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ABSTRACT 

Biomimetic propulsion mechanisms are increasingly being explored in engineering sciences. 

Peristalsis is one of the most efficient of these mechanisms and offers considerable promise 

in microscale fluidics. Electrokinetic peristalsis has recently also stimulated significant 

attention. Electrical and magnetic fields also offer an excellent mode for regulating flows. 

Motivated by novel applications in electro-conductive microchannel transport systems, the 

current article investigates analytically the electromagnetic pumping of non-Newtonian 

aqueous electrolytes via peristaltic waves in a two-dimensional microchannel with different 

peristaltic waves propagating at the upper and lower channel wall (complex wavy scenario). 

The Stokes couple stress model is deployed to capture micro-structural characteristics of real 

working fluids. The unsteady two-dimensional conservation equations for mass and 

momentum conservation, electro-kinetic and magnetic body forces, are formulated in two 

dimensional Cartesian co-ordinates. The transport equations are transformed from the wave 

frame to the laboratory frame and the electrical field terms rendered into electrical potential 

terms via the Poisson-Boltzmann equation, Debye length approximation and ionic Nernst 

Planck equation. The dimensionless emerging linearized electro-magnetic boundary value 

problem is solved using integral methods. The influence of Helmholtz-Smoluchowski 

velocity (characteristic electro-osmotic velocity), couple stress length parameter (measure of 

the polarity of the fluid), Hartmann magnetic number, and electro-osmotic parameter on axial 

velocity, volumetric flow rate, time-averaged flow rate and streamline distribution are 

visualized and interpreted at length.  

 

Keywords: Peristalsis; Electro-Osmosis; Magnetohydrodynamics; Trapping; Biomimetic 

Propulsion; Bioinspired EMHD Micropumps. 
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1. INTRODUCTION 

Peristalsis is an efficient mechanism for conveying fluids in biology via the involuntary 

continuous contraction and expansion of distensible vessel walls. It is encountered in 

pharyngeal transport (swallowing) [1], embryonic lung morphogenesis [2], intestinal 

pumping [3], bat wing  vasomotion [4], spermatozoa transport [5], phloem trans-location in 

botany [6], medical endoscope design [7], earthworm locomotion [8, 9]. This mechanism of 

propulsion has also inspired more efficient soft robotic propulsion systems featuring complex 

actuator designs aimed at mimicking natural peristaltic motions [10, 11]. In addition to the 

many experimental investigations of peristaltic motion which have been reported, 

considerable interest has also emerged in mathematical and computational simulations of 

peristaltic flows.  In such studies many different wall properties, physiological fluids and 

types of synchronous vessel oscillation have been considered. An early study of peristaltic 

mixing of chime in the digestive system was presented by Lew et al. [12] using a low 

Reynolds number Newtonian fluid model and considering a circular cylindrical tube 

involving a series of traveling nodal constrictions. They computed solutions for the influence 

of internode distances and depth of nodal constrictions on peristaltic efficiency.  Bertuzzi et 

al. [13] analysed theoretically the pumping of solid spherical boluses in contractile membrane 

geometries under peristaltic waves. They computed numerically the sequence of deformed 

configurations of the membrane and the displacement of the bolus and also elaborated on 

applications in uterine contraction and erythroctye transport in narrow capillaries). Moradi et 

al. [14] employed an immersed boundary conditions method (IBC) and spectral algorithm to 

simulate the peristaltic flows in annular geometries by considering superposition of the flow 

in a smooth annulus and modifications associated with the surface waves, observing that 

alterations in the mean axial pressure gradient vary proportionally to the second power of the 

wave amplitude for waves with sufficiently low amplitudes. Simulations of peristaltic micro-

pump flows have been presented by Tsui [15] using a lumped-element method. Rathish 

Kumar [16] analyzed numerically two-dimensional peristaltic flow with a nonlinear 

streamline quadrature up-winding non-iterative finite element method, noting that progressive 

waves with high amplitude and low wave numbers produce efficient peristaltic flows. Lin et 

al. [17] examined computationally the fluid-structure interaction in micro-pumps using an 

effective spring model incorporating both hydrodynamic and electrostatic forces. They 

evaluated in detail the influence of impact of geometry, materials and pump loading on 

peristaltic pumping performance. Further studies of peristaltic pumping analysis and design 
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have been communicated by Natarajan and Mokhtarzadeh-Dehghan [18], Fauci [19], Jaffrin 

[20] (considering inertial curvature effects), Berg et al. [21] (who considered a discrete, two-

stage peristaltic microfluidics pump). Afifi and Gad [22] derived perturbation solutions for 

peristaltic flow interacting with periodic blood flow for a viscous incompressible fluid flow 

in a porous medium.  Radhakrishnamacharya and Srinivasulu [23] studied the influence of 

wall elasticity (tension, damping and mass characterizing parameters) on peristaltic 

Newtonian flow and heat transfer in a two dimensional uniform channel. Chu [24] considered 

the hydrodynamic stability of peristaltic waves in a deformable conduit using a 

preconditioned complex-matrix solver.  

