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Highlights 

 
 Ciliary induced transport by metachronal beating is discussed. 

 The wavelength is considered as very large for cilia induced MHD flow.  

 Magnetic Reynolds number is sufficiently large to invoke magnetic effects.  

 The physical problem is linearized using transformations.  

 Closed-form expressions are presented for the solutions.  
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ABSTRACT 

Motivated by novel developments in surface-modified, nanoscale, magnetohydrodynamic 

(MHD) biomedical devices, we study theoretically the ciliary induced transport by metachronal 

wave propagation in hydromagnetic flow of copper-water nanofluids through a parallel plate 

channel. Under the physiological constraints, creeping flow is taken into consideration i.e. 

inertial forces are small compared with viscous forces. The metachronal wavelength is also 

considered as very large for cilia induced MHD flow. Magnetic Reynolds number is sufficiently 

large to invoke magnetic induction effects. The physical problem is linearized and exact 

solutions are developed for the resulting boundary value problem. Closed-form expressions are 

presented for the stream function, pressure rise, induced magnetic field function and temperature. 

Mathematica symbolic software is used to compute and illustrate numerical results. The 

influence of physical parameters on velocity profile, pressure gradient and trapping of bolus are 

discussed with the aid of graphs. The present computations are applicable to simulations of flow 

control of in nano-magneto-biomimetic technologies. 

Keywords: Copper-Water Nano Fluid; Metachronal Wave; Magnetohydrodynamics; Magnetic Reynolds 

Number; Biomimetic Magnetic Propulsion.   

1. INTRODUCTION 

Ciliary motion features prominently in numerous biological transport processes. Cilia are slim, 

microscopic, hair-like structures which protrude from the surface of biological vessels, 

mammalian cells etc. Dimensions of a single cilium are typically several micrometers in length 

and less than a single micrometer in width. Important functions associated with cilia include 

surface energy modification, actuation and heat control. In the human body cilia are present in 

the renal system, the visual system (non-motile cilia in photoreceptors of the retina), digestive 
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tract and embryological organs [1,2]. Cilia motility is therefore critical to optimizing many 

fundamental physiological mechanisms including blood circulation, absorption of nutrients, 

respiration and reproduction. It has also been observed that when a group of cilia operate 

together, they generally beat slightly out of phase with respect to the adjacent cilia. This 

synchronization between beating cilia is called metachronal coordination. This leads to the 

formation of a wave called metachronal wave which is recognized to improve the fluid flow due 

to cilia. In humanoid physiques, cilia dynamics contributes significantly to the impulsion of 

numerous organic liquids, including the hydrodynamics in the ductility efferentes, transport of 

ovulatory mucus in the oviduct and the removal of trachea-bronchial mucus in the respiratory 

track. Defects in cilia motility can lead to numerous human diseases. On the other hand, the 

fascinating pattern of ciliary motion has been exploited by bio-engineers in the fabrication of 

artificial cilia for microfluidic applications such as micro-pumps for drug-delivery systems. 

Multiple studies have been performed to investigate the interactions between cilia and flagella 

with their environment, resulting in many complex hydrodynamic simulations. Mathematical 

models of cilia-induced biofluid dynamics are therefore of great relevance in further elucidating 

the complex characteristics intrinsic to many biological systems. 

In recent years there has been an explosion of emerging nano-technologies. Engineering at the 

nano-scale has intruded into many sectors of engineering, medical sciences and even 

environmental systems. These liquids were synthesized originally to enhance thermal 

performance properties of standard working fluids e.g. water, air, oils. They have however been 

increasingly refined and applied to new fields in medicine, pharmacology, haemotology etc. A 

lucid review has been given by Salata [3]. Specific applications pioneered for drug delivery by 

the Langer Group at MIT have been described in Zhang et al. [4]. In parallel with clinical 

developments of nanofluids, significant progress in modelling and simulation has also taken 

place. This constitutes an important compliment to laboratory-based nano-technology. Most 

simulations have deployed one of two formulations for nanofluid transport, namely the Tiwari-

Das model or the Buonjiornio model. The former results in a modified energy transport equation 

for nano-scale effects. The latter introduces a separate nano-particle diffusion equation and 

emphasizes Brownian diffusion and thermophoresis as the principal mechanisms for thermal 

enhancement. In the context of medical flows, Akbar et al. [5] used Buonjiornio’s model to 

investigate analytically the peristaltic hydrodynamics of nanofluids with wall slip effects.  
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Tripathi and Bég [6] also studied peristaltic propulsion of nanofluids and employed a dual 

Grashof number formulation to simulate both thermal and nano-particle species buoyancy effects. 

Mustafa et al. [7] obtained both homotopy and MAPLE8 numerical solutions for the effect of 

wall properties and viscous heating on peristaltic nanofluid flow in a tube. Bég et al. [8] used 

Nakamura finite difference and MAPLE software to study rheological bioconvection in 

nanofluid boundary layer flow in permeable media as a simulation of near-wall transport in 

microbial nano-fuel cells. Further investigations of nanofluids in biomedical applications include 

Anghel and Grumezescu [9] who have demonstrated the excellent bacterial adherence (biofilm) 

inhibiting characteristics of nanofluid oils in the smart design of novel material surfaces for 

prosthetic devices. Other analytical articles considering nanofluid dynamics in medicine include 

Ebaid and Aly [10] for peristaltic flows, Akbar et al. [11] for curved tube peristaltic transport of 

copper nanofluids, Saurin et al. [12] for ionic nanofluid bio-lubrication systems (hip joints), Bég 

et al. [13] for swirling mixing systems in nano-biopolymers and very recently Uddin et al. [14] 

for gyrotactic bioconvection in slip Sakiadis flows of nano-polymer sheet manufacturing 

processes. In the context of cilia hydrodynamics, several studies addressing nanofluid transport 

have also been communicated. Akbar et al. [15] consider carbon nanotube (CNT) nanofluid 

dynamics in a ciliated tube, deriving analytical expressions for velocity, temperature and 

pressure gradient for various nano-materials. Akbar et al. [16] further studied the metachronal 

copper-water nanofluid dynamics in a ciliated tube. Munawar et al. [17] reported the time 

dependent flow and heat transfer over stretching sheet. More recently some more investigations 

[18-22]. 

