Scrum Master Activities:
Process Tailoring in Large Enterprise Projects

Julian M. Bass
Robert Gordon University
Garthdee Road
Aberdeen, UK
Email: j.bass@computer.org

Abstract—This paper explores practitioner descriptions of
agile method tailoring in large-scale offshore or outsourced
enterprise projects. Specifically, tailoring of the scrum master role
is investigated. The scrum master acts as a facilitator for software
development teams, nurturing adherence to agile practices and
removing impediments for team members. But in large projects,
scrum masters often work together in geographically distributed
teams. Scrum masters use sprint planning to avoid development
tasks that overlap team boundaries, coordinate status and effort
across teams, and integrate code bases. The study comprises 8
international companies in London, Bangalore and Delhi. Inter-
views with 46 practitioners were conducted between February
2010 and May 2012. A grounded theory research method was used
to identify that the scrum master role comprises six activities:
process anchor, stand-up facilitator, impediment remover, sprint
planner, scrum of scrums facilitator, and integration anchor. This
systematic description of activities in scrum master teams extends
our understanding of practitioner perspectives on agile process
tailoring in large enterprises. Understanding these activities will
help coaches guide large scale agile teams.

I. INTRODUCTION

This paper addresses the issues of development method
tailoring by practitioners in large-scale enterprise software
development projects. Managers and development team mem-
bers are under intense pressure to successfully implement and
deploy large-scale projects. Large development programs are
challenging and suffer high risks of deadline slippage and
cost overruns. For example, software development programs
figure prominently in a May 2013 list of UK Government
large projects “at risk” of failure [3]. Thus, implementation
challenges with large software projects can impede government
policy change goals. The term “Agile” is applied to a collection
of software development methods including: Dynamic Systems
Development Methods (DSDM) [41], Feature Driven Design
[10], Crystal [11], Scrum [40], Extreme Programming [8] and
more recently Lean Software Development [30].

Research shows that practitioners identify the three most
important perceived agile principles as: (1) achievement of
customer satisfaction through early and continuous delivery
of valuable software, (2) business representative and devel-
opment team members working together frequently through-
out the project, and (3) face-to-face conversations are the
most efficient way to convey information to, and within,
the development team [14]. These practitioners are in broad
agreement with proponents of Agile methods who argue that
improved team morale, results in enhanced productivity and

that improved responsiveness to customer needs, results in
better software quality [1]. While empirical research suggests
that agile methods do improve job satisfaction, productivity
and customer satisfaction, there can also be challenges with
adoption for large development programs [16].

The overall research question for the study is “how do
practitioners describe the tailoring of agile method roles and
practices in large-scale software development programs?” In
particular, this paper focuses on the research question “how do
practitioners describe the enhancement and expansion of the
scrum master role to meet the needs of large-scale software
development programs?” The central role of the scrum master
in the development process has been recognised, for example
“the scrum master plays the critical role of change agent. It is
too risky to have the wrong scrum master” [9].

This research offers novel contributions in two specific
areas. Firstly, the research presented here contributes to the
literature on tailoring agile methods for use in large software
development programs, including five CMMI maturity level 5
accredited offshore software development vendors. Secondly,
the research contributes to the emerging use of grounded
theory in software engineering. Replicated sampling has been
conducted in different research sites. Perspectives on the scrum
master role have been triangulated by research participants
with different large project stakeholder roles. Qualitative data
has been analysed using the grounded theory approach. Thus,
this research further contributes an application of grounded
theory in software engineering research.

A motivation for the research is to reduce burnout and high
levels of staff turn-over by raising awareness of the complex
range of scrum master activities. This understanding can be
used to target training, clarify work allocation and provide
management support for the activities scrum masters actually
undertake.

The paper is structured as follows. Firstly, related work in
agile software development methods, concentrating on scrum
and the scrum master role in particular, is presented. Then the
research methods adopted, including the research sites, data
collection and data analysis techniques used are described.
Next, is a presentation of the findings showing how, in practice,
companies scale agile methods to large software development
programs. In the next section, a discussion of the findings is
presented. Finally, there are conclusions and suggestions for
future work.

II. RELATED WORK

Extreme Programming focuses on engineering practices
such as test-driven development and pair programming [8].
Pair programming is where developers work together in a
pilot/co-pilot configuration and has been studied extensively
[6] [20] [29].

Scrum contrasts with the engineering focus of extreme pro-
gramming, by focusing on the orchestration and management
of agile development projects [39]. Scrum, which was adopted
on projects by teams in seven of the companies investigated
in this study, is briefly described here.

Managing requirements in large scale projects is complex
and difficult [45]. User requirements for the software are often
captured, analysed and prioritised in the form of user stories.
User stories are brief textual, non-technical descriptions that
are readily understood by all project stakeholders. A prod-
uct owner prioritizes user stories, before the start of each
sprint, by carefully considering the strategic needs of clients.
Stakeholders, including the scrum master and the development
team members, work together to create estimates of the work
required to implement each user story often using a consensus-
based scoring technique. In the planning phase at the start
of each sprint, the development team members decompose
each user story into the various technical tasks necessary for
implementation. Scrum teams, comprising 7-12 developers, are
said to be self-organizing, since they create work estimates
and individuals often select user stories (from the prioritized
list provided by the product owner) for implementation within
that particular sprint [12] [22]. Scrum emphasizes incremental
software development using a multidisciplinary “feature” team
structure [40]. Feature team members holistically develop end-
to-end user story functionality [10]. This contrasts with tradi-
tional approaches which hierarchically organize team members
around specialist architectural components such as user inter-
face, business logic or persistence layer sub-systems.

In the past, agile proponents argued that agile methods must
be implemented in their entirety to achieve their full benefits
(for example [8] p. 149). However, the findings presented
here suggest this is not always possible in large software
development programs.

A. Enterprise Agile

As already discussed, the challenges of scaling agile meth-
ods to large international projects have received attention from
numerous practitioners [28], [27], [4]. The simultaneous use of
agile methods and plan-based methods in large enterprises is
also receiving interest from researchers [44]. Large team size,
complex business contexts and demanding time constraints
can converge to cause a range of threats to productivity in
agile projects [20] as the co-existence of plan-based and agile
methods increases complexity and impedes involvement of
business stakeholders [44]. Large scale projects therefore re-
quire a more disciplined approach to software development [5].
There is also evidence that large scale projects can exacerbate
communication problems [35].

