique (Pham & Bigot, 2003) in 

order to handle noisy data.  

 

Other rule-induction methods unify the rule induction with IBL. Rule Induction from Set 

of Examples (RISE) (Domingos, 1994) is one approach to induction that attempts to tackle some 

disadvantages of IBL and rule induction. The basic characteristic of RISE is that rules and 

instances are treated uniformly; thus, an instance is simply a rule, and the rule’s extension becomes 

a set of instances most similar to that rule. 
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There are rule-induction methods that investigate the application of pruning methods 

during rule generations. Fürnkranz and Widmer (1994) proposed a novel learning algorithm called 

Incremental Reduced Error Pruning (IREP). IREP prunes each individual rule right after it has 

been generated: after learning a rule from the growing set, a condition is deleted in a greedy fashion 

until any further deletion would decrease the accuracy of this rule in the pruning set. The resulting 

rule is added to the concept description and all positive and negative instances covered by the 

generated rule are removed from the training “growing and pruning set”. Cohen (1995) also 

introduced some improvements to IREP that enhance its performance. Three modifications are 

made to the IREP algorithm:  

1. An alternative metric for assessing the value of the rules in the pruning phase of IREP, 

2. A new heuristic for determining when to stop adding rules to a rule set, and 

3. A post-processing of the generated rules that optimize a rule set in an attempt to more 

closely approximate IREP. 

 

This algorithm that produces a new optimized rule set is called RIPPER (Cohen, 1995).  

 

 Other rule-induction methods try to solve drawbacks via other induction methods. PRISM 

(Cendrowska, 1987) is a rule-induction method based on ID3 in selecting the attributes for the 

induced rule set. This algorithm is simple and easy to understand. Cendrowska’s original PRISM 

algorithm selects one class as the target class (TC) at the beginning, and induces all rules for that 

class. It then selects the next class as TC and resets the whole training data to its original size, and 

induces all rules for the next TC. This is repeated until all classes have been selected as TC. Figure 
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1 shows the pseudo code for the PRISM algorithm, where p (ch | ax) is the conditional probability 

that the output class is (ch), given that attribute (a) has the value ax.  

 

 

 

 

 

 

 

 Figure 1. Pseudo-code for PRISM algorithm. 

 

PART (Eibe & Ian, 1998) induces a decision list. This algorithm can be viewed as a 

combination of C4.5 and RIPPER, and attempts to avoid their respective problems. Unlike both 

C4.5 and RIPPER, it does not need to perform global optimization to produce accurate rule sets. 

It adopts the separate and conquer strategy in that it builds a rule, removes the instances it covers, 

and continues creating rules recursively for the remaining instances until none are left. It differs 

from the standard approach in the way in which each rule is created. In essence, to make a single 

rule, a pruned decision tree is built for the current set of instances; the leaf with the largest coverage 

is made into a rule, and the tree is discarded. 

 

ACO has been applied for rule induction in the Ant-Miner algorithm (Parepinelli et al., 

2002). The Ant-Miner algorithm was developed by simulating the foraging of real ants, so it is a 

good idea to think about the problem as a search for the best path through a graph, where the nodes 

represent the partial solution and the edges represent the translation between these partial solutions. 

The edges are associated with measurements that qualify the selected partial solutions. When 
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applying the Ant-Miner algorithm to classification rule induction, the basic element of a solution 

is an attribute term. An attribute term, termij is in the form of Ai = Vij, where Ai is the ith attribute 

and Vij is the jth value of domain A. Therefore, we can consider the classification rule induction 

problem as a graph, with nodes representing attribute terms and edges modelling the quality of the 

attribute terms. A complete path is a constructed rule. The quality of the path is assessed by a 

global fitness function, while the quality of the node is evaluated by a heuristic value and a 

pheromone level value associated with the node. 

 

Table 1 presents an enumeration of rule induction methods reviewed in this section. The 

name, reference and key features are provided for each rule induction method.  

 

2.4 An overview of pruning algorithms 
 

This section will overview different kinds of pruning methods related to our work. As our 

concern is to precede rule induction with instance-reduction methods, we will introduce different 

methods for instance pruning that aim to obtain representative training sets with lower sizes 

compared to the original one, and with similar or even higher predictive accuracy for new incoming 

instances. Moreover, we will overview different ways of pruning rule-induction methods and the 

motivation for carrying out that pruning.      

2.4.1 Instance Pruning  
 

Instance pruning aims to prune the original training set to get a smaller subset of it. 

Searching for a subset, S, of instances to keep, instead of the original training set, T, can 

proceed in a variety of directions, including incremental, decremental, and batch (Wilson & 

Martinez, 1997). 
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       Table 1: Review some of rule induction methods.     

 

Incremental methods begin with an empty subset, S, and add instances (from training set 

T) to S if it fulfils some criteria. Thus, if new instances are made available later (after training 

is completed), they can continue to be added to S according to the same criteria. Incremental 

methods are sensitive to the order of presentation of the instances. Condensed nearest 

neighbour (CNN) (Hart, 1968) and selective nearest neighbour (Ritter et al., 1975) are 

examples of incremental methods. On the other hand, decremental methods begin with all the 

Rule Induction 

method 
Reference Key feature(s) 

PRISM Endrowska, 1987 Based on ID3 in selecting the attributes for the 

induced rule set. 

 
CN2  Clark & Niblett, 1991 Incorporates ideas from both Michalski's (1986) 

AQ and Quinlan's (1983) ID3 algorithm. 

 

IREP Fürnkranz, 1994 Integrates reduced error pruning with a separate 

and conquer rule learning algorithm. 

 

RISE Domingos, 1994 Proceeds by gradually generalizing rules, 

starting with one rule per example. 

 
RIPPER Cohen, 1995 Optimized version of IREP. This algorithm is 

especially more efficient on large noisy datasets. 

It builds a set of rules that identify the classes 

while minimizing the amount of error. 

PART Eibe & Ian, 1998 Combination of C4.5 and RIPPER. This 

algorithm extracts rules faster than decision trees 

algorithm. 

 

Ant-miner Parepinelli, Lopez & Freitas, 2002 An Ant Colony Optimization algorithm for rule 

discovery in database.  

 

RULEs-5 Pham & Bigot, 2003 The first RULES version that handles continuous 

attributes without discretization. 

 

AQ21 Wojtusiak et al., 2006 It can discover different types of regularities in 

data, and can generate an optimized collection of 

alternative models from the same data. 

 

RULEs-7 Pham, 2012 An extension of RULES-6 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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instances in the training set (i.e., T = S), and search for instances to remove; they are often 

computationally more expensive than incremental methods. Reduced nearest neighbour (RNN) 

(Gates, 1972) and the decremental reduction optimization procedure (DROP 1-5) (Wilson, & 

Martinez, 2000) represent examples of decremental methods. Finally, batch methods, like 

decremental methods, begin with all instances in a training set; however, before they remove 

any, they find all instances that meet the removal criteria and then remove them all at once 

(Tomek, 1976). Batch methods also suffer from increased time complexity compared with 

incremental methods. In our experiments, we will use decremental and batch methods because, 

in comparison to incremental methods, they have been shown to give rise to higher predictive 

accuracies (Wilson & Martinez, 2000). 

 

Instance-reduction methods can be categorized as retaining either internal or border 

instances: 

• Border instances (condensation approach): The intuition for retaining border instances 

is that internal instances do not affect the decision boundaries, and can thus be removed 

with relatively little effect on classification. Several well-known methods belong to the 

condensation approach and the algorithms that offer the best performance, including: 

-  CNN (Hart, 1968): Hart was the first to propose a method for reducing the size of 

stored data for the NN decision rule.  

- RNN  (Gates, 1972) is an extension of the CNN rule. The RNN algorithm uses the CNN 

resulting set and removes every instance for which deletion does not cause 

misclassification of another instance in the initial set.  

- The Fast Condensed Nearest Neighbour rule (Angiulli, 2005) is a scalable algorithm 

on large multidimensional datasets. 
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- TRKNN (Fayed & Atiya, 2009):  This reduces the computational requirement to 

classify prototypes using the k-NN when the sets of data are large. The aim of this 

approach is to eliminate instances that cause unnecessary calculations and do not 

contribute to improving the classification.  

- The Class Boundary Preserving Algorithm (Nikolaidis et al., 2011)  is a multistep 

method for pruning the training set.  

- DROP 1-5  (Wilson & Martinez, 2000) is a series of six algorithms for set reduction 

based on the k-NN algorithm, where each algorithm improves the previous one. 

• Internal instances (edition approach):  The intuition for retaining internal instances is 

that removing border instances should remove noisy instances. The effect obtained is 

related to the improvement of generalization accuracy in test data, although the reduction 

rate obtained is lower than the rate achieved by condensation approaches, since there are 

fewer border instances as compared to internal instances (Gadodiya & Chandak, 2013). 

Few edition methods have been proposed in comparison to condensation methods. The 

main reason for this is that the first edition method, edited nearest neighbour (ENN), 

obtains good results in conjunction with k-NN (Gadodiya & Chandak, 2013) (Grochowski 

& Jankowski, 2004). An extension of ENN is the RENN (Repeated ENN) method which 

repeatedly applies ENN until all instances in training set have the same class that the 

majority of their k Nearest Neighbours. Another variant of ENN is the AllKnn method 

(Tomek 1976). In Vázquez et al. (2005) a method for instance selection is proposed, which 

consists in applying ENN but using the probability of belonging to a class instead of the k-

NN rule. 
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In our experiments, we focus on methods that obtain a representative training set with a 

lower size compared to original one, and with similar or even higher classification accuracy for 

new data. Thus, we choose three reduction algorithms that perform well in reducing the number 

of instances (Wilson & Martinez, 1997), and provide good results before applying neural network 

learning (El Hindi & Al Akhras, 2009) (Sun & Chan, 2014).  These algorithms eliminate border 

instances, which tend to be noisy, or difficult to learn and untypical. Each algorithm is discussed 

in further detail below. 

 

2.4.1.1 The edited nearest neighbour algorithm 
 

ENN (Wilson, 1972) is a decremental algorithm that removes an instance if it does not 

agree with the majority of its k nearest neighbours (with k = 3). This removes noisy instances, as 

well as near border instances, and retains all internal instances. Figure 2 shows the pseudo code 

for the ENN algorithm. 

2.4.1.2 AllKnn 

 

AllKnn (Wilson & Martinez, 1997) is a batch algorithm that makes k iterations. At the ith 

iteration, it flags as bad any instance that is not classified correctly by its i nearest neighbours. 

After completing all iterations, the algorithm removes all instances flagged as bad. Figure 3 shows 

the pseudo code for AllKnn algorithm. 

 

 

 

   Figure 2. Pseudo-code for ENN algorithm. 
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    Figure 3. Pseudo-code for AllKnn algorithm. 

 

                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 4. Pseudo-code for DROP5 algorithm. 

 

2.4.1.3 DROP5 
 

DROP5 (Wilson & Martinez, 2000) is a decremental algorithm that removes an instance, 

“S”, if at least as many of its associates (i.e., instances that have “S” on their NN list) are classified 

correctly without it. This algorithm removes noisy instances, because a noisy instance, “S”, usually 

has associates that are mostly of a different class, and such associates will be at least as likely to 

be classified correctly without “S”. 

 

 First, the algorithm considers removing the instances that are closest to their nearest enemy 

(i.e., instance from a different class), and proceeds outward. By removing points near the decision 

boundary first, the decision boundary is smoothed. Figure 4 shows the pseudo code for the DROP5 

algorithm. 
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Another method related to the associate set was proposed by Brighton and Mellish (2002), 

this method is the Iterative Case Filtering algorithm (ICF), based on the Reachable(S) and 

Coverage(S) sets which are the neighbour and associate sets respectively. ICF discards instance(S) 

If |Reachable(S)| > | Coverage(S)| which means that some instances in training set (T) can classify 

instances similar to (S) without considering it in the training set; as initial step, ICF applies ENN. 

C-Pruner (Zhao et al, 2003) is another method based on the Reachable (S) and Coverage (S). In 

this method, the Coverage (S) concept only considers the associates with the same class as instance 

(S) in order to discard instances in the same class. Before discarding an element, this technique 

determines whether an instance is noisy, superfluous or critical. In this context, an instance is 

critical when its deletion affects the classification of other instances; in particular, this method 

discards either noisy or superfluous (but non-critical) instances. When |Coverage (S)| < |Reachable 

(S)| then “S” is considered as noisy; “S” is superfluous when it is correctly classified by Reachable 

(S) (Olvera-Lopez et al., 2010). 

 

2.4.2 Rule Induction Pruning 
 

 

The main weakness with rule learning systems is that they often scale relatively poorly 

with the sample size of a training set, particularly in the context of noisy data (Cohen, 1993). This 

is a critical problem due to the prevalence of large, noisy datasets in real-world applications. A 

variety of methods has been proposed to prune the produced rule sets, and can be categorized as 

follows: 

• Pre-pruning These algorithms either use heuristics (i.e., stopping criteria) to relax the 

constraint that completely satisfies the training instances, such as CN2 (Clark & Niblett, 

1989) and FOSSIL (Fürnkranz, 1994), or reduce the number of training examples before 
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generating a classifier; the hope is that using fewer training examples will produce fewer 

rules. 

• Post-pruning This takes a rule set that is consistent with the training instances and removes 

rules and conditions that do not reflect true regularities of domain, such as the Reduced 

Error Pruning (REP) algorithm (Brunk & Pazzani, 1991) and the GROW algorithm 

(Cohen, 1993).  

• Integration pre-pruning and post-pruning. Instead of learning the entire rule set and 

then conducting the pruning, this category prunes a single rule right after the rules have 

been learned, akin to IREP (Fürnkranz & Widmer, 1994), RIPPER (Cohen, 1995), and 

Simple Learner with Iterative Pruning to Produce Error Reduction (SLIPPER) (Cohen & 

Singer, 1999). 

 

2.4.2.1 Pre-pruning  
 

In a rule-induction process, the more conditions we have in the rule, the fewer instances it 

can cover. Thus, some algorithms employ stopping criteria for noise handling; in addition, to avoid 

overfitting, there should be a trade-off between covering and accuracy. The pre-pruning for rule 

inductions can be conducted in two ways: 

1. Condition reductions: This can be achieved by pruning each rule independently in the 

course of learning by using a heuristic to determine when to stop adding conditions to the 

rule. 

2.  Rule reductions: These aim to reduce the number of rules produced by either decreasing 

the instances used to build the rules, or removing the most specific produced rules (which 

should be those that cover the noisy instances).  
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2.4.2.2 Post-pruning  
 

 While pre-pruning algorithms try to avoid overfitting during rule generation (or before 

applying the rule-induction method), the post-pruning approach initially ignores the problem of 

overfitting and learns a complete and consistent rule set. It then estimates the quality of this rule 

set using some quality measurement (usually apparent or Laplace accuracy). If the accuracy can 

be improved by simplifying the rule set, then this will be repeatedly done until any further 

simplification would harm the quality of the rule set. 

 

The post-pruning can be done either by checking the effect of removing the condition from 

each rule and investigating the effect of this removal, or by considering the effect of removing the 

whole rule from the rule set and checking its effect on the accuracy. 