Electrokinetics [25] has developed into a major branch of modern fluid dynamics. It arises in 

many medical applications including blood flows, microfluidics, chromatography, plasma 

separation and colloidal suspension fabrication and manipulation. Electrokinetics deals with 

the interaction between heterogeneous fluids contacting charged particles and static or 

alternating electric fields.  It is important in simulating transport processes in ionic solutions 

in the vicinity of electrically-charged interfaces. Many sophisticated phenomena arise in 

electro-kinetics including electro-osmosis, zeta potential, dielectrics, diffusiophoresis, 

streaming potential/current, capillary osmosis, sedimentation potential etc. The proliferation 

of micro- and nanoscaled devices in bioengineering systems has witnessed significant 

developments in electro-kinetics. Kang et al. [26] reported in fabrication of electrokinetic 

micropumps.  Yang et al. [27] considered AC electro-osmotic (ACEO) pumping on a 

symmetric gold electrode array. Many other studies have been communicated including Paul 

et al. [28], Sayar and Farouk [29] (who simulated coupled multifield flow in a 

piezoelectrically actuated valveless micropump device for liquid transport). Tripathi et al. 

[30] used a linearized analytical model to elucidate the effects of electro-osmotic velocity on 

peristaltic pumping of blood in capillaries.   

Magnetohydrodynamics is also an important area of modern engineering sciences. This field 

involves the manipulation of electrically-conducting fluids with applied magnetic fields. In 

the realm of peristaltic pumping, magnetic fluids have also been considered. Relevant works 

include Mekheimer [31] who studied the influence of radial magnetic field thermal diffusion 

in peristaltic pumping of a Newtonian viscous liquid in a vertical annular regime. Further 

studies have been presented for magnetohydrodynamic peristalsis for a variety of working 

fluids including Johnson-Segalman viscoelastic fluids [32], nanofluids [33, 34], variable 

viscosity liquids [35], hyperbolic tangent nanofluids [36], magnetic viscous fluids [37], 
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reactive micropolar fluids [38] and viscoelastic two-phase (dusty) magnetic fluids [39]. 

Ramos [40] has lucidly reviewed the advantages and drawbacks of electro/magnetic micro-

pumps including peristaltic designs, emphasizing the deterioration, corrosion and 

electrochemical bubble issues which can cause flow obstructions and lower pumping 

efficiency in purely magnetohydrodynamic pumps. Motivated by exploring the combined 

influence of axial electric field and transverse magnetic field in micropumps, Tripathi et al. 

[41] presented a theoretical study of combined electrokinetic magnetohydrodynamic 

peristaltic transport with electrical double layer effects. They observed that higher magnetic 

field (Hartmann number) decreases flow rate, local wall shear stress, axial velocity whereas it 

elevates pressure difference. They also noted that with higher electro-osmotic parameter (i.e. 

smaller Debye length), there is an enhancement in flow rates. 

Microstructural characteristics of working fluids cannot be simulated with many of the non-

Newtonian fluid models discussed earlier. An interesting microstructural model is the couple 

stress model. Since the classical continuum (Navier-Stokes) theory ignores particle- size 

effects, a micro-continuum theory propounded by Stokes [42] was developed to simulate 

particle size effects. The Stokes micro-continuum theory is the generalization of the classical 

theory of fluids where polar effects such as the presence of couple stresses, body couples, and 

an anti-symmetric stress tensor are taken into consideration. In this model, the couple stress 

effects are considered as a consequence of the action of a deforming body on its 

neighbourhood. In the context of peristaltic flows, several investigations have considered 

couple stress fluids, which may provide a deeper insight into characteristics of working fluids 

in physiological applications and microscale pumps.  Interesting simulations of couple stress 

peristaltic flow include Mekheimer and Abd elmaboud [43] for annular endoscopic 

geometries with an inner rigid tube and outer tube with a sinusoidal wave traveling along its 

wall. Magnetic field effects on couple stress fluid pumping by peristalsis were assessed by 

Tripathi and Bég [44] with a focus on gastric magnetic endoscopy. Ramesh and Devakar [45] 

elaborated on heat transfer in magnetic couple stress peristaltic flows with porous media drag 

effects. A similar study for coaxial (annular) transport was conducted by Tripathi and Bég 