A scrum of scrums approach has been advocated to accom-
modate large team size [28]. Several scrum teams are formed,
each with a scrum master in the usual way, and each scrum

team comprises 7-12 developers. Daily coordination meetings
are held within each scrum team, and in addition, the scrum
masters attend a coordination meeting across the teams (the
scrum of scrums). The scrum of scrums is used to tactically
manage and coordinate the progress of iterations through the
various scrum teams.

During the scrum of scrums meeting, each scrum master
will report: (1) “what my team has done since the last
meeting”, (2) “what my team will do between now and the
next meeting” and (3) “what impediments that prevent progress
my team has encountered or created for others.” Scrum of
scrum meetings with too many participants can lack focus and
relevance [33] and communication is improved where scrum
of scrum meetings are organised around common interests and
participant needs.

A meta study of research papers has been conducted
in the related area of global software development [25].
In global software development, geographical distribution is
often, though not always, an indicator of large scale. The
meta-study suggests the most researched agile practices are
(1) continuous integration, (2) stand-up meetings, (3) pair
programming, (4) retrospectives, (5) scrum of scrums, and
(6) test-driven development [24]. Collaboration techniques use
by scrum teams include: visits and periods of co-located
working, unofficial meetings, training activities and distributed
documentation support tools [21]. These communication and
collaboration techniques help alleviate sociocultural distance
within geographically distributed teams [15].

B. Scrum Master Role

Three roles are defined in the scrum agile process, the:
self-organizing development team, scrum master and product
owner [40]. The scrum master is the primary interface between
the product owner and the software development team [39].
The scrum master is responsible for facilitating the devel-
opment process, ensuring that the team uses the full range
of appropriate agile values, practices and rules. The scrum
master conducts daily coordination meetings and removes any
impediments that the team encounters [40].

Conventional wisdom suggests that project managers use a
command and control style of management, whereas scrum
masters focus on leading and coaching [9]. Scrum masters
are not line managers for their sprint team members. Further,
scrum masters do not assign work items to the members of
their team; the teams are self-organising.

Scrum masters facilitate daily coordination meetings. The
coordination meetings are used to communicate status of
development work within the team and to product owners. The
efficiency of daily coordination meetings is often compromised
because too many stakeholders attend, or because the meetings
are held too frequently to be beneficial for attendees [42].

As agile methods scale to larger projects multiple scrum
teams, each with their own scrum master, must be coordinated.
This study investigates the scrum master role in large-scale
development programs. The contribution of this paper is to
systematically articulate the activities undertaken by scrum
masters. It is argued that software development processes ben-
efit from enhanced understanding of the range and complexity

TABLE 1.

PARTICIPATING COMPANIES, INDUSTRY SECTORS AND INTERVIEWEE JOB TITLES

(Offshore Provider to
Company E)

Product Owner
Scrum Master (3)
QA Lead

Team Member

Company Company Sector Interviewee Job Titles Interview Dates | Interviewee Projects and Programs
Company A, Bangalore | IT Service Provider Program Manager January 2010 Customer Relationship Management
Senior Project Manager
Team Member
Company B, Bangalore Internet Engineering Manager January 2010 Web Mail
Product Manager April 2011 Web Calendar
Company C, Bangalore Software Service Provider | Development Manager January 2010 Rail Booking
Company D, Bangalore | Software Service Provider | Project Manager January 2010 Marketing Campaign Management

Customer Relationship Management

Company E, London

Enterprise CRM

Program Manager
Project Manager
Director of Engineering

February 2010

Banking
Marketing Campaign Management
Customer Relationship Management

Corporate Lead Architect

General Manager Human Resources
Delivery/Program Manager (3)
Project/Senior Project Manager (3)
Scrum Master (2)

Technical Analyst/
Consultant/Specialist (6)

Team Member (9)

Business Analyst

Company F, Bangalore Industrial Products Scrum Master April 2011 Healthcare Instruments
Company G, Bangalore | IT Service Provider Engagement Manager April 2011 Media Entertainment
Company H, Delhi IT Service Provider Chief Technology Officer May 2012 Airline Customer Service

Flight Booking

of scrum master activities in global software development
projects.

III. METHOD

Experimental [46] case study [38] and empirical [26] re-
search methods have been advocated for software engineering
research. Method selection depends upon the research question
or hypothesis being tested. In studying real-world problems,
that have a ‘people’ dimension [37], theories can be cate-
gorised as explanatory or predictive [36]. Explanatory theories
have been used in diverse fields, such as earth science (plate
tectonics) and cosmology (Mercury’s orbit deviations). These
fields share insurmountable practical difficulties in constructing
experiments to falsify hypotheses. Explanatory theory has itself
been categorised as descriptive or analytical [19]. Grounded
theory is a method for deriving explanatory theories from
empirical evidence [18] and is emerging as a method used
in information systems [43] and software engineering [22].
Grounded theory has been used to investigate customers in
agile projects using extreme programming [31] and activities
in co-located self-organizing scrum teams in small and medium
sized companies [23]. While Bass, investigates large-scale
development programs but specifically focuses on product
owner teams [7]. This research uses a qualitative, grounded
theory, approach to investigate software engineering practice
comprising 8 international companies and semi-structured in-
terviews with 46 practitioners.

A. Research Sites

The companies, which were selected from a population of
large enterprises, are engaged in (typically both) outsourced
and off-shore software development projects. The selected
companies have head offices in Germany, India and USA
although the research sites were exclusively in UK and India
due to researcher travel budget constraints. The two largest
companies have turnover of almost €8 billion and over US
$1.5 billion. The interviews were conducted in Bangalore,

India (January 2010 and April 2011), London, UK (February
2010) and Delhi, India (May 2012). Altogether, there were 46
practitioner interviews at 8 international companies, as shown
in Table 1. The companies investigated were involved in either
off-shoring (companies B and F) or outsourcing (companies
A, C, D, E, G and H). Off-shoring is typically motivated by
a desire to access and cultivate specialist technical skills from
around the world. Both off-shoring and outsourcing are thought
to offer lower cost skills than in-house onshore staff members.
All the projects shown in Table 1 are intended for revenue
generation. None of the projects are internal IT infrastructure
projects.