 

REP is the most common method used for post-pruning. Pagallo and Haussler (1990), 

Weiss and Indurkhya (1991), and Brunk and Pazzani (1991) employed straightforward adoption 

of REP to separate and conquer rule-learning frameworks. Initially, the training set is split into 

two subsets, a “growing set” and a “pruning set”. Then, in the first phase, REP learns the concept 

that covers all positive and no negative examples from the growing set (no attention is paid to the 

noise in the data). The resulting rule set is then repeatedly simplified by deleting conditions and 

rules from the set until any further deletion would result in a decrease of predictive accuracy as 

measured on the pruning set. A variant of REP can employ a variety simplifications to the rule set, 

such as deleting each condition of a rule, deleting final sequences of conditions1 (Cohen, 1993), or 

finding the best replacement condition (Weiss & Indurkhya, 1991).  

                                                           
1  For example, the “if w and x and y and z then class = a” might be simplified to either “if w and x and y then    

class = a” or “if w and x then class = a” or “if w then class = a”.  
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REP for rules usually does improve generalization performance on noisy data (Pagallo & 

Haussler, 1990), and its search strategy can be regarded as bottom-up as it performs pruning on 

the resulting rule set. However, it has several shortcomings (Fürnkranz & Widmer, 1994):  

 

• Complexity: REP’s time complexity has been shown to be O (n4) for noisy data, where n 

is the number of examples (Cohen, 1993). 

• Pruning of conditions in a “separate and conquer” rule will affect all subsequent rules. As 

pruning conditions from a rule can only generalize the concept – i.e., increase the set of 

covered examples – a post-pruning algorithm has no means for adjusting the subsequent 

rules to this new situation. Thus, the learner may be deceived, because the set of examples 

that remain uncovered by the unpruned rules at the beginning of learning may yield a 

different evaluation of candidate conditions for subsequent rules compared to the set of 

examples that remain uncovered by the pruned versions of these rules.  

• Generated rules are simplified so that the predictive accuracy on the pruning set will be 

maximized, but in noisy domains REP will have to do a lot of pruning, and therefore has 

ample opportunity to get caught in the local maximum. 

 

GROW is introduced to solve some of the drawbacks of the REP algorithm, and replace 

the bottom-up search of REP with a top-down approach. GROW initially finds a rule set (R0) by 

overfitting the growing set, then each rule, ri ∈  (R0), is taken, and repeatedly simplified in such a 

way that the error on the growing set goes up the least; the result will be a series of generalizations, 

ri,1, …..,ri,k, of original the rule, ri. All the generalizations in this series are then added to the rule 
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set (R0). After the initial rule set (R0) has been expanded, we start with an empty rule set and add 

rule ri,j from (R0), which improves the predictive accuracy the most on the pruning set. Ties are 

broken by choosing the smaller rule. It has been experimentally confirmed that this results in 

significant gain efficiency on learning time, along with a slight gain in accuracy (Cohen, 1993). 

 

Another methodology for post-pruning is to use Laplace accuracy as a measurement to 

decide either to remove or retain the produced rules. Sort then Select Rule Reduction (SSRR) 

(Othman & El Hindi, 2004) concentrates on retaining rules with the highest Laplace accuracy. For 

each class, it chooses a rule from the produced rule set with the highest Laplace accuracy. Then, it 

incrementally augments the pruned rule set with all necessary rules in order to make the same 

classification derived from the original produced rules on the training set. The rules are tried in 

order, with the one with best Laplace accuracy first. It has been shown (Othman & El Hindi, 2004) 

that SSRR slightly improves the accuracy in some datasets while achieving good reduction in 

produced rules. 

 

Pham et al. (2004) introduced another method for reducing the generated rules by merging 

them in order to handle expected noise. The main objective of this merging is to create new, more 

general rules, with a consistency level equal to or higher than a specified value Th (Thresh hold). 

Th is a user-defined parameter equal to (1 – expected noise level [NL]). This method works by 

taking one rule at a time from the generated rules (RSet), called the rule to merge (R2M). This rule 

is merged with each of the other rules for the same class within the RSet. If the consistency 

measurement of the best resulting rule from these mergers is equal to or higher than Th, then it is 

added to the RSet. Otherwise, if the consistency of the best rule is lower than Th, the algorithm 
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stores R2M in a new rule set (NEW_Rset) and removes it from the RSet. If there are still rules 

within the RSet that are not processed, the algorithm takes one of them as R2M and repeats the 

procedure. However, within this approach the NL is specified by the user. 

 
2.4.2.3 Integration pre-pruning and post-pruning 
 

 While post-pruning first grows a complete concept description and prunes it thereafter, 

Fürnkranz and Widmer (1994) proposed a novel learning algorithm called IREP. IREP prunes each 

individual rule right after it has been generated: after learning a rule from the growing set, the 

condition is deleted in a greedy fashion until any further deletion would decrease the accuracy of 

this rule in the pruning set. The resulting rule is added to the concept description and all positive 

and negative instances covered by the generated rule are removed from the training set “growing 

and pruning set”. The remaining training set is then split again to form a new growing and pruning 

set. When the accuracy of the pruned rule is below predictive accuracy of the empty rule (rule with 

body fail), the rule will not be added to the concept description and IREP returns the learned rule 

set. The accuracy of an empty rule is N/(N + P), and the accuracy of the pruned rule is (p + (N - 

n)) / (P + N), where p (n) is the number of positive (negative) examples covered by the rule from 

a total of P (N) positive (negative) examples in the current pruning set. 

 

 IREP solves some of the drawbacks of the REP method, such as the efficiency on learning 

time and the effect of pruning on the subsequent rule by completing the pruning on each rule and 

removing covered examples before the subsequent rules are learned. In addition, IREP uses a top-

down, instead of a bottom-up, search. Nevertheless, IREP is flawed since whenever the pruned 

rule’s accuracy is not above the accuracy of the empty rule, no more rules will be learned. In 

addition, IREP is prone to overgeneralization if the accuracy is not estimated correctly. 



40 

 

Experimentally, it seems that GROW outperforms REP, while IREP is better than REP and GROW 

whenever a fairly general concept has to be found, whereas REP is appropriate when the 

underlying concept is specific (Fürnkranz & Widmer, 1994). 

 

Cohen (Cohen, 1995) introduced a modification to IREP that allows it to handle multiple 

classes by placing them in increasing order of prevalence. IREP is then used to find a rule set that 

separates certain class Ci   from the remaining classes. Next, all instances covered by a learned 

rule set are removed from the dataset. Cohen also introduced some improvements to IREP that 

enhance its performance. This included three modifications to the IREP algorithm:  

1. An alternative metric for assessing the value of the rules in the pruning phase of IREP; 

2. A new heuristic for determining when to stop adding rules to a rule set; and  

3. A post-process to generate the rules that optimize a rule set in an attempt to more closely 

approximate IREP. 

 

This is the RIPPER algorithm. RIPPER significantly improves the generalization 

performance over IREP (Cohen, 1995).  

 

Cohen and Singer (1999) introduced another algorithm similar to the IREP and RIPPER 

algorithms, called SLIPPER. However, SLIPPER does not remove examples covered by a new 

rule; instead, it uses boosting to reduce the weight of these examples.  

 

Using the SLIPPER algorithm, a single rule is generated using one subset of the data (the 

growing set), and the rules are then pruned using the other subset (the pruning set). The ad hoc 
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metrics used to guide the growing and pruning of rules are replaced with metrics based on formal 

analysis of boosting algorithms, specifically Freund and Schapire’s (1997) AdaBoot, which 

employs confidence-rated predictions (Schapire & Singer, 1998). 

 

Other efforts have been applied to generate faster learning. IREP++ (Dain et al., 2004) is 

one such initiative. It starts by using RIPPER and attempts to develop an algorithm to achieve 

comparable accuracy by functioning more quickly. The speed improvements are achieved by 

making several changes to the RIPPER algorithm, including better pruning metrics, a novel data 

structure, and more efficient stopping criteria. IREP++ (Dain et al., 2004) has been shown to be 

slightly more accurate than RIPPER, and functioning faster. In addition, IREP++ learns fewer 

generated rules. 

 

In chapter 5, we compare different rule induction methods based on some important 

characteristics and choose the methods to be used in our experiments accordingly. Furthermore, 

we think that the technique of preceding rule induction with instance reduction can achieve a good 

result with rule induction algorithms which do not use pruning. 

 

2.5 Summary 
 

Rule induction is an attractive learning method, as rules become much more transparent 

and easier to interpret compared to other induction methods. There are different kinds of rule-

induction method algorithms that vary in terms of the type and direction of search. Nevertheless, 

these methods can suffer when using noisy datasets. Furthermore, most rule-based systems tend to 

induce quite a large number of rules, making the solution difficult to understand.  
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Pruning is a common framework to avoid the problem of overfitting noisy data. Rule-

induction methods can be entail different types of pruning, including pre-pruning (e.g., CN2; Clark 

& Niblett, 1989) and FOSSIL (Fürnkranz, 1994), post-pruning (e.g., REP algorithm; Brunk & 

Pazzani, 1991), and integration pre-pruning and post-pruning (e.g., RIPPER; Cohen, 1995). On 

other hand, training set can be reduced using different instance reduction methods and retain subset 

of it. In this thesis, we are investigating different instance-reduction methods to precede rule-

induction approaches. 
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Chapter 3: Literature Review: Ant Colony 
Optimization 
 

 

 

This chapter presents a review of ACO, which is a metaheuristic proposed as a method for 

solving hard problems, and inspired by the behaviour of real ants. 

 

ACO algorithms are considered to be part of swarm intelligence, which is the study of 

computational systems inspired by “collective intelligence”. Collective intelligence emerges 

through the cooperation of large numbers of homogeneous agents in the environment. 

  

This chapter is organized as follows. Section 3.1 presents a formal description of the ACO 

metaheuristic. Section 3.2 overviews the most popular variants of ACO and gives examples of 

their application. Section 3.2.1 explains the Ant-Miner algorithm and Section 3.2.2 describes how 

ACO is applied to feature selection. 

 

3.1 Ant Colony Optimization overview 
 

ACO is a branch of the newly developed form of AI called swarm intelligence. Swarm 

intelligence is a field that designs algorithms inspired by the collective behaviour of social insects 

and other animal societies (Bonabeau et al., 1999).  

 

The potential benefits of imitating social insects’ structural models and behaviour in 

designing solutions to a problem include: 

• Robustness, because a colony as a whole may succeed where an individual may fail. 
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• Flexibility, in terms of adaptation to changing environments. 

 

In groups of insects that live-in colonies, such as ants and bees, individuals can only 

accomplish simple tasks on their own, while the colony, working cooperatively, can perform 

complex tasks. Ants also have the ability to find the shortest path from their nest to a food source. 

When a food source is first located, several ants may have taken several different paths to reach 

that food source. When an ant moves, it lays a chemical substance called a pheromone along its 

path. When foraging for food and taking it back to its nest it follows the path with the greatest 

amount of a pheromone laid upon it. Pheromone trails evaporate if more ants do not come along 

to reinforce it, and ants that find the shortest route to the food will arrive back at the nest quicker 

than others; thus, the greater the number of ants on one path, the greater the amount of pheromone 

on that path. When new ants seek to travel to the food source they then take the shortest route 

(since they are guided by the amount of pheromone on the path). It has been observed that all 

foraging ants eventually converge on the shortest route to the food source (Galea, 2002). 

 

ACO is a technique used with combinatorial optimization problems, which consist of 

finding an optimal solution from a finite set of solutions. In many such problems, exhaustive search 

is not feasible. There are, however, some important differences between real and artificial ants 

(Socha, 2008): 

• Artificial ants live in a discrete world – they move sequentially through a finite set of 

problem states. 

• The pheromone update (i.e., pheromone depositing and evaporation) is not accomplished 

in exactly the same way by artificial ants as by real ones. Sometimes, the pheromone update 

https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Exhaustive_search
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is carried out only by some of the artificial ants, and often only after a solution has been 

constructed. 

• Some implementations of artificial ants use additional mechanisms that do not exist in the 

case of real ants. Examples include look-ahead, local search, backtracking, etc. 

 

The first ACO was developed by Marco Dorigo and published under the name of Ant 

System (AS) in (Dorigo et al., 1996). The application was the traveling salesman problem (TSP), 

which is classified as NP-hard combinatorial optimization because the solution cannot be found in 

polynomial time. The goal of TSP is to find the shortest possible route through a set of connected 

(N) cities, with each city visited once and only once. The ants find a solution to the TSP by 

traversing a problem graph from one city to another, depositing pheromone, until they solve the 

TSP. During an iteration of the AS algorithm, each ant builds a tour comprising N steps:  

For each ant, the transition from city i to city j depends on: 

1. Whether the city has been visited.  

2. The inverse of distance α = 1/dij, which is based on local information and represents 

the heuristic desirability of choosing city j when in city i. 

3. The amount of pheromone trail, µij, on the edge connecting city i to city j.  

 

ACO can solve any problem for which the following elements can be defined (Socha, 

2004): 

1. An appropriate problem representation is required that allows the artificial ants to 

incrementally build a solution using a probabilistic transition rule. The main idea is 

to model the problem of searching for the best path through a graph. In the TSP, we 
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have a fully connected weighted graph, where the set of nodes, N, represent the 

cities and the set of edges represent the connection between the cities, as shown in 

Figure 5.  

2. A local heuristic provides guidance to the ant in choosing the next node for the path 

it is building.  In the TSP, the local heuristic is the inverse of distance, which 

represents the heuristic desirability of choosing city j when in city i.  

3. The probabilistic transition rule determines which node an ant should visit next. 

The transition rule is dependent on the heuristic value and pheromone level 

associated with an edge joining two nodes.  

4. A fitness function determines the fitness of the solution built by an ant in the TSP, 

where the fitness function is the length of the whole path traversed by the ant.  

5. A pheromone update rule specifies how to modify the pheromone trail laid along 

edges of the graph. 

 

 

 

 

 

 

 

 

 
 Figure 5. A weighted graph for TSP with five cities.  

 

Figure 5 considers the weighted graph for five cities. An ant at city A has to choose 

probabilistically one of the four cities to visit. The pheromone, which will be referred to as (µ), is 
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initially set to be equal to 1. The initial visibility for each city is the inverse of the distance between 

the cities. Thus, the probability of choosing cities B, C, D and E are: 

P1
AB = 

1/100

(
1

100
)+(

1

75
)+(

1

100
)+(

1

125
)
      = .242           

P1
AC =   .323 

P1
AD =   .194 

P1
AE =   .242     

       

Therefore, the ant chooses to visit city C. Continuing the iteration, the ant completes the 

tour by visiting the cities E, B, and D, in that order, for a tour of length 250. After completing the 

tour, the ant lays pheromone along the path of the tour. The amount of pheromone added is equal 

to the inverse of the total length of the tour. Thus,  

      ∆µ = 
1

75+50+75+50
 = .004 

 

Furthermore, the pheromone is decreased along all edges to simulate pheromone decay 

according to the pheromone evaporate rate. The pheromone for the edges in the path is therefore 

updated by (assuming that the pheromone evaporate rate is 0.1):  

 
µ      = (1- .1) + .1 (.004) =    .9004.  