 

The above studies pertaining to nanofluid flows in medicine have generally neglected 

magnetohydrodynamics (MHD), namely the interaction of nanofluids with electrical and 

magnetic fields. However the functionality and adaptability of magnetic nanofluids [23, 24] has 

been established for over a decade. These particles are designed to interact intelligently with the 

bio-electro-magnetic fields in the human body or to externally applied magnetic fields. The 

magnetic nano-particles in stream react to a magnetic force which may be exploited in 

pharmacological targeting, cell sorting, and magnetite nanoparticles embedded with antibodies 

for tumor-specific MRI treatments and so on. Strong magnetic flux density attracts magnetized 

nano-particles. The in-situ monitoring of their performance can be achieved now via selected 
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area electron diffraction (SAED) and superconducting quantum interference measurement 

devices (SQUIDs). Different organs of the human body can be more receptive to different types 

of magnetic nano-particles e.g. rod-like geometries of magnetite nano-particles as opposed to 

spherical-type nanoparticles have been found to be taken up by Kupffer cells days after vein 

infusion [24]. The clinical confirmation of magnetic nano-particle performance is a very strong 

motivation to engineers and scientists for examining theoretically the dynamics of the interaction 

of these particles with electrically-conducting biological fluid media e.g. blood, plasma etc. 

Magneto-bio-nano-fluid dynamics is therefore emerging as a very rich and rewarding arena for 

investigation. Sheikholeslami [25] used a Lattice-Boltzmann numerical code to investigate 

magnetic nanofluid convection in annular gaps under buoyancy effects. Sheikholeslami  and 

Ellahi [26] further studied the three dimensional natural convection of nanofluids under the 

effects of magnetic field. Some more recent works [27-29] on MHD flow of nanofluids have also 

been reported. Ferdows et al. [30] employed a finite difference algorithm to compute thermal 

radiative flux, wall mass flux and transverse magnetic field effects on hydromagnetic nanofluid 

transport in stretching sheet flows. Although these studies have confirmed the significant 

influence of external magnetic (static) fields on magnetic nano-particle transport in different 

configurations, they have consistently neglected electromagnetic induction phenomena, since 

generally a very small magnetic Reynolds number has been assumed. This invokes magnetic 

induction phenomena. Roberts [31] experimentally confirmed the importance of incorporating 

electromagnetic induction in realistic hemodynamic simulations, presenting one of the first 

investigations of blood magnetohydrodynamics over four decades ago, based on work at the 

King’s College Hospital, London. Much later magnetic induction phenomena were studied in 

bio-metallic polymer flows by Bég et al. [32] who described in some detail the influence of 

magnetic Prandtl number and also the magnetic flux distribution associated with magnetic 

Reynolds number. Further investigations of combined heat transfer and magnetohydrodynamic 

flow with induction effects were communicated by Ghosh et al. [33] with buoyancy present, 

Ghosh et al. [34] for oblique magnetic field and Maxwell displacement current effects and by 

Zueco and Bég [35] for magnetic induction squeeze film swirl hydrodynamics with Batchelor 

number effects. The studies [32-35] however did not specifically address biological applications, 

rather they considered respectively electromagnetic propulsion systems (magneto-gas dynamic 

accelerators) and landing gear systems for astronautical vehicles. However Bhargava et al. [36] 
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did implement the formulations in [32-35] to consider electromagnetic induction phenomena in 

biomagnetic micro-rheological blood flows in tissue using the Rosensweig ferrohydrodynamic 

theory and a variational finite element code. They showed that magnetization effects in 

rheological blood flow can only be properly identified via the inclusion of extra magnetic 

induction equations. More recently Bég et al. [37] have considered surface tension-driven 

magneto-nanofluid dynamics in stretching sheet biopolymers incorporating the full magnetic 

induction formulation and deriving extensive numerical solutions with MAPLE and finite 

element method. Bég et al. [38] have also addressed magnetic induction phenomena in biological 

squeezing hydrodynamics of viscous conducting fluids using Adomian decomposition methods. 

Some other analyses of biophysical magnetic induction flows include the work of Mekheimer 

[39, 40] and the articles of Hayat et al. [41, 42] which all focus on non-Newtonian peristaltic 

propulsion.  

 

Motivated by novel developments in electromagnetic ciliated nanoscale biological devices (with 

applications in biomimetic “surface-controlled” propulsion mechanisms of potential use in 

biochemical engineering and bio-astronautics), in the present work we address the application 

and function of cilia with magnetic induction effects in MHD propulsion of nano-bio-fluids in 

ciliated vessels. The governing equations for two-dimensional incompressible magnetized 

Newtonian nanofluids are transformed via the assumptions of long wave number and low 

Reynold number i.e. viscous-dominated propulsion. The resulting boundary value problem is 

solved analytically and closed-form expressions derived for the hydrodynamic and magnetic 

variables. Extensive colour visualization of flow variables is presented and a parametric study of 

the influence of the key hydrodynamic, magnetic, nanoscale and biological parameters on 

velocity, pressure gradient, pressure rise, streamline 5nd induced magnetic field distributions is 

conducted.  