Company B, for example, is a well known Internet busi-
ness. Company B retains an in-house development capability in
California but has built a development team in India (as well as
elsewhere) to reduce costs while also attracting a wide range of
specialist skills. Company F, in contrast, has interests broadly
in the industrial products space. Company F has headquarters
in Europe but also has research and development centres in
India and in other territories. These global enterprises allocate
work, according to the concentration of expertise, to specialist
groups within the enterprise. This helps to avoid duplication of
competencies within the organization. The selected IT Services
companies (companies A, C, D, G and H) are all well-
known vendors in the world-wide software and/or IT service
outsourcing sector.

The process used to select companies for the research study
comprised two phases: (1) snowball sampling technique ([34]
pg. 237; [32] pg. 37) followed by (2) intensity sampling ([34]
pg. 234). Initially, former co-workers and other professional
contacts provided access to the first study participants. Those
participants then provided access to development teams in
other companies. This early, more exploratory, phase of the
study focused on replicated interviews from a broad range of
Companies (companies A, B, C, F and G). Snowball sampling
gave access to a range of project teams and stakeholders with
different perspectives. Company C, for example, exclusively
use agile software development methods. Companies E and G,

On the other hand, provided some agile sceptics with negative
experiences to report.

Later in the study, intensity sampling was used to obtain
greater richness and depth in the study by targeting a larger
number of interview participants with different responsibilities
in the same company or software development program. The
interviews at Company H, and Companies D and E provided
triangulated perspectives from developers, QAs (quality as-
surance, testers), project management, program management
and corporate-level executives. These differing perspectives
implement the intensity sampling technique ([34] pg. 234).

To summarize, research sites were selected to provide
replication using snowball sampling in the early phase of the
study. Then intensity sampling was used in the later phase
to enhance both depth and richness; hence increasing data
reliability through participant triangulation.

Using both snowball and intensity sampling is a com-
bination sampling approach which provides methodological
triangulation to the sample selection. Combination sampling
was used to provide a snapshot of participant perspectives but
also the underlying motivation for these software development
practices. It is difficult to assess practitioners motivation for
selecting software development practices using other research
methods such as surveys for example.

B. Data Collection

Documentary sources were used to support the study.
Access to certain commercially confidential corporate agile
development method process guidelines was obtained. These
corporate guidelines outline: agile practices, roles, policies and
recommended techniques. Some documentation produced for
specific software development programs, such as design and
architecture documents, has also been investigated. Publicly
available and web hosted marketing materials were also re-
viewed. These included white papers, technical reports, case
studies and descriptions of vendor capabilities designed to
inform potential customers. On-site visits enabled first-hand
observation of working practices and work place environments.
Some secure work environments were visited. Coordination
meetings (stand-up meetings) were observed (at Companies
C, D and H) for both co-located and distributed scrum teams.
This enabled investigation of arrangements for distributed
scrum coordination meetings using both video- and audio-
conferencing technologies. Various informal, sometimes off-
site, discussions with executives, project management and
development team members were conducted.

The primary data used in the study were from face-
to-face recorded interviews. Interviews were conducted with
46 practitioner interviewees, with recordings professionally
transcribed and reviewed. The duration of interviews was
between 40 and 75 minutes each and was typically 50 to 60
minutes. An open-ended interview guide approach was used to
conduct and structure the interviews. An example of the semi-
structured interview guide used in this research is presented
in Appendix 1. Probing questions were used to encourage
interviewees to provide more detail. The interviews were
open-ended because respondents were given opportunities to
raise any topics, issues and concerns they wished outside the
scope of scripted interview questions. Interviews were typically

conducted in small meeting rooms exclusively booked for
interview purposes on the company premises.

C. Data Analysis

Initially, the audio interviews and corresponding verbatim
transcripts were carefully reviewed to ensure consistency. The
transcript text was then imported into a qualitative data analysis
software tool, in this case Nvivo V9 [2].

Grounded theory is an approach for inductively generating
novel theoretical ideas from data. The new theories arise from
the data and are thus said to be grounded. The grounded
theory analysis began with identification of concepts within the
interview data [18]. The interview concepts were coded and
then compared within and between interviewees. The constant
comparison analysis technique is used to explore homogeneity
and heterogeneity within the interview data. These interview
concepts were then iteratively grouped and refined into selected
categories. Thus, interview concepts were combined to create
categories which were then themselves coded, listed and
compared within and between interviewees.

1) Field Notes and Memo Writing: During data collection,
a series of field notes were produced. These informal notes
recorded interesting issues arising during the interviews, such
as apparent contradictions, areas of possible uncertainty and
striking examples of emergent topics. These field notes were
extended during the data analysis with descriptions of selected
categories. These notes describing categories are examples of
memo writing during which categories are identified, refined
and sharpened [17, Chapter 12]. The memos were used to keep
track of the emerging theory; and they evolved and changed
during the analysis as new transcript data was added.

2) Open Coding: Open coding was conducted on a
sentence-by-sentence basis of the interview transcripts. Short
descriptive phrases were used as codes and, during the early
stages of analysis, were hand-written on to hard copies of the
transcripts. This approach provided a quick and easy way to
identify and collate the initial codes. The codes at this stage
were tentative and evolved quickly. Subseqently, as the volume
of interview transcript data increased, the coding process was
formalised and the data analysis software tool, Nvivo, was
employed [2].

3) Constant Comparison: Constant comparison was used
to refine and sharpen the categories emerging from data in
this research. The codes from each interview were compared
with each other at two key levels: firstly, within the same
organisation or project team; and secondly, with outside or-
ganisations and teams. The codes were honed over time using
constant comparison. For example, “scrum of scrums master”
was a coding category early in the analysis, but this was later
refined into the two codes “scrum of scrum coordinator” and
“integration anchor” as more detailed transcript data emerged
from the intensity sampling stage.

In summary, data analysis emerged from a process of
iteration involving memo writing, open coding and constant
comparison. Early topics, identified using line-by-line analysis
of the transcript data, were recorded in memos. These topics
were subsequently refined and sharpened through constant
comparison within and between interview transcripts. As the

volume of interview data increased the topics became discrete
categories. The categories form the basis of the grounded
theory which is described next.

IV. FINDINGS

The main contribution of this paper is to develop a
grounded theory from practitioner descriptions of scrum master
role tailoring. Enterprise software development projects are
characterized by large work volumes, short deadlines and
entrenched organizational structures. These constraints lead to
tailored agile approaches. The research identifies six scrum
master activities used to scale-up agile methods to large
international projects.

