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Title: Antero-posterior (AP) pelvis x-ray imaging on a trolley: impact of trolley design, 

mattress design and radiographer practice on image quality and radiation dose 

 

Introduction 

 There are many technical and physical challenges associated with imaging on a trolley which 

have subsequent impact on image quality and radiation dose. These challenges include: the 

absence of AEC on a trolley; grid selection; geometric factors; mattress and trolley design.  

An antero-posterior (AP) pelvis projection is often performed on trolley bound patients 

especially in trauma situations because transferring them onto the x-ray tabletop could 

exacerbate injuries causing further harm 1. The AP pelvis projection irradiates radiosensitive 

organs including the gonads and is ranked the third highest radiation dose examination by the 

Health Protection Agency (HPA) 2. Lead shielding of the gonads is considered essential when 

imaging the pelvis except for the initial imaging such as for trauma since it might obscure 

important diagnostic information. Organ dose from a single AP pelvis projection can 

typically reach 2.1mGy for the testes and 0.52mGy for the ovaries, which are within the 

primary beam 3. With the challenges associated with trolley imaging, combined with the 

radiation implications of AP pelvis projection, it seems to be an important area to explore and 

subsequently optimise.   

The aims of this study were to: 1. explore whether acquisition parameters used for AP pelvis 

radiography on the x-ray tabletop are transferable to trolley imaging; 2. evaluate different 

acquisition parameters for trolley imaging in order to optimise image quality and radiation 

dose for an AP pelvis projection.  

 

Method 

This study used an experimental approach by imaging a pelvic anthropomorphic phantom 

under controlled conditions.  

Imaging equipment and technique 
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A Philips Bucky Diagnost x-ray unit with an Optimus 50kW high frequency generator was 

used (Philips Healthcare, Netherlands). The same 35 x 43cm Fuji IP HR-V computed 

radiography image receptor (Barium Flurohalide (BaFX) phosphor) was used for all 

exposures. This was processed using a Fuji FCR Capsula XII with 50-micron resolution 

(Fujifilm Medical Systems, Japan). Quality assurance was conducted on all equipment prior 

to image acquisition in accordance with IPEM 91 4, which included radiation output 

reproducibility and sensitometry testing. All test results fell within expected tolerances. 

Images were acquired using a Rando SK250 sectional lower torso anthropomorphic pelvis 

phantom 5. The phantom was positioned supine on the x-ray tabletop for the acquisition of a 

reference image which was subsequently used as the optimal comparison image. The 

acquisition parameters used to acquire the x-ray tabletop reference image were those typically 

employed in clinical practice and recommended in various published work 6-11.  They 

included a 110cm source to image distance (SID), the outer chambers of the automatic 

exposure control, 75 kV, an oscillating grid mounted into the x-ray table Bucky, 3.2mm Al 

equivalent total filtration and a broad focal spot size (1mm).  For all exposures, the 

collimation was adjusted to the region of clinical interest to include the iliac crests, greater 

trochanters and proximal one third of the femora. 

Experiment technique 

The experimental images were acquired on one commercially available trolley (Lifeguard 50 

trolley) using two different mattresses (standard 65mm and Bi-Flex 130mm). Images were 

also acquired with the image receptor holder (platform) elevated and lowered, for 

comparison. The Lifeguard 50 trolley platform that accommodates the image receptor should 

be elevated prior to an exposure to reduce object to image distance (OID). However, in 

clinical practice this elevation may not always be achieved 12. All images were acquired with 

a commercially available stationary focused grid (focused to 105cm ±15cm) with a grid ratio 

of 10:1 and strip density of 40 lines/cm 13. Initially, images were to be acquired with and 

without a grid to explore the air gap technique however this idea was eliminated following a 

preliminary experiment demonstrating significant image quality deterioration without a grid. 

For each projection on the trolley, the mAs increment was varied from 16mAs (which was 

the AEC reading derived from the acquisition parameters used to acquire the reference 

image) to 20mAs, 25mAs and 32mAs. Three different SIDs were also used, with an initial 

setting of 110cm and then two further distances of 120cm and 130cm. These were to 
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compensate for the increased OID as a result of trolley design but also to reduce radiation 

dose as found in previous studies  14- 16. A 130cm SID was considered the maximum practical 

and achievable SID to be used considering the effective range of the stationary grid and grid 

cut off. Both Heath et al. and Tugwell et al. also found that image quality deteriorated at 

higher SID values 14, 16. SID was measured manually with a tape measure by two 

radiographers to ensure consistency. All other acquisition parameters remained constant 

including the use of 75kVp. This resulted in 48 experimental images being produced on the 

trolley under different conditions. 

