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Abstract 

The aim of this research is to utilize new methodologies and technology in order to gain insight 

into how the modern cinema audio system could be calibrated to provide improved audio 

performance. To this end, both objective and subjective measurements were developed to better 

understand the audio preferences of listeners, the requirements of the audio systems inclusive 

of the acoustic environment, and how the two are related.  

 

Part of the data for this research was derived from a survey of re-recording mixers regarding 

their use and opinion of the current SMPTE standard. The survey confirmed anecdotal 

information suggesting that re-recording mixers use high-end pre-emphasis to compensate for 

the severe roll-off induced by the SMPTE X-curve. It is also noted that the re-recording mixers' 

opinions of how well their mix translates from dub-stage to cinema is correlated to how many 

years they have spent in the industry.  

 

For the first time a binaural room scanning (BRS) system was validated via a series of listening 

tests for use in small, medium, and cinema-sized room listening tests. This system shows great 

promise as a tool for creating various sized room-based listening tests, as there were no 

statistical differences in ratings between the in situ and BRS playback conditions.  

 

To further understand listener preference to in-room responses curves, a series of listening tests 

utilizing the BRS system were conducted using various sized cinemas, seating positions within 

the cinemas, audio tracks (including those mixed on a SMPTE calibrated dub-stage) and target 

curves. The overwhelming outcome was that regardless of cinema size, seating position or 

audio track utilized; the "curve" that listeners preferred is a relatively flat 0.9dB/octave slope 

with a 6.5dB bass boost below 105Hz and a -2.5dB roll off above 2.5kHz. Of the 5 target curves 

presented, the SMPTE X-curve place fourth with scores very near the low-rated perceptual 

anchor. This calls into question the notion of the X-curve providing "ideal" translation between 

dub-stage and cinema and in fact, challenges the concept of translation all together.  

 

Research was completed in an effort to identifying the number of microphone positions 

required, along with their placement, in order to accurately capture a cinema's response for 

calibration purposes. A novel experiment utilizing anechoic loudspeaker data as a guideline for 
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analysis demonstrated that, with proper data, the number of microphones and their positions 

plays a less critical factor in determining the room response. The collected data shows that even 

with as few as 4 microphones at varied positions, the resultant room response will trend towards 

the anechoic data above 1kHz. From around 300Hz to 1kHz, there is evidence of seat effects 

that may be resolved through randomizing the microphone heights. Below 300Hz, the room 

becomes the dominating factor and more than 5 microphone positions will be required to 

properly identify any problems.  
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1.1 General Introduction 

 

In this section, the research area is introduced and the research aims are declared. The structure 

of the thesis is outlined and the contributions to the research field are identified. 

 

1.2 Motivation 

 

The public's concerns regarding poor cinema audio and the dwindling revenues in the film 

industry are providing a strong impetus amongst several standards organization to improve this 

situation. Standards organizations such as the Society of Motion Picture and Television 

Engineers (SMPTE), the Audio Engineering Society (AES), and InfoComm International are 

aiming to revise aged methods of calibrating cinema audio systems with the hopes of improving 

their performance. Their efforts are reflected in the SMPTE TC-25CSS (Technology Committee 

25, Cinema Sound Systems), the now defunct AES-X218 (Measurement and Calibration of 

Sound Systems in Rooms) and InfoComm ANSI/INFOCOMM 1M-2009 (Audio Coverage 

Uniformity in Enclosed Listener Areas). However, these organizations are trending towards 

making subtle revisions to the existing standards which leads to the new standard still utilizing 

some of the old, out dated and ineffective methodologies. In addition, some of the research that 

is currently being conducted either to create new standards or to revise existing standards lacks 

scientific rigor. 

 

1.3 Introduction to the SMPTE X-curve 

 

The Society of Motion Picture and Television Engineers (SMPTE) ‘X-Curve’ is part of the 

existing SMPTE ST 202 standard which was first proposed in 1975 for calibrating dubbing 

stages and cinema loudspeaker systems. The goal is to provide a consistently high standard of 

sound quality in the creation and reproduction of film sound. The X-Curve aimed to provide 

the motion picture industry with a standard that ensured plausible inter-changeability of 

program material, from one studio to the next, from studio to theatre, and from film to film, 

which takes into account the different perceived spectral response of different room sizes.  
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The in situ calibration process consists of using pink noise as a source and measuring the 

loudspeaker system at up to 5 locations in the cinema and then equalizing it to a defined target 

curve in 1/3-octave bands. Correction factors to the target curve can be applied to account for 

different room sizes. Unfortunately, the SMPTE calibration has never been properly validated 

using scientific subjective and objective measurements. There is no scientific evidence that it 

actually delivers high quality audio translation from dub-stage to cinema. 

 

In fact, there is anecdotal evidence showing that cinemas goers have become increasingly 

unhappy with the quality of audio in cinemas. The cinema-going population has become more 

sophisticated in their taste for high quality audio. This can be linked to the improvements in 

home cinema audio systems which now include items such as high-end Blu-ray DVD players, 

high-definition cable and satellite receivers, high-definition internet streaming devices, and a 

full complement of well designed loudspeakers. This audience has started to question the ever-

increasing price of cinema tickets in light of the audio quality in the average cinema sounding 

worse than their home cinema system. Considering that in the United States, movie ticket sales 

in 2016 were at their lowest volume in 20 years (Miller, 2016), (Thompson, 2016), the industry 

cannot afford a continued downward trajectory of tickets sales for any reason.  

1.4 Main Research Questions 

 

The research presented in this thesis aims to add comprehensive scientific evidence to the 

growing body of research that is currently being conducted on cinema audio. One of the obvious 

potential benefits of this research to the cinema community is an improved cinema sound 

calibration method that could become the basis for revisions to the existing industry standard. 

Such a revised standard could provide a more consistent, higher quality of sound reproduction 

where films are mixed and later reproduced in the movie theatre and at home.  

 

The questions that guided this research are: 

 

• What percentages of film sound mixers (re-recording mixers) actually mix to the SMPTE 

standard? Do they feel it provides a consistent level of sound quality between the 

mixing/dubbing and theatre playback?  In what ways does it fail or succeed in terms of 

sound quality? What alternative calibrations are employed in its place? Are they 
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compensating for the SMPTE standard and if so, how? 

• Does the SMPTE calibration method provide a consistently high sound quality across a 

variety of different cinema spaces based on objective and subjective sound quality 

measurements?  How well does it perform compared to no calibration or a different 

calibration method?  

• To what extent does the room acoustics with respect to cinema size and seat location 

influence the perceived sound quality of the different calibration methods?  

• For the purposes of cinema calibration, what is the optimal number of microphone locations 

required in order to achieve accuracy in measurements? Can anechoic data from a 

loudspeaker better assist in the calibration process? 

• Below what frequency does the room acoustics dominate what the listener hears and above 

which frequency does the direct sound play a dominate role? 

 

1.5 Original Aspects of This Research 

 

The research presented in the thesis is both original and of value to the scientific community, 

audio professionals and consumers involved in the production, reproduction and enjoyment of 

film sound. To date, cinema audio calibration has received comparatively little attention from 

the scientific community. Therefore, the hope is that the findings of this research represent a 

significant contribution towards a better scientific understanding of the perception and 

measurement of cinema loudspeakers, their acoustical interaction with the cinema space, and 

how to better calibrate the system for optimal sound quality. The following outcomes, which 

are presented throughout the thesis, are considered by the author to be novel contributions to 

the field of cinema audio calibration: 

 

• A survey of re-recording mixers provided a clearer understanding of their work spaces 

(dub-stages), how these works spaces were calibrated and how this calibration affected 

the way which re-recording mixers process audio tracks. This survey is a novel approach 

to uncover information which can help guide authors of the new standards.  

• The Binuaral Room Scanning system, though not a completely novel system, was 
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refined and validated for cinema-sized spaces. This system allows for researchers to 

conduct listening test on cinema and theatre audio systems and acoustics when in situ 

listening experiments prove logistically difficult.   

• The first true double blind listening tests for cinema audio conducted to date. The results 

of these tests provide a basis for questioning the in-room target response curve currently 

utilized in the SMPTE standard and offers potential replacements. 

• A process was developed for calibrating cinema audio systems which begins with the 

anechoic data from the loudspeakers. This process provides an easily scalable method 

of calibrating a cinema that allows the technician to ascertain what aspects of the room's 

response is created by the loudspeaker and which is created by the room itself. 

 

1.6 Intended Audience and Applications for This Research 

 

The author believes that scientific research should be judged not only on its scientific merit and 

originality, but also its real-world application and value to society. The research topic of this 

dissertation meets both criteria. 

 

A review of the limited scientific literature available on calibration methods for cinema audio 

provides sufficient motivation and justification for this research based on the lack of robust 

scientific methodology applied to the standard currently in use. The potential practical value 

and application of this research is also quite clear; new knowledge may lead to improvements 

in the measurement, design, and performance of loudspeakers and listening rooms used in the 

production and reproduction of audio. Given that a large percentage of society spends a 

significant amount of time and money viewing movies in both their home and in commercial 

cinemas, there is a substantial audience that could potentially benefit from research of this kind. 

Four different groups may potentially benefit from the author's research: (1) audio engineers 

involved in the production and reproduction of cinematic audio; (2) cinema-going consumers; 

(3) scientists working in the areas of product development for the cinema market and (4) cinema 

owners.  
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1.7 The Structure of the Thesis 

 

The thesis is divided into seven chapters, and the main goals and themes of each are 

summarized below. 

 

Chapter 1 introduces the research topic and author’s motivation for investigating the history 

of cinema calibration and to form methods for improving upon the current standard calibration 

method. The main research objectives are defined, as well as potential applications and 

beneficiaries of the research. The overall structure of the dissertation and content of each 

chapter is described. 

 

Chapter 2 provides the literature review for the thesis, summarizing previous and current 

research into the physical and psychological factors related to cinema calibration. The chapter 

begins with the origin and history of cinema calibration and surveys the evolution of cinema 

calibration through to today's standards.  

 

Chapter 3 describes a survey conducted of re-recording mixers in order to obtain opinions of 

theatre calibration from one of the end-users' point of view. The survey gives an overview of 

the demographics and types of work spaces of the re-recording mixers surveyed. The survey 

also provides insight as to adjustments that are being made during the final mixing process.  

 

Chapter 4 describes the BRS measurement and playback method used for the author’s 

experiments, and explains why it is an important methodological tool for research on cinema 

calibration. Descriptions of the measurement and playback systems are given. Finally, the 

results of a validation test are presented in which listeners’ calibration curve preference ratings, 

produced in situ, are compared to those produced using the BRS playback system. 

 

Chapter 5 describes a listening test administered to trained listeners in order to obtain insight 

into preferences in room response target curves. A review of the BRS test system along with 

the test methodology is described. Results of the listening tests are presented and compared to 

the current target curve currently utilized for cinema calibration.  
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Chapter 6 describes a novel method for determining the number of microphone positions 

required to accurately capture a room's response by using a loudspeaker's anechoic data for 

comparison. Measurements across 7 different sized cinemas using this methodology are 

presented. The energy averages of room response measurements ranging from 216 positions to 

4 positions were compared to the anechoic loudspeaker data and an analysis is presented. 

 

Chapter 7 discusses the results of the experiments as a collective and the outcome as they relate 

to the research objective. It also summarizes the main conclusion of the research, identifies 

some limitations in its scope, and recommends additional areas of research that warrant further 

investigation.  
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2.1 Introduction 

 

This section contains a review and summary which spans the historic through the current 

literature concerning cinema audio calibration. As this particular field has not been widely 

studied by the audio and acoustic communities in general, the literature review consists mainly 

of a historic perspective of cinema audio calibration and the early development of the SMPTE 

standard. The review begins with an overview of the most prevalent standard used in cinema 

audio; the Society of Motion Picture and Television Engineers' SMPTE ST-202:2010 Standard 

for Motion-Picture - Dubbing Stages (Mixing Rooms), Screening Rooms and Indoor Theatres - 

B-Chain Electroacoustic Response. The review moves into a breakdown, by time periods, of 

the evolution of the SMPTE cinema audio standard along with that of the allied International 

Organization for Standardization (ISO) standard.  

 

2.2 Overview of SMPTE Cinema Audio Calibration 

 

One of the largest challenges for film sound mixers (re-recording mixers) is creating a 

soundtrack that can translate from a dub-stage of one size into commercial cinemas of various 

sizes. In order to aid the mixer in this task, SMPTE created a calibration method and standard 

which includes a targeted room response curve for both dub-stages and cinemas that would help 

to ensure an accurate translation of a film's sound track from dub-stage to cinema.  

 

With regards to the SMPTE cinema audio standard, the cinema reproduction chain is split into 

two sections; the A and B chains. The A chain makes up that part of a motion-picture audio 

system starting with the source and extending as far as the input source selector, as shown in 

Figures 2.1 and 2.2. The B chain comprises the elements that follow the switching of signal 

sources and includes equalizers, crossovers (if used), power amplifiers, loudspeakers, 

projection screens, and modifications to the sound caused by auditorium acoustics and distance 

to listeners, as depicted in Figure 2.3.  
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Figure 2.1: A-chain section of analogue theatrical audio reproduction chain; from                 

(SMPTE, 2010) 

 

 

Figure 2.2: A-chain section of digital theatrical audio reproduction chain: from                     

(SMPTE, 2010) 
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Figure 2.3: B-chain section of theatrical audio reproduction chain; from (SMPTE, 2010) 

 

The SMPTE ‘X-curve’ represents the target shape for the steady state frequency response of 

cinema sound systems B-chain when measured with pink noise at a reference or series of 

reference positions using a 1/3rd octave real-time analyzer, as shown in Figure 2.4. The modern 

day X curve, originally disseminated in ISO 2969 (ISO, 1977) and shown in its current form in 

Figure 2.5, was subsequently adopted and revised over the years by SMPTE as standard ST202 

(SMPTE, 2010) and has been specified for many years. The standard relates only to the B Chain 

and therefore has no role in electronic pre-emphasis equalization or other signal corrections 

within the A chain (Allen, 2006), (Rasmussen, 1976). 
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Figure 2.4: B-chain X-curve with modifications for theatre size; from (SMPTE, 2010) 

 

 

Figure 2.5: Curve X of B-chain characteristic including tolerances; from (ISO, 1987)  

 

According to Allen (2006), the rationale behind the use of the X-curve is as follows: 

•  To compensate for some psychoacoustic phenomena involving the integration of faraway 

sound and picture.  

•  Distortion components in the loudspeaker (typically horn-loaded), making high 

frequencies objectionable.  

•  The result of excessive reverberation build-up. 

• The lack of power handling in low frequency (subwoofer) speakers leading to audible 



Chapter 2. Literature Review   

 

 

13 

 

distortion. 

Currently, dubbing stages and commercial cinemas seeking Dolby certification are equalized 

as closely as possible to the X-curve at a location roughly two-thirds of the distance from the 

screen to the rear wall. This area of the room has conventionally been considered the most 

representative average of the whole room and is generally where the mixing console is located 

in commercial dubbing stages. Before the advent of Digital Cinema Package (DCP) around 

2011, Dolby approval was required before a studio was allowed to make 35mm print-masters1 

with Dolby encoding, which was the primary audio-encoding scheme used throughout the 

industry. Dolby approval dictated that dub-stages and cinemas be tuned to the X-curve in order 

to meet Dolby certification for encoding on the production side and decoding on the playback 

side (Dolby, 1994). The format that now requires Dolby certifications and in turn the use of the 

X-curve is ATMOS (Dolby, 2015) .   

 

2.3 Early History of the Cinema Calibration  

 

 A new factor has come strongly into the picture, and I believe that it will call for some 

 radical revisions of our criteria for best acoustics. I refer to the electrical reproduction 

 of sound.            Edward W. Kellogg, General Electric Research Lab, 1930

     

There is a vast collection of documentation on the early developments of motion picture sound 

ranging from recording techniques, microphone developments, loudspeakers developments to 

encoding sound to film, and room acoustics. To write about all of the developments in the early 

history of sound for pictures would be somewhat superfluous for purpose of this thesis. 

Therefore, this early history review highlights selected pieces of literature that were deemed by 

the author to be most the most pertinent to the overall history of cinema calibration. 

 

One of the earliest cinema audio systems of record was developed by Western Electric in 1924, 

shown in Figure 2.6. This system was comprised of an electrified phonograph player that the 

                                                 

1 A printmaster is the final composite (dialogue, music and sound effects recorded together) mix of a film that can 

be transferred directly to a track negative or a magnetic stripe print with no further changes in level or equalization. 

It combines the various elements into a final composite soundtrack. When this is completed, an optical or digital 

sound track can be created for a feature film release print 
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Western Electric engineers were able to synchronize to a camera and projector, with audio 

playback being delivered by the company's public address loudspeakers. The only film 

company that showed interest in the system at that time was Warner Brothers, who went on to 

create a joint venture with Western Electric in 1926 named the Vitaphone Corporation 

(Thompson, 2004).  

 

 

Figure 2.6: Early Western Electric sound projection system; from (Wolf, 1929a) 

 

Scientific journals of the time show evidence that the first concerns with audio playback in 

cinemas were about room acoustics, as opposed to issues with the audio playback system itself. 

Many of the early pioneers of acoustic research, including Watson, Sabine, Swan, Wolf, Kellogg 

and Knudsen, took up the challenge of converting performance halls into "picture palaces" and 

in improving film stages (now sound stages) for audio recording. Reverberation times of 3 

seconds or longer in both the theatres and the sound stages led to the expected loss of dialog 

clarity. The challenge posed to the acousticians of the day was to take performance halls that 

were originally designed for live music playback and prepare them for "talking pictures", and 

to take cavernous film stages and prepare them for dialog recording (Knudsen, 1932), (Kellogg, 

1930), (Swan, 1929), (Wolf, 1929b), (Sabine, 1928),  (Watson, 1927). Moving into the "Golden 

Age of Cinema", movie theatres were typically classified by three sizes: the 'average' theatre 
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was 1000 seats, a 'medium' theatre was 2000 seats and a 'large' theatre was 4000 seats or more. 

These theatres usually had reverberation times lower than the earlier vaudeville theatres that 

had been converted for cinema, but still had reverberation times between 1 and 3 seconds 

throughout the frequency range (Loye, 1941), (Shortt et al., 1940), (Potwin and Schlanger, 

1939). 

 

As the acoustics of cinemas began to improve with regard to reverberation times, the focus 

shifted towards the effects that the combined room and loudspeaker performance had on the 

perception of film sound playback. Some of the earliest research in this area can be traced back 

to Wente, whose results were originally published in 1935 (Wente, 1935), (Genereux, 1992). 

During this time period, the quality of electronic signal transmission circuits could be tested by 

measuring the steady state transmission as a function of frequency. Wente felt that the same 

could hold true of the quality of sound transmission in a room. If the room were treated as if it 

were part of a transmission system much like an electronic circuit, then its quality could be 

evaluated by the same principals. Using a variable frequency oscillator and a high speed level 

recorder, Wente was able to record the transmission versus frequency characteristics between 

points in rooms having different acoustic characteristics. In measuring fluctuations in sound 

pressure at one point in a room by generating sound waves of various frequencies at another 

point in the same room, he was able to determine not only the reverberation time, but the 

'quality' of the reverberation by octave and position-specific effects as well.    

 

Parallel to Wente's work was that of Bedell and Kerney, whose work concentrated on the 

adaptation of the sound system in one concert hall (Constitution Hall in Washington D.C.) to 

faithfully reproduce an orchestral recording completed in another  (the American Academy of 

Music in Philadelphia) (Bedell and Kerney, 1934). In essence, Bedell and Kerney's work was 

one of the first recorded experiments that attempted to achieve ideal sound 'translation' between 

rooms. In Bedell and Kerney's work, the playback hall was tuned using an oscillator which 

could reproduce frequencies from 35Hz to 15kHz. The same microphone used to record the 

orchestra was placed in several different positions throughout the hall with the 

acknowledgement that the frequency response of the microphone itself would be negated and 

there would be seat-to-seat differences due to varying acoustic conditions. Each of the three 

loudspeakers used to recreate the orchestra were checked independently at each measurement 

position. Using the curves recorded, the system was adjusted not only for uniform coverage but 



Chapter 2. Literature Review   

 

 

16 

 

also to give an over-all 'flat' response characteristic by means of an equalization network 

permanently installed between the amplifier and the loudspeaker. Noting the variations between 

measurement position, Bedell and Kerney realized that compromises in the design of the 

corrective equalization network needed to be made in order to accommodate an acceptable 

response at as many of the seating positions as possible. The two researchers went on to observe 

that the most expeditious way to design an equalization network that would work for most of 

the seating area would be to use the frequency response curves obtained from the microphone 

positions closest to the playback loudspeakers. The final part of Bedell and Kerney's adaptation 

system was to design a set of "quality control networks", which put the final response of the 

sound system in the hands of a director seated in the theatre; the equivalent of our modern day 

front-of-house mixing engineer. The frequency response characteristics of these networks are 

shown in Figure 2.7.   

 

 

Figure 2.7: Frequency characteristics of quality control networks; from  

(Bedell and Kerney, 1934) 

 

As the frequency response of film sound recordings was improving, attempts were made to also 

improve loudspeaker performance. The most notable advance in loudspeaker technology was 

the Shearer two-way system developed by Douglas Shearer, who was then head of the Metro-

Goldwyn-Mayer sound department. MGM drove the design of this loudspeaker as the studio 

was unhappy with the Western Electric system that was widely in use and which could only 

produce a limited range of approximately 100Hz to 5kHz (Eargle, 2007), (Hilliard, 1985).  
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Hilliard wrote about the formulation of requirements to be met by sound systems in motion 

picture theatres and noted that the Shearer two-way horn system was engineered to meet the 

high standards which he proposed (Hilliard, 1936). Two of the criteria proposed were:  

Flat Over-All Frequency Characteristic - The system shall not deviate by more than 

+/-2 db from 50 to 8000 cycles over the entire angle of distribution within ten feet 

of the mouth of the horn.  

Suitable Angular Distribution Characteristics - The sound shall be radiated through 

a horizontal angle as great as 110 degrees and a vertical angle of 60 degrees, with 

nearly uniform response at all positions.  

 

Figure 2.8 depicts the measured frequency response of the Shearer two-way horn system. 

 

 

Figure 2.8: Output characteristic; Shearer two-way horn system, measured on normal axis, 10 

inches from horn; from  (Hilliard, 1936) 

 

However, older existing loudspeakers were still deficient in frequency response especially in 

the high and low frequencies. To compensate for loudspeaker shortcomings, equalization much 

like the type used by Bedell and Kerney were introduced into the cinema amplifiers. 

Unfortunately, most cinemas had older amplifiers that were still performing satisfactorily and 

so cinema owners had to settle for an easy and inexpensive solution. This solution was to invite 

a seasoned audio engineer to sit in the auditorium while listening to a test reel of film and 
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continuously adjust a set of variable frequency control networks. When the engineer was finally 

satisfied with the sound, the frequency corrections were measured and the necessary filter 

circuits were built permanently into the existing amplifier system (Aldred, 1997).  

 

In 1937 the Motion Picture Research Council (MPRC), a division of the Academy of Motion 

Picture Arts and Sciences (AMPAS), convened a listening panel to audition various playback 

materials over typical cinema loudspeaker systems in an effort to determine the optimum 

playback criteria. The goal was to standardize sound across varying types of cinemas which 

often had different types of equipment and acoustic characteristics. The council also sought to 

determine improvement to the sound quality across all cinemas. Most notable of the 

determinations to be made was the amount of high-frequency attenuation required to 

compensate for the often shrill characteristics of older loudspeakers still installed at the time, 

the valve amplifiers, which had an audible hiss and the high-frequency noise (hiss) created by 

the  film audio track itself (Hilliard, 1985).  

 

Mono audio from the optical sound track resided on the edge the film stock (figure 2.9) and the 

thin space it was given limited the signal. Increasing the width of the optical track gave the 

signal a larger dynamic range but with less high frequency content, whereas a smaller optical 

track gave a higher frequency response but with a lower signal level and greater noise. As a 

compromise, the high frequency content of a film soundtrack was typically limited to 6kHz.  

 

  

                                         

         Mono Optical Soundtrack 

 

Figure 2.9: Standard Academy mono optical soundtrack; from (Bibra, 2008)  
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Additional issues with the high frequency content of film sound came from the slit-width of the 

optical reader used at the time, shown in figure 2.10. The slit plates were made from brass by 

hand and obtaining perfectly clean, straight edges on the sides of the slits were inherently 

difficult. Irregularities in the slit lead to further distortions of the high frequency portion of the 

optical track.  

  

 

Figure 2.10: Optical mono audio track reader system, slit plate (screen) shown in 'D'; from 

(Kellogg, 1955) 

 

Attempts to reduce hiss and other high frequency distortions included placing a filter at the 

output of the pre-amplifier, but this further reduced the high frequencies. The simplest solution 

developed at the time was to pre-emphasize the high frequencies when recording, and allow the 

play back noise reduction filter to achieve as close to flat response as possible to provide some 

consistency between the recording on film and playback in the cinema (Fielding, 1983),  

(Kellogg, 1955). 

 

To aid the MPRC in determining the best solution for a filter response curve that could be used 

across all cinemas, a series of listening tests were convened. A test film reel was prepared 

containing samples of dialogue and music from each of the major studios which were made 

"under average and extreme conditions by each studio sound department". Members of the 

listening panel would repeatedly run the test reel in 6 Hollywood theatres which were all 
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considered to have differing loudspeaker systems and acoustic characteristics. It was felt that 

any standard that would fit these 6 theatres could be applied to a majority of theatres throughout 

the country. Prior to the listening sessions, a set of test filters were installed at the input of the 

amplifiers in each of the theatres. During the sessions, these filters were varied and the 

committee determined an optimum electrical characteristic which would characterize this group 

of theatres. The process of documenting a typical electrical characteristic was carried out by 

playing a flat frequency test tone encoded onto the film and played over the projectors in each 

of the 6 theatres. The signals at the output of the amplifiers were then measured and the 

amalgamation of the noted frequency responses became the first response curve to be adopted 

as a standard; 'The Academy Curve'. This standard was first adopted in March of 1937, was 

revised in June of that same year, with a final version being published in October of 1938 

(MPRC, 1937a, MPRC, 1937b, MPRC, 1938). The Academy Curve (also known as the 

"Normal Curve" or "N-Curve") was defined as flat 100 Hz - 1.6 kHz, down 7 dB at 40 Hz, 

down 10 dB at 5 kHz, and down 18 dB at 8 kHz. The Academy Curve was actually comprised 

of two slightly different curves, the sharper of the curves being used for systems with metal 

diaphragm loudspeakers and flatter curve to 5kHz for systems with Bakelite diaphragms, as 

shown in Figure 2.11. 

 

 

Figure 2.11: 1937 The first 'Academy Characteristic' - two curves, one for loudspeakers with 

Bakelite diaphragms (dashed line), one for metal diaphragms (solid line);  

from (MPRC, 1937a) 
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It was only an electrical curve measured at the amplifier output, and did not take into account 

loudspeaker performance or cinema acoustics. The Academy curve, though severely rolled off 

on the high end, imposed very little destruction of the original soundtrack as almost no 

information above 6kHz to 7KHz was typically recorded (Fielding, 1983). 

 

In an effort to measure the electro-acoustic response of a cinema playback system, a method 

referred to as the "Academy" technique was used. This method measured the frequency 

response at the output of the amplifier and then used subjective judgment to assess the response 

in the audience seating area. Durst and Shortt felt that the newly published Academy standard, 

which only compensated for the playback system to the output of the amplifier, did not take 

into account important aspects, such as the entire production (recording) chain, the loudspeaker 

and the theatre acoustic (Durst and Shortt, 1939). They believed that the standard should cover 

the entire audio path, from the microphones used in the recording process through to the 

playback in the theatre itself, and should be defined by acoustical measurements in the theatre. 

During their research, Durst and Shortt experimented with several curves measured in situ and 

found that the curve shown in figure 2.12 was the most pleasing. 

 

  

Figure 2.12: Overall acoustic characteristic adjusted for "more pleasing response"; from  

(Durst and Shortt, 1939) 

 

In 1948 The Motion Picture Research Council issued a technical bulletin titled "Standard 

Electrical Characteristics for Theatre Sound Systems" (MPRC, 1948). This document provided 

seven different curves, each curve being optimized for a different group of loudspeakers. Figure 



Chapter 2. Literature Review   

 

 

22 

 

2.13 shows the curve associated with the Altec Lansing Systems, one of the most widely used 

theatre loudspeaker at that time. 

 

 

Figure 2.13: 1948 "Academy Characteristic" for the Altec Lansing Systems;  

from (MPRC, 1948) 

Each of the loudspeakers described in this document were typically two-way units with a 

passive crossover at 500Hz. Resister networks or "pads" were used to apply the low-frequency 

or high-frequency adjustments as needed. At the time, this was the only spectral correction 

available to help rectify a particular cinema's acoustic characteristics. Typically, the technician 

or engineer working in the cinema would use a piece of frequency response test-film and check 

the electrical response at the output of the amplifier. He would then listen to typical program 

material and check the tonal balance. If the technician felt that the tonal balance was askew, 

they would adjust the pads at the loudspeakers. The bulletin contained an interesting statement: 

 

 Whenever such conditions exist that the particular characteristic recommended does 

 not give satisfactory results, it is recommended that the acoustic characteristics of the 

 auditorium be corrected. (MPRC, 1948) 
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It appears that even over 60 years ago there was an acknowledgement that equalization, in its 

primitive form, could not fully compensate for acoustic related issues.  

 

2.4 Room Equalization and Calibration from 1950 through 1970's 

 

From this early work in 1937, and again in 1948, very little additional research was conducted 

in cinema audio, and the early Academy response curves were utilized without question for 

over 20 years. Much of the lack of research during this time period was due to technical staff 

being reassigned to the war effort during World War II. Hilliard had written about the 

advancements in loudspeaker frequency response in his 1949 papers and noted that MPRC had 

labelled this increase in frequency range "desirable" (Hilliard, 1949). However, though the 

newer loudspeakers had a 'flat' frequency response extended out beyond 5kHz, the Academy 

curve remained with a roll-off starting at 2kHz.   

 

Though research related specifically to cinema audio slowed down during this period, work 

regarding audio system calibration continued. Rudmose introduced the idea of using systematic 

measurements of a loudspeaker in its indoor environment in order to optimize system playback 

within a given room (Rudmose, 1958). He noted that systems were typically installed as-

purchased, and then tuned by ear without taking additional measurements in situ. Rudmose felt 

that this lead to a less than desirable playback result, with little understanding of how the 

loudspeaker was performing and that more attention should be given to the overall response as 

measured in the room. Instead of using sine-wave oscillators, which were widely used for 

system tuning at that time, Rudmose recommended narrow-band noise (30Hz-50Hz) of which 

the centre frequency could be varied. He also proposed using wide band (white) noise and then 

to utilize a narrow band analyzer to assess the results or to use white noise that is 1/3rd octave 

filtered. Much of the equalizing of audio systems in this era was to remove room resonances, 

but Rudmose felt that his technique could also be used to shape the system response to correct 

for deficiencies in the room, such as excessive high frequency absorption. During the course of 

his research, Rudmose tested for the uniformity and distribution of sound energy from the 

loudspeaker though out the room. He conducted this work in an effort to better understand the 

effects of loudspeaker placement on in situ measurements.  
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Carlisle and Schwartz pushed Rudmose's work one step further by introducing a multiple 

microphone array that allowed sound to be measured in several places within a room 

simultaneously and added together to get a final result (Carlisle and Schwartz, 1959). These 

two researchers noted that in situ measurements with a multiple microphone array gave much 

better data at low frequencies than the anechoic data and correlated much closer to subjective 

listening evaluations. Snow continued with this line of research and worked with comparing 

anechoic (outdoor) loudspeaker measurements to indoor. He opined that testing loudspeakers 

under ideal conditions was difficult but "...when tests are made in room, test conditions become 

even worse and more ambiguous." (Snow, 1961)  Snow concluded that both anechoic and in 

situ data were required in order to understand the loudspeaker / room combination. Anechoic 

data allowed loudspeaker deficiencies, which may have been masked by room effects, to be 

observed and in turn, in situ measurements provided data on room effects. Snow conceded that 

the use of in situ measurements was still clouded by the lack of knowledge as to which aspects 

of room effects had influence over how the sound was perceived. Part of the results from Snow's 

work is shown in figure 2.14.  

 

 

Figure 2.14: Effects of loudspeaker directivity, free-field (outdoor) on axis versus reverberant 

field; from (Snow, 1961)   

 



Chapter 2. Literature Review   

 

 

25 

 

Of interest to note is the apparent seat-dip effect shown in the centre test position which appears 

to be filled in by lateral reflections at the side position. The rise in low frequency content 

between the centre and side positions may also be evidence of a boundary condition. 

 

Early attempts to equalize the electro acoustic chain from microphone to listener in varying 

types of spaces were performed and documented by several researchers (Boner and Boner, 

1965), (Boner, 1966), (Connor, 1967), (Queen, 1971). These experiments were typically carried 

out in an effort to improve feedback in reverberant spaces such as churches, hotel ballrooms 

and airports. Some of these studies advocated for the use of equalization as a means to improve 

the overall characteristics of a loudspeaker within a room, such as to improve 'naturalness' and 

speech intelligibility. Though different from cinema audio systems, they did lay the groundwork 

for future cinema calibration by considering the entire audio playback chain, including the room 

as opposed to the just the electronic portion of the signal chain. Current literature on cinema 

audio still points towards these early works as justification for portions of the SMPTE standard 

that involve the 'shape' of the room response (Allen, 2006), (Holman, 1991).  

 

The early works noted that, even though the electronic devices in the signal chain could be 

equalized with basic resistor / capacitor circuits to obtain a flat response at the output of the 

amplifier, the most complex and often erratic portion of the sound system was typically the 

room itself. With work centred on the desire to reduce room-ring modes and to lessen sound 

system feedback, there were discussions as to whether a perfectly flat overall room 

characteristic was desirable. Rudmose, Connor and Queen advocated for the use of equalization 

to create as flat of an overall room response as possible, however, their research did not involve 

verifying this was subjectively beneficial. Three researchers who conducted subjective research 

with regards to defining a house curve, and whose work is often cited when discussing the 

rationale behind the high frequency roll-off of the X-curve, are the Boners and Schulein (Allen, 

2006), (Holman, 1993), (Holman, 1991).  

 

The Boners observed that, within their research, a 'flat' room response did not render that best 

subjective playback environment. It was discovered that when the room response was shaped 

by basic equalization for a flat electro-acoustic frequency response, that the room was 

considered by listeners to be too bright when auditioning well-balanced program material. 

Experimentation by the Boners found that a high frequency roll-off by as much as 10dB at 
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10kHz in some rooms was preferred. It was during their experiments to minimize feedback and 

room ring modes that the Boners first established the idea of a 'house curve'. Of interest to note, 

the research they conducted was not focused on finding or creating a preferred house curve but 

was a consequence of experiments attempting to rid large reverberant spaces, such as churches, 

of feedback issues created by a combination of the sound system and the room acoustics. The 

Boners various works centred on highly reverberant rooms with volumes of 11,000 to 56,600 

cubic meters and reverberation times of between 1.0 and 5.0 seconds. The rooms were 'voiced' 

by utilizing an oscillator driving the sound systems and each resonant mode which drove the 

system into feedback was noted. These frequencies were then carefully notched out of the 

systems by creating individually tuned narrow band custom resister / capacitor filters and 

inserted between the line amplifier and the power amplifier. It was found that when the 

problematic room ring modes were filtered, that the average sound pressure over the seating 

area was relatively uniform as shown in figure 2.15.   

 

 

 

Figure 2.15: Typical house curves after equalization and filtering of major feedback modes; 

from (Boner and Boner, 1965) 

During the Boners' work they made informal audience preference studies between house curves 

to determine which curve may be preferred. They found that an upward tilt towards high 

frequencies was not desired but that an upward tilt towards the low frequencies, such as the 

lower curve in figure 2.15, was preferred. The Boners continued with their preference survey 



Chapter 2. Literature Review   

 

 

27 

 

with several of the systems they installed and found that the reaction to having the bass rolled 

of was negative; that "people seem to like big bass."   

 

Though the Boners' practice was for speech reinforcement systems, which did not require 

theatre-to-theatre uniformity in the same way that cinema does, the concept of a house curve 

can be traced back to them. Further research by Robert Schulien (1975) somewhat concurred 

with the findings of the Boners. 

 

Schulein's work considered not only sound reinforcement systems, but studio monitoring and 

home high-fidelity systems as well. His experiments questioned the influence of the listening 

room on perceived tonal balance and the psychoacoustic considerations necessary to correlate 

subjective and objective data with regards to a desired tonal balance. Schulein noted that the 

vast amount of research on loudspeakers had been towards producing a flat response, whether 

in an anechoic chamber, under reverberant conditions or in situ, and on the accuracy of the 

measurement techniques used. He opined that subjective ramifications of a flat loudspeaker 

response, especially those in situ, are not often covered to any degree and that they are rarely 

supported by experimentation due to the fact that such experiments are complex and time 

consuming. Schulein pointed towards the 'house curve' found in the Boners' research but did 

not represent it accurately, as shown in figure 2.16.  

 

 

Figure 2.16: Schulein's interpretation of Boners' 'house curve'; from (Schulein, 1975) 
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The curve is figure 2.16 shows a sharp knee at 1kHz and no rise in level towards the low 

frequencies, which was present in the Boners' curve. Schulein conducted his own set of 

experiments which encompassed placing a loudspeaker at 1.2 meters from the listener (near-

field) and the same loudspeaker at 15.2 meters (far-field). Listening to music and speech, the 

listeners were asked to adjust an equalizer in order to match the far-field loudspeaker to the 

near-field. The final results were obtained by playing pink noise through the far-field 

loudspeaker and recording the results by placing a microphone where the listener had been 

sitting. The results of this test are shown in figure 2.17. 

 

 

Figure 2.17: Example of a subjectively adjusted house curve normalized to remove the 

microphone; from (Schulein, 1975) 

There are several issues with how these results were derived which include: 

1. The reverberation characteristics of the test room were not reported 

2. Only 4 listeners were used 

3. Only one example of the 4 listeners was reported 

4. The test was not double or single blind 

5. The frequency response characteristics of the test loudspeaker were not reported 

6. The spectral characteristics of the test source, music and speech, were not reported 

7. The medium on which the test source resided (tape or vinyl) was not reported 

8. The listeners were only given a one-octave equalizer to make adjustments on 
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9. The measurements of the final results were recorded using pink noise and 1/3 octave 

analysis 

10. The normalization curve for the microphone was obtained by measuring the microphone 

15 centimetres from the loudspeaker 

11. Loudspeaker placement with respect to adjacent boundaries was not reported 

 

Schulein repeated this experiment in presumably the same auditorium, but this time made the 

comparison between a single near-field loudspeaker and a pair of different model loudspeakers 

in the far-field. Instead of setting the near-field loudspeaker as the baseline with which to adjust 

the far-field loudspeaker to, the test subject was asked to adjust the level of 1/3rd octave noise 

while alternating between the two loudspeaker systems until they achieved an equal loudness 

match. After the test subject completed adjustments for the entire frequency band, the settings 

were recorded and a microphone was again placed where the subject's head had been and the 

level of each loudspeaker system was measured. Schulein noted that the result revealed that, as 

the test frequency was increased the level produced by the far-field system needed to be 

decreased in order to produce equal loudness, as shown in figure 2.18.  

