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ABSTRACT 

The present article studies theoretically the electrokinetic pumping of nanofluids with heat and 

mass transfer in a micro-channel under peristaltic waves, a topic of some interest in medical 

nano-scale electro-osmotic devices. The microchannel walls are deformable and transmit periodic 

waves. The Chakraborty-Roy nanofluid electrokinetic formulation is adopted in which Joule 

heating effects are incorporated. Soret and Dufour cross-diffusion effects are also considered. 

Under low Reynolds number (negligible inertial effects), long wavelength and Debye 

linearization approximations, the governing partial differential equations for mass, momentum, 

energy and solute concentration conservation are derived with appropriate boundary conditions at 

the micro-channel walls. The merging model features a number of important thermo-physical, 

electrical and nanoscale parameter, namely thermal and solutal Grashof numbers, the Helmholtz-

Smoluchowski velocity (maximum electro-osmotic velocity) and Joule heating to surface heat 

flux ratio. Closed-form solutions are derived for the solute concentration, temperature, axial 

velocity, averaged volumetric flow rate, pressure difference across one wavelength, and stream 

function distribution in the wave frame. Additionally expressions are presented for the surface 

shear stress function at the wall (skin friction coefficient), wall heat transfer rate (Nusselt 

number) and wall solute mass transfer rate (Sherwood number). The influence of selected 

parameters on these flow variables is studied with the aid of graphs. Bolus formation is also 

visualized and analyzed in detail.  

 

Keywords: Electrokinetic nanofluids; heat and mass transfer; peristalsis; Joule heating; 

nanoscale pumps. 

 

1. INTRODUCTION 

Nanoscale engineering has emerged as a substantial development in the 21st century. 

Such systems can achieve performance that is not possible at the macroscale. 

Nanotechnology includes nanomaterial developments and an important sub-category in 
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this regard is nanofluids. Introduced by Choi [1] these fluids achieve higher thermal 

conductivities and convective heat transfer coefficients as compared with conventional 

base fluids (e.g. air and water). Nanofluids are synthesized by suspending nanoparticles 

which may be metallic/non-metallic and are generically 1-100 nanometers in dimension, 

in base fluids and have been deployed in an extensive range of technologies many of 

which have been reviewed lucidly by Taylor et al. [2]. These include lubrication systems 

where heat can be dissipated more effectively with nanofluids [3], heat exchangers in 

solar power plants [4], anti-bacterial agents in biotechnological sterlization [5], nano-

bioconvection microbial fuel cells (MFCs) using combined silver nanoparticles and 

gyrotactic micro-organisms [6], hyperthermia medications [7]  and nano-coated drug 

delivery systems [8]. Although for the first decade most research in nanofluids was 

focused on laboratory and property-based experimentation, in recent years mathematical 

modelling has emerged as an important new area. Numerous geometrical systems have 

been explored and both steady and unsteady flows analyzed. Yadav et al. [9] investigated 

the Rayleigh-Benard problem for nanofluids, using a linear hydrodynamic stability 

approach. Basir et al. [10] examined the enrobing hydrodynamics, heat and mass transfer 

in transient axisymmetric boundary layer flow of bioconvective nanofluids from an 

extending cylindrical body using Maple software. Zaimi et al. [11] used a homotopy 

method to study the stagnation flow of nanofluids with bioconvection from a contracting 

or extending two-dimensional sheet. These studies all confirmed the marked influence of 

nano-particles on Nusselt and Sherwood numbers.   

In parallel with the above developments, modern microfluidic systems are also being 

continuously investigated. In such systems electro-kinetics (or electro-osmosis) plays a 

significant role. Although first identified over two centuries ago by Reuss [12], electro-

osmosis has more recently infiltrated into many sophisticated microscale designs 

including bio-chip systems for drug delivery, biomedical diagnostics and bio-micro-

electro-mechanical-systems (bioMEMS). Electrokinetics involves the dynamics of 

electrolytes (ionic solutions) and is generated by the imposition of an external electric 

field in an electrolyte-filled conduit with electric double layers on its wetted surfaces. The 

microscopic (or smaller) scale of bioMEMS amplifies the effect of the Coulomb 

electrical forces and this in turn greatly modifies micro-channel transport processes. The 
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multi-physical nature of electrokinetic phenomena also makes this area particularly 

attractive to interdisciplinary engineering sciences since mathematical models must 

describe accurately the interplay between electrical, viscous and other body forces 

(buoyancy, magnetic, rotational) and complex geometric features. Electro-osmotic flow 

provides enhanced flow control at lower volumetric flow rates compared with 

conventional pressure-driven flows. Interesting developments in electrokinetic 

engineering sciences include separation of emulsions in microchannel-membrane 

systems, valve designs for pharmacological delivery [13] in which the flow rate is 

regulated by electrical current  passing through the membrane, skin iontophoresis systems 

[14], soap film manipulation [15] with electrohydrodynamic induction and electro-kinetic 

DNA concentrators [16]. Mathematical studies of electrokinetic transport have featured 

many analytical and also numerical methods. Dejam et al. [17] studied analytically the 

shear dispersion a neutral non-reacting chemical species within a channel with porous 

walls, under the dual effects of pressure-driven and electro-osmotic flow, and computed 

the dispersion coefficient as a function of the Debye–Hückel parameter, Poiseuille 

contribution fraction, and Péclet number. Moreau et al. [18] explored both 

computationally and experimentally the use of electro-osmosis in removing contaminants 

in geomaterials. Jian et al. [19] employed a Laplace transform method to derive closed-

form solutions for time-dependent electro-kinetic viscoelastic flow in a micro-channel, 

describing the influence of viscosity ratio, density ratio, dielectric constant ratio, 

relaxation time, interface charge density jump, and interface zeta potential difference on 

velocity evolution. Liang et al. [20] used a computational flow code to investigate the 

electro-osmotic flow (EOF) perturbations generated close to a membrane surface within 

an unobstructed empty membrane channel aimed at elevating wall shear and thereby 

delaying the onset of fouling for nanofiltration and reverse osmosis processes. Iverson et 

al. [21] studied analytically the influence of duct aspect ratio and volumetric heat 

generation and Peclet number on heat transfer in electro-osmotic rectangular ducts with 

isothermal boundary conditions and vanishing Debye layer thickness. They showed that 

fully developed Nusselt number is reduced from a maximum for the parallel plate 

configuration to a minimum for the square duct scenario and furthermore that electro-

kinetically generated flow achieves significantly longer thermal entry zones compared 
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with pressure-driven flow. A similar study has been communicated by Broderick et al. 