 

2. CILIARY INDUCED TRANSPORT MODEL 

In this study, we adopt the well-known envelope approach where the ciliary tips are assumed to 

move in elliptical paths, illustrated in Fig. 1 and defined mathematically as follows: 

   
2

, cos ,Y f Z t a a Z ct





 
    

 
                                                                        (1) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7 

 

   0 0

2
, , sinZ g Z Z t Z a Z ct






 
    

 
,                                                                (2) 

where a   denotes the channel half-width,   is a measure of the cilia length,   and  c stand 

for wavelength and wave speed of the metachronal wave,    is a measure of the eccentricity 

of the elliptical motion and 
0Z  is some reference position of the wall particles. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Schematic representation of physical model for MHD flow of nanofluid induced by 

cilia beating through a channel 

 

If the classical no slip condition is applied at the interior tube walls, then the velocities of the 

transporting fluid are essentially those induced by the cilia tips, and these may be formulated 

as follows: 

,
Z g g Z g g

W W
t t Z t t Z

     
    
     

                                                                          (3) 

.
R f f Z f f

U W
t t Z t t Z

     
    
     

                                                                           (4) 

Implementing Eqs.(1)&(2) in Eqs.(3)&(4), the velocity components are readily obtained as: 

   
   

2 2

2 2

cos
,

1 cos

a Z ct
W

a Z ct

 
 

 
 





 


 

                                                                                 (5)                                                  

   
   

2 2

2 2

sin
,

1 cos

ac Z ct
U

a Z ct

 
 

 
 








 

                                                                                  (6) 

y

x
a



Transverse magnetic field 

Effective Stroke 

Metachronal Wave Propagation due to cilia beating 
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where W  and U  be the axial and the radial velocities of the cilia respectively. 

 

3. GOVERNING EQUATIONS 

We consider the magnetohydrodynamic (MHD) flow of incompressible Newtonian Cu-H2O 

nanofluid through a parallel plate channel, as shown in Fig.1. The inner surface of the 

channel is flexible and ciliated with metachronal waves and the flow occurs due to collective 

beating of cilia. An external transverse uniform constant magnetic field  
0H  is applied. This 

generates an induced magnetic field      0, , , , , ,0X YH h X Y t H h X Y t  and the total 

magnetic field     0 1, , , , , ,0X YH h X Y t H H h X Y t   is therefore taken into account. 

The channel walls are considered to be electrically non-conductive and Hall and Maxwell 

displacement currents are neglected. The equations governing the conservation of magnetic 

field, flow and temperature (in the presence of heat source or heat sink) are given, in 

vectorial form, by: 

Maxwell’s electromagnetic field equations: 

0,   ,H E 0                                                                                                           (7) 

,   { ( )},nfH J J E V H                                                                                 (8) 

nf





H
E

t
   .                                                                                                            (9) 

D’Alembert mass conservation (continuity) equation: 

V 0  .                                                                                                                        (10) 

Momentum conservation equations: 

   
21

div .
2

nf nf nf nfp H H H
t

       
          

   

V
V V V  .                (11) 

Energy (heat) Conservation equation: 

  nff
c k T

t


 
    

 

T
V T  .                                                                              (12) 

Combining Eqs . (2)  to (4) we obtain the magnetic induction equation as follows 

  21
,

nf

ft



 


  



H
V H H


                                                                              (13) 

where 1

f
   is the magnetic diffusivity of the nanofluid,  nf   is the effective density of 
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the incompressible nanofluid,   
nf

c   is the heat capacity of the nanofluid,   
p

c   is 

effective heat capacity of the nano particle material,  
nfk   defines effective thermal 

conductivity,  is electrical conductivity of magnetic nanofluid, g  denotes gravitational 

acceleration, nf    is the effective viscosity of the nanofluid, /d dt    gives the material time 

derivative, P  is the pressure and   is viscous dissipation . The frame of reference may be 

transformed from a wave to a static one via the subsequent associations (rendering the 

moving boundary value problem into a static boundary value problem): 

,  ,  ,  .x X ct y Y u U c v V a      .                                                                        (14) 

To further facilitate the analysis, it is judicious to introduce a series of dimensionless 

parameters, which are defined as follows: 

,  ,  ,  ,  , ,
x y u v a b

x y u v
a c c a

 
  

       

2

0

0

,  ,  ,Re ,  ,  ,
f

T Ta p ct h ca
p t h

c a ca T


   


                                                                

0

,  ,  ,m fR ac
H a ca


 

       0
1 ,

fH
S

c




                                                        (15)                                                 

o

f

M H a



 , 

where Rm is the magnetic Reynolds number, Re is the ordinary Reynolds number, S1 is the 

Størmer number (a dimensionless group introduced originally in magnetospheric physics [48] 

and of particular relevance in magnetohydrodynamic wave flows), Q is flow rate,   is 

dimensionless temperature, ψ is stream function, Br is Brinkman (viscous dissipation) 

number, E is electric field strength parameter ( 0

o f

E

cH 
  ) and M is the Hartmann 

(magnetic body force) number. Note M 
2
=ReS1

2
Rm and M

2
 does not arise explicitly 

subsequently. All other parameters are normalized versions of the original parameter. After 

using the above non-dimensional parameters and transformations in Eqs.  (6) to (8) 

employing the assumptions of long wavelength   ,0   the emerging dimensionless 

governing equations   bars usingwithout   for magnetohydrodynamic nanofluid flow in the 

wave frame take the final and much-simplified form: 
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0,
u v

x y

 
 

 
                                                                                                                  (16) 

0,
p

y





                                                                                                                           (17) 

,yy mR E
y

 
   

 

                                                                                                     (18) 

 

2
2 2

2.52 2
0

1

nf r

f

k B

k y y





   
  

   

                                                                                    (19) 

 

3
2

12.5 3

1
Re ,

1
m

p
S R E

x y y

    
   

    

                                                                   (20) 

Differentiating Eq.(20) with respect to y ,we get: 

 

4 2
2

12.5 4 2

1
Re 0,

1
mS R

y y

    
   

   

                                                                      (21) 

The following non-dimensional boundary conditions are imposed: 

2

2
0, 0,  at   0,y

y

 
   


                                                                                        (22)  

 

 
 

2 cos 2
, 1 ,  at   1 cos 2 ,

1 2 cos 2

x
F y h x

y x

 
 

 


       

 
                      (23) 

0   at 0,     0   at ,y y h
y





   


                                                                            (24) 

0   at 0,     0   at .y y h
y


    


                                                              (25) 

The thermo-physical properties for copper-water nanofluids are listed in Table-1.  