 

 

Figure 2.18: Sound pressure level of far source with respect of near source necessary for an 

equal loudness balance on 1/3rd octave basis; from (Schulein, 1975) 
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Note that, like the first experiment, this experiment lead to not only a high frequency roll off 

but a rising level towards the low frequencies. 

 

Many of the same issues that were noted on the first experiment were still present in the second 

experiment. Schulein concluded that there were characteristics of the human auditory system 

that would partially account for the large amount of high frequency roll-off. The main 

characteristic pointed out was that of human hearing sensitivity to high frequencies in a diffuse-

field.  The data he used is depicted in the lower curve of figure 2.19. 

 

 

Figure 2.19: Diffuse-field versus free-field response characteristics of a typical human listener 

(lower curve); from  (Schulein, 1975) 

 

Note that Schulein references the diffuse versus free-field correction of Fletcher and Van 

Nostrand from 1953 though the ISO 454 standard available at that time depicts quite a different 

curve; figure 2.20. 
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Figure 2.20: Diffuse-field correction; derived from (ISO, 1975a) 

 

As an aside, if the diffuse-field sensitivity of the human auditory system is to be compensated 

for in the shape of a current calibration curve, the information shown in figure 2.21 should be 

considered.  

 

 

Figure 2.21: Diffuse-field correction ∆L ; derived from (ISO, 2005), (ISO, 2016)  
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A similar experiment was completed by Dolby in 1971 and is referred to as the "Elstree 

experiment" named after the Elstree Studio in the U.K. Like Schulein's experiment, this 

experiment attempted to match near-field and far-field sound by placing one set of near-field 

monitors (KEF's) approximately 1.6 meters from the listeners and a different set of screen 

loudspeaker (Vitavox) approximately 12 meters from the listener. A collection of 'flat' 

recordings of dialog and music were played to verify that they required no additional 

equalization. The far-field loudspeaker were then equalized in an attempt to timbre match with 

the near-field loudspeaker (Allen, 2006). Allen wrote that a slope of 3dB per octave appeared 

to give the best match in addition to a 'slight' limitation in the lower frequencies. This 

experiment has many of the same experiment procedural errors as Schulein's work, including: 

 

1. The experimental procedure has little to no documentation 

2. The experimental results were never formally documented nor was the experiment ever 

published for peer review 

3. The number of listeners in the experiment were never recorded 

4. The test was not double or single blind 

5. The frequency response characteristics of the test loudspeakers were not reported 

6. The near-field and far-field loudspeakers were not matched nor were they equalized to 

be flat prior to the listening test 

7. The spectral characteristics of the test source, music and speech, were not reported 

8. The determination of what constituted a 'flat' test source was subjectively determined 

by an unknown number of listeners  

9. How the listeners adjusted the loudspeakers to achieve a timbre match was not 

documented 

 

In 1979 Bridges also created a similar experiment utilizing the same experimental procedure as 

Schulein in an attempt to find an objective reason why such a subjective roll off was required 

(Bridges, 1980). Bridges first calculated the hypothetical response of a known loudspeaker with 
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a flat on-axis response using the room constants2 of a 5,663m3 room, and calculated attenuation 

of the room at a distance of 30.5m. He then plotted this response against a 'preferred' room 

curve that had a 3dB per octave slope starting at 1kHz. His findings were that there was a good 

fit between the two, as shown in figure 2.22. 

 

 

Figure 2.22: Calculated 'house curve' at 30.5m (solid line) and 'preferred house curve' (dashed 

line); from  (Bridges, 1980)   

The conclusion that Bridges drew from this part of his research was that listeners were making 

subjective frequency judgements from the direct sound of the loudspeaker. When he recreated 

Schulein's listening experiment with the same loudspeaker at a near-field position (0.76m) and 

the far-field position (18.3m), he found that the listener equalized both loudspeakers to have the 

same curve as the calculated findings, as shown in figures. The listen seemed to prefer to have 

the near-field loudspeaker exhibit the same response as the far-field loudspeaker, as shown in 

figure 2.23.    

 

 

 

 

 

 

                                                 

2 Room constants: 500Hz / 4900, 1kHz / 5100, 2kHz / 6120, 4kHz / 7956, 8kHz / 10,600 



Chapter 2. Literature Review   

 

 

34 

 

 

 

Figure 2.23: RTA trace of test loudspeaker after listener equalization, loudspeaker #1 - top, 

loudspeaker #2 - bottom; from (Bridges, 1980)    

Unfortunately, Bridges did not document how many listeners he used for his experiment though 

he eluded that it was only one. In addition, he did not document information below 500Hz nor 

did he indicate which loudspeaker position was represented by which graph. However, his 

experiment did raise the notion that listeners make preference decisions based on the direct 

sound in the room and seem to prefer a downward tilt of the frequency response even in the 

near-field.  

 

2.5 International Cinema Audio Standardization Research through the 

1960's and 1970's 

 

From the 1950's, many theatres throughout the United States and Europe were noted as 

deviating from the standard (Rasmussen, 1969). Hollywood was believed to be one of the few 

markets that attempted to keep a high level of uniformity between cinemas and dub-stages. This 

was probably due to the influence of The Academy of Motion Picture Arts and Sciences and the 

private 1000-seat theatre it maintained. The Academy Theatre, where press previews and other 

Academy previews were screened, was held as the standard by which all dub-stages were 

measured. If a film did not sound "correct", as deemed by an Academy committee, the studio 

was made aware of the deviation of its product and were asked to take corrective steps (Vlahos, 
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1969). Ljungberg further noted that the Hollywood theatres primarily had B-chain curves 

similar to the original Academy curve which had been specified in 1948 (Ljungberg, 1969). 

Around 1969, noting the lack of consistent sound quality in theatres, countries throughout 

Europe, along with the UK and the United States, began work on collecting data in order to 

study the response curves in various theatres and to document any similarities if they existed.  

Work in this area was lead most notably by Rasmussen in Denmark, Ljungberg in Sweden, 

Buckle and Lumkin of the UK with guidance from Vlahos in the US. Their work culminated in 

the formation of Working Group 3.1 of the ISO's Technical Committee 36 - Cinematography 

(Vlahos, 1969). The efforts of this working group anchored the first ISO standard on the monitor 

chain response in theatres titled Electro-Acoustic Response of Motion-Picture Control Rooms 

and Indoor Theatres.  

 

Ljungberg's work began in 1965 with investigating complaints of poor dialog intelligibility in 

several theatres in Stockholm. Lungberg's company had already been working on the plans for 

a new sound department at a film company which included several mixing and screening rooms. 

The largest hurdle they had to overcome was to determine how to design these rooms so that 

they would sound correct in a theatre. They were faced with not knowing which theatre to match 

the film company's rooms to. Lungberg and his associates were frustrated by the fact that the 

only portion of the audio playback chain which had been standardized with objective 

measurements was that part of the chain up to the output of the amplifier. Since most 

loudspeaker / room system were tuned by ear, this left Ljungberg with very little data to work 

from (Ljungberg, 1969).  

 

Ljungberg first introduced the concept of breaking the entire cinema playback system into the 

'A-chain' and 'B-chain'. The A-chain consisted of the all equipment preceding the source switch 

with the B-chain consisting of everything after the switch. The B-chain includes not only the 

power amplifier and loudspeakers, but the screen and the auditorium acoustics as well. The 

rationale behind this decision was that the 'B' part of the chain remains constant and does not 

change regardless of what type of reproduction system is used in the 'A' part. The A-chain 

frequency response for optical playback was determined by the high-frequency slit loss whereas 

the A-chain for magnetic and non-synchronous sources (disk or tape based) were ostensibly 

'flat'. The A chain already had a standard curve applied to it through the use of the Academy 

curve and therefore the A-chain measurements were typically consistent from cinema to 
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cinema. However, the B-chain characteristics for multiple theatres where shown to have wide 

variations (Leembruggen et al., 2011), (Ljungberg, 1969), (Rasmussen, 1969), (Buckle and 

Lumkin, 1969). 

 

As Lungberg completed his measurements on various theatres he noted that, not only were no 

two theatres alike, but that the situation was worse than he expected. He stated, "We slowly lost 

all ability of being astonished by any (B chain) curve and grew completely reckless in 

equalizing it." Lungberg set about developing a B-chain response recommendation through a 

series of listening test, which include several professionals who had worked on the listening 

test materials. Various types of test materials were used including domestic and foreign films, 

magnetic dubbing masters, music on tape and films and commercially pressed lacquers. The 

loudspeakers used were several different types typically used in theatres and monitor rooms. 

The results of these listening tests are shown in figure 2.24. 

 

 

Figure 2.24: Monitor chain characteristics based on results of listening tests, with 

recommended tolerances (dotted box); from (Ljungberg, 1969) 
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In figure 2.24, curve 3 was found to be the most well-balanced when over the span of program 

material used while curve 2 was found too bass heavy and curve 1 was found to be too shrill.   

Rasmussen's work during this time period included the measuring of 25 theatres for the Danish 

Film Foundation. Under a program where free testing was provided to any theatre owner who 

was interested, Rasmussen ultimately measured an additional 100 theatres. The Danish effort 

primarily focused on measurement technique and the documentation of the results in the form 

of a typical curve and associated tolerances. The measurements of the first 25 theatres attempted 

to verify their performance against the current ISO draft proposal, shown in figure 2.25. 

 

 

Figure 2.25: Sketch of ISO draft proposal, Moscow, May, 1969; from (Ljungberg, 1969) 

 

This ISO draft proposal was created from measurements taken in various theatres in different 

countries, some of which included influences of the original Academy curve. Of the 25 theatres 

measured only 6 were within the tolerances of the standard while 9 need simple modifications 

and 10 were out of the tolerance bounds by large factors.  

 

The testing of these first 25 theatres by Rasmussen and his team provided a basis for the 

'recommended practice' section of the Scandinavian Film and Television Society (NFTU) 

Document NFTU-1069. This document specifies the test film, sound level meter, measurement 

positions, averaging method, overall acoustic response curve and acceptable tolerances 
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(Rasmussen, 1971),  (Rasmussen, 1969).  The testing loosely utilized the ISO standard as a 

basis and attempted to further define tolerances based on the first 25 theatres which were tested. 

The findings were so varied that the tolerances were ultimately set based on some of the test 

data and the listening experience of the research team. The curve and tolerances ultimately 

proposed are shown in figure 2.26. 

 

 

Figure 2.26: Optical-acoustic frequency response curve and tolerance limits of NFTU-

Proposal 1069—1969; from (NFTU, 1969)   

When testing the additional 100 theatres in comparison to this standard, Rasmussen found that 

only 27% were found to be inside the boundaries of the tolerances set, shown in figure 2.27.  
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Figure 2.27: Arithmetic average of 100 theatres; from (Rasmussen, 1971) 

 

Buckle and Lumkins' finding were similar to those of Ljungberg and Rasmussen's in that there 

was a wide range of measured curves across the 6 re-recording theatres at major film studios in 

London and 6 large cinemas they tested, some of which were built in the 1930's. Buckle and 

Lumkin made special note that any attempt to find separate envelopes to correlate with theatre 

size was futile (Buckle and Lumkin, 1969). 

 

There are a series of similar processes and observations across all three pieces of research which 

are summarized as follows: 

 

1. All surveys used test audio source that was limited to 8kHz, and many tests were taken 

using mono optical film which presented with its associated noise. 

2. Some form of the Academy curve was in place, though not always followed closely. 

3. The curves measured did not result from theatres being purposely calibrated this way 
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but simply reflected what was present.  

4. The curves included old theatres with very little acoustic treatment and with long 

reverberation times. 

5. The curves included projections screen from various manufacturers which all had 

unknown amounts of high frequency loss.  

6. There was very little commonality in reverberation times across theatres. 

7. The reverberation times in the re-recording (mix) theatres were much lower than that of 

the playback theatre. 

8. All noted that the only way to truly bring theatres into agreement with each other was 

by way of acoustic / room modifications and that an acoustic match would not be 

obtained by adjusting electrical curves. 

 

In the 1960's, audio on magnetic film strip was widely available and found to be superior in 

sonic quality and robustness. However, the predominant format for sound on film was still a 

mono optical track. Years later Rasmussen noted that, though it was predicted that optical sound 

would be replaced completely by magnetic sound, optical soundtracks remained just as the 

Academy curve had (Rasmussen, 1976). Because of this, there was still significant high 

frequency attenuation during playback due to constrains previously mentioned, in addition to 

the loudspeaker characteristics, the screen loss through the perforated projection screen and air 

absorption towards the rear of the larger cinemas. The dub-stages attempted to more closely 

mimic the commercial cinemas by using similar projectors, projection screens and 

loudspeakers. However, the dub-stage systems would still often incorporate additional filtering 

in the monitors in an attempt to further match the cinema systems' high frequency attenuation 

attributed to negative-to-positive print losses, variations in slit loss and electrical filters in the 

cinemas' loudspeaker systems. This would typically lead the mixer to equalize the soundtrack 

elements as they mixed in order to compensate for the high frequency roll-off. The high 

frequency boost, most often in the dialog track, would range around 6dB or more, centred in 

the 3kHz region. In addition, a low-pass filter would be included at approximately the 8kHz to 

10kHz region in an effort to reduce the sibilant distortion often associated with boosting the 

dialog frequencies. Finally, a high-pass filter at around 100Hz was also incorporated in order to 

provide some balance to the sound; to keep the overall soundtrack from sounding too heavily 
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weighted toward the low frequencies. It was further noted that if the monitor response in the 

dub-stage had been allowed to be flatter, then less equalization would be required and the 

distortion would have been lower (Holman, 2010), (Allen, 2006).  

 

What ultimately occurred, from premix to playback, was a type of unintentional pre-emphasis 

and de-emphasis. This had the benefit of alleviating some of the high-frequency noise on the 

playback side. The downfall was that, working with a severely limited bandwidth gave rise to 

excessive pre-emphasis which in turn led to distortion. This distortion steadily increased 

through the magnetic premixes which were then transferred to the optical release print. In 

addition, there was no evidence provided that the balance between the low and high frequencies 

dictated by the excessive high frequency roll off would provide a better subjective impression 

of the final film sound mix. 

 

2.6 The Development of the ISO and SMPTE Standards 

 

One of the first efforts to create and internationally accepted theatre B-chain response curve 

happened at the 8th Congres del' Union Internationale des Associations Techniques 

Cinematographiques in Brussels in 1968 (UNIATEC, 1968). The curve reported is represented 

in figure 2.28. 
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Figure 2.28: B-chain for mixing rooms from UNIATEC proposal September, 1968; from  

(Ljungberg, 1969)  

The concern amongst researchers such as Lungberg was that this curve, when added to the 

Academy curve, produced a high frequency roll-off of approximately 30 to 38dB at 8kHz.  

 

Work on an international standard had started with an ISO meeting in Moscow in May of 1969 

which brought together studies from both the U.S. and the U.S.S.R. This meeting was an early 

attempt to standardize the response of the B-chain and its measurement processes. Initially it 

received a basic agreement from the U.S., the U.S.S.R, and most of the European countries who 

had been working on parallel studies of the B-chain. The three studies referenced in section 2.5 

were published individually in the December 1969 issue of the SMPTE Journal along with a 

reprint of the draft international standard for the B-chain response prepared by ISO TC36 

(SMPTE, 1969), (Vlahos, 1969).  

 

The studies that appeared in the December 1969 SMPTE Journal all referenced the use of noise 

for B-chain measurements, typically played off film or tape. A tape recorder allowed direct 

insertion of noise into the B-chain while noise printed to film would require the subtraction of 

any A-chain characteristics from the measured response. Buckle and Lumkin utilized white 

noise in 1/3 octaves, Rasmussen and Ljungberg used both whole and 1/3 octaves, and the draft 
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ISO document cited the use of pink noise in sequential 1/3 octaves, typically measured with a 

sound level meter and an RMS millivoltmeter (Buckle and Lumkin, 1969), (Rasmussen, 1969), 

(Ljungberg, 1969), (SMPTE, 1969). The standard response curve presented in the ISO draft 

included a high frequency roll off of about 14dB at 8kHz, with a low frequency roll starting at 

100Hz in an effort to provide spectral balance. However, this curve made up only the B-chain 

characteristic which would then need to be added to the old Academy Curve for the A-chain, as 

shown in figure 2.29. 

 

 

Figure 2.29: Standard curve of characteristics of monitoring chain, ISO/TC 36/WG 3 July, 

1969; from  (SMPTE, 1969) 

 

During this exploratory phase of the first ISO draft it was revealed that not all of the countries 

involved had used the roll-off of the Academy curve, with some refusing to use it while other 

chose to use a 'flat' characteristic instead. The first draft of the ISO proposal was never approved 

as it was felt that the heavy Academy high frequency roll-off needed to be maintained to 

accommodate both films currently in production and those that were still in circulation and 

would be for several years (Rasmussen, 1976), (Vlahos, 1975). Vlahos additionally pointed out 

that, in practice, international standard committees attempt to reach agreements of some kind 

but, if aspects are not accepted by all parties involved, then sub-elements" are selected so that 
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some agreement could be reached. He went on to acknowledge that compromise on certain 

aspects is an acceptable outcome.    

 

After a meeting in London in June 1971, a modified draft was disseminated to member countries 

in April 1972 and an editorially modified version was circulated for voting in November 1972. 

Eleven countries voted yes, while three countries disapproved: Germany, Italy, and the U.S. 

Germany felt that its theatres had a much flatter characteristic than shown in the document. The 

primary reason for the U.S. to vote "no" was the belief that only the combined A and B-chain 

document would be of use. The argument from the U.S. was that one country could have a 

steeper A-chain roll-off and a flatter B-chain than another, yet demonstrate the same over all 

response. This case was further argued in a comment by Petro Vlahos, U.S. correspondent to 

ISO TC36, circulated in August 1973 (Vlahos, 1973). In an effort to solve this impasse, ISO 

TC36 then agreed to start work on an A-chain document to augment their work on the B-chain. 

 

The U.K. drafted a new version of ISO DIS2969, which defined a 3dB per octave slope starting 

at 2kHz. It was apparent that in some countries, this curve was much brighter than current 

practice, and it was decided that ISO member countries should be asked to survey some of their 

typical theatres. A new draft of the document was circulated in February 1975, with two curves 

listed. Both were brighter than the previous 16 dB down at 8 kHz. One was 11 dB down at 8 

kHz, and the other, the wide-range curve, down 6 dB at 8 kHz and were labeled 'Y' and 'X' 

respectively.  A note in the draft stated: “This proposed draft includes two characteristics for the 

response beyond 4 kHz. The response and tolerances are identical up to 4 kHz. Depending on 

the replies by Preparatory Working Group 3 Specialists, only one of these characteristics will 

be chosen.”  

 

During a meeting in London in June of 1975, a compromise was reached and it was decided 

that both curves should be in the next draft document. The 'Y' curve was to support films 

currently in circulation while the 'X' curve was to support new soundtrack formats such as the 

hue-modulated color soundtrack. These curves are shown in figure 2.30. This draft was refined 

and a new version was circulated for comments in September 1975 (Rasmussen, 1976), (ISO, 

1975b). 
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Figure 2.30: Proposal for B-chain response curve, agreed to by ISO preparatory working 

group at London meeting, 1975; from  (Rasmussen, 1976) 

Vlahos had raised the question of whether the old Academy curve should be abandoned and 

noted that the issue had been argued among member countries but countered that doing so 

would overlook pictures that were currently being made and that would be in theatres for years 

to come.  

 

During this same time frame, a B-chain acoustic response curve for dub-stages was submitted 

to SMPTE for consideration as an American standard with the thought that it may become a 

U.S. proposal to the ISO (Vlahos, 1975). This proposed curve is shown in figure 2.31. 

 

 



Chapter 2. Literature Review   

 

 

46 

 

 

Figure 2.31: Dub-stage B-chain acoustic response, showing proposed standard and tolerance 

(solid lines) and average of 9 Hollywood dub-stages (dashed line); from  (Vlahos, 1975)  

 

Of interest to note, this curve was for dub-stages working with the extended frequency 

characteristics of magnetic prints and it was dependent on the mixer to lower the high 

frequencies level (follow the Academy curve) to compensate for optical releases. Also worth 

noting is the extended low frequency characteristics and the tighter tolerances in the mid and 

high frequencies of this curve. This curve never became part of a published SMPTE standard.   

 

A possible reason that the curve depicted in figure 2.31 was not adopted was implied in a paper 

presented by Allen (1975). He commented that, though despite the improvement made by 

magnetic soundtracks, it seemed certain that optical soundtracks will continue to be used 

because of production cost savings.  

 

With final ratification in 1977, the second ISO draft became the first published version (ISO, 

1977). This document was mimicked in the U.S. and became SMPTE 202M Dubbing Theatres, 

Review Rooms, and Indoor Theatres – B-Chain Electro-Acoustic Response, in August of 1978.  
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2.7 The Current SMPTE Standard  

 

On the scientific side, there are many physical variables (e.g. the directivity and quality of the 

loudspeakers, their mounting conditions, cinema screen attenuation and seat diffraction effects, 

the size and acoustical treatment of the cinema, etc.) that are still not adequately addressed 

within the SMPTE standard (Leembruggen et al., 2011), (Newell et al., 2011a). Steady-state 

measurements, followed by simple 1/3rd octave in situ equalization cannot adequately 

compensate or control for the psychoacoustic effects these variables have on the perception of 

cinema sound. In fact, the most recent version of the SMPTE standard, ST 202:2010, suggests 

an aural evaluation may be necessary to guide the final B-chain adjustment for the best quality 

sound. (SMPTE, 2010)  

 

Recent anecdotal evidence from film sound mixers, cinema acousticians/installers, and 

moviegoers indicate that a high-quality loudspeaker system can sound worse after SMPTE 

calibration. This evidence is underscored by the survey of re-recording mixers presented in 

Chapter 3.  

 

Since the official adoption of the SMPTE standard in 1978, very little has been changed about 

the standard except for some basic modifications made over the years to accommodate new 

playback methods such as surround sound and digital audio.  

 

There were some minor changes to both the SMPTE and ISO standards around 1982, which 

entailed extending the frequency range from 10kHz to 12.5kHz. Additionally, it was believed 

that the B-chain response would vary with room size, and so additional curves in the upper 

frequencies were added which were correlated with seat count as opposed to room size  (ISO, 

1987). The next revisions of both the ISO and SMPTE standards came in 1991, when the X-

curve was extended out to 16 kHz. At the same time, a second knee at 10kHz was added which 

resulted in a slightly steeper slope between 10 and 16kHz. In 1998 the SMPTE standard was 

once again revised but only to make a differentiation in how the surround sound loudspeakers 

were to be calibrated. It was acknowledged most of the audience is closer to the surround 

loudspeakers than the screen loudspeakers.  
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Recently, the SMPTE standard was revised in 2002 and once again in 2010. The revisions were 

mainly to remove older wording associated with analogue audio technology and to update it to 

include newer digital audio wording. SMPTE standards are typically reviewed every 5 years 

and are revised as needed. 

 

2.8 Current Research on Cinema Calibration  

 

Research on cinema calibration is currently being carried out by members of SMPTE and the 

Audio Engineering Society (AES). The author is on the cinema audio technical committees of 

both of these organizations as well as member of the Academy of Motion Picture Arts and 

Science Theatre Standards Committee.  

 

In his 2006 paper, Allan had explained that high frequency roll-off of the steady state 

measurements were required so that short duration sounds would be perceived as flat. 

Leembruggen and his team found that in the mid to high frequencies (1.kHz to 12kHz) the early 

response (10ms) was only approximately 4.5dB below the steady state response and that the 

shape of this response does not resemble the X-curve (Leembruggen et al., 2011). In addition, 

they and Toole have shown that calibrating a cinema to the SMPTE standard creates a need to 

severely roll-off low frequencies in order for the steady-state measurements to meet the X-curve 

(Toole, 2015). The issue with this is that the X-curve overcompensates for a reverberant energy 

build-up in the low frequencies which was overestimated in the first place. In addition, the 

reverberation times in current cinemas are even less that when the standard was first written.     

 

Additional related research that has recently been conducted is cited throughout this thesis in 

the appropriate chapters.   

 

2.9 Summary 

 

The literature review has spanned several decades of cinema calibration starting with the first 

known documentation through to the present day standards. To summarize, the SMPTE 

standard in its current form has evolved relatively little from its first inception. This is in light 
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of the fact that almost every aspect of the cinema audio chain has improved vastly, from digital 

audio playback and better transducer technology, to improved room acoustics. In addition, 

methodology for conducting highly accurate listening tests has also come about since the early 

calibration standard was set forward. However, these new technologies and methodologies have 

either not been used or fully executed to prove the efficacy of the SMPTE standard.  

 

The X-curve remains somewhat shrouded in confusion as to its origins and continued 

perpetuation. It is a combination of remnants from old calibration curves based on equipment 

and acoustic compromises and justified through somewhat questionable and outdated 

subjective research that has never been scientifically verified. The standard represented a means 

to reassure, at least to some degree, that a film would not be reproduced in a theatre whose 

acoustic response could not at least provide a minimal degree of playback quality. It was never 

meant to represent a situation of perfect translation from the dub-stage to the theatres, only a 

reasonable assurance that it wouldn't sound bad. It also didn't represent what was subjectively 

desired, as it was only partially based on psychoacoustic factors and those had only been 

marginally proven. The high frequency roll off was a remnant of past standards which were still 

in place during the creation of the original standard and are the natural effect of what happens 

to sound when limited by the equipment, passed through a projection screen and transmitted 

into a large, somewhat reverberant space.  

 

The aim of this research is to examine the quality of the SMPTE calibration method as well as 

new calibration methods as applied in a variety of different-sized dubbing stages and cinemas.  



 

 

Chapter 3 - Re-recording Mixers' 

Survey of Cinema Calibration 

Standard
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3.1 Introduction 

 

A re-recording mixer, also known as a dubbing mixer, is a member of a post-production sound 

team who works specifically with dialog, music and sound effects to create the final soundtrack 

for a film. Their work is performed in a mixing room called a "dubbing stage", or "dub-stage", 

which is essentially a studio that mimics the volume, shape and acoustic characteristics of a 

commercial cinema. They are responsible for ensuring that the sound in a film is technically 

correct, and creatively reflects the director's original idea. They are also responsible for ensuring 

that the final version of the film's soundtrack will be represented as accurately as possible in 

commercial cinemas. 

 

In order to ascertain usage and preference information amongst re-recording mixers, a range of 

questions concerning cinema calibration was asked using quantitative and qualitative questions 

via an on-line survey of film re-recording mixers. The survey served to evaluate mixers' 

attitudes, preferences and mixing practices with regards to the SMPTE calibration standard.  

 

Work in this chapter has previously been presented as the following: 

 GEDEMER, L. 2013. Evaluation of the SMPTE X-curve Based on a Survey of Re-

 recording Mixers. AES 135th Convention, New York, NY: Audio Engineering Society.  

3.2 Motivation 

 

Currently, dubbing stages and commercial cinemas are equalized as closely as possible to the 

X-curve at a location roughly two-thirds of the distance from the screen to the rear wall of the 

rooms. This area of the room has conventionally been considered the most representative 

average of the whole room and is generally where the mixing console is located on commercial 

dubbing stages. 

 

While researchers conduct objective and subjective tests on cinema audio, no known test or 

survey has been targeted at the community which works with cinema audio on a daily basis; the 

re-recording mixers. Survey questions regarding usage and preference can help lead towards 

more focused quantitative research.  
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The following questions serve as a basis in developing the survey: 

• What percentages of film re-recording mixers are currently working on a dub-stage 

calibrated to the SMPTE standard?  

• Are mixers cognitively compensating for the standard and if so, how?   

• Do they feel it provides a consistent level of sound quality translation between the dub-

stage and theatre playback?   

• In what ways does it succeed or fail in terms of sound quality?  

• What alternative calibrations are dub-stages using in its place and why?  

 

3.3 Survey Development 

 

The online survey was created and administered via So Go Survey, which also provided a basic 

level of data analysis and graphing (SoGoSurvey, 2013). The invitation to take the survey is 

shown in Appendix A.  

 

A pilot survey was initially sent directly to five film re-recording mixers within the Hollywood 

film industry, so that questions could be vetted for content and accuracy prior to the final survey 

being administered. The on-line nature of the survey allowed the finalized version to be 

administered worldwide in an attempt to track regional preferences. An online request for 

survey participants was posted on several online forums catering to the audio post-production 

community such as the Post Sound Mixer Group on Linked In (which currently has over 8,000 

members). Each participant who expressed interest was sent a unique link that allowed the 

participant to access the survey only once and did not allow the survey link to be shared with 

others. This secured the survey against "ballot box stuffing" (a person submitting more than one 

survey) or the survey being taken by someone outside the target group; both of which would 

have led to erroneous data. Survey volunteers were also pre-screened to verify their film mixing 

background and appropriateness for the survey. Screening was accomplished by using the 

Internet Movie Data Base (IMDB), a website that tracks peoples' participation on films, 

television shows, games and other types of media (IMDB, 2013).  Participants remained 
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anonymous throughout the survey and the only demographic information collected was that 

which was considered pertinent to the overall study (age, years in the industry, location, etc). 

 

Survey participants were asked to answer questions of various types including interval scaled, 

open-ended, ratio scaled and multiple choice. Questions directly regarding the SMPTE X-curve 

were answered using a 10-point audio assessment scale modeled after qualities suggested by 

Gabrielsson (1979) such as clarity, fullness and brightness.   

 

The survey was made of up 25 questions total with the survey logic being designed in such a 

way as to keep participants from having to answer questions that were incongruous with 

answers from previous questions. The survey was vetted by members of Harman International's 

marketing team who are adept at creating surveys in order to collect marketing data. The survey 

took most participants an average of 20 minutes to complete. The survey questions are shown 

in Appendix B with an example of answers from survey participant #1 shown in Appendix C.  

 

3.4 Survey Results 
 

The following section presents the survey results which were compiled and output directly from 

the So Go Survey program. In total, 35 re-recording mixers from 12 different countries 

participated. There are potential limitations to the final survey results when considering the 

sample size of 35 participants. Though the total number of currently working re-recording 

mixers in the film industry is unknow, a larger sample size may have provided a broader range 

of opinions and a more definitive portrayal of the use and preference of the SMPTE standard 

than those presented in this research. However, the 35 pre-screened participants do represent a 

viable cross section of the industry with regards to age and number of years working as a re-

recording mixer, and so the results of this survey provide valuable insight into the use and 

preference of the SMPTE standard. 
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3.4.1 Participant Hearing 

Of the 35 participants, 66% had their hearing checked within the last 5 years, 20% were checked 

more than 6 years ago and 14% had not had their hearing checked. 80% responded that their 

hearing was found to be normal, while 3% were not sure and 3% answered in the negative. 

3.4.2 Demographics 

Figures 3.1 through 3.3 represent the basic demographic information from the survey.   

 

 

Figure 3.1: Survey participants' ages 

 

 

 
 

Figure 3.2: Number of years in post production 
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Figure 3.3: Number of years as a re-recording mixer  

 

Survey participants were asked to identify which geographic region they were from and the 

breakdown was as follows: 

• 66% USA 

• 3% Canada 

• 6% South America 

• 6% UK 

• 12% Europe 

• 3% Africa 

• 6% Australia / New Zealand 

3.4.3 Work-place Information 

Figures 3.4 through 3.6 represent the information about the survey participants' types of work 

and work-place.   
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Figure 3.4: Percentage of work, by category, which participants typically work in 

 

 

Figure 3.5: Dub-stage size participant works in 
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Figure 3.6: Percentage of participants who work on a calibrated dub-stage 

 

Of the 3 participants who do not work on a calibrated dub-stage, all work outside the United 

States. When asked why their dub-stage does not use calibration, all 3 stated that they felt the 

translation of their mixes from stage to cinema was already good and that calibration was not 

required.  

3.4.4 SMPTE X-Curve Ratings and Responses 

Of the 86% (30 total) participating in the survey who work in a calibrated dub-stage, the 

following graphs depicted in Figures 3.7 through 3.14 represent their answers to questions 

specific to the SMPTE X-curve. 

 

 

 

Figure 3.7: Amount of time participants work at a dub-stage calibrated to the SMPTE X-curve 
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Of the 37% of the participants (11 total) who responded that they only "sometimes" work on a 

SMPTE ST202 dub-stage, the approximate amount of time they work there was broken down 

as shown in Table 3.1: 

 

 

 

Table 3.1: Percentage of part time work spent on a SMPTE ST202 calibrated dub-stage 

 

The data shown in Figure 3.7 and Table 3.1 show that half of all participants who work on a 

calibrated dub-stages (15 total) spend at least 80% of their time working on a SMPTE ST202 

calibrated dub-stage. 

 

Figure 3.8 shows how often the survey participants worked in a SMPTE ST202 calibrated dub-

stage as compared to the size stage they are working in.  Of interest to note is that those who 

work on the two largest sizes of stages spend a majority of their time on a SMPTE ST202 

calibrated dub-stage.  
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Figure 3.8: Percentage of work by stage size versus use of SMPTE ST202 calibration 

 

The 77% of the participants (23 total) who responded that they "always" or "sometimes" work 

on a SMPTE ST202 calibrated dub-stage were asked to assess the quality sonic of their dub-

stages. Figures 3.9 through 3.14 shows these results.  

 

 

Figure 3.9: Quality of high frequency response 

 



Chapter 3. Re-recording Survey of Cinema Calibration Standards  

 

 

60 

 

 

Figure 3.10: Quality of low frequency response 

 

 

Figure 3.11: Clarity of dialog 

 

During informal interviews conducted at the pilot survey stage, several participants expressed 

that room calibration can have an effect on overall spatial quality. For this reason, a question 

regarding spatial quality was added to the survey with the results depicted in Figure 3.12. 
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Figure 3.12: Spatial quality 

 

 
Figure 3.13: Translation of dub-stage mix to cinema 

 

 
Figure 3.14: Overall quality of dub-stage system 
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3.4.5 Does SMPTE ST202 calibration effect how mixers work? 

The 23 mixers who work on a SMPTE calibrated dub-stage (always and sometimes) were asked 

if they ever compensate for the X-curve in their mixes and if so, how. Five of the mixers stated 

that they did not use any compensation. Of the 19 mixers who do use some type of 

compensation, this usually takes the form of high frequency boost most often for music and 

dialog. Three mixers specifically stated the need to boost starting around 5k hertz. Only 1 mixer 

stated the need to use low frequency compensation, primarily below 150 hertz to aid the music 

track from sounding too thin. 

3.4.6 Modified SMPTE and non SMPTE calibrated rooms 

Survey participants were asked if they had ever worked in a room that was calibrated to a 

"modified" SMPTE ST202 X-curve or worked in a dub-stage that use a "house curve" that does 

not follow the SMPTE ST202 standard.  

 

 

Figure 3.15: Percentage of instances where participants work in a "modified" SMPTE X-

curve calibrated dub-stage 

 

Of the 15 mixers who stated that they "sometimes" or were "not sure" how often they worked 

in a modified SMPTE X-curve room, 12 stated that it represented less than 20% of their overall 

work schedule.  
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Figure 3.16: Percentage of instances where participants work in a dub-stage calibrated to a 

"house" curve 

 

Only 6 mixers spend part of their time working in a dub-stage calibrated to a "house" curve and 

of those, 3 of those mixers work there less than 20% of their time.   

 

3.5 Discussion 

 

A series of open-ended questions were asked of the survey participants. The outcomes of those 

questions were compared to the survey data and are discussed in the next sections. 

3.5.1 SMPTE X-curve Calibrated Dub-stages 

The number of mixers compensating for the SMPTE X-curve in the higher frequencies 

coincides with Figure 3.9 and with the fact that 14 mixers rated high frequency response at or 

below average and 10 mixers rating clarity of dialog at or below average. Figure 3.10 shows 

that low frequency response was rated at or below average by 11 mixers, though only 1 mixer 

stated using any compensation in the lower frequencies. This may point towards a hesitancy to 

increase lower frequency which could make the mix "muddy" and further reduce dialog clarity. 

The high level of variability in X-curve compensation amongst mixers undermines translation, 

the corner stone of the SMPTE Standard.  

 

Though a majority of mixers claim to use some type of compensation when mixing to the X-

curve, a vast majority of them (83%) felt that the translation of their final mix from the dub-
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stage to a commercial cinema was above average to excellent. This number is mirrored by the 

quantity of mixers (80%) who rated the overall sonic quality of their dub-stage above average 

to excellent. This may be due to the mixers' years of experience in working in SMPTE calibrated 

rooms and learning to translate their work from dub-stage to cinema. There may also be some 

type of adaptation in process involved that allows mixers to adjust to the response curve their 

room has been tuned to.  

 

From the survey data, it can be noted that 67% of mixers who had 26 to 40 years of experience 

rated their dub-stage to cinema translation above average to excellent, whereas 61% of mixers 

with 11 to 25 years and 46% of mixers with 1 to 10 years rated translation the same way. There 

is a question as to whether these descending experience-related percentages can be attributed 

to the skill of the mixer with regards to translation, adaptation or even hearing loss. Considering 

that mixers who have spent 26 to 40 years in a high volume dub-stage for long hours would 

make hearing loss an extremely plausible reason for being content with translation. 

 

Half of the mixers surveyed spend at least 80% of their time working in a SMPTE ST202 

calibrated dub-stage. Only 3 mixers spend the same percentage of work time in a "modified" 

SMPTE X-curve room. In stark contrast, of the few mixers who work in rooms calibrated to a 

"house" curve, working in such a dub-stage represents very little of their overall work time. 

However, of those who work primarily in SMPTE calibrated dub-stages, approximately half of 

them admitted that here are two-stages of equalization available in the B-chain; one for when 

the room is being calibrated and the other to be used at the discretion of the mixer. Again, this 

type of variability does not lend well to translation as the standard had intended and questions 

whether mixers feel that the X-curve is actually hindering translation in some way.  

 

Figure 3.8 shows that for those who work on the two largest sized dub-stage (at or larger than 

21m x 15m x 9m) spend a majority of their time on a stage calibrated to the SMPTE X-curve. 

This is not surprising as most, if not all, of the large stages started as film-based stages which 

typically necessitated Dolby Certification in order to print master in any of the Dolby encoding 

schemes. To obtain Dolby Certification, the dub-stage had to be tuned to the SMPTE X-curve 

by a Dolby licensed technician. The connection between Dolby and the SMPTE X-curve is 

covered in section 2.2. 
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It might seem counterintuitive to find that 60% of the work carried out on some of the smaller 

dub-stages was completed in X-curved tuned rooms. These rooms are typically too small to be 

film rooms and therefore do not share the same requirements of the larger stages. However, as 

the costs to build large stages went up as post-production budgets went down, there were 

requirements to build smaller dub-stages that could complete cinematic work. On some 

occasions, dub-stages reserved for television mixing were repurposed into film stages. Being 

built or repurposed for film work, these smaller rooms were required to be tuned to the X-curve.  

3.5.2 "Modified" SMPTE X-curve Dub-stages  

The mixers who work on "modified" X-curve dub-stages (not inclusive of those who were not 

sure) were asked if they knew how and why their stages were modified. Of these 12 mixers, 7 

replied that the modifications were made to the high frequency range typically to create a "less 

severe" high end roll off than the standard SMPTE X-curve. The other 5 mixers knew only that 

their stage had been modified in order to improve sonic performance but were not sure how the 

modifications took form. When asked about translation, none of these mixers stated that they 

had any problems with their mixes playing back correctly in commercial cinemas.  

3.5.3 "House" Curve Calibrated Dub-stages 

Of the 6 mixers who work on a "house" calibrated dub-stage, 4 stated that less high frequency 

roll off than the X-curve and no low frequency roll off were used to calibrate the stages they 

work on. Two other mixers stated that the "house" curve used was client specific. These mixers 

offered no comments on the quality of translation between their dub-stage and the commercial 

cinemas.  