What does a scrum master actually do? The scrum method
was used by 15 project teams in 7 of the companies in this
study. The scrum master activities identified in this research
are described next. The presentation of this data follows the
grounded theory approach advocated in [43] and used in [22].

A. Process Anchor: the process anchor mentors team members
in scrum method use

Perhaps the most important activity for a scrum master is
the process anchor activity, which is to own and disseminate
the scrum process within the development team. The scrum
method comprises a set of roles (such as scrum master and
product owner), policies (such as sprint duration and definition
of ‘done’) and practices (such as customer demonstration and
retrospective). The process anchor helps development teams
make policy decisions about their use of scrum. In company
H, for example, a “basic purpose of a scrum master is [to
ensure] that the team follows agile principles and practices”
(Scrum Master, Company H). In Company B, for example,
scrum comprises “stand-up meetings, retrospection meetings,
following backlogs closely and tracking things like that” (Prod-
uct Manager, Company B). Scrum masters lead and mentor
team members. A scrum master in company F said “the key
actually is the mentor, [who] has to remove all the insecurity
feelings from every individual, [and] has to ensure that it is not
about individuals, it is about team” (Scrum Master, Company
F).

A customer demonstration is conducted at the end of each
sprint. The purpose of the customer demonstration is to make
refinements to the product in the light of client feedback. For
example, “when we are getting feedback [from the client],
we have to change the product” (Scrum Master, Company H).
The retrospective in scrum is used to reflect on the previous
sprint and identify lessons learned. In company H, “we have
a sprint retrospective after the end of every sprint” (Scrum
Master, Company H) and during the retrospective “we just
wanted to be sure what has been wrong, what was good, [and]
what can be improved” (Scrum Master, Company H).

Agile methods advocate multidisciplinary teams compris-
ing analysis, developers and testers. For example, at company
H “we have a scrum master and we have four or five people
team in one Agile team” (Project Manager, Company H) within
the team are “a group of, let’s say, five to six developers, a test
analyst, and a scrum master going into a team” (Test Analyst,
Company H). In another project in company H, “team size is
eight, we have one scrum master, one or two C++ developers,

depending upon the task and two or three Java developers,
one test analyst and one business analyst” (Senior Developer,
Company H).

Scrum masters accommodate agile method tailoring due
to geographically distributed work allocation. This includes
unusual scrum coordination meeting arrangements, such as
“we had to do the scrum calls twice [a day] instead of once.
One India versus the US, the other one India versus Europe.”
(Engagement Manager, Company G). An onshore client is
typical in offshore development projects

“onshore at the client site [we have a] proxy prod-
uct owner representing our team. [The proxy prod-
uct owner] is interacting with [the client’s] project
stream lead and technical product owner. Then we
have the actual [client] product owner, so there is
a hierarchy. Scrum master and team is in India;
and project stream lead, technical product owner
and proxy product owner are [onshore]” (Project
Manager, Company H).

The process anchor scrum master activity is responsible for
ensuring scrum practices and processes are adopted by team
members. They facilitate sprints, contributing to policy deci-
sions and selection of scrum practices. Scrum masters lead and
mentor self-organising team members.

B. Stand-up Facilitator: the stand-up facilitator conducts co-
ordination meetings within a team

In scrum, team members communicate their status and
activities using a daily coordination meeting, the eponymous
scrum. The coordination meetings are used to report to product
owners (and perhaps other stakeholders outside the team) the
current status of development work during the sprint. As one
development manager said, “the day starts with a stand up,
which happens at a pre-defined time, which the team agrees
upon on...I would say it kind of kick-starts the day for
everybody.” (Development Manager, Company C).

The agenda of the coordination meeting is defined in scrum
as three questions: ‘what did you do yesterday?’, ‘what are you
going to do today?’ and ‘are you facing any impediments?’ For
example, a scrum master said “you are supposed to say what I
did yesterday, what I’'m going to do today, [and] what are my
blocking issues” (Scrum Master, Company F). The scrum co-
ordination meeting is used to facilitate communication within
the team, as a developer at company H said “I should know
what others are doing” (Senior Software Developer, Company
H).

The coordination meetings are often conducted standing up,
to minimize the meeting duration. A common policy is to try
to limit the scrum duration to 15 minutes. For example, “stand-
ups are usually 15 minutes” (Scrum Master, Company D) and
“15 minute stand-up, we do every day” (Project Manager,
Company H).

Scrum practitioners keep track of user stories that are com-
pleted and tested. These completed tasks should be monitored
on a burn down chart. For example, “every day we have stand-
up during which we burn down the number of hours which
has been estimated initially” (Scrum Master, Company H).
When the development activity and testing is complete the

status of the user story is updated, for example in company H,
“[when] the story is done from offshore perspective...there is
a particular status which is called a sprint complete” (Scrum
Master, Company H). Then customers can decide whether to
release completed user stories to users. For example, “we move
that story, which has a sprint complete status, to the client to
decide whether this goes to production or not” (Scrum Master,
Company H).

Sometimes, scrum masters complain that agile methods
are being used to micro-manage team member effort. For
example “I think there has to be a different way of measuring
productivity or delivery. Do I really need to track an individuals
activity on a daily basis, or is it enough that the team is able to
deliver x number of stories for a given sprint?” (Scrum Master,
Company F). Agile methods sometimes seem to be advocated
so that onshore client product owners can participate in daily
scrum meetings with offshore team members. The product
owners hear first-hand status reports from team members.

Scrum masters facilitate the daily scrum coordination
meetings. The agenda, meeting duration and attendance is
facilitated by scrum masters. They nurture status reporting
from all the team members and track progress through burn-
down charts.

C. Impediment Remover: the impediment remover eliminates
work blockages for team members

The scrum masters in this study spend time investigating
and removing impediments for team members. A scrum master
from company F said“we focus on the blocking issues and
facilitate how to get rid of them” (Scrum Master, Company F)
The coordination meetings are used to surface problems and
not to resolve. them. In company D for example, “in the stand-
ups we don’t really talk about any issues [that arise]. Once the
stand-up is complete, we discuss any issues” (Scrum Master,
Company D) and in company H “the scrum master takes
issues and queries offline after the [stand-up] meeting” (Project
Manager, Company H). Outside the coordination meetings,
scrum masters have to remove the impediments that have been
identified.