And the pheromone for edges not in the path will be updated by,  

µ      = (1- .1) + .1 (0) =    .9.  

                                  

The new pheromone values along the edges of the graph in Figure 5 are given in Figure 6. 

The second ant, starting from city B, would complete the tour by visiting cities D, E, C, and A. 
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Now, the total length of the tour is 275, and hence this tour is taken as the shortest path so far 

(when the starting point is city B). The pheromone updates are completed as earlier. The algorithm 

continues to find the shortest path until the terminating condition is met, which is a certain number 

of solution constructions fixed at the beginning of the algorithm.  

 

The great advantage of ACO over the use of exact methods is that the ACO algorithm 

provides relatively good results via a comparatively low number of iterations, and is therefore able 

to find an acceptable solution in a comparatively short time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Pheromone values for the structure shown in Figure 5 after the first ant finishes a tour.  

 

 

The ACO algorithms have also been applied to solve graph colouring (Costa & Hertz, 

1997), job-shop scheduling (Colorni et al., 1994), sequential ordering (Gambardella & Dorigo, 

1996), and vehicle routing (Bullnheimer, 1999). Results obtained with ant-based algorithms are 

often as good as those obtained with other algorithms. 

 



49 

 

 3.2 Application of ACO to Classification Rule Induction  
 

Parpinelli et al. (2002) were the first to propose using ACO to discover classification rules 

with the Ant-Miner system; they argued that an ant-based search is more flexible compared to 

traditional methods.  

 

 Ant algorithms simulate the foraging of real ants, so it is a good idea to think about the 

problem as a search for a best path through a graph, where the nodes represent the partial solution 

and edges represent the transition between these partial solutions. The edge labels are 

measurements that qualify the selected partial solutions.  

 

In this section, we will review two interesting applications for ACO that have achieved good 

results in their field.  We will demonstrate how ACO has been applied to solve these kinds of 

applications. 

 

3.2.1 Ant-Miner Algorithm  
 

Ant-Miner is an algorithm that incorporates the principles of ACO and rule induction. It 

starts with the full training dataset and then generates a set of ordered rules through iteratively 

finding a “best” rule that covers a subset of training data. It then removes the examples covered by 

the rule until the stop criterion is reached. Figure 7 shows the Ant-Miner algorithm proposed by 

Parepinelli et al. (2002).  
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Figure 7. Ant-Miner algorithm. 

 

When applying the Ant-Miner algorithm to classification rule induction, the basic element 

of the solution is attribute terms. An attribute term, termij, is in the form Ai = Vij, where Ai is the 

ith attribute and Vij is the jth value of domain A. Thus, an appropriate problem for ACO 

representation regarding the induction of classification rules is a graph whose nodes represent 

attribute terms. A complete path is a constructed rule, and the quality of the path is assessed by a 

global2 fitness function. The quality of node is evaluated by heuristic value and pheromone level 

value associated with the node. 

 

In Ant-Miner, each ant starts with an empty rule – i.e., with no term in its rule antecedent 

– and adds one term at a time. The choice of term to be added to the current partial rule antecedent 

depends on both the heuristic value (based on term entropy) and the pheromone level associated 

                                                           
2 The scope of the global fitness function extends only to the current constructed rule, and not to full execution of 

Ant-Miner. 
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with each term. The entropy in Ant-Miner is computed for a specific attribute value, which is 

defined by:  

    

  H (C| Ai = Vij) = - ∑  𝑃(𝑐|𝐴𝑖 = 𝑉𝑖𝑗) ∗ 
𝑘

𝑐=1
𝑙𝑜𝑔2𝑃(𝑐|𝐴𝑖 = 𝑉𝑖𝑗)            (7) 

 

Where:  

c is the class attribute and k is the number of class values. 

Ai is the ith attribute and Vij is the jth attribute value of the ith attribute.  

P(c | Ai = Vij) is the probability of observing class c, conditional on observing Ai = Vij. 

 

The higher the entropy value of a term, the more uniformly distributed the classes are, and, 

thus, the smaller the probability that the current ant chooses this term to add to its partial rule. In 

Equation 8, H (C| Ai = Vij) is subtracted from 1 because the ant is seeking a term that will 

distinguish between the class values, since it is building a classification rule. The entropy values 

are normalized using Equation 8 (Swaminathan, 2006). 

 

       Ħ ij =   (1 − 𝐻(𝐶|𝐴𝑖 =  𝑉𝑖𝑗))/(∑ 𝑥𝑙 ∗ 𝑎
𝑙=1 (1 − ∑  𝐻 (𝐶| 

𝑏𝑖
𝑚=1 𝐴𝑙 =  𝑉𝑙𝑚)))         (8) 

 

a is the total number of attributes. 

xl is set to 1 if attribute Al has not yet been selected; otherwise, it is set to 0.  

bi is the number of domain values for ith attribute. 

 

The choice is biased towards terms that have relatively higher heuristic and pheromone 

values. Ant-Miner uses the transition rule in Equation 9, given an attribute–value pair; the 
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transition rule gives the probability of adding the attribute–value pair to the rule. The one with 

highest probability is added to the rule.  

 

Pij= (Ħ𝑖𝑗 ∗ µ𝑖𝑗(𝑡))/(∑ (𝑥𝑙 ∗ 
𝑎

𝑙=1
 ∑  

𝑏𝑖
𝑚=1  Ħ𝑙𝑚 ∗  µ𝑙𝑚(𝑡)))               (9) 

Where:  

Pij is the probability that termij is selected for addition to the current partial antecedent.  

Ħ ij is the heuristic value associated with termij. 

µij (t) is the amount of pheromone associated with termij at iteration t. 

a is the total number of attributes. 

bi is the number of domain values of the ith attribute.  

xl is set to 1 if attribute Al has not yet been selected; otherwise, it is set to 0.  

 

Once an ant has stopped building a rule antecedent, a rule consequent is chosen. The rule 

consequent is assigned the class label of the majority class among the instances covered by the 

antecedent. 

 

After constructing the rule, the artificial ant performs the rule-pruning procedure. The 

purpose of rule pruning is to increase the quality and comprehensibility of the built rule by 

simplifying the rule antecedent. The rule is pruned by removing one term at a time, until the rule 

cannot be improved further by removing another term. The term that most improves the quality of 

the rule is chosen. The pruning stops when there is no term whose removal would improve the rule 

quality. The accuracy of a rule consists of both accuracy among positive examples (called 
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sensitivity) and accuracy among negative examples (called specificity). Thus, the quality of the 

rule is defined by the following: 

 

Q = 
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
∗  

𝑇𝑁

𝐹𝑃+ 𝑇𝑁
                                                                                                               (10) 

Where: 

TP, true positive, is the number of examples covered by the rule that belong to the class predicted by 

the rule.  

FP, false positive, is the number of examples covered by the rule that belong to a class that is 

different from the class predicted by the rule.  

FN, false negative, is the number of examples that are not covered by the rule, but that belong to the 

class predicted by the rule. 

TN, true negative, is the number of examples that are not covered by the rule and do not belong to 

the class predicted by the rule. 

 

Other variations from Ant-Miner use Laplace accuracy to estimate the constructed rule. It 

has been observed that Ant-Miner achieves better prediction accuracy when using Laplace 

accuracy, compared to using the sensitivity/specificity fitness function (Xuepeng, 2004). 

  

Once rule pruning is complete, the pheromone levels are updated for the terms by 

increasing the pheromone for the terms that appear in the rule antecedent according to the rule 

quality given by: 

 

µij (t+1) = µij (t) + µij (t) * Q.        (11)    

Where  

µij (t) is the pheromone level of termij.  

Q is the quality of the rule constructed.  
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The ant then normalizes the pheromone level of all terms (each pheromone level is divided 

by the sum of all pheromone levels), which reinforces the pheromone levels of the terms occurring 

in the rule antecedent and decreases the pheromone levels of other terms that are not selected in 

the rule.  

 

The process by which an ant creates a rule is repeated for, at most, a predefined number of 

ants. However, the process may stop if the current ant has just created a rule that is exactly the 

same as a previous (maxRulesConverge -1) rule. MaxRulesConverge is a user-defined parameter 

for testing the convergence of ants, which simulates the convergence of real ants to the shortest 

path between a food source and their nest. The best rule created is added to the InducedRuleSet, 

the training set is appropriately reduced, and another run generates a best rule to cover more 

instances from remaining training instances.  

 

 
Ant-Miner employs an ACO approach that provides a mechanism for conducting a global 

search that is more effective than those provided by traditional covering algorithms. It copes better 

with attribute interaction than greedy rule-induction algorithms do. Ant-Miner has been shown to 

have the best results compared to C4.5 and CN2 in terms of predictive accuracy and simplicity of 

rule sets (that is, the number of rules in the rule set), using six datasets from the University of 

California at Irvine (UCI) machine learning repository and a total number of ants equal to 3,000 

(Parepinelli et al., 2002). 
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3.2.2 Feature Subset Selection  
 

Feature subset selection is a method for selecting a subset of relevant features in order to 

generate good classifiers. The importance of the feature subset selection technique lies in its ability 

to provide a better understanding of the data and reduce the training time of the learning algorithm, 

because it helps in reducing the complexity of a given training set. It is computationally expensive 

and infeasible to implement feature subset selection via exhaustive evaluation of all possible 

subsets, especially as there may be thousands of features present in real-world datasets. 

 

The feature subset selection algorithms can be categorized into two groups: 

1. The filter approach, which is a feature subset selection technique applied independently of 

the learning algorithm. These methods apply some ranking over features. The ranking 

denotes how ’useful’ each feature is likely to be for classification. a number of performance 

criteria have been proposed for filter-based feature selection such as fisher score (Duda et 

al., 2012), methods based on mutual information (Koller & Sahami, 1996) and ReliefF 

(Kira & Rendell, 1992). 

2. The wrapper approach, wherein the evaluation criteria is tied to the learning algorithm. It 

considers feature subsets by the quality of the performance on a learning algorithm, which 

is taken as a black box evaluator. (e.g. Naïve Bayes or SVM) (Maldonado et al., 2014). 

 

Shahzad (2010) proposed a hybrid feature subset selection using ACO and a decision tree 

(ID3) learning algorithm. This is a wrapper feature subset selection approach, in which each ant 

incrementally constructs a candidate solution that is a subset of the features in the dataset. These 

features are selected based on pheromone level and the heuristic value of each feature. The main 

idea of the proposed approach is to provide connected nodes graph (where N is the total number 

of features present in the dataset) (Shahzad, 2010). In the graph, the nodes represent the features 
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and links represent the connection between these features. Each ant constructs a solution by 

traversing a path in the graph. This path represents the selected features. After the ant has 

completed the feature selection, the fitness of the traversed path is calculated by running the ID3 

algorithm using the selected features and estimating the predictive accuracy of the resulting 

classifier using 10-fold cross-validation (Kohavi, 1995). This estimate is the fitness function that 

is used to update the pheromone values. After termination of the algorithm, the feature set that has 

the best accuracy is returned as the solution (Shahzad, 2010).  

 

Like the Ant-Miner algorithm, the ant starts with empty an subset. The ant uses two 

components to calculate the probability of moving from the present node to the next. The first 

component is the amount of pheromone present on the edge between nodei and nodej, and the 

second is the heuristic value (e.g., the information gain) that describes the worth of a node. The 

probability with which the ant chooses node j as the next node, after it has arrived at node i, is 

shown in equation 12. Node j has to be in the set S of nodes that have not been visited. 

 

Pij = ((Ħ𝑖𝑗)
𝛼

∗ (µ𝑖𝑗)
𝛽

)/(∑  𝑆
𝑘 (Ħ𝑖𝑘)𝛼 ∗ (µ𝑖𝑘)𝛽))                            (12)     

Where  

µij is the pheromone level between nodei and nodej.  

Ħ𝑖𝑗 is the heuristic value for choosing node j when arriving node i. 

α, β are influencing factors of pheromone value and heuristic value, respectively.  

 

Initially, the pheromone values in all edges between nodes are initialized with the same 

amount. In this way, no attribute is preferred over other attributes by the first ant. Equation 13 

represents the initial pheromone for all attributes:  
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µ (t=1) = 
1

𝑁
                                      (13)   

Where  

N is the total number of features (attributes). 

  

The heuristic value used to qualify each node is the information gain for each attribute. The 

information gain of attribute (A) is the reduction in entropy caused by partitioning the set of 

examples (S). When an ant selects the next node, it uses Equation 14 to calculate the information 

gain of a feature (attribute), where values (A) is the set of all possible values for attribute A and Sv 

is the subset of S for which attribute A has value v . Equation 14 is used to calculate the entropy:  

 

Gain(S,A) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − (∑  
|𝑆𝑣|

|𝑆|
 ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ( 𝑆𝑣

𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

𝑣
) )                      (14)  

Where  

V is the set of all possible values for feature (attribute) A. 

|Sv| is the size of the subset from S, where attribute A takes the value v.  

|S| is the number of training instances.  

 

To evaluate the worth of the selected set of features, Shahzad (Shahzad, 2010). used ID3 

to build a classifier using the selected features subset and evaluate the generated classifier. He 

performed this procedure 10 times using 10-fold cross-validation, where the dataset is randomly 

divided into 10 equally sized subsets. Each of the subsets is used once for testing, and the 

remaining nine are used as the training set. Further, the fitness function is calculated by: 
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µ (t=1) = 
𝑵𝒄𝒐𝒓𝒓

𝑁
                                                                       (15)   

Where  

N is the total number of test instances. 

Ncorr is the number of test instances correctly classified by the generated classifier. 

 

This fitness is calculated for each fold, and then averaged.  

 

The pheromone rates are updated after the ant has completed its route. The amount of 

pheromone on each link occurring in the current feature subset selected by the ant is updated 

according to: 

 

µ (t+1) = ((𝟏 − Þ) ∗  µ (t) ) + ((1 −
1

1+𝑓𝑖𝑡𝑛𝑒𝑠𝑠
) ∗   µ (t))                        (16) 

Where 

µ (t+1) is the pheromone value between nodei and nodej. 

Þ is the pheromone evaporation rate. 

fitness is the quality of the current path constructed by the ant. 

 

The pheromone on the other paths is updated by normalization.  

 

Figure 8 presents the algorithm of the proposed feature subset selection based on ACO. 

The process continues until the stopping criteria are met. There are two stopping criteria:  

1. Completion of a user-specified number of iterations (ants). 

2. 10 consecutive ants returning the same set of features.  
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The experiments have been executed with 1,000 ants, using 32 datasets from the UCI 

machine learning repository with diverse characteristics. The experimental results reveal that the 

proposed feature subset selection method selects relevant features from datasets, causing an 

increase in the predictive accuracy on almost all of the datasets. Shahzad (Shahzad, 2010). 

compared the proposed approach with the naive Bayes approach for feature selection in terms of 

predictive accuracy after selecting the features using both approaches. Furthermore, the 

experimental results indicate that the proposed approach is better at finding features that improve 

predictive accuracy for the learned classifier. 

  

 

 

 

 

 

 

Figure 8. Feature subset selection based on ACO.  