[46]. Electrical field effects on couple stress flows have also been reported. Relevant studies 

in this regard include Rudraiah et al. [47] on stability in a permeable material and also 

Rudraiah et al. [48] on transient electrokinetic diffusion in couple stress flows in the 

haemolysis process. These studies have all confirmed the non-trivial influence of the polar 

length effect in modifying velocity and pressure distributions in couple stress transport 
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Thusfar however to the authors’ knowledge there has been no study reported investigating the 

combined effects of magnetic field and electrical field on peristaltic flow of couple stress 

fluids. This is the focus of the present investigation. It extends the existing work in the field 

which has previously been confined to electrofluid thermal viscoelastic dielectric peristalsis 

[49], electrokinetic Jefferys (viscoelastic) peristaltic pumping [50] and electro-osmotic 

power-law peristaltic pumping [51]. The present work is relevant to simulation of real 

working fluids in electromagnetic biomimetic microscale pumps utilizing the peristaltic 

propulsion mechanism [52]. Such pumps avoid contamination problems, minimize 

maintenance and also achieve greater longevity and efficiency which may have immense 

potential in bio-inspired portable intravenous drip systems for medical treatments in the 21
st
 

century.  

 

2. MATHEMATICAL MODEL 

The geometric model for the electro-kinetic transport through a finite length ( L ) micro-

porous-channel under two different peristaltic waves propagating along the upper and lower 

walls, depicted in Fig.1, is modelled as Cho and Chen [53]: 

1 2

2 4
( , ) sin ( ) sin ( )h x t a x ct x ct

 
 

 
     ,                                                                 (1) 

where a , 1 , 2 , , x , c , t  are the half-width of the channel, amplitude of the different 

peristaltic waves along the microchannel walls, wavelength, axial coordinate, wave velocity, 

and time and  a, 1 , and 2  satisfy the condition 1 2a    . We analyse the electro-magneto-

hydrodynamics of oscillating flow of couple stress fluids through a complex wavy channel 

under peristaltic waves. All classical electromagnetic phenomena are described by the 

Maxwell field equations. In fig. 1 we further note that the peristaltic wave propagates from 

the left reservoir (Anode, +ve ion) to the right reservoir (Cathode, -ve ion) with a wave 

velocity c. In the presence of static axial electric field and static transverse magnetic field, the 

mass and momentum conservation equations for incompressible couple stress fluid are 

modified with addition of Lorentz force per unit volume, and written as:  

  0,
d

div q
dt


                                                                                                                   (2) 

       1 1
,

2 2

s

e

dq
f curl C div curl div M E J B

dt
                                            (3) 
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where   is the density of the fluid, 
 s

  is the symmetric part of the force stress diad, M  is 

the couple stress diad and f , C  are the body force per unit mass and body couple per unit 

mass respectively, q


 is the velocity vector. Here e z n e z n e      , denotes the charge 

number density of the aqueous solution present, where e is the charge, n+ and n- are the 

number densities of cations and anions respectively, z  and z  are cation and anion 

valencies, and E , J  and B  represent the electric field, current density and magnetic flux 

density (magnetic field strength). The constitutive equations concerning the force stress i jt  

and the rate of deformation tensor i jd are given by:  

 

 

 

 

 

Figure 1: Schematic of the peristaltic transport of an aqueous electrolyte solution with couple 

stress through a parallel micro-channels induced by axial electric field and transverse 

magnetic field.  

,

1
( ) 2 ( , 4 )

2
ij ij ij ij ijk k k rr kt p div q d m w C             .                                                   (4) 

The couple stress tensor ijm   that arises in the theory has following linear constitutive 

relation, as described by Stokes [44]: 

, ,

1
4 4

3
ij ij j i i jm m w w     ,                                                                                                  (5) 

where  
1

2
w curl q  is the spin vector, ,i jw  is the spin tensor, m  is the trace of couple stress 

tensor ijm , p  is the fluid pressure and kC is the body couple vector. A comma in the 

suffixes denotes covariant differentiation and ,k rrw  stands for ,11kw  + ,22kw  + ,33kw . The 

Direction of peristaltic wave propagation 

Net flow due to combined effects of applied electric 

and magnetic fields and peristaltic pumping 

Transverse magnetic field, By 

Axial electrical field, Ex 
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quantities    and   are the viscosity coefficients and  ,  ′ are the couple stress viscosity 

coefficients. These material constants are constrained by the inequalities, 

0; 3 2 0; 0; '          .                                                                                        (6)  

If the fluid is incompressible, in the absence of body forces and body couples, and axial 

external electric field (Ex) and transverse magnetic field (By) effects (i.e. mutually 

orthogonal) are taken into consideration, the reduced governing equations for mass and 

momentum conservation may be expressed as: 