[22] but for larger values of electrical double layer thickness. Schit et al. [23] considered 

the electro-osmotic flow and heat transfer of power-law bio-fluids in a micro-channel 

with Joule electro-thermal heating effects, with thermal radiation and velocity slip 

condition. They considered the scenario wherein the channel depth is substantially greater 

than the thickness of electrical double layer comprising both the Stern and diffuse layers, 

and showed that increasing Joule heating parameter depresses Nusselt number for both 

pseudo-plastic and dilatant fluids. 

An important possible development in micro-systems is the combination of nanofluids 

and electro-osmotic flow. The important potential significance of such systems i.e. nano-

electro-kinetic devices has been described by Murshed et al. [24].  Dutta [25] has 

investigated the nanofluidic separation of non-neutral analytes using a pressure-gradient 

in combination with a counteracting electroosmotic flow field. Safarna et al. [26] studied 

the influence of an external electrical field on iron-oxide-water nanofluid flow and heat 

transfer in micro-channels using the finite volume method and the Maxwell-Garnetts 

(MG) and Brinkman models for thermal conductivity and viscosity. They found that 

Nusselt number is strongly influenced by Reynolds number and applied voltage. Choi et 

al. [27] examined the electrokinetic flow of charged nanoparticles in microfluidic 

aqueous NaCl solution Couette flow, noting for the first time, a strong deviation of the 

velocity profile from the classical linear Couette flow case. Rokni et al. [28] used 

numerical shooting quadrature to study electro-kinetic and magnetohydrodynamic body 

force effects on rotating nanofluid flows. They found that there is a strong elevation in 

Nusselt number with magnetic and electrical field parameters and also Reynolds number 

and a substantial depression with increasing rotation effect.  

Peristaltic pumping is a biological process which efficiently transfers fluids via flexible 

conduits under progressive waves of contraction or expansion from a zone of lower 

pressure to higher pressure [29, 30]. Peristalsis in living organisms is an involuntary 

mechanism and features in numerous aspects of physiology including intestinal 

dynamics, swallowing, blood flow, embryology etc. However in biomimetic engineered 

designs, actuators can be deployed to achieve this transport. When combined with 

electro-osmotics and/or magnetohydrodynamics, very elegant and versatile microscale 
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and nanoscale pumps can be designed, as elucidated by Chang and Yossifon [31], 

Takamura et al. [32] and Reichmuth et al. [33]. These designs maximize the use of 

external electrical fields for microfluidic manipulation and enhanced directional control 

and also capitalize on valveless miniaturized configurations for eliminating tribological 

wear and leakage.  Modern progress in hyperthermia, cryosurgery and laser diagnosis 

systems have also made heat transfer in electro-osmotic peristaltic pumps of great interest 

to engineers. Many sophisticated systems in this regard have been manufactured and 

tested in medicine and excellent works reporting such developments include Berg et al. 

[34] (two-stage peristaltic micropumps). Analysis of such systems was conducted for 

thermo-magnetic peristaltic pumps by Tripathi and Bég [35]. Other significant 

investigations include Mao et al. [36] who reported on the synthesis of a dielectric 

elastomeric peristaltic micro-pump and Loumes [37] who reported in a novel peristaltic 

multi-stage impedance pump utilizing a periodic asymmetrical compression on a segment 

of the transport vessel (elastic tube). Studies of peristaltic nanofluid pumping have also 

emerged in recent years, inspired by breakthroughs in nanoscale fabrication techniques 

and the desire to enhance thermal as well as hydrodynamic performance. Hayat et al. [38] 

considered double-diffusive peristaltic convection in tubes with wall slip and magnetic 

Joule effects. Abbasi et al. [39] studied rheological nanofluid pumping via peristalsis. 

Bég and Tripathi [40] considered dual thermal and species buoyancy effects in 

axisymmetric peristaltic nanofluid transport. Prasad et al. [41] derived analytical 

solutions for velocity profile, pressure drop, time averaged flux and frictional force in 

peristaltic flow through inclined tubes, for a range of wave forms, observing that a much 

larger bolus (trapped fluid zone) is achieved for single sinusoidal waves as compared 

with multi sinusoidal waves.  Further studies of peristaltic nanofluid dynamics include 

Dhanapal et al. [42] who also studied rotational effects and Abbasi et al. [43] who 

analysed peristaltic flows of water-based silver nanoparticles in a symmetric channel with 

convective boundary conditions, heat generation and viscous dissipation effects, 

observing increased wall heat transfer rates are achieved with higher nanoparticle volume 

fraction is also reported. Interesting outcomes of this study are summarized. Electro-

osmotic peristaltic flows of Newtonian fluids have also been studied. Chakraborty [44] 

considered the influence of axial electric field on microfluidic transport in peristaltic 
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microtubes, showing that careful prescription of peristalsis wave characteristics and axial 

electrokinetic body force may successfully boost the time-averaged flow rate in such 

systems. Tripathi et al. [45] derived analytical solutions for unsteady electro-osmotic 

peristaltic transport in a microchannel subjected to transverse magnetic field and axial 

electrical field, using lubrication and Debye approximations. They showed that stronger 

magnetic field discourages bolus and decelerates axial flow and flow rate but elevates 

pressure difference at low time values. They also found that lower Debye electrical length 

increases time-averaged flow rate but decelerates axial flow. Bandopadhyay et al. [46] 

have also presented a very recent analysis of electrokinetic peristaltic transport in 

microfluidic channels, considering different channel materials (polyvinyl chloride and 

Teflon) and presented closed-form expressions for the pressure drop and volumetric flow 

rate and demonstrating the improved electro-osmotic performance with simultaneous 

peristalsis and axial electric fields for aqueous solutions. 