In large teams, scrum masters must ensure team members
have all the information they need to make progress. For
example, “my main role is to make sure that the team members
have enough information that they can work on” (Scrum Mas-
ter, Company D). Developers then learn to raise impediments
with their scrum master, “if we have any problem, we have
a protocol to follow, we send a mail to our scrum master”
(Senior Developer, Company H). The scrum master is then
expected to find a solution to the issue.

Scrum masters spend time on activities that remove imped-
iments for members of the development team.

D. Sprint Planner: the sprint planner helps select and estimate
requirements for implementation

The product owner liaises with stakeholders to identify and
select the most important requirements for inclusion in each
sprint. Sprint planning is then conducted at the start of the each
iteration. The scrum master provides technical support to the
product owner, who will have business skills but may not have

technical expertise. For example, at Company D “my product
owner is completely a business analyst. He might not be
aware of some technical aspects of the project” (Scrum Master,
Company D). The scrum master plays an important role in
reviewing the product backlog for technical dependencies.
The technical dependencies might suggest a sequence for
implementing user stories. Technical dependencies between
tasks are identified “say task six is dependent on task five, so
it cannot start before the other task can finish. So we specify
exact dates for those tasks” (Product Manager, Company B).
Thus, while product owners prioritise using business need as
the main criterion, scrum masters look at prioritisation from a
technical dependency perspective.

Requirements, in scrum, are usually managed in the form
of user stories. Scrum masters coordinate the decomposition
of requirements into technical tasks, during sprint planning. In
turn, these tasks are decomposed in smaller technical activities,
for example “we need to break any tasks into sub-tasks”
(Product Manager, Company B).

Precise planning and estimation ensures that all user stories
included in an iteration are fully implemented and tested.
Scrum masters coordinate team members as they perform
detailed estimates of the work required to implement user
stories. For example, the “scrum master sits with the team
to do the estimation of all the user stories” (Project Manager,
Company H) and “we check whether we have the capacity
to do those stories or not. We do the planning, we do the
estimates” (Scrum Master, Company H). In company B, team
members “have to come with effort estimates and say that,
‘Yeah, I can comfortably take [that task] up, I understand the
dependencies and I can finish it in three days or five days.” No
manager goes back and tells the engineers that [their estimate
is too long]” (Product Manager, Company B). Since the team
are contributing to task estimation they feel a greater sense
of commitment to their estimates. For example, “by choice
people are committing to something, generally you are able
to meet whatever you have signed up for” (Product Manager,
Company B).

In large scale projects, some team members use time during
the current sprint to plan for the next sprint. For example, in
company H “the [scrum] team is developing the second sprint,
the QA, BA, scrum master and product owner are discussing
the third sprint” (Scrum Master, Company H).

However, sometimes some user stories are incomplete
at the end of an iteration. For example, if “some part of
[the sprint] is left, it goes again into the product backlog”
(Scrum Master, Company H). This may happen because a
team is inexperienced in the business domain or is using a
new technology. Placing any incomplete user stories into the
product backlog allows a re-prioritisation of both new and
incomplete user stories.

In a scrum of scrums context, sprint planning is required
to avoid interference between the development activities of
different teams. An important tactic is to ensure different teams
are given distinctive responsibilities. For example “we have
a strategy team. Then, we have another, infrastructure team”
(Scrum Master, Company H). The user stories are assigned to
the corresponding scrum team, by asking if this user story is
a strategic initiative or is it infrastructure? In this project, in

company H, for example “Then, the [user] story is assigned to
the [appropriate] scrum master” (Scrum Master, Company H).
The work of the scrum teams is differentiated in this situation.
According to one project manager, “[the teams are] working
on different areas. So they will not be hitting each other’s area”
(Project Manager, Company H). In another case, one team is
focused on fixing bugs and issues with the existing code base.
For example “there is one support team which actually works
on problem requests and change requests” (Project Manager,
Company H). Scrum masters check the assignment of user
stories to minimise interference between different teams.

Co-located scrum teams are always considered desirable.
Sometimes in large projects this is not possible. A manager
at Company G said, “I worked with Europe, US and India
together. So definitely it’s a challenge” (Engagement Manager,
Company G). One project, at Company H,

“was based on two locations, the android application
was being dealt with from Bangalore office and rest
of the i0S, iPhone thing was being done from here
[Delhi]. So there were two scrum masters involved”
(Scrum Master, Company H).

In company G, “we were in a situation where we had the
product people in a different time zone. Then we had the
testing people in another different time zone” (Engagement
Manager, Company G).

In summary, scrum masters contribute to sprint planning by
providing technical support to product owners, ensuring user
stories are correctly prioritized and assigned to teams.

E. Scrum of Scrums Facilitator: the scrum of scrums facilita-
tor conducts coordination meetings between teams

Development team size increases in order to deliver larger
software systems within required deadlines. For the purpose of
this study, large is defined as at least 25 developers engaged
for a duration of three months or more. However, the scrum
method recommends small development teams. It follows that
large development teams need to be divided into smaller teams
for compliance with scrum. For example, “the entire [client]
team is divided into two sub-teams. One is called the red team;
the other is called the blue team. The red team has their own
scrum master; the blue team has their own Scrum Master”
(Developer, Company D). A similar appoach is followed in
even larger projects, for example “say I have a big project,
100 members’ project, where there are scrum teams with
10 members so we have 10 scrum masters” (Engagement
Manager, Company G).

The ’scrum of scrums’ approach is used to coordinate the
activities of scrum teams working together on a large project.
The term ’scrum of scrums’ specifically refers to a coordination
meeting comprising the scrum masters and product owners
from each team working together on related projects. On
one project in company H, for example, scrum of scrum
coordination meetings are attended by “all the scrum masters
and all the proxy product owners” (Project Manager, Company
H).

Frequency and attendance tailoring of the scrum of scrums
coordination meetings was found in this study. Teams did not
always find it attractive to conduct the scrum of scrums daily.

Two projects at company H, convened their scrum of scrums
coordination meetings less often; either weekly or bi-weekly.
In company B, selected team members from each scrum
team are seconded to attend scrum coordination meetings in
another team a few times each week. A product manager, says
“[members of another team] become part of the sprint stand-
ups at least a couple of days in a week” (Product Manager,
Company B). Thus, coordination meeting frequency is adjusted
to make good use of everyone’s time.