 

Radiation dose calculations 

Entrance surface dose (ESD) was measured at the surface of the phantom at the centre of the 

collimation field using the Unfors Mult-O-Meter 407L ionising chamber (Unfors 

Equipments, Billdal, Sweden). Three repeated exposures were performed and then averaged 

in order to reduce random error.  Effective dose was calculated using Monte Carlo dosimetry 

simulation software (PCXMC 2.0)(STUK, Helsinki, Finland). This software uses tissue 

weighting factors from ICRP Publication 103 17 to estimate effective dose in milliseverts 

(mSv). Dose area product (DAP) was used in this estimation along with the acquisition 

parameters.  

Assessment of image quality  

Following ethical approval from the School of Healthcare Sciences, University of Salford 

(HSCR14/104), relative visual grading analysis (VGA) with bespoke software to present the 

images and capture responses from observers 18. Previous research has reported on the 

benefits of relative VGA in comparison to an absolute VGA as it allows easier detection of 

differences in quality as oppose to observers evaluating images utilising criteria without a 

comparison reference image 19. The observers consisted of five diagnostic radiographers with 

more than five years clinical experience who were blinded to the parameters used to acquire 

all images. 

 

The bespoke software allowed for two images to be presented simultaneously on dual side-

by-side 5 megapixel monitors 4,20; one the reference image (standard practice x-ray tabletop 

image) which was permanently displayed on the left monitor whilst the experimental images 
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(acquired on the trolley) were displayed in random order in the right monitor. The display 

software prohibits post processing capabilities such as zooming and window adjustments and 

therefore differences detected between images would more likely be the result of acquisition 

parameters/technique change. The monitors were calibrated for Digital Imaging and 

Communications in Medicine (DICOM) grayscale standard display function which is to the 

recommended specification of the Royal College of Radiologists 21. A visual pattern check 

(AAPM in report 93) was undertaken prior to each observer undertaking visual evaluation 22. 

Room lighting conditions were maintained at a dimmed and consistent level (luminance of 

>170 cd/m2) in accordance with the European Guidelines on Quality Criteria for Diagnostic 

Radiographic Images 23. 

 

Observers were required to score the experimental images against the reference image using a 

visual grading scale which consisted of 15 items 24 (Table 1). The items were scored using a  

5-point Likert scale where ‘1’ indicated much worse than the reference image, ‘2’ slightly 

worse, ‘3’ equal to,  ‘4’ better than, and ‘5’ much better than the reference image. Image 

quality scores for each of the 15 items were totalled; for each image, scores ranged from 15 to 

75. An image which scored 45 indicated equal quality to that of the reference image, a score 

of > 45 was considered an improvement in image quality and anything lower than 45 

considered a decrease in image quality. An additional item was also included at the end of the 

15 item image criteria scale (Table 1), which involved a binary decision (yes or no answer). 

For this item, the observers considered the overall diagnostic quality of each experimental 

image, deciding whether they were acceptable or unacceptable for diagnostic purpose.  

The magnification factor was derived for all images. The right femoral head diameter (FHD) 

was measured in millimetres by one radiographer with experience in pre-operative hip 

arthroplasty templating.  The measurements were carried out using the ruler (callipers) tool in 

Synapse PACS system (Fujifilm, Japan) using the same workstations as for the visual image 

quality assessment task. The femoral head of each image was measured eight times and the 

average, standard deviation (SD), minimum and maximum values were then calculated. No 

cropping was permitted post processing and therefore the displayed magnification could only 

be influenced by acquisition parameters used to acquire the images. 

Contrast to Noise Ratio (CNR) was calculated as a physical measure of image quality.  CNR 

has been used successfully as a measure of image quality in various optimisation studies 25-27 

and in comparison to Signal to Noise Ratio (SNR), CNR takes into consideration the effect of 
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noise on our ability to distinguish objects within the image because visibility depends on 

contrast (the difference between signals). A highly exposed image may have a high SNR but 

show no useful information on that same image 28. CNR was calculated by placing a region 

of interest (ROI) on two homogeneous structures within the anthropomorphic pelvic phantom 

images in order to sample the mean and standard deviation of the pixel value. The ROI was 

placed in the same position for the experimental images in accordance with Bloomfield et al. 