Table.1. Thermal properties of base fluid (water) and copper nanoparticles. 

 

 

 

 

 

 

The effective density (nf), effective viscosity (µnf), specific heat of nanofluid ((cp)nf), thermal 

diffusivity of nanofluid (nf) and effective thermal conductivity of nanofluid (knf) are defined 

respectively as: 

Physical Properties Fluid Phase (Water) Cu 

cp(J/kgK) 4179 385 

  (kg/m
3
) 997.1 8933 

k(W/mk) 0.613 400 
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 
 

2.5
1 ,  ,

1

f

nf f s nf


    


   



 

      
 

1 ,  ,
nf

p p p nfnf f s
p nf

k
c c c

c
     


                                                     (26) 

 
 

2 2

2 2

s f f s

nf f

s f f s

k k k k
k k

k k k k





   
 
   
 

.  

4.  ANALYTICAL SOLUTIONS 

Solving Eq.(21) with boundary conditions (22 & 23), the stream function is obtained as: 

  

 
         1 m 1 1 m 1 1 m 1 1 m 1R R R R 2 R R 2 R R

1 1 2

2

1 m 1

3 4

cosh sinh D sinh D cosh D
,

R R

D D .

S y S y S y S y

A A A A
A

x y
S

y

  
 

 

                                                                                                                                         (27) 

Using Eq.(27) in Eq.(20), yields the pressure gradient as:  

    1 m 1 1 m 12 R R 2 R R

1 m 1

5

R R ( ) sinh cosh 1
1.

D

h S h S

A A
S F hL h

P
L

x

   


  


        (28) 

The dimensionless pressure rise, P , is defined as: 

1

0

P
P dx

x

 
   

 
 .                                                                                                             (29) 

Using Eq.(27) in Eq.(18) with the boundary conditions (25), the induced magnetic field 

takes the form 

    

  1 m 1 1 m 1 2 2

10 9 4 m 7 8 1 m

R R R R 1 1
, D sinh D cosh D R D D E R

2 2

S y S y
x y y y y

A A

   
         

   
   

                                                                                                                                 (30)                                                                               

Using Eq.(27) in Eq.(19) with boundary conditions (24), the temperature field is found to be: 

 
2

1 m 1 1 m 11 1 2
16 17 14 15

2 R R 2 R RB D D
, D cosh D Sinh D D y

Kf

S y S yA y
x y

A A


   
        

   
   

             (31) 

where the following definitions apply: 
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    1 m 1 1 m 1R R R R2

1 m 1

1

5

R R ( ) sinh cosh
,

D

h S h S

A A
S F hL h

D
A

  
     (32) 

 

    1 m 1 1 m 1R R R R2

1 m 1

2

5

3

R R ( ) sinh cosh
,

D

0,

h S h S

A A
S F hL h

D
A

D

  




         (33a, b)  

 

    1 m 1 1 m 12 R R 2 R R

1 m 1

4

5

R R ( ) sinh cosh 1
1,

D

h S h S

A A
S F hL h

D L
   

    (34) 

 

1 m 1 1 m 1

5 1 m 1 6

2 R R 2 R R
D R R sinh sinh D ,

h S h S
h S A

A A

   
     

   
   

 (35) 

 

1 m 1 1 m 1

6 1 m 1 1 m 1

2 R R 2 R R
D R R cosh cosh R R ,

h S h S
h S A A h S

A A

   
      

   
   

              (36) 
3/2 3/2 3/2

11 1 2 1 m 1 4 1 1 2
7 3/2 3

1 m 1 1 2

2 D h h R R (D E )(h h )
D ,

2R R (h h )

A S

S

  



          (37) 

 
3/2 3/2 3/2 3

4 1 m 1 4 1 1 2 1 2
8 3/2 3

1 m 1 1 2

2 D R R (D E )(h h )(h h )
D ,

2R R (h h )

A S

S

   



         (38) 

 
3/2 3/2

2 1
9 3/2 3 3/2 3

1 m 1 1 m 1

D D
D ,

R R R R

A A

S S
              (39) 

 
3/2 3/2

1 2
10 3/2 3 3/2 3

1 m 1 m 1

D D
D ,

R R R1 R

A A

S S
              (40) 

 

11 12 13,D D D                (41) 

 

1 1 m 1 2 1 m 1

12 2 2 1 2 1 1 2 1

h R R h R R
D (D h D h )cosh (D h D h )cosh ,

S S

A A

   
      

   
   

 (42) 

 

1 1 m 1 2 1 m 1

13 1 2 2 2 1 1 2 1

h R R h R R
D ( D h D h )sinh (D h D h )sinh ,

S S

A A

   
       

   
   

(43) 

 

  2 2 2 2

1 1 m 1 2 1 1 2 1 1 m 1 20

14 2

f 1 m 1

B 2 R R D D 4D D R R D
D ,

4K R R

A Ah S h S

S

  
        (44) 
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1 1 2 1 2
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B (D D )(D D )
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2K R R
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 
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2 2 2 2

1 1 1 2
16 2 2
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B D B D
D ,

4K R R 4K R R
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S S
              (46) 

 
2 2 2 2

1 1 1 2
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f 1 m 1 f 1 m 1

B D B D
D ,

4K R R 4K R R
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S S
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1 1 m 1 1 m 1

18

2 R R 2 R R
D cosh sinh ,

h S h S
A

A A

    
     

    
    

          (48) 

 

1 1 m 1 1 1 m 12 2 2

19 1 1 2

4 R R 4 R R
D D sinh D cosh D ,

h S h S

A A

   
     

   
   

       (49) 

 

20 19 18D D D .                (50) 

 

5. RESULTS AND DISCUSSION 

Extensive computations have been conducted to determine the influence of magnetic 

Reynolds number (Rm), Reynolds number (Re), Størmer magnetic induction number (S1.), 

hydrodynamic flow rate (Q), Brinkman number (Br), wave amplitude () and electric current 

parameter (E) on the various flow variables. These are depicted in Figs. 2-9.   
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Fig. 2. Velocity profiles for different values of  (a) Magnetic Reynolds number (Rm), (b) 