 

3.3 Summary  
 

ACO is a meta-heuristic algorithm that has been proven to be a successful technique and 

applied to different combinatorial optimization problems, such as rule induction (Ant-Miner 

algorithm) and feature subset selection. It is an attractive approach, and requires careful definition 

of five elements: appropriate problem representation, a local heuristic, the probabilistic transition 

rule, a fitness function, and the pheromone update rule.  
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Chapter 4: Experimental Framework 

 

This chapter presents the methodology and experimental framework followed in this thesis 

to assess the effect of preceding rule induction with instance-reduction methods in terms of the 

number of generated rules and the predictive accuracy. In this methodology, a new algorithm for 

instance-reduction method based on ACO is implemented to achieve a good results when 

preceding rule induction methods.  

  

Section 4.1 explains the problem we are interested in and the pre-processing framework 

that we are suggesting in our research.  In Section 4.2, we explain the datasets used in this research 

for conducting the experiments, and Section 4.3 compares different rule-induction characteristics 

and specifies the rule-induction methods that we are interested in in our experiments. Section 4.4 

presents how we estimate the prediction accuracy in our experiments. Then, Section 4.5 explains 

the evaluation measurement and the comparison methodology used in our experiments. Finally, 

Section 4.6 outlines the experimental setup and methodology we used with different datasets.  

 

4.1 Problem Statement 
 

This thesis is concerned with pruning rule induction by filtering out the border instances 

by applying instance-reduction methods before rule induction. We will apply three methods for 

instance reduction: (AllKnn, ENN and DROP5). These instance-reduction methods have been 

shown to perform well in the context of neural network learning (El Hindi & Alakhras, 2009). 

Moreover, ENN has been evaluated with ANN and shown that it is the most effective one 

compared to many other instance reduction methods (Sun & Chan, 2014). 



61 

 

 

 

Figure 9 illustrates the idea of eliminating near-border instances and how the decision 

boundary has been smoothed. Figure 10 explains the framework for the main idea of our work.      

         

      Before filtering out border instances                                        After eliminating border instances 

Figure 9. The line or curve separates instances from different classes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Framework for instance-reduction method preceding rule induction.     
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We will also apply the DROP5 method in instances flagged by AllKnn to be removed, and 

will call this the AllKnnDROP5 method. Figure 11 shows the suggested method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. AllKnnDROP5 algorithm.     

 

 

Instance selection is classified as an NP-hard problem (Babu & Murty, 2001), which means 

that there is no polynomial algorithm able to find an optimal solution. Moreover, in Chapter 6 we 

will investigate a new instance-selection method based on ACO principles, and will specify how 

to set up different elements of ACO (i.e., problem representation, local heuristic, probabilistic 

transition rule, fitness function and pheromone update rule).  

 

4.2 Benchmark Datasets 
 

Results on a single dataset are typically not very meaningful. Therefore, machine learning 

techniques are often evaluated on a large set of benchmark datasets. We conduct experiments on a 

collection of machine learning datasets available from the repository at UCI (Murphy & Aha, 

1994). We have chosen datasets with diverse characteristics: some of them have binary classes and 

others are multi-class; some of them have a lesser number of attributes while others have a 

relatively higher number; and some have a lesser number of examples while others have more. A 

summary of the properties of these datasets is given in Table 2.  
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ID# Data Sets No. of examples No. of classes Con. 

Attributes 

Disc. 

attributes 

1 Iris 150 3 4 - 

2 Voting 435 2 - 16 

3 Vowels 528 11 10 - 

4 Heart Cleveland 303 2 7 6 

5 Glass 214 7 9 - 

6 Liver disorders 345 2 6 - 

7 Wine 178 3 13 - 

8 Pima Indians diabetes 768 2 8 - 
9 Promoters 106 2 - 57 

10 Hepatitis 155 2 6 13 

11 Vehicle 848 4 18 - 

12 Pole-and-cart 3481 2 4 - 

13 Blood transfusion service 748 2 5 - 

14 E-coli 336 8 7 - 

15 Soybean 307 9 - 35 

16 ZOO 101 7 1 15 

17 Yeast 1484 10 8 - 

18 Led creator 1000 10 - 7 

19 Vertebral column 310 2 6 - 

20 Ionosphere 352 2 34 - 

21 Wave 5000 3 21 - 

 

  Table 2. Description of datasets used in empirical study Notes: Columns show, in order: serial number, name of 

dataset, no. of examples in dataset, no. of classes in dataset, no. of continuous attributes, no. of discrete attributes. 
 

4.3 Rule-Induction Characteristics 
  

We will consider rule-induction methods that learn a set of propositional rules where the 

target concept is represented as a set of “if... then...” rules. . We focus on rule-induction methods 

that produce an unordered set of rules, because we are interested in rule sets where each rule can 

be understood independently. 

 

In this section, we categorize some rule-induction methods according to the following 

criteria: 

1. Type of pruning: This criterion specifies whether the rule induction applies pruning 

when generating a rule set. The pruning can be:  

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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a. Post-pruning: The pruning procedure is applied after the rule set has been 

induced.  

b. Pre-pruning: A reduction or filtering method is applied before starting to 

generate the rule set.  

c. During rule set generation: The rule is simplified as it is generated and 

before generating the next rule.  

2. Direction of the search: There are three kind of search strategies for rule-induction 

methods (Pappa & Freitas, 2008): 

a. Specific-to-general (bottom-up strategy): Starts the search with a very 

specific rule, and iteratively generalizes it.  

b. General-to-specific (top-down strategy):  Starts the search with the most 

general rule and iteratively specializes it.  

c. Hybrid (bi-directional strategy): A bi-directional search is allowed to 

generalize or specialize the candidate rules 

3. Types of search include the following:  

a. Greedy search: Creates an initial rule, specializes or generalizes it, evaluates 

the extended rules created by the specialization or generalization operation, 

and keeps only the best extended rule. 

b. Beam search: Tries to eliminate the drawbacks of greedy search by 

selecting, instead of one, the b best extended rules at each iteration (where 

b is the width of the beam). 
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Table 3 uses these criteria to compare the rule-induction methods described in Chapter 2. 

This will guide us in selecting the algorithm that will be used in our experiments with the pre-

pruning process. We think that pre-pruning can achieve good results with rule-induction 

algorithms that do not use pre-pruning, such as CN2 (modified), RISE, PRISM, the AQ family, 

the RULEs family, and IREP. In addition, we can choose methods that have different search types 

and directions. Accordingly, we choose to investigate pruning on CN2 (modified), PRISM, and 

RISE, as they have different search types and directions. 

 

Rule-induction method Type of pruning Direction of search Type of search 

AQ family Post-pruning Hybrid Beam search 

CN2 (modified) During rule generation General to specific Beam search 

RIPPER Pre- and post-pruning 

integration.  

General to specific Greedy search 

IREP During rule generation General to specific Greedy search 

RULEs family Post-pruning General to specific Beam search 

RISE No Specific to general Greedy search 

PRISM No General to specific Greedy search 

 

 Table 3. Comparison of rule-induction methods. 

 

4.4 Estimating the Predictive Accuracy of Rules 
 

The predictions that really matter to researchers are those for “future” data, whose classes 

are unknown at the time the classification algorithm is applied. We use predictive accuracy in the 

test set as an estimate of the predictive accuracy in future data. In this thesis, the classification 

quality of the rule set is measured by the predictive accuracy, which is defined as the percentage 

of the total number of correctly classified examples in all classes relative to the total number of 

tested examples. It has been by far one of the most commonly used metric for assessing 

performance of classifiers (Witton & Frank, 2005).  
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Accuracy = 
𝑵𝒄𝒐𝒓𝒓

𝑁
 X 100%                                                          (17)   

Where  

N is the total number of test instances. 

Ncorr is the number of test instances correctly classified by the generated classifier. 

 

 

4.5 Comparison Evaluation 
 

This thesis reports on experiments that have been conducted to compare the application of 

different instance-reduction methods prior to rule induction. The comparison is conducted in terms 

of the predictive accuracy and comprehensibility.  For predictive accuracy, the results are 

compared using statistical paired t-test with confidence at 0.05. A statistically significant 

improvement in predictive accuracy is referred to as a win, and a statistically significant reduction 

as a loss.  For each pre-pruning method, we count the number of datasets that resulted in a win and 

the number of datasets that resulted in a loss. 

 
 On other hand, when dealing with learning algorithms it is important to be bear in mind 

that the most desirable property is comprehensibility. Furthermore, in some cases 

comprehensibility tends to be more important than predictive accuracy because:  

1. The discovered knowledge (rule set) will be used for supporting a decision to be 

made by a human.  

2. If the discovered knowledge (rule set) is not comprehensible, nobody will be able 

to validate it, and a human may not trust it.  
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In general, the shorter (the fewer number of conditions in) a rule, the more comprehensible 

it is. The same principle applies to rule sets. In general, the lower the number of generated rules in 

a rule set, the more comprehensible it is (Shirbhate & Gupta, 2015; Blanco-Vega et al., 2004).  

 

4.6 Experimental Setup 
 

This section explains the different experimental setups used in this thesis. For each 

evaluation, we conduct testing in all datasets mentioned in Table 2. 

 

4.6.1 Cross-validation   
 

Cross-validation (Kohavi, 1995) is a common method for estimating different learning 

algorithms. The accuracy of the resulting classifier is estimated by dividing the data into n parts. 

In each experiment, n -1 parts are combined into a training set and the remaining part is used for 

testing. A model is then learned on the training set and evaluated on the test set. This is repeated 

until each part (and thus each training example) has been used once for testing. The final accuracy 

is then estimated as an average of the accuracy estimates computed in each such experiment. The 

cross-validation algorithm is shown in Figure 12. This algorithm can be used to estimate any 

learning algorithm. It is thus shown with generic functions for learning (LearnAlgorithm) and 

evaluating (Evaluate). 

  

In this thesis, the predictive accuracy is estimated using 10-fold cross-validation. Each of 

the folds is used once for testing, and the remaining nine are used as a training set.  
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Figure 12. Estimating the predictive quality of learning algorithms using cross-validation.     

 

 

4.6.2 Choosing K for K-NN algorithm 
 

The k-NN algorithm is amongst the simplest of all machine learning algorithms. An 

instance is classified by a majority vote of its neighbours, with the instance being assigned to the 

class that is most common amongst its k nearest neighbours (k is a positive integer that is typically 

small). If k = 1, then the instance is simply assigned to the class of its NN.  

 
How should one go about choosing the value of k? In fact, there may not be an obvious 

best solution. Consider choosing a small value for k. In such a case, it is possible that the 

classification may be unduly affected by outliers or noise. On the other hand, choosing a value of 

k that is not too small will tend to smooth out any idiosyncratic behaviour learned from the training 

set. However, if we take this too far and choose a value of k that is too large, locally interesting 

behaviour will be overlooked (Larose, 2005). Furthermore, the value of k must set to an odd 

number to avoid ties. 

 

In this thesis, we avoid using k = 1 in experiments for evaluating the behaviour of the k-

NN algorithm, based on the earlier discussion. We set k to 3, the next smallest odd number. 

https://www.google.ae/search?biw=1327&bih=634&tbm=bks&q=inauthor:%22Daniel+T.+Larose%22&sa=X&ved=0ahUKEwjk-emy0ePJAhWEGB4KHblBBnoQ9AgIITAB
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Furthermore,  the additional complexity required to use a larger number of neighbours than three 

is not warranted due to the small decrease in the error rate when more than three are used (Wilson, 

1972). 

 

4.6.3 Number of Ants in Ant Colony Optimization   
 

ACO is a promising new approach to solving various problems. Many factors affect the 

ability of ACO to achieve good solutions to these problems.  One of these factors is the number of 

ants. Finding the exact number of ants required to solve a problem remains an empirical problem 

based on fine tuning. 

 

In our experiments, we test the effect of changing the number of ants on the predictive 

accuracy and the number of generated rule sets. We evaluate the ACO with 250, 500, 750, 1,000, 

and 1,250 ants.   

 

4.6.4 Experiment Implementation   
 

In our experiments, we used the code for the CN2 algorithm implemented by Robin 

Boswell in 1990, from which Francisco Reinaldo (Univ. Porto, Portugal) and Marcus Siqueira 

(UnilesteMG, Minas Gerais, and Brazil) created the executable file for Windows XP. We used the 

version of CN2 that produces an unordered list of rules. We implemented the RISE algorithm using 

the C programming language. Furthermore, for the PRISM algorithm we used the Inducer rule-

induction workbench (Bramer, 2000); this is one of a suite of packages developed to facilitate 

experiments with different techniques for generating classification rules. Inducer is implemented 

in Java (version 1.1) in the interests of portability and is available both as a standalone application 

and as an applet. 
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We also implemented the proposed ACO using Microsoft visual studio, again using the C 

programming language. 

 

4.6.5 Summary   
 

This chapter introduced all the items needed to run our experiments, including our test 

strategy. It also outlined how to compare and evaluate the achieved results in terms of predictive 

accuracy and comprehensibility (i.e., number of generated rules). We compared and characterized 

different rule-induction methods, then clarified our chosen methods to be used in our experiments. 

Moreover, we introduced the parameters for implementing the instance-reduction method based 

on the ACO concept.  

 

The next chapter describes the details of the experiments conducted, and the results that 

were obtained.  

 

 

  



71 

 

Chapter 5: Preceding Rule Induction with 
Instance-Reduction Methods 
 

This chapter presents the empirical results for investigating preceding three different types 

of rule induction with instance-reduction methods (CN2, PRISM, and RISE).  Section 5.1 explains 

the basic ideas behind the experiments and the setup used to complete them. In Section 5.2, we 

present our analysis of the results obtained in terms of predictive accuracy and number of generated 

rules on the 22 datasets described in Section 4.2. Section 5.3 presents our conclusions.  

  

5.1 Experimentation  
 

We focus on instance-reduction methods that have been proven capable of reducing the 

size of training sets while maintaining as much predictive accuracy as possible (Wilson & 

Martinez, 1997, 2000). More specifically, we apply algorithms that aim to reduce the border 

instances before applying the induction method. This can achieve good results as removing border 

instances should remove instances that are noisy, which may improve the predictive accuracy for 

the induction method. Furthermore, we investigate the effect of preceding instance-reduction 

methods on the complexity of rule set (roughly represented here by the number of generated rules). 

El Hindi and Alakhras (2009) showed that filtering out border instances before training an artificial 

neural network will improve the predictive accuracy in some cases and speed up the training 

process by reducing training epochs.  

 

Our experiments concern three reduction algorithms that performed well in reducing the 

number of instances (Wilson & Martinez, 1997). We applied the three methods for instance 
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reduction (AllKnn, ENN, and DROP5) that are intended to remove the border and noisy instances 

before using CN2, PRISM, and RISE. We also applied the DROP5 (Wilson, & Martinez, 2000) 

method for instances flagged by AllKnn to be removed; we call this method AllKnnDROP5.  

. 

 

The CN2 (Clark & Niblett, 1989) algorithm induces an ordered list of classification rules 

from examples, using entropy as its heuristic. Clark and Boswell improved CN2 by using a 

Laplacian error estimate as an alternative evaluation function, and producing unordered 

classification rules (Clark & Boswell, 1991). One of our objectives was to apply some instance-

reduction methods before applying the modified CN2 algorithm and compare the results with and 

without applying the reduction. 