To the authors’ knowledge the combined electro-osmotic peristaltic flow of nanofluids 

however, have received very little attention, despite many substantial applications in 

nanofluidic and microfluidic pumps. In the present investigation we study analytically the 

influence of Joule electro-thermal heating on unsteady electrokinetic peristaltic transport 

of nanofluids in a micro-channel. Soret and Dufour cross-diffusion effects are also 

considered and both thermal and species buoyancy effects included. Joule heating effects 

which arise due to the presence of electrical potential gradient and electrical current, have 

been considered earlier by Bosse et al. [47] and Petersen et al. [48] for Newtonian fluids 

and Sadeghi et al. [49] for non-Newtonian fluids. These studies have shown that Nusselt 

number at the micro-channel walls is strongly modified by Joule heating. The present 

study is motivated by exploring the modification (and thermal improvement) of 

micro/nanoscale devices in which electro-osmotic flows are used via both utilisation of 

peristaltic wave motion of the transmitting walls and also deployment of nanofluids as 

the working electrolyte medium. The work is therefore an extension of the earlier 

investigation by Chakraborty and Roy [50] which considered rigid walls. Analytical 

solutions to the non-dimensional, linearized boundary value problem are derived. The 

influence of Joule heating to wall heat flux ratio and Helmholtz-Smoluchowski velocity 
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(maximum electro-osmotic velocity) on fluid, heat and mass transfer characteristics are 

presented graphically and interpreted at length.  

 

2. MATHEMATICAL FORMULATION AND ANALYTICAL SOLUTIONS 

The geometric of an electro-osmotic nanofluid peristaltic micro-channel is depicted in 

Fig.1. The geometric relation for the peristaltic waves imposed on the micro-channel 

walls is as follows: 

2( , ) cos ( )h x t a x ct





   ,                                                       (1) 

where , , , , ,h x t a   and c  denote the transverse displacement of the walls, axial 

coordinate, time,  half width of the channel, amplitude of the wave, wavelength and wave 

velocity respectively. The temperature and solute concentration at the center line and the 

walls of the microfluidics channel are given as: 0 0, ,T T C C    (at 0y  ), 

1 1, ,T T C C  (at y h ).                                                                     

 

 

 

    

 

 

Figure 1. Schematic diagram of electroosmosis–modulated peristaltic transport of 

nanofluids through the microfluidics channels subjected to constant temperature and 

solute concentration ( 1 1,T T C C  ) at the top and bottom channel walls and 

0 0,T T C C   at center of channel. An external electric field ( xE ) is applied to alter the 

flow.  
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We consider the viscous, incompressible, time-dependent, electro-osmosis-modulated 

peristaltic transport of nanofluids through a finite micro-channel. To mathematically 

model the physical problem, the continuity, momentum, energy and solute concentration 

equations are formulated in vector notation as:  

 

. 0, q                   (2) 

2( . ) ,ef ef g e xp E
t

  
 

        
 

q
q q q f                          (3) 

2 2 2( ) ( . )p ef ef t c ef ef x

T
c T k T D C E

t
   

 
        

 
q ,              (4) 

2 2( . ) s ct

C
C D C D T

t


     


q ,                 (5) 

where, ( , )u vq  is velocity vector, i j
x y

 
  

 
 and 

2 2
2

2 2
.

x y

 
   

 
are 

Hamilton operator and Laplace operator respectively,  0 0( ) ( )g ef t cg T T C C     f . 

And  , p , , e , xE , pc ,T ,C , k , , , sD , t cD , ctD  are the density, pressure, viscosity, 

electrical charge density, applied electrical field, specific heat at constant pressure, 

temperature, solute concentration, thermal conductivity, electrical conductivity, viscous 

dissipation function, solutal diffusivity of the electrolyte Dufour diffusivity and Soret 

diffusivity where the subscript ( ef ) refers to the effective property nanofluids.  

The effective density of nanofluids is defined by: 

 1ef f s      .                                                                                                     (6) 

The heat capacity of the nanofluid is expressed as follows:  

( ) (1 )( ) ( )p ef p f p sc c c       .                                                                                 (7) 

For determining the effective viscosity, the Brinkman formulation is utilized: 
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 
2.5

1

f

ef








 or  (1 )ef f s      .                                                                      (8) 

The effective thermal conductivity is simulated, following Chakraborty and Roy [50] as: 

ef static Browniank k k  ,                                                                                                        (9) 

where, 

( 1) 1 1

( 1) ( 1)

s s

f f

static f
s s

f f

k k
n

k k
k k

k k
n

k k





    
             
    
 
 

.                                                           (10) 

Here   represents the nanoparticle volume fraction, the subscript s  refers to the solid 

particle phase dispersed in the nanofluid, the subscript f  refers to the property of a pure 

fluid devoid of any nano-particle suspensions and n  is a shape factor to account for the 

differences in the shape of the particles (for spherical particles 3n  ). For the Brownian 

component, invoking the kinetic theory and also Stokes’ flow approximations, one may 

write: 

45 10 ( ) ( , )B
Brownian p f

s p

k T
k c f T

d
  


  ,                                                                     (11) 

where pd  represents the nanoparticle diameter, Bk  is Boltzmann constant and   and 

( , )f T are expressed as: 

1.6458

1.4544

0.0137(10 ) , 1%

0.0011(10 ) , 1%

  

 





 

 
 and                                

( , ) ( 6.04 0.4705) (1722.3 134.63),f T T       for 1% <   < 4%, 300K < T < 400K. 