Reynolds number (Re), (c) Størmer number (S1), (d) Flow rate (Q).  

y


(x

=
1

,y
)

-1 0 1
0

1

2

3

4

 = 0

 = 0.2

S
1

= 1, 2, 3

Re = Br = 1, Q = 3,  = 0.4,  = 0.1,  = 0.5, R
m

= 3

(a)

Cu/water

y


(x

=
1

,y
)

-1 0 1
0

1

2

3

4

5

 = 0

 = 0.2

R
m

= 1, 2, 3

Re = Br = 1, Q = 3,  = 0.4,  = 0.1,  = 0.5, S
1

= 1

(b)

Cu/water

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15 

 

y


(x

=
1

,y
)

-1 0 1

0

2

4

6

8

10

12

14

16

 = 0

 = 0.2

Br = 1, 2, 3

Re = S
1

= 1, Q = 3,  = 0.4,  = 0.1,  = 0.5, R
m

= 3

(c)

Cu/water

y


(x

=
1

,y
)

-1 0 1

0

2

4

6

8

10

12

14

 = 0

 = 0.2

Q = 1, 2, 3

Re = Br = R
m

= 1,  = 0.4,  = 0.1,  = 0.5, S
1

= 1

(d)

Cu/water

 

Fig. 3. Temperature profiles for different values of (a) Størmer number (S1), (b) Magnetic 

Reynolds number (Rm), (c) Brinkman number (Br), (d) Flow rate (Q). 
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Fig.4. Pressure rise for different values of (a) Størmer number (S1), (b) Magnetic Reynolds 

number (Rm), (c) Reynolds number (Re). 
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Fig. 5. Pressure gradient for different values of  (a) Magnetic Reynolds number (Rm), (b) 

Reynolds number (Re), (c) Størmer number (S1), (d) Flow rate (Q). 
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Fig.6.  Variation of induced magnetic field for different values of (a) Magnetic Reynolds 

number (Rm), (b) Størmer number (S1), (c) Electric current (E) . 
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Fig.7. Variation of current density for different values of (a) Magnetic Reynolds number (Rm), 

(b) Størmer number (S1), (c) Flow rate (Q). 
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Fig.8. Streamlines for different values of magnetic Reynolds number (Rm) with S1 = 0.4, Re 

=0.4, α = 0.4, β = 0.3, Q = 0.6, x = 1.  
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Fig.9.  Isotherms for different values of Brinkman number (Br) other parameters are S1 = 0.4, 

Re =0.4, α = 0.4, β = 0.3, Q = 0.6, x = 1, Rm = 2. 
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Figs.2a-d depict the evolution of axial velocity, u, with respectively, (a) magnetic Reynolds 

number (Rm), (b) Reynolds number (Re), (c) Størmer number (S1), (d) flow rate (Q). In these 

figures the other parameters are fixed, namely  and β (parameters which relate to the 

geometric wave definitions in Eq.(23) wherein  quantifies eccentricity of the cilia elliptical 

motion) and  (cilia length parameter). However two cases of   (nano-particle solid volume 

fraction) variation are incorporated (red solid line for  = 0 i.e. pure fluid without nano-

particles and green dashed line for  =0.2 which corresponds to the copper nanofluid case). 

The variation in cilia length in particular is not studied as this has been examined in quite 

some detail in earlier studies e.g. Akbar et al. [15, 16]. It is however worthy of elaborating 

again that cilia spacing and length influences the viscous resistance per cilium and thereby 

the axial flow. The latter is assisted with greater cilia length and this will assist in pressure 

rise in the lower channel half space. The introduction of extra energy to the flow at the lower 

wall however must be compensated for by an extraction at the upper wall, and these features 

are also related to synchronicity of beating cilia. The special case of  =0 implies vanishing 

cilia and absence of a metchronal wave in this scenario the flow is a purely peristaltic 

mechanism due to flexibility of the walls. Only for  >0 is the cilia effect invoked and this 

indeed is the case considered throughout the present analysis ( =0.5 in all Figs.2-9). Fig.2a 

reveals that with increasing magnetic Reynolds number, there is a depletion in velocity 

magnitudes across the channel width. At y = -1.5 (lower channel plate) and again at y = 0.5 

(upper channel plate) velocity vanishes in consistency with the no slip conditions imposed. 

The strongly parabolic velocity distributions in the core region of the flow which are 

observed at lower Rm values are flattened significantly with increasing Rm values. Magnetic 

Reynolds number is the ratio of the fluid flux to the magnetic diffusivity. It characterizes the 

diffusion of magnetic field along streamlines and is analogous to the classical Reynolds 

number in viscous hydrodynamics, the latter controlling the vorticity diffusion along the 

streamlines. As such the influence of the fluid flow on the magnetic field is embodied in 

magnetic Reynolds number. Low Rm values (<<1) the magnetic field will not be markedly 

distorted by the flow. However, as in the present study, for Rm values ( 1), the 

hydrodynamics influences considerably the induced magnetic field distribution which is 

tangibly distorted. However there is also a reciprocating influence on the flow field. Greater 
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Rm values lead to a flow deceleration i.e. momentum diffusion is inhibited.  However this 

effect is restricted only to the core (plug) flow region and does not apply near the vicinity of 

the channel walls. At the latter the destruction in momentum in the core flow is compensated 

for with a boost in momentum at the external periphery of the flow field (near both channel 

plates) resulting in a flow acceleration here with higher magnetic Reynolds numbers. With 

presence of copper nano-particles (i.e. for  = 0.2) the velocities are generally significantly 

greater in the core region compared with pure fluid (i.e. for  = 0). This would imply that 

flow acceleration is achieved with nano-particle presence. However in the near-plate zones, 

the opposite effect is observed with flow deceleration induced with nano-particles. Fig.2b 

shows that increasing ordinary Reynolds number (Re) there is in fact a deceleration in the 

core-flow (a strong plateau effect is induced in velocity profiles). However at the near-wall 

zones, the greater inertial forces corresponding to higher Reynolds number (and reduced 

viscous forces) manifest in a noticeable acceleration in the axial flow. As noted earlier, 

greater velocities are achieved with nano-particle presence in the core flow whereas lower 

velocities are computed in the zones near the plates. An increase in Størmer number (S1), as 

illustrated in Fig.2c, generally depresses core region velocity magnitudes. Whereas the 