 

5.2 Analysis of Results 
 

Table 4 presents the average number of generated rules by preceding the CN2 algorithm 

with different instance-reduction methods. Moreover, we compare the amount of reduction with 

respect to the average number of rules generated by applying CN2 (RCN2) without pre-pruning. 

From Table 4, it is clear that all of the instance-reduction techniques reduced the number of rules 

generated by CN2. We can see that DROP5 achieved the largest reduction, as the ratio of the 

average number of rules between preceding CN2 with DROP5 and applying CN2 without pre-

pruning (RDROP5/ RCN2) is 0.34, which means that the reduction was 64% on average. On the other 

hand, applying ENN, AllKnnDrop5, and AllKnn reduced the generated rules by 51%, 50%, and 

55% on average, respectively. 

 



73 

 

 Table 5 reveals the results of the average number of generated rules by applying the 

instance-reduction techniques prior to the RISE algorithm. We computed the ratio of average 

number of rules between preceding RISE with different instance-reduction methods and applying 

RISE without pre-pruning, so we were able to investigate the amount of reduction in the average 

number of generated rules. It is clear that applying DROP5 still achieved the highest reduction in 

the number of generated rules followed by applying AllKnn, which achieved 55% on average. 

Furthermore, AllKnnDrop5 and ENN reduced the generated rules by 51% and 47% on average, 

respectively.  

 

Finally, Table 6 shows the average number of generated rules by preceding the PRISM 

algorithm with different instance-reduction techniques. We can see that DROP5 achieved the 

largest reduction in the number of generated rules, as the ratio of the average number of rules 

between preceding PRISM with DROP5 and applying PRISM without pre-pruning is 0.28, which 

means that the reduction was 72% on average. Moreover, AllKnnDrop5, AllKnn, and ENN 

reduced the generated rules by 46%, 54%, and 47% on average, respectively. 

 
Figure 13 shows that for all rule-induction methods, the number of generated rules reduced 

after applying different instance-reduction methods. It is clear that applying DROP5 achieved the 

largest reduction in the number of generated rules of the four rule-induction methods. AllKnn 

achieved the next best reduction in the number of generated rules, followed by AllKnnDrop5 and 

ENN.   
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Table 4. Empirical results comparing the average number of generated rules for preceding CN2 with ENN (RENN), 

AllKnn (RAllKnn), DROP5 (RDROP5), and AllKnnDrop5 (RAllKnnDROP5), and comparing the amount of reduction with respect 

to the average number of rules generated by applying CN2 (RCN2) without pre-processing.       

 

 

 

 

 

 ENN AllKnn DROP5 AllKnnDROP5 

Datasets RCN2 RENN RENN

/RCN2 

RAllKnn RAllKnn/

RCN2 

RDROP5 RDROP5/ 

RCN2 

RAllKnnDROP5 RAllKnnDROP5/ 

RCN2 

Iris 6.30 3.9 0.62 3.6 0.57 3 0.48 3.6 0.57 

Voting 17.3 6.2 0.36 5.7 0.33 3 0.17 6.1 0.35 

Vowels 46.2 42.2 0.91 41.5 0.9 31.7 0.69 44.3 0.96 

Heart Cleveland 21.3 11.2 0.53 9.4 0.44 7 0.33 10.6 0.5 

Glass 22.0 12.8 0.58 12.1 0.55 9.2 0.42 10.3 0.47 

Liver disorders 31.3 17.6 0.56 15.2 0.49 12.6 0.4 18.1 0.58 

Wine 8.60 7.4 0.86 6.9 0.8 3 0.35 6.9 0.8 

Pima Indians diabetes 44.4 20.8 0.47 18.1 0.41 15.6 0.35 21.3 0.48 

Promoters 12.4 10.4 0.84 9.6 0.77 2.7 0.22 9.7 0.78 

Hepatitis 17.8 1.80 0.1 4.2 0.24 1.7 0.1 4.7 0.26 

Vehicle 48.4 29.3 0.61 25.9 0.54 27.2 0.56 29.3 0.61 

Pole-and-cart 109.8 56.9 0.52 46.7 0.43 51.7 0.47 50.8 0.46 

Blood transfusion service 61.2 13.0 0.21 11.9 0.19 13.2 0.22 16.5 0.27 

E-coli 24.7 12.7 0.51 10.5 0.43 7.7 0.31 12.3 0.5 

Soybean 32.7 15.9 0.49 24.8 0.76 21.3 0.65 27.2 0.83 

ZOO 8.70 6.1 0.7 6.3 0.72 6.2 0.71 6.3 0.72 

Yeast 121.2 40.7 0.34 37.0 0.31 40.5 0.33 47.3 0.39 

Led creator 79.9 21.8 0.27 19.9 0.25 23.4 0.29 24.3 0.3 
Vertebral column 16.7 10.4 0.62 9.1 0.54 6.9 0.41 10.1 0.6 

Ionosphere 17.6 6.5 0.37 7.2 0.41 4.9 0.28 9.7 0.55 

Wave 204.8 118.0 0.58 102.3 0.5 60.3 0.29 111.6 0.54 

Balance scale 150.1 75.4 0.5 63.0 0.42 21.6 0.14 65.2 0.43 

Average 50.15 24.59 0.49 22.31 0.45 17.02 0.34 24.83 0.50 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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Table 5. Empirical results comparing the average number of generated rules for preceding RISE with ENN (RENN), 

AllKnn (RAllKnn), DROP5 (RDROP5), and AllKnnDrop5 (RAllKnnDROP5), and comparing the amount of reduction with 

respect to the average number of rules generated by applying RISE (RRISE) without pre-processing.  

 

 

 

 

 

 

 

 

 

 

 ENN AllKnn DROP5 AllKnnDROP5 

Datasets RRISE 
RENN RENN/R

RISE 

RAllKnn RAllKnn/

RRISE 

RDROP5 RDROP5/ 

RRISE 

RAllKnnDROP5 RAllKnnDROP5/ 

RRISE 

Iris 22.50 10.90 0.48 4.70 0.21 4.80 0.21 4.60 0.2 

Voting 88.10 56.30 0.64 46.90 0.53 7.60 0.09 48.00 0.41 

Vowels 72.10 51.30 0.71 49.40 0.69 77.10 1.07 50.10 0.69 

Heart Cleveland 97.30 55.30 0.57 44.40 0.46 20.30 0.21 44.30 0.46 

Glass 67.30 42.20 0.63 34.50 0.51 19.60 0.29 35.10 0.52 

Liver disorders 183.7 101.6 0.55 74.10 0.4 48.60 0.26 91.40 0.5 

Wine 20.50 17.60 0.86 15.40 0.75 5.80 0.28 18.80 0.92 

Pima Indians diabetes 379.6 181.3 0.48 146.0 0.38 65.20 0.17 172.90 0.46 

Promoters 60.80 55.10 0.91 58.40 0.96 6.00 0.1 59.30 0.98 

Hepatitis 71.60 9.00 0.13 8.80 0.12 1.50 0.02 36.30 0.51 

Vehicle 267.5 166.8 0.62 127.2 0.48 97.60 0.36 164.60 0.62 

Pole-and-cart 3133 368 0.11 370.5 0.12 329.5 0.11 435.10 0.14 

Blood transfusion service 212.2 64.00 0.3 43.50 0.2 33.60 0.16 57.80 0.27 

E-coli 128.1 63.40 0.49 36.40 0.28 18.10 0.14 43.50 0.34 

Soybean 68.00 50.30 0.74 38.60 0.57 45.60 0.67 45.80 0.67 

ZOO 8.90 6.70 0.75 6.70 0.75 9.10 1.02 6.90 0.78 

Yeast 774.5 366.5 0.47 250.3 0.32 175.5 0.23 330.90 0.43 

Led creator 271.7 30.10 0.11 26.00 0.1 42.90 0.16 35.20 0.13 

Vertebral column 129.6 87.80 0.68 75.10 0.58 22.30 0.17 83.70 0.65 

Ionosphere 147.7 36.10 0.24 33.70 0.23 14.70 0.1 69.20 0.47 

Wave 4500 3685 0.82 3213 0.71 515.9 0.11 3348.90 0.74 

Balance scale 350.6 303.2 0.85 252.8 0.72 44.10 0.13 257.50 0.73 

Average 502.5 264.8 0.53 225.3 0.45 73 0.15 247.3 0.49 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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Table 6. Empirical results comparing the average number of generated rules for preceding PRISM with ENN 

(RENN), AllKnn (RAllKnn), DROP5 (RDROP5), and AllKnnDrop5 (RAllKnnDROP5), and comparing the amount of reduction 

with respect to the average number of rules generated by applying PRISM (RPRISM) without pre-processing. 

 
 

 

 ENN AllKnn DROP5 AllKnnDROP5 

Datasets RRISE 
RENN RENN/R

RISE 

RAllKnn RAllKnn/

RRISE 

RDROP5 RDROP5/ 

RRISE 

RAllKnnDROP5 RAllKnnDROP5/ 

RRISE 

Iris 16.30 7.40 0.45 7.50 0.46 4.00 0.25 7.50 0.46 

Voting 31.20 10.50 0.34 7.90 0.25 4.80 0.15 8.50 0.27 

Vowels 198.6 186.9 0.94 188.2 0.95 105.9 0.53 189.20 0.95 

Heart Cleveland 80.30 35.70 0.44 28.20 0.35 15.10 0.19 33.70 0.42 

Glass 84.20 41.50 0.49 39.60 0.47 26.40 0.31 48.40 0.57 

Liver disorders 122.9 57.90 0.47 47.10 0.38 39.50 0.32 58.30 0.47 

Wine 18.40 18.00 0.98 18.20 0.99 3.40 0.18 18.30 0.99 

Pima Indians diabetes 221.2 86.00 0.39 62.60 0.28 49.50 0.22 84.30 0.38 

Promoters 15.90 14.30 0.9 14.00 0.88 3.50 0.22 14.40 0.91 

Hepatitis 33.70 1.90 0.06 69.30 2.06 1.00 0.03 6.30 0.19 

Vehicle 259.6 146.7 0.57 103.0 0.4 91.50 0.35 142.80 0.55 

Pole-and-cart 829.9 475.3 0.57 395.2 0.48 408.0 0.49 562.50 0.68 

Blood transfusion service 187.9 30.4 0.16 23.40 0.12 27.40 0.15 36.10 0.19 

E-coli 80.50 41.80 0.52 37.00 0.46 17.70 0.22 40.50 0.5 

Soybean 71.50 51.00 0.71 48.70 0.68 34.60 0.48 52.40 0.73 

ZOO 14.10 10.20 0.72 10.30 0.73 6.70 0.48 10.20 0.72 

Yeast 698.8 240.2 0.34 197.6 0.28 171.7 0.25 264.30 0.38 

Led creator 75.40 27.50 0.36 24.20 0.32 30.90 0.41 30.80 0.41 

Vertebral column 67.50 33.10 0.49 27.20 0.4 14.90 0.22 32.20 0.48 

Ionosphere 42.00 12.90 0.31 14.50 0.35 10.10 0.24 23.50 0.56 

Wave 1416 915.8 0.65 762.8 0.54 280.7 0.2 846.50 0.6 

Balance scale 270.1 115.1 0.43 86.20 0.32 29.30 0.11 90.80 0.34 

Average 
219.8 116.4 0.53 100.6 0.46 62.6 0.28 118.3 0.54 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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Figure 13. Comparison of the average number of generated rules before and after applying instance-reduction 

methods for different rule-induction methods. 

 

 

We are comparing the results using paired t-test with confidence 0.5 to have better 

interpretation. Table 7 shows the results obtained for CN2 and applying the four pre-pruning 

methods with respect to the predictive accuracy. The bold results with a superscript of + means 

that applying pre-pruning resulted in a statistically significant increase in predictive accuracy, 

while those bold with - showed a statistically significant decrease in predictive accuracy. Our 

experiments show that there was no statistically significant effect on predictive accuracy after 

applying ENN, AllKnn, and AllKnnDrop5 on 19, 19, and 20 datasets, respectively. On other hand, 

there was a statistically significant increase in predictive accuracy for two datasets. We can 

conclude that preceding CN2 with these instance-reduction methods did not adversely affect the 

predictive accuracy on most datasets and, for two datasets, it enhanced the predictive accuracy. 

However, when using DROP5, there was no statistically significant increase in predictive accuracy 

for any of the datasets. Furthermore, for 15 of the 22 datasets, using DROP5 led to a statistically 

significant decrease. 
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Table 8 summarizes the effect of instance selection (pruning training data) on 

generalization of the RISE algorithm. Our experiments show that the predictive accuracy is not 

statistically affected after applying ENN, AllKnn, DROP5, and AllKnnDrop5 on 17, 16, 8, and 17 

datasets, respectively. Furthermore, applying ENN, AllKnn, and AllKnnDrop5 yielded statistically 

significant increases in predictive accuracy on 3, 4, and 3 datasets, respectively. Applying DROP5 

produced the worst results, and is thus not recommended as a pre-pruning method for RISE rule 

induction. 

 

 

 

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 

Iris 89.98 92.00 92.67 80.67 93.34 
Voting 95.34 95.10 95.33 -85.35  95.57 

Vowels 67.11 65.97 66.75 -  .0765 67.31 

Heart Cleveland 80.66 76.66 77.33 -71.66  79.34 

Glass 64.76 58.05 61.98 -51.92  66.22 

Liver disorders 66.77 64.11 65.64 -60.30  66.52 
Wine 91.77 94.11 93.52 -  70.00 95.28 

Pima Indians diabetes 70.30 73.16 74.70 73.40 72.10 

Promoters 85.00 81.00 80.00 -  63.00 80.00 

Hepatitis 78.65 80.00 80.00 -52.67  79.34 

Vehicle 57.85 60.10 60.71 54.99 60.10 

Pole-and-cart 61.68 63.88 +66.24  62.56 63.51 

Blood transfusion service 75.68 76.61 76.35 73.11 75.96 

E-coli 79.10 + 83.31 80.91 -73.34  80.90 

Soybean 86.32 82.67 83.01 -63.00  83.32 
ZOO 92.00 87.00 90.00 - 81.00  89.00 
Yeast 48.98 + 55.47 +56.43  51.82 +56.56  

Led creator 72.30 72.30 71.30 -68.90  71.90 

Vertebral column 80.96 83.21 81.28 81.28 82.24 

Ionosphere 89.43 - 85.71 - 86.56 -53.71  85.71 
Wave 69.70 70.38 70.74 -67.96  + 71.38 

Balance scale 75.30 74.70 74.34 -67.10  74.34 

Average 76.35 76.16 76.63 66.95 76.82 
Win/tie/loss  2/19/1 2/19/1 0/7/15 2/20/0 

 

Table 7. Empirical results comparing predictive accuracy using ENN, AllKnn, DROP5, and AllKnnDrop5 pre-

pruning with CN2.  