3.5.4 Hearing Loss in the Professional Audio Community 

As noted in section 3.4, only 66% of the survey participants stated that they had their hearing 

check with the 5 years prior to the survey while 34% either had their hearing check longer ago 

or not at all.  Even with these percentages, 80% responded that their hearing was found to be 

normal, though it would be difficult for most to state that with complete certainty.  

 

Hearing loss within the re-recording mixing community is a topic that is often avoided, 

especially in light of the number of years it takes to become a top mixer and the prestigious 

awards that these mixers are often given. With the multitude of years on a dub-stage and the 

often advanced age of the mixer, these combine to hasten hearing loss.   
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The House Ear Institute (HEI) in Los Angeles, California carried out large-scale audiological 

testing at four of the largest conventions in the US that attract audio engineers: Audio 

Engineering Society (AES), the National Sound Contractor Association (NSCA), the National 

Association of Music Merchandisers (NAMM), and Lighting Design International (LDI). This 

work was carried out by HEI over a 8 year period from 1997 to 2005 and included 6500 

audiograms collected from 4816 attendees (some attendees had their hearing rechecked over 

successive years) all of whom identifies themselves as professional audio engineers or working 

in a related industry (Cruz, 2005). 

 

 

Figure 3.17: Weighted mean values of air-conduction (pure tone) thresholds for all attendees 

across the conventions, from (Cruz and Fisher, 2004) 

 

Cruz and Fisher found that in comparison to the ISO 19993, the test participants have poorer 

air-conduction thresholds than their age and gender matched peers  (Cruz and Fisher, 2004) . 

Their research went on to reveal that, as the test participants age goes to 40 years old and higher, 

the threshold shift compared to age and gender-matched peers grows even larger, with men 

having the largest discrepancy. Of interest to note, 63% of the participants in the re-recording 

survey were over the age of 40. The overarching finding from the audiological data was that all 

                                                 

3 ISO 1999:1990 - Determination of occupational noise exposure and estimation of noise-induced hearing 

impairment 
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age and gender groups shared a distinct loss in sensitivity in the 4 to 6kHz range. Though these 

audiological tests covered many types of audio engineers, re-recording mixers are certainly part 

of this demographic.  

 

The hearing tests conducted by Cruz and Fisher were standard pure tone audiometric tests and 

clearly unveiled tonal hearing loss in the audio community however, there is a question as to 

how this would translate to a re-recording mixers ability to clearly hear dialog. The ability to 

predict the loss of speech intelligibility from pure tone audiometry has been examined over 

years of research (Anjos et al., 2014), (Fletcher, 1950). Speech Recognition Thresholds (SRT) 

have been closely correlated to pure tone thresholds using various combinations of scores from 

the 0.25, 0.5, 1k, 2k, and 4kHz tone tests (Coren and Hakstian, 1994). In their research, Anjos 

et al found that SRT score has the strongest correlation with the average frequencies 500, 1k 

and 2kHz, while Speech Recognitions Scores (SRS) has the highest correlation with an average 

which include these three frequencies as well as 3k and 4kHz. Smoorenburg noted that hearing 

loss above 1kHz was typically related to the loss of speech reception in noise while hearing loss 

at and below 1kHz was related to the loss of speech reception in quiet (Smoorenburg, 1992). 

However, additional research has found that pure tone tests cannot give a complete picture of 

the loss of speech intelligibility. Researchers have observed that there is little to no correlation 

between pure tone test results and the ability for a listener to distinguish speech in background 

noise, as measured by the Speech in Noise (SiN) test or Hearing in Noise Test (HiNT)  (Moore 

et al., 2014), (Vermiglio et al., 2012). 

 

Dubbing stages are required to follow the Occupational Safety & Health Administrations 

(OSHA) guidelines for work place noise exposure, however, anecdotal information has shown 

that these guidelines are rarely followed or enforced. Table 3.2 shows OSHA's permissible 

levels and exposure times for work-place noise. OSHA considers noises that have variations in 

maxima at intervals of 1 second or less to be continuous.  
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Table 3.2: Permissible noise exposures; from OSHA (1983) 

 

OSHA recommendations are based on an 8-hour work day and allow for a 5dB increase in 

permissible level for each instance that the exposure time is halved (known as an "exchange 

rate"). The latest ANSI standard, ANSI/ASA S3.44-2016/Part 1, prescribes a 3dB exchange rate 

as a general guideline (ANSI, 2016). 

 

Temporary threshold shift (TTS), where a listener experiences a rise in the auditory threshold 

after exposure to noise, can take hours to days to resolve completely (16 to 24 hours is the time 

typically used in hearing research) (Mathur and Roland, 2016). Chronic exposure to noise 

without sufficient time between exposures to allow for recovery can cause threshold shifts to 

become permanent. With demanding schedules and long hours in the studios, re-recording 

mixers typical exceed an 8-hour work day and often work in continuous exposure to 90dBA of 

"noise" or higher on a daily basis without adequate recovery time. Further to this point, it has 

been shown that often hearing loss is caused by repeated exposure to noise above 85dBA over 

long periods (NIDCD, 2016).  

 

The OSHA guidelines do not provide for any specific age-related corrections when taking into 

account appropriate noise level and exposure durations, though this practice is recommended 

by the American College of Occupational and Environmental Medicine (ACOEM, 2007). One 
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of the reasons given by ACOEM is shown in Figure 3.18, which depicts the progression of 

hearing loss following exposure to 90dBA of noise averaged across the work day. The data 

shown illustrates hearing loss for white males at ages 20, 30, 40, 50 and 60 years with 0 - 40 

years of exposure. 

 

Figure 3.18: Progression of hearing loss, white males aged 20, 30, 40, 50 and 60 when 

exposed to 90dBA over a work day for 0 to 40 years; derived from (ANSI, 1996a)  

Many of the survey participants had worked for several years in the movie sound industry with 

82% having work in production audio for over 10 years and 52% having worked specifically 

as a re-recording mixer for over 10 years. This places a majority of the survey participants in a 

noisy work environment for many years and well into advanced years of age. With the 4kHz to 

6kHz dip in hearing shown by the Cruz and Fisher data, added to that of typical age related 

hearing loss, and the impact of years in a noisy work environment, one cannot help but to 

wonder what influence this has on the mixer's ability to judge spectral quality well enough to 

effective mix full bandwidth audio. 

 

Several researchers have linked both noise-induced threshold shift and age related hearing loss 

to the loss of speech intelligibility (Pulkki and Karjalainen, 2015), (Humes, 2015), (Dubno et 
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al., 1984), (Skinner, 1980). Pulkki and Karjalainen further noted that music listening can suffer 

even with small hearing impairments. They went on to recommended that the current A-

weighted levels used should be dropped down to 80dB to 75dB in order to assure hearing health.  

3.5.5 The Possible Effects of Learning 

Re-recording mixers are exposed to their listening environments for very long periods of time 

on a daily basis, possibly leading to this having the strongest effect on their overall audio 

preferences. The concept of 'mere exposure effect', where repetitious exposure to a stimulus can 

lead to a positive effect, has been well covered in psychological research literature (Baddeley 

et al., 2014),  (Zajonc, 2001), (Bierley et al., 1985). 

 

In 1956, Kirk undertook an experiment to understand a similar concept, 'implicit learning'. In 

this experiment, Kirk repeatedly exposed 210 college students to music which had been band-

limited into one of four frequency ranges, as shown in figure 3.19. 

 

 

Figure 3.19: Four response curves used in frequency range preference test from (Kirk, 1956) 

 

The results of this experiment showed evidence that students who repeatedly listened to music 

reproduced over a restricted frequency range came to prefer this range when given a choice.  

 

The results of Kirk's experiment are compelling, though conclusions should not be drawn solely 

from a single experiment; especially one involving the complex processes of human learning. 
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Research in the area of audio preference based on exposure time has produced conflicting 

results (Olive, 2012), (Dougherty, 2009). However, the concepts of mere exposure effects and 

implicit learning should not be overlooked when consider what influence these may have on re-

recording mixers adaptation to thse SMPTE X-curve and how it affects the way they mix.  

 

3.6 Conclusion 

 

Re-recording mixers compensating the for high frequency roll-off is far from being a new 

concept, as was noted by Allen with regards to the old Academy curve (Allen, 1975). Allen 

further noted that the ways in which compensation was applied varied from film to film and 

from studio to studio.  

 

From the overall results of the survey, it appears that re-recording mixers have become 

acclimated to working with the SMPTE X-curve or some form of it. However, it is clear that 

when they do, there is a prominent trend to compensate for it by increasing the overall level of 

the mix in the higher frequencies. Given the average age of the mixers surveyed and the 

numbers of years that they have worked in sound, some of this compensation may be due to 

hearing loss. With either of these issues in mind, there is a strong question as to whether the 

audience will agree with the mixer that the final soundtrack has effectively translated from the 

dub-stage to the commercial cinema.  

 

The overall theory of translation is continuously called into question by the variable means in 

which some mixers compensate for the X-Curve, the difference in calibrations carried out on 

the dub-stages they work on, and the perceived level of translation that they feel they are 

achieving.  

 

3.7 Summary 

 

In this chapter, a survey of re-recoding mixers was undertaken in an effort to understand their 

usage and sonic preferences with regards to working on a dubbing stage. First, data was 

collected on demographics such as age and the numbers of years mixers had worked in the 
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production / pro-production sound industry, and what country they are working in. Next, the 

survey participants were asked about their work and work-place. This included questions on the 

types of projects they worked on, the average size of the dub-stage that they most often worked 

on and how that stage is typically calibrated. Only mixers who worked on calibrated dub-stages 

were ask the next series of questions regarding how the rooms they work in were calibrated and 

how they perceived the resultant sonic quality. Finally, a series of open-ended questions were 

asked of the former set of mixers in order to gain further insight to the previous answers they 

had given and to see how the data may be related.  

 

A comparative analysis was carried out on various sections of data in an effort to get a complete 

understanding of how the mixers' demographics, work environments and mixing techniques 

may influence the way their mixes are created within a calibrated dub-stage. Data from various 

sources on hearing loss were also considered in this analysis.  

 

A brief review of occupational noise exposure and hearing loss as it pertains to re-recording 

mixers was discussed. In addition, the concept of a learning effect with regards to mixer 

adaptation to the X-curve was explored. 

 

 

 



 

 

 

 

Chapter 4 - Validating the Binaural 

Room Scanning (BRS) Method for 

Cinema Research 
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4.1 Introduction 

 

Even in the early years of cinema calibration, there was a belief that any method of assessing a 

cinema loudspeaker system should include the effects of subjective factors. As early as 1946 

the Theatre Sound Standardization Committee of the Motion Picture Research Council 

undertook efforts to correlate subjective listening tests with cinema loudspeaker measurements  

(Hilliard, 1949).  

 

Around the time that the early SMPTE and ISO standards were being written in the late 1960's, 

Vlahos somewhat ironically noted that new techniques and technology for acoustic 

measurements should ultimately replace subjective listening test methods for determining 

cinema acoustic response (Vlahos, 1969). However, as Toole has noted on various occasions, 

the human hearing mechanism should not be replaced by an omni-directional microphone 

taking steady-state measurements, such as the one required by the SMPTE standard. This 

system simply cannot make allowances for sounds arriving from different directions at different 

times and the spectral variations among these sounds. The human hearing system, which 

includes the brain, is much more analytical and responds differently to sound than a microphone 

connected to an analyzer (Toole, 2015), (2008), (2006).   

 

For this reason, assessments of target response curves, regardless of which curve is in question, 

should not ignore the use of subjective testing as a valuable research tool. However, conducting 

subjective studies in situ is not always possible for logistical reasons. The work in this chapter 

involved validating a Binaural Room Scanning (BRS) system as a possible replacement for in 

situ testing for full-scale scientific studies on listener preference for room target response 

curves.  

 

The first stage of this research investigated the effect of playback method, BRS and in-situ 

listening, on two smaller rooms which both model spaces where listeners watch movies; a living 

room and a purpose-built home theatre. The second stage moved this research into a cinema-

sized lab in order to study the effectiveness of the BRS system for cinema research.  
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This chapter reports the results of validation tests which made use of a custom BRS system that 

was originally developed for research and evaluation of different loudspeakers and different 

listening spaces (Olive et al., 2007). To validate the performance of the BRS system, listening 

evaluations of different in-room equalizations of a 5.1 loudspeaker system were made both in 

situ and via the BRS system. This was repeated using three different loudspeaker systems in 

three different sized listening rooms.  

 

Work in this chapter has previously been presented as the following: 

 GEDEMER, L. & WELTI, T. 2013. Validation of the Binaural Room Scanning Method 

for Cinema Audio Research. AES 135th Convention, New York, NY: Audio Engineering 

Society. (Gedemer and Welti, 2013b) 

 GEDEMER, L. & WELTI, T. 2013.Validation of the Binaural Room Scanning Method 

for Cinema Audio Research. Reproduced Sound 2013, Manchester, UK: Insitute of 

Acoustics. (Gedemer and Welti, 2013a) 

 GEDEMER, L. 2015. Subjective Listening Tests for Preferred Room Response in 

 Cinemas - Part 1: System and Test Descriptions. AES 139th Convention, New York, 

NY: Audio Engineering Society. (Gedemer, 2015b) 

 

4.2 Motivation 

 

Conducting subjective listening tests in situ within a commercial cinema or professional dub-

stage can prove logistically difficult. Binaural Room Scanning (BRS) affords many practical, 

logistical and methodological benefits over in situ listening tests, including the elimination of 

sighted biases related to the objects being tested (Mackensen et al., 1999). BRS provides the 

benefit of allowing larger samples of listeners to participate in testing, something that 

professional dub-stages and public cinemas cannot easily accommodate. It allows many of the 

acoustic factors of the loudspeaker and/or listening space to be captured, reproduced and 

evaluated in a controlled and reliable manner. BRS also allows different experimental variables 

to be easily manipulated and presented to listeners over different time periods to study how they 
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learn and adapt to varying loudspeakers and acoustic environments (Olive et al., 2007), 

(Pellegrini et al., 2007), (Bech et al., 2005), (Christensen et al., 2005), (Pellegrini, 2001), 

(Horbach et al., 1999). For the experiments presented in this chapter, this particular benefit 

allowed the control of independent variables such as different rooms, seating positions and 

target room curves, with the ability to have listeners switch at-will between target room curves 

being a key aspect.  

 

BRS systems have shown a significant positive correlation with responses to in situ listening 

tests for loudspeaker preference (Olive et al., 2007), loudspeaker setups (Koehl et al., 2011), 

dub-stage and cinema reproduction over headphones (Smyth et al., 2010),  and automotive 

audio tests (Olive and Welti, 2009),  (Bech et al., 2005). The work of Koehl and his team further 

demonstrated that headphones enabled better consistency between the listeners than the 

loudspeaker setups used. However, in order to move forward with utilizing a BRS system for 

cinema research the system needed to be validated and shown that it was appropriate for such 

use.  

 

4.3 Overview of Binaural Room Scanning 

 

In past decades, psychoacoustic studies have utilized binaural capture and playback systems for 

a wide variety of experiments including those of loudspeakers (Olive et al., 1994) listening 

rooms (Olive et al., 1995) concert halls (Schroeder et al., 1974) and automotive audio systems 

(Granier, 1996). Lacking the equipment or ability to track the listeners' head movements, these 

earlier studies utilized single-position Binaural Room Impulse Responses (BRIRs) but noted 

the limitations of static position playback, such as localization errors. Several previous 

experiments (Mackensen et al., 1999), (Thurlow and Runge, 1967), (Thurlow et al., 1967), 

(Wallach, 1940), showed the importance of head rotation in the horizontal plane for accurate 

sound rendering. With consideration of these findings, the audio capture and playback in a BRS 

system is reliant on, and must be performed with, the actual head orientation angle. In doing so, 

confusions that can lead to unreliable test results, such as front-back reversals and internal-

external localization as described by Blauert (1997), can be widely avoided.  
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In subsequent years head-tracking technology evolved and, when teamed with a rotatable 

binaural microphone, became a cost-effective tool for listening tests now known as Binaural 

Room Scanning. BRS can trace its origins back to 1999 when Ulrich Horbach, then a researcher 

at Studer working on digital mixing consoles, set out to develop a system that would offer 

professional sound engineers the ability to remotely monitor their mixes via headphones 

through a scanned copy of their studio environment. BRS is defined as a method of capturing a 

binaural representation of a sound source and the room it is located in using a dummy head with 

binaural microphones in the ears and then later reproducing it over a pair of calibrated 

headphones. Capture is undertaken by using a manikin equipped with microphones placed at 

its ears in an effort to mimic a human listener. The manikin head is equipped with a stepper 

motor which allows the capture of BRIR at various rotational angles. With this system, multiple 

BRIRs are made at differing head angles which are then stored separately as data files. During 

playback, music or other types of audio signals are processed through the appropriate head-

oriented BRIR filters using a real-time convolution engine. The BRIR processed audio signal 

is reproduced through high-quality headphones equipped with a low-latency head-tracking 

system (Horbach et al., 1999). This method is aimed at ensuring that the in-room signals are 

presented in a spatially-stabilized manner as listeners turn their heads, thereby avoiding most 

localization errors.  

 

Figure 4.1 shows simplified block diagrams of the BRS scanning and playback systems.  
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Figure 4.1: Block diagrams of the binaural room scanning (BRS) measurement and  

playback system 

 

4.4 Potential Sources of BRS Errors 

 

Olive and his team (2007) identified the source of potential errors with the BRS system and 

defined them as:  

 1) Measurement errors – These are related to the repeatability and accuracy of BRS 

 measurements and the playback of binaural signals.   

  2) Anatomical errors – These are related to the differences in the shape and size of the 

 manikin’s head/torso/pinna versus listeners’.  

Playback using Sennheiser HD 518 
headphones and Logitech 
ultrasonic head-tracker. 
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 3) Positional errors – These are related to positional differences between the manikin’s 

 head at the time of the BRS measurement, and the listener’s head observed in situ.    

 4) Cognitive-related errors – These are related to errors from inaccurate BRS 

 reproduction of non-auditory (e.g. tactile and visual) stimuli. 

These errors were categorized as directionally-dependent and directionally-independent with 

sub-categories of non-individualized and individualized, as shown in figure 4.2. 

 

Figure 4.2: Source of BRS errors; derived from (Olive et al., 2007) 

The directionally dependent errors are those measurement errors which change as the angle of 

the sound arriving at the binaural manikin's ears changes. These types of errors can all be 

classified as "individual". In contrast, directionally independent errors are not influenced by the 

location of the listener's ears or the sound source. Directionally independent errors can be 

further broken down into individualized and non-individualized errors.  

4.4.1 Directionally Dependent Errors 

The first two sources of directionally dependent errors are directly related to the physical 

differences between the listener and the manikin. One error is based on the differences in pinna 

/ concha shape while the other is due to differences in head / torso shape and size. These errors 

change with each individual and therefore cannot be corrected through the use of a globally 
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applied filter. The third source of directionally dependent errors stems from the BRS calibration 

process itself, which is further explained in section 4.5.2. This error is based on the idea that 

the calibration of the BRS system to one loudspeaker, room or headphone may not be 

appropriate to apply to other like objects. The reason that this error falls into the individual 

classification is that it will change from one object to another, such as calibrating to a particular 

set of headphones and then applying the calibration filter to a different set of headphones.  

 

The first error is difficult and time consuming to correct as it requires that each test subject's 

pinna / concha be measured and taken into consideration during calibration. There are also 

questions as to whether individual pinna measurements are required. Researchers have found 

that, when using head-tracked binaural playback, listening test results on localization accuracy 

are the same as when the listener sits in the manikin's position (Romigh et al., 2015), (Begault 

et al., 2001), (Horbach et al., 1999). Research has also shown that listeners tend to adapt to non-

individualized binaural recording and, with repeated listening tests, further adaptation helped 

to resolve many of the initially perceived errors (Zahorik, 2002), (Minnaar et al., 2001).   

 

The second error has been identified as changes in arch-shaped notches in the mid-band 

frequencies that lessen as the frequencies get higher (Algazi et al., 2001). However, more 

perceptual research on this type of error needs to be conducted to determine if it is significant. 

In the case of the BRS experiments conducted for this thesis, the third error is of no consequence 

as the headphones utilized in the calibration procedure were the same ones used for the listening 

tests.  

4.4.2 Directionally Independent Individualized Errors 

The first source of directionally independent individualized error is caused by the differences 

in transfer function between the manikin's and the listeners' conchae. This error is somewhat 

directionally independent, with the non-directional (frequency response) part of this error being 

corrected during calibration.  The second source of error is related to the change in frequency 

response of the headphones due to varying fit between listeners and repeated re-seatings of the 

headphones. Compensating for varying fit is difficult, as it once again requires measurements 

for each individual listener and there remains a question as to the magnitude and perception of 

this error. Informal listening tests by the author and her colleagues have indicated that this is 

not mandatory, although further research is needed. Attempts are made to correct for a degree 
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of re-seating errors by undertaking the energy averaging of several re-seated measurements on 

the binaural manikin prior to calibration.  

Errors caused by the difference in manikin and listener seating locations in these experiments 

were minimized by carefully measuring and marking the locations by using a hand-held laser 

distance measurer (Bosch GLM 30 MP). Though exact placements of the listeners can be 

difficult, it is believed that any residual error is probably unnoticeably small.   

4.4.2 Directionally Independent Non-individualized Errors 

Directionally independent non-individualized errors are typically the easiest and least costly to 

correct. Non-linear frequency responses from the manikin microphones, microphone pre-amps 

and headphones can all be corrected with a single filter set and in a one-step process, as is 

shown in section 4.5.2. Regularization and smoothing of the signals during the calibration 

process, as described in section 4.5.2, will also introduce some amount of error which is difficult 

to avoid but a necessary tradeoff.  

The lack of tactile and/or visual cues can create another source of directionally independent 

non-individualized errors. These errors were present in the experiments reported in this thesis; 

notably the lack of tactile feedback from the subwoofers which were not present during BRS 

playback and the absence of visual feedback with respect to the rooms which were scanned.    

Concerns regarding visual errors brought on by a type of cognitive dissonance when comparing 

BRS and in situ playback have been shown to be unwarranted in similar tests for automotive 

audio (Postel et al., 2011), and loudspeaker auditioning in varying rooms (Olive and Martens, 

2007). In their research, Gros and Chateau showed that environmental and/or visual cues have 

little influence on audio quality scores (Gros and Chateu, 2002). Beresford et al. further look at 

the significance of differences in listening environments when comparing a listening room to a 

car with final results of their listening tests broken into two groups: trained and untrained 

listeners. For untrained listeners, the lack of visual accord did not have a significant effect on 

quality scores. For trained listeners, there was an interaction between stimulus and visual 

context but it proved to be of a very small magnitude (η2 = 0.017) (Beresford et al., 2006a), 

(Beresford et al., 2006b). These studies also lacked the tactile feedback of a subwoofer, which 

did not appear to have an influence on listener's ratings. However, this issue warrants further 

research.  
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4.5 BRS System Validation 

 

The performance target for the BRS system is relatively straightforward: the system should 

accurately capture a listening space and deliver the identical signals to the listeners' ears as if 

they had been receiving those signals in situ. 

 

The specific method of validating the BRS system as covered in this chapter was chosen due to 

its relationship to how the author ultimately intended to use it. Its primary application was to 

be for conducting research into cinema in-room target response preferences with respect to 

varying program material, room size and seating positions within rooms. The experiments in 

this chapter addresses how well the BRS system performs when used as a substitute for in situ 

listening, specifically when preferences to room response curves are in question. The main 

research question was: "Are there significant differences in listeners' room response curve 

preferences using BRS playback compared to in situ playback?" 

4.5.1 Binaural Room Scanning 

The BRS system utilizes a custom-built full-body manikin built by Harman Becker Automotive 

and outfitted with DPA 4060 omni-directional microphones placed at the blocked canals of the 

binaural manikin. The location of the microphones was chosen because it produces the least 

inter-listener variability in head related transfer function (HRTF) measurements (Blauert, 

2005), (Hammershøi and Möller, 1996). The neck of the manikin was equipped with a stepper 

motor so that its head could be rotated within the horizontal plane at selectable resolutions 

starting at 1º. Figure 4.3 shows the binaural room scanning manikin used for these experiments; 

"Sidney", which was named after Sidney Harman.  
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Figure 4.3: Full-body binaural room scanning manikin 'Sidney' 

 

The performance of Sidney is comparable to commercially available head and torso simulators, 

and falls within the IEC 60318-7 tolerances4 (IEC, 2011). The HRTF responses of Sidney and 

3 commercially available head and torso simulators are shown in figures 4.4 and 4.5. 

                                                 

4 Electroacoustics - Simulators of human head and ear - Part 7: Head and torso simulator for acoustic measurement 

of hearing aids 
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Figure 4.4: Free-field HRTF of Sidney Head and Torso Simulator at 0° Azimuth, Left Ear 

Presented 

 

Figure 4.5: Free-field HRTFs of Brüel & Kjær, G.R.A.S. and Head Acoustics Head and Torso 

Simulators at 0° Azimuth, Left Ear Presented; from (Snaidero et al., 2011) 
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The system computer (Lenovo Thinkpad T420s) ran a custom Matlab program5 which 

generated the test signals and recorded the measured sets of BRIRs. The test interface for this 

program is shown in appendix E. The test signal used was a swept sine wave which gave an 

optimal signal-to-noise ratio at low frequencies (Farina, 2000). The signal-to-noise was further 

improved by averaging several repeated measurements. The playback levels for the swept sine 

waves were adjusted to create an SPL of approximately 80dBA at the listening position. 

 

The BRIRs were measured for a range of horizontal head orientations at the listener's location 

in three different rooms using a 5º angular resolution. Research has shown that sensitivity to 

horizontal rotation depends highly on the audio material utilized. In the case of pink noise, it 

has been noted that a source rotation of 2.5º could make an audible difference (Hiekkanen et 

al., 2009). This observation is congruent with the findings of Blauert, who observed that 

localization blur in the horizontal plane can be less than 2.5º during listening tests with pink 

noise (Blauert, 1997). However, Hiekkanen noted further that even a change in source direction 

of 10º was found difficult to notice with certain music signals.  In fact, the angular resolution 

for a BRS scan is not directly comparable to localization blur as they are two different issues. 

The latter relates to a stationary head and moving source, the former relates to a stationary 

source and moving head.  In work by Welti and Zhang (2010), it was found that listeners had 

difficulty discriminating between 5º, 10º and 15º angular resolution for BRS playback of music 

signals. For these reasons, a horizontal resolution of 5º was deemed to be acceptable, especially 

in light of the fact that source localization was not a parameter under test. Binaural impulse 

responses were taken in 5º increments from -40º to +40º to render a total set of 17 BRIRs. The 

horizontal limits of +/-40 º was chosen based on previous studies having shown that head-

tracking should not be restricted to under +/-30º from center line, in order to achieve a sense of 

naturalness (Laitinen et al., 2012).  

 

During playback, program material was convolved with the BRIR filter sets using a Matlab-

based real-time convolution engine. The head-tracker monitored the angular position of the 

listener’s head and sent the updated coordinates to the BRS playback software that switched to 

the appropriate BRIR filters corresponding to that angle. Interpolation algorithms embedded 

                                                 

5 The program is owned and copyrighted by Harman International and therefore the author, who is under non-

disclosure agreements with Harman, is not allowed to release any details of this program.  
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into the Matlab code provided smooth transitions between the different binaural filters. 

Correction filters for the combined manikin head microphones and playback headphones, as 

well as the in situ loudspeaker responses were also applied, as described below.  

4.5.2 Calibration of Manikin Microphones and Playback Headphones 

For the BRS tests, Sennheiser HD518 circumaural headphones were chosen as the reference 

headphones. These headphones are free-air equivalent, with open-backs and low acoustic 

source impedance, which make them suitable for the reproduction of binaural signals captured 

at the blocked meatus of the manikin's ears (Møller et al., 1995). There were a few criteria that 

further made these headphones a good choice for this task including their consistent fit and seal 

on the listeners’ head and ears, which are necessary for repeatable sound reproduction. In 

addition, these headphones have a relatively wide bandwidth and smooth frequency response 

(not flat, but smooth). Møller et al noted that, ideally headphones for binaural playback should 

have a linear or easily correctable transfer function.  

 

The Sennheiser HD518 headphones were first measured on a GRAS 45CA test fixture equipped 

with an IEC 711 coupler in order to verify their performance. The headphones were then re-

measured on the binaural room scanning manikin. This calibration technique attempts to correct 

the entire BRS measurement system and playback chain, including the headphones, using a set 

of filters as shown in figure 4.6. 

 

Figure 4.6: Simultaneous calibration of manikin microphones and headphones; stored as 

filters Hcr and Hcl 

 

A study by Schärer and Lindau observed that, when using non-individualized BRIRs and non-

individualized headphone correction filters, the process of correcting the manikin microphones 
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and headphones simultaneously provided the best possible frequency response compensation 

(Schärer and Lindau, 2009).  

 

The correction filters (Hcr and Hcl) were created in Matlab and began by smoothing the notches 

in the frequency domain prior to creating an inverse transfer function. Smoothing deep notches 

in the frequency response serves many purposes including the avoidance of ringing artifacts 

caused by excessive peaks in the inverse filter, prevention of adding additional noise, and 

reductions in computational load. During processing, a nonlinear regularizing function is used 

to give priority to peaks. With this approach, there will still be some deep notches in the resultant 

post-calibrated frequency response; however, it has been found that these types of dips are less 

audible than peaks and are therefore less of a concern than the peaks that would be created had 

the notches been left unsmoothed  (Toole and Olive, 1988), (Bücklein, 1981).  

 

The correction filter is then band limited to minimize errors in the upper frequencies where 

deep notches are most prominent, and to avoid excessive boosting in the lower frequencies 

where the response of the headphones rolls off. The accuracy of correction (or error 

minimization) is thereby concentrated in a specific all pass region, in this case the region 

between 25 Hz to 14k Hz. The frequency response of the filter is then smoothed once again to 

correct for discontinuities created by abruptly band limiting the all pass region. A cepstral 

processing technique (Matlab rceps(x)) was used to derive a minimum phase impulse response 

from the magnitude only correction filter (Oppenheim and Schafer, 1975).  

 

Figure 4.7 shows the resultant measured frequency response of the left and right channels. 

These curves were based on an average of six reseats of the headphones with the goal of 

minimizing errors related to headphone positioning on the manikin. Figure 4.7 shows the 

response of the headphone before (dotted curves) and after flattening (solid curves).  
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Figure 4.7: Measured frequency response of the left and right channels: dotted curves show 

the frequency response of the left and right channels of the Sennheiser HD518 headphones, 

the solid lines show the same after equalization  

 

Riederer investigated the characteristics and repeatability of headphone-to-ear transfer 

functions (PTFs) and noted that deviations due to repetitions in headphone re-seatings (5 resets) 

was less than 3dB below 7k Hz and around 3dB up to 13k Hz (Riederer, 2005, Riederer, 1998).  

His results were obtained using circumaural headphones (Sennheiser HD580), similar to the 

ones used in these experiments. This underlined the need to band limit the equalization of the 

HD518 headphones to a range of 25 Hz to 14k Hz; taking into consideration that above 14k Hz 

can be problematic due to the increasingly variable response of headphone re-seatings.  

4.5.3 The Selected Listening Rooms 

Three different sized rooms were utilized for these experiments; the Living Room, Eargle 

Theatre, and Arena Lab, all of which are demonstration rooms at Harman International’s 

Northridge campus. These rooms were specifically chosen as they are representative of typical 

environments in which people watch movies. One room, the "Living Room", with dimensions 

of 2.4m (H) x 4.3m (W) x 6.5m (L), approximates the size and acoustical properties of the 

average home living room.  There are heavy curtains on the back wall, fabric wrapped acoustic 

panels on the sidewalls, and the floor was covered with low pile loop carpet.  Other furnishings 
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include metal frame office chairs and equipment shelving. The second room, the “Eargle 

Theater” which measures 2.7m (H) x 5.3m (W) x 7m (L), is representative of a high-end, 

purpose-built home theatre. Acoustical treatment includes cloth covered wall cavities with 

absorptive material, leather theatre seating, heavy curtains, and wall-mounted diffusive panels. 

The third room, the "Arena Lab" is a cinema sized space that is acoustically treated with 

acoustic padding on the walls and spray-on acoustic fiberglass insulation on the ceiling. This 

room is typically used for large audio system testing and has dimensions which measures 8.5m 

(H) x 14.6m (W) x 14m (L) with a reverberation time of 0.62 seconds. Photos of all three 

listening rooms are shown in appendix D. 

4.5.4 Flattening of In Situ Loudspeaker Responses  

For both the BRS and the in situ tests, the loudspeakers were individually measured at the 

listening position in the three different sized room using the Harman Audio Test System (HATS) 

and nine dbx RTA-M omnidirectional microphones. First, a correction filter was created for 

each individual microphone by calibrating them in an anechoic chamber applying the IEC 

61094-8 free-field substitution method using a JBL M2 as the source and a Bruel and Kjaer 

4136 as the reference microphone (IEC, 2012). The microphones were then placed in an array 

centred around the listening position on a 47.5 cm (18 in) grid. The spatial average of the nine 

microphones was used to create a "flattening" filter for the in situ loudspeaker response which 

was applied to both the in-site and the BRS playback systems. This flattening filter was created 

using the "AutoEQ" function in HATS and is implemented using a BSS Audio BLU-800 

processor for playback. A simplified block diagram of this system is shown in figure 4.8. 

 

 

Figure 4.8: Calibration of the in-room loudspeaker response to create the flattening filter Hr. 

Hm represents the individual microphone correction filter 

 

AutoEQ allows for a measured curve to be matched to a target curve stored within HATS via a 

set of automatically assigned filters whose general parameters are set by the user. These 

parameters include the number of bi-quads assigned, start and stop frequencies, sample rate, 
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level matching, peak to dip ratio, and input curve smoothing, amongst others (Devantier, 2011). 

An example of the AutoEQ assignments for a single loudspeaker channel is shown in appendix 

F. Figure 4.9 gives an example of a centre loudspeaker before and after it has been equalized. 

 

 

 

Figure 4.9: Example of HATS AutoEQ. The spatial average (orange) is equalized to match the 

flat target curve (red). The correction filter, Hr, is shown in green. The resultant measured in 

situ loudspeaker response is shown in blue 

 

The final collective "flat" baseline response was used in conjunction with each of the 4 target 

response curves, thus ensuring that any audible differences among curves were likely related to 

differences in their frequency responses, and not the response of the manikin microphones, 

playback headphones, calibration microphones or in situ loudspeaker response.  

4.5.5 Creation of In-room Target Response Curves 

The validation experiment outlined in this chapter was based on analyzing listeners' preferences 

between four in-room target response curves (A-D) using the BRS playback method and 

comparing them to those of the in situ method.  
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ITU-R BS.1534 recommends that, when using the Multiple Stimuli with Hidden Reference and 

Anchor (MUSHRA) test methodology, a well-defined anchor should be used as a hidden 

reference (ITU, 2015). This anchor is used to provide a baseline, or reference, for comparison 

and to help identify "outliers" within the group of listeners. The use of a hidden reference aids 

in the assessment of listener reliability and subjective bias (Harris and Holland, 2009).  For the 

anchor to be considered an effective baseline, it is recommended that its characteristics are 

similar to one of the other signals under testing (Zielinski, 2016).  

 

Curve A simulated the SMPTE X-curve with a high frequency roll off of 4dB between 2kHz 

and 8kHz and a low frequency roll off starting at 50Hz. Curve B represents the anchor used and 

was roughly based on the SMPTE X-curve but with an added rise at 1kHz. Curve D was derived 

from research conducted by Olive et al on target response curves for listening rooms and 

headphones. This in-room target curve is flat with a 7dB boost starting below 100 Hz, and a 

gentle treble cut of -1dB starting at 235Hz. The 8dB slope of Curve D is similar to the target 

curve that was preferred in recent studies on different room correction products and headphones 

(Olive et al., 2013a), (Olive et al., 2013b), (Olive et al., 2009). Curve E utilized no equalization, 

thus leaving a flat in-room response. Curve C was omitted from this experiment but was utilized 

in further experiments and is described in Chapter 5. 

 

The in-room target responses applied to both the in situ and BRS playback systems were 

designed using the AutoEQ function in HATS, and implemented using the BSS Audio BLU-

800, and are shown in figures 4.10 through 4.12. 
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Figure 4.10 Target room response curve 'A' 

 

 

Figure 4.11: Target room response curve 'B' 
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Figure 4.12: Target room response curve 'D' 

 

4.5.6 Program Material 

Four different 5.1 music programs were selected including an orchestral film score (RS), Steely 

Dan's "Gaslighting Abbie" (SD), Blue Man Group's "Sing Along" (BM) and Toy Matinee's 

"Last Plane Out" (TM). The pop music tracks were digitally transferred from a DVD-Audio 

compact disc, and saved as 6-channel waveform audio file (*.wav). The orchestral score which 

was obtained as 6 discrete mono wave files directly from the engineer who mixed this track. 

This track was then imported into ProTools, and converted to a single 6-channel interleaved 

.wav file.  All files were levels matched and edited into short 20-30 second loops using ProTools 

digital editing software and saved as 6-channel (16 bit, 48 kHz) waveform audio file (*.wav). 

All four programs have broad and smooth long term spectra indicating they contained signals 

that were sufficiently spectrally dense and broadband to facilitate reliable judgments of bass 

and treble balance, in addition to being revealing of spectral features based on previous tests 

and listener training exercises.  

 

Figure 4.13 shows spectral analysis of the program material. For each program loop long term 

power spectral density using the Welch method (Welch, 1967) was calculated for each channel, 

and the results summed to represent overall content.  
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Figure 4.13: Long-term spectral power density of the four pieces of program material, 

levels normalized at 500Hz 

 

In previous research, Olive found that pink noise elicited the highest percentage of correct 

responses (88%) in listening tests matching the timbre of 8 different equalization curves to their 

measured frequency response. A piece of pop music used in the same test scored extremely 

close to pink noise (87.5%). It was believed that this occurred due to the pop music's extended 

bass when compared to solo vocal music, jazz music, solo or small instrument ensembles, or 

spoken voice. This piece of music was also linear, though not flat, throughout the vocal range 

(100Hz to 1kHz). Both Toole and Olive identified full orchestra and popular music as ideal test 

signals for spectral based listening tests (Toole, 1982), (Olive, 1994). This further influenced 

the choice of programs used in this research.  

4.5.7 Selection of Listeners 

A total of nine listeners: three females and six males were selected for the tests, all of whom 

were Harman employees paid for their participation. Subjects had their hearing tested using an 

Earscan® ES3, ANSI S3.6 compliant pure tone audiometer, and were found to have normal 

hearing per ISO standard 389-1 (Earscan, 2013), (ANSI, 1996b), (ISO, 1998). All of the test 

subjects were appropriately briefed by use of a standard script in order to avoid inadvertent 

experimenter bias and were trained using example tests prior to recorded experiments 
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commencing. In addition, the subjects needed to have passed listener training tasks that required 

them to reliably identify and discriminate among different spectral distortions added to different 

music programs, achieving a skill level of eight out of ten or higher in all tasks. This training 

was carried out using Harman's "How to Listen" software (Harman, 2011). The listeners’ 

experience with formal listening tests ranged from 1 to 20 years.  