              (12)  

There is an enhancement of electrolyte concentration in the bulk fluid such that the 

electrical conductivity of the dispersion medium is increased from its base state. This 

augmentation of electrical conductivity is expected to alter the Joule heating to a 

significant extent and is expressed again following Chakraborty and Roy [50] as: 
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(f )eff f s      ,                                                                                                       (13)       

where, 

   
/( 2 )/(2 )1

3

612 4
f 1 1 tanh ( )

4

e k TB
B

p pe k T

p p B p

Q mn e e
e m e m m m

d d k T d

 

  

    
  

        
   

,(14) 

here, pm  is the particle electrophoretic mobility, 1n  is the equilibrium number 

concentration of the ions in the electrolyte solution and m  are the mobilities of the 

positive/ negative ions. The charge on each particle, pQ , is expressed as: 

2 2
sinh

2

B s
p p

B

k T e
Q d

e k T

 


 
  

 
.                                                                                   (15)  

The electric potential, , within the microchannel is modelled with the well-known 

Poisson-Boltzmann equation: 

2 e

ef




    ,                                                                                                                   (16) 

where ( )e ez n n     is the electrical charge density, n and n  are positive  and 

negative ions  having bulk concentration (number density) 0n  and a valence of z  and z  

respectively, and e represents elementary charge. Here, ef  is the permittivity of the 

medium and it is defined for composite medium, according to Chakraborty and Roy [50] 

by the following relation: 

3
2 ( )

s f

ef f f

s f s f

 
  

    

 
       

.                                                                          (17) 

Further, in order to determine the electrical potential distribution, it is necessary to  

describe the charge number density. For this, the ionic number distributions of the 

individual species are given by the Nernst-Planck equation for each species as:  

  2( . ) .
B

n Dze
n D n n

t k T


  


     


q ,                                                                   (18) 

where, we have assumed equal ionic diffusion coefficients for both the species, and that 

the mobility of the species is given by the Einstein formula and D  represents the 
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diffusivity of the chemical species. It is pertinent to normalize the conservation equations. 

We therefore introduce the following non-dimensional parameters: 

, , , , ,
x y ct u v

x y t u v
a c c  

    
2

, ,
ef

h pa
h p

a c 
  , ,

a







    

0

n
n

n
 .   (19)  

Here x and y are dimensionless yx, coordinates, t is dimensionless time, u and v are 

dimensionless axial and transverse velocity components, h is non-dimensional transverse 

wall displacement, p is dimensionless pressure,  is dimensionless peristaltic wave 

amplitude,  is dimensionless electric potential and n is dimensionless bulk 

concentration (number density) of the ions in the electrolyte. It is important to note that 

the nonlinear terms in the Nernst Planck equations are  2O Pe , where Pe ReSc  

represents the ionic Peclet number and ef efSc D   denotes the Schmidt number. 

Therefore, the nonlinear terms may be dropped in the limit that Re, Pe,  <<1 where 

ef

ef

ca
Re

 


  is the Reynolds number and 

a



  wave number. In this limit the Poisson-

Boltzmann equation is reduced to: 

 

2
2

2 2

n n

y
     

   
  

,                                                                                                     (20) 

where 02

ef B d

n a
aez

K T


 
  , is the Debye-Huckle parameter which defines the 

characteristic thickness of electrical double layer (EDL). The ionic distribution may be 

determined by means of the simplified Nernst Planck equations:  

2

2
0

n
n

y y y




   
  
   

 ,                                                                                                   (21) 

subjected to 1n   at 0   and 0n y    where 0y    (bulk conditions). These 

yield the much celebrated Boltzmann distribution for the ions:  

Φn e  .                                                                                                                          (22) 

Combining Eqs. (20) and (22), we obtain the Poisson-Boltzmann paradigm for the 

electrical potential distribution in the electrolyte: 
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 
2

2

2
sinh

y


 
 


.                                                                                                         (23) 

In order to make further analytical progress, we must simplify equation (23). Eq. (23) 

may be linearized under the low-zeta potential approximation. This assumption is not ad 

hoc since for a wide range of pH, the magnitude of zeta potential is less than 25 mV. It 

follows that Eq. (23) can be simplified to:  

2
2

2y


 
 


,                                                                                                                    (24) 

which may be solved subjected to 
0

0
y

y






 and 1

y h
  , the potential function is 

obtained as: 

cosh( )

cosh( )

y

h




  .                                                                                                      (25) 

To quantify the relative order of volumetric heat generation due to electric resistance 

heating (Joule electro-thermal heating), and a local volumetric heating due to viscous 

dissipation, one may obtain a ratio of strength of Joule heating and viscous dissipation 

as:
2 2

~
v

f f

f

R
a



 


. We may consider the viscous dissipation is negligible in comparison to 

Joule heating effects for channel width greater than 10 μm, as documented by 

Chakraborty and Roy [50]. Furthermore employing lubrication theory (neglecting inertial 

effects), the nonlinear terms in the momentum equation are found to be  2O Re where 

Re  is Reynolds number and   is the ratio of the transverse length scale to the axial 

length scale. These nonlinear terms can therefore be neglected. The emerging linearized 

conservation equations for mass, axial momentum, energy (heat) and solute concentration 

then assume the form: 

0,
u v

x y

 
 

 
                                                                                 (26) 

2
2

2
,t c HS

p u
GrT Gr C U

x y


 
    

 
                                                                                 (27) 
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2 2

2 2
0,tc

T C
N S

y y

 
  

 
                                                                                                   (28) 

2 2

2 2
0,ct

C T
N

y y

 
 