0,
u v

x y

 
 

 
                                                                                                                           (7) 

2 4 2

x e x

u u u p
u v u u B u E

t x y x
    
    

          
    

,                                                (8)   

2 4v v v p
u v v v

t x y y
  
    

        
    

.                                                                         (9) 

 

The penultimate term on the right hand side of eqn. (8) denotes the Lorentzian magnetic body 

force and the last term represents the electrokinetic body force. In this model, we consider the 

case where the peristaltic transport of an aqueous ionic solution of couple stress fluids is 

altered by means of an externally applied electric field and transverse magnetic field along 

the length of channel. The positive ions n  and negative ion n  are both assumed to have 

bulk concentration (number density) 0n , and a valency of z  and z  respectively. For 

simplicity, we consider the electrolyte to be a :z z  symmetric electrolyte, i.e. z z z    . 

The charge number density is related to the electrical potential in the transverse direction   

through the Poisson equation: 

2 e


   ,                                                                                                                          (10) 

where   is the permittivity of the electromagnetic couple stress fluid. Further, in order to 

determine the potential distribution, we need to describe the charge number density. For this, 

the ionic number distributions of the individual species are given by the Nernst-Planck 

equation for each species as:  

2 2

2 2

B

n n n n n Dze
u v D n n

t x y x y k T x x y y

     
 

            



         

              
,                       (11) 
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where we have assumed equal ionic diffusion coefficients for both the species, and that the 

mobility of the species is given by the Einstein formula where D  represents the diffusivity of 

the chemical species, T  is the average temperature of the electrolytic solution and Bk  is 

Boltzmann constant. Proceeding with the analysis, we normalize the Poisson and Nernst-

Planck equation with the following non-dimensional parameters:

, , , , ,
x y tc u v

x y t u v
a c kc 

    
0

,
B

ze n
n

k T n


   . We further note that the nonlinear terms 

in the Nernst Planck equations are  2O Pek , where Pe Re Sc  represents the ionic Peclet 

number, Re is Reynolds number and Sc D   denotes the Schmidt number. Therefore, the 

nonlinear terms may be dropped in the limit that Re, Pe, k <<1. In this limit, Poisson’s 

equation is obtained as: 

2
2

2
,

2

n n

y


    

   
  

                                                                                                             

(12) 

where 02

B d

n a
aez

K T


 
  , is known as the electro-osmotic parameter and 

1
d


  is 

Debye length or characteristic thickness of electrical double layer (EDL). The ionic 

distribution may be determined by means of the simplified Nernst Planck equations:  

2

2
0

n
n

y y y




   
  
   

 ,                                                                                                         (13) 

subjected to 1n   at 0   and 0n y    where 0y    (bulk conditions). These yield 

the much celebrated Boltzmann distribution for the ions:  

n e 

  .                                                                                                                        (14) 

Combining equation (12) and (14), we obtain the Poisson-Boltzmann paradigm for the 

potential determining the electrical potential distribution 

 
2

2

2
sinh

y


 





.                                                                                                            (15) 

In order to make further analytical progress, we must simplify equation (15). Equation (15) 

may be linearized under the low-zeta potential approximation. This assumption is not ad hoc 
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since for a wide range of pH values, the magnitude of zeta potential is less than 25 mV. 

Therefore, equation (15) may be contracted to:  

2
2

2y


 





,                                                                                                                        (16) 

which may be solved subjected to 
0

0
y

y









 and 1

y



 , the potential function is obtained 

as:
cosh( )

cosh( )

y

h





 ,                                                                                                                   (17) 

To simplify the governing equations, we invoke a number of non-dimensional parameters, 

specifically non-dimensional pressure
2

,
pa

p
c 

  and wavelength-based Reynolds number 

c
Re



 
 . The nonlinear terms in the momentum equation are found to be  2O Rek ,  

where 
a

k


  denotes the ratio of the transverse length scale to the axial length scale. 

Employing lubrication theory approximations, the governing conservation equations are 

reduced to: 

0
u v

x y

 
 

 
,                                                                                                                          (18) 

2 4
2 2 2

2 4
.e

p u u
l Ha u u

x y y
 

  
   

  
                                                                                        (19) 

The associated velocity boundary conditions are: 

0
y h

u

 ,

0

0
y

u

y






,

2

2
0

y h

u

y







3

3

0

0

y

u

y






,                 (20) 

where, x
e

E
u

c




    is the Helmholtz-Smoluchowski velocity or characteristic electro-

osmotic velocity, 
1

,l
a




  is the couple stress length parameter, which is a characteristic 

measure of the polarity of the fluid model and this parameter is identically zero in the case of 
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non-polar fluids, 
xHa aB




 , Hartmann number, which measures the strength of magnetic 

body force (Lorentzian  force) relative to the viscous force. The reduced fourth order 

momentum equation (19) allows a parametric study of the couple stress, magnetic body force 

and electro-osmotic effects via the variation in the l, Ha and  parameters.   