 

With listening tests there are always questions whether to use trained or untrained listeners. Can 

trained listeners effectively represent a general section of the population? Are trained listeners 

really more selective and reliable? Isn't a larger group of untrained listeners better than a small 

group of trained listeners? The decision to use trained versus untrained listeners was based 

partially on the requirements of the ITU-R BS.1116 standard and with the recognition that 

untrained subjects typically do not provide reliable data (ITU, 1997). This coincides with the 

findings of Gabrielsson and his team, who observed that trained listeners tend to provide more 

consistent ratings across varying tests and objects under observation (Gabrielsson, 1979, 

Gabrielsson et al., 1974). Previous research has also found that trained listeners tend to use a 

smaller portion of the rating scale in addition to a tendency to use the lower part of a preference 

scale. Trained listeners do not necessarily have different preferences than untrained listeners 

per se, but they appear to be more critical and difficult to please. Untrained listeners, on the 

other hand, have a tendency to use much larger portions of the ratings scale which in turn has 

been shown to lead to a larger error variance (Olive, 2003). Trained listeners also show stability 

in the adoption and use of the rating scale; the range of ratings remains confined to an area and 

does not to vary as the listeners "learn" the test. In opposition, untrained listeners will typically 

use a larger portion of the rating scale at the beginning of the test and then move towards using 

a smaller portion as they adjust to the test, with this process tending to be repeated with each 

new test that they take. In his research, Bech also found an "economy of scale" when using 

trained listeners in the fact that a particular confidence interval from 1 trained listener was 

equivalent to that of averaging up to 7 untrained listeners (Bech, 1992).  

4.5.8 Test Design 

The listening test was administered using a MUSHRA-style test where subjects were asked to 

rate their preference amongst four different in-room target response curves applied to three 

different cinemas. During the tests, the in-room target curves were comparatively rated on an 

11-point preference scale that had semantic differentials on every second interval labeled: 
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Strong Dislike (1), Dislike (3), Neither Like/Dislike (5), Like (7), and Strong Like (9). A strong 

preference between target curves was indicated by a separation in preference ratings of ≥ 2 

points, a moderate preference ≥1 points, and a slight preference ≤ 0.5 rating. 

 

For the two smaller listening rooms, the Living Room and the Eargle Theatre, validity of the 

BRS system was tested using a 2 x 4 x 4 x 2 x 2 repeated measures ANOVA design where the 

between-subjects factor was playback method (in situ or BRS playback method). The 

independent variables were: two test methods (BRS, in situ), four room response curves (A 

through D), four programs (film score and three popular music pieces), two rooms, and two 

observations while the dependent variable was preference rating. Due to scheduling constraints 

and lab availability, not all of the same listeners were available for testing on the Arena Lab and 

so it was required that this room be validated in a separate experiment. The same ANOVA 

design as the smaller listening room was used with the exception of the independent variable 

"room" set to 1 (2 x 4 x 4 x 1 x 2).  

 

The experimental context in which auditory stimuli are presented has been shown to influence 

preference choices or ratings (Rumsey, 2006). In a similar manner, it has been demonstrated 

that the trial ordering of music programs has influenced preference choices for different 

multichannel microphone techniques (Kim et al., 2006), (Martens et al., 2006). For these 

reasons, all presentations of the stimuli were performed using a double-blind, multiple 

comparison method (four target curves at a time) that utilized a randomized presentation order 

for both the target curves and programs. The order in which the BRS and in situ tests were 

completed was equally distributed among the subjects to minimize possible order biases.  In 

order to directly compare and measure the effects of the two different test methods as accurately 

as possible, other aspects of the experimental design and listening test conditions were held 

constant. For both BRS and in situ methods, the stimuli were presented the same number of 

times, at the same playback level. 

 

Each listener participated in two listening sessions conducted on different days lasting 

approximately 20-30 minutes each. This structure was based on the recommendations of Bech, 

that listeners should only participate in one session per day and that each session should last no 

longer than 30-40 minutes (Bech, 1990).  In one session, the listener evaluated the room 

response curve using the BRS playback system, and in another session, they evaluated the room 
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response curve in situ. The order of the test sessions was randomly assigned to each subject in 

a balanced way, so that any learning or order effects were equally distributed between the two 

test methods. In each test session, the listener completed 8 trials (4 programs x 2 observations). 

In each trial, the listener made comparative judgments between the four in-room target response 

curves until their final preference ratings were recorded. The listening test software application 

then automatically loaded the next trial, randomly reassigning a letter (A through D) to each 

room response curve. This test procedure was administered for each of the three listening rooms 

in random order. In total, 216 trials were carried out in (8 trials x 3 rooms x 9 test subjects).  

 

A custom software application known simply as Harman Listening Test Software (LTS) was 

used to administer the experiments.  This included control and switching of sound files, control 

of the BSS audio DSP for the selection of the target curves, as well as the collection and storage 

of the listener response data to a Structured Query Language (SQL) data base.  This software 

allows the participants to take control of the order of playback conditions and to audition 

conditions several times at will, which is useful for reducing the impact of the "recency" effect 

as noted by Zielinski et al. (2008). The software also automatically checks for tied ratings and 

prompts the listener to make a forced choice between the test objects. The graphical user 

interface (GUI) utilized for the listening tests is shown in figure 4.14.  

 

 

Figure 4.14: GUI for the preference listening test 
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4.5.9 Test Setup and Hardware 

The hardware for the BRS listening test setup consisted of a Windows laptop (Lenovo Thinkpad 

T420s), a digital sound card (RME Fireface UC) a programmable digital signal processor (BSS 

Audio BLU-800 and 80) and ultrasonic head-tracker (Logitech 3DH-311). The digital signal 

processor is used to store the room flattening filter (Hr) and the four in-room target response 

curves.   

 

A key piece of the BRS playback system is the head-tracker which constantly monitors the 

position of the listener's head, and sends the angular coordinates to the playback engine, which 

in turn switches to the corresponding set of measured BRIRs. The ultrasonic Logitech head-

tracker utilized has an orientation resolution of 0.1°, an update rate of 50Hz and maximum 

latency of 30ms. The latency of the entire BRS playback system was found to be approximately 

50ms which, inclusive of the update rate of the head-tracker, does not cause significant audible 

effects under normal listening conditions (Stitt et al., 2016),  (Lindau, 2009), (Yairi et al., 2008),  

(Brungart et al., 2006), (Wenzel, 1999), (Bronkhorst, 1995), (Sandvad, 1996).  

 

The BRS portions of the experiments were conducted with the listeners sitting in a loudspeaker 

lab at Harman, where the background noise level was measured to be between 30 and 35dBA.  

 

The hardware used for the Living Room in situ listening test consisted of the same laptop, 

digital sound card and programmable digital signal processor in addition to a Harman Kardon 

7550HD AV receiver / amplifier, and Harman Kardon HKTS 60 5.1 loudspeaker system. The 

Eargle Theater in situ listening test equipment was similar to that of the Living Room with the 

difference of a three JBL Project Everest DD66000 left, center and right loudspeakers, six JBL 

S4Ai THX Ultra2 surround loudspeakers and four JBL S1S-EX 18-inch THX Ultra2 

subwoofers. The electronics in the system include a Mark Levinson No. 502 media 

console/surround processor, seven bridged JBL Synthesis S820 amplifiers (for the L, C, R 

speakers and subwoofers), and a JBL Synthesis 7 x 160-watt seven-channel amplifier (for the 

surrounds). In addition to the front-end equipment used in the other two rooms, the Arena Lab 

setup utilized a 5.1 loudspeaker system consisting of five JBL M2 full-range loudspeakers for 

the left, centre, right and surround channel and a JBL 4645C subwoofer all powered by two 

Crown I-Tech 4x3500HD amplifiers.  
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For the in situ portion of the experiments, listeners were positioned centrally in a standard 5.1 

setup based on ITU-R BS.1116-1 listening room recommendations (ITU, 1997). This position 

matched the position of the BRS manikin during the scanning process. The background noise 

levels were measured with a Brüel & Kjær Type 2239A sound level meter and were found to 

be 34dBA in the Living Room, 25dBA in the Eargle Theater, and 42dBA in the Arena Lab. 

 

The relative playback levels of the different target response curves and program material were 

adjusted for equal loudness objectively using an ITU-compliant loudness meter (B & K Type 

2239A) and based on the ITU-R1770.3 loudness standard (ITU, 2012b). Levels were further 

verified by informal listening to assure that there were no discernible loudness differences 

between test curves. The average playback level of the music was adjusted to a comfortable 

level of 80dBA for both in situ and BRS listening tests.  

 

4.6 Results 

 

The following sections report on the statistical analysis utilized and the results of the listening 

tests.  

4.6.1 Statistical Analysis 

The data was analyzed using SAS Stat View software running a repeated measures analysis of 

variance (ANOVA). Additional analyses were completed using Matlab and custom designed 

Excel spreadsheets. Since the same participants experienced all conditions that were assessed 

in the Living Room and Eargle Theater tests, a one-way repeated measures ANOVAs was 

deemed appropriate in order to identify whether there were any significant differences of the 

mean ratings for preference between BRS and in situ playback conditions. A one-way repeated 

measures ANOVA was also utilized for the Arena Lab test; which again employed a different 

set of listeners and therefore was treated as a separate test for the purpose of analysis. A 

complete factorial analysis was used in the ANOVA model with a significance level of 0.05 

utilized for all statistical tests. Per the MUSHRA test standard, data should be normalized if no 

anchor is utilized (ITU, 2001). However, since this experiment employed an anchor point, it 

was not necessary to normalize the data prior to statistical analysis.  
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To effectively apply a repeated measured ANOVA the data must meet the following 

assumptions: 

1. Independence: Observations are independent. In the case of repeated measures, this 

assumption means that the subjects should be mutually exclusive. The measurements 

made within each subject are, of course, not independent from each other in repeated 

measures designs. 

2. Normality: Data should be sampled from a population that is normally distributed. 

3. Homoscedasticity (homogeneity of variance): The population variances for the various 

levels within a factor should be similar. 

 

Sphericity, often considered a type of homogeneity of variance, refers to the equality of the 

population variances calculated for the differences between all pairs of within-subject 

conditions.  

 

In order to check the data for conformation to the assumption of homoscedasticity (the variances 

are not significantly different), a Mauchly’s test of sphericity with a significance level of 0.05 

was employed using Matlab (mausphercnst(x,alpha)); the code is shown in appendix G 

(Mauchly, 1940),  (Trujillo-Ortiz et al., 2008). It should be noted that omnibus sphericity cannot 

be tested if the number of participants (listeners) in the study is not greater than or equal to the 

product of the levels of all factors; which in the case of these experiments, it is not. In addition, 

omnibus sphericity is rarely achieved. For these reasons, multiple comparisons within common 

groups in order to observe "local sphericity" were undertaken using the above cited Matlab 

code.  For any multiple comparisons where local sphericity has been attained, it is considered 

that the overall sphericity assumption has been met (Kirk, 2013), (Field, 2013), (Rouanet and 

Lepine, 1970). Of interest to note is that statistical program such as SPSS only provide local 

tests of sphericity as they do not provide a true omnibus test. Since groupings of the data from 

both listening tests were found to be non-significant (p>0.05), and are therefore considered 

locally spherical, they could be used for the ANOVA analyses.  

 

Once the ANOVA analyses were completed, a post hoc analysis was undertaken in an effort to 

explore the difference among means in order to provide specific information on which means 

were significantly different from each other. The post hoc test utilized was the Scheffe test, 
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which was chosen due to its conservative nature and flexibility in testing all possible contrasts 

amongst the various test factor means and not just the pairwise differences (Scheffe, 1999). This 

flexibility is beneficial in uncovering which factors, or combinations of factors, produced the 

significant differences found in the original ANOVA test, especially those differences that were 

not originally planned for during the design of the experiment. However, since Scheffe's test is 

prone to type I errors where the Bonferroni/Dunn test is not, an exploratory comparison between 

the two tests was completed to validate the results (McHugh, 2011) (Jaccard et al., 1984). 

 

Several different types of effect size analyses were also used in an effort to understand the 

magnitude of the differences between and within factors. The explanation of the different effect 

size tests and their use are broken into categories and explained briefly (Kirk, 1994), (McGraw 

and Wong, 1992), (Cohen, 1988).  

 

From the correlation family of effect size tests: 

 

• η2 - Reflects the proportion of the total differences in the scores that is associated with 

differences between the conditions. In addition, it measures the variance of the sample 

but not the population so it will tend to be biased and overestimates the effect size with 

smaller sample sizes. 

 The formula for η2 is given as: 

                                𝜼𝟐 =  
𝑺𝑺𝒆𝒇

𝑺𝑺𝒕
          Eq. 4.1 

 Where SSt is the total sum of squares and SSef is the sum of squares for the effect. 

 

From the difference family of effect size test: 

 

• d (Cohen’s d) - Cohen’s d is a standardized difference between two means and therefore 

the calculated d can be greater than 1.00 or less than -1.00, as it is an estimate of the 

degree of overlap between the two group’s distributions.   

 The formula for d is given as: 

                                       𝒅 =  
�̅�𝟏 − �̅�𝟐

𝑺𝒑
                Eq. 4.2 
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 Where x̅1 and x̅2 are the means of the two factors being compared and Sp is the 

 "pooled" or average standard deviation.  

 The pool standard deviation is typically calculated by: 

                                                  𝑺𝒑 =  
√(𝝈𝟏)𝟐+(𝝈𝟐)𝟐

𝟐
                                                       Eq. 4.3 

Cohen's d is a straight forward method for analyzing the effect size between two factors 

as the value of d represents the difference, in standard deviations, between the two 

factors. Cohen’s d can be negative or positive depending on the relationship between 

the two means (factors) involved.  If d is positive, then the mean of the first factor is 

higher than the second; if d is negative then this relationship is reversed.  

Common Language effect size: 

 

• CL - Considered one of the easiest of the effect tests to interpret, CL is the probability 

that a randomly selected score from the one factor or group will be greater than a 

randomly sampled score from the other factor or group. CL is given in a range from 

0.50 to 0.98, which is then typically converted into a percentage.  

𝑪𝑳 =  
𝟎−(�̅�𝟏 − �̅�𝟐)

√(𝒔𝟏)𝟐+(𝒔𝟐)𝟐
                                                           Eq. 4.4 

 

The interpretation of these effect sizes and their relationships to each other are shown in 

table 4.1. 
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d η2 

CL 

(convert 

to %) 

Description 

< 0 - - 
Adverse Effect or 

 No Effect 

0.0 .000 50% 
No Effect 

0.1 .003 53% 

0.2 .010 56% 

Small Effect 0.3 .022 58% 

0.4 .039 61% 

0.5 .060 64% 

Intermediate Effect 0.6 .083 66% 

0.7 .110 69% 

0.8 .140 71% 

Large Effect 0.9 .168 74% 

≥ 1.0 ≥.200 ≥76% 

 

Table 4.1: Interpretation of effect sizes, sensu (Kirk, 1994), (McGraw and Wong, 1992), 

(Cohen, 1988)  

 

As each of the tests use different parameters to determine effect size, which in turn leads to 

varying strengths and weaknesses, the author felt it prudent to run all the tests described to 

verify effect sizes.  

4.6.2 Results from Eargle and Living Room Test 

As the intention of these tests was to prove the validity of using BRS in place of in situ listening 

test, to determine if there was a statistical difference between ratings for the in situ and BRS 

playback conditions, data from the listening tests were checked for Gaussian distribution and 

subjected to a repeated measures ANOVA test. The following were observed: 
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• Target Curve was significant: F (3,24) = 96.781, p < .0001 

• Observation was not significant: F (1,8) = 0.091, p = .7711 

• Program was not significant: F (3,24) = 0.905, p = .4532 

• Room was not significant: F (3,24) = 2.488, p = .1534 

• Method was not significant: F (1,8) = 3.34, p = .0916 

• Room*Target Curve was significant: F (3,24) = 5.682, p = .0044 

 

The full ANOVA table for this experiment can be found in appendix H. 

 

To verify that homoscedasticity between the two playback methods was met, box plots of the 

conditions were created, as shown in figure 4.15.  

 

Figure 4.15: Homoscedasticity between playback methods 

 

From figure 4:13 one can observe that the distribution of scores and the means between the two 

playback conditions were approximately equal.  

Table 4.2 shows the extent of the differences between the two playback methods' score 

distributions.  
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 Preference BRS In situ 

Mean 4.439 4.386 4.492 

Std. Dev. 2.035 2.022 2.048 

Std. Error 0.06 0.084 0.085 

Count 1152 576 576 

Minimum 1 1 1 

Maximum 9 9 9 

Skewness -0.08 -0.099 -0.064 

Kurtosis -0.772 -0.802 -0.75 

 

Table 4.2: Descriptive statistics split by method 

 

 

The skewness for each of the methods is well between 1.0 and -1.0, showing a fairly 

symmetrical distribution of the data. In addition, the kurtosis for each method shows that the 

data exhibits a raised cosine to semicircle distribution of -1.0 < k < -05 (DeCarlo, 1997).   

 

Figure 4.16 shows the combined target curve preference data for the in situ and BRS playback 

conditions for all conditions in both the Eargle and the Living Room with 95% confidence 

intervals shown. 

 

Figure 4.16: Preference data per target curve and playback method  

 

The graph in figure 4.16 depicts that the preference scores for the BRS and in situ playbacks 

were nearly identical. It had been noted in a cursory analysis of the data that the preference 
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scores for curves D and E appeared to be very close, and so a split in target curve scores between 

rooms and methods was warranted. In addition, the ANOVA results showed that not only were 

the target curves found to be significant but also the interaction between the rooms and the 

target curves. For this reason, the data was re-plotted, separating the Living Room from the 

Eargle Theatre, as shown in figure 4.17.  

 

Figure 4.17: Combined data for the two playback conditions for all programs and both rooms 

 

Figure 4.17 clearly shows that the preference in target curves was partially determined by the 

playback room, but not the playback condition; once again the BRS and in situ scores are nearly 

identical.  

The reliability of listeners is difficult to determine directly from the ANOVA test results and 

ideally, a subject should repeat approximately the same score for repeated ratings of the same 

stimuli. Figure 4.18 shows averaged ratings for observations Ob1 and Ob2 for each listener.  
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Figure 4.18: Repeatability of test subjects for repeated observations of the same stimuli. 

 

Though there were the expected variations between listeners scores, there was little to no 

variation in the individuals' scores between the two observations.  

 

Post hoc analyses were completed for method and target curves with the results shown in 

tables 4.3 and 4.4. 

 

Tables 4.3a & 4.3b: Scheffe and Bonferroni / Dunn post hoc analyses for method 

 

 

Tables 4.4a & 4.4b: Scheffe and Bonferroni / Dunn post hoc analyses for target curve 

-.106 .128 .0916

Mean Diff. Crit. Diff. P-Value

BRS, Insitu

Scheffe for Preference

Effect: Method

Significance Level: 5 %

-.106 .128 .0916

Mean Diff. Crit. Diff. P-Value

BRS, Insitu

Bonferroni/Dunn for Preference

Effect: Method

Significance Level: 5 %

2.398 .866 <.0001 S

-1.788 .866 <.0001 S

-1.878 .866 <.0001 S

-4.186 .866 <.0001 S

-4.276 .866 <.0001 S

-.090 .866 .9920

Mean Diff. Crit. Diff. P-Value

A, B

A, D

A, E

B, D

B, E

D, E

Scheffe for Preference

Effect: Target Curve

Significance Level: 5 %

2.398 .829 <.0001 S

-1.788 .829 <.0001 S

-1.878 .829 <.0001 S

-4.186 .829 <.0001 S

-4.276 .829 <.0001 S

-.090 .829 .7588

Mean Diff. Crit. Diff. P-Value

A, B

A, D

A, E

B, D

B, E

D, E

Comparisons in this table are not signif icant unless the

corresponding p-value is less than .0083.

Bonferroni/Dunn for Preference

Effect: Target Curve

Significance Level: 5 %
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Tables 4.3a and 4.3b show agreement between the Scheffe and Bonferroni / Dunn post hoc 

analyses and that two playback methods were not found to be significantly different. Tables 

4.4a and 4.4b shows that the Scheffe and Bonferroni test have slight differences in the p-value 

between target curves D and E. However, both of these tests demonstrate that there is not a 

significant difference between curves D and E.  

 

Several different types of effects sizes analyses were completed for the various factors with the 

results shown in table 4.5. 

 

  d η2 CL 

Observation 0.00 0.000 50.04% 

Method 0.03 0.001 50.73% 

Room 0.15 0.005 54.13% 

Program - 0.000 - 

BM/RS -0.01 - 50.18% 

BM/SD 0.03 - 50.97% 

BM/TM 0.05 - 51.33% 

RS/SD 0.04 - 51.11% 

RS/TM 0.05 - 51.47% 

SD/TM 0.01 - 50.35% 

Curve - 0.730 - 

A/B -3.16 - 98.74% 

A/D 1.57 - 85.56% 

A/E 1.89 - 90.96% 

B/D -3.73 - 99.58% 

B/E -4.39 - 99.91% 

D/E 0.07 - 51.96% 

D/ELivingRm -0.48 - 63.20% 

D/EEargleTh 0.57 - 65.63% 

 

Table 4.5: Effect size scores for all comparisons with data from both Living Room and Eargle 

Theatre; effect sizes between target curves highlighted in blue for small difference and pink 

for intermediate differences 

 

The most important effect size to recognize is the one involving the two methods; BRS and in 

situ. Once again, it can be seen that there is no statistical difference between the two as the 

effect size is very small (no effect) and the CL score is nearly 50%. The effect size between the 

rooms, when viewed by themselves, is on the cusp of being considered a 'small effect', and 

confirms the findings of the ANOVA test. However, when considered against the target curve 
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data, the effect of the different rooms comes into play. As expected, the effect size between the 

two observations was negligible with a d score at the 'no effect" level and a CL of almost exactly 

50%. The program data showed no effect on the preference scores and the pair-wise 

comparisons between the individual pieces of program material found that no one particular 

piece scored higher than another. The most significant factor in the ANOVA was target curve, 

as its effect size confirmed, and most of the target curves showed significant differences 

between them. However, when compared across the entire data set, target curves D and E were 

found to be very similar, as is shown in the low effect scores between them and a CL of close 

to 50%. This may account for the effect size of the target curves being rated at 'intermediate' as 

opposed to 'large'. To understand the degree by which these two curves are related the data was 

split by room, which was indicated by the ANOVA score of p=.0044 for room*target curve. 

When the data for these two curves was separated by room and the effects tests were run again, 

there was an improvement in the effect size score with the pair showing a lower 'intermediate' 

score in both rooms. The residual similarities in effect size between D and E are due to variances 

in individual listeners' preference, which is shown in figure 4.19.  

 

 
Figure 4.19: Target curve preference by listener 

 

Once a factorial post hoc test was conducted excluding the factor listener, these two curves 

became statistically different as shown in tables 4.6a and 4.6b.  
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Tables 4.6a & 4.6b: Scheffe post hoc factorial analyses for target curve split by room;                      

a) Eargle Theatre, b) Living Room 

 

The Bonferroni / Dunn test results are not shown as they were in agreement with the Scheffe 

test results.  

4.6.3 Results Arena Lab Test 

Like the Living Room and Eargle Theatre, the Arena Lab data was analyzed in the same way 

to determine if there was a statistical difference between ratings for the in situ and BRS 

playback conditions. From the repeated measures ANOVA the following were observed: 

 

• Target Curve was significant: F (3,24) = 53.854, p < .0001 

• Observation was not significant: F (1,8) = 0.013, p = .9112 

• Program was not significant: F (3,24) = 1.110, p = .3646 

• Method was not significant: F (1,8) = 0.008, p = .9298 

 

The full ANOVA table for this experiment can be found in appendix I. 

 

To verify that homoscedasticity between the two playback methods was met, box plots of the 

conditions were created, as shown in figure 4.20.  

2.303 .356 <.0001 S

-1.185 .356 <.0001 S

-1.911 .356 <.0001 S

-3.487 .356 <.0001 S
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Scheffe for Preference
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Significance Level: 5 %

Split By: Room
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Figure 4.20: Homoscedasticity between playback methods 

 

Figure 4:20 shows that the distribution of scores between the two playback conditions is not 

quite equal and are skewed in different directions and to different degrees.  

Table 4.7 shows the extent of the differences between the two playback methods' score 

distributions.  

 

   Preference BRS In situ 

Mean 4.345 4.351 4.340 

Std. Dev. 2.207 2.177 2.240 

Std. Error 0.092 0.128 0.132 

Count 576 288 288 

Minimum 0 1 0 

Maximum 9 8.2 9 

Skewness -0.02 -0.11 0.063 

Kurtosis -1.062 -1.198 -0.942 

 

Table 4.7: Descriptive statistics for both playback methods 

 

Though the two methods lack perfect homogeneity, the means, standard deviations and standard 

errors were similar in values and therefore the data is considered statistically comparable. The 

data between the methods is slightly skewed and in different directions but this finding is 

marginal. The kurtosis shows a semicircle to uniform distribution of scores with -1.2 < k < -

1.0. 
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Figure 4.21 shows the combined target curve preference data for the in situ and BRS playback 

conditions for all conditions with 95% confidence intervals shown. 

 

 

Figure 4.21: Preference data per target curve and playback method  

 

Once again, in an effort to determine listener repeatability, the averaged ratings for observations 

Ob1 and Ob2 for each listener was graphed and is shown in figure 4.22. 

 

Figure 4.22: Repeatability of test subjects for repeated observations of the same stimuli. 
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Post hoc analyses were completed for playback method and target curves with the results shown 

in tables 4.8(a-b) and 4.9(a-b). 

 

 

Tables 4.8a & 4.8b: Scheffe and Bonferroni / Dunn post hoc analyses for playback method 

 

 

Tables 4.9a & 4.9b: Scheffe and Bonferroni / Dunn post hoc analyses for target curve 

 

Tables 4.8a and 4.8b demonstrate agreement between the Scheffe and Bonferroni / Dunn post 

hoc analyses and that two playback methods were not found to be significantly different. Tables 

4.9a and 4.9b display large difference in the p-values between the Scheffe and Bonferroni tests 

for target curves D and E, however, both of these tests still show that there is not a significant 

difference between these two curves.  

 

The different types of effects sizes analyses were completed for the various factors with the 

results shown in table 4.10.  
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  d η2 CL 

Observation 0.00 0.000 50.04% 

Method 0.00 0.000 50.14% 

Program - 0.000 - 

BM/RS -0.04 - 51.05% 

BM/SD -0.01 - 50.32% 

BM/TM 0.02 - 50.48% 

RS/SD 0.03 - 50.74% 

RS/TM 0.05 - 51.53% 

SD/TM 0.03 - 50.81% 

Curve - 0.781 - 

A/B -2.64 - 92.93% 

A/D 2.08 - 92.93% 

A/E 2.70 - 97.18% 

B/D -4.27 - 99.87% 

B/E -5.06 - 99.98% 

D/E 0.45 - 62.37% 

 

Table 4.10: Effect size scores for all general comparisons; effect sizes between target curves 

highlighted in pink for intermediate differences 

 

Again, no statistical difference was found between methods, observations or program. The pair-

wise comparisons between the individual pieces of program material found that no one 

particular piece scored higher than another. The most significant factor in the ANOVA was 

target curve, as is reflected in their effect size scores.  Almost all of the target curves showed 

significant differences between them with the exception of curves D and E. Table 4.9 shows 

that these two differ by only a small to intermediate level. As with test results for the Living 

Room and Eargle Theatre, the remaining similarities in effect size between D and E can be 

attributed to variances in individual listener preference as shown in figure 4.23.  
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Figure 4.23: Target curve preference by listener 

 

Once a factorial post hoc test was conducted that excluded the factor listener, these two curves 

became statistically different as shown in tables 4.11a and 4.11b. 

 

 

 

Tables 4.11a & 4.11b: Scheffe and Bonferroni / Dunn post hoc factorial analyses for target 

curve with factor listener removed 

 

4.7 Discussion 

 

The statistical observations in the previous section are somewhat expected, but do help to 

confirm the validity of the BRS test method. The room response curve should have the largest 

influence on ratings, or the test would have been ill-designed and / or poorly executed. Since 
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the orders of the trials were randomized at all levels, a statistical difference across repeated 

observations would not be expected, unless there was a learning effect. Program should not be 

a factor, since subjects were asked to judge preference of the playback quality and not the 

program. However, program can be factor if it is not carefully selected, which was not the case 

here. Furthermore, in these types of tests, it sometimes occurs that there is an interaction 

between room response curve and program, but again, this was not the case here.   

 

In the first test involving the Living Room and Eargle Theatre, the factor room was not found 

to be statistically significant in and of itself. The room*target curve interaction was significant, 

however. This is interesting but not totally unexpected. This simply means that subjects had a 

different room response curve preference depending on which room they were listening in, 

which is depicted in figure 4.15.  It can be seen that there was a marked difference in overall 

preference for the C target curve between the two rooms, for both playback methods.  Since the 

sound systems in each room were equalized to the same measured target curves at the listeners 

seat, the difference in preference ratings is likely attributable to differences in directivity in the 

loudspeakers and/or acoustical properties of the rooms. The Eargle Theater had JBL Project 

Everest speakers, which had waveguides for mid/high frequency drivers and thus controlled 

directivity over a larger bandwidth, and the room itself is well damped acoustically. The Living 

Room had Harman Kardon HKTS consumer speakers with small direct radiators and no 

directivity control.  This room was smaller and with less controlled acoustics (curtains, carpet). 

It would not be surprising if these differences caused an interaction with the preferred target 

curve. It is possible that differences in perception of direct and reflected sound had an effect on 

perceived spectral balance that was not reflected in the steady state measurements. 

 

For all three rooms there appeared to be similarities in preferences for target curves D and E, 

as they were initially found to be statistically equal. However, when analyzed with individual 

listener preference in mind, it became apparent that some listeners had not only differed in their 

preference between the rooms but between each other as well. Once again, this is not completely 

unexpected but the degree of this effect size was a bit surprising. Though individual listener 

preference did effect the overall target curve scores, it should be emphasised that determining 

a preference for target score was not the objective of this experiment. It is important to note that 

regardless of listener target curve preference, the listeners’ preferences did not change with 
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observation or playback methodology. The most important finding of this validation experiment 

was that there was no statistical effect of method on preference in any of the three rooms under 

testing.  

  

The question of whether individualized HRTF calibrations are required for BRS based 

evaluations of in-room target response preferences can be answered, in part, by comparing the 

individual listener target curve ratings for each of the two playback methods to see if they are 

in agreement. Here, the individual listener preference results are essentially the same for both 

in situ and BRS playback method in all three rooms under testing. Further to this point, though 

individualized HRTFs are found to be superior to even the “best fit” non-individualized HRTFs 

in terms of localization (Andreopoulou and Katz, 2015), research has found poor correlation 

between spatial and timbral aspects of binaural playback (Le Bagousse et al., 2011). 

 

It should be noted that you cannot prove the null hypothesis to be true simply because there is 

no evidence to prove it false. The lack of an effect due to the BRS method in this study doesn’t 

preclude there will not be an effect if the test is repeated using a different set of experimental 

conditions or listeners. Nonetheless, these results are encouraging and indicate that the BRS 

system has sufficient accuracy to allow listeners to discern differences in room target curves to 

the point where they can make repeatable preference ratings that are virtually the same as those 

made in situ. Of interest to note is that these test results, like others before (Olive et al., 2007), 

were created using a generalized BRS system that was not calibrated to any particular listener 

participating in the experiment. The results show a high level of listener reliability between the 

two methods in absence of a more complex or individually calibrated system. Considered 

together, the results of the statistical analysis points towards the "robustness" of the BRS system 

used in these experiments and support it as a viable option for listening tests in lieu of 

impractical in situ listening tests. 

 

4.8 Limitations of the Binaural Room Scanning System 

 

Limitations of the BRS system have been summarized in Figure 4.2 and further described in 

section 4.4. For applications related to testing room response curves, the main limitation of the 

BRS system is that it does not take into account tactile information, such as low frequency 
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reproduction. The results of the validation study described in this chapter indicate that the 

absence of this information did not play a significant role in the experimental results. However, 

for testing that aims at recreating a cinema environment, where significantly more tactile 

information is present (subwoofers), failure to include such tactile information in the playback 

experience may produce different results. This lack of tactile information may have led to the 

similarity in scores between curves D and E. This is an area that requires additional research.  

 

With regards to applications of the BRS system beyond those identified in this research, the 

BRS system should be further verified utilizing additional attributes. A potential avenue of 

additional research in this area is the use of more detailed attributes in which to compare in situ 

listening to BRS listening. Beyond a simple comparison of target room response curves, Nicol 

et al suggests the use of timbral attributes typically associated with instruments, speech and 

spatial sound reproduction systems (Nicol et al., 2014), (Elliott et al., 2013), (Mattila, 2001), 

(Zacharov and Koivuniemi, 2001) 

 

Nicol et al further recommend the attribute of ‘naturalness’ since binaural playback typically 

aims to mimic natural listening inclusive of the realism, naturalness, and the fidelity of the 

original sound scene. The attribute of naturalness also takes on importance as its ratings have 

be strongly correlated with preference (Berg and Rumsey, 2000). 

 

4.9 Summary 

 

This chapter reports the results of a validation experiment performed using a BRS system that 

captures and stores binaural room impulse responses of sound sources within a given listening 

space and then reproduces them via a head-tracking headphone system.  

 

The experiments investigated whether a listener's room response curve preference ratings made 

in situ were similar to ratings made using a BRS reproduction of the same room. Three rooms, 

which mimicked typical movie viewing rooms, were utilized during these tests. They included 

a living room, a purpose-built home theatre and large cinema sized space.   

 

The main conclusions of these experiments are as follows: 
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1. There were no significant differences in preference between the BRS and In situ 

methods. 

2. The main effect was due to the room response curve.  

3. There was an interaction between the different listening rooms, and the target curves. 

This interaction was confined to curve D. 

4. There was an interaction between target curves D and E which could be partially 

attributed to individual preference.  

 

4.10 Further Research Using the BRS System 

 

The validated BRS system is used as an aid in determining the preferred in-room target response 

and how its perceived sound quality is influenced by program, cinema size and listening 

position within a cinema. Refer to Chapter 5 for a description of this research.  

 

 



 

 

 

 

Chapter 5 - Subjective Listening Test 

for Preferred Room Response 
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5.1 Introduction 

 

 The use of a theatre loudspeaker system is the adaptation of objective equipment to 

 an art. Any method of rating such a tool must include the effects of the subjective 

 factors.            John K. Hilliard, Altec Lansing Corporation, 1949 (Hilliard, 1949)  

 

Current cinema audio research has focused on room calibration standards, such as SMPTE 

ST202:2010, and has mainly been centred on room response measurement techniques and 

evaluations. The SMPTE X-curve stands largely unchanged for its origins, though 

improvements in cinema equipment and dramatic changes in cinema acoustics have occurred. 

The initial shape of the X-curve was driven by the need to compensate for poor high frequency 

response of the playback equipment and a belief that a large amount of high frequency roll-off 

was further required in order to model a flat response in the far-field of a reverberant space. 

Even as playback equipment improved, the argument to maintain the shape of the X-curve was 

based on somewhat speculative and often non-scientific subjective experiments which were 

typically conducted in highly reverberant spaced such as churches. These experiments, which 

continue to anchored the explanation for the shape of the X-curve, were conducted in the 1960's 

and 1970's in facilities with equipment and room acoustics that do not represent today's modern 

cinemas.  

 

Further, the results of the survey in chapter 3 calls into question the validity of dub-stage to 

cinema translation in light of the variability between mixers' preferences and their hearing 

abilities. The theory proposed in this chapter is that, in calibrating a room to any specified target 

response curve, the cinemagoers' preferences should be taken into account when establishing 

an ideal target curve to tune a cinema to and that these preferences must be obtained with 

scientific rigor.  

 

Conducting in situ subjective listening tests in more than one commercial cinema utilizing 

multiple listeners over a given time period can become logistically challenging. As previously 

discussed in Chapter 4, the Binaural Room Scanning (BRS) system utilized afforded the 

opportunity to overcome many logistical issues as well as providing methodological benefits 

over in situ listening tests. The validity and efficacy of the BRS system utilized for these 



Chapter 5. Subjective Listening Test for Preferred Room Response  

  

 

122 

 

experiments has been borne out in previous research  (Gedemer and Welti, 2013b), (Olive and 

Welti, 2009), (Olive et al., 2007). The BRS measurement and test setup were originally 

described in the author's previous work (Gedemer, 2015b) and in Chapter 4 but will be 

summarized in this chapter.  

 

This chapter focussed on obtaining listener preference data in three different sized cinemas and 

at three different listening positions within those cinemas. This effort was undertaken to not 

only review overall listener preference but to also see if there are preference changes with 

cinema size or listening position.   

 

Work in this chapter has previously been presented as the following: 

 GEDEMER, L. 2016. Subjective Listening Tests for Preferred Room Response in 

 Cinemas - Part 2: Preference Test Results. AES 140th Convention. Paris, France: 

 Audio  Engineering Society  

 

5.2 Motivation 

 

The published standard for cinema calibration depicts recommended target response curves 

against which to tune dub-stages and commercial cinemas. These target curves are an effort to 

provide the best possible translation between what the re-recording mixer creates on the dub-

stage and what the audience in the cinema ultimately hears. However, a review of relevant 

literature on this subject has not produced a definitive study on whether the published, 

recommended target curves have been properly vetted through scientific method. The question 

remains as to whether these target curves are considered ideal and are preferred by listeners. 

 

The following questions serve as a basis for the developed subjective listening tests: 

• What is the preferred spectral balance (in-room target response curve) 

o For conventional music tracks? 

o For X-curve monitored film sound tracks? 

o For non X-curve monitored film sound tracks? 

• Do listeners’ perceptions of spectral balance change with venue size?  
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• Do listeners' perceptions of spectral balance change with seating location? 

 

5.3 Methodology 

5.3.1 Binaural Room Scanning 

The system computer (Lenovo Thinkpad T420s) ran a custom Matlab program which generated 

the test signals and recorded the measured sets of BRIRs. A 4-second swept sine wave ranging 

from 20 Hz to 20kHz was use as the measurement signal with several repeated measurements 

being averaged together to improve signal-to-noise. The playback levels for the sine sweeps 

were adjusted to create an SPL of approximately 85dB C-weighed at a position 2/3rds of the 

length of the cinema from the screen, in the center seat (2/3L position) as per the SMPTE 

standard. 

 

In each cinema, a single JBL M2 loudspeaker was placed at the front and centre of the cinema 

in front of the projection screen and lifted to a position aimed at the 2/3L seat. The aiming of 

the loudspeaker was confirmed using a Bosch GLL 2-45 self-levelling long-range cross line 

laser.  The decision to place the loudspeaker in front of the screen instead of behind it was 

twofold; first was due to the inconsistencies in the amount of high frequency roll-off in 

projection screens and the desire to negate this variable, the second was the lack of access to 

the space behind the screen in certain theatres. A mono playback configuration was chosen 

deliberately as previous research has found that test subjects tend to be more discerning when 

listening to audio in mono versus multi-channel format (Olive and Welti, 2009), (Olive et al., 

2008), (Toole, 1983).  

 

The Binaural Room Impulse Responses (BRIR’s) were measured using the custom-built, full 

manikin described in chapter 4. BRIR's were taken in 5º increments from -40º to +40º to render 

a total set of 17 BRIRs at each of three listener locations within the three cinemas; the second 

row (front), a location approximately 2/3rd the length of the cinema (2/3L) and the second to 

last row (back). These positions allowed not only a comparison between different sized 

cinemas, but a comparison of listening positions within a cinema as well. 
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During playback, program material was convolved with the BRIR filter sets using a Pure Data 

based real-time convolution engine, shown in appendix J. The head-tracker monitored the 

angular position of the listener’s head and sent the updated coordinates to the BRS playback 

software that switched to the appropriate BRIR filters corresponding to that angle.  