 
                        (29) 

where,

2 3

1 0

2

( )t ef

t

ef

g a T T
Gr

 




  and 

2 3

1 0

2

( )c ef

c

ef

g a C C
Gr

 




  are the thermal  and solutal 

Grashof numbers, 0

1 0

T T
T

T T





 and 0

1 0

C T
C

T T





  are the dimensionless temperature and 

solute concentration, 
1 0

1 0

( ) ( )

( )

p ef tc

tc

ef

c D C C
N

k T T

 



 and 1 0

1 0

( )

( )

ct
ct

s

D T T
N

D C C





 are the Dofour 

thermo-diffusive and Soret diffuso-thermo parameters, 
x ef

HS

ef

E
U

c

 


   is the Helmholtz-

Smoluchowski velocity (i.e. maximum electro-osmotic velocity) and 

2 2

1 0/ ( )ef x efS E a k T T   is the normalized generation term that represents the ratio of 

Joule heating to surface heat flux (for constant wall temperature). The associated imposed 

boundary conditions at the micro-channel walls are: 

0
0

y
T


 , 1

y h
T


 , 

0
0

y
C


 , 1

y h
C


 , 

0

0
y

u

y






, 0

y h
u


 .          (30)                      

The solutions of simultaneous partial differential equations (28) and (29) using the 

boundary conditions (30), are obtained as: 

2( )

2( 1 )

ct

ct t c

N S hy yy
C

h N N


 

 
,                                                                                                  (31) 

2( )

2( 1 )ct t c

y S y hy
T

h N N


 

 
.                                                                                                  (32) 

Using Eqs. (31 & 32) in Eq. (27), and integrating Eqn. (27) with respect to y  with the 

boundary condition (30), the axial velocity is obtained as: 

2 2 3 3 4 3 4( )1 cosh( )
( ) ( ) ( 2 ) 1

2 8 24( 1 ) cosh( )

c t c ct t
HS

ct tc

Gr Gr S Gr N Grp y
u y h h y h hy y U

x h N N h





  
         

    

                                                                                                                                        (33) 
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Volumetric flow rate is defined as 
0

h

Q udy  , which when integrated, in view of Eq.(33), 

takes the form: 

53 3 7 ( ) tanh( )
( )

3 8 240( 1 )

t c ct
c t HS

ct tc

h Gr Gr N Sh p h h
Q Gr Gr U h

x N N





  
       

    
.                     (34) 

Rearranging the terms of Eq. (34), the pressure gradient is obtained as: 

2

3 3

7 ( ) 33 3 tanh( )
( )

8 80( 1 )

t c ct HS
c t

ct tc

h Gr Gr N S Up Q h
Gr Gr h

x h N N h





  
       

    
.                       (35) 

The pressure difference across one wavelength is defined as: 

1

0

p
p dx

x


 


.                                                                                                                    (36) 

The transformations in non-dimensional form between the wave frame ( , )w wx y moving 

with velocity ( c ) and the fixed (laboratory) frame ( , )x y  are given by: 

, , 1,w w w wx x t y y u u v v      ,                                                       (37) 

where ( , )w wu v and ( , )u v  are the velocity components in the wave and fixed frame 

respectively. 

The volumetric flow rate in the wave frame is given by 

0 0

( 1)

h h

w w w wq u d y u dy    ,                                                                                 (38) 

which, on integration, yields:  

wq Q h  .                                                                                                          (39) 

Averaging volumetric flow rate along one time period, we get: 

1 1

0 0

( )wQ Qdt q h dt    ,                                                                                     (40) 

Integrating Eq. (40) yields: 

1 / 2 1 / 2wQ q Q h        .                                                                     (41) 

Using Eqs. (33), the stream function in the wave form (obeying the Cauchy-Riemann 

equations, w

w

u
y





and w

w

v
x


 


) takes the form: 
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2 2
2 3 11

12 133 3

1 / 2 ( )
(3 ) ( )

2 2 480 ( 1 )

HS
t c

ct t c

a UQ h yh h y
h y y Gra Gr a

h h N N




   
    

 
.          (42) 

Here the following definitions apply: 

3 2 2

11 2 3

1 (3 ) tanh( ) 2sinh( )

cosh( )

y h y h y
a y

h h h

 

 

 
     

 
,                                   (43a) 

2 2

12 ( 2 4 ) 10( 1)(2 )ct t ca hS h hy y N N y h      ,                                                        (43b) 

2 2

13 ( 2 4 ) 10( 1)(2 )ct ct tca hN S h hy y N N y h      .                                                    (43c) 

 

Key engineering design parameters at the micro-channel walls are the skin friction 

coefficient ( fC ) i.e. surface shear stress function, Nusselt number ( uN ) i.e. wall heat 

transfer rate and also the Sherwood number ( hS ) i.e. the wall solute mass (species) 

gradient. These are defined respectively for the present regime as: 

f

y h

h u
C

x y


 

 

                                                                                                                 (44) 

u

y h

h
N

x y





 

 

.                                                                                                               (45)                                                                          

h

y h

h C
S

x y


 

 

                                                                                                                 (46) 

 

 3. NUMERICAL RESULTS AND DISCUSSION 

The present boundary value problem is clearly dictated by a number of thermal, electrical 

and nanofluidic parameters. For the purposes of brevity, we consider the influence of two 

parameters on peristaltic flow characteristics, specifically the Joule heating parameter (S) 

and the Helmholtz-Smoluchowski velocity (UHS). The effect of Joule heating parameter 

will be proportional to the effect of the nanoparticle volume fraction and also 

proportional to the diameter of nanoparticles (
2 2

1 0/ ( )ef x efS E a k T T  where, 

(f )eff f s       and 45 10 ( ) ( , )B
ef static p f

s p

k T
k k c f T

d
  


   ). However nano-
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particle geometry effects are not explicitly considered here and will be addressed in 

future studies.   