29 to allow a consistent value for comparison (Figure 1). In order to maintain a consistent 

ROI, magnification was considered and ROI adjusted to ensure the same anatomy was 

sampled for all images. This meant that femoral head diameter and thus magnification had to 

be performed prior to calculating CNR in order to inform the ROI adjustments. This was 

necessary because using the same size ROI for all images would induce a level of inaccuracy 

to the CNR measurements since the anatomy sampled within that ROI would vary depending 

on the magnification level of the image. Image J software (National Institutes of Health, 

Bethesda, MD) was used to calculate CNR; this software tool is used regularly in literature 

for similar calculations 11, 30-31. Using this approach, the mean pixel value and the standard 

deviation for the ROI was acquired 32: subsequently the following equation was used to 

determine CNR:  

 

 

 

Where SA and SB are signal intensities for signal producing structures A(ROI1) and B 

(ROI2)and σo is the standard deviation (blue ROI) of the pure image noise.  

 

Optimisation score 

Many optimisation studies 11, 16, 33 consider radiation dose and image quality data separately; 

however Williams, Hackney, Hogg and Szczepura 34 proposed a method to combine image 

quality and radiation dose data where the image quality scores are divided by radiation dose 

to give a figure of merit. This figure of merit would signify an optimisation score (OS) where 

a high score indicates better image quality at lower dose whereas a low score indicates poorer 

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Image_noise
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image quality at higher radiation dose. This method (Image Quality/Effective dose) has been 

developed from studies that have used similar calculations but using SNR rather than visual 

image quality scores 22.  

Statistical Analysis 

All data were inputted into Excel 2007 (Microsoft Corp, Washington, USA) in order to 

facilitate descriptive analysis and then transferred to SPSS software package (PASW 

Statistics 18: version 18.0.2, SPSS Inc., Chicago, IL) for the inferential analyses. For the 

visual image quality data, intra- and inter-observer variability was evaluated using Intra-Class 

Correlation Coefficient (ICC) where >0.75 was considered excellent, 0.40-0.75 as fair to 

good and <0.40 as poor 35. 

Image quality and radiation dose data were interpreted using various groupings (e.g. two 

different mattresses, two different platform positions) and subsequently analysed using an  

independent t-test with a probability level of p<0.05 (95%) regarded as significant. ESD and 

DAP values were consistently the same when undertaking repeat exposures (x3). Pearson’s r 

and scatter plots were used to measure the linear relationship/correlation between visual 

image quality, CNR and radiation dose. These parametric tests were chosen as all statistical 

assumptions were met. The Shaprio-Wilk test in SPSS proved that all collected data were 

normally distributed 36.  

 

Results 

Image quality 

The ICC value for all five observers was 0.8419 (95% confidence interval 0.8137-0.884) 

implying a high level of agreement 35. ICC was also calculated for the last image quality 

criterion (item 16) in which the five observers had to decide whether the images were 

diagnostic or not (yes/no). The ICC for this criterion was 0.49 (95% confidence interval 0.22-

0.69) which indicated fair to good agreement amongst observers.  

From the experimental images, only three (6%) had a mean image quality score equal to or 

greater than the standard x-ray tabletop acquisition (reference image) (Figure 2 and Table 2 

for image coding). Interestingly, for all the experimental images, these three images had the 

highest level of magnification with an increase of 10.78mm (18%) in femoral head diameter 
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compared to the reference image (see Table 3 for magnification results).Visual image quality 

was found to be significantly better when the image receptor platform was lowered (p<0.02); 

no statistically significant difference was found between image quality and the two different 

mattresses (p=0.06) 

Of the 48 experimental images, only two were deemed unacceptable by more than half of the 

observers; these two images were acquired using 16mAs in conjunction with a 130cm SID 

and an elevated platform.  

Image receptor platform position and mattress thickness had a statistically significant impact 

on femoral head diameter and hence magnification factor of the images (p<0.01). As 

expected, when the platform was lowered, magnification increased by 7% and when the Bi-

Flex mattress was used in comparison to the standard mattress, magnification increased by 

8%. 