5.3.2 Calibration of Manikin Microphones and Playback Headphones  

For the listening tests, the same set of Sennheiser HD518 circumaural headphones as used in 

the experiment described in chapter 4 were chosen as the reference headphone. The headphones 

were measured on the binaural room scanning manikin, as described in chapter 4, and the 

resultant calibration filters were implemented in the Pure Data real-time convolution engine. 

5.3.3 The Selected Listening Rooms 

Professional screening rooms located within Los Angeles, CA were utilized for this research as 

they provided an opportunity to take measurements in a cinema setting without the operational 

issues of using a commercial cinema. A total of three different sized screening rooms were 

selected in order to represent the varying sizes of professional cinemas, screening rooms and 

dub-stages. BRS measurements were taken in the cinemas described in table 5.1 and shown in 

figured 5.1 through 5.3. 

 

Cinema Seat 

Count 

Seating 

Area  

(in meters) 

RT60 

(in 

seconds) 

A 60 12.8L x 8W 0.26 

B 161 17L x 14W 0.44 

C 516 46L x 20W 0.36 

 

Table 5.1: Research cinemas utilized 
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Figure 5.1: Cinema A 

 

Figure 5.2: Cinema B 
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Figure 5.3: Cinema C 

 

5.3.4 Flattening of In Situ Loudspeaker Responses  

The JBL M2 loudspeaker was measured at the three listening positions in each cinema using 

the Harman Audio Test System (HATS) and nine calibrated dbx RTA-M omnidirectional 

microphones. The microphones were then placed in an array centred around the listening 

positions, an example of which is shown in figure 5.4. 
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Figure 5.4: 9-microphone array for spatial averaging 

 

The spatial averages were then equalized from 1kHz and below for each cinema listening 

position in order to create a "flattening" filter. Equalization above 1kHz was not carried out in 

order to leave high frequency attenuation effects, such as air loss, intact. This decision was 

driven by the desire to observe if naturally occurring high frequency attenuation could affect 

listeners' preference of target curve while positioned in the back of the larger cinemas. In 

addition, research has shown that what the listener hears in a cinema above 1kHz is primarily 

driven by the direct sound field (Toole, 2015), (Gedemer, 2015a). Any anomalies not 

attributable to the loudspeaker are very likely cause by the seats and / or other treatment in the 

cinema. These are often of non-minimum phase and can be difficult to equalized without the 

use of specialized filters  (Maamar et al., 2006), (Marques and Freitas, 2005) which are typically 

not implemented in commercially available cinema audio processors. In addition, these 

anomalies vary from seat to seat and any attempt to correct them at one seat will most like cause 

additional issues at another.  

 

The flattening filter was created using the "AutoEQ" function in HATS and was implemented 

using a BSS Audio BLU-800 processor for playback and applied to the BRS playback system. 

This filter, along with the calibration filters of the manikin microphones and headphones, was 

used to create a final collective "flat" baseline response which was used in conjunction with 
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each of the 5 in-room target response curves. This ensured that any audible differences among 

curves were likely related to differences in their frequency responses, and not the response of 

the manikin microphones, playback headphones, calibration microphones or in situ loudspeaker 

response.  

5.3.5 Creation of In-room Target Response Curves 

Four of the in-room target curves were created and implement within a BSS Audio Blu-800 

DSP processor. These curves, notated simply as A, B, C, D, are shown in Figures 5.5 through 

5.8. Curve A simulated the SMPTE X-curve with a high frequency roll off starting at 2kHz that 

goes down by 4dB at 8kHz and a low frequency roll off starting at 50Hz. Curve B represents 

what was used as an audible anchor and was roughly based on the SMPTE X-curve but with an 

added rise at 1kHz. Curve C is relatively flat with a 6.5dB bass boost below 105Hz and a  

-2.5dB roll off above 2.5kHz. This overall 9dB slope was derived from research by Olive et al 

on headphone target curves as well as loudspeaker preference curves (Olive and Welti, 2015),  

(Olive et al., 2013b). Curve D was derived from research conducted by Olive et al. on room 

correction products (2009) and further headphone research by Fleischmann et al. (2012). This 

in-room target curve was flat with a 7dB boost starting below 100Hz, and a gentle treble cut of 

-1dB starting at 235Hz. This 8dB slope or delta of the preferred target curve is similar to the 

target curve that was preferred in a recent study on headphone target curves (Olive et al., 2013a). 

The fifth "curve", E, utilized no equalization thus leaving a flat room response. The decision to 

forgo a curve with an upward tilting slope towards the high frequencies was based on the earlier 

research by the Boners, which found that listeners did not prefer room responses with this type 

of shape (Boner and Boner, 1965). This finding was later reinforced by the ‘Method of 

Adjustment’ test utilized by Olive (Olive et al., 2013b).  
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Figure 5.5: Target room response curve 'A' 

 

 

Figure 5.6: Target room response curve 'B 
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Figure 5.7: Target room response curve 'C' 

 

 

Figure 5.8: Target room response curve 'D' 

 

Correction filters for the combined manikin head microphones and playback headphones, as 

well as the in situ loudspeaker responses were applied to each of the 5 target response curves. 

This ensured that any audible differences among curves were likely related to differences in 
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their frequency responses, and not the response of the manikin microphones, playback 

headphones, calibration microphones or in situ loudspeaker response. The resultant curves, as 

heard by the listeners during testing, are described and shown in section 5.3.6 

5.3.6. Target Curve Creation and Implementation 

Figures 5.9(a-e) through 5.11(a-e) illustrate the target room response curves and the listener 

curves at each position. The target room response was added to the measured in-room response, 

the in situ loudspeaker flattening curve in each cinema and position, in addition to the flattened 

headphone response. These curves depict what the listeners actually heard during the tests given 

their choice of curve and their listening position in the cinema. The curves for each listener 

position are shown offset for clarity and in 1/6 octave resolution.
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Figures 5.9 a-d: Target room response curves and the listener curves at each position in cinema A   

 

 

Figure 5.9(a): Cinema A: Green - Curve A, 

Blue - Front Row, Black - 2/3L, Red - 

Back Row. SMPTE X-curve and tolerances 

in grey 

 

 

Figure 5.9(b): Cinema A: Green - 

Curve B, Blue - Front Row, Black - 

2/3L, Red - Back Row 

 

 

Figure 5.9(c): Cinema A: Green - Curve 

C, Blue - Front Row, Black - 2/3L, Red - 

Back Row 

 

 

Figure 5.9(d): Cinema A: Green - Curve 

D, Blue - Front Row, Black - 2/3L, Red - 

Back Row 

 

 

Figure 5.9(e): Cinema A: Green - 

Curve E, Blue - Front Row, Black - 

2/3L, Red - Back Row 
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Figures 5.10 a-d: Target room response curves and the listener curves at each position in cinema B  

 

 

Figure 5.10(a): Cinema B: Green - Curve 

A, Blue - Front Row, Black - 2/3L, Red - 

Back Row. SMPTE X-curve tolerances in 

grey 

 

 

Figure 5.10(b): Cinema B: Green - 

Curve B, Blue - Front Row, Black - 

2/3L, Red - Back Row 

 

 

Figure 5.10(c): Cinema B: Green - Curve 

C, Blue - Front Row, Black - 2/3L, Red - 

Back Row 

 

 

Figure 5.10(d): Cinema B: Green - Curve 

D, Blue - Front Row, Black - 2/3L, Red - 

Back Row 

 

 

Figure 5.10(e): Cinema B: Green - Curve 

E, Blue - Front Row, Black - 2/3L, Red - 

Back Row 
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Figures 5.11a-d: Target room response curves and the listener curves at each position in cinema C   
 

 

 
Figure 5.11(a): Cinema C: Green - Curve 

A, Blue - Front Row, Black - 2/3L, Red - 

Back Row. SMPTE X-curve and 

tolerances in grey 

 

 

Figure 5.11(b): Cinema C: Green - Curve 

B, Blue - Front Row, Black - 2/3L, Red - 

Back Row 

 

Figure 5.11(c): Cinema C: Green - Curve 

C, Blue - Front Row, Black - 2/3L, Red - 

Back Row 

 

 

 

Figure 5.11(d): Cinema C: Green - Curve 

D, Blue - Front Row, Black - 2/3L, Red - 

Back Row 

 

 

Figure 5.11(e): Cinema C: Green - Curve 

E, Blue - Front Row, Black - 2/3L, Red - 

Back Row
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5.3.7 Program Material 

Five different mono music programs were selected, level matched and edited into short 20-30 

second loops in ProTools. They included a piece of orchestral score mixed in a room that was 

not calibrated to the X-curve (Sc), the same piece of score mixed for a film trailer in an X-curve 

calibrated room (Sc-T), a piece of score that was mixed for a theatrically released film in an X-

curve calibrated room (Sc-F), Steely Dan's "Cousin Dupree" (SD), and Toy Matinee's "Last 

Plane Out" (TM). All five programs have broad and smooth long term spectra, and have been 

found to be revealing of spectral features based on previous tests and listener training exercises. 

 

The mono program from the original 5.1 channel music selections were down mixed according 

to recommended ITU practices as shown in table 5.2.  

 

Mono  1/0 

Format 

Left Right Centre Left  

Surround 

Right 

Surround 

C' 0.7071 0.7071 1.0000 0.5000 0.5000 

 

Table 5.2: Downward mixing equations for 3/2 source materials, from (ITU, 2012a) 

 

This process was accomplished using Waves M360° Surround Manager software, which has 

the ITU standard mix-down levels as a selectable option,  shown in figure 5.12  (Waves, 2005). 
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Figure 5.12: Screen capture of Waves M360° Surround Manager software showing mono ITU 

mix-down option 

Critical listening assessments conducted by five professional sound designers revealed no 

audible artefacts from the mix-down process. 

 

The ITU standard does not state a specific method for the down-mix of the low frequency 

enhancement (LFE) channel. However, it does state that the low frequency content of a mix, 

from 20 to 120Hz, should not be carried solely by the LFE channel. Therefore, the channels 

listed in the above table all carry signals in this frequency range. However, the LFE channels 

of the audio tracks were part of the final mono mix and were added at a ratio of approximately 

0.30. The exact amount of LFE added to the mono mix varied by program. However, the levels 

were verified against the original 5.1 audio tracks in ProTools, through informal listening tests 

and via spectral analysis as shown in figure 5.13. 
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Figure 5.13: Long-term spectral power density of the five pieces of program material as 

calculated using the Welch method (Welch, 1967). Levels normalized at 500Hz 

5.3.8 Selection of Listeners 

A total of 14 trained listeners were used for these tests, 10 of whom are Harman employees paid 

for their participation. The other 4 listeners were audio professionals working in cinema sound 

design and editing with a range of experience from 4 to 30 years in the industry. These listeners 

were remunerated for their participation. The age range of the listeners was 24 to 56 years, with 

a media age of 32 years. The listeners were tested to confirm that they have audiometric normal 

hearing. In addition, all listeners needed to have passed listener training tasks that required them 

to reliably identify and discriminate among different spectral distortions added to different 

music programs, achieving a skill level of eight out of ten or higher in all tasks. This training 

was carried out using Harman's "How to Listen" software (Harman, 2011). The listeners' 

experience with formal listening tests ranged from 1 to 23 years. 

5.3.9 Test Design 

The listening test was administered using a MUSHRA-style test where subjects were asked to 

rate their preference amongst five different in-room target response curves applied to three 

different seating locations within three different cinemas. 
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This listening test utilized a 5 x 5 x 3 x 3 x 2 repeated measures ANOVA design, with the 

following independent variables: five room response curves (A through E), five programs (three 

film score and two popular music pieces), three rooms, three listening locations and two 

observations. The dependent variable was preference rating. For the listening tests, the target 

curves were comparatively rated on an 11-point preference scale (0-10) that had semantic 

differentials on every second interval labelled: Strong Dislike (1), Dislike (3), Neither 

Like/Dislike (5), Like (7), and Strong Like (9). A strong preference between target curves was 

indicated by a separation in preference ratings of ≥ 2 points, a moderate preference ≥1 points, 

and a slight preference ≤ 0.5 rating. The graphical user interface (GUI) for the preference test 

is shown in figure 4.14 in chapter 4. 

 

All presentations of the stimuli were performed using a double-blind, multiple comparison 

method (five target curves at a time) that utilized a randomized presentation order for both the 

target curves and programs. The order in which the various cinema / position tests were 

completed was equally distributed among the subjects to minimize possible order biases. For 

all tests the stimuli were presented the same number of times and at the same playback level. 

 

Each listener participated in a listening session lasting approximately 20-30 minutes each. In 

each test session, the listener completed 10 trials (5 programs x 2 observations). 1,260 trials 

were carried out in total (10 trials x 3 cinemas x 3 listening positions x 14 test subjects). In each 

trial, the test subject made comparative judgments between the five in-room target response 

curves until their final preference ratings were recorded. The listening tests were administered 

in random order across all of the listeners over a 6 month period with no test subject taking 

more than 2 listening test within a given day. In some cases, listening tests were administered 

weeks apart.  

5.3.10 Test Setup and Hardware 

The hardware for the listening test setup consisted of the Sennheiser HD518 headphones, two 

Windows laptops (both Lenovo Thinkpad T420s), two digital sound cards (RME Fireface UC 

and MOTU) a programmable digital signal processor (BSS Audio BLU-800) and magnetic field 

head-tracker (Razer Hydra). The Razer Hydra head-tracker utilized has a latency of 10ms. The 

latency of the entire BRS playback system is less than 50ms which, as previously referenced in 

chapter 4, does not cause audible effects under normal listening conditions.  
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The relative playback levels of the different target response curves and program material were 

adjusted for equal loudness based on the ITU-R1770.3 loudness standard (ITU, 2012b) and 

verified by informal listening to assure that there were no discernible loudness differences 

between test curves. The average playback level of the music was adjusted to a comfortable 

level of 80dBA. The experiments were conducted with the listeners sitting in one of the 

loudspeaker labs at Harman, where the background noise level was measured to be between 30 

and 35dBA.  

 

5.4 Results 

 

The following sections report on the statistical analysis utilized and the results of the listening 

tests.  

5.4.1 Statistical Analysis 

The data was analyzed using SAS Stat View software running a one-way repeated measures 

analysis of variance (ANOVA). Additional analyses were completing using Matlab and custom 

designed Excel spreadsheets. Since the same participants experienced all conditions that were 

assessed in the tests, a one-way repeated measures ANOVAs was deemed appropriate in order 

to identify whether there were any significant differences of the mean ratings for preference 

between the five presented target curves. A complete factorial analysis was used in the ANOVA 

model with a significance level of 0.05 utilized for all statistical tests. Since an audible anchor 

was included in the target curves, normalizing the data prior to statistical analysis was deemed 

unnecessary. In addition, noting that outliers can provide important information during 

analyses, no outliers were removed from the data sets. 

 

A Mauchly’s test of sphericity with a significance level of 0.05 was utilized on various groups 

of data (grouped by curve, room, program, listening position and cinema) to confirm local 

sphericity. The grouped data from the listening tests were found to be non-significant (p>0.05) 

are therefore were considered locally spherical.  

 

After the ANOVA analyses were completed, a repeated measures Scheffe post hoc analysis with 

a significance level of 0.05 was completed in order to define which means were significantly 
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different from each other. Following the Scheffe analysis, several effect size analyses were 

complete in an effort to identify the degree of the differences between and within factors.  

5.4.1. Results 

The intention of these tests was to study for preferences among cinema target curves based on 

cinema size and listening position within a cinema. Data from the listening tests were checked 

for Gaussian distribution and subjected to a repeated measures ANOVA test. The following 

were observed: 

• Observation was not significant: F (1,13) = 0.186, p = .6731 

• Listening Position was not significant: F (2,26) = 1.04, p = .3676 

• Target Curve was significant: F (4,52) = 547.123, p < .0001 

• Cinema was significant: F (2,26) = 15.639, p = .0001 

• Program was significant: F (4,52) = 12.607, p = .0001 

•  Target Curve*Program was significant: F (16,208) = 34.868, p = .0001 

•  Cinema*Target Curve was significant: F (8,104) = 7.873, p = .0001 

•  Cinema*Program was significant: F (8,104) = 5.608, p = .0001 

•  Cinema*Listening Position was significant: F (4,52) = 2.744, p = .038 

 

The full ANOVA table for this experiment can be found in appendix K. 

 

Only those higher-order factors or combination of factors found to be significant were analyzed 

separately and are elaborated upon in the following sections. 

5.4.2 Results Based on Target Curve 

To check for homoscedasticity within and between the 5 target curves, box plots of the 

conditions were created, as shown in figure 5.14.  
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Figure 5.14: Homoscedasticity between target curves  

 

From figure 5.14 one can observe that the dispersion of scores is more or less comparable for 

each of the 5 target curves and there exists a distinct level of agreement within the scores for 

any one of the given curves. Most of the outliers shown can be considered "suspected outliers", 

as they are within two to three times the interquartile range and show distributions centred 

around the interquartile range. Curves A and B have a large proportion of their interquartile 

ranges overlapping while curves C, D and E also display some degree of overlap among their 

interquartile ranges. Both of these observations warranted further analyses as to the nature of 

these relationships.  

The skewness for each of the target curves is well between 1.0 and -1.0, showing a fairly 

symmetrical distribution of the data; reference table 5.3. In addition, the kurtosis for each curve 

shows that the data is near a normal (Gaussian) distribution of k ≈ 0.   
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 Curve A Curve B Curve C Curve D Curve E 

Mean 1.778 1.336 6.682 5.893 5.275 

Std. Dev. 0.717 0.618 0.92 0.964 1.065 

Std. Error 0.02 0.017 0.026 0.027 0.03 

Count 1260 1260 1260 1260 1260 

Minimum 0.1 0.1 3 2.6 2 

Maximum 3.6 3.8 9.8 9.1 8.7 

Skewness -0.127 0.688 -0.354 -0.274 0.119 

Kurtosis -0.279 0.249 0.443 0.032 -0.02 

 

Table 5.3: Descriptive statistics split by target curve 

 

A post hoc analysis, shown in table 5.4, was completed for the target curves and indicates that 

the differences in target curves were significantly different with the exception of curves A and 

B.  

 

Table 5.4: Scheffe post hoc analysis for target curve 

 

Of interest to note is that a Bonferroni / Dunn test was conducted on the same data set and 

curves A and B were found to be statistically different. This is most likely due to the Scheffe 

test being more conservative and thus being prone to type II errors.  

 

Further information about the differences or similarities between the target curves is explored 

through effect size analyses, which are shown in table 5.5. 

 

 

 

.442 .475 .0818

-4.904 .475 <.0001 S

-4.115 .475 <.0001 S

-3.498 .475 <.0001 S

-5.346 .475 <.0001 S

-4.557 .475 <.0001 S

-3.939 .475 <.0001 S

.789 .475 .0001 S

1.406 .475 <.0001 S

.618 .475 .0044 S

Mean Diff. Crit. Diff. P-Value

Curve A, Curve B

Curve A, Curve C

Curve A, Curve D

Curve A, Curve E

Curve B, Curve C

Curve B, Curve D

Curve B, Curve E

Curve C, Curve D

Curve C, Curve E

Curve D, Curve E

Scheffe for Preference

Effect: Target Curve

Significance Level: 5 %
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 d η2 CL 

Curve - 0.864 - 

A/B 0.66   68.01% 

A/C -5.94 - 100.00% 

A/D -4.84 - 99.70% 

A/E -3.85 - 99.68% 

B/C -6.82 - 100.00% 

B/D -5.63 - 100.00% 

B/E -4.52 - 99.93% 

C/D 0.84 - 72.31% 

C/E 1.41 - 84.13% 

D/E 0.61 - 66.65% 

 

Table 5.5: Effect size scores for target curves; effect sizes between target curves highlighted 

in pink for intermediate differences 

Large differences are shown between most of the pairs of target curves, though curves A and B 

show an intermediate difference. This result is in partial agreement with the results of the 

Scheffe post hoc analysis but does not completely explain why those results were shown as 

statistically similar. Ideally, an intermediate difference between curves should lead to a 

statistical difference in the post hoc test. Further to this, curves D and E also show the same 

intermediate level of difference though they were found to be statistical difference in the post 

hoc tests. This calls into question the results of the Scheffe test and points towards the results 

of the Bonferroni / Dunn test, where all pairs were found to be different, as being more accurate.  

 

With a significance level of F (4,52) = 547.123, p < .0001 and effect size score of η2=0.864, 

the factor target curve has the largest influence of all factors on preference scores. There are, 

however, slight interactions between pairs of curves which points towards the influence of other 

factors. The relationships between all of the target curves and other factors are further evaluated 

in sections 5.4.5 and 5.4.7. 

5.4.3 Results Based on Cinema 

Box plots for all three cinemas, shown in figure 5.15, show a near identical distribution of 

scores.  
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Figure 5.15: Homoscedasticity between cinemas 

 

The skewness figures in table 5.6 show that the distribution of the data for each of the cinemas 

is nearly symmetrical and that the kurtosis for each cinema depicts the data following a uniform 

distribution for all three cinemas (k ≤ -1.2).   

 

 Cinema A Cinema B  Cinema C 

Mean 4.108 4.159 4.312 

Std. Dev. 2.277 2.37 2.453 

Std. Error 0.05 0.052 0.054 

Count 2100 2100 2100 

Minimum 0.1 0.1 0.1 

Maximum 9.8 9 8.9 

Skewness -0.055 -0.123 -0.2 

Kurtosis -1.339 -1.456 -1.496 

 

Table 5.6: Descriptive statistics split by cinema 

 

Though there is good agreement in the distribution of data across the three cinemas, the factor 

cinema was found to be of statistical significance in the ANOVA. A post hoc analysis (table 

5.7) shows the statistical differences between the three cinemas.  
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Table 5.7: Scheffe post hoc analysis for cinema 

 

Cinemas A and B show results that are statistically similar per the Scheffe test, which is mirrored 

in the effect size analysis shown in table 5.8.  

 

 d η2 CL 

Cinemas - 0.001 - 

A/B -0.02 - 50.62% 

A/C -0.09 - 52.43% 

B/C -0.06 - 51.79% 

 

Table 5.8: Effect size scores for cinemas 

 

However, the post hoc and effect sizes tests disagree with regard to the relationship between 

cinemas A and C, as well as B and C, where table 5.8 pair-wise comparisons shows little to no 

difference between these cinemas.  

The ANOVA analysis shows that the cinemas are significant in their overall effect on preference 

scores (F (2,26) = 15.639, p = .0001) though the effect size of η2=0.001 shows that the effect is 

negligible. However, further observations of the cinemas with respect to the other factors shows 

interactions among them. These interactions are explored further in sections 5.4.5, 5.4.6 and 

5.4.8. 

5.4.4 Results Based on Program 

The box plots in figure 5.16 display nearly identical distribution of scores for all five programs.  

-.051 .098 .4205

-.204 .098 <.0001 S

-.153 .098 .0018 S

Mean Diff. Crit. Diff. P-Value

Cinema A, Cinema B

Cinema A, Cinema C

Cinema B, Cinema C

Scheffe for Preference

Effect: Cinema

Significance Level: 5 %
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Figure 5.16: Homoscedasticity between programs 

 

The skewness figures in table 5.9 show that the distribution of the data for programs SD and 

TM are symmetrical while Sc, Sc-T and Sc-F are slightly skewed. The kurtosis for each program 

depicts the data following a uniform distribution (k ≤ -1.2).   

 

 

 SD TM Sc Sc-T Sc-F 

Mean 4.175 4.045 4.338 4.309 4.097 

Std. Dev. 2.386 2.324 2.448 2.363 2.311 

Std. Error 0.067 0.065 0.069 0.067 0.065 

Count 1260 1260 1260 1260 1260 

Minimum 0.2 0.1 0.1 0.1 0.1 

Maximum 9.7 8.8 9.8 8.7 8.5 

Skewness -0.067 -0.056 -0.128 -0.228 -0.174 

Kurtosis -1.443 -1.414 -1.426 -1.466 -1.455 

 

Table 5.9: Descriptive statistics split by program 

 

As with the cinemas, there is good agreement in the distribution of data across the five 

programs. However, since the factor program was found to be of statistical importance in the 

ANOVA, a post hoc analysis (table 5.10) was completed to review the statistical differences 

between the five programs.  
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Table 5.10: Scheffe post hoc analysis for program 

 

Table 5.10 shows significant differences between four pairs of programs, while their direct, 

pair-wise comparison effect sizes show those differences to be negligible (table 5.11).  

 

 d η2 CL 

Program - 0.002 - 

SD/TM 0.06 - 51.56% 

SD/Sc 0.07 - 51.90% 

SD/Sc-T 0.06 - 51.59% 

SD/Sc-F 0.03 - 50.94% 

TM/Sc 0.12 - 53.46% 

TM/Sc-T 0.11 - 53.17% 

TM/Sc-F 0.02 - 50.63% 

Sc/Sc-T 0.01 - 50.34% 

Sc/Sc-F 0.10 - 52.85% 

Sc-T/Sc-F 0.09 - 52.56% 

 

Table 5.11: Effect size scores for programs 

 

The factor program was found to be statistically significant, as shown by the ANOVA (F (4,52) 

= 12.607, p = .0001), though the effect size of η2=0.002 shows that the overall effect was 

negligible. However, additional interactions with other factors were observed and therefore 

further analyzed was warranted, which is presented in sections 5.4.6 and 5.4.7. 

.131 .164 .1796

-.163 .164 .0516

-.133 .164 .1649

.079 .164 .6725

-.294 .164 <.0001 S

-.264 .164 .0002 S

-.052 .164 .9013

.029 .164 .9874

.241 .164 .0008 S

.212 .164 .0045 S

Mean Diff. Crit. Diff. P-Value

SD, TM

SD, Sc

SD, Sc-T

SD, Sc-F

TM, Sc

TM, Sc-T

TM, Sc-F

Sc, Sc-T

Sc, Sc-F

Sc-T, Sc-F

Scheffe for Preference

Effect: Program

Significance Level: 5 %
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5.4.5 Results Based on Target Curve*Program 

Figure 5.17 shows the combined target curve preference data as it relates to program material; 

noting that the 95% confidence intervals are too small to be depicted clearly and +/- 1 standard 

deviation intervals are not used in order to maintain clarity in the graph. 

 

 

Figure 5.17: Target curve preference based on program 

     

The ANOVA analysis found that the combined interaction between target curve and program 

produced significant results: F (16,208) = 34.868, p = .0001. While it has been previously 

shown that target curve alone produced the largest significant result, there are interactions with 

program which produced changes in preference within curves C, D and E. These changes are 

most noticeable for programs Sc-T and Sc-F, as reflected in table 5.12. 

 

For the purpose of brevity, the effect size tables for program with respect to target curve and 

target curve with respect to program have been truncated to show only those effects that are of 

intermediate or large in nature. The full effect size tables for these two interacting factors are 

given in appendixes L and M.  
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  d CL 

Curve C - Program     

SD/Sc-F 0.63 67.30% 

TM/Sc-F 0.56 65.41% 

Sc/Sc-F 0.67 68.12% 

Curve D - Program     

SD/Sc-T 0.50 63.72% 

SD/Sc-F 0.83 72.11% 

TM/Sc -0.68 68.44% 

Sc/Sc-T 0.75 70.19% 

Sc/Sc-F 1.07 77.51% 

Curve E - Program     

SD/Sc-T -1.26 81.38% 

SD/Sc-F -1.10 78.18% 

TM/Sc -0.49 63.62% 

TM/Sc-T -1.40 83.82% 

TM/Sc-F -1.24 81.01% 

Sc/Sc-T -0.93 74.46% 

Sc/Sc-F -0.75 70.28% 

 

Table 5.12: Effect size scores between programs with respect to target curves; effect sizes 

between programs highlighted in pink for intermediate differences and yellow for large 

difference 

Within target curves A and B, there were little to no differences in preference scores between 

pairs of programs (i.e., program had no effect on preference). However, for curve C there were 

intermediate differences in scores that were affected by the program material, primarily with 

program Sc-F, which scored lower than programs SD, TM and Sc.  For curve D, higher 

preference scores were given for programs SD and Sc compared to the other programs, as 

shown by the intermediate to large effect size differences between scores. The preference scores 

for between curves D and E essentially "switched places" for programs Sc-T and Sc-F, showing 

that listeners preferred curve E over D for these two pieces of program. This is reflected in table 

5.12 with the d scores changing from positive to negative between the two curves in the pairwise 

comparisons for these programs.    

 

Upon further review of the relationships between target curve preference and program material, 

it was found that nearly all target curves showed effectively large differences between them 

with respect to program. However, certain curves scored somewhat similarly (intermediate 

effects size differences) with regard to program, as depicted in table 5.13. 
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  d CL 

SD - Curve     

A/B 0.50 63.80% 

TM - Curve     

A/B 0.60 66.36% 

Sc - Curves     

C/D 0.59 66.18% 

Sc-T - Curves     

C/E 0.60 66.31% 

D/E -0.28 57.89% 

Sc-F - Curves     

A/B 0.63 67.17% 

C/E 0.48 63.37% 

D/E -0.40 61.15% 

 

Table 5.13: Effect size scores between target curves with respect to programs; effect sizes 

between target curves highlighted in pink for intermediate differences  

 

Curves A and B scored similarly on 4 out of the 5 programs while curve pairs C/E and D/E 

scored similarly for Sc-T and Sc-F; the two pieces of program material which were mixed on a 

SMPTE X-curve calibrated dub-stage. Of these pairing, the d scores show that curve C was 

preferred slightly over E where curve E was preferred marginally over D.  

 

A factorial post hoc test was conducted with factors target curve and program, in which all of 

the target curves' preference scores were found to be significantly different with respect to 

program. However, the post hoc analysis for program also uncovered differences in preference 

scores influenced by the type of program, as revealed in tables 5.14(a) and 5.14(b). 

 

     

Table 5.14(a) & 14(b) Scheffe post hoc factorial analyses for target curve and program 

.442 .100 <.0001 S

-4.904 .100 <.0001 S

-4.115 .100 <.0001 S

-3.498 .100 <.0001 S

-5.346 .100 <.0001 S

-4.557 .100 <.0001 S

-3.939 .100 <.0001 S

.789 .100 <.0001 S

1.406 .100 <.0001 S

.618 .100 <.0001 S

Mean Diff. Crit. Diff. P-Value

Curve A, Curve B

Curve A, Curve C

Curve A, Curve D

Curve A, Curve E

Curve B, Curve C

Curve B, Curve D

Curve B, Curve E

Curve C, Curve D

Curve C, Curve E

Curve D, Curve E

Scheffe for Preference

Effect: Target Curve

Significance Level: 5 %

.131 .100 .0028 S

-.163 .100 <.0001 S

-.133 .100 .0022 S

.079 .100 .2131

-.294 .100 <.0001 S

-.264 .100 <.0001 S

-.052 .100 .6292

.029 .100 .9361

.241 .100 <.0001 S

.212 .100 <.0001 S

Mean Diff. Crit. Diff. P-Value

SD, TM

SD, Sc

SD, Sc-T

SD, Sc-F

TM, Sc

TM, Sc-T

TM, Sc-F

Sc, Sc-T

Sc, Sc-F

Sc-T, Sc-F

Scheffe for Preference

Effect: Program

Significance Level: 5 %
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5.4.6 Results Based on Cinema*Target Curve 

Figure 5.18 shows the combined target curve preference data for all conditions in each cinema; 

noting that the 95% confidence intervals were too small to be depicted clearly and so +/- 1 

standard deviation intervals were shown instead. 

 
 

Figure 5.18: Target curve preference based on cinema 

 

The ANOVA analysis found that the combined interaction between cinema and target curve 

produced significant results: F (8,104) = 7.873, p = .0001. This interaction was somewhat 

expected due to the large variance in cinemas size, especially between cinema A (60 seats) and 

cinema C (516 seats). From figure 5.18 it can be seen that the preference scores for three of the 

curves, A, B and D, differ very little between the three cinemas while curves C and E display 

moderate differences. 

 

In reviewing effect size scores between cinemas for each target curve, there is either no effect 

size or only very small effect size differences between the cinemas for curves A, B and D. This 

indicates that the cinema which the target curve is played back in has little to no effect on the 

preference scores for these three curves. In comparison, an intermediate effect size exists 

between cinemas for curves C and E. The largest effect sizes for these two curves are between 

cinemas A and C, which are the smallest and largest cinemas, respectively. In addition, there is 
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a small effect size difference between these two curves for cinemas B and C, as shown in table 

5.15.  

 

  d CL 

 Curve A - Cinemas     
A/B 0.23 56.53% 

A/C 0.04 51.26% 

B/C -0.18 54.99% 

Curve B - Cinemas     

A/B 0.13 53.75% 

A/C 0.24 56.67% 

B/C 0.11 53.13% 

Curve C - Cinemas     

A/B -0.24 56.85% 

A/C -0.56 65.41% 

B/C -0.32 59.00% 

Curve D - Cinemas     

A/B -0.05 51.41% 

A/C -0.14 53.96% 

B/C -0.10 52.79% 

Curve E - Cinemas     

A/B -0.20 55.62% 

A/C -0.54 64.77% 

B/C -0.34 59.46% 

 

Table 5.15: Effect size scores between target curves with respect to cinemas; effect sizes 

between cinemas highlighted in blue for small differences and pink for intermediate 

differences 

Table 5.15 shows that curves C and E were preferred more in the larger cinema C than the 

smaller cinema A.  

 

The data was also analyzed between curves in each cinema in order to review the affect that the 

cinemas had on pair-wise comparisons of curves (table 5.14). Curves A and B displayed an 

intermediate level of differences in both cinemas A and B where the same was found between 

curves C and D only in cinema A. Curves D and E showed an intermediate to small level of 

difference in all three cinemas, with the smallest difference displayed in cinema C.   
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  d CL 

Cinema A - Curves     
A/B 0.62 66.93% 

A/C -5.23 99.90% 

A/D -4.41 99.91% 

A/E -3.56 99.41% 

B/C -5.82 99.99% 

B/D -4.91 100.00% 

B/E -4.04 99.79% 

C/D 0.58 65.82% 

C/E 1.36 83.11% 

D/E 0.75 70.30% 

Cinema B - Curves     

A/B 0.56 65.41% 

A/C -6.29 100.00% 

A/D -5.28 99.90% 

A/E -4.07 99.80% 

B/C -7.00 100.00% 

B/D -5.94 100.00% 

B/E -4.61 99.94% 

C/D -0.87 73.16% 

C/E 1.48 85.23% 

D/E 0.67 68.11% 

Cinema C - Curves     

A/B 0.80 71.46% 

A/C -6.78 100.00% 

A/D -5.02 99.98% 

A/E -4.21 99.85% 

B/C -8.46 100.00% 

B/D -6.27 100.00% 

B/E -5.23 99.90% 

C/D 1.18 79.78% 

C/E 1.53 86.03% 

D/E 0.41 61.47% 

 

Table 5.16: Effect size scores between cinemas with respect to target curve; effect sizes 

between target curves highlighted in blue for small difference and pink for intermediate 

differences  

From table 5.16, it can be seen that for cinemas A and B, curve B is only preferred slightly more 

than the anchor curve A. In the largest of the cinemas (C), curves D and E scored very similarly.  

 

A factorial post hoc test was conducted with factors target curve and cinema, in which cinemas 

A and B were found to be similar with respect to target curve scores but that all curves proved 

to be statistically different within each cinema, as shown in tables 5.17(a) and 5.17(b). 
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Table 5.17(a) & 17(b) Scheffe post hoc factorial analyses for cinema and target curve 

 

5.4.6 Results Based on Cinema*Program 

Figure 5.19 depicts the preference data as related to cinema and program material. 

 

 
 

Figure 5.19: Preference scores as based on cinema and program  

 

The ANOVA analysis found that the combined interaction between cinema and program 

produced significant results (F (8,104) = 5.608, p = .0001), which is primarily due to cinema A 

displaying a wider variance in scores between the 5 different pieces of program material when 

compared to cinemas B and C.   

 

-.051 .065 .1612

-.204 .065 <.0001 S

-.153 .065 <.0001 S

Mean Diff. Crit. Diff. P-Value

Cinema A, Cinema B

Cinema A, Cinema C

Cinema B, Cinema C

Scheffe for Preference

Effect: Cinema

Significance Level: 5 %

.442 .106 <.0001 S

-4.904 .106 <.0001 S

-4.115 .106 <.0001 S

-3.498 .106 <.0001 S

-5.346 .106 <.0001 S

-4.557 .106 <.0001 S

-3.939 .106 <.0001 S

.789 .106 <.0001 S

1.406 .106 <.0001 S

.618 .106 <.0001 S

Mean Diff. Crit. Diff. P-Value

Curve A, Curve B

Curve A, Curve C

Curve A, Curve D

Curve A, Curve E

Curve B, Curve C

Curve B, Curve D

Curve B, Curve E

Curve C, Curve D

Curve C, Curve E

Curve D, Curve E

Scheffe for Preference

Effect: Target Curve

Significance Level: 5 %
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In reviewing effect size scores between the pieces of program material in a given cinema, no 

effect size exists between program materials in cinemas B and C. However, in cinema A it can 

be seen that small effects exist between three pairs of program material, as shown in table 5.18.  

 

  d CL 

Cinema A - Program     
SD/TM 0.11 53.08% 

SD/Sc -0.06 51.56% 

SD/Sc-T -0.03 50.91% 

SD/Sc-F 0.15 54.12% 

TM/Sc -0.17 54.68% 

TM/Sc-T -0.15 54.09% 

TM/Sc-F 0.04 51.00% 

Sc/Sc-T 0.02 50.68% 

Sc/Sc-F 0.21 55.78% 

Sc-T/Sc-F 0.18 55.18% 

Cinema B - Program     

SD/TM 0.05 51.29% 

SD/Sc -0.05 51.33% 

SD/Sc-T -0.06 51.63% 

SD/Sc-F -0.01 50.40% 

TM/Sc -0.09 52.59% 

TM/Sc-T -0.10 52.89% 

TM/Sc-F -0.06 51.69% 

Sc/Sc-T -0.01 50.28% 

Sc/Sc-F 0.03 50.94% 

Sc-T/Sc-F 0.04 51.23% 

Cinema C - Program     

SD/TM 0.01 50.40% 

SD/Sc -0.10 52.76% 

SD/Sc-T -0.08 52.17% 

SD/Sc-F -0.02 50.69% 

TM/Sc -0.11 53.19% 

TM/Sc-T -0.09 52.61% 

TM/Sc-F -0.04 51.10% 

Sc/Sc-T 0.02 50.64% 

Sc/Sc-F 0.07 52.08% 

Sc-T/Sc-F 0.05 51.48% 

 

Table 5.18: Effect size scores between programs with respect to cinema; small effect sizes for 

cinema A between various programs highlighted in blue 

The data was then analyzed to observe effect sizes between cinemas for a given piece of 

program material; shown in figure 5.19. 
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  d CL 

SD - Cinemas     
A/B 0.03 50.71% 

A/C -0.02 50.43% 

B/C -0.04 51.13% 

TM - Cinemas     

A/B -0.04 51.04% 

A/C -0.11 53.12% 

B/C -0.07 52.03% 

Sc - Cinemas     

A/B 0.03 50.92% 

A/C -0.06 51.73% 

B/C -0.09 52.59% 

Sc-T - Cinemas     

A/B -0.00 50.02% 

A/C -0.14 53.96% 

B/C -0.10 52.79% 

Sc-F - Cinemas     

A/B -0.14 53.83% 

A/C -0.19 55.24% 

B/C -0.05 51.45% 

 

Table 5.19: Effect size scores between cinemas with respect to program; small effect size for 

program Sc-F between cinemas A and C highlighted in blue 

 

From this data it can seen that there is a small difference in preference for program Sc-F between 

cinemas A and C, with the preference weighing slightly more towards the larger cinema.  