3. ANALYTICAL SOLUTIONS 

Solving Eqn. (19) with boundary conditions (20), the axial velocity is obtained as:                                                                  

  

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 1 4 1 1 4 1 1 4 1 1 4

2 2 2 2
1 2 3 4

2 2 2 2 4 4 2 2 2

2 2 2 2 2 2 2 2 2

4 ( ) cosh( )sech( )

,
1 1 4 2 1 1 4 2

y Ha l y Ha l y Ha l y Ha l

l l l l l l l l

e

u C e C e C e C e

p
Ha l l l Ha l u y h

x

Ha Ha l l Ha l l

    

 

   
     

   

 
    

 
      

                  (21) 

where, 

    

  

2 2

2

2 2

2

1 1 4

2 2 2 2 2 2 2 2 2 2 2 2 22

1
2 2 1 4

2 2 2 2 2 2 2 2 2 2 2

2 1 1 4 ( 1 ) 1 1 4 2

,

1 1 4 1 1 4 2 1 1 4 2

h Ha l

l
e

Ha l
h

l

p
e l Ha l l Ha u Ha Ha l l

x
C

e Ha Ha l Ha l l Ha l l

   

 

 

 

 
          

  
 
         
 
 

 

      

  

2 2

2

2 2

2

1 1 4

2 2 2 2 2 2 2 2 2 2 2 2 22

2
2 2 1 4

2 2 2 2 2 2 2 2 2 2 2

2 1 1 4 1 1 1 4 2

,

1 1 4 1 1 4 2 1 1 4 2

h Ha l

l
e

Ha l
h

l

p
e l Ha l l Ha u Ha Ha l l

x
C

e Ha Ha l Ha l l Ha l l

   

 

 

 

 
          

  
 
         
 
 

 

      

  

2 2

2

2 2

2

1 1 4

2 2 2 2 2 2 2 2 2 2 2 2 22

3
1 1 4

2
2 2 2 2 2 2 2 2 2 2 2

2 1 1 4 1 1 1 4 2

,

1 1 4 1 1 4 2 1 1 4 2

h Ha l

l
e

Ha l
h

l

p
e l Ha l l Ha u Ha Ha l l

x
C

e Ha Ha l Ha l l Ha l l

   

 

 

 

 
          

 
 
         
 
 
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  

      

2 2

2

2 2

2

1 1 4

2
2 2 2 2 2 2 2 2 2 2 2 2

4
1 1 4

2

2 2 2 2 2 2 2 2 2 2 2 2

2
1 4 1 1 4 2 1 1 4 2

1

1 1 4 1 1 1 4 2 .

h Ha l

l

Ha l
h

l

e

e
C Ha l Ha l Ha l l Ha l l

e

p
Ha l l Ha u Ha Ha l l

x

 

   

 

 

        



 
           

 

                                 (22) 

The volumetric flow rate is given by integrating axial velocity across the microchannel width: 

0

h

Q udy  .                                                                                                                              (23)                                                            

Using Eqn. (12) in Eqn. (13), we get: 

2 2 2 2

2 2

2 2 2 2

2 2

1 1 4 1 1 4

2

2 2
1 22 2 2 2 4 2 2

1 1 4 1 1 4

2

2 2
3 4

2 2

tanh( ) 2
1 1

1 1 4

2
1 1

1 1 4

Ha l Ha l
h h

l l

e

Ha l Ha l
h h

l l

u hh p l
Q C e C e

Ha x Ha l Ha l

l
C e C e

Ha l

 

 

   



   



    
      

           
         

        

  
  
      
   
  
  

.

 
 
 

 
 
  

                                                                                                                                               (24) 

The transformations between a wave frame ( , )w wx y moving with velocity c and the fixed 

frame ( ,x y ) are given by : 

, , ,w w w wx x ct y y u u c v v      ,                                                                         (25) 

where ( , )w wu v and ( , )u v  are the velocity components in the wave (laboratory) and fixed 

frame respectively. 