Another tailoring approach is to reduce the number of
coordination meeting attendees. In some projects, the work
of many stakeholders needs to be coordinated because of the
high level of coupling between requirements within the project.
At company H “the internal scrum of scrums meetings, [com-
prised] scrum masters, onsite designers, and BAs [business
analysts] as well” (Scrum Master, Company H). However,
coordination between loosely couple aspects of a project is
not an efficient use of resources. On a different project, at
company H “there were 25 people on the same [scrum of
scrums] status call. That was not making sense. So, we tailor
[such] that [only] important stakeholders will be involved on
a daily scrum [of scrums] call. So, we have a daily scrum
call which is basically useful for everyone” (Scrum Master,
Company H).

Scrum masters also have to facilitate unusual combinations
of scrum team co-location and geographical distribution. Some
enterprises find it attractive to adopt a mix of onshore and
offshore development activity. The project team deployment
reflects the technical skills available at different locations. On
one project in Company H the client operated scrum teams
both onshore and offshore. A team member explained, “we
do scrum of scrums offshore, and we do scrum of scrums
onshore as well” (Technical Analyst, Company H). In that
project a hierarchy of staff members manage requirements. The
scrum master said, “we have a product manager [onshore] who
sends the backlog to the [onshore] scrum master. The [onshore]
scrum master sends us across [the backlog]” (Scrum Master,
Company H), and “here in offshore we have two teams. So we
have basically two leads at offshore who will be coordinating
with the scrum master at onshore” (Scrum Master, Company
H). Thus, process tailoring in this project results in the two
offshore scrum masters receiving requirements from an on-
shore scrum master. The onshore scrum master is coordinating
onshore and offshore teams. The procedure is intended to
reduce interference between the software under development
by the different teams. However, co-located offshore scrum of
scrum teams were found more frequently in this study.

To summarise, scrum masters facilitate large agile projects
by supporting a scrum of scrums approach. In scrum of scrums
coordination meetings, scrum masters ensure stakeholders are
fully utilized by adjusting the composition and frequency of
scrum of scrum meetings.

F. Integration Anchor: the integration anchor facilitates amal-
gamation of software elements

Code integration is seen as a challenging and important
issue, for example in company H,

integration is the big issue in these type of envi-
ronments because most team members work on the

same type of files. ... We have time slots [in each
iteration] for integration because there would be a
lot of merge issues. (Scrum Master, Company H)

This scrum master is explaining that they allocate time
within their sprints to allow time to resolve conflicts between
code modules that are being integrated. Similarly, “as a scrum
master, the challenges were...code synchronizing problems”
(Scrum Master, Company D). On large projects, scripts and
software tools are used to manage integration. In company H,

If a new story is being developed, we document
the integration scripts which should be [included]
to ensure the functionality of that particular piece is
being covered. (Scrum Master, Company H)

It is this scrum master’s responsibility to ensure these
integration scripts are prepared. Scrum masters coordinate
between teams when there are code conflicts between them.
At company H for example,

“there are a number of teams. So sometimes it
happens that one of the teams is working on a
particular piece of code and the other team is doing
some other piece of code which impacts this one”
(Technical Analyst, Company H).

Where possible these task conflicts are avoided by sprint
planning. When task conflicts occur the scrum of scrums
coordination meeting is used to surface the issues. Scrum
masters then cooperate to minimise the interference.

In company D, version control tools are use to support
integration,

We have a repository where we put in all our code.
There are two areas there, ones called the private
branch; the others called the trunk. ...[when] you’'ve
done your development, you’ve done your testing,
you’ve done your integration, everything is fine and
the code is ready in the private branch, we move it
to the trunk (Scrum Master, Company D)

The scrum masters need to ensure that the team members
perform that activity consistently and reliably. The presence of
multiple scrum teams (whether co-located or geographically
distributed) leads to the problem of integrating the code bases
under development within the team and by the different teams.
One approach is to merge code bases for each release, for
example “we take their code base merge into our one and
give [a single release] to QA” (Product Manager, Company
B). Another approach is to prevent updates ahead of customer
demonstrations. A code freeze period allows a team time to
handle merge issues, for example ‘“no team members would be
allowed to check in any code. The branch would be blocked
by that particular team” (Project Manager, Company H). In
summary, scum masters facilitate a code integration process.
Code from multiple teams is integrated into a single code base
prior to release.

V. DISCUSSION

The project teams in this research viewed scrum mas-
ters as central to successful scrum project outcomes. This
research confirms previous literature which advocates that

scrum masters own the scrum process (process anchor) monitor
team status (Stand-up facilitator) and remove impediments
(impediment remover) [40], [39]. The sprint planner, scrum of
scrums facilitator and integration anchor activities are mainly
concerned with scaling scrum to large projects. The scrum of
scrums has been advocated to scale scrum to large projects
[28], but the scrum master role has not been articulated in
detail. The detailed description of scrum master activities
presented in this research has not been found elsewhere in
the literature.

This research did not find evidence of the approach used
in Nokia Siemens Networks where line manager and scrum
master roles were combined [9]. In contrast, the projects in
this study used separate line managers responsible for career
objective setting and project managers for assigning staff to
teams. This may be because the teams in this study were more
mature, in terms of their adoption of the scrum method.

This research also found evidence supporting earlier find-
ings that the efficiency of daily coordination meetings is often
compromised [42]. Efficiency is compromised because too
many stakeholders attend, or because the meetings are held
too frequently to be beneficial for attendees. The teams in
this study made efforts to reduce the frequency of scrum of
scrums meetings to address this concern. Also, stakeholders
were selected based on their interest in specific product feature
themes to maximise meeting relevance for all attendees.

Teams in this study confirmed the findings of previous
research that suggest senior management support is helpful for
agile adoption. However, our findings did not find evidence
of the approach used at Unisys Cloud Engineering where
senior officers occupy scrum masters roles [13]. Rather, our
findings show that scrum masters were selected from a pool
of experienced and respected development team leaders.