 

A factorial post hoc test was conducted with factors cinema and program, in which cinemas A 

and C were found to be statistically different with respect to program.  In addition, the post hoc 

analyses found that all programs were found to be statistically similar within each cinema, with 

the exception of programs TM and Sc, as shown in tables 5.20(a) and 5.20(b). However, the 

difference between these two programs was marginal, as p =.0457 with a significance level of 

α =.05. 
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Table 5.20(a) & 20(b) Scheffe post hoc factorial analyses for cinema and program 

 

5.4.8 Results Based on Cinema*Listening Position 

Though listening position was not found to be significant in the ANOVA analysis when 

considered as a stand-alone factor, there was an interaction between cinema*listening position 

that was found to be significant, albeit with a low F value of F (4,52) = 2.744 and a marginal p 

value of p =.038. Figure 5.20 displays preference data as related to cinema and listening 

position. 

 

 

Figure 5.20: Preference scores based on cinema versus program 
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The 95% confidence intervals shown in figure 5.20 display a high degree of overlap for all 

listening position and cinemas with the exception of the 2/3L position between cinema A and 

C.   

 

In reviewing effect size scores between the cinemas for a given listening position, there was 

only a small effect between cinemas A and C for the 2/3L position as shown in table 5.21.  

 

  d CL 

Front - Cinemas     
A/B 0.02 50.70% 

A/C 0.08 52.20% 

B/C 0.10 52.88% 

2/3L - Cinemas     

A/B 0.06 51.77% 

A/C 0.15 54.18% 

B/C 0.08 52.35% 

Back - Cinemas     

A/B 0.03 50.76% 

A/C 0.03 50.94% 

B/C 0.01 50.17% 

 

Table 5.21: Effect size scores between cinemas with respect to listening position; small effect 

size for position 2/3L between cinemas A and C highlighted in blue 

 

Effect size scores in table 5.22 depict that within cinemas there is no difference in preferences 

between listening positions. 

 

  d CL 

Cinema A - Position     
Front / 2/3L 0.03 50.89% 

Front / Back 0.03 50.78% 

2/3L / Back 0.06 51.66% 

Cinema B - Position     

Front / 2/3L 0.06 51.58% 

Front / Back 0.08 52.21% 

2/3L / Back 0.02 50.64% 

Cinema C - Position     

Front / 2/3L 0.04 51.07% 

Front / Back 0.02 50.46% 

2/3L / Back 0.05 51.52% 

 

Table 5.22: Effect size scores between listening positions with respect to cinema 
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These results are reflected in the factorial post hoc analysis (tables 5.23 a & b) between cinema 

and listening position. 

 

   

 

Table 5.23(a) & 23(b) Scheffe post hoc factorial analyses for cinema and listening position 

 

5.5 Discussion 

 

The results presented in the previous sections show a preference for target curve C when 

considering factors cinema, program, listening position, and subject, analyzed collectively and 

individually. Curves A and B scored low across all tests regardless of cinema, program, listening 

position, subject or combination thereof.  

The factor program did have an effect on preference scores between curves D and E, as shown 

in figure 5.16.  Further analysis demonstrates that for programs Sc-T (Score-Trailer) and Sc-F 

(Score-Film), listeners tended to exhibit a higher level of preference towards the flat target curve 

(E), than the curve with the most noticeable bass boost (D), especially in cinema C, the largest 

of the three cinemas (figure 5.21). 
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Figure 5.21: Target curve preference based on program and cinema 

 

This is possibly due to these programs having more low frequency content than the others; 

referring to the long-term spectral power density of the programs shown in figure 5.12. Further 

to this point, the program Sc-T has elevated lower frequency levels over the film version of the 

same content (Sc-F). Unlike, feature-length films, trailers must meet a standard level of 

loudness in order for the trailer to receive a film rating from the Motion Picture Association of 

America's (MPSS) Classification and Rating Administration (CARA). This arose out of the 

increasing levels of trailer audio in what had become a "loudness battle" between the movie 

studios who were attempting to garner additional market share (louder perceived as better). To 

answer this problem, the Trailer Audio Standards Association was formed and created what has 

become known as the TASA standard. This standard attempts to maintain trailer program levels 

within the parameter of Leq(m) = 85dB, using a metering system based on various weightings 

at octave frequency bands. In order for a trailer to receive an MPAA rating, it must meet the 

TASA standard level. This standard is based on the ITU-486 noise level for sound broadcasting, 

both of which are shown in figure 5.22.  
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Figure 5.22: Trailer frequency response weighting curve, Leq(m), shown in blue with ITU-486 

shown in red; derived from  (TASA, 2013) and (ITU, 1987) 

Leq(m) is an integrated measurement of level over the duration of the trailer, and it’s weighting 

emphasize mid and upper frequencies while rolling off the effect of the bass. Essentially this 

allows sound editors and mixers to balance loud passages against quiet passages and to add a 

large amount of low frequency information while still meeting the TASA standard. This 

typically leads many trailers to have louder low frequency information than their associated 

feature-length films.  

 

It was expected that programs Sc-T and Sc-F would have had a larger affect when interacting 

with curve A. One of the basic premises for the SMPTE X-curve is to provide good translation 

between the dub-stage and the cinema. However, the results found that curve A was not the 

preferred curve for program material mixed on a SMPTE calibrated dub-stage. This implies that 

ideal translation was not occurring during these experiments. If the theory of translation is valid 

for all circumstances of programs mixed on a SMPTE calibrated dub-stage, then curve A should 

have been the preferred curve for programs Sc-T and Sc-F.  
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The factor cinema does appear to have a small effect, with curves C and E rating slightly higher 

in cinema C than in cinema A; referring to figure 5.17. This may be partially due to cinema C 

being much larger than cinema A, with longer reverberation times, especially in the lower 

frequencies (figure 5.23).  

 

 

Figure 5.23: Reverberation time by octave for cinemas A, B and C 

 

This may have led test subjects to perceive cinema C as being more "theatrical" sounding, 

rendering flat or "flattish" curves with somewhat enhanced low frequency playback more 

preferred for this size cinema. 

The listening position of the test subjects within any of the cinemas did not have a significant 

effect on preference. However, in comparing the test results between cinemas, ranking of the 

preference mean did change from cinema to cinema (figure 5.19) although not in a significant 

manner. The only noted difference that listening position had on preference was that the 2/3L 

position was preferred more in cinema A than C, but this finding was so marginal that it did not 

warrant further analysis. These results were somewhat unexpected in light of the differences in 

high frequency air loss between cinemas, especially when comparing the frequency response 

of the back rows of cinemas A (row 6) and C (row 17), as seen in figure 5.24.  
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Figure 5.24: Frequency response for curve E (flat) for the back row in cinemas A and C 

 

A possible explanation for these finding may be listener adaptation over the successive trials. 

The listening test described in this chapter were administered in a successive treatment 

condition, as described by Keppel and Wicken (2004), where a variable (or set of variables) is 

held constant throughout a experimental session. In this case, the room and listening position 

were held constant throughout a single session and only changed between subsequent listening 

sessions. All other aspects of the listening tests, including trials and session orders were 

randomized in a balanced way across listeners. Previous studies, where successive treatments 

of room were used, have shown that the successive treatment condition can produce room 

acoustic adaptation due to the longer exposure time to the same room acoustics (Olive et al., 

1995).  

An effect was noted between listeners, shown in figure 5.25, as two of the listeners had higher 

preferences for curve E over curve D and one listener scored these two curves very similarly 
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overall. These three listeners all fall within the median age of the listeners and have previous 

experience in taking listening tests; therefore, there is nothing notable to explain this difference.  

 

 

Figure 5.25: Target curve preference based on subject (listener) 

 

5.6 Preference Curves in Prior Research 

 

Prior research has shown preferences similar to the finding reported in this chapter. In various 

circumstances, listeners have preferred a curve that displays an elevated bass response with a 

nearly flat transitional "tilt" into a lowered high frequency response.  

 

Even in the early days of cinema tuning it was found that a flat response was not desirable but 

instead, a tilted response curve gave a "more pleasing response" as noted by Durst and Shortt 

(1939) and shown in figure 5.26.  
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Figure 5.26: Overall acoustic characteristic adjusted for "more pleasing response" from  

(Durst and Shortt, 1939) 

 

Note that the extreme high frequency roll-off in figure 5.26 was to compensate for noise from 

the recording methods and equipment and was not derived solely by preference (other than the 

preference not to hear noise).   

 

In their work on equalizing rooms to a "house curve", Boner and Boner also found that listeners 

preferred linear, sloping curves that rose towards to the lower frequencies, as shown in figure 

5.27.  
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Figure 5.27: Typical house curves after equalization and filtering of major feedback modes, 

(Boner and Boner, 1965) 

 

The Boners further found that listeners were more willing to accept a flat horizontal curve with 

some roll-off from 1kHz to 10kHz, but that a curve which tilted up towards the higher 

frequencies or rolled off lower frequencies was not acceptable.  

 

In 1969 Ljungberg undertook a series of listening tests which involved using sound engineers 

as test subjects; the same sound engineers who were responsible for the recordings used during 

the listening tests. This experiment was as part of his ongoing work towards a cinema and 

control room standard. What Ljungberg had found was a set of curves which he mapped against 

an empirical curve tolerance that was flat from 30Hz to 250Hz and then followed a 

1.5dB/octave roll off with a +/-2 tolerance, as shown in figure  5.28 (Ljungberg, 1969). 
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Figure 5.28: Results of listening tests conducted with high-quality dialog and music program 

material in a re-recording theatre of 300m3 with good diffusion and a 0.5s reverberation time, 

flat; from  (Ljungberg, 1969) 

The comments received by Ljungberg were as follows: 

 Curve 1: Too thin on music, a little nasal and shrill on dialog. 

 Curve 2: Well-balanced on all sorts of program, possible a trifle too heavy in bass. 

 Curve 3: Very well balanced on all types of program, both treble characters [sic] quite 

     acceptable. 

 

Møller noted that an ideal curve for listening to "hi-fi" equipment in a listening room is one that 

is as smooth and straight as possible, signifying that all frequencies are reproduced at 

approximately equal level with a primary emphasis being given to the 60Hz to 6kHz range. 

(Møller, 1974). Møller further reported that recordings made of a combination of near-field and 

far-field information should be reproduced using a curve with a boost in the low frequencies 

and a small amount of cut in the high frequencies. The curve shown in figure 5.29 was partially 

based on listening tests conducted by Brüel & Kjaer and partially from curves taken from 

average concert halls.  
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Figure 5.29: Optimum curve for hifi equipment measured in the actual listening room; from 

(Møller, 1974)  

Holman revealed a similar sloping curve while studying 9 commercial cinemas, all presumably 

calibrated using the SMPTE standard (2007). The average of the data is shown in figure 5.30. 

 

 

Figure 5.30: Steady state (160ms record) average frequency response; from (Holman, 2007) 
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Research on five room correction products utilized for non-cinema listening spaces (i.e. small 

to mid-sized studios and living rooms) have shown that the preferred room correction product 

had shown a similar smooth in-room target response with a 10dB negative slope from 20Hz to 

20kHz, while the least prefer product had specified a flat in-room target curve as shown in 

figure 5.31 (Olive et al., 2009).  

 

 

Figure 5.31: In-room frequency response measurements for room corrections products, shown 

in descending order based on preference ratings and offset by 5dB for clarity; from 

 (Olive et al., 2009) 

 

Further research by Olive et al. found that the preferred in-room and headphone target response 

curves were not flat but also had an equivalent sloping shape and were extremely similar in 

characteristics (Olive and Welti, 2015, Olive et al., 2013a, Olive et al., 2013b), as shown in 

figure 5.32. 
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Figure 5.32: Preferred in-room loudspeaker (black) and headphone (cyan) target response 

curves, derived from (Olive and Welti, 2015, Olive et al., 2013a, Olive et al., 2013b) 

 

Based on research by Olive et al, Dennis considered if comparable curves would be found in 

tests for automotive audio.  Using the same method-of-adjustment test as Olive and his team, 

Dennis had 8 expert and 95 non-expert listeners adjust bass and treble filters until they achieved 

their preferred frequency response (Dennis, 2015). The results of this test are shown in figure 

5.33. 

 

 

Figure 5.33: Bass and treble adjusted independently (blue), bass and treble adjusted together 

(red); from  (Dennis, 2015) 
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These tests rendered a much higher preferred bass response than the in-room or headphone test, 

but a similar sloping shaped preference curve was found. 

 

Research involving the variability in how cinemas are being calibrated uncovered not only a 

wide range of calibrated responses but also a trend towards calibration curves that roughly 

follows the same sloping response as found in prior research (figure 5.34).  

 

 

Figure 5.34: Comparison of SMPTE calibrated cinemas responses and curve C in cinema Ca 

the 2/3L listening position; the cinema data are from  Figures 10, 16(a) and 17 in 

 (Toole, 2015); from (Toole, 2016) 

 

Recent research by the SMPTE B-chain study group found similar responses in 4 cinemas 

(figure 5.35) and 2 dub-stages (figure 5.36). The following graphs show the averaged measured 

response for the centre channel loudspeaker taken at the reference (2/3L) position, smoothed 

over 1/3rd octave bandwidth with 48 PPO window with the responses normalized before 

averaging (SMPTE, 2014).  
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Figure 5.35: Overall average and range of responses for 4 cinemas; from (SMPTE, 2014) 

 

Figure 5.36: Overall average and range of responses for 2 dub-stages; from (SMPTE, 2014) 

 

The report release by the B-chain study group also noted, when compared to the X-curve and 

its tolerances, the alignments of the real-world examples typically fell within a few dB with the 

exception of the low frequencies. The low frequencies were found to be, on average, 5dB above 

the X-curve.  

 

It is interesting to note that for these cinemas and dub-stages shown in figures 5.34 through 

5.36, at low frequencies, the technicians tended to tune the room towards a similar curve as that 

of curve C when attempting to calibrate to the SMPTE X-curve. The calibrations drift towards 

the upper limit of the tolerance at the lower frequencies while drifting to the lower limit of the 
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tolerance at the highest frequencies. Given that the final tuning in cinemas and dub-stages is 

typically done by ear and at the discretion of the technician, it appears that in the case of the 

above given references, these technicians preferred a tilted curve with more low frequency 

content.   

 

5.7 Limitations of This Study 

 

When conducting subjective listening tests, it is important to remember that there is unlikely to 

be a perfect experiment that will give conclusive, yes/no answers. Inevitably, variables other 

than those being tested or the lack of certain variables will influence results. While this study 

was conducted in working cinemas, certain aspects of the cinemas were not employed, such as 

utilizing the installed loudspeakers as a test source, placing the test loudspeaker behind the 

projection screen and not utilizing a multi-channel playback system. The decision to design the 

experiment as described was an effort to control variables. However, the affect that these 

variables might have on listener preference cannot be overlooked. With this in mind, the use of 

the "house" loudspeaker system, placing the loudspeakers behind the screen and utilizing a 

multi-channel system all provide paths for future research. 

 

5.8 Summary 

 

This chapter reports the results of a series of listening test for preferred in-room response target 

curves for cinemas. A BRS system was used to capture the BRIR in three different cinemas at 

three different seating locations. The three cinemas used for these tests included a 60-seat, 161-

seat and 516-seat cinema. BRIR were convolved with 5 different types of programs and filtered 

through 5 different target curves.  

 

These experiments investigated not only target response curve preference but also any potential 

influence that the cinema, listening position or program material may have on that preference. 

The main conclusions of these experiments are as follows: 

1. The main effect was due to the factor target curve. 

2. The overall preferred target curve was curve C.   
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3. Listeners rated curve A extremely low, even for the program material mixed on a dub-

stage calibrated to the SMPTE X-curve. This calls into question the validity of dub-

stage to cinema translation. 

4. There was an interaction between the different cinemas and target curves, though this 

mainly appears to occur with curves C and E in cinema C. 

5. There was an interaction between the different programs and target curves. This 

interaction appears to be confined to programs Sc-T and Sc-F and is most apparent in 

cinema C.  

6. There was no evidence of listeners being sensitive to the varying amounts of high 

frequency air attenuation in seats at the front, 2/3L and rear locations within the venues. 

This is important because there were no visual cues as to their locations which would 

allow contextual influences. 
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6.1 Introduction 

 

In recent years there has been a good deal of research undertaken regarding the in-room 

responses of cinemas, most notably on how they are measured and calibrated. Much of this 

research has been centred on measurement procedures such as the number of microphone 

positions to be spatially averaged, the measurement equipment itself and the assessment of the 

resultant room curve.  

 

There has been a small collection of research published in recent years that addresses the 

number of microphone positions to use for cinema calibration. Much of this research does not 

look to differentiate between what part of the measured response is the room and what part is 

the loudspeaker (Cengarle and Mateos, 2014) while some has looked at using close-field data 

taken from the loudspeaker in situ (Newell et al., 2011a). Noting that the high Q and non-

minimum-phase nature of loudspeaker-room interactions at any given listener position creates 

issues for thorough equalization, some researcher have sought out a solution through de-

reverberation based subtractive equalization (Fielder, 2001). In Fielder's work he describes a 

method of breaking down the process into three steps: separating the "undesirable" transfer 

function components, de-reverberation of the undesirable components and then adding a new 

"desired" component. The effort requires the ability to create an inversion filter that cancels the 

combined loudspeaker-room transfer function leaving only the loudspeaker without any room 

effect. Though this process shows promise over the traditional loudspeaker-room equalization 

methods, Fielder notes the difficulties and limitations of this method.      

 

The research in this chapter attempts to find a compromise between the questionable practice 

of equalization based on combined loudspeaker-room measurements in absence of loudspeaker 

data, and the difficult subtractive equalization method based on de-reverberation.  It is proposed 

that the calibration (equalization) of a cinema be based on measurements that place increased 

focus on the anechoic data of the loudspeaker being utilized and the quality of that loudspeaker. 

In this research, a well-defined loudspeaker which displays constant directivity was utilized and 

the playback system was held constant in each cinema so that the interaction between only the 

loudspeaker and the room could be observed.   
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Work in this chapter has been peer reviewed and previously presented at the following: 

 GEDEMER, L. 2015. Predicting the In-room Response of Cinemas from Anechoic 

 Loudspeaker Data. AES 57th International Conference, Hollywood, CA: Audio 

 Engineering Society. (Gedemer, 2015a) 

6.2 Motivation 

 

Current calibration work being completely on cinema audio system centres around the 5 

microphone positions as stated in the current SMPTE standard ST-202-2010 (SMPTE, 2010) 

and forwarded by the most recently published SMPTE report (SMPTE, 2014); refer to figure 

6.1. 

 

Figure 6.1: Microphone layout, commonly utilized positions shown in red; from  

 (SMPTE, 2014)  

 

The hypothesis behind the research described in this chapter is that the number of microphones 

required to calibrate a cinema is that number which, when spatially averaged, will trend towards 

the anechoic data of the loudspeakers used in the cinema. A secondary hypothesis is that a 

loudspeaker with smooth off-axis frequency response will allow fewer microphones to be 
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needed to capture the in-room response. In an acoustically well controlled room equipped with 

loudspeakers that have uniform directivity, such as a well designed cinema, screening room or 

dub-stage, the room curve may be predicted in the lower frequencies from the anechoic total 

sound power measurement while at the higher frequencies it may be predicted by the anechoic 

on-axis data (Toole, 2015, 2012), (Engebretson and Eargle, 1982). 

 

The following questions serve as a basis for the research in this chapter: 

• How well can a cinema's steady-state, in-room amplitude response be predicted from 

anechoic loudspeaker data? 

• How much does room size affect the in-room response of the loudspeaker and how? 

• How well does the in-room response "track" the anechoic data and how frequency 

dependant is this? 

• How many microphones positions should be averaged in order to produce an acceptable 

deviation from the loudspeaker data? 

• Does randomizing the heights of the measurement microphones effect the data 

measured and how? 

• How does the number of microphones which are averaged together effect the data 

measured?  

 

The research presented in this chapter utilized a loudspeaker that was characterized by a 

comprehensive set of anechoic measurements and then measured in a number of different sized 

cinemas. In this way, the acoustical effects of the room and its interaction with the loudspeaker 

could be separated and identified from the effects produced by the loudspeaker alone. To the 

author's knowledge, this is the first such experiment on cinema sound that has done so.   

 

Earlier studies have pointed out the risks of assessing the in-room response of a cinema sound 

system given the insufficient number of measurement positions (between 1 and 5) required by 

the standard and the wide variability of equalizing the room by technicians (SMPTE, 2014), 

(Newell et al., 2012), (Newell et al., 2011a). These few positions cannot provide any meaningful 

separation between the performance of the sound source and the effects of the room itself, 

especially in absence of the anechoic data on the loudspeakers being utilized. This could lead 
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technicians to possibly equalize for a room effect in one seat only to make the performance 

inferior in another. Measured curves can be ambiguous because they include evidence of 

acoustical interference which can be strictly location dependant. One of the more pronounced 

effects of this type is comb filtering, which is most apparent in a frequency response graph at 

middle and high frequencies when the delayed signals are acoustically summed with that of the 

direct sound of the loudspeaker at a single microphone. Though comb filtering can be quite 

audible, in certain circumstances it can be inaudible or perceived as a form of 'spaciousness' 

(Brunner et al., 2007) and, in these cases, may be consider somewhat benign. Spatial averaging 

attempts to attenuate the visual evidence of comb filtering. However, the amount of comb 

filtering that is attenuated by spatial averaging would be partially dependent on the number of 

microphones used, their spacings, and the frequency range in question.   

 

It has been shown that high Q resonances in a loudspeaker's response can be audible.  In most 

cases the effect may be small to moderate. Medium to low Q resonances by contrast are very 

audible and should be addressed (Toole and Olive, 1988), (Toole, 1986a). Additional 

phenomena which are not resonances, such as directivity mismatch or crossover effects are also 

audible. Minimum phase anomalies such as resonances can be equalized, however, non-

minimum phase issues such as crossover interference will not benefit from equalization. 

Without the necessary loudspeaker data, the ability to tell the difference using solely in-room 

measurements would be difficult.  

 

Technicians may also be tempted to equalized acoustic phenomena which are perceptually 

unimportant and/or change with head movement, as research has shown that listeners are 

capable of perceptually sorting out the direct and reflected sounds in a way that minimizes the 

timbral colouration (Lindau, 2014),  (Watkins, 2005). This is counterintuitive to what the in-

room frequency response measurement made with a microphone at the listener’s ear position 

would seem to indicate. Effectively, listeners are able to learn and adapt to the invariant acoustic 

features in rooms, such as the reflection patterns, so that they can better hear the true features 

of the sound source. However, it would be impossible for a person examining response curves 

from a small set of stationary microphones spatially averaged together to discern which effects 

are perceptible or even correctable. Attempts to equalize these irregularities can, in effect, add 

resonances to the playback system, thus degrading the sound quality from what may have been 

an ideal or, at the very least, a neutral sound source (Newell et al., 2011b). Without sufficient 
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information on the acoustic performance of the loudspeaker, it is difficult for a cinema 

technician to know the difference between anomalies in the frequency response caused by room 

effects and those caused by shortcomings of the loudspeaker.  

 

6.3 Methodology 

 

The use of spatial averaging utilizing a given number of microphone positions within a cinema 

or dubbing stage to determine an in-room response is a commonly practiced method. In this 

chapter, such a method was employed at several cinema-like venues of various seating 

capacities.  Professional screening rooms located within Los Angeles, California were utilized 

for this purpose. The spatial averages of these rooms were then compared to the anechoic data 

of the loudspeaker used.  

6.3.1 FFT Time Window  

Early in the experiment it was determined that the measurement data could be time windowed 

to eliminate reflections though this could lead to issues regarding elements of the sound that the 

listener hears being eliminated from the measured signal. The direct sound and some early 

reflections contain most of the information in a cinema while reverberation tends to be a lesser 

factor as modern cinemas naturally have low reverberation times.  

It is known that longer FFT windows render more accurate data at lower frequencies as a result 

of improved frequency resolution, as given be equation 6.1: 

 

             df = 1/T                       Eq. 6.1 

df is the frequency resolution  

T is the duration of the window.  

 

To observe the difference in window lengths first-hand, a sample measurement was reviewed 

using various time windows, 10ms, 50ms and 500ms along with two different window types, 

Rectangular and Tukey. The 10ms window was chosen as it shows almost solely the first arrival 

and very early reflections but has a resolution of only 100Hz. The 50ms window was chosen as 

it is a rough approximation of the precedence effect interval for speech (Blauert, 1997) and 

displays a frequency resolution of 20Hz, equivalent to 1/3 octave at 60Hz. The 500ms window 
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was chosen as it is long enough to include the reverberation time of the room and closely 

approximated a steady state response in cinemas. The 500ms window duration displays a 

frequency resolution of 2Hz. The two window shapes used, rectangular and Tukey, provide for 

good frequency resolution at the trade-off of spectral leakage, though rectangular displays more 

spectral leakage than Tukey. Rectangular is considered ideal where spectral analysis is the main 

requirement and the signal duration is shorter than the length of the window. Tukey provides 

for good spectral analysis with lower spectral leakage than rectangular (Benjamin, 2004), 

(Dactron, 2003). However, rectangular is preferred when the signal is broadband in nature, 

when the frequencies in question are closely spaced and of equal amplitude, or when accuracy 

in low frequency measurements are important (Benjamin, 2004), (Cerna and Harvey, 2000). In 

comparison, the Hanning or similar shaped window attenuates the direct field and very early 

time information with shorter window lengths as the tapering commences at the start time of 

the window. This could lead to a loss of frequency resolution when evaluating transient signals 

and also displays errors at low frequencies (Poularikas, 1998), (Harris, 1978). For these reasons, 

data was processed for comparison using the rectangular window for the longer window of 

500ms and Tukey for the shorter 50ms and 10ms windows, as shown in figure 6.2.  

 

Figure 6.2: A single microphone position at 2/3L; 500ms Rectangular, 50ms and 10ms Tukey 

windows (shown offset by 10dB) 
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Figure 6.2 shows a clear difference in window lengths' resolution from 20Hz to 3kHz. However, 

above 3kHz, very little difference is seen between the two window types and durations when 

examined with 1/48 octave resolution.  

 

It has been observed that above approximately 500Hz, when considering window lengths 

between 10ms and  2000ms, the resolution of the data does not change and that the direct sound 

is indeed dominant (SMPTE, 2014), (Fielder, 2012), (Newell et al., 2010), (Munro, 2004).  

 

Ultimately a 500ms rectangular window was chosen in order to obtain good frequency 

resolution across the entire bandwidth and to provide a reasonable representation of a steady 

state response such as used by the SMPTE standard.  

6.3.2 Description of the rooms under research 

A total of seven different sized screening rooms were selected in order to represent the varying 

sizes of professional cinemas, screening rooms and dub-stages. The author felt that the inclusion 

of the smaller, 24-seat room was viable given the trend towards building smaller dub-stages and 

screening rooms. This body of research was conducted in the cinemas shown in table 6.1 and 

pictures in appendix N. 

 

Cinema Seat Count 

Number of 

Microphone 

Positions 

Floor Area  

(in meters) 

Approximate 

Volume 

(in meters3) RT60 

A 24 24 11L x 5.3W 232 0.27 

B  30 30 12.2L x 5.5W 335 0.29 

C 60 30 12.8L x 8W N/A 0.35 

D  114 59 18.3L x 9.5W 1043 0.40 

E  161 79 17L x 14W 1708 0.44 

F  211 103 22.3L x 10.7W 1258 0.41 

G  516 109 46L x 20W N/A 0.46 

 

Table 6.1: Research cinemas utilized; RT60 is an average of the 500 Hz and 1 kHz bands 

 

As shown in table 6.1, the measured reverberation time (RT60) in all of these rooms was between 

.27s and .46s. The rooms' reverberation times were measured using ISO 3382-1 

recommendations (ISO, 2009) with the JBL M2 speaker placed centred in front of the screen 

aimed at the 2/3L position and measured by the BRS system described in chapter 4. The analysis 
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of the impulse responses was undertaken using Matlab ([RT,DRR,CTE,CFS,EDT] = 

irstats(filename,varargin)); the code is shown in appendix O (Hummersone, 2013). The RT60 

measurements of the larger cinemas E, F and G, fall within the guidelines provided in table 6.2. 

 

 

 

Table 6.2: Recommended reverberation times at 500Hz for various theatre sizes; from 

 (Dolby, 1994) 

 

The reverberation times per octave are shown in figure 6.3. 

 

 

Figure 6.3: Reverberation times by octave for all cinemas 

 

It was found that 3 of the 7 cinemas under testing (D, E and F) fell within the 80 to 300 seat 

range, which is typical of a multiplex cinema as depicted in figure 6.4. 
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Figure 6.4: Typical multiplex theatre sizes; from (NATO, 2013) 

 

6.3.3 The playback system 

The JBL M2 was chosen as the sound source for these measurements because of its exemplary 

anechoic performance and power handling capabilities required to produce a sufficient sound 

pressure level in the various sized cinemas. In addition, the M2 displays constant directivity. 

Figure 6.5 shows its frequency response measured in a calibrated anechoic chamber at a 

distance of 2 meters. The four curves from top to bottom represent its on-axis, listening window 

(+/-30 horizontal, +/-10 vertical), sound power shown as a normalized amplitude response 

curve, and the directivity index (Devantier, 2002). The importance of constant directivity is the 

relative shape of the frequency response remains unchanged as one moves off-axis. Sound 

power hypothetically represents all of the sounds arriving at the listening position after any 

number of reflections from any direction. The total sound power is determined by measuring 

the loudspeaker at equal angular increments, in the case of the JBL M2 this was 5, and then 

applying an appropriate weighting value at each angular increment.  The weighting value 

corresponds to the area of the spherical quadrangle centred at the microphone position for a 

particular angular position (ANSI/CEA, 2015). The JBL M2 was measured in 283m3 chamber, 
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which is fitted with 1.2m fibreglass wedges and dual steel acoustic doors. The chamber is 

anechoic, +/- 0.5dB at 1/24th octave, from 60Hz to above 20kHz and measure to be +/-0.5dB 

at 1/12th octave from 60Hz to 20Hz.  

 

 

 

Figure 6.5: Anechoic data of JBL M2 loudspeaker combined with the Crown iTech 9000 

amplifier. On-axis (solid black), listening window (dashed red), sound power (dotted green) 

and directivity index (solid blue) 

 

The only processing utilized within the playback system was the crossover and equalization 

required by the JBL M2 loudspeaker, which is available as a DSP pre-set in the Crown iTech 

9000 amplifier.  

 

The JBL M2 loudspeaker was placed at centre screen position in each cinema approximately 

0.3 meter in front of the screen. It was raised on a lift and aimed at the 2/3L position in the 

seating area using a Bosch GLL 2-45 self-levelling long-range cross line laser. There are no 
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published industry standards for the mounting height of screen loudspeakers but the general 

guideline that many cinemas adhere to is orienting the screen loudspeakers so that the reference 

axis of the loudspeaker is aimed at a location on the centreline of the main seating area at a 

distance about 2/3L the length of the house (JBL, 2003).  

 

The loudspeaker was placed in front of the screen instead of behind it in order to minimize the 

effects of the screen and the loudspeaker mounting conditions behind the screen. By removing 

the screen and mounting effect from the measurements, efforts were able to focus on how the 

cinema acoustics interact with the loudspeaker. Research on the acoustic properties of different 

projection screen materials along with variations in loudspeaker mounting behind a screen, and 

their combined, wide variable effects on loudspeaker performance has been well researched and 

documented by others (Newell et al., 2013), (Long et al., 2012). It has been duly noted that a 

projection screen can have a large influence on the in-room response of a loudspeaker; an 

influence which should not be ignored during room measurement and calibration. However, the 

decision to avoid placement of the loudspeaker behind that screen was an attempt to limit the 

number of variables which would have been present with 7 different screens. In addition, access 

to placement of the test loudspeaker behind the screen in all cinemas was highly restricted.    

6.3.4 The microphones and microphone positions 

Measurements were carried out using 12, omnidirectional dbx RTA-M microphones that were 

individually calibrated in an anechoic chamber applying the free-field substitution method 

using a JBL M2 as the source and a Bruel and Kjaer 4136 as the reference microphone.  

 

Within each cinema, the microphones' calibrated, flat frequency response axes were aimed at 

the loudspeaker. Microphones were placed at every other seat location, with an offset of one 

seat in every other row in order to avoid symmetry and positional redundancy. Though there 

has been recommendations for the placement of microphones for spatial avergaing by other 

researchers based on wavelength (Lubman, 1971), this configuration was chosen as it represents 

one that can easily be replicated in a commercial cinema by an audio technician; figure 6.6 

shows an example of this layout.  
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Figure 6.6: Example microphone layout 

 

The exception to placing a microphone in every other seat was Cinema G, where it was thought 

that measuring 258 locations would be excessive and that 109 positions would adequately 

represent the cinema. In this case, a microphone was placed in every other seat in every other 

row with the exception of the left side seating area which was mirrored the right side seating 

area.  

 

Figure 6.7 depicts the average distance between microphones in the cinemas. Slight variations 

in microphone distances between cinemas were due to different styles of theatre seats being 

used, along with varying seating level depths. A microphone was placed at a position 2/3rds of 

the length of the cinema from the screen, in the center seat (2/3L position), and all microphones 

were positioned so that the capsules were 1.0 to 1.2 meters above the finished floor, both as 

recommended in the SMPTE 202-2010 standard. In selected cinemas the microphones were 

placed at random heights above the seats in order to isolate the seat-dip effect, as further 

described in 6.4.2.  
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Figure 6.7: Average distance between microphones 

 

6.3.5 The measurement procedure 

Frequency response measurements were taken using Harman Audio Test Software (HATS). A 

4s swept sine wave ranging from 20Hz to 20kHz was utilized. Given that each cinema displayed 

a reverberation time of approximately 0.45s or less, an FFT stop gate time of 500ms was used 

to capture the entire impulse response in an effort to best represent the system's steady state 

response and to provide improved resolution in the lower frequencies. The playback levels for 

the sine sweeps were adjusted to create an SPL of approximately 85dB C-weighed at the 2/3L 

position as per the SMPTE standard.   

6.3.6 Data post-processing 

A gain factor was added (or subtracted) in order to normalize the levels between the 

measurement positions. This process provided an averaged response that did not weigh the 

power of one position more than another. The normalized level was based on the C-weighted 

level from 2k to 10kHz at the reference position (85dB).  

6.3.7 Spatial averaging of the microphone positions 

Spatial averaging was used to determine the mean value of sound pressure level over the various 

positions within the cinemas, as determined by the power averging shown in Equation 6.2: 
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N is the number of positions 
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Microphones were placed in predetermined groups for averaging. For each cinema, one group 

was comprised of all the measurement positions. Subsequent groupings were made up of sets 

of 4, 8, 12 and 16 positions, with larger cinemas including a grouping of 36 positions. 

 

Within each cinema, every grouping had to meet the following requirements: 

• Include the 2/3L position  

• Within the groupings of 4, the only common position between groupings is the 2/3L position 

• Avoidance of symmetry between the left and right sides 

• Avoid using adjacent positions, with the exception of the smaller cinemas 

• Avoid permutations between groups of similar sizes 

• No group will consist of only extreme outer positions (front / back rows, sides) 

• Avoid boundary condition when ever possible 

 

Six sets of each grouping size were created for each cinema. From each set of grouping sizes, 

only the set that displayed the maxium deviation from the loudspeaker data was considered for 

further review. This allows an observation based on a worst-case scenario.  

 

6.4 Results 

 

Section 6.4 reports on the analysis of the measurements and the results.  

6.4.1 Overall in-room response compared to loudspeaker data  

Figures 6.8 and 6.9 show the in-room response of the JBL M2 spatially averaged across all 

microphone positions and 4 positions, respectively, versus its anechoic response for each 

cinema. The anechoically measured response of the JBL M2 is shown in solid black. This 

response curve is an amalgam of the sound power data below 300Hz, the listening window data 

above 300Hz and 10m of air attenuation beginning at 1kHz. The decision to use this curve is 

threefold: 

1. Below 300Hz the sound power data gives a rough approximation of a diffuse-

field response. 

2. As the cinemas have relatively low reverberation times, especially in the mid to 

upper frequencies and are devoid of early lateral reflections, these rooms are 

dominated by the listening window data above approximately 300Hz.   
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3. 10m of air attenuation represents a good compromise for describing the high 

frequency loss across all 7 cinemas    

The heavy dotted black curves represent a +/-3dB "tolerance", similar to SMPTE ST202-2010. 

These overall responses, along with the response of the M2, have been normalized to 85dB 

between 2k and 10kHz. 

 

Figure 6.8: In-room response using all positions spatially averaged for each cinema compared 

to the JBL M2 sound power / listening window curve, shown in solid black; the black dashed 

black lines show the +/- 3dB tolerance (Cinema A - purple, B - gold, C - magenta, D - cyan, E 

- blue, F - green, G - red) 
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Figure 6.9: In-room response using 4 positions spatially averaged for each cinema compared 

to the JBL M2 sound power / listening window curve, shown in solid black; the black dashed 

black lines show the +/- 3dB tolerance (Cinema A - purple, B - gold, C - magenta, D - cyan, E 

- blue, F - green, G - red) 

The amount of air attenuation at 10m was calculated using ISO standards and is shown in figure 

6.10. 
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Figure 6.10: Air attenuation per frequency at 10 meters, 20°C and 50% RH;  

derived from (ISO, 1993, ISO, 1996) 

 
From figures 6.8 and 6.9 it can be seen that beginning at approximately 200Hz and continuing 

upward to approximately 16kHz, all seven cinemas follow the listening window curve within 

the +/-3dB tolerance with the exception of cinemas B and F. Above 16kHz, the in-room curve 

for cinema G start to fall below the tolerance window by an amount related to the additional air 

absorption posed in this larger cinema. From 1kHz down to 200Hz the in-room curves begin to 

diverge from each other due to room-specific acoustic interferences. This is almost certainly 

due to the off-axis sound not being adequately reflected in certain cinemas, and most likely 

related to the variance in frequency-dependent absorption across the cinemas that continues to 

be at play below 1kHz. In this region, the direct sound still acts as a significant, though not 

dominant, effect. Issues such as seat dip become apparent in this frequency range; which is a 

topic explored further in section 6.4.2. However, below approximately 200 Hz there is little to 

absorb sound and therefore the curves rise to meet the sound power curve.   

 

Four very different sized cinemas were reviewed separately in order to observe variations in 

response with respect to volume and reverberation. Figure 6.11 shows the spatially averaged 

response of every microphone position in cinemas A, C, D and G in comparison to the sound 

power / listening window and the listening window curves of the M2 loudspeaker (both with 

air attenuation added). Once again, these overall responses, along with the response of the M2, 

have been normalized to have the same 85dB SPL level between 2k and 10k Hz.  
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Figure 6.11: Overall in-room response of cinemas A, C, D and G (purple, magenta, cyan and 

red), compared to the JBL M2 sound power / listening window (black), listening window 

(grey)  

 

The response in all four of these cinemas follow the sound power / listening curve very closely 

between approximately 200Hz and 16kHz. Cinema C had the lowest measured low-frequency 

reverberation time of all the cinemas and so it follows that its in-room response curve would 

parallel that of the listening window data below 200Hz, as shown in figure 6.11. Of interest to 

note, cinema C is the only cinema in this group which is used as a dub-stage as well as for 

screenings and it demonstrates similar low frequency reverberation times found in the dub-

stages of the SMPTE B-chain report (2014). Cinema A in contrast, though a smaller room than 

C, has longer reverberation times in the lower frequencies, which provides for an energy build-

up that more closely follows the sound power curve. In addition, this room (as well as cinema 

B) is more "box" shaped causing it to be prone to room modes.  Cinemas D and G, which are 

much larger in size comparatively, also have longer reverberations times and in turn also follow 

the sound power curve.  
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6.4.2 Randomizing microphone heights  

In an effort to observe seat-dip effect, three of the seven cinemas, C, E and F, had measurements 

taken a second time with microphones again placed in every other seat but with their heights 

randomized between 1.3 and 2 meters. These three cinemas were chosen for their varying sizes 

and seating layouts.  