Hartmann number (M) is conventionally employed for static magnetic field phenomena to 

simulate Lorentzian magnetic drag effects, the Størmer number (S1), is more appropriate for 

flow regimes with moving boundaries and wave effects. The definition of Størmer number i.e. 



 fo

c

H
S 1  scales as the inverse of wave speed of the metachronal wave (c). Hartmann 

number is however defined as aHM o

f

1  and therefore while it scales with nanofluid 

electrical conductivity, applied magnetic field, base fluid viscosity and channel half-width, it 

does not scale with metachronal wave speed (c).  Therefore via the definition given earlier, 

viz, M 
2
= ReS1

2
Rm, here we opt to examine the individual effects of the component 

dimensionless numbers, ReS1
2
Rm, rather than the global effect via the Hartmann number. We 

further note that axial induced magnetic field component, hx, and current density component, 

Jz, studied in later graphs, can also be explicitly defined with the relations given in Eq.(15). 

Effectively a flow deceleration corresponds to greater Størmer number (S1) in the core zone 

(bulk flow) of the channel, whereas the converse effect is generated near the plates. The 
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greater applied magnetic field corresponding to larger Størmer number contributes to the 

impedance effect in the core flow (retardation). A re-distribution of momentum in the regime 

occurs. Momentum lost in the core region must be compensated elsewhere in accordance 

with momentum conservation, and this leads to the acceleration of the axial flow near the 

plates at higher Størmer numbers. In the core zone nano-particle presence results in greater 

velocities with the contrary apparent again near the plates. With increasing flow rate (Fig.4d) 

there is a significant boost in the axial velocity across the entire channel. The profiles are 

always parabolic, unlike the other distributions in Figs.2a-c (which are plateau-like in the 

core flow zone). There is a slight acceleration in the flow for the nanofluid case, compared 

with the pure fluid case.  

Figs.3a-d illustrate the temperature distribution,, with variation in (a) Størmer number (S1), 

(b) magnetic Reynolds number (Rm), (c) Brinkman number (Br) and finally (d) flow rate (Q).  

Again we consider both nanofluid and pure fluid cases via the variation in nano-particle solid 

fraction (). An increase in Størmer number (S1) as seen in Fig. 3a, generates a strong 

decrease in temperature i.e. cools the channel nanofluid flow regime in the core zone. 

However a slight increase is observed near both plates. With magnetic induction present and 

with larger magnetic Reynolds numbers, the effect of heating with greater magnetic field 

(traditionally associated with the dissipation in supplementary work done to drag fluid 

against the action of magnetic field, as thermal energy i.e. heat), is reversed, and a cooling 

effect observed. Nanofluid (copper-water) however attains significantly greater temperatures 

than the pure fluid (zero solid volume fraction). The depressive nature of magnetic field, in 

the presence of magnetic induction, is further confirmed with Fig.3b, where we find that 

greater magnetic Reynolds number markedly lowers the temperature across the channel. 

Again nanofluids supersede pure fluids in achieving substantially greater temperatures, 

despite the presence of magnetic induction effects. Fig.3c shows that an elevation in the 

viscous heating parameter i.e. Brinkman number (Br), significantly raises temperature in the 

regime, and again greater temperatures correspond to the copper-water nanofluid case 

(=0.2) compared with the pure fluid case (=0). Brinkman number is a quantification of the 

relative influence of viscous dissipation to the conductive heat transfer in thermofluid 

mechanics. For Br =1 both mechanisms contribute equally. When Br > 1, viscous dissipation 

dominates thermal conduction, as elaborated in Bejan [43]. An increase in Brinkman number 
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effectively energizes the fluid and boosts thermal energy magnitudes associated with the 

dissipation of kinetic energy in the nanofluid, and this results in a clear enhancement in 

temperatures. These results agree with many other studies on dissipative flows e.g. Gorla et 

al. [44]. With increasing flow rate, Q, however temperatures are strongly reduced. The 

greater momentum flux associated with higher flow rates implies that momentum diffusion 

greatly exceeds thermal diffusion in the channel flow. This serves to accelerate the flow but 

to simultaneously cool it and thereby decrease temperatures. We further note that despite the 

negative influence of flow rate on temperatures, the presence of nano-particles is consistently 

to elevate temperatures relative to pure fluids. The combined effect of viscous heating (Br = 

3) and deployment of copper-water nanofluids (=0.2) is overall found to achieve the highest 

thermal performance in the flow regime studied. 

Figs. 4a-c present the profiles for pressure rise (P) with variation in a) Størmer number (S1), 

b) magnetic Reynolds number (Rm) and (c) Reynolds number (Re). Increasing Størmer 

number (S1) as plotted in Fig.4a, generates a strong elevation in pressure rise for negative 

flow rates (flow in the reverse axial direction) whereas it results in a significant reduction in 

pressure rise generally for positive flow rates. The former where P >0 corresponds to the 

so-called pumping region, and the latter wherein P < 0 is associated with the co-pumping 

region. In the former region, nanofluids are found to enhance pressure rise whereas in the 

latter region they are found to depress pressure rise. There is therefore an intricate interaction 

between the nature of pumping in the regime and the influence of nano-particles in the 

conducting nanofluid. In all cases, the P profiles are observed to follow a linear with flow 

rate (Q). Fig.4b shows that increasing magnetic Reynolds number is observed, similarly to 

Stormer number, to enhance pressure rise for negative flow rates and to depress them with 

positive flow rates. The inverse relationship of P with Q is again observed. Fig.4c 

demonstrates that with increasing Reynolds number, as with magnetic Reynolds number, the 

pressure rise is accentuated for negative flow rate and reduced for positive flow rate. Again 

there is a linear decay in pressure rise with flow rate. In all three plots, the highest pressure 

rise computed corresponds to the copper nanofluid case at the maximum negative flow rate. 