VI. LIMITATIONS

Three tests have been identified for establishing the quality
of descriptive empirical social research: construct validity, ex-
ternal validity and reliability [47]. Construct validity is ensured
by using multiple sources of evidence and ensuring a chain of
evidence. Specific perspectives on scrum master activities have
been triangulated through interviews with both development
team members and product owners as well as with scrum
masters themselves. In fact, interviewees have also included
corporate-level executives that can offer additional perspectives
on the scrum master role. A chain of evidence has been ensured
by including verbatim quotations from interviewees in the
findings section of the paper. The grounded theory approach
was used to analyse the transcript data and create the activity
categories. However, transcript quotations maintain the chain
of evidence to original sources; the interviewees themselves.
The construct validity has also been tested by obtaining
feedback on an early draft of this paper from Company H.

External validity can be achieved through study replication.
Multiple sources of evidence have been achieved by conduct-
ing replicated studies at eight companies with large studies
at Companies H and E (along with their offshore service
provider Company D). However, the findings and conclusions
presented here should not be generalized to small and medium
sized companies. Smaller companies work under profoundly

different commercial pressures with different quality assurance
responsibilities.

Reliability is achieved by minimizing errors and biases
in the study. The study uses an open-ended semi-structured
interview guide. The interview guide acts as a script guiding
data collection and ensuring consistency between interviews.
An example open-ended semi-structured interview guide is
presented in Appendix 1.

VII. CONCLUSIONS AND FURTHER WORK

This paper explores large-scale enterprise software de-
velopment programs using practitioner descriptions of agile
method tailoring. Specifically tailoring of the scrum master
role has been systematically investigated using the grounded
theory research method. Grounded theory is a technique, in
software engineering research, for exploring complex real-
world settings.

Six activities performed by scrum masters have been iden-
tified and described: process anchor, stand-up facilitator, im-
pediment remover, sprint planner, scrum of scrums facilitator
and integration anchor. The process anchor nurtures adherence
to agile methods. The stand-up facilitator ensures that team
members share status and impediment information during each
sprint. The impediment remover ensures developers can make
progress with their work. The sprint planner supports the
user story triage and workload planning that occurs prior to
development work starting in each sprint. The scrum of scrums
facilitator coordinates work with the other scrum masters in the
development program. The integration anchor facilitates the
merging code bases developed by cooperating teams working
in parallel.

The sprint planner, scrum of scrums facilitator and integra-
tion anchor scrum master activities help scale agile methods
to large programs in the CMMI maturity level 5 accredited
companies investigated. Further, scrum masters can specialize
by assigning these activities within a scrum master group.
The scrum master activities offer important resources for
tailoring agile methods in large scale development programs.
Knowledge of these activities can help management provide
training, support and mentoring for scrum masters. Managers
that understand the complex range of activities undertaken by
scrum masters can mitigate burnout and high staff turnover by
offering targeted training and support resources.

Further research would be desirable to investigate how
scrum masters coordinate testing within self-organizing devel-
opment teams. Preliminary results from this research show that
scrum masters play a role in test planning and management.
A follow-up study would be worthwhile to explore this aspect
of agile process tailoring in large-scale offshore or outsourced
enterprise projects.

VIII. ACKNOWLEDGMENTS

I am grateful to the companies and interviewees who
participated in this research. Thanks also to the students of the
Executive MBA at the Indian Institute of Management, Banga-
lore who facilitated access to several participating companies.
The International Institute for IT, Bangalore provided hospi-
tality for several research visits. The research benefited in part

from travel funding from the UK Deputy High Commission,
Bangalore, Science and Innovation Network, and the Institute
for Innovation, Design & Sustainability (IDEAS) at Robert
Gordon University, UK. Accommodation and sustenance was
provided by Company H during the data collection visit to
Delhi, India.

REFERENCES

[1] Agile alliance. http://www.agilealliance.org/.
[2] NVivo 9 help. http://help-nv9-en.qgsrinternational.com/nv9_help.htm.

[3] Warnings over flagship projects.
uk-politics-22664672, May 2013.

[4] S. Ambler. Agile software development at scale. In B. Meyer,
J. Nawrocki, and B. Walter, editors, Balancing agility and formalism in
software engineering, volume 5082 of lecture notes in computer science,
pages 1-12. Springer Berlin Heidelberg, 2008.

[S] S. W. Ambler and M. Lines. Disciplined Agile Delivery: A Practi-
tioner’s Guide to Agile Software Delivery in the Enterprise. IBM Press,
May 2012.

[6] V. Balijepally, R. Mahapatra, S. Nerur, and K. H. Price. Are two heads
better than one for software development? the productivity paradox of
pair programming. MIS Quarterly, 33(1):91 — 118, 2009.

[7]1 J. M. Bass. Agile method tailoring in distributed enterprises: Product
owner teams. In Proc. IEEE 8th Int. Conf. on Global Software
Engineering, pages 154-63, Bari, Italy, Aug. 2013.

http://www.bbc.co.uk/news/

[8] K. Beck and C. Andres. Extreme Programming Explained. Addison
Wesley, 2nd edition, Nov. 2004.

[9] S. Berczuk and Y. Lv. We're all in this together. Software, IEEE,
27(6):12—-15, Nov 2010.

[10] P.Coad, E. LeFebvre, and J. D. Luca. Java Modeling in Color. Prentice
Hall, Englewood Cliffs, NJ, 1999.

[11] A. Cockburn. Agile Software Development. Addison Wesley, Reading,
MA, 2001.

[12] M. Cohn. Succeeding with Agile: Software Development Using Scrum.
Addison-Wesley Professional, Upper Saddle River, NJ, USA, 1st edi-
tion, Oct. 2009.

[13] C. Cowan. When the vp is a scrum master, you hit the ground running.
In Agile Conference (AGILE), 2011, pages 279-283, Aug 2011.

[14] S. de Cesare, M. Lycett, R. D. Macredie, C. Patel, and R. Paul.
Examining perceptions of agility in software development practice.
Commun. ACM, 53(6):126-130, June 2010.

[15] C. de Souza and D. Redmiles. The awareness network, to whom should
i display my actions? and, whose actions should i monitor? Software
Engineering, IEEE Transactions on, 37(3):325-340, May 2011.

[16] T. Dyba and T. Dingsoyr. What do we know about agile software
development? IEEE Software, 26(5):6-9, 2009.

[17] B. G. Glaser. Doing Grounded Theory: Issues and Discussions.
Sociology Press, Mill Valley, 1998.

[18] B. G. Glaser and A. L. Strauss. Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine, Chicago, IL., 1967.

[19] S. Gregor. The nature of theory in information systems. MIS Quarterly,
30(3):611-42, Sept. 2006.