No statistically significant difference in CNR (p>0.05) was identified between platform 

position with elevated platform CNR being 7.88(SD =0.42) and lowered CNR being 7.80(SD 

=0.29). In addition, no statistically significant difference in CNR (p>0.05) was identified 

between the two different mattresses with standard mattress having a CNR of 7.82 (SD = 

0.39) and Bi-Flex mattress CNR being 7.87 (SD=0.33).  

 

Radiation dose  

Forty four of the experimental images (92%) had higher effective dose to that of the reference 

image with ESD higher for thirty nine of the images (77%). The average ESD and effective 

dose for the standard mattress at 110cm SID was 1.91mGy and 0.19mSv respectively 

whereas the average ESD and effective dose for the Bi-Flex mattress at 110cm SID was 2.28 

mGy and 0.23mSv respectively. This demonstrated a decrease in ESD and effective dose by 

37% and 4% when utilising the standard mattress. However, no statistically significant 

difference was found between effective dose and ESD for the two different mattresses 

(p>0.05).   

When the platform was elevated, the average ESD and effective dose were 1.91mGy and 

0.20mSv respectively at a 110cm SID. With the platform lowered, the average ESD and 

effective dose were 2.3 mGy and 0.22mSv respectively.  This demonstrates an increase in 
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both ESD and effective dose when the platform was lowered. Yet again, no statistically 

significant difference was found between effective dose and ESD for platform position 

(p>0.05). 

A Pearson’s r correlation identified a low positive relationship between the average visual 

image quality scores and CNR values (0.35). CNR and effective dose had a moderate positive 

relationship (0.53), whereas visual image quality and effective dose had a high positive 

relationship (0.72) 37. 

Figure 3 highlights the optimisation scores for the experimental images in comparison to the 

reference image. The optimisation score for the reference image was 500; none of the 

experimental images achieved this score with a significant difference observed between the 

experimental images and the reference image (p<0.002). The experimental image with the 

highest optimisation score was one of the two images deemed non diagnostic by the 

observers. The subsequent images which had high optimisation scores were those achieved at 

a 130cm SID and 20mAs. No statistically significant difference was found for optimisation 

scores between platform position (p=0.60) and both mattresses (p=0.18) 

As demonstrated in Table 4, when comparing the reference image to the experimental images  

acquired using the same acquisition parameters (16mAs and 110cm SID), image quality for 

both visual image quality scores and CNR decreased by 13% and 3% respectively; however 

only the visual image quality score results (13%) had a statistically significant decrease 

(p<0.01), (CNR; p=.012).  In addition, effective dose, on average, more than doubled (56% 

average increase) for trolley imaging in comparison to x-ray tabletop using the same 

acquisition parameters, again demonstrating a significant difference in patient dose (p<0.01). 

 

Discussion  

The results demonstrate that the acquisition parameters used for the x-ray tabletop need to be 

adapted when applying to trolley imaging.  Radiation dose can significantly increase whereas 

visual image quality can significantly decrease for trolley imaging when using standard x-ray 

tabletop aquisition parameters. .  As collimation was adjusted to the area of interest for each 

image acquisition, radiation dose would be influenced by the increased OID at a maintained 

SID due to beam divergence. This means a larger OID would require collimation to be 

opened to ensure coverage of the anatomy of interest.  The images acquired with a 110cm 
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SID and 16mAs were considered to be non diagnostic by the observers. Nevertheless, the 

reliability and validity of the sixteenth item (yes/no) is brought into question.  For this 

specific item, the observers had to decide on whether the diagnostic quality of the image was 

adequate without knowing the clinical indication. This is important because the clinical 

indication may have influenced observer decision as to the quality of the image because some 

clinical indications require greater anatomical detail6. This may be the reason behind the 

lower ICC value for the last item when compared to the remaining validated items.   