Figs. 2 to 12 illustrate the effects of these two selected parameters on key characteristics 

including temperature, velocity, pressure, solute concentration and streamline 

distributions. Generally in these figures the following default values are prescribed: 

0.4, 1, 1, 2x ct tcp N N     , 1, 5,c tGr Gr   = 2. Therefore   in all plots thermal and 

species buoyancy are present and also the cross-diffusion (Soret and Dufour phenomena) are 

significant. A constant axial pressure gradient scenario is considered and a finite thickness of the 

Debye electrical double layer.  
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Fig.2. Solute concentration profile at 0.6, 2, 1ct tcN N    for different values of Joule 

heating parameter. 
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Fig.3. Temperature profile at 0.6, 2, 1ct tcN N    for different values of Joule heating 

parameter. 
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Fig.4. Velocity profile at 0.4, 1, 1, 2x ct tcp N N     , 1, 5,c tGr Gr  2  for different 

values of Joule heating parameter (a) 1HSU   (b) 1HSU   . 

 

 

1.0 0.5 0.5 1.0

0.4

0.6

0.8

1.0

 

1.0 0.5 0.5 1.0

0.20

0.15

0.10

0.05

 

 

Fig.5. Volumetric flow rate along the channel length at 0.4, 1, 1, 2x ct tcp N N     , 

1, 5,c tGr Gr  2  for different values of Joule heating parameter (a) 1HSU   (b) 

1HSU   . 
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Fig.6. Pressure across one wavelength vs time averaged volumetric flow rate at 0.4,   

1, 2ct tcN N  , 1, 5,c tGr Gr  2  for different values of Joule heating parameter (a) 

1HSU   (b) 1HSU   . 
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Fig.7. Skin friction coefficient along the channel length at 0.4, 1, 1, 2x ct tcp N N     , 

1, 5,c tGr Gr  2  for different values of Joule heating parameter. (a) 1HSU   (b) 

1HSU   . 
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Fig.8. Nusselt number along the channel length at 0.4, 1, 2ct tcN N     for different values of 

Joule heating parameter.  
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Fig.9. Sherwood number along the channel length at 0.4, 1, 2ct tcN N     for different values 

of Joule heating parameter.  
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Fig.10. Stream lines at 1,HSU  0.6, 0.8,Q   1, 2,ct tcN N  1, 0.1, 5c tGr Gr    for (a) 

1S   , (b) 0S  , (c) 1S  . 
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Fig.11. Stream lines at 0,HSU  0.6, 0.8,Q   1, 2,ct tcN N  1, 0.1, 5c tGr Gr     (a) 

1S   (b) 0S  (c) 1S   
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Fig.12. Stream lines at 1,HSU   0.6, 0.8,Q   1, 2,ct tcN N  1, 0.1, 5c tGr Gr     (a) 

1S   (b) 0S  (c) 1S  . 

Fig. 2 presents the solute concentration distribution (C) with Joule heating parameter (S). 

With negative values of S concentrations are generally enhanced (and positive) whereas 

with positive values of S they are reduced (and negative). The presence of an applied 

voltage gradient and its induced electric conduction results in Joule electro-thermal 

heating in the electrolyte. For S< 0 this results in volumetric energy generation in the 

electro-osmotic flow. However for S >0 energy is extracted from the flow. Negative 

values of S therefore encourage nano-particle species diffusion in the regime and this 

elevates C values. The reverse effect is induced with positive S values. It is also 

noteworthy that non-zero values of Joule heating result in parabolic distributions, 

whereas zero value manifests in a linear profile of solute concentration across the micro-

channel span. Evidently a substantial modification in the diffusion of nano-particles is 

generated via Joule heating, implying in turn that axial electrical field 

(since 2 2

1 0/ ( )ef x efS E a k T T  ) has a marked influence in controlling the organization of 

nano-particles in the flow. Although the Joule parameter, S, does not arise in the species 

conservation eqn. (29), the Soret thermo-diffusive term 
2

2

y

C
N ct




in Eq.(29) couples the 

solute concentration (C) with the temperature field i.e. Eq.(28) and therefore the 

influence of Joule heating is exerted indirectly on the nano-particle diffusion. Much 

x  

y  

(c) 
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higher values are computed for concentration at the upper channel all as compared with 

the lower channel wall, irrespective of the Joule heating effect. These observations 

generally concur with the rigid micro-channel study conducted by Chakraborty and Roy 

[50].  

Fig. 3 illustrates the response in temperature field, T, to variation in Joule heating 

parameter (S), across the micro-channel. It is apparent that negative values of S, induces a 

cooling in the electrolyte i.e. decreases temperatures and constrains them to be generally 

negative. The converse response is induced with positive values of S. In short the 

response of temperature field to electrical Joule heating is the opposite of that exhibited 

by the solute concentration field (Fig. 2). The transverse heat conduction term in the 

energy eqn. (28) i.e. 
2

2

y

T




is directly modified by the magnitude and sign of the Joule 

parameter, S. Again the case of S = 0 (absence of Joule heating) results in a linear profile 

for temperature. Temperatures are clearly maximized near the upper channel wall for 

positive Joule heating and minimized near the lower wall for negative Joule heating. 

Similar results have been reported by for example Sadeghi et al. [49]. It is also worthy to 

note that the low Péclet number assumed in the present analysis, encourages back 

diffusion of heat from the  entry zone  to the exit zone of the channel and this in turn does 

modify the transverse distributions of temperature, as reported by among others, Petersen 

et al. [48]. 