 

Initially there were concerns about how empty seats during measurements might render invalid 

results with respect to seat dip. However, research into the seat dip effect has shown that there 

is little difference in the attenuation whether an audience is present or not (Choi et al., 2015), 

(Schultz and Watters, 1964), (Sessler and West, 1964).   

 

Figure 6.12 shows the differences in the spatially averaged responses between ear and random 

heights of all the microphone positions for the three selected cinemas. All of the responses have 

the same overall C-weighted level. The pairs of response curves from each cinema have been 

shown separated by 10 dB for clarity.  
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Figure 6.12: Cinema C, E and F comparisons of averaged responses all measurement 

positions, ear heights (dashed line) versus random heights (solid lines) 

 

Figure 6.13 depicts the differences in responses between ear and random heights at the 2/3L 

microphone position for the three selected cinemas. The pairs of response curves from each 

cinema have been shown separated by 15dB for clarity. 
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Figure 6.13: Cinema C, E and F comparisons of responses at the 2/3L positions, ear heights 

(dashed line) versus random heights (solid lines) 

 

All cinemas displayed some amount of seat effect, as expected. The larger cinemas, especially 

those with a very gradual rake to the seating area, such as cinema F, displayed the largest amount 

of seat effect. Research has found, however, that even stadium seating can display a seat effect 

even though it has an elevated angle of incidence (Holman, 2007), (Bradley, 1991). Both sets 

of figures show that randomizing the microphone heights, essentially a type of vertical spatial-

averaging, appears to fill in some of this effect but does not eradicate it all together. Prior 

research by Davies and Lam (1994) has shown that raising microphone heights (above ear 

height, between 1.56 meters to 2.38 meters) caused the frequency of the dip and its associated 

attenuation to decrease but did not eliminate it completely, as shown in the circled portions of 

figure 6.13. Raising the microphones also appears to have a slight smoothing effect on the 

frequency response above 1k Hz, but it is difficult to state with certainty if this has any real 

beneficial effect subjectively.  
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Figure 6.14 shows that with 4 spatially average microphone positions placed at random heights, 

the in-room response measurements are within +/-3dB of the loudspeaker data starting at 

approximately 200Hz to 300Hz.  

 

 

Figure 6.14: Cinema C, E and F spatial average of 4 positions (magenta, blue and green) 

compared to the M2 sound power / listening window and tolerance (black) 

 

Overall, filling in seat dip and other seat effects by raising the microphones can bring the in-

room response closer to the sound power curve, especially in the region between 200 and 

800Hz.  

 

The perception of seat dip in cinemas is a topic that has been researched very little to date. One 

recent research project found that many listeners were not able to hear discernible differences 

between sitting and standing but that some listeners noted a rise in bass upon standing (Newell 

et al., 2015b). This observation corroborates earlier findings in research which utilized a 

simulated concert hall, where it was found that listeners were able to detect a change in 

attenuation which they attributed to a change in bass tone or warmth (Davies et al., 1996). 
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Further research in this area is warranted to ascertain if seat-dip in a cinema has an effect on 

listener preference. 

6.4.3 Comparing microphone groupings to loudspeaker data using frequency-by-

frequency normalization 

 

The anechoic data of the loudspeaker is held as the baseline by which the in-room 

measurements, divided out into groups of spatially averaged positions, are compared. A novel 

approach to this comparison is to directly observe the difference between the anechoic data and 

the measured data. 

 

When comparing a spatially averaged signal to a signal measured in an anechoic chamber, 

diffuse-field methods are difficult to apply as neither signal was obtained in a truly diffuse-

field. As noted in sections 6.3.3 and 6.4.1, a curve created from the M2 sound power and 

listening window data was used as it provided the best approximation of the in-room response.  

However, this curve is derived from anechoic measurements, is theoretically in its 

approximation and cannot be considered an exact representation of a diffuse-field measurement. 

As noted in prior research entailing dub-stages and cinemas which were mentioned in section 

6.3.1, the total energy in these rooms from 500Hz to 20kHz consist almost entirely of the energy 

at 50ms or less. The reverberant energy therefore has little or no effect on the signal that is 

received by the re-recording mixer or most of the audience. For these reasons, a straight forward 

method of frequency-by-frequency normalization using the magnitude of each signal at a given 

frequency was utilized. 

 

The power in the difference spectrum, or 'room signal', for a given spatial averaging and within 

a given frequency band is derived from: 

 

                                   |𝑍𝑛𝑖(𝑓)|2 =  |𝑌𝑛𝑖(𝑓)|2 −  |𝑋𝑖(𝑓)|2     𝑏𝑖 ≤ 𝑓 ≤ 𝑒𝑖                     Eq. 6.3 

Zni(f) is the room signal, Yni(f) is the spatial average of n microphones, Xi(f) is the 

loudspeaker sound power / listening window curve and i represents an octave  

 

The initial analysis was undertaken using 48 points per octave and so: 
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                                      𝑖 =  ∑ 𝑖𝑝
48
𝑝=1   where   𝑝 ∈  ℕ                                           Eq. 6.4 

 

Since the process in equation 6.4 is iterative for each of these points within a given octave i, the 

term i is used in place of ip for ease of notation. 

 

When expressed in decibels, the difference spectrum can be expressed as: 

 

     𝒁𝒏𝒊(𝑓)𝑑𝐵 = 10 𝑙𝑜𝑔10
|𝑌𝑛𝑖(𝑓)|2

|𝑋𝑖(𝑓)|2
                     Eq. 6.5 

 

An example graphical representation of the difference spectrum is shown in figure 6.15.  

 

 

Figure 6.15: Difference spectrum Z (green) derived from a 36 position spatial average Y 

(blue) and the M2 sound power / listening window with air loss X (red); the difference 

spectrum is offset by +65dB for illustration purposes 
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The mean of the difference spectrum expressed in dB can be computed by: 

 

           �̅�𝑛𝑖𝑑𝐵 = 10 𝑙𝑜𝑔10 ∑ |𝑍𝑛𝑖(𝑓)|2𝑒𝑖
𝑓=𝑏𝑖

         Eq. 6.6 

 

The standard deviation of the difference spectrum expressed in dB is expressed using: 

 

𝝈𝑛𝑖𝑑𝐵 =  10𝑙𝑜𝑔10√(
1

𝑒𝑖
) ∑ |𝑍𝑛𝑖(𝑓)|2 − |𝑍𝑛𝑖(𝑓)|2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑒𝑖

𝑓=𝑏𝑖
                      Eq. 6.7 

 

An analysis of the range between the maximum and minimum peak values (peak-to-peak) of 

the difference spectrum by octave band provides useful information on the amount of 'spectral 

ripple' in the difference spectrum within any given octave. Smaller peak-to-peak values indicate 

that the difference spectrum has a relatively smooth frequency response while larger values 

indicate peaks and notches which may be audible. The expression for the peak-to-peak value in 

dB for a given octave can be expressed as such: 

 

            𝒁𝑛𝑖𝑝_𝑝𝑑𝐵 = 10 𝑙𝑜𝑔10(|𝑍𝑛𝑖(𝑓)|2
𝑚𝑎𝑥

−  |𝑍𝑛𝑖(𝑓)|2
𝑚𝑖𝑛

)                   Eq. 6.8 

 

The peak-to-peak values along with the means and standard deviations provide metrics to 

observe how similar the measured data is to the loudspeaker data and the level of variance 

between the spatially averaged groups within any given octave.    

6.4.4 Comparing microphone groupings to loudspeaker data by cinema 

In this section, the difference spectrum Z from 4 microphone position groupings (all, 16, 8 and 

4) were chosen to compare to the loudspeaker data, which is shown as a flat baseline with +/-

3dB tolerances. These groupings were chosen as they represent a wide variation; starting with 

an 'extreme' grouping of all positions to smaller groupings which could be utilized in actual 

cinemas calibrations. The groupings of 36 and 12 positions displayed data similar to all 

positions and 16 positions respectively and were therefore not used.  

 

Once the difference spectrum was derived, the data was smoothed to 1/6 octave, as this 

resolution is more revealing of peaks and notches than the 1/3 octave used by the SMPTE 
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standard and is closely related to the Moore et al critical-bandwidth estimates (Moore, 2012), 

(Moore and Tan, 2004), (Moore and Glasberg, 1983).  

 

Figures 6.16 through 6.19 show the comparisons between the position groupings and their 

relationships to the loudspeaker data. Note that figures 6.16 through 6.18 are for measurements 

taken at approximate ear height of 1.0 to 1.2 meters above the finished floor while figure 6.19 

is for measurements taken at random heights. Cinemas are offset by 20dB for clarity. 

 

 

 

Figure 6.16: Cinemas E, F and G (from top) showing spatial averages of all positions (red), 16 

positions (green), 8 positions (blue), 4 positions (gold), and loudspeaker data with +/- 3dB 

tolerance window (black) 

 

In figure 6.16, cinemas E and G show good agreement with the loudspeaker data, being within 

the +/- 3dB tolerance from approximately 90Hz to 16kHz. Cinema F however, does not fall 

within the loudspeaker tolerance between approximately 160Hz and 800Hz. As discussed in 
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section 6.4.2, cinema F has a very gentle floor slope and therefore exhibits a seat-dip effect in 

this region. In all three of these cinemas there is very little difference between the 4 position 

groupings within the 500Hz to 9kHz frequency range, with divergence only appearing at the 

lower and upper frequencies.  

 

 

Figure 6.17: Cinemas C and D (from top) showing spatial average of all positions (red), 16 

positions (green), 8 positions (blue), 4 positions (gold), loudspeaker data with +/- 3dB 

tolerance window (black) 

 

From figure 6.17 it can be seen that both cinemas C and D show conformity with the 

loudspeaker data in the 200Hz to 20kHz range. Cinema D shows a shallow dip in the region 

between 500Hz and 1kHz, which may possibly be some form of seat effect. This cinema has a 

gentle sloping floor like cinema F, which lends itself to a higher potential for seat dip and other 

seat effects. In these two cinemas there is very little difference between the 4 position groupings 

within the 400Hz to 20kHz frequency range, with deviations only appearing at the lower 

frequencies.  
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Figure 6.18: Cinemas A and B (from top) showing spatial average of all positions (red), 16 

positions (green), 8 positions (blue), 4 positions (gold), loudspeaker data with +/- 3dB 

tolerance window (black) 

 

Figure 6.18 shows the difference spectrums from the two smallest cinemas, A and B. These two 

cinemas display very different responses, as cinema A falls within the +/- 3dB tolerance from 

approximately 200Hz through 20kHz while cinema B displays a large dip between 200Hz and 

600Hz. Cinema A also shows a much smoother response than cinema B in the 700Hz to 3kHz 

region. Both cinemas show a rise in bass energy starting at 200Hz, though cinema A's bass 

response is much smoother than B's and remains close to the +3 tolerance of the loudspeaker 

data. These dissimilarities are certainly caused by the major acoustical differences between the 

two cinemas. Cinema A is purpose-built for audio playback and quality control where cinema 

B was built to quality control picture only and therefore acoustics were not a priority in the 

design and building of this room. However, it can still be seen that there is very little difference 

between the 4 position groupings within the 500Hz to 20kHz frequency range, with deviations 
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only appearing at the lower frequencies. This result was not unexpected given the small size of 

the cinemas. 

 

 

Figure 6.19: Cinemas C, E, and F (from top) showing spatial average of all positions (red), 16 

positions (green), 8 positions (blue), 4 positions (gold), loudspeaker data with +/- 3dB 

tolerance window (black) 

Figure 6.19 shows the data from the three cinemas where measurements were taken at random 

heights. In comparison to the measurements that were taken at ear height, the random height 

measurements bring the difference spectrum more in line with the loudspeaker data, especially 

in cinema F. Of interest to note is that the dip below 100Hz in cinema C has actually become 

deeper, indicating that randomizing the microphone heights in this cinema might have 

uncovered an issue that perhaps reflections were filling in when the microphones were at ear 

height.  
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6.4.5 Comparing microphone groupings using means, standard deviations and peak-to-

peak data of the difference spectrum 

For those cinemas where measurements were made at both ear and random height, the random 

height measurements were used in the following comparative analysis.  

  

The peak-to-peak value of the difference spectrum from each of the 4 position groupings was 

averaged together and is displayed by cinema in figure 6.20.  

 

 

Figure 6.20: Average peak-to-peak value of the difference spectrum by cinema  

 

When considering the average peak-to-peak value in each cinema, it can be seen that the 

difference spectrums in all cinemas have relatively smooth frequency responses above the 1kHz 

octave band with the exception of cinema B and to a lesser extent, cinema D. Below 1kHz, the 

room starts to become more of an issue as seat effects come into play. Below 250Hz, the peak-

to-peak values in the cinemas steadily increase and start to widely diverge from each other as 

additional acoustic interference becomes a factor. This illustrates that differences between 

cinemas are mainly relegated to the lower frequencies and the extreme upper frequencies, which 

is not unexpected. 
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Since the average of the peak-to-peak values was calculated from the 4 different position 

groupings, the standard deviations give an indication as to the level of difference, or range of 

differences, between the groupings within any given cinema. This data is shown in figure 6.21. 

 

 

Figure 6.21: Standard deviations of the difference spectrums values by cinema 

 

Within all of the cinemas, the 4 position groupings differed by only 1dB standard deviation 

above 250Hz with most displaying only 0.5dB standard deviation or less above 1kHz, with the 

exception of cinema G in the 16kHz octave band. This larger standard deviation in cinema G 

was most likely caused by differences in the amount of air attenuation measured between 

groupings. The lower standard deviations indicate that, within these frequency bands, 

increasing the number of positions in the spatial average will have little to no effect on the 

difference spectrum. Below 250Hz the position groupings start to display larger standard 

deviations, though most are kept within 1.5dB.  

 

To further study the differences between the position groupings, the peak-to-peak values of the 

difference spectrums from each of the 7 cinemas was averaged together and is displayed by 

position grouping in figure 6.22.  
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Figure 6.22: Average peak-to-peak values of the difference spectrum for each position grouping 

 

Figure 6.22 displays that the 4 different position groupings, when averaged across the cinemas, 

exhibit peak-to-peak values that only differ by approximately 1dB. The peak-to-peak values of 

the 4 position groupings by individual cinema are shown in appendix P. 

 

As the averages of the peak-to-peak values were calculated from the 7 different cinemas, the 

standard deviations give an indication as to the level of difference between the cinemas for each 

of the position groupings, as shown in figure 6.23. 
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Figure 6.23: Standard deviations of the difference spectrums by position grouping 

 

The standard deviations show that, though the position groupings means are within 1dB of each 

other across all octaves, their standard deviations start to vary below 250Hz and above 8kHz. 

Once again, this is expected as the largest difference between cinemas is in the lower and 

extreme upper frequencies as shown in figures 6.20 and 6.21. The standard deviations displayed 

in figure 6.23 demonstrate that, from 250Hz to 12kHz, the range of peak-to-peak values for any 

given grouping is held to approximately 1.5dB. Further noted in figure 2.23, the standard 

deviation, regardless of frequency band, lowers with an increase in the number of microphones 

positions used which is to be expected. 

 

6.5 Discussion 

 

Completed anechoic data can provide very useful information to a cinema technician when 

calibrating a dub-stage or cinema. In 1949, Hilliard inadvertently showed the connection 

between anechoic (open air) data and measured in-room response when he presented 

information on the performance of a new cinema loudspeaker, shown in figure 6.24.  
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Figure 6.24: Altec Lansing A2 cinema loudspeaker, averaged response from on-axis response 

measured in the Academy Award Theatre (highlighted in yellow) versus the measured in open 

air; from (Hilliard, 1949) 

Note from figure 6.24 it can be seen that the differences between the open air (anechoic) and 

in-room averaged response is in the lower and upper frequencies, with good agreement from 

300Hz through 8kHz. 

 

Early research also discussed the importance of having anechoic data available when testing a 

loudspeaker in a room, especially if the loudspeaker does not have good off-axis characteristics 

(Snow, 1961).  Some early researchers also used the range of differences between the anechoic 

signal and the signal measured in-situ as a basis for studying the effects of a room on a specific 

loudspeaker. Korn and Hougardy called the range of differences been these two signals the 

"gain of the room" and assigned the variable K (measured by 1/3rd octave)  to its value (Korn 

and Hougardy, 1959). These researchers felt that the K value could provide a modification factor 

to bring the room more in line with the anechoic data as well as providing information on the 

ratio of direct to reverberant energy.  

 

Schulein (1975) found similar results to those in this chapter; when placing the same 

loudspeaker in three different rooms with the same microphone placement, there was little 

variation in the mid to high frequency response between the three rooms. Schulein's results are 

shown in figure 6.25. 



Chapter 6. Predicting In-room Response from Anechoic Loudspeaker Data  

 

 

210 

 

 

Figure 6.25: Influence of various rooms on a particular loudspeaker or a fixed loudspeaker - 

to - microphone spacing; from (Schulein, 1975) 

Note the level of agreement between the data from 900Hz to 20,000Hz, which are all within 

approximately 3dB of each other. Schulein specifically commented that the variations were held 

to the low frequency range and were a result of the room acoustics.  

 

Mäkivirta and Anet also found similar results when testing like models of studio reference 

monitors (Genelec) across 164 professional studios. They observed that measurements showed 

decreasing variations towards the high frequencies, most notably above 1kHz, as shown in 

figure 6.26  (Mäkivirta and Anet, 2001). 
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Figure 6.26: 1/3 octave smoothed frequency response averaged over 250 measurements in 164 

studios showing the median, 50% variation, 90% variation and max / min variations;  

from  (Mäkivirta and Anet, 2001) 

 

The research in this chapter has shown that if the loudspeaker has constant directivity, a smooth 

off-axis response, then spatially averaging more than 4 in-room measurements to verify how it 

will perform in the room may not be necessary, especially if anechoic data is available. The 

response of the loudspeaker above the region of 800Hz, and in some cases starting as low as 

300Hz, will translate directly to the cinema.  

 

At frequencies above 1kHz, equalization will be mainly to compensate for any limitation in the 

loudspeaker. The high frequency roll-off dictated by the SMPTE X-curve is typically achieved 

simply by placing the loudspeaker behind a perforated screen. In larger cinemas, additional high 

frequency roll-off will naturally occur from air loss, as was observed with the measurements in 

this chapter. It was between 8kHz and 16kHz that deviations between the loudspeaker data and 
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the measured data occurred; a phenomenon that was mostly observed in cinema G. However, 

the various position groupings showed very little difference between each other from 1kHz 

through 20kHz and so any additional number of microphone positions above 4 will not alleviate 

this deviation.   

 

At mid frequencies, approximately between 200Hz and 1kHz, there will be diffraction from 

nearby seats, early reflections from walls, floors and ceilings, along with possible cabinet 

diffraction of the loudspeakers. There may also be crossover/directivity effects from the 

loudspeaker.  Most of these effects will vary from seat to seat and thus at mid frequencies, a 

larger number of averages may be beneficial if the response and directivity of the loudspeaker 

is unknown. If effects from the seats are a concern, then raising the microphones above seated 

ear height can mitigate some mid-frequency anomalies. Newell at al recommends raising the 

microphones to a level of 60cm or more above the seat backs to mitigate the issue all together 

(Newell et al., 2015b).  Even after the spatial averaging of several locations, mid-frequency 

irregularities will either be in the loudspeaker response, or will be some diffraction or room 

absorption effect that is occurring at all seats. Once again, it will be difficult to differentiate 

between the two without loudspeaker data. If the loudspeaker has constant directivity, the sound 

power data is known and the microphone heights are randomized especially in cinemas with 

gently sloped floors, then 4 carefully chosen positions may be adequate to calibrate the cinema 

in the range between 200Hz and 1kHz.  

 

At low frequencies (below 200Hz), one could make a rough estimate of the general in-room 

response from the sound power data, if it is available. However, as shown in this chapter, 

measurements are highly variable and room-dependent below 200Hz and increasing the number 

of positions which are spatially averaged with not necessarily bring the in-room measurement 

into line with the loudspeaker data. The ability to accurately predict low frequency behavior in 

a room from the loudspeaker data is relegated to those rooms whose potential acoustic 

interferences in this frequency range have been well controlled, such as appears to have been 

the case with cinema A. These findings are in agreement with other research that has described 

the difficulty of measuring the low frequency response in such a way that meaningfully 

represents all seating positions (Hill et al., 2016),  (Newell et al., 2015a).  In the lower 

frequencies, mismatches between the spatially averaged measurements and the loudspeaker 

response would be due to issues such as modal behavior, acoustical absorption, loudspeaker 
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boundary effects, and seat effects. Some of these effects are position related and therefore any 

attempt to equalize them from spatially average data, no matter how many positions were used, 

could lead to degrading the sound quality in areas throughout the cinema as opposed to 

improving it. A better understanding of how the potential performance of a room in the lower 

frequencies may be obtained by reviewing the anechoic data in conjunction with the low 

frequency reverberation time data. Cinemas G and F had comparatively longer low frequency 

reverberation times (as shown in figure 6.3) and also displayed larger low frequency rises above 

that of the anechoic data (as shown in figure 6.16). 

 

Also revealed during this research, it was found that in absence of anechoic data, useful data 

about the loudspeaker may be obtained from the in-room response measurements, but only 

above 500Hz to 1kHz in typical cinemas. Additionally, if there is no information on the 

loudspeaker, one can measure the high frequency direct response of the loudspeaker or the 

loudspeaker / screen combination without windowing the data. The effects in the room at high 

frequencies are all due to the loudspeaker and should not be seat dependent, with the exception 

of directivity/coverage. Direct-field measurements of the loudspeaker can also be utilized, as 

suggested by SMPTE B-chain report (2014) and  Newell et al (2011a), (2011b), though a 

balance must be reached between a short enough window length to avoid detrimental early 

reflections in the data and a long enough window to provide adequate frequency resolution. 

 

With either method, this may only require a few measurements to characterize; one directly on-

axis to verify or characterize the loudspeaker and 4 throughout the seating area to identify seat 

interaction and boundary affects. If the loudspeaker's directivity is not constant, then additional 

measurements across the seating area may be required.   

 

If the loudspeaker has a flat on-axis amplitude response and constant directivity it will deliver 

a predictable direct sound to most listeners in the audience. With a typical cinema-perforated 

screen in place and a given amount of air loss, the direct sound will closely approximate the 

SMPTE ST202 high-frequency roll-off without the need for additional equalization 

(Engebretson and Eargle, 1982). If required, compensation for the screen loss will result in a 

flat direct sound, and equalization can create any other choice of target curve. If the anechoic 

performance is known, and screen loss is defined, then it may not be necessary to make any in 

situ measurements above 500Hz to 1kHz other than to verify that the loudspeaker is performing 
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correctly. It appears that regardless of the room size, and to some extent reverberation time, if 

the loudspeaker displays constant directivity, then the number of measurement points above 4 

becomes moot, especially above 1khz. However, it is still recommended that the measurement 

positions be carefully considered so that they best represent the overall layout of the cinema 

and are not weighed heavily towards extreme boundary positions.  

 

6.6 Limitations of This Study 

 

These measurements were all carried out with the loudspeaker placed at center position. If the 

loudspeaker had been placed at either side position, one could assume that boundary effects 

might come further into play, especially at low frequencies. At mid frequencies, there is a 

possibility of early lateral reflections from the side walls attenuating some of the seat interaction 

effects (Davies et al., 1996), but this phenomena would be different at different seats because 

of the horizontal plane reflections. However, since most cinema loudspeakers are much more 

directional than the JBL M2, most of the effects created by interactions with the side walls 

would be relegated to the low frequencies. The data in the chapter must be regarded with the 

understanding that the JBL M2 is not a cinema loudspeaker and that the centre position chosen 

only represents a portion of how a loudspeaker interacts with a cinema.  

 

Measurements were made with the loudspeaker on a lift which could not be raised to the same 

height as the in-room loudspeaker had been installed. The lower height of the test loudspeaker 

undoubtedly added to the seat effect seen in several of the measurements. With this in mind, it 

is believed that if the test loudspeaker could have been raised higher, there is a chance that the 

measured data would have tracked the loudspeaker data closer.  

 

Throughout this chapter a +/-3dB ‘tolerance’ was utilized for the various analyses of the 

measured signals. This tolerance was derived from the current SMPTE standard (SMPTE, 

2010) and to date, this is the only known standardized tolerance window for this type of analysis 

that has be published. Much research has been undertaken in an effort to define the perceptual 

thresholds of resonances and modes that arise in loudspeakers and loudspeaker / room 

combinations. This research may help to establish a more defined tolerance window to be used 

when calibrating a cinema. However, it has been noted in prior research that the detection 
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threshold of resonances and modes is highly dependent on Q, program material (continuous 

versus transient), whether the coloration is a resonance or antiresonance, the level of 

reverberation at the resonant / modal frequency, and modal decay (Fazenda et al., 2015),  (Avis 

et al., 2007), (Olive et al., 1997), (Olive and Toole, 1989), (Toole and Olive, 1988), (Toole and 

Olive, 1986), (Bücklein, 1981), (Fryer, 1975), (Moulana, 1975). With these factors in mind, 

establishing a well-defined tolerance window that is acceptable for the tuning of commercial 

cinemas and professional dub-stages will required careful consider and further research.  

 

6.7 Summary 

 

In this chapter, a method of determining the number of microphone positions necessary for 

calibrating a cinema by utilizing anechoic data from a loudspeaker was investigated. A series 

of measurements using an anechoically measured and well defined loudspeaker was completed 

in 7 different cinemas ranging from 24 to 516 seats. Microphone positions were spatially 

averaged into groups of 4, 8, 12, 16, 36 and all tested positions. Various permutations of these 

groups were analyzed and those groups which showed the largest deviation from the anechoic 

data of the loudspeaker were then analyzed further. Using a frequency-by-frequency 

normalization method, the anechoic loudspeaker data was 'removed' from the various groupings 

and the resultant 'difference spectrums' were then studied individually and in comparisons 

between groups.   

 

The main conclusions of these experiments are as follows: 

1. If the loudspeaker has a flat on-axis amplitude response and constant directivity it will 

deliver a predictable direct sound to most of the seating area above 300Hz to 500Hz, 

with air attenuations as a function of listening distance being the main variable. 

2. The room size has an effect on the loudspeaker response at the extreme high frequencies 

due to varying amounts of air loss, and at low frequencies due to modal behavior, 

acoustical absorption, loudspeaker boundary effects, and seat effects.   

3. In the frequency range between 200Hz to 16kHz, the in-room responses tracks the 

anechoic data of the loudspeaker within +/-3dB (less above 1kHz) with the exceptions 

of cinemas B and F. This range can be extended lower and higher depending on room 
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size and how well the acoustic interferences in the low frequencies are controlled. In 

addition, conducting a vertical spatial averaging by raising the microphones can bring 

the mid-frequency data in the 200Hz and 1kHz range in better agreement with the 

loudspeaker data. 

4. With respect to the peak-to-peak values of the difference spectrum; within any given 

cinema, the various position groupings were within a 1dB standard deviation between 

250Hz and 20kHz, with the exception of cinema G. Between cinemas, the various 

position groupings' average peak-to-peak values were within 1dB from each other 

across all octaves though their standard deviations diverge below 250Hz and above 

8kHz.  The data implies that, within the frequency range of 250Hz to 8kHz and 

potentially higher, spatially averaging more than 4 carefully chosen microphone 

positions will produce only marginally more accurate data.   
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7.1 Summary and Conclusions 

 

The quest to standardize cinema audio began with the advent of sound accompanying picture, 

and continues through to today. It is a complex issue from both objective and subject 

standpoints; involving everything from the production through the delivery chain; equipment 

manufactures and content creators, to the audience itself. Though much work has been done to 

improve the existing standard, there are many reasons to question the basis and ongoing 

practices in this evolving standard. The primary aim of this research was to explore and develop 

alternatives to the existing practices through a better understanding of how the current standards 

are viewed, how they are utilized and how their end results are perceived.  In this chapter, the 

main outcomes and conclusions of the research are summarised and potential avenues for 

further research are presented.   

7.1.1 Re-recording Mixers' Survey of Cinema Calibration Standard 

In chapter 3 a survey of re-recording mixers' use and opinions on cinema calibration standards 

was documented. This survey uncovered a large range of opinions on the use and efficacy of 

the SMPTE standard. While a majority of mixers rated the high frequency response and clarity 

of dialog for their dub-stage at or below average, many of them were content with the translation 

of their final mix to the cinema. However, the percentage of mixers who rated translated above 

average decreased with age. In addition, 83% of the mixers who work on SMPTE calibrated 

dub-stages confirmed that they used some type of compensation for the curve, typically in the 

high frequencies.  

 

The advancing age and long hours in the studio raised questions regarding mixers' hearing 

abilities, especially in light of 34% of the mixers stating that they have not had their hearing 

checked for more than 5 years, or not at all. A brief overview of occupational noise standards 

and associated hearing research was presented along with a discussion on the potential for 

hearing loss among re-recording mixers. In addition, the theory of implicit learning and the 

possible adaptation of mixers to the X-curve were introduced.  

7.1.2 Validating the Binaural Room Scanning (BRS) Method for Cinema Research 

The experiments presented in chapter 3 entailed the validation of a binaural room scanning 

system for use in cinema research. The system, its calibration and potential sources of errors 
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were discussed. A series of subjective listening tests were conducted to verify that the BRS 

system could be utilized for further experiment on preferred in-room target response curves.  

 

Within the subjective listening test, three different sized rooms, each representative of a "real 

world" listening environment, were tested. Four different audio programs were chosen; three 

popular music tracks and one piece of cinematic score. Of the four target curves created for the 

test, one was derived from prior research, one mimicked the SMPTE X-curve, one served as an 

audible anchor and the remaining curve was flat. The findings of the listening tests were as 

follows: 

 

• There were no significant differences in preference between the BRS and In situ 

methods in any of the three rooms. 

• The main effect was due to the target curve, with curve A scoring the lowest consistently 

across the rooms and the ranks order of curves B, C and D remaining the same between 

the Eargle Theatre and the Arena Lab.   

• There was an interaction between the different listening rooms, and the target curves. 

This interaction was confined to curve C in a comparison between the Living Room and 

the Eargle Theatre. 

• There was an interaction between target curves B and C which could be partially 

attributed to individual preference.  

 

In consideration of these results, the BRS system was deemed valid for further perceptual 

research on in-room response curve preference. 

7.1.3 Subjective Listening Test for Preferred Room Response 

In chapter 5 the BRS system validated in chapter 4 was utilized to conduct double-blind 

listening test on in-room target curves for 3 different seating locations each within 3 different 

sized cinemas.  

 

Five different audio programs were chosen; two popular music tracks and three pieces of 

cinematic score, two of which were mixed on a SMPTE X-curve calibrated dub-stage. Of the 

five target curves created for the test, two were derived from prior research, one mimicked the 
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SMPTE X-curve, one served as an audible anchor and the remaining curve was flat. The 

findings of the listening tests were as follows: 

 

• The main effect was due to the factor target curve. 

• The overall preferred target curve was curve C while curve A scored extremely low even 

for those pieces of program material which were mixed on an X-curve calibrated dub-

stage. This casts doubt on the theory of 'translation' between dub-stages and cinemas. 

• There was an interaction between the different cinemas and target curves, though this 

mainly appears to occur with curves C and E in cinema C, which is the largest of the 3 

cinemas. 

• There was an interaction between the different programs and target curves, which was 

not completely unexpected. This interaction appears to be confined to programs Sc-T 

and Sc-F and is most apparent in cinema C.  

• The listening position had little to no effect on preference scores. This finding was 

somewhat unexpected due to differences in high frequency air loss between the smaller 

and larger cinemas, A and C respectively. It is suspected that a type of adaptation may 

be occurring due to repeated exposure of the listeners to the acoustic conditions of a 

particular position.  

 

A review of prior research revealed similarities between the preferred curve C from this 

experiment and those publicized by other researchers.  

7.1.4 Predicting the In-room Response of Cinemas from Anechoic Loudspeaker Data 

Chapter 6 described an alternative method of cinema calibration which utilized anechoic data 

from a loudspeaker to serve as the basis for comparing a cinema's in-room response. Part of this 

research reviewed the number of microphone positions that should be spatially averaged 

together in order to best represent the in-room response.  

 

In-room measurements of 7 various sized cinemas was compared to the anechoic data from the 

loudspeaker which was used to make these measurements. The measurements were taken at 

both ear and random heights in an effort to quantify any seat effect that was occurring in the 

cinemas. Data was spatially averaged over all measurement positions as well as grouping of 4, 
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8, 12, 16 and 36 positions. An analysis was undertaken between the in-room measurements and 

the loudspeaker data, as well as between measurement position groupings, utilized a multi-band 

spectral subtraction method in order to isolate the signal created by the interaction between the 

loudspeaker and each cinema.    

 

The findings of this research were as follows: 

 

• Using anechoic loudspeaker data that includes its sound power and listening window 

data, along with a reasonable amount of compensation for air attenuation, provides a 

viable comparison point for in-room measurements. This data allows a technician who 

is calibrating a cinema to differentiate between frequency anomalies with the 

loudspeaker and those of the cinema  

• A loudspeaker with flat on-axis amplitude response and constant directivity will 

translate directly into the cinema, allowing for a predictable response across the 

listening area above 300Hz to 500Hz. In this frequency range, the main variations 

between the in-room response and the loudspeaker data will be air attenuation which is 

a function of cinema size and listening distance. 

• Between 200Hz to 16kHz, most of the in-room responses tracked the anechoic data of 

the loudspeaker within +/-3dB (less above 1kHz). The only exceptions were cinemas B, 

which was not built specifically for auditioning audio, and cinema F which has a very 

gently sloping floor. This observation held true regardless of whether all the 

measurement positions or only 4 positions were spatially averaged together. Smaller 

rooms, as well as larger rooms with well controlled low frequency responses, can extend 

this range beyond 200Hz and 16kHz.  

• Between 200Hz and 1kHz, there may be variations between the loudspeaker data and 

the measured in-room response due to seat effects and other acoustic interactions. 

However, these variations can be lessened by raising and/or randomizing the 

microphone heights. 

• With respect to peak-to-peak values of the difference spectrum, at frequencies below 

approximately 250Hz, the microphone groupings begin to diverge from each other, 

though only marginally. In addition, below this frequency, comparisons between 
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cinemas also start to diverge. Below 500Hz all of the peak-to-peak values across 

cinemas and position groupings rise steadily. This signifies that the relationship between 

the loudspeaker and the room becomes generally less correlated below this frequency. 

• The main effect on the loudspeaker response at the upper frequencies in any given 

cinema is due to varying amounts of air loss and is seat and room specific.  At low 

frequencies, the main effect is due to modal behavior, acoustical absorption, loudspeaker 

boundary effects, and seat effects, which are also room specific.   

 

7.2 Final Summary 

 

There were several questions that guided this research and which also tie the various chapters 

together. These included: 

 

• How is the SMPTE X-curve calibration being employed in dub-stages and are re-

recording mixers content with the results? Are re-recording mixers compensating for the 

X-curve calibration in any way and if so, how? Could mixers hearing abilities possibly 

affect the quality of their mixes and should they be the best judge of audio playback 

quality and translation between the dub-stage on the cinema? 

• If the cinema-going public was given a choice as to which target response curve a 

cinema was calibrated to, what would be their preference? How does the size of cinema, 

seating position within the cinema or program affect this preference? 

• To what extent do room acoustics with respect to cinema size and seat location influence 

the perceived sound quality of the different calibration methods?  

• Can anechoic data be utilized as a tool in cinema calibration of if so, how precise is it at 

predicting the in-room response? When using anechoic data, how many microphone 

positions need to be spatially averaged together to get accurate results? Does the number 

of microphones that are spatially averaged together need to be scaled with cinema size? 

• When calibrating a cinema, at what frequency is the room typically dominant and at 

what frequency is the direct sound dominant? Are these frequencies affected by room 

size and if so, how? 



Chapter 7. Summary, Conclusions and Future Work  

 

 

223 

 

 

This research has demonstrated some of the weaknesses of the SMPTE ST 202 standard, its 

recommended calibration procedures and the use of the X-curve as an in-room target response 

curve. 

 

In this thesis it has been shown that the SMPTE X-curve is compensated for by some re-

recording mixers and is not preferred by listeners, even when previewing program material that 

was mixed on an X-curve calibrated dub-stage. The basic premise behind the standard, one of 

providing ideal translation, is impractical. The goal of having a film which is mixed by one 

person in a single dub-stage accurately translate into hundreds of cinemas, calibrated by just as 

many people for an audience of thousands is unachievable.  

 

The shape of a calibration curve is often discussed with questions arising as to why any 

particular shape should matter; if the dub-stage and the cinema are calibrated to the same curve, 

good translation will prevail. However, the shape of a calibration curve should not severely 

limit the frequency response of a room in such a way that causes the re-recording mixer to add 

undue amounts of pre-emphasis during the mixing process to compensate for it.  In addition, 

the calibration curve used should not cause the technicians to push its tolerance envelopes in an 

attempt to make the playback cinema sound better. Both of these issues can create too much 

variability in the final sound which is delivered to the listeners.   

 

Another question that arises is the need to change the X-curve at all; stating that it has been in 

use for decades and there is no need to change it. As discussed in chapter 2, the shape of the X-

curve first came about through compensation for the poor frequency response of playback 

equipment and later perpetuated through the belief that this particular shape was required to 

deliver a flat, neutral direct sound to the audience. Advancements in playback equipment have 

negated the early need to severely roll-off high and low frequencies and research in the past 

decade has shown that the X-curve does not deliver a flat neutral sound which is desired.  

 

The research within this thesis has shown that a possible replacement for the X-curve is one 

that is preferred by listeners, which also closely mimics what naturally occurs to sound in 

enclosed spaces; the high frequencies dip and the low frequencies rise. In chapters 4 and 5 it 

was shown that this "curve", or tilted response, was preferred across cinemas sizes, seating 
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positions and program material in addition to being preferred in headphone response, 

loudspeakers in smaller rooms and in automotive audio. Chapter 6 showed that a loudspeaker 

with a flat on-axis response and constant directivity follows the same basic curve across cinema 

sizes with variations in the degree of tilt below 200Hz and above 16kHz. In the 200Hz to 16kHz 

frequency range, a general tilting target response can be easily applied across varying cinema 

sizes and calibration to this response can be accomplished with as few as 4 microphone position 

if anechoic data on the loudspeaker is available. Below 200Hz it would be extremely difficult 

to use equalization on all cinemas to conform them to a target curve regardless of what shape it 

is; the in-room measurements are too dominated by room-specific acoustical interference in this 

range. To begin shaping the frequency response in this range would require that cinemas be 

designed or re-designed to lessen acoustical interferences. The best way forward may be to 

create a standard that defines a loudspeaker curve as opposed to a room curve since the room 

is dominated by direct sound from 200Hz to 16kHz. The frequency response and directional 

characteristics of the loudspeaker should also be part of this standard.  