Nano-particles are observed to enhance pressure rise only for negative flow rates; the 

converse is the case for positive flow rates. 
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Figs.5a-c depict the axial pressure gradient (dP/dx) profiles with axial coordinate for a) 

magnetic Reynolds number (Rm), (b) Reynolds number (Re), c) Størmer number (S1) and 

flow rate (Q), again for both copper nanofluid and pure fluid cases. The periodic nature of the 

flow due to metchronal wave propagation is evident from the oscillatory distributions. There 

is a consistent elevation in peak magnitudes of pressure gradient with greater magnetic 

Reynolds number (Rm), as shown in Fig.5a. Similarly increasing Reynolds number, Re, also 

elevates the pressure gradient magnitudes. However the magnitudes are significantly greater 

(an order of magnitude larger) in Fig.5a as compared with Fig.5b. With greater Stormer 

number, S1, a large enhancement in pressure gradient values is also witnessed and these are 

of a similar magnitude to those computed with variation in magnetic Reynolds number in 

Fig.5a. Considerable elevation in pressure gradient also accompanies a rise in flow rate, as 

seen in Fig.5b, although the magnitudes are somewhat lower than those corresponding to 

Figs.5a and c, but markedly greater than those in Fig.5b. Effectively greater pressure 

gradients are generated in the flow with increase in the magnetohydrodynamic parameters 

(Rm, S1) compared with the hydrodynamic parameters (Re, Q). This implies that in practical 

nano-biomedical devices, a stronger effect can be achieved via magnetic field manipulation 

compared with inertial effects associated with the pumping flow itself. The presence of nano-

particles is found to have a consistently assistive effect on pressure gradient with variation in 

magnetic Reynolds, Stormer and flow rate numbers (Figs.5a-c); however in Fig.5b, where 

Reynolds number is varied, the copper nanofluid generally only boosts pressure gradient in 

the vicinity of the peaks of the periodic profiles whereas it is found to deplete pressure 

gradient in the trough zones. 

Figs.6a-c illustrate the response in axial induced magnetic field (hx) with spanwise channel 

coordinate (y), for variation in respectively, (a) magnetic Reynolds number (Rm). (b) Størmer 

number (S1) and finally (c) electric current (field strength) parameter (E). In all three graphs, 

in one half region, the induced magnetic field is in one direction whereas in the other half, it 

is found to be in the opposite direction. This trend is known to be characteristic of magnetic 

induction field, as discussed Ghosh et al.  [33]. Indeed it has earlier also been reported by 

Mekheimer [38] and Hayat et al. [41] although these later studies do not physically interpret 

the results. Positive magnitudes of induced magnetic field are computed with negative y 

values (lower channel half space) and negative values of induced magnetic field with positive 
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y values (upper channel half space). In accordance with non-conducting plate boundaries, 

magnetic induction is found to vanish at y =  1. As magnetic Reynolds number increases 

(Fig.6a), there is a distinct enhancement in positive magnetic induction (hx) in the lower 

channel half space, whereas a strong depression is generated for the upper channel half space. 

The increase in Rm implies, with fixed fluid viscosity, channel half-width and metachronal 

wave velocity (i.e. µf, a, c), that electrical conductivity of the nanofluid is elevated. This 

boosts the magnetic induction effect and results in greater hx magnitudes, whether positive or 

negative. Although Fig.6b demonstrates a similar pattern to that in Fig.6a, the effect of 

increasing Stormer number is found to be the opposite to that of increasing magnetic 

Reynolds number. Larger values of Stormer number significantly depress the axial induced 

magnetic field component, hx, in the lower channel half space, whereas they elevate hx values 

in the upper channel half space. In both Figs.6a, b, the presence of nano-particles (i.e. copper 

nanofluid case with  = 0.2) is found to decrease induced magnetic field, hx, in the lower 

channel half-space, but to enhance hx values in the upper channel half-space. An increase in 

electrical field strength parameter, E, in Fig.6c evidently depressed significantly the axial 

induced magnetic field component, hx, in the lower channel half-space whereas it enhances 

magnitudes in the upper channel half-space. The profiles also deviate substantially from 

Figs.6a,b, in that the hx values are equal and opposite at the two channel plates i.e. hx=-1 at y 

= -1 whereas hx = +1 at y =+1. Although the opposite trends for hx are computed in the two 

channel half-spaces, hx magnitudes do not vanish at the plates with variation in electrical 

field strength. Evidently therefore the electrical field present, which is at right angles to the 

applied magnetic field (mutually orthogonal), generates a different response in the induced 

magnetic field distributions compared with parameters associated with the applied magnetic 

field, E
focH

E


0 , and scales inversely with applied magnetic field and is directly 

proportional to electrical field, E0. Conversely the magnetic and Stormer numbers by 

definition in Eq.(15) are directly proportional to applied magnetic field, Ho. The main effect 

of increasing electrical field parameter will be to boost the current density, Jz, an observation. 

Once again the axial induced magnetic field magnitudes are greater for the copper nanofluid 

compared with pure fluid in the lower channel half space with the reverse trend observed in 

the upper channel half-space. 
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Figs. 7a-c present the current density distributions (Jz) with (a) magnetic Reynolds number 

(Rm), (b) Størmer number (S1) and (c) flow rate (Q). The profiles are notably distinct in 

appearance from the axial induced magnetic field profiles of Figs.6a-c. The current density 

profiles are all parabolic across the entire channel space, with peak values arising only at the 

channel centre, the maximum simultaneous distance from either plate. With increasing 

magnetic Reynolds number, Jz values are weakly increased (Fig.7a), whereas with greater 

Stormer number (Fig.7b) magnitudes are more strongly depressed. In Fig.7c with increasing 

flow rate, a very strong reduction is computed in current density magnitudes. In Figs.7b, c 

both positive and negative values of current density are observed whereas generally only 

positive values are computed in Fig.7a. In all cases the copper nanofluid ( = 0.2) achieves 

greater magnitudes of current density than the pure fluid ( = 0), demonstrating that nano-

particles enhance current density, albeit relatively weakly.  