The volumetric flow rate in the wave frame is given by 

0 0

( 1)

h h

w w w wq u dy u dy    ,                                                                                                 (26) 

which, on integration, yields:  

wq Q h  .                                                                                                                             (27) 
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Averaging the volumetric flow rate along one time period, we obtain: 

1 1

0 0

( )wQ Qdt q h dt    ,                                                                                                        (28) 

which, on integration, yields 

1 1wQ q Q h     .                                                                                                            (29) 

Rearranging the terms of Eq.(24) and solving for pressure gradient yields: 

2 2 2 2

2 2

2 2 2 2

2 2

2 2 2 4

1 1 4 1 1 42 2

2 2
1 2

2 2

1 1 4 1 1 42

2 2
3 4

2 2

tanh( )
1

2
1 1

1 1 4

2
1 1

1 1 4

e

w

h Ha l h Ha l

l l

h Ha l h Ha l

l l

u k hkp
Q h

x Ha k l k

l Ha
C e C e

hHa l

l
C e C e

Ha l

   


   



   

  

    
        

          

    
         

          

.

               (30)                                                                                                                                             

Pressure rise along one wavelength is defined as: 

1

0

w

w

p
p dx

x


 


.                                                                                                                      (31) 

Using Eqn. (21), the stream function (obeying the Cauchy-Riemann equations, w

w

u
y





and 

w

w

v
x


 


) takes the form: 

2 2 2 2

2 2

2 2 2 2

2 2

2 2 2 2 4

1 1 4 1 1 42

2 2
1 2

2 2

1 1 4 1 1 42

2 2
3 4

2 2

tanh( )

2
1 1

1 1 4

2
1 1 .

1 1 4

e

w

h Ha l h Ha l

l l

h Ha l h Ha l

l l

u hh p

Ha x Ha l

l
C e C e

Ha l

l
C e C e

Ha l

 


 

   


   



   

  

    
        

          

    
       

          

                          (32) 
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4. NUMERICAL RESULTS AND DISCUSSION 

In this section, we visualize numerical results, evaluated via Mathematica symbolic software, 

to explore the influence of the key electro-magnetic and hydrodynamic parameters on the 

flow variables in Figs. 2-5. We consider the dual amplitude peristaltic wave scenario i.e. with 

two different wave amplitudes (1, 2) at the upper and lower walls of the micro-channel. 
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Fig.2. Velocity profile (axial velocity vs. transverse coordinate) with 
1 20.2, 0.3,   and 

(a) 1, 1, 0.1eu l Ha    (b) 0.5, 1, 0.1l Ha     (c) 0.5, 1, 0.1eu Ha     (d) 0.5, 1, 1eu l    . 

 

  

  

1 1 2 3

0.4

0.2

0.2

0.4

0.6

0.8

0.5 1.0 1.5 2.0

0.2

0.1

0.1

0.5 1.0 1.5 2.0

0.3

0.2

0.1

0.1

0.2

(d)     

 

 

 

 

 

    

 

 

 

    

 

 

(a) 

(b) 

 

 

 



15 
 

  

   

Fig.3. Volumetric flow rate vs. axial coordinate with 
1 20.2, 0.3, / 1,p x      and (a) 

1, 1, 0.1eu l Ha    (b) 0.5, 1, 0.1l Ha     (c) 0.5, 1, 0.1eu Ha     (d) 0.5, 1, 1eu l    . 
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Fig.4. Time averaged volumetric flow rate vs. pressure rise across one wavelength with 

1 20.2, 0.3,   and (a) 1, 1, 0.1eu l Ha    (b) 0.5, 1, 0.1l Ha     (c) 

0.5, 1, 0.1eu Ha     (d) 0.5, 1, 1eu l    . 
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Fig.5. Stream lines in wave form at 
1 20.2, 0.3,   0.9Q   for (a) 2, 5, 0.1, 1eu l Ha       

(b) 5, 5, 0.1, 1eu l Ha      (c) 9, 5, 0.1, 1eu l Ha      (d) 5, 7, 0.1, 1eu l Ha       

(e) 5, 9, 0.1, 1eu l Ha      (f) 5, 5, 0.25, 1eu l Ha      (g) 5, 5, 1, 1eu l Ha      

(h) 5, 5, 0.1, 0.1eu l Ha     (i) 5, 5, 0.1, 0.3eu l Ha      

 

Fig.2a-d illustrate the influence of respectively a) electro-osmotic parameter (

02

B d

n a
aez

K T


 
  ), b) Helmholtz-Smoluchowski velocity i.e. characteristic electro-

osmotic velocity ( x
e

E
u

c




  ), c)   couple stress length parameter (

1
,l

a




 ) and d) 

Hartmann magnetic parameter (
xHa aB




 ) on axial velocity (u). There is a progressive 

reduction in axial flow with increasing electro-osmotic parameter,, with greater transverse 

coordinate. Decreasing Debye length therefore results in a damping in the axial flow. The 

deceleration is induced by the electrokinetic body force in eqn. (19) i.e. 2
ue. This damping 

is generally sustained quite strongly except for higher values of transverse coordinate where 

the upper microchannel wall is approached and the reverse trend is observed here i.e. 