 

 

 

 

 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center


79 

 

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 

Iris 95.33 94.00 94.67 94.01 94.67 

Voting 95.10 95.32 95.79 93.25 95.32 
Vowels 92.68 - 88.87 - 89.25 -85.97  -89.63  

Heart Cleveland 77.00 77.01 75.32 -71.01  75.01 

Glass 67.14 62.85 64.77 -52.37  65.70 

Liver disorders 65.29 61.18 62.00 -57.05  65.23 

Wine 97.64 95.28 96.46 -88.83  97.64 

Pima Indians diabetes 67.63 68.29 68.37 68.56 67.70 

Promoters 86.00 92.00 88.00 -67.00  87.00 

Hepatitis 80.67  80.67 80.66 -  52.00 80.67 
Vehicle 70.35 68.47 - 66.55 65.36 ــ  67.62 - ــــ

Pole-and-cart 61.87 62.18 + 65.49 58.81 64.24 
Blood transfusion service 73.92 +79.19  + 77.84 74.87 + 77.34 

E-coli 84.76 85.75 85.46 83.02 86.35 

Soybean 91.00 87.67 87.66 -82.67  88.33 

ZOO 96.00 -89.00  93.00 - 89.00  93.00 
Yeast 52.97 + 57.56 +58.25  -53.99  + 56.83 

Led creator 72.60 72.40 72.60 -69.40  72.80 

Vertebral column 82.91 81.60 81.93 81.30 82.90 

Ionosphere 92.56 91.42 91.71 - 77.42 90.56 
Wave 81.84 82.18 + 83.26 - 79.06 + 82.82 

Balance scale 78.06 +81.13  80.97 77.75 81.62 

Average 80.15 79.73 80 73.76 80.14 

Win/tie/loss  3/17/2 4/16/2 0/8/14 3/17/2 
           

Table 8. Empirical results comparing predictive accuracy using ENN, AllKnn, DROP5, and AllKnnDrop5 

pre-pruning with RISE. 
 

 

 

Table 9 clearly shows that applying ENN, AllKnn, DROP5, and AllKnnDrop5 prior to 

PRISM did not statistically affect the predictive accuracy on 11, 14, 9, and 15 datasets, 

respectively. On other hand, the results reveal that applying ENN, AllKnn, and AllKnnDrop5 

yielded statistically significant increases on 9, 7, and 6 datasets, respectively. Applying DROP5 

still produced the worst results, and is not recommended as a pre-pruning method for PRISM rule 

induction. 

 

Based on the previous results, we observed that applying DROP5 yielded poor results for 

all investigated rule-induction methods in terms of predictive accuracy. Thus, we focused more on 

the results achieved by the other instance-reduction methods. Table 10 summarizes the  

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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Table 9: Empirical results comparing predictive accuracy using ENN, AllKnn, DROP5, and AllKnnDrop5 pre-

pruning with PRISM. 

 

 

characteristics of the different datasets used in our experiments. The “total attributes” column 

specifies the summation of discrete and numerical attributes for a certain dataset, while the 

“missing attributes?” column specifies whether the dataset had attributes with missing values. We 

study the application of ENN, AllKnn, and AllKnnDrop5 to different rule-induction methods by 

summarizing the statistically significant increase or decrease in predictive accuracy for each 

dataset in the “No. wins/losses” column, which subtracts the number of datasets that had a 

statistically significant decrease in predictive accuracy from the number of datasets with a 

statistically significant increase. We then sorted the datasets accordingly. We observed that, for 

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 

Iris 91.40 88.20 88.80 -79.20  88.80 

Voting 92.50 + 95.50 + 95.70 93.10 + 96.20 

Vowels 52.40 50.70 51.10 -42.40  51.10 

Heart Cleveland 68.00 + 74.00 + 73.90 -62.70  + 72.40 

Glass 43.90 47.20 48.70 -32.90  48.30 

Liver disorders 47.90 + 56.90 53.60 51.20 52.40 

Wine 86.30 83.90 83.90 - 69.80 86.30 

Pima Indians diabetes 62.80 63.20 64.00 60.40 63.40 

Promoters 73.00 77.00 74.00 - 52.00 72.00 

Hepatitis 69.30 78.70 77.30 + 79.30 74.60 

Vehicle 58.70 57.60 59.30 - 50.00 59.30 

Pole-and-cart 52. 50 + 56.20 + 56.60 48.70 55.00 

Blood transfusion service 71.70 76.4 72.70 69.20 + 73.20 

E-coli 73.30 + 79.00 + 78.40 69.60 + 78.40 

Soybean 79.50 - 73.90 - 73.40 - 56.30 -74.20  
ZOO 92.00 - 84.00 88.00 -85.00  87.00 

Yeast 43.80 + 49.30 +46.40  41.70 46.70 

Led creator 71.70 72.40 71.60 67.40 72.10 

Vertebral column 73.40 + 78.00 74.20 75.40 75.50 

Ionosphere 86.90 87.50 89.30 - 53.30 88.80 

Wave 59.30 +63.10  +63.10  - 54.30 + 63.50 

Balance scale 62.70 + 72.10 + 73.00 -52.30  +73.00  

Average 69.55 71.13 70.77 61.19 70.55 

Win/tie/loss  9/11/2 7/14/1 1/9/12 6/15/1 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center


81 

 

each dataset, if one or more of the combinations of an instance-reduction method and rule-

induction method resulted in a statistically significant increase in predictive accuracy then none of 

the combinations resulted in a statistically significant decrease, and vice versa. In addition, we 

noticed that the best results were achieved with datasets with a low number of total attributes with 

respect to the number of instances. On other hand, we observed that the “Heart Cleveland” and 

“Voting” datasets had statistically significant increases even though they had a high number of 

attributes with respect to number of instances. The cause for this may have been the presence of 

missing values for certain attributes in these datasets.  

 

 

5.3 Conclusion 
 

In our experiments, we investigated preceding three different types of rule induction with 

instance-reduction methods. The search strategies used by the three algorithms varied in terms of 

both type (greedy or beam search) and direction (general-to-specific or specific-to-general). We 

highlighted several instance-reduction techniques, and applied them as pre-processing. Our 

experiments show that for most datasets, pruning the training set using AllKnn, ENN, or 

AllKnnDrop5 significantly reduced the number of rules generated by CN2, RISE, and PRISM, 

without adversely affecting the predictive performance.  
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ID# Datasets No. of 

examples 

No. of 

classes 
Con. 

Attributes 
Disc. 

attributes 
Total 

attributes 

 

Missing 
attributes? 

 

No. wins/ 

losses 

No. of attributes/ 

No. of examples 

3 Vowels 528 11 10 0 10 n -3 0.0189 

15 Soybean 307 9 0 35 35 y -3 0.114 

11 Vehicle 848 4 18 0 18 n -2 0.0212 

16 Zoo 101 7 1 15 16 n -2 0.1584 

20 Ionosphere 352 2 34 0 34 n -2 0.0966 

1 Iris 150 3 4 0 4 n 0 0.0267 

5 Glass 214 7 9 0 9 n 0 0.0421 

7 Wine 178 3 13 0 13 n 0 0.073 

8 Pima Indians diabetes 768 2 8 0 8 y 0 0.0104 

9 Promoters 106 2 0 57 57 n 0 0.5377 

10 Hepatitis 155 2 6 13 19 y 0 0.1226 

18 Led creator 1000 10 0 7 7 n 0 0.007 

6 Liver disorders 345 2 6 0 6 n 1 0.0174 

19 Vertebral column 310 2 6 0 6 n 1 0.0194 

2 Voting 435 2 0 16 16 y 3 0.0368 

4 Heart Cleveland 303 4 7 6 13 y 3 0.0429 

12 Pole-and-cart 3481 2 4 0 4  n 4 0.0011 

13 Blood transfusion service  748 2 5 0 5 n 4 0.0067 

14 E-coli 336 8 7 0 7 n 4 0.0208 

22 Balance scale 626 3 0 4 4 n 4 0.0064 

21 Wave 5000 3 21 0 21 n 6 0.0042 

17 Yeast 1484 10 8 0 8 n 8 0.0054 

 

Table 10: Results from application of ENN, AllKnn, and AllKnnDrop5 as pre-pruning techniques with CN2, RISE, and PRISM algorithms. 
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Chapter 6: Instance-Reduction Method based 
on Ant Colony Optimization 
 

This chapter investigates a new instance-reduction method based on ACO. Section 6.1 

describes the proposed method in detail. In Section 6.2 we investigate the performance of the new 

method by applying the k-NN classification method, and compare the results of the experiments 

conducted with those obtained using other instance-reduction methods. In Section 6.3, we present 

the analysis of the results achieved by preceding the three different types of rule induction with 

the new instance-reduction method based on ACO, in terms of predictive accuracy and number of 

generated rules. Section 6.4 presents our conclusions.  

 

The k-NN classification enables classification of unknown instances by using a set of 

classified training instances. In order to build an efficient k-NN classifier, two principle objectives 

have to be reached:  

1. Achieve high predictive accuracy, and  

2. Reduce the set of instances.  

 

Instance-reduction methods are used to find suitable representative instances from data, 

which can help in reducing the size of the retained instances. This problem is classified as an NP-

hard problem (Babu & Murty, 2001), which means that there is currently no polynomial algorithm 

able to find an optimal solution. In Section 2.4.1, we mentioned different kinds of instance-

reduction methods that provide an acceptable solution in reasonable time.  
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Recently, ACO has been successfully applied in solving different types of combinatorial 

optimization problems. ACO simulates the natural behaviour of ants, especially their mechanisms 

of adaptation and cooperation. The basic idea of our proposed algorithm is to retain the internal 

instances from each class to smooth the decision boundaries by filtering out near-border instances 

from the training set, as these instances are a major source for overfitting. Furthermore, we 

concentrate on the most important instances using the predictive accuracy for the original training 

set as a fitness function. In our proposed approach, we use the ACO principle in instance reduction. 

An ant will decide whether to select the instance as part of its subset. We consider the training set 

as a weighted graph with connected nodes where the set of nodes (N) represents the instances and 

the set of edges represents the distance between pairs of nodes. Moreover, each ant incrementally 

constructs a solution from an original training set. The selected instances will be training set for 

the k-NN classifier. Hereinafter, we call our proposed algorithm ACO-IR. 

 

6.1 ACO-IR  
 

This section describes our proposed ACO-IR method. The main idea in our proposed 

method is that each ant constructs a candidate reduced set from the original training set. After an 

ant has completed its tour, the fitness of the reduced set is calculated by classifying (using the k-

NN algorithm) all instances in the original training set and checking the predictive accuracy. Figure 

14 describes the framework for our proposed approach.  
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Figure 14. Framework for ACO-IR. 

 

In our method, each ant starts by randomly choosing one instance from each class, and then 

searching for the instances to be selected. Selection of the instance is based on two parameters:  

1. The local heuristic, which is the distance between the candidate instance at time t 

and the nearest chosen instance at that time with a different class, which represent 

the heuristic desirability of choosing instance j when we have selected certain 

instances. 
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2. The pheromone level associated with an instance. 

 

In our approach, the basic ACO algorithm is used. Figure 15 describes the ACO-IR method.  

 

 

 

 

 

 
Figure 15. ACO-IR algorithm. 

  

The main factors involved in our ACO-IR method are setting up initialization of pheromone 

values, selecting subset of instances (generation of solutions), heuristic function, fitness evaluation 

of the generated solutions, pheromone evaporation, pheromone update, and number of ants.  All 

these steps for our proposed approach are discussed in the following subsections.   

 

6.1.1 Initialization of Pheromone Values  
 

The presence of pheromone values is the basic component of ACO. It is initialized with 

some small random values. In our approach, the pheromone is attached to each instance in the 

training set. The pheromone values on all instances are initialized with same amount of 

pheromone. In this way, no instance is preferred over other instances by the first ant. The initial 

pheromone is calculated using Equation 18:  
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µi (1) = 
𝟏

𝑁
                                                                        (18)   

Where  

N is the total number of instances. 

µi (1) is initial pheromone for the ith instance. 

 

6.1.2 Selecting Subset of Instances (Generation of Solutions)   
 

In our method, each ant starts by randomly choosing one instance from each class. It then 

chooses the instances according to their probability. We generate a “bootstrap dataset” by sampling 

instances from the original training set with a replacement of the same size as our original dataset. 

As a result, some instances may appear more than once in a given bootstrap dataset, and some not 

at all.  

 

An ant uses two components to calculate the probability of choosing an instance from set 

of instances. The first component is the amount of pheromone present in the instance, and second 

is the heuristic describing the worth of the instance. The probability with which the ant chooses 

instance i as the next instance is defined by:  

 

     P𝑖  =  (Ħ𝑖 ∗  µ𝑖(t))/(∑   Ħ𝑗 ∗ 
a

𝑗=1
µ𝑗(t))                                                 (19) 

                                                          

Where:  

𝑃𝑖 is the probability that instance i is selected.  

Ħ𝑖(𝑜𝑟 𝑗) is the heuristic value associated with instance i (or j). 

µ𝑖(𝑜𝑟𝑗)(𝑡) is the amount of pheromone associated with instance i (or j) at iteration t. 

a is the total number of instances. 
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The process by which the ant selects instances is repeated for, at most, a predefined number 

of ants.  

 

6.1.3 Heuristic Function   
 

The heuristic function indicates the quality of an instance. Its value greatly influences the 

ant’s decision to move and select the next instance to be retained in the reduced set. A good 

heuristic function is very helpful in solving problems using ACO. In our proposed algorithm, we 

choose to retain inner instances that are far from enemy instances (instances with a different class). 

We use the distance between instances and its nearest enemy in the reduced set. This heuristic can 

be calculated using Equation 20:  

 

Ħi = MinEnemy (d𝑖(t))                                                                                               (20) 

Where:  

Ħi is the heuristic value associated with instance i. 

di(t) is the distance between instance i and the instances in the reduced set at time t. 

 

 

6.1.4 Fitness Function   
 

The fitness function helps to identify the worth of selected instances in a reduced set. We 

choose to classify the instances in the original training set using the reduced set (by applying the 

k-NN algorithm), and calculate the predictive accuracy accordingly.  
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6.1.5 Pheromone Updating   
 

The pheromone values are updated after each ant completes it tour, so that future ants can 

make use of this information in their search. The amount of pheromone in each instance selected 

in the current reduced set by each ant is updated according to equation 21:  

 

µi(t+1) =  (1 −  α) ∗ µ𝑖(t) + (1 − 
1

1 +(Q(t)– Q(t−1))
) ∗ µ𝑖(t)                              (21) 

 

Where: 

µi (t) is the pheromone level of instance at time t.  

Q (t) is the quality of the selected instance to classify the instances in the original set at iteration t.  

α is the evaporation rate (we choose 0.1 in our method).  

 

Using Equation 21, the pheromone levels are updated for the instances by increasing the 

pheromone for the selected instances in the reduced set if their selection enhances the quality 

compared to the previous ant, and vice versa (the quality of selected instances is computed using 

the fitness function mentioned in 6.1.4). If these instances are good, they become more attractive 

for future ants and more likely to be chosen. Furthermore, the pheromone values decrease for 

unselected instances using Equation 22. 

 

µi (t+1) = (1-α) * µi (t)                                                 (22) 

Where: 

α is the evaporation rate (we choose 0.1 in our method).  
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6.1.6 Number of Ants   
 

Selecting the number of ants to be used in ACO is one of the most important factors in this 

method. We think that the higher this value is, the better the results that can be expected, since the 

more ants that are used the more likely it is that the most important instances are kept. In our 

method, we investigate different values for the number of ants, starting from 250 ants and repeating 

the experiments by increasing by 250 ants each time, until we reach 1,250 ants. Below, we analyse 

the results obtained to consider the effect of varying the size of the ants. 