[20] J. E. Hannay, E. Arisholm, H. Engvik, and D. I. K. Sjoberg. Effects
of personality on pair programming. [EEE Transactions on Software
Engineering, 36(1):61 — 80, 2010.

[21] R. Hoda, J. Noble, and S. Marshall. The impact of inadequate customer

involvement on self-organizing agile teams. Information and Software
Technology, 53(5):521-534, May 2011.

[22] R. Hoda, J. Noble, and S. Marshall. Developing a grounded theory to
explain the practices of self-organizing agile teams. Empirical Software
Engineering, 17(6):609-639, 2012.

[23] R. Hoda, J. Noble, and S. Marshall. Self-organizing roles on agile soft-

ware development teams. IEEE Transactions on Software Engineering,
39(3):422-444, 2013.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

E. Hossain, M. A. Babar, and H. Paik. Using scrum in global software
development: A systematic literature review. 2012 IEEE Seventh
International Conference on Global Software Engineering, 0:175-184,
2009.

S. Jalali and C. Wohlin. Agile practices in global software engineering
- a systematic map. 2012 IEEE Seventh International Conference on
Global Software Engineering, 0:45-54, 2010.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg. Preliminary guidelines for
empirical research in software engineering. I[EEE Transactions on
Software Engineering, 28(8):721-734, 2002.

C. Larman and B. Vodde. Scaling Lean and Agile Development: Think-
ing and Organizational Tools for Large-Scale Scrum: Successful Large,
Multisite and Offshore Products with Large-scale Scrum. Addison
Wesley, Dec. 2008.

D. Leffingwell. Scaling software agility: Best practices for large
enterprises. Addison Wesley, Boston, MA, USA, 2007.

K. M. Lui, K. C. C. Chan, and J. Nosek. The effect of pairs in program
design tasks. IEEE Transactions on Software Engineering, 34(2):197—
211, 2008.

M. Poppendieck and T. Poppendieck. Lean Software Development: An
Agile Toolkit. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

A. Martin. The Role of the Customer in Agile Projects. PhD thesis,
Victoria University of Wellington, New Zealand, 2009.

M. B. Miles and A. M. Huberman. Qualitative Data Analysis: An
Expanded Sourcebook. Sage Publications, Inc, 2nd edition, 1994.

M. Paasivaara, C. Lassenius, and V. T. Heikkild. Inter-team coordination
in large-scale globally distributed scrum: Do scrum-of-scrums really
work? In Proceedings of the ACM-IEEE international symposium on
Empirical software engineering and measurement, ESEM 12, pages
235-238, New York, NY, USA, 2012. ACM.

M. Q. Patton. Qualitative Research & Evaluation Methods. Sage
Publications, Inc, Thousand Oaks, California, 3rd edition, Jan. 2002.

M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still. The
impact of agile practices on communication in software development.
Empirical Software Engineering, 13(3):303-337, 2008.

R. W. Proctor and E. J. Capaldi. Why Science Matters: Understanding
the Methods of Psychological Research. Blackwell, Malden, MA, 2006.

C. Robson. Real World Research. John Wiley and Sons Ltd., Chichester,
UK, 3rd edition, 2011.

P. Runeson, M. Host, A. Rainer, and B. Regnell. Case Study Research
in Software Engineering: Guidelines and Examples. Wiley-Blackwell,
Hoboken, NJ, 2012.

K. Schwaber. Agile Project Management With Scrum. Microsoft Press,
Redmond, WA, USA, 2004.

K. Schwaber and M. Beedle. Agile Software Development with Scrum.
Prentice Hall, Upper Saddle River, NJ, USA, 2002.

J. Stapleton. DSDM: Dynamic Systems Development Method. Addison
Wesley, Harlow, England, 1997.

V. Stray, Y. Lindsjorn, and D. Sjoberg. Obstacles to efficient daily
meetings in agile development projects: A case study. In Empirical
Software Engineering and Measurement, 2013 ACM / IEEE Interna-
tional Symposium on, pages 95-102, Oct 2013.

C. Urquhart, H. Lehmann, and M. D. Myers. Putting the theory
back into grounded theory: guidelines for grounded theory studies in
information systems. Information Systems Journal, 20(4):357381, 2010.

G. van Waardenburg and H. van Vliet. When agile meets the enterprise.
Information and Software Technology, 55(12):2154 — 2171, 2013.

K. Vlaanderen, S. Jansen, S. Brinkkemper, and E. Jaspers. The agile
requirements refinery: Applying SCRUM principles to software product
management. Inf. Softw. Technol., 53(1):58-70, Jan. 2011.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and

A. Wesslen. Experimentation in Software Engineering. Springer,
Heidelberg, 2012.
R. K. Yin. Case Study Research: Design and Methods. Sage

Publications, Inc, Thousand Oaks, California, 4th edition, Dec. 2009.

APPENDIX 1

Interview Guide, Agile Method Tailoring, May 2012

Agile Processes

What agile methods and practices are you using?
Would you describe agile methods as being successful
for you? In what ways?

What challenges have you encountered with agile
methods?

Scaling to Enterprise Projects

Describe any software tools or technologies you use
to support agile methods?

Have you adapted agile methods because of the geo-
graphical distribution of the team?

Have you adapted agile methods because the client
organisation was geographically distributed?

Have you adapted agile methods because of a partic-
ularly large team?

Have you used agile methods in a context with de-
manding regulatory compliance? What adaptations did
you make?

Have you used agile methods in a particularly complex
domain context? What adaptations did you make?
Have you used agile methods on a particularly tech-
nically complex project? What adaptations did you
make?

Have you used agile methods with an especially
complex range of stakeholder relationships?

What adaptations did you make?

Have you adapted agile methods for use on a strate-
gically important enterprise architecture programme?

Future Perspectives

What future trends do you forsee in your use of agile
methods?

If there was one thing you could change about the way
agile methods are used at [Company H] what would
it be?

What advice would you give to improve transitioning
to offshore agile?

Any other comments

Do you have any further comments on agile methods?

About Your Project(s)

Now I want to ask some questions about you and your
project. These details will be kept confidential.

What project are you working on currently? How
many projects?

How is the project team structured (for management
purposes)?

How is the project team organised geographically?
What is the project domain? What is the project
purpose?

How large is the project in terms of team size? In
terms of value?