Figs. 4a,b presents the evolution in axial velocity in the micro-channel with a change in 

electro-thermal Joule parameter, S, for two different values of Helmholtz-Smoluchowski 

velocity (UHS).  Fig.4a shows that generally inverted plug flow profiles are computed 

across the channel with maximum values towards the core zone and a significant drop off 

towards the charge-carrying walls, with 1HSU  . Negative Joule heating generates a 

notable acceleration across the channel whereas positive Joule heating manifests in a 

marked deceleration. However in the central zone there is very little difference computed 

with changing electrical field i.e. a change in S since the ionic charges are localized at the 

walls and not in the bulk of the fluid. The presence of the negative ion charges on the 

wall surfaces creates a concentration gradient of positively charged ions near the wall 

surfaces, but no tangible injection of charges along the central line of the channel. This 
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results in an electrical potential distribution in the electrolyte which is known as the 

electric double layer (EDL). When electrical field (axial) is increased i.e. with greater 

Joule parameter (for constant temperature difference), the electro-kinetic body force (in 

the momentum eqn. (27) i.e. + 2UHS is also enhanced. The change is assistive for 

negative S values and inhibitive for positive S values resulting respectively in 

acceleration or deceleration of the axial flow. Clearly the Joule parameter instigates a 

considerable modification in flow distribution across the channel and confirms the 

excellent ability of electro-osmotic phenomena in regulating velocity profiles at the 

micro-channel walls. Fig.4b exhibits very different distributions for the flow velocity 

with UHS = -1. Generally positive magnitudes are computed across the channel space and 

the maximum velocity arises at the channel walls with a minimum at the central core 

zone of the channel. With negative Joule heating parameter, S, higher magnitudes are 

computed and vice versa for positive S values. Axial electrical field therefore exerts a 

similar influence on velocity distributions irrespective of whether Helmholtz-

Smoluchowski velocity (UHS) is positive or negative; however for positive UHS) velocity is 

generally negative whereas for negative UHS velocity is overwhelmingly positive. 

 

Figs. 5a,b depicts the profiles of volumetric flow rate (Q) with axial coordinate with 

different values of Joule heating parameter values (S), again for two different values of 

Helmholtz-Smoluchowski velocity (UHS). Both graphs are again plotted at t = 0.48. The 

axial flow acceleration with greater electrical field and therefore larger negative S values 

(as witnessed in fig. 4) serves to enhance flow rates. This results in an elevation in Q 

values for S <0 and a reduction in Q values for S>0 (the case of S=0 which corresponds 

to an absence of Joule heating is intercalated between these two other cases). The 

periodic nature of the flow is clearly captured in Fig.5a and is associated with peristaltic 

wave propagation. The alternating peaks and troughs exhibit consistent magnitudes with 

axial distance i.e. there is no alteration in magnitudes with distance along the channel. 

Fig.5b presents the volumetric flow rate profiles with UHS = -1, and significantly different 

behaviour is observed compared with fig. 5a. With any S value the volumetric flow rates 

remain now generally negative i.e. reversed flow. However positive values are achieved for small 

sections of the channel width with S= -1. Greater periodicity of the flow is also induced with 
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negative Helmholtz-Smoluchowski velocity (UHS) as shown in Fig.5b, compared with 

positive Helmholtz-Smoluchowski velocity (UHS) (Fig.5a). With vanishing Joule 

parameter (S =0), the number of peaks and troughs is maximized in Fig.5b.  

Figs. 6a, b presents the evolution in pressure difference across one wavelength (p) with 

time averaged volumetric flow rate ( Q ) for various Joule heating parameter values (S). 

Three pumping regimes can be classified. These are the pumping region (p > 0), the 

augmented pumping region (p < 0), and the free pumping region (p =0). Generally in 

the pumping region pressure difference rises with negative flow rates whereas it 

decreases with positive flow rates. Fig.6a shows that there is overall an inverse linear 

relationship between pressure difference and time averaged flow rate. For positive values 

of Joule heating (S), pressure difference is observed to be elevated at all flow rates. 

Conversely with negative values of Joule heating, the pressure difference is suppressed 

over the entire range of values of Q . Fig.6b demonstrates that while a linear relationship 

is again apparent for pressure difference and time averaged flow rate, with negative 

Helmholtz-Smoluchowski velocity (UHS), the magnitudes of pressure difference are 

somewhat reduced. The linear decays for all values of S and pass much closer to the 

origina than for positive Helmholtz-Smoluchowski velocity (UHS), i.e. Fig. 6a. 

 

Fig. 7a,b present the skin friction (wall shear stress function) distributions with axial 

coordinate for various Joule heating parameter values (S). Evidently skin friction profiles 

are oscillatory in nature. Fig.7a, corresponding to positive Helmholtz-Smoluchowski 

velocity (UHS), show that the magnitudes of skin friction are elevated for negative S 

values (in consistency with the axial flow acceleration computed earlier in Fig. 4a) and 

decreased with positive S values (confirming the axial flow retardation in Fig.4a). Peaks 

and troughs are consistently maintained at similar magnitudes along the channel length 

i.e. they do not vary with distance along the channel x-axis. The influence of the sign of 

Joule heating is considerable. The results confirm that the primary influence of Joule 

heating (and axial electrical field) is confined to the walls of the micro-channel where 

charge concentration is maximized. This agrees also with other investigations, including 

Chakraborty [44] and also Bandopadhyay et al. [46]. Fig.7b shows that for negative 

Helmholtz-Smoluchowski velocity (UHS), skin friction magnitudes are elevated with 



26 

 

positive Joule heating parameter (S =2) whereas they are depressed with negative Joule 

heating parameter i.e. the opposite trend to Fig.7a. The smooth undulating profiles in 

Fig.7a for all values of S are only retained in Fig.7b for positive S. In Fig.7b the cases for 

S =0, -2 exhibit a modified structure with no consistency in peaks and troughs. 

Magnitudes of skin friction are also significantly lower in Fig.7b (positive UHS) than in 

Fig.7a (negative UHS). 