 

6.2 Experimental Results for Instance Reduction using the ACO Algorithm 
 

We investigated using the proposed algorithm as an instance-reduction method and 

compare it to the k-NN algorithm (Cover & Hart, 1967) and other instance-reduction methods. 

Each test consisted of 10 trials, each of which used one of 10 partitions of the data randomly 

selected from the datasets – i.e., 10-fold cross-validation (Kohavi, 1995).  For each trial, 90% of 

the training instances were used for the training set, subset S was determined using each reduction 

technique (except for the k-NN algorithm, which retains all instances), and the remaining 10% of 

the instances were classified using only the instances remaining in S.  The results were compared 

using a statistical paired t-test with confidence of 0.05. For each instance-reduction method, we 

counted the number of datasets in which the predictive accuracy was statistically improved (win) 

or statistically reduced (loss). 

 

Table 11 compares the predictive accuracy using the k-NN algorithm and different 

instance-reduction methods.  Our experiments show that there is no statistically significant effects 

on predictive accuracy after applying ENN, AllKnn, and AllKnnDrop5 on 13 datasets, and on 15 

datasets after applying the ACO-IR method with 250 and 1,000 ants, on 16 datasets with 500 ants, 
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and on 14 datasets with 750 ants. Moreover, ACO-IR with 750, 1,000, and 1,250 ants achieved the 

highest number of datasets with a statistically significant increase in predictive accuracy. On the 

other hand, there was a statistically significant decrease after applying ENN, AllKnn, 

AllKnnDrop5, and ACO-IR with 250 ants on five datasets, and on two datasets when applying the 

ACO-IR method with 500 and 750 ants. There was a statistical decrease in predictive accuracy on 

only one dataset when using the ACO-IR method with 1,000 and 1,250 ants. It is clear that applying 

the DROP5 method achieved the worst results. When using DROP5, there was a statistically 

significant increase in predictive accuracy for only one dataset. Furthermore, for nine of the 22 

datasets, using DROP5 led to a statistically significant decrease. 

 

We can see that the average predictive accuracy after applying the ACO-IR method with 

1,000 and 1,250 ants is the highest among the other instance-reduction methods, and the 

performance of ACO-IR is improved when increasing the number of ants used. However, from a 

certain threshold on, a flat-maximum effect is reached; increasing the number of ants only results 

in more execution time and no significant increase in predictive accuracy.  

 

Another most interesting point pertains to the E-coli dataset, wherein there was a serious 

negative impact on the prediction accuracy after applying all instance-reduction methods except 

for the ACO-IR method. This means that applying ACO-IR yielded better results than the other 

methods did.  
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Table 11. Empirical results comparing prediction accuracy using ENN, AllKnn, DROP5, AllKnnDROP5, and ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants) pre-

processing with k-NN. 

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 ACO-IR(250) ACO-IR(500) ACO-IR(750) ACO-IR(1000) ACO-IR(1250) 

Iris 95.33 96.00 94.67 96.00 95.33 94.00 94.67 94.67 94.67 94.00 

Voting 95.35 95.35 95.35 94.00 95.12 96.05 96.05 96.05 96.51 96.55 

Vowels 96.79 92.12 - 93.65 - 90.00 - 93.08 - 93.46 - 94.62 - 96.15 95.77 95.77 

Heart Cleveland 79.00 79.67 81.00 75.33 80.00 77.33 79.33 77.33 78.33 79.00 

Glass 69.52 60.95 - 61.90 - 60.48 - 62.86 - 66.19 69.05 67.62 70.95 70.50 

Liver disorders 62.06 57.35 60.29 60.59 60.88 60.29 59.12 60.59 61.18 61.50 

Wine 95.88 93.53 94.12 96.47 94.12 95.88 95.29 95.88 96.47 96.00 

Pima Indians diabetes 73.29 71.18 - 73.95 70.26 - 72.24 72.63 70.92 - 71.32 70.92 - 71.00 - 

Promoters 92 93.00 94.00 74.00 - 94.00 95.00 93.00 94.00 94.00 95.00 

Hepatitis 78.00 80.00 80.00 77.00 79.33 80.67 79.33 82.00 + 82.67 + 82.67 + 

Vehicle 70.36 66.55 - 66.19 -  63.93 - 67.26 - 70.92 70.63 71.00 + 71.20 + 71.4 + 

Pole-and-cart 58.59 60.29 60.20 56.90 57.61 57.00 58.39 59.20 60.20 60.29 

Blood transfusion service 72.84 78.38 + 77.70 + 70.95 76.49 + 70.41 - 73.65 72.16 73.24 73.65 

E-coli 79.39 13.94 - 13.94 - 15.76 - 13.94 - 82.73 + 82.73 + 81.52 + 81.21 + 81.52 + 

Soybean 92.33 89.33 90.00 76.67 - 90.33 - 87.00 - 89.00 86.33 - 88.00 89.33 

ZOO 92.00 88.00 89.00 - 91.00 90.00 93.00 94.00 94.00 94.00 94.00 

Yeast 50.54 56.15 + 56.82 + 53.65 + 53.65 + 52.64 - 54.66 + 53.00 + 52.90 + 53.00 + 

Led creator 66.60 72.20 + 71.80 + 68.10 72.00 + 71.10 - 70.60 + 71.00 + 71.22 + 71.80 + 

Vertebral column 79.03 77.42 79.68 81.94 78.06 70.25 78.39 73.00 - 78.71 78.39 

Ionosphere 64.00 64.00 64.00 38.57 - 64.00 63.50 64.00 63.90 64.00 63.90 

Wave 80.26 81.84 + 82.08 + 80.88 82.12 + 81.84 + 82.28 + 82.40 + 82.40 + 82.28 + 

Balance scale 83.23 82.58 82.58 78.06 - 83.06 81.61 83.06 80.65 84.00 84.56 

Average 78.47 74.99 75.59 71.39 75.25 77.89 78.76 78.35 79.21 79.37 

Win/tie/loss  4/13/5 4/13/5 1/12/9 4/13/5 2/15/5 4/16/2 6/14/2 6/15/1 6/15/1 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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Table 12. Empirical results comparing the percentage of instances retained using different instance-reduction methods. 

Datasets ENN 

(%) 

AllKnn 

(%) 

DROP5 

(%) 

AllKnnDrop5 

(%) 

ACO-IR (250) 

(%) 

ACO-IR (500) 

(%) 

ACO-IR (750) 

(%) 

ACO-IR 

(1000) (%) 

ACO-IR (1250) 
(%) 

Iris 85 84 12 84 85 81 80 70 68 
Voting 86 85 11 85 87 86 80 78 75 
Vowels 86 86 42 87 90 89 86 82 81 

Heart Cleveland 75 66 16 69 81 78 71 55 53 
Glass 64 59 23 65 91 83 73 54 50 
Liver disorders 59 46 26 54 74 73 61 53 51 
Wine 85 85 10 85 93 86 78 71 71 
Pima Indians diabetes 69 60 19 65 78 77 71 67 65 

Promoters 88 86 16 86 99 89 85 78 76 
Hepatitis 70 69 11 67 93 86 75 61 60 
Vehicle 66 57 24 64 88 82 77 68 64 
Pole-and-cart 72 60 29 68 77 68 62 57 55 
Blood transfusion service 71 60 10 63 70 68 62 58 55 
E-coli 78 70 13 72 78 76 73 67 64 
Soybean 82 79 23 81 87 86 79 73 70 
ZOO 82 81 15 82 97 95 77 60 58 
Yeast 53 42 23 49 71 65 49 39 35 
Led creator 67 65 11 66 83 63 58 52 50 
Vertebral column 73 67 18 70 68 65 61 56 56 
Ionosphere 75 73 9 77 73 74 71 68 67 
Wave 83 72 17 76 81 76 70 65 65 
Balance scale 77 72 10 73 74 83 74 70 68 

Average 75 69 18 72 83 79 72 64 62 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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Table 12 shows the reduction in the number of instances after applying different instance-

reduction methods. It is clear that applying DROP5 yielded the greatest reduction in the number 

of instances.  Furthermore, when using ACO-IR, the reduction in the number of instances increased 

as more ants were used. We can see that ACO-IR (1,250) achieved the highest reduction among 

all methods except for DROP5. Furthermore, we there was no major difference in the amount of 

instance reduction when we increased the number of ants from 1,000 to 1,250. 

  

From the above results, it is clear that applying the ACO-IR method achieved the best outcome 

in terms of predictive accuracy and the amount of instance reduction, compared to the other 

instance-reduction methods. Furthermore, the influence of increasing the number of ants used 

reached a flat-maximum effect.  

 

Usually, the learning process is carried out just once on the training set, so it seems not to 

be a very important evaluation method. However, if the learning process takes too long it can 

become impractical for real applications. Table 13 shows a comparison of the average elapsed time 

(in minutes) when using ACO-IR for different numbers of ants. The average elapsed time was 

estimated using 10-fold cross-validation and computing the average total time taken by each fold. 

The experiments were conducted on an 8 GB machine and the CPU specification was i5 with speed 

equal to 2.5 GHz.  

 

From Table 13, it is clear that for each dataset the average elapsed time increased as the 

number of ants increased. Furthermore, the average elapsed time was affected by the number of 
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instances and number of attributes for each dataset. We can observe that datasets with a large 

number of instances and attributes takes longer than other datasets.   

 

Datasets ACO-IR (250) ACO-IR (500) ACO-IR (750) ACO-IR (1000) ACO-IR (1250) 

Iris 0.25 0.40 0.75 0.99 1.17 

Voting 21.74 31.61 68.68 92.56 109.41 

Vowels 20.96 33.75 62.24 83.88 99.15 

Heart Cleveland 5.88 9.47 17.36 22.22 26.26 

Glass 1.24 2.00 3.77 4.81 5.69 

Liver disorders 3.75 6.05 10.83 14.88 17.59 

Wine 1.18 1.90 3.49 4.62 5.42 

Pima Indians diabetes 52.15 83.98 157.85 210.96 249.36 

Promoters 1.39 2.24 4.13 5.51 6.51 

Hepatitis 1.38 2.22 4.25 5.64 6.67 

Vehicle 116.97 188.36 352.93 475.65 562.23 

Pole-and-cart 781.25 1258.05 2358.99 3179.24 3757.96 

Blood transfusion service 22.93 36.92 68.20 91.26 107.87 

E-coli 3.81 6.14 11.70 15.37 18.17 

Soybean 19.01 30.61 56.89 76.33 90.22 

ZOO 0.47 0.76 1.46 1.95 2.29 

Yeast 390.63 629.03 1179.50 1589.62 1878.98 

Led creator 114.94 185.09 354.44 477.68 564.64 

Vertebral column 2.61 4.21 7.38 9.81 11.59 

Ionosphere 19.96 32.14 59.41 79.18 93.59 

Wave 1718.75 2767.71 5189.79 6994.32 8267.52 

Balance scale 20.23 32.58 61.13 82.41 97.41 

 

Table 13: Comparison of elapsed time (in minutes) when using ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Comparing elapsed time for ACO-IR with size of training set. 
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Figure 16 shows the comparison between the elapsed time and number of instances in training 

set. It is clear the elapsed time is increased as the number of instances is increased.  

 

 

6.3 Pruning Classification Rule using ACO-IR    
 

We will now investigate the new method for instance reduction using ACO-IR as a pre-

pruning method before applying different rule-induction methods with different numbers of ants. 

We also compare the results achieved for preceding rule induction with other instance-reduction 

methods in terms of the predictive accuracy and number of generated rules.  

 

Table 14 shows the results obtained for CN2 and applying the pre-pruning methods with 

respect to the predictive accuracy. Our results show that there was no statistically significant 

decrease on predictive accuracy after applying AllKnnDrop5 and ACO-IR with different numbers 

of ants. Furthermore, there was a statistically significant increase in predictive accuracy for 4, 5, 

7, 11, and 2 datasets when using ACO-IR (250), ACO-IR (500), ACO-IR (750), ACO-IR (1,000 

or 1,250), and AllKnnDrop5, respectively, which means that ACO-IR with 1,000 and 1,250 ants 

achieved the best result of the methods. Moreover, we can conclude that preceding CN2 with 

instance-reduction methods did not adversely affect the predictive accuracy on most datasets. 

However, when using DROP5, there was no statistically significant increase in predictive accuracy 

for any of the datasets. Furthermore, for 15 of the 22 datasets, using DROP5 led to a statistically 

significant decrease. 

 



97 

 

Table 15 summarizes the effect of instance selection (pruning training data) on generalization 

of the RISE algorithm. Our experiments show that the predictive accuracy did not statistically 

decrease after applying ACO-IR with 750, 1,000, and 1,250 ants. Furthermore, ACO-IR with 1,000 

and 1,250 ants yielded statistically significant increases in predictive accuracy on six datasets, 

which is the highest achievement among the methods. It is clear that the achievement of ACO-IR 

improved as the number of ants increased.  

 

Table 16 clearly shows that applying AllKnn, AllKnnDrop5, and ACO-IR (1,000) before 

PRISM yielded a statistically significant decrease in the predictive accuracy for only one dataset, 

and when applying ACO-IR (1,250), none of the datasets were adversely statistically affected. The 

results reveal that applying ACO-IR (1,000) and ACO-IR (1,250) gave the best result regarding 

the number of datasets where the predictive accuracy had a statistically significant increase. 

Moreover, we observed that the predictive accuracy for ACO-IR was improved as the number of 

ants used increased. 

 

 From the previous results, we can see that applying ACO-IR is the safest method among 

the other instance-reduction methods in terms of statically decreasing in predictive accuracy. 

Figure 17 shows the amount of reduction in the number of rules using different instance-reduction 

methods for each rule-induction approach. It is clear that the most reduction rate was achieved by 

using DROP5 for all rule-induction methods, followed by ACO-IR (1000) and ACO-IR (1,250). 

Furthermore, when using ACO-IR we noticed that the reduction in the number of generated rules 

increased by increasing the number of ants used. However, there was no major difference in the 

amount of reduction when we increased the number of ants from 1,000 to 1,250   
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Figure 17. Amount of reduction in number of generated rules using different instance-reduction methods. 

 

 

 

 

 

6.4 Conclusion 
 

We proposed a new method for instance reduction based on the principles of ACO, and 

called this ACO-IR. We compared ACO-IR with various instance-reduction methods using k-NN 

algorithm. Moreover, we investigated the effect of varying the number of ants when using the 

ACO-IR method.  The results of our experiments reveal that the ACO-IR with 1,250 and 1,000 

ants achieved the best results in terms of predictive accuracy and the amount of instance reduction. 

We then investigated preceding three different types of rule induction with ACO-IR. Our 

experiments show that for most datasets, pruning the training set using ACO-IR significantly 

reduced the number of rules generated by CN2, RISE, and PRISM, without adversely affecting 

predictive performance. Furthermore, ACO-IR improved in terms of its predictive accuracy and 

reduction of generated rules as the number of ants increased. The results show that using ACO-IR 

with 1,000 and 1,250 ants achieved the best results of the instance-reduction methods in terms of 

reduction in generated rules, and predictive accuracy, for the three rule-induction methods. 
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However, there was no major improvement when increasing the number of ants from 1,000 to 

1,250, and a flat-maximum effect appeared to be reached.  