No significant difference was found for visual image quality or effective dose when 

comparing the standard and Bi-Flex mattresses. On this basis, the Bi-Flex mattress should 

therefore be considered gold standard when purchasing this specific Lifeguard 50 trolley as it 

offers more benefits to patients since it is designed to enhance comfort and reduce pressure 

ulcer incidence. Pressure ulcers remain a major problem in health care and one of the most 

costly and physically debilitating medical complications in twentieth century care 38- 39. The 

only impact that the mattress had on image quality was with regards to magnification. On 

average, magnification increased by 8% when utilising the Bi-Flex mattress compared with 

the standard mattress. Magnification may however be an issue that needs attention when 

imaging AP pelvis because the images might potentially be used for planning orthopaedic 

surgery without the use of a calibration device. To overcome this problem, specific guidelines 

need to be established when imaging trolley patients (e.g. maintain constant SID and platform 

position) in order to minimise variations between different patients and obtain consistent 

measurements in an individual over time. Otherwise the use of a calibration ball for all AP 

pelvis projection could be a tool to consider in overcoming this magnification variation.  It is 

accepted that, in some centres, a request for a traditional tabletop examination may follow if 

the pelvic image is required for detailed surgical planning.  This may generate justification 

issues and therefore if trolley technique can be further standardised this situation may be 

avoidable.   

Three images which had equal or higher visual image quality scores than the reference image 

were all acquired using the Bi-Flex mattress, platform lowered and an SID of a 110cm. These 

conditions resulted in the largest image magnification factor with a femoral head diameter of 

25cm. This raises the question of whether magnification influenced the visual image quality 

scores, as the criteria were based upon how well structures are visualised. Manning, Ethell 

and Donovan 40 suggests that visual image quality is influenced by more than just the 

sharpness of anatomical outlines and the image noise, the size and complexity of structures 
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can impact upon observer interpretation too. The principles behind visual acuity and the use 

of the Snellen chart strengthens this argument that visual perception in radiology may be 

influenced by the size of the objects observed hence displayed magnification 41-43. The 

visibility of an object is proportional to its area with contrast, noise, object size and shape all 

affecting our ability to extract visual information from an image 28. The fact that there was no 

statistical difference identified between CNR and the two variables discussed (mattresses and 

platform position) also suggests that observer assessment may be influenced by something 

other than contrast and noise. This was why the resultant air gap from these three images was 

also disregarded as the potential reason for the increase in visual image quality as noise 

results from scatter however CNR did not detect this improvement. In addition, a grid was 

used for all images and the use of the air gap in conjunction with a grid has never been 

previously explored. The purpose of an air gap is to replace a grid as a method of scatter 

rejection and therefore it could be assumed that both air gap and grid combined would absorb 

useful image producing photons.  

Lastly, if the optimisation scores are considered for this current study, the optimum 

acquisition parameters for imaging the AP pelvis on a trolley were 20mAs, 130cm SID, 

standard mattress and platform lowered. These parameters resulted in an image with the 

highest optimisation score and also no observers deemed this image to be non diagnostic. See 

Table 5 for recommended acquisition parameters for trolley imaging based on this study.  

Limitations  

There are further factors that must be explored before implementing these changes into 

clinical practice which includes the consideration of the following study limitations. More 

variables need to be explored such as different grids since only one oscillating and one 

stationary grid was used. This work was also limited to one type of axial examination, the AP 

pelvis projection. It would be beneficial for further research to be conducted on other body 

parts that are imaged on the trolley using the image receptor holder in order to reveal its 

effects on image quality and radiation dose. In addition, this study used one commercially 

available trolley to perform the experiment. However there are multiple trolley manufacturers 

with different trolley designs available suitable for imaging which need to be explored. A 

single anthropomorphic phantom was used which had no size or pathological variation 

therefore these findings need to be confirmed using patients in clinical practice. Lastly, this 

study was conducted using one CR system and therefore it would be advisable to validate the 
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results on different CR and DDR systems especially when considering the different systems 

available and the technological advancements over the past 20 years. 

 

Conclusion 

The results of this study demonstrate that the acquisition parameters used for AP pelvis x-ray 

tabletop imaging are not directly transferable to trolley imaging. Consideration should be 

given to the difference between these two situations, especially the increased OID which 

would benefit from an increase in SID to a 130cm in order to reduce both magnification and 

radiation dose. Radiation dose significantly increased for trolley imaging whilst visual image 

quality decreased. It is therefore important that separate exposure charts or diagnostic 

reference levels (DRL) are set for trolley imaging to ensure optimal image quality at the 

lowest possible dose. Lastly, the clinical indication for the AP pelvis on a trolley should be 

considered when selecting appropriate acquisition parameters because certain exposure 

factors may be sufficient depending on the objective of the examination.  
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