(i) 
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acceleration in the axial flow. Fig 2b shows that with greater negative Helmholtz-

Smoluchowski velocity, ue, the axial flow is accelerated whereas with greater positive values 

the flow is decelerated.  Generally the case of vanishing electrical field (ue, =0) falls between 

the other profiles. With increasing couple stress length parameter (l) in fig. 2b there is a 

marked acceleration in the axial flow. Stronger couple stresses in the aqueous solution 

therefore encourage axial momentum development across the channel span. Fig 2d reveals 

that with increasing magnetic parameter, Ha, there is acceleration in the axial flow. This is 

maintained across the channel span. Magnetic field therefore induces the opposite response to 

electrical field in the regime. In all figs 2a-d the maximum axial flow velocity is computed at 

the lower microchannel wall and there is decay in velocity across the channel span to a 

minimum in the vicinity of the upper channel wall. 

Figs. 3a-d visualize the influence of respectively a) electro-osmotic parameter (i.e.

02

B d

n a
aez

K T


 
  ), b) Helmholtz-Smoluchowski velocity i.e. characteristic electro-

osmotic velocity ( x
e

E
u

c




  ), c) couple stress length parameter (

1
,l

a




 ) and 

d)Hartmann magnetic parameter (
xHa aB




 ) on volumetric flow rate (Q). These graphs 

are plotted against axial coordinate. The irregularity in the profiles is associated with the 

complex dual amplitude peristaltic waves imposed at the two microchannel walls. With 

increasing electro-osmotic parameter,, the flow rate is significantly enhanced (fig 3a). With 

increasing negative Helmholtz-Smoluchowski velocity, ue, flow rates are generally enhanced 

strongly. The converse behaviour is computed with positive Helmholtz-Smoluchowski 

velocity. In the former case the electrical field is directed along the positive x-axis and in the 

latter case it is in the reverse axial direction. Therefore with axial electrical field aligned with 

the direction of propagation of peristaltic waves, the flow is accelerated. It is inhibited when 

the electrical field is in the opposite direction to wave propagation. This confirms that that 

aligned axial electrical field and electro-kinetic effects are beneficial to the peristaltic 

pumping process, as elaborated by Goswami et al. [54] although they considered only power-

law rheological fluids. With increasing couple stress effect (fig. 3c) there is also a substantial 

enhancement in flow rate which is associated with the acceleration in the axial flow owing to 

greater couple stresses. The couple stress parameter, 
1

,l
a




  is inversely proportional to 
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the Newtonian dynamic viscosity and directly proportional to the polar viscosity. As this 

parameter is increased there is progressively less viscous resistance to the propulsion of 

aqueous electrolyte in the microchannel which manifests in axial acceleration.  Fig. 3d shows 

that with greater Hartmann number, there is a consistently strong enhancement in volumetric 

flow rate, confirming the axial flow acceleration observed in the flow velocity computations 

in fig. 2d. This is achieved despite the fact that the viscous force still exceeds magnetic 

Lorentzian body force for all the cases in fig. 3d (Ha <1). Transverse magnetic field is 

therefore assistive to peristaltic pumping.  

Figs 4a-d depict the distribution in time averaged volumetric flow rate ( Q ) with pressure 

rise (p) for variation in a) electro-osmotic parameter (i.e. 02

B d

n a
aez

K T


 
  ), b) 

Helmholtz-Smoluchowski velocity i.e. characteristic electro-osmotic velocity ( x
e

E
u

c




  ), 

c) couple stress length parameter (
1

,l
a




 ) and d) Hartmann magnetic parameter (

xHa aB



 ). There is consistently a linear growth in flow rate with pressure rise i.e. greater 

pressures generate stronger peristaltic flow rates and fluxes. With increasing electro-kinetic 

parameter (decreasing Debye length), the time averaged flow rate magnitudes are strongly 

reduced (fig. 4a). An increase in assistive axial electrical field as simulated via negative 

Helmholtz-Smoluchowski velocity (fig. 4b) is also observed to significantly enhance time 

averaged flow rates in the microchannel. The opposite behaviour is observed for the case of 

an opposing axial electrical field (positive Helmholtz-Smoluchowski velocity). In both figs. 