100 

 

 

Table 14: Empirical results for predictive accuracy using ENN, AllKnn, DROP5, AllKnnDROP5, and ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants) pre-

pruning with CN2. 

 

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 ACO-IR 

(250) 
ACO-IR 

(500) 
ACO-IR 

(750) 
ACO-IR 

(1,000) 
ACO-IR 

(1,250) 
Iris 89.98 92.00 92.67 80.67 93.34 92.67 + 94.00  + 93.33 + 93.32 + 94.00 + 

Voting 95.34 95.10 95.33 85.35 95.57 94.19 95.11 94.64 95.34 95.11 

Vowels 67.11 65.97 66.75 85.07 67.31 70.00 67.90 69.61 + 71.17 + 71.17 + 

Heart Cleveland 80.66 76.66 77.33 71.66 79.34 75.00 81.68 76.33 81.34 81.68 

Glass 64.76 58.05 61.98 51.92 66.22 66.66 65.23 63.82 68.58 + 68.58 + 

Liver disorders 66.77 64.11 65.64 60.3 66.52 62.11 63.21 63.54 63.82 63.21 

Wine 91.77 94.11 93.52 70.00 95.28 91.76 95.28 + 94.10 + 95.28 + 95.28 + 

Pima Indians diabetes 70.30 73.16 74.70 73.40 72.10 72.76 72.64 73.03 73.95 73.03 

Promoters 85.00 81.00 80.00 63.00 80.00 81.00 86.00 81.00 85.00 86.00 

Hepatitis 78.65 80.00 80.00 52.67 79.34 82.65 + 79.32 77.33 84.00 + 82.65 + 

Vehicle 57.85 60.10 60.71 54.99 60.10 60.37 + 58.22 60.40 + 61.00 + 61.00 + 

Pole-and-cart 61.68 63.88 66.24 62.56 63.51 62.20 64.80 + 64.90 + 64.70 + 64.90 + 

Blood transfusion service 75.68 76.61 76.35 73.11 75.96 73.12 76.08 74.70 76.60 76.61 

E-coli 79.10 83.31 80.91 73.34 80.90 79.99 79.99 80.56 80.60 80.90 

Soybean 86.32 82.67 83.01 63.00 83.32 81.33 84.65 85.67 85.00 85.67 

ZOO 92.00 87.00 90.00 81.00 89.00 93.00 94.00 + 93.00 94.00 + 94.00 + 

Yeast 48.98 55.47 56.43 51.82 56.56 51.09 + 49.66 51.41 + 51.09 + 51.09 + 

Led creator 72.30 72.30 71.30 68.90 71.90 72.70 71.30 72.60 72.40 72.70 

Vertebral column 80.96 83.21 81.28 81.28 82.24 78.39 81.62 81.93 82.57 + 82.24+ 

Ionosphere 89.43 85.71 86.56 53.71 85.71 89.52 92.00 91.13 91.42 91.13 

Wave 69.70 70.38 70.74 67.96 71.38 70.38  71.64 + 72.00 + 72.10 + 72.00 + 

Balance scale 75.30 74.70 74.34 67.10 74.34 74.19 76.30 76.19 76.51 76.30 

Average 76.35 76.16 76.63 67.86 76.82 76.87 77.30 76.87 78.17 78.15 

Win/tie/loss  2/19/1 2/19/1 0/7/15 2/20/0 4/18/0 5/17/0 7/15/0 11/11/0 11/11/0 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 ACO-IR 

(250) 
ACO-IR 

(500) 
ACO-IR 

(750) 
ACO-IR 

(1,000) 
ACO-IR 

(1,250) 
 

Iris 95.33 94.00 94.67 94.01 94.67 95.33 94.00 95.33 94.66 95.33  

Voting 95.10 95.32 95.79 93.25 95.32 94.87 95.10 95.32 95.56 95.10  

Vowels 92.68 88.87 89.25 85.97 89.63 90.01 90.77 92.32 92.69 92.69  

Heart Cleveland 77.00 77.01 75.32 71.01 75.01 76.33 77.65 74.35 74.34 75.32  

Glass 67.14 62.85 64.77 52.37 65.70 65.72 69.05 64.75 68.10 67.05  

Liver disorders 65.29 61.18 62.00 57.05 65.23 59.70 62.65 61.47 63.52 63.52  

Wine 97.64 95.28 96.46 88.83 97.64 95.28 97.64 96.46 96.46 95.28  

Pima Indians diabetes 67.63 68.29 68.37 68.56 67.70 71.71 + 71.32 + 72.25 + 72.10+ 72.25 +  

Promoters 86.00 92.00 88.00 67.00 87.00 92.00 + 94.00 + 92.00 + 94.00+ 94.00+  

Hepatitis 80.67  80.67 80.66 52.00 80.67 80.00 78.01 + 78.67 79.35 79.35  

Vehicle 70.35 68.47 66.55 65.36 67.62 69.88 70.71 70.00 70.50 70.71  

Pole-and-cart 61.87 62.18 65.49 58.81 64.24 60.50 62.46 62.10 62.40 62.46  

Blood transfusion service 73.92 79.19 77.84 74.87 77.34 70.41 71.74 72.03 72.57 73.92  

E-coli 84.76 85.75 85.46 83.02 86.35 85.76 86.35 86.37 + 86.97 + 86.36+  

Soybean 91.00 87.67 87.66 82.67 88.33 84.67 85.65 89.66 88.33 89.66  

ZOO 96.00 89.00 93.00 89.00 93.00 94.00 94.00 94.00 94.00 94.00  

Yeast 52.97 57.56 58.25 53.99 56.83 55.14 + 57.24 + 52.03 57.03 + 57.24 +  

Led creator 72.60 72.40 72.60 69.40 72.80 72.80 71.90 73.00 + 73.10 + 73.00 +  

Vertebral column 82.91 81.60 81.93 81.30 82.90 76.43 - 79.04 - 81.60 82.25 82.90  

Ionosphere 92.56 91.42 91.71 77.42 90.56 90.27 90.57 90.27 90.01 90.01  

Wave 81.84 82.18 83.26 79.06 82.82 80.40 83.00 82.80 83.50 + 83.00+  

Balance scale 78.06 81.13 80.97 77.75 81.62 77.60 78.86 78.38 78.38 78.86  

Average 80.15 79.73 80.00 73.76 80.14 79.04 80.08 79.78 80.45 80.55  

Win/tie/loss  3/17/2 4/16/2 0/8/14 3/17/2 3/18/1 4/17/1 4/18/0 6/16/0 6/16/0  

 

Table 15: Empirical results for predictive accuracy using ENN, AllKnn, DROP5, AllKnnDROP5, and ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants) pre-

pruning with RISE. 

 

 

 

 

 

 

 

 

 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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Table 16: Empirical results for predictive accuracy using ENN, AllKnn, DROP5, AllKnnDROP5, and ACO-IR (with 250, 500, 750, 1,000, and 1,250 ants) pre-

pruning with PRISM. 

 

 

 

 

 

 

 

Datasets Without pruning ENN AllKnn DROP5 AllKnnDrop5 ACO-IR 

(250) 
ACO-IR 

(500) 
ACO-IR 

(750) 
ACO-IR 

(1000) 
ACO-IR 

(1250) 

Iris 91.40 88.20 88.80 79.20 88.80 100.0 + 89.30 100.0 + 100.0 + 100.0 + 

Voting 92.50 95.50 95.70 93.10 96.20 92.70  93.80 + 93.50 + 94.50 + 93.80 + 

Vowels 52.40 50.70 51.10 42.40 51.10 53.00 52.60 53.10 52.60 52.60 

Heart Cleveland 68.00 74.00 73.90 62.70 72.40 66.60 71.30  + 68.90 72.20 +  73.90 +  

Glass 43.90 47.20 48.70 32.90 48.30 51.50 + 49.00 + 49.00 + 51.10 + 51.50 + 

Liver disorders 47.90 56.90 53.60 51.20 52.40 49.10 + 53.00 + 52.70 + 52.90 + 53.00 + 

Wine 86.30 83.90 83.90 69.80 86.30 84.89  85.20 85.20 87.50 86.30 

Pima Indians diabetes 62.80 63.20 64.00 60.40 63.40 68.90 + 64.00 + 70.30 + 70.30 + 70.30 + 

Promoters 73.00 77.00 74.00 52.00 72.00 68.00 70.00 70.00  70.50 72.00 

Hepatitis 69.30 78.70 77.30 79.30 74.60 79.90 + 69.90 80.20 + 81.20 + 81.20 + 

Vehicle 58.70 57.60 59.30 50.00 59.30 56.43 58.00 59.1.0 59.30 59.30 

Pole-and-cart 52. 50 56.20 56.60 48.70 55.00 54.00 + 56.30 + 56.80 + 56.60 + 56.80 + 

Blood transfusion service 71.70 76.4 72.70 69.20 73.20 67.50 67.30  - 67.00  - 67.00 - 69.00  

E-coli 73.30 79.00 78.40 69.60 78.40 75.40 + 76.60 + 77.20 + 78.10 + 78.40 + 

Soybean 79.50 73.90 73.40 56.30 74.20 72.90 - 74.70  - 76.30 76.00 76.60 

ZOO 92.00 84.00 88.00 85.00 87.00 90.00 86.20 90.00 90.00 90.00 

Yeast 43.80 49.30 46.40 41.70 46.70 38.00 - 51.20 39.00 - 41.00 46.40 

Led creator 71.70 72.40 71.60 67.40 72.10 71.70 71.70 71.10 71.30 71.70 

Vertebral column 73.40 78.00 74.20 75.40 75.50 71.70 - 77.60 + 76.00 + 77.60 + 76.00 + 

Ionosphere 86.90 87.50 89.30 53.30 88.80 87.00 84.30 87.10 87.60 87.00 

Wave 59.30 63.10 63.10 54.30 63.50 65.00 + 76.80 + 76.40 + 76.80 + 76.40 + 

Balance scale 62.70 72.10 73.00 52.30 73.00 55.00 - 66.30 + 65.30 + 66.50 + 66.50 + 

Average 69.55 71.13 70.77 61.19 70.55 69.06 70.23 71.1 71.83 72.21 

Win/tie/loss  9/11/2 7/14/1 1/9/12 6/15/1 8/10/4 10/10/2 11/9/2 12/9/1 12/10/0 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
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Chapter 7: Discussion and Future Works 
 

7.1 Thesis Summary 
 

In Chapter 2, we introduced the field of machine learning, and provided insights into some 

of the learning algorithms that can be used. Furthermore, we reviewed the different kinds of 

pruning techniques and explained the advantages of using these to reduce the complexity of 

learned classifiers. Our work was concerned with investigating whether new pre-pruning 

techniques for rule-induction methods can help in reducing the complexity of rule sets by reducing 

the number of generated rules, without adversely affecting the predictive accuracy. ACO is a 

relatively new metaheuristic, which means that there is certainly still significant potential for 

improvement and development. Chapter 3 discussed the principles of ACO. We described how 

ACO mimics the behaviour of real ant colonies, and differentiated between real and artificial ants. 

Moreover, we defined the elements related to the ACO method for solving combinatorial 

optimization problems. Finally, we reviewed different applications in which ACO achieved 

impressive results. In Chapter 4, we formalized our proposed method for reducing the complexity 

of the produced rules set from rule-induction methods, taking into consideration the effect on 

predictive accuracy. We introduced all the materials required to undertake a series of experiments 

to address this proposal. 

 

In Chapter 5, we began by formalizing our proposed technique to precede the rule-

induction method with instance-reduction methods that try to remove border instances, which can 

smooth the decision boundaries between different instances. We went on to undertake an empirical 
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study to determine the effect on the complexity of rule sets (roughly represented here by the 

number of generated rules) and predictive accuracy. The remainder of Chapter 5 presented the 

experiments that were conducted in this study, and analysed their results.  

 

Chapter 6 explained in detail how to apply the concept of ACO as an instance-reduction 

method, and presented the experiments used to investigate the performance of the new algorithm. 

We then investigated the results obtained from preceding the different types of rule induction with 

the new instance-reduction method based on ACO, in terms of predictive accuracy and number of 

generated rules.  

 

7.2 Main Findings 
 

The results presented in Chapters 5 and 6 indicate that preceding rule-induction methods 

with instance-reduction methods is indeed a promising technique for reducing the generated rule 

set without adversely affecting the predictive accuracy. Throughout our experiments, we ensured 

that the predictive performance was measured on unseen test data. We did this by applying a 10-

fold stratified cross-validation testing strategy. 

 

The main contributions and findings of this thesis may be summarized as follows: 

• Preceding rule-induction methods with instance-reduction methods was found to 

significantly reduce the number of generated rules without adversely affecting the 

predictive accuracy, and may even improve the accuracy in some cases. 
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• The best results achieved by preceding rule induction with instance-reduction methods 

was with datasets that had a low number of total attributes with respect to the number 

of instances. 

• For each dataset, if one or more of the combinations of instance-reduction and rule-

induction method resulted in statistically significant increases in predictive accuracy, 

then none of the combinations resulted in a statistically significant decrease, and vice 

versa. 

• ACO can be used to solve combinatorial optimization problems, and we succeeded in 

designing a novel instance-reduction method based on ACO principles (ACO-IR).  

• When applying ACO-IR with different numbers of ants, we observed that better results 

are achieved when increasing the number of ants before reaching the flat-maximum 

effect.  

• When applying ACO-IR, a flat-maximum effect was reached when increasing the 

number of ants, at which point there was no major reduction in the number of generated 

rules, or improvement in the predictive accuracy. Moreover, we expect that the 

predictive accuracy may be adversely affected as the number of ants is increased after 

reaching the flat-maximum effect. This may be the cause of overfitting and exaggerated 

focus on certain instances in the training set.    

 

Summing up these results, we come to the final conclusion that applying instance reduction 

techniques as a pre-pruning process for rule induction reduces the number of rules generated, and 

may improve the predictive accuracy in some cases. 
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7.3 Future Work 
 

This section presents several suggestions on how the work presented in this thesis might 

be extended. Some of the ideas presented here could not be incorporated in this thesis because the 

author did not have the required access to resources or data; however, most of the ideas were left 

unaddressed simply due to a lack of time available for the project. 

• There are several design decisions and several possible parameters when applying 

ACO-IR, which can be used to fine-tune the performance of the algorithm. More 

research is needed to better understand the interactions between these, and how each of 

them influences the algorithm performance (i.e., the evaporation rate, using another 

heuristic function, using pheromone update function, etc.). 

• More research is needed to understand the best situation and dataset characteristics   for 

applying ACO-IR as a pre-pruning process.  

•  Investigations are needed to understand the effect of preceding different learning 

algorithms with the ACO-IR algorithm.  

• There is a need to investigate other instance-reduction methods that conduct instance 

pruning more carefully, such as c-pruner (Zhao et al., 2003).  

• Investigation of the effect of preceding instance-reduction methods with rule induction 

on noisy datasets is also highly recommend. 
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