Figs.8a-c depict the hydrodynamic streamlines with different magnetic Reynolds numbers 

(Rm). These graphs are included to illustrate the trapping phenomenon in which an internally 

circulating bolus of the fluid is formed by closed streamlines. The trapped bolus is displaced 

and pushed ahead along the channel in the axial direction with the speed of the metchronal 

wave. Bolus magnitude is found to be slightly enhanced with greater magnetic Reynolds 

number, with all other parameters invariant. Progressively greater distortion of streamlines is 

generated in the central zones of the plots with higher values of electrical conductivity, to 

which magnetic Reynolds number is directly proportional. This encourages bolus growth 

rather than mitigating it. This trend is found to be in agreement with for example Hayat et al. 

[41] who also considered magnetic induction effects. where electromagnetic induction and 

electrical current density effects are neglected. The inclusion of such effects therefore 

significantly modifies the streamline distributions. 

Fig. 9 presents isotherm plots across the channel with variation in the dissipation parameter, 

Brinkman number (Br). As Br is increased a central zone of thermal bolus emerges. The 

isotherms become less constricted above and below this thermal bolus and this results from 

the increasingly more intense conversion of kinetic energy in the flow to thermal energy via 

viscous heating. This will also have an impact on streamline distribution and inevitably there 

will be an interaction with magnetic induction and electrical current density fields both for 

copper water nanofluids and pure fluids. 
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y u(x,y) Present 

results ( 0.00)   

Refs. [16] Ref. [33] Ref. [42] in absence 

of Heat and Mass 

Transfer 

-0.8   -1.0000   -1.0000   -1.0000   -1.0000 

-0.6 -0.1008 -0.1006 -0.1008 -0.1008 

-0.4 -0.2352 -0.2354 -0.2353 -0.2355 

-0.2 -0.3421 -0.3422 -0.3422 -0.3426 

0 -0.4213 -0.4213 -0.4213 -0.4213 

0.2 -0.3421 -0.3422 -0.3422 -0.3426 

0.4 -0.2352 -0.2354 -0.2353 -0.2355 

0.6 -0.1008 -0.1006 -0.1008 -0.1008 

0.8   -1.0000   -1.0000   -1.0000   -1.0000 

 

Table 2: Comparison of present results with existing literature for S1 = 0.4, Re =0.4, α = 0.4, 

β = 0.3, Q = 0.6, x = 1, Rm = 2. 

.  

 

6. CONCLUSIONS 

In the present study, we have investigated the ciliary-induced magnetohydrodynamic copper-

water nanofluid dissipative flow and heat transfer in a two-dimensional channel with 

magnetic induction and electrical field effects. The non-linear equations governing the 

conservation of mass, momentum, magnetic field and electrical field have been reduced to a 

system of coupled linearized partial differential equations via suitable coordinate and 

variable transformations, under the classical low Reynolds number (viscous-dominated) 

approximation. An appropriate elliptical path geometric model has been implemented for the 

cilia behavior. Magnetic Reynolds number has also been taken to be sufficiently high to 

generate magnetic induction effects. Numerical evaluation of the closed-form solutions for 

stream function, pressure rise, induced magnetic field function and temperature, has been 

conducted carefully via Mathematica symbolic software. The present study has shown that: 

 Increasing Brinkman number (viscous dissipation parameter) elevates temperature in the 

regime, and also assists in the generation of closed loops i.e. thermal boluses in the 

isotherm distributions. 
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 The presence of nano-particles i.e. implementation of copper-water nanofluid always 

achieves higher temperatures than with the pure fluid.  

 Increasing magnetic Reynolds number encourages the growth of bolus in the streamline 

distributions and furthermore weakly reduces current density magnitudes whereas it 

increases axial pressure gradient magnitudes. Furthermore greater magnetic Reynolds 

number elevates axial induced magnetic field in the lower channel half space, whereas it 

reduces it in upper channel half space. Additionally greater magnetic Reynolds number 

increases pressure rise for negative flow rates and reduces it for positive flow rates. Also 

temperature is reduced with greater magnetic Reynolds number and flow deceleration in 

the channel core (plug) flow region caused. However at the channel plates (boundaries) 

the flow is weakly accelerated with greater magnetic Reynolds numbers.  

 Increasing Størmer magnetohydrodynamic number is found to reduce substantially the 

channel core region velocity magnitudes and to depress temperature in the core zone, 

although there is a weak increase in temperatures near both plates. Larger Stormer 

numbers (as with magnetic Reynolds number) tend to elevate pressure rise for negative 

flow rates and to reduce them with positive flow rates. Increasing Stormer number 

however has the opposite effect to magnetic Reynolds number on the axial induced 

magnetic field component, since it suppresses magnitudes in the lower channel half space, 

whereas it enhances values in the upper channel half space. 

 Increasing electrical field parameter enhances the current density, as does an increase in 

magnetic Reynolds number. The copper nanofluid also achieves higher electrical current 

density values than the pure fluid. However greater Stormer numbers significantly 

suppress the electrical current density. 

 Increasing flow rate is found to enhance pressure gradient and to depress temperatures. 

 Increasing Reynolds number, enhances pressure gradient magnitudes and increases 

pressure rise for negative flow rate and reduces it for positive flow rate. The core flow 

region is decelerated with increasing Reynolds number whereas near the channel plates, a 

strong acceleration is generated in the axial flow. 
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The present computations are applicable to simulations of flow control in nano-magneto-

biomimetic technologies. They have however neglected Hall current effects and these will be 

addressed in the near future. 
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