4a and b, there is no cross-over of profiles i.e. the influence of electro-kinetic parameter and 

Helmholtz-Smoluchowski velocity is sustained at all values of pressure rise.  In fig. 4c there 

is initially a reduction in time averaged volumetric flow rate ( Q ) with greater couple stress 

parameter i.e. for low and intermediate values of pressure rise, more strongly polar viscous 

fluids induce flow reversal (negative flow rates). However after a critical value of pressure 

rise, this trend is reversed and increasing couple stress parameter is found to enhance time 

averaged volumetric flow rate. Fig 4d shows that for small pressure rise, increasing magnetic 

field effect (higher Hartmann number) reduces the time averaged volumetric flow rate, 

whereas at intermediate to larger values of pressure rise there is an accentuation in time 
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averaged volumetric flow rate. With stronger pressure difference, increasing magnetic field 

therefore achieves more efficient peristaltic pumping in the micro-channel regime.  

Figs. 5a-i illustrate the streamline distributions with variation electro-osmotic parameter (), 

Helmholtz-Smoluchowski velocity (ue), couple stress parameter (l) and Hartmann magnetic 

number (Ha). This visualization allows a better examination of the so-called trapping 

phenomenon, wherein an internally circulating bolus of the fluid is formed by closed 

streamlines. Figs 5a-c simulate a variation in electro-osmotic parameter (), with all other 

parameters fixed. As we progress through these figures there is the synthesis of increasingly 

more boluses in the central zone of the channel. Streamlines are strongly intensified in the 

core region of the channel. Boluses also grow in magnitude in the vertical direction more 

dramatically than in the lateral direction. Figs. 5d, e clearly indicate that with an increase in 

positive Helmholtz-Smoluchowski velocity (ue) from 7 to 9, there is an intensification in the 

bolus formation again in the central zone. Furthermore there are more internal boluses 

generated in the alternate larger boluses across the channel. The imposition of a reversed 

axial electrical field therefore encourages the synthesis of more trapped zones in the regime. 

Figs 5f, g show that as couple stress parameter (l) increases from 0.25 to 1, there is a 

relaxation in the streamline distribution throughout the channel. The intense bolus formations 

evident at lower couple stress parameter values vanish and a longer, stretched zones appear in 

the central core of the channel. The flow is accelerated with stronger polar viscosity (higher l 

values) and clearly this induces elimination in the trapping zone architecture in the regime. 

Finally figs. 5h, i present the impact of increasing Hartmann number (Ha rises from 0.1 to 

0.3) on the bolus dynamics. There is again a significant relaxation in the contours with 

increasing magnetic field effect. The transverse magnetic field eliminates distinct boluses 

formed at the upper and lower channel walls; diminished boluses appear closer to the channel 

centre line (longitudinal axis, y =0).  

 

5. CONCLUSIONS  

A mathematical study has been presented for evaluating the combined effects of transverse 

magnetic field and axial electrical field on peristaltic pumping of couple stress aqueous 

electrolyte in a two-dimensional micro-channel with different peristaltic waves propagating at 

the upper and lower channel wall (complex wavy scenario). The Stokes couple stress non-

Newtonian model is utilized to simulate micro-structural characteristics of biological fluids. 

Using a coordinate system transformation, Debye length approximation and appropriate non-
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dimensional variables, the time-dependent conservation equations for mass and momentum 

conservation with electro-kinetic and magnetic body forces are solved to derive exact 

expressions for axial velocity, volumetric flow rate, pressure rise, time-averaged volumetric 

flow rate. The computations have shown that: 

 With increasing electro-osmotic parameter, axial velocity is decreased, the flow rate is 

significantly elevated, time averaged flow rate magnitudes are strongly  reduced and 

more boluses (trapped zones) are generated in the central zone of the channel.  

 With increasing negative Helmholtz-Smoluchowski velocity (i.e. assistive axial 

electrical field) axial flow is accelerated, flow rates are increased and time averaged 

flow rates are also enhanced.  

 With increasing positive Helmholtz-Smoluchowski velocity (i.e. opposing axial 

electrical field) axial flow is decelerated and both flow rate and time averaged flow 

rate are reduced.  Furthermore streamline contours are stronger and there is an 

increase in the quantity of boluses in the central core zone of the channel. 

 With increasing couple stress parameter, axial velocity is enhanced, flow rate is 

increased, and for higher values of pressure rise the time-averaged volumetric flow 

rate is also enhanced. Additionally streamline contours are more relaxed with higher 

values of couple stress parameter resulting in the elimination of bolus numbers in the 

central core of the channel.  

 With increasing Hartmann number, the axial flow is strongly accelerated, volumetric 

flow rate is elevated, and at higher pressure differences the time-averaged volumetric 

flow rate is also increased. It is further noteworthy that increasing magnetic field 

(Hartmann number) leads to vanishing of boluses near the upper and lower channel 

walls.  
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