Fig.8 illustrates the evolution in Nusselt number profiles with axial coordinate for various 

Joule heating parameter values (S). Nusselt number measures the heat transfer rate 

(temperature gradient) at the micro-channel walls and furthermore embodies the ratio of 

thermal convective heat transfer to thermal conduction heat transfer. With enhanced 

negative Joule heating (S < 0), the Nusselt number is elevated at the peaks and decreased 

at the troughs. This agrees with the decrease in temperatures computed in Fig.3 and is 

caused by the enhanced diffusion of heat away from the fluid to the channel walls. 

Nusselt number is conversely depressed with positive values of Joule heating and this 

again agrees physically with the increase in temperatures computed in fig. 3. Higher 

temperatures in the micro-channel imply a migration of heat from the channel walls into 

the nanofluid. The impact of Joule heating is consistent for different x-values. These 

patterns are generally in agreement with earlier studies including Schit et al. [23]. 

Fig. 9 presents the profiles for Sherwood number with axial coordinate for various Joule 

heating parameter values (S). The dimensionless solute mass transfer rate (i.e. 

concentration gradient) at the channel walls is quantified with Sherwood number, which 

also measures the ratio of the convective mass transfer to the rate of diffusive mass 

transport. The response in Sherwood number to Joule electro-thermal parameter is 

opposite to that of the Nusselt number. Positive S values are observed to elevate Sh 

values (associated with decreasing concentrations in the nanofluid, as computed in Fig. 2) 

whereas negative S values induce a reduction in Sherwood numbers. Joule electro-

thermal effect therefore modifies the solute diffusion rate significantly.  

Figs. 10-12 present the combined effects of the Helmholtz-Smoluchowski velocity (UHS) 

and Joule heating parameter (S) on nanofluid bolus dynamics i.e. trapping phenomena. In 

these plots, Figs. 10a, 11a, 12a correspond to S = -1 with UHS = 1, 0 and -1, respectively. 

Figs.10b, 11b, 12b correspond to S= 0 with UHS  = 1, 0 and -1, respectively. Figs 10c, 
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11c, 12c correspond to S = 1 with UHS = 1, 0 and -1, respectively. An increase in 

Helmholtz-Smoluchowski velocity (UHS) implies an elevation in axial electrical field 

strength. This results in an intensification in the circulation as UHS decreases from 1 (Fig. 

10a) to 0 (Fig.11a) i.e. a closer proximity of streamlines. A significantly stronger 

circulation and the synthesis of a quadruple system of boluses however is induced with 

subsequent change in UHS to -1, as seen in Fig.12a. Similar modifications are also 

observed in Figs. 10b, 11b, 12b (S= 0) and also Figs.10c, 11c, 12c  (S=1). The influence 

of axial electrical field therefore is maximized with negative values of the electro-osmotic 

velocity. To expound the Joule heating effect, we consider Figs.10a-c, 11a-c and 12a-c. 

There is a weak modification in the trapping bolus structures computed for each of these 

sets of figures with increasing S, indicating that the Joule heating effect is secondary to 

the electro-osmotic velocity effect. In all the streamline plots assistive thermal and 

species buoyancy are present (Grc=Grt=1) and of the same order of magnitude. 

 

4. CONCLUSIONS  

A mathematical study has been conducted to investigate the influence of Joule electro-

thermal heating in electro-kinetic nanofluid thermo-diffusive pumping via peristaltic 

wave motion in an isothermal finite length micro-channel under uniform axial electrical 

field. Soret and Dufour cross-diffusion effects and also thermal and species buoyancy 

effects have been incorporated. Integral solutions have been obtained for the non-

dimensional linearized boundary value problem, under lubrication and Debye 

approximations. Mathematica software has been deployed to evaluate numerical solutions 

derived for solute concentration, axial velocity, temperature distribution, pressure 

difference, volumetric flow rate, skin friction (wall shear stress function), Nusselt number 

(wall temperature gradient) and Sherwood number (wall concentration gradient). Some 

important observations from these simulations may be summarized as follows: 

 Increasing positive Joule parameter strongly suppresses solute concentrations 

whereas increasing negative Joule number results in a strong elevation in 

concentration. 
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 Increasing positive Joule parameter markedly enhances temperatures (i.e. induces 

micro-channel heating) whereas increasing negative Joule number significantly 

depress temperatures (i.e. manifest in cooling of the micro-channel). 

 Increasing negative Joule parameter accelerates axial flow substantially whereas 

increasing positive Joule parameter decelerates the axial flow, and in both cases 

the effect is prominent near the micro-channel walls and is negligible in the core 

zone since the ionic charge distribution decreases from a maximum in the vicinity 

of wall (associated with the zeta potential) to negligible nanofluid charge in the 

core.  

 Increasing negative Joule parameter values enhance volumetric flow rates 

whereas the converse behavior is induced with positive Joule heating values, and 

this pattern is sustained periodically along the channel length.  

 Pressure differences are decreased with increasing time-averaged volumetric flow 

rate and also with positive Joule electro-thermal parameter values.   

 Skin friction values are elevated with negative Joule parameter and reduced with 

positive Joule parameter.  

 Nusselt number is increased with negative Joule heating effect (heating of the 

micro-channel walls), whereas it is significantly decreased with positive Joule 

heating effect (cooling of the micro-channel walls). 

 Sherwood number is enhanced with positive Joule heating effect (heating of the 

micro-channel walls), whereas it is strongly suppressed with negative Joule 

heating effect (cooling of the micro-channel walls). 

 With negative electro-osmotic velocity the dual bolus formation present for 

positive electro-osmotic velocity is further divided into a quadruple system of 

symmetrical boluses and the number of trapped fluid zones therefore increased. 

 A change in Joule heating parameter weakly intensifies the circulation in the 

regime. 

The present work has been confined to Newtonian nanofluid electrolytes. Future studies 

will consider non-Newtonian ionic liquids [39] e.g. viscoelastic characteristics, and will 

be communicated imminently. Furthermore it is hoped that the present work will 
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stimulate experimental studies in electro-kinetic nanofluid peristaltic pumping to explore 

further applications in technology. 
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