 

7.3 Further Work 

 

The work in this thesis demonstrates a few of the underlying issues with the current standard 

for cinema calibration and makes recommendations for possible improvements. A survey of 

how the standards are applying by re-recording mixers has provided insight into the variability 

of application that may render as less than ideal final listening experience. Subjective analysis 

of the current target response curve recommended by the standard and widely used by the film 

industry showed that listeners may prefer a different curve, one which has been preferred in 

other listening environments. And finally, a methodology for calibrating a cinema which may 

lead to more accurate calibration of the audio playback system has been presented. However, 

there is a great deal of further work that can be performed in order to further improve cinema 

audio playback. Some potential avenues of further research are suggested in this section.  

 

7.3.1 Future Research Mixer Survey 

The survey presented encompasses the input of 35 participants, which is a very small 

representation of the world-wide re-recording mixer community. Further work can expand on 
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this survey by administering the survey questions through local professional organizations, 

online forums and collaborative efforts with various universities.  The hope would be to collect 

larger amounts of data from several countries which could be used to create a data base which 

tracks re-recording mixers' opinions and comments and categorizes them by demographic and 

work-related factors.  

 

Additional research could be carried out to better understand the correlations between dub-stage 

playback levels, the amount of hearing loss in the re-recording mixers who work on these dub-

stages and samples of the power spectra of mixes they create. This could give valuable insight 

into the effect that monitoring levels play on a mixers' hearing and the resulting spectral balance 

of their mixes.  

 

7.3.2 Future Research Subjective Listening Tests 

Given the amount of low frequency information in modern cinemas, a consideration for future 

refinement of this series of tests would be the addition of a subwoofer to the playback system. 

This could allow for a more "real world" simulation of a cinema, with an extended low 

frequency response beyond that of headphones alone.  

 

Conducting a method of adjustment test can provide further insight into listener preference, 

giving the listener the opportunity to shape their own target response. The difficulty with this 

process is that a subjectively preferred target curve is a reflection not only of the playback 

system but of the program being auditioned. A useful investigation needs to include evidence 

of how the calibration of the dub-stage affects the spectral content of a mix. In the presented 

experiments the spectra of “score” (non- X-curve monitored) and the same music “score – 

trailer” (X-curve monitored) reveal that the only difference is the elevated low-frequency 

content of the trailer. Was this a result of adding impact to the trailer, or of it sounding better, 

or both? The fact that the high frequencies were untouched is notable. These are important 

issues which could drive future research. 

  

In situ tests in carefully selected cinemas would also permit investigation of the perceptual 

importance of different amounts of bass build up in venues having different reflectivities, as 
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discussed by Toole (2015). This would be helpful in leading to refinements to the target curve 

at low frequencies.  

 

The decision to design the experiment as described was an effort to control variables. However, 

the affect that these variables might have on listener preference cannot be overlooked. With this 

in mind, the use of the "house" loudspeaker system, placing the loudspeakers behind the screen 

and utilizing a multi-channel system all provide paths for future research. 

7.3.3 Future Research in Cinema Calibration 

The anechoic data utilized in the research presented does not provide information on the extra 

loading on the loudspeaker diaphragm such as when the loudspeaker is mounted in a baffle 

wall, which is common in most cinemas. In addition, information on high frequency screen loss 

was also not provided in the anechoic data used. Obtaining anechoic data with the loudspeaker 

mounted in a 2pi space behind a projection screen would provide an opportunity to observe 

correlations between the measured in room data and anechoic data with these additional 

parameters added. As loudspeaker mounting techniques and screen materials vary from cinema 

to cinema, care must be used when determining a representative model for collecting such 

anechoic data.  

 

Future tests could also identify the ideal properties of cinema loudspeakers and how these 

characteristics tie to subjective data. Research by Toole, Olive and Devantier have shown that 

listener preferences for loudspeakers can be correlated to their anechoic measurements (Olive, 

2004b, Olive, 2004a), (Devantier, 2002), (Toole, 1986a, Toole, 1986b). In addition, the research 

in this thesis has revealed that the in-room response of a loudspeaker can be predicted from its 

anechoic data within +/-3dB (or less) down to approximately 200Hz. Therefore, one should be 

able to predict listeners' preference of a loudspeaker within a given cinema from its anechoic 

data.  
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Appendix A - Survey Invitation 
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Appendix B - Survey Questions 
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Appendix C - Example of Survey Answers 

Response No : 1 

1. What is your age? 

33-40 

2. How many years have you worked in post production audio? 

16-20 

3. How many years have you worked as a re-recording mixer? 

11-15 

4. How many years have you worked as a studio engineer (i.e., staff technical engineer). 

0 

5. When was your last audiometric (hearing) test? 

6-10 years ago 

6. Were the results of your hearing test within normal range? 

Yes 

7. What country / geographic region do you work in most often? 

USA 

8. Currently, what is the approximate percentage of work you do in each category. 

Film:90 

Marketing / Trailers:2 

Television:1 

Games / Interactive Media:5 

Other:2 

Total:100 

9. What is the approximate size of the dub-stage that you most often work in? 

Large (70' x 50' x 30') 

Varies 

10. Do you typically work at a dub-stage that utilizes a calibration or room equalization curve? 

Yes 

11. How often do you work at a dub-stage that uses an un-altered SMPTE ST202-2010 (X-Curve)? 

Sometimes 

 

12. If you answered the previous question "sometimes" (or "not sure"), what is the approximate 

percentage (or best estimate) of time that you work at a dub-stage that uses an un-altered SMPTE 

X-Curve? (Select one option) 
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81-100% 

When you have worked on a dub-stage that uses the SMPTE X-Curve, how would you rate the 

following sonic qualities? 

13. Sonic Quality: High frequency response 

2 

14. Sonic Quality: Low frequency response 

4 

15. Sonic Quality: Clarity of dialog 

5 

16. Sonic Quality: Spatial quality 

2 

17. Sonic Quality: Translation of dub-stage mix to commercial cinema 

5 

18. Sonic Quality: Overall sonic quality of dub-stage system 

5 

19. Do you compensate for the SMPTE X-curve in your mix and if so, how? 

Yes...tend to push high and low end. 

21. How often do you work at a dub-stage that uses a modified version of the SMPTE X-Curve? 

Sometimes 

22. If you answered the previous question "sometimes" (or "not sure"), what is the approximate 

percentage (or best estimate) of the time that you work at a dub-stage that uses a modified version 

of the SMPTE X-Curve (Select one option) 

0-20% 

23. If the dub-stage where you work uses a modified SMPTE X-Curve, please explain how and why 

it was modified. If you are unsure of this information, please notate "not sure". 

Lower frequency range subwoofers and slightly extended high end. (Most of the systems are 3-way.) 

24. How often do you work at a dub-stage that uses a custom or "house" curve? (A curve that is 

customized beyond a simple modification of the X-Curve) 

Never 
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Appendix D - Photos of Listening Rooms at Harman  

  
 Living Room 

 

 
Eargle Theatre 

 

 

 

 

  

Arena Lab 
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Appendix E - Matlab Binaural Room Scanning 

Interface 
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Appendix F - Harman Audio Test Software (HATS) 

Auto EQ Setup Screens 
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Appendix G - Matlab Code for Mauchly's Test of 

Sphericity 

 

function [Mausphercnst] = Mausphercnst(X,alpha) 
%MAUSPHERCNST Mauchly's sphericity test for orthogonal contrasts. 
% 
%     Syntax: function [Mausphercnst] = Mausphercnst(X,alpha)  
%       
%     Inputs: 
%          X - multivariate data matrix.  
%      alpha - significance level (default = 0.05).  
%     Output: 
%          n - sample-size 
%          p - variables 
%          L - Mauchly's statistic used to test any deviation from 
%              an expected sphericity 
%         df - degrees of freedom 
%         X2 - Chi-square statistic 
%          P - probability that null Ho: is true 
 

%  Created by A. Trujillo-Ortiz, R. Hernandez-Walls and K. Barba-Rojo 
%             Facultad de Ciencias Marinas 
%             Universidad Autonoma de Baja California 
%             Apdo. Postal 453 
%             Ensenada, Baja California 
%             Mexico. 
%             atrujo@uabc.mx 
% 
%  Copyright. April 18, 2008. 
% 

   
if nargin < 2,  
   alpha = 0.05;  %(default) 
end;  

  
if nargin < 1,  
   error('Requires at least one input arguments.'); 
end; 

  
[n,p] = size(X); 
S = cov(X);  %variance-covariance matrix 
R = diag(ones(p,1))-diag(ones(p-1,1),1); 
q = p-1; 
A = R(1:q,:);  %nonorthonormalized contrasts matrix 
B = A'; 
C = cgrscho(B);  %m×n column-orthonormal output matrix 
L = q^q*det(C'*S*C)/(trace(C'*S*C)^q);  %Mauchly's statistic 
LL = -(n-1-((2*q^2+q+2)/(6*q)))*log(L);  %approximate to Chi-square 

distribution 
F = q*(q+1)/2-1;  %degrees of freedom 
P = 1-chi2cdf(LL,F);  %Chi-square probability-value 

  
fprintf('------------------------------------------------------------------

--------\n'); 
disp(' Sample-size    Variables        L         df        Chi-square       

P') 
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fprintf('------------------------------------------------------------------

--------\n'); 
fprintf('%8.i%13.i%16.4f%8.i%17.4f%12.4f\n',n,p,L,F,LL,P); 
fprintf('------------------------------------------------------------------

--------\n'); 
fprintf('With a given significance level of: %.2f\n', alpha); 

      
if P >= alpha; 
   fprintf('Assumption of sphericity is tenable.\n\n'); 
else 
   fprintf('Assumption of sphericity is not tenable.\n\n'); 
end  

  
return; 
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Appendix H - ANOVA Table for BRS Experiment #1 

  DF 
Sum of 

Squares 
Mean 

Square 
F-

Value 
P-

Value Lambda Power 

Subject 8 311.153 38.894     
Room 1 25.651 25.651 2.488 0.1534 2.488 0.275 

Room * Subject 8 82.484 10.31     
Method 1 3.241 3.241 3.672 0.0916 3.672 0.383 

Method * Subject 8 7.059 0.882     
Target Curve 3 3477.193 1159.064 96.781 <.0001 290.343 1 

Target Curve * Subject 24 287.428 11.976     
Program 3 2.345 0.782 0.905 0.4532 2.715 0.213 

Program * Subject 24 20.73 0.864     
Observation 1 0.003 0.003 0.091 0.7711 0.091 0.058 

Observation * Subject 8 0.277 0.035     
Room * Method 1 0.001 0.001 0.003 0.9608 0.003 0.05 

Room * Method * Subject 8 2.186 0.273     
Room * Target Curve 3 91.608 30.536 5.682 0.0044 17.045 0.914 

Room * Target Curve * Subject 24 128.987 5.374     
Room * Program 3 6.826 2.275 2.791 0.0622 8.372 0.593 

Room * Program * Subject 24 19.569 0.815     
Room * Observation 1 0.03 0.03 2.802 0.1327 2.802 0.304 

Room * Observation * Subject 8 0.086 0.011     
Method * Target Curve 3 1.489 0.496 0.672 0.5777 2.015 0.167 

Method * Target Curve * Subject 24 17.727 0.739     
Method * Program 3 0.437 0.146 0.46 0.7129 1.379 0.127 

Method * Program * Subject 24 7.606 0.317     
Method * Observation 1 0.278 0.278 1.856 0.2102 1.856 0.217 

Method * Observation * Subject 8 1.199 0.15     
Target Curve * Program 9 13.246 1.472 1.305 0.2496 11.744 0.585 

Target Curve * Program * Subject 72 81.208 1.128     
Target Curve * Observation 3 0.477 0.159 1.737 0.1861 5.212 0.387 

Target Curve * Observation * Subject 24 2.196 0.091     
Program * Observation 3 0.177 0.059 0.431 0.7326 1.293 0.122 

Program * Observation * Subject 24 3.283 0.137     
Room * Method * Target Curve 3 0.284 0.095 0.09 0.9647 0.271 0.064 

Room * Method * Target Curve * Subject 24 25.156 1.048     
Room * Method * Program 3 0.148 0.049 0.188 0.9038 0.563 0.08 

Room * Method * Program * Subject 24 6.305 0.263     
Room * Method * Observation 1 0.394 0.394 4.752 0.0609 4.752 0.476 

Room * Method * Observation * Subject 8 0.663 0.083     
Room * Target Curve * Program 9 8.841 0.982 1.318 0.2431 11.859 0.591 

Room * Target Curve * Program * Subject 72 53.677 0.746     
Room * Target Curve * Observation 3 0.424 0.141 2.602 0.0754 7.805 0.559 
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Room * Target Curve * Observation * 
Subject 24 1.304 0.054     
Room * Program * Observation 3 0.088 0.029 0.322 0.8094 0.966 0.102 

Room * Program * Observation * Subject 24 2.194 0.091     
Method * Target Curve * Program 9 2.534 0.282 1.09 0.3809 9.81 0.493 
Method * Target Curve * Program * 
Subject 72 18.6 0.258     
Method * Target Curve * Observation 3 0.143 0.048 0.397 0.7563 1.191 0.116 
Method * Target Curve * Observation * 
Subject 24 2.876 0.12     
Method * Program * Observation 3 0.145 0.048 0.622 0.6075 1.867 0.157 
Method * Program * Observation * 
Subject 24 1.858 0.077     
Target Curve * Program * Observation 9 0.677 0.075 0.952 0.4864 8.57 0.43 
Target Curve * Program * Observation * 
Subject 72 5.685 0.079     
Room * Method * Target Curve * Program 9 1.615 0.179 0.859 0.565 7.735 0.388 
Room * Method * Target Curve * Program 
* Subject 72 15.035 0.209     
Room * Method * Target Curve * 
Observation 3 0.219 0.073 1.178 0.339 3.533 0.269 
Room * Method * Target Curve * 
Observation * Subject 24 1.488 0.062     
Room * Method * Program * Observation 3 0.112 0.037 0.694 0.5646 2.083 0.171 
Room * Method * Program * Observation 
* Subject 24 1.294 0.054     
Room * Target Curve * Program * 
Observation 9 0.405 0.045 0.548 0.8345 4.932 0.246 
Room * Target Curve * Program * 
Observation * Subject 72 5.917 0.082     
Method * Target Curve * Program * 
Observation 9 0.394 0.044 0.585 0.8055 5.261 0.262 
Method * Target Curve * Program * 
Observation * Subject 72 5.387 0.075     
Room * Method * Target Curve * Program 
* Observation 9 0.672 0.075 1 0.4479 9.002 0.452 
Room * Method * Target Curve * Program 
* Observation * Subject 72 5.372 0.075     
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Appendix I - ANOVA Table for BRS Experiment #2  

 DF 
Sum of 

Squares 
Mean 

Square 
F-

Value 
P-

Value Lambda    Power 

Subject 8 148.551 18.569     
Method 1 0.019 0.019 0.008 0.9298 0.008 0.051 

Method * Subject 8 18.31 2.289     
Target Curve 3 2187.589 729.196 53.954 <.0001 161.862 1 

Target Curve * Subject 24 324.364 13.515     
Program 3 1.123 0.374 1.11 0.3646 3.329 0.255 

Program * Subject 24 8.096 0.337     
Observation 1 0.001 0.001 0.013 0.9112 0.013 0.051 

Observation * Subject 8 0.514 0.064     
Method * Target Curve 3 2.253 0.751 0.725 0.5467 2.176 0.177 

Method * Target Curve * Subject 24 24.845 1.035     
Method * Program 3 0.769 0.256 1.158 0.3461 3.475 0.265 

Method * Program * Subject 24 5.308 0.221     
Method * Observation 1 0.049 0.049 0.378 0.5557 0.378 0.083 

Method * Observation * Subject 8 1.032 0.129     
Target Curve * Program 9 1.878 0.209 0.685 0.7201 6.164 0.307 

Target Curve * Program * Subject 72 21.934 0.305     
Target Curve * Observation 3 0.146 0.049 0.374 0.7728 1.121 0.111 

Target Curve * Observation * Subject 24 3.136 0.131     
Program * Observation 3 0.515 0.172 1.369 0.2762 4.106 0.309 

Program * Observation * Subject 24 3.009 0.125     
Method * Target Curve * Program 9 1.148 0.128 0.436 0.9112 3.923 0.198 
Method * Target Curve * Program * 
Subject 72 21.066 0.293     
Method * Target Curve * Observation 3 0.247 0.082 0.849 0.4808 2.547 0.202 
Method * Target Curve * Observation * 
Subject 24 2.329 0.097     
Method * Program * Observation 3 0.49 0.163 1.389 0.2702 4.168 0.314 
Method * Program * Observation * 
Subject 24 2.824 0.118     
Target Curve * Program * Observation 9 1.639 0.182 1.86 0.072 16.74 0.778 
Target Curve * Program * Observation * 
Subject 72 7.048 0.098     
Method * Target Curve * Program * 
Observation 9 1.609 0.179 1.502 0.1636 13.522 0.662 
Method * Target Curve * Program * 
Observation * Subject 72 8.567 0.119     
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Appendix J - Pure Data Convolution Engine 

Graphical User Interface (GUI)  

 

 

 

  



Appendices   

 

 

275 

 

Appendix K - ANOVA Table for Cinema Experiment  

 DF 
Sum of 

Squares 
Mean 

Square 
F- 

Value 
P-

Value Lambda Power 

Subject 13 515.237 39.634     
Cinema 2 47.229 23.615 15.639 <.0001 31.278 0.999 

Cinema * Subject 26 39.26 1.51     
Listening Position 2 5.487 2.743 1.04 0.3676 2.081 0.205 

Listening Position * Subject 26 68.566 2.637     
Target Curve 4 30556.961 7639.24 547.123 <.0001 2188.491 1 

Target Curve * Subject 52 726.054 13.963     
Program 4 83.334 20.834 12.607 <.0001 50.428 1 

Program * Subject 52 85.932 1.653     
Observation 1 0.022 0.022 0.186 0.6731 0.186 0.068 

Observation * Subject 13 1.543 0.119     
Cinema * Listening Position 4 19.992 4.998 2.744 0.038 10.977 0.717 

Cinema * Listening Position * Subject 52 94.704 1.821     
Cinema * Target Curve 8 87.491 10.936 7.873 <.0001 62.983 1 

Cinema * Target Curve * Subject 104 144.468 1.389     
Cinema * Program 8 26.868 3.358 5.608 <.0001 44.865 1 

Cinema * Program * Subject 104 62.281 0.599     
Cinema * Observation 2 0.785 0.392 2.402 0.1104 4.804 0.43 

Cinema * Observation * Subject 26 4.248 0.163     
Listening Position * Target Curve 8 17.375 2.172 1.679 0.1121 13.434 0.704 
Listening Position * Target Curve * 
Subject 104 134.507 1.293     
Listening Position * Program 8 3.742 0.468 0.83 0.5783 6.638 0.363 

Listening Position * Program * Subject 104 58.619 0.564     
Listening Position * Observation 2 0.527 0.264 2.038 0.1506 4.076 0.37 
Listening Position * Observation * 
Subject 26 3.363 0.129     
Target Curve * Program 16 514.636 32.165 34.868 <.0001 557.896 1 

Target Curve * Program * Subject 208 191.871 0.922     
Target Curve * Observation 4 0.836 0.209 2.326 0.0685 9.303 0.631 

Target Curve * Observation * Subject 52 4.674 0.09     
Program * Observation 4 0.055 0.014 0.094 0.984 0.375 0.068 

Program * Observation * Subject 52 7.621 0.147     
Cinema * Listening Position * Target 
Curve 16 77.42 4.839 5.266 <.0001 84.251 1 
Cinema * Listening Position * Target 
Curve * Subject 208 191.136 0.919     
Cinema * Listening Position * Program 16 29.986 1.874 3.954 <.0001 63.257 1 
Cinema * Listening Position * Program * 
Subject 208 98.599 0.474     
Cinema * Listening Position * 
Observation 4 0.294 0.074 0.394 0.8118 1.577 0.132 
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Cinema * Listening Position * 
Observation * Subject 52 9.707 0.187     
Cinema * Target Curve * Program 32 79.078 2.471 4.739 <.0001 151.65 1 
Cinema * Target Curve * Program * 
Subject 416 216.923 0.521     
Cinema * Target Curve * Observation 8 0.436 0.055 0.386 0.9258 3.09 0.174 
Cinema * Target Curve * Observation * 
Subject 104 14.678 0.141     
Cinema * Program * Observation 8 1.086 0.136 1.229 0.2893 9.836 0.537 
Cinema * Program * Observation * 
Subject 104 11.481 0.11     
Listening Position * Target Curve * 
Program 32 58.08 1.815 3.376 <.0001 108.031 1 
Listening Position * Target Curve * 
Program * Subject 416 223.652 0.538     
Listening Position * Target Curve * 
Observation 8 1.257 0.157 0.882 0.5343 7.056 0.386 
Listening Position * Target Curve * 
Observation * Subject 104 18.529 0.178     
Listening Position * Program * 
Observation 8 0.484 0.06 0.434 0.8984 3.469 0.193 
Listening Position * Program * 
Observation * Subject 104 14.503 0.139     
Target Curve * Program * Observation 16 2.086 0.13 0.962 0.4996 15.394 0.64 
Target Curve * Program * Observation * 
Subject 208 28.188 0.136     
Cinema * Listening Position * Target 
Curve * Program 64 84.744 1.324 2.674 <.0001 171.149 1 
Cinema * Listening Position * Target 
Curve * Program * Subject 832 411.963 0.495     
Cinema * Listening Position * Target 
Curve * Observation 16 1.712 0.107 0.876 0.5972 14.022 0.587 
Cinema * Listening Position * Target 
Curve * Observation * Subject 208 25.396 0.122     
Cinema * Listening Position * Program * 
Observation 16 1.685 0.105 0.965 0.4961 15.445 0.642 
Cinema * Listening Position * Program * 
Observation * Subject 208 22.689 0.109     
Cinema * Target Curve * Program * 
Observation 32 3.869 0.121 0.963 0.5283 30.807 0.874 
Cinema * Target Curve * Program * 
Observation * Subject 416 52.252 0.126     
Listening Position * Target Curve * 
Program * Observation 32 3.799 0.119 0.992 0.4825 31.748 0.887 
Listening Position * Target Curve * 
Program * Observation * Subject 416 49.784 0.12     
Cinema * Listening Position * Target 
Curve * Program * Observation 64 7.828 0.122 1.053 0.3695 67.362 0.995 
Cinema * Listening Position * Target 
Curve * Program * Observation * Subject 832 96.683 0.116     
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Appendix L - Effect Size, Program wrt Target Curve 

  d r r2 CL 

Curve A - Program         

SD/TM 0.02 0.01 0.000 50.47% 

SD/Sc 0.32 0.16 0.025 58.93% 

SD/Sc-T 0.32 0.16 0.026 59.05% 

SD/Sc-F 0.04 0.02 0.000 51.24% 

TM/Sc 0.29 0.14 0.020 57.99% 

TM/Sc-T 0.29 0.14 0.020 58.10% 

TM/Sc-F 0.03 0.00 0.000 50.04% 

Sc/Sc-T 0.00 0.00 0.000 50.04% 

Sc/Sc-F 0.26 0.13 0.017 57.32% 

Sc-T/Sc-F 0.26 0.06 0.004 53.65% 

Curve B - Program         

SD/TM 0.13 0.06 0.004 53.59% 

SD/Sc 0.05 0.03 0.001 51.45% 

SD/Sc-T 0.03 0.01 0.000 50.73% 

SD/Sc-F 0.14 0.07 0.005 53.97% 

TM/Sc 0.07 0.36 0.126 52.00% 

TM/Sc-T 0.10 0.05 0.002 52.77% 

TM/Sc-F 0.02 0.01 0.000 50.46% 

Sc/Sc-T 0.03 0.01 0.000 50.71% 

Sc/Sc-F 0.09 0.04 0.002 52.40% 

Sc-T/Sc-F 0.11 0.06 0.003 53.16% 

Curve C - Program         

SD/TM 0.09 0.05 0.002 52.65% 

SD/Sc 0.08 0.04 0.002 52.38% 

SD/Sc-T 0.38 0.19 0.035 60.64% 

SD/Sc-F 0.63 0.30 0.091 67.30% 

TM/Sc 0.17 0.09 0.007 54.83% 

TM/Sc-T 0.29 0.15 0.021 58.24% 

TM/Sc-F 0.56 0.27 0.073 65.41% 

Sc/Sc-T 0.43 0.21 0.045 62.04% 

Sc/Sc-F 0.67 0.32 0.100 68.12% 

Sc-T/Sc-F 0.30 0.15 0.022 58.47% 

Curve D - Program         

SD/TM 0.43 0.21 0.045 62.02% 

SD/Sc 0.28 0.14 0.019 57.90% 

SD/Sc-T 0.50 0.24 0.058 63.72% 

SD/Sc-F 0.83 0.38 0.147 72.11% 

TM/Sc 0.68 0.32 0.103 68.44% 

TM/Sc-T 0.04 0.02 0.000 51.23% 

TM/Sc-F 0.36 0.18 0.031 60.05% 

Sc/Sc-T 0.75 0.35 0.123 70.19% 

Sc/Sc-F 1.07 0.47 0.222 77.51% 

Sc-T/Sc-F 0.33 0.16 0.026 59.15% 

Curve E - Program         

SD/TM 0.14 0.07 0.005 53.92% 

SD/Sc 0.35 0.17 0.030 59.83% 

SD/Sc-T 1.26 0.53 0.285 81.38% 

SD/Sc-F 1.10 0.48 0.233 78.18% 

TM/Sc 0.49 0.24 0.057 63.62% 

TM/Sc-T 1.40 0.57 0.328 83.82% 

TM/Sc-F 1.24 0.53 0.278 81.01% 

Sc/Sc-T 0.93 0.42 0.178 74.46% 

Sc/Sc-F 0.75 0.35 0.124 70.28% 

Sc-T/Sc-F 0.21 0.10 0.011 55.86% 
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Appendix M - Effect Size, Target Curve wrt Program 

  d r r2 CL 

SD - Curve         

A/B 0.50 0.24 0.059 63.80% 

A/C -7.13 0.96 0.927 100.00% 

A/D -6.20 0.95 0.906 100.00% 

A/E -4.10 0.90 0.808 99.81% 

B/C -7.61 0.97 0.935 100.00% 

B/D -6.68 0.96 0.918 100.00% 

B/E -4.54 0.92 0.837 99.93% 

C/D 0.85 0.39 0.154 72.71% 

C/E 2.42 0.77 0.595 95.66% 

D/E 1.61 0.63 0.392 87.20% 

TM - Curve         

A/B 0.60 0.29 0.082 66.36% 

A/C -6.78 0.96 0.920 100.00% 

A/D -5.00 0.93 0.862 99.98% 

A/E -3.76 0.88 0.780 99.61% 

B/C -7.84 0.97 0.939 100.00% 

B/D -5.81 0.95 0.894 100.00% 

B/E -4.53 0.91 0.837 99.93% 

C/D 1.19 0.51 0.262 80.05% 

C/E 2.54 0.79 0.617 96.37% 

D/E 1.23 0.52 0.274 80.74% 

Sc - Curves         

A/B 0.79 0.37 0.134 71.09% 

A/C -5.76 0.94 0.892 100.00% 

A/D -5.54 0.94 0.885 100.00% 

A/E -3.86 0.89 0.789 99.68% 

B/C -6.78 0.96 0.920 100.00% 

B/D -6.66 0.96 0.917 100.00% 

B/E -4.83 0.92 0.854 99.97% 

C/D 0.59 0.28 0.080 66.18% 

C/E 1.96 0.70 0.490 91.73% 

D/E 1.47 0.59 0.352 85.13% 

ScT - Curves         

A/B 0.78 0.36 0.132 70.96% 

A/C -5.97 0.95 0.899 100.00% 

A/D -4.52 0.91 0.836 99.93% 

A/E -4.56 0.92 0.839 99.94% 

B/C -7.18 0.96 0.928 100.00% 

B/D -5.49 0.94 0.883 99.99% 

B/E -5.45 0.94 0.881 99.99% 

C/D 0.95 0.43 0.183 74.85% 

C/E 0.60 0.29 0.081 66.31% 

D/E -0.28 0.14 0.019 57.89% 

ScF - Curves         

A/B 0.63 0.30 0.090 67.17% 

A/C -5.17 0.93 0.870 99.99% 

A/D -4.33 0.91 0.824 99.89% 

A/E -4.92 0.93 0.858 99.98% 

B/C -5.87 0.95 0.896 100.00% 

B/D -5.03 0.93 0.863 99.98% 

B/E -5.67 0.94 0.889 100.00% 

C/D 0.86 0.39 0.155 72.75% 

C/E 0.48 0.23 0.055 63.37% 

D/E -0.40 0.20 0.039 61.15% 
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Appendix N - Cinema Photos 

 

  

      Cinema A - Warner Bros. Room 2    Cinema B - Warner Bros. Room 1 

 

 

 
                                               

     Cinema C - Dolby Burbank                      Cinema D - Warner Bros. Room 5 
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Cinema E - Technicolor 

 

Cinema F - Warner Bros. Room 12 

 

Cinema F - Warner Bros. Steven J. Ross Theatre 
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Appendix O - Matlab Code for Impulse Response 

Analysis 

function [rt,drr,cte,cfs,edt] = irStats(filename,varargin) 
%IRSTATS Calculate RT, DRR, Cte, and EDT for impulse response file 
%  
%   RT = IOSR.ACOUSTICS.IRSTATS(FILENAME) returns the reverberation time 
%   (to -60 dB) using a method based on ISO 3382-1:2009. The function uses 
%   reverse cumulative trapezoidal integration to estimate the decay curve, 
%   and a linear least-square fit to estimate the slope between 0 dB and 
%   -60 dB. Estimates are taken in octave bands and the overall figure is 
%   an average of the 500 Hz and 1 kHz bands. 
%  
%   FILENAME should be the full path to an audio file or the name of an 
%   audio file on the Matlab search path. The file can be of any format 
%   supported by the AUDIOREAD function, and have any number of channels; 
%   estimates (and plots) will be returned for each channel. 
%  
%   The function returns a 1xN vector of RTs, where N is the number of 
%   channels in the audio file. 
%  
%   The function determines the direct sound as the peak of the squared 
%   impulse response. 
%  
%   [RT,DRR] = IOSR.ACOUSTICS.IRSTATS(FILENAME) returns the 
%   direct-to-reverberant-ratio DRR for the impulse; DRR is the same size 
%   as RT. This is calculated in the following way: 
%    
%   DRR = 10 * log10( X(T0-C:T0+C)^2 / X(T0+C+1:end)^2 ) 
%  
%   where X is the approximated integral of the impulse, T0 is the time of 
%   the direct impulse, and C=2.5ms [1]. 
%  
%   [RT,DRR,CTE] = IOSR.ACOUSTICS.IRSTATS(FILENAME) returns the 
%   early-to-late index CTE for the impulse; CTE is the same size as RT. 
%   This is calculated in the following way: 
%    
%   CTE = 10 * log10( X(T0-C:T0+TE)^2 / X(T0+TE+1:end)^2 ) 
%  
%   where TE is 50 ms. 
%  
%   [RT,DRR,CTE,CFS] = IOSR.ACOUSTICS.IRSTATS(FILENAME) returns the 
%   octave-band centre frequencies CFS used in the calculation of RT. 
%  
%   [RT,DRR,CTE,CFS,EDT] = IOSR.ACOUSTICS.IRSTATS(FILENAME) returns the 
%   early decay time EDT, which is the same size as RT. The slope of the 
%   decay curve is determined from the fit between 0 and -10 dB. The decay 
%   time is calculated from the slope as the time required for a 60 dB 
%   decay. 
%  
%   ... = IOSR.ACOUSTICS.IRSTATS(...,'PARAMETER',VALUE) allows numerous 
%   parameters to be specified. These parameters are: 
%  
%       'graph'      : {false} | true 
%           Controls whether decay curves are plotted. Specifically, graphs 
%           are plotted of the impulse response, decay curves, and linear 
%           least-square fit for each octave band and channel of the audio 
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%           file. If the EDT output is specified, the EDT fit will also be 
%           plotted. 
%       'te'         : {0.05} | scalar 
%           Specifies the early time limit (in seconds). 
%       'spec'       : {'mean'} | 'full' 
%           Determines the nature of RT and EDT outputs. With spec='mean' 
%           (default) the reported RT and EDT are the mean of the 500 Hz 
%           and 1 kHz bands. With spec='full', the function returns the 
%           RT and EDT as calculated for each octave band returned in 
%           CFS; RT and EDT have size [M N] where M=length(CFS). 
%       'y_fit'      : {[0 60]} | two-element vector 
%           Specifies the decibel range over which the decay curve should 
%           be evaluated. For example, 'y_fit' may be [-5 -25] or [-5 -35] 
%           corresponding to the RT20 and RT30 respectively. 
%       'correction' : {0.0025} | scalar 
%           Specifies the correction parameter C (in seconds) given above 
%           for DRR and CTE calculations. Values of up to 10 ms have been 
%           suggested in the literature. 
%  
%   Octave-band filters are calculated according to ANSI S1.1-1986 and IEC 
%   standards. Note that the OCTDSGN function recommends centre frequencies 
%   fc in the range fs/200 < fc < fs/5. 
%  
%   The author would like to thank Feifei Xiong for his input on the 
%   correction parameter. 
%  
%   References 
%  
%   [1] Zahorik, P., 2002: 'Direct-to-reverberant energy ratio 
%       sensitivity', The Journal of the Acoustical Society of America,  
%       112, 2110-2117. 
%  
%   See also AUDIOREAD, OCTDSGN. 

  
%   Copyright 2016 University of Surrey. 

  
    %% validate inputs and set options 

     
    % check dependency 
    if exist('octdsgn','file')~=2 
%         web('http://uk.mathworks.com/matlabcentral/fileexchange/69-

octave','-new','-browser') 
        error('Please download and install the OCTAVE toolbox from: 

http://uk.mathworks.com/matlabcentral/fileexchange/69-octave') 
    end 

  
    % check file exists 
    assert(exist(filename,'file')==2,['iosr.acoustics.irStats: ' filename ' 

does not exist']) 

  
    % set defaults 
    options = struct(... 
        'graph',false,... 
        'te',0.05,... 
        'spec','mean',... 
        'y_fit',[0 -60],... 
        'correction',0.0025); 
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    % read parameter/value inputs 
    if nargin>1 % if parameters are specified 
        % read the acceptable names 
        optionNames = fieldnames(options); 
        % count arguments 
        nArgs = length(varargin); 
        if round(nArgs/2)~=nArgs/2 
           error('IRSTATS needs propertyName/propertyValue pairs') 
        end 
        % overwrite defults 
        for pair = reshape(varargin,2,[]) % pair is {propName;propValue} 
           IX = strcmpi(pair{1},optionNames); % find match parameter names 
           if any(IX) 
              % do the overwrite 
              options.(optionNames(Fleischmann et al.)) = pair{2}; 
           else 
              error('%s is not a recognized parameter name',pair{1}) 
           end 
        end 
    end 

     
    % check options size and type 
    assert(isvector(options.y_fit) && numel(options.y_fit)==2,'''y_fit'' 

must be a two-element vector.') 
    assert(isscalar(options.correction),'''correction'' must be a scalar.') 
    assert(isscalar(options.te),'''te'' must be a scalar.') 
    assert(ischar(options.spec),'''spec'' must be a char array.') 
    assert(islogical(options.graph) && numel(options.graph)==1,'''graph'' 

must be logical.') 

     
    % check for reasonable values 
    assert(all(options.y_fit<=0),'''y_fit'' values must be less than or 

equal to 0.') 
    assert(options.te>=0,'''te'' must be greater than or equal to 0.') 
    assert(options.correction>=0,'''correction'' must be greater than or 

equal to 0.') 

     
    %% read in audio file 

  
    % read in impulse 
    [x,fs] = audioread(filename); 
    assert(fs>=5000,'Sampling frequency is too low. FS must be at least 

5000 Hz.') 

  
    % set te in samples 
    te = round(options.te*fs); 

  
    % Check sanity of te 
    assert(te<length(x),'The specified early time limit te is longer than 

the duration of the impulse!') 

  
    % get number of channels 
    numchans = size(x,2); 

     
    %% set up octave-band filters 

     
    % octave-band center frequencies 
    cfs = [31.25 62.5 125 250 500 1000 2000 4000 8000 16000]; 
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    % octave-band filter order 
    N = 3; 

  
    % limit centre frequencies so filter coefficients are stable 
    %cfs = cfs(cfs>fs/200 & cfs<fs/3); 
    %cfs = cfs(:); 

  
    % calculate filter coefficients 
    a = zeros(length(cfs),(2*N)+1); 
    b = zeros(length(cfs),(2*N)+1); 
    for f = 1:length(cfs) 
        [b(f,:),a(f,:)] = octdsgn(cfs(f),fs,N); 
    end 

     
    %% perform calculations 

  
    % empty matrices to fill 
    z = zeros([length(cfs) size(x)]); 
    rt_temp = zeros([length(cfs) numchans]); 
    edt = zeros([length(cfs) numchans]); 
    t0 = zeros(1,numchans); 
    drr = zeros(1,numchans); 
    cte = zeros(1,numchans); 

  
    correction = round(options.correction*fs); 

  
    % filter and integrate 
    for n = 1:numchans 
        % find direct impulse 
        peak = find(x(:,n).^2==max(x(:,n).^2)); 
        if numel(peak)>1 
            warning('More than one peak found. Choosing first peak. Are you 

sure this is an impulse response?') 
        end 
        t0(n) = peak(1); 
        % draw figure 
        if options.graph 
            scrsz = get(0,'ScreenSize'); 
            figpos = [((n-1)/numchans)*scrsz(3) scrsz(4) scrsz(3)/2 

scrsz(4)]; 
            figure('Name',['Channel ' num2str(n)],'OuterPosition',figpos); 
        end 
        % evaluate impulse in each octave band 
        for f = 1:length(cfs) 
            y = filter(b(f,:),a(f,:),x(:,n)); % octave-band filter 
            temp = cumtrapz(y(end:-1:1).^2); % decay curve 
            z(f,:,n) = temp(end:-1:1); 
            [rt_temp(f,n),E_rt,fit_rt] = 

calc_decay(z(f,t0:end,n),options.y_fit,60,fs,cfs(f)); % estimate RT 
            [edt(f,n),E_edt,fit_edt] = calc_decay(z(f,t0:end,n),[0,-

10],60,fs,cfs(f)); % estimate EDT 
            if options.graph % plot 
                % time axes for different vectors 
                ty = ((0:length(y)-1)-t0(n))./fs; 
                tE_rt = (0:length(E_rt)-1)./fs; 
                tE_edt = (0:length(E_edt)-1)./fs; 
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                % plot 
                subplot(length(cfs),2,(2*f)-1) 
                plot(ty,y,'k') % octave-band impulse 
                if f==1 
                    title({'Impulse response'; ''; [num2str(cfs(f)) ' Hz 

octave band']}) 
                else 
                    title([num2str(cfs(f)) ' Hz octave band']) 
                end 
                if f==length(cfs) 
                    xlabel('Time [s]') 
                else 
                    set(gca,'xticklabel',[]); 
                end 
                ylabel('Amplitude') 
                set(gca,'position',[1 1 1 

1.05].*get(gca,'position'),'xlim',[min(ty) max(ty)]); 
                subplot(length(cfs),2,2*f) 
                % energy decay and linear least-square fit 
                if nargout==5 
                    % plot EDT fit if EDT wanted 
                    plot(tE_rt,E_rt,'-k',tE_rt,fit_rt,'--

r',tE_edt,fit_edt,':b') 
                else 
                    plot(tE_rt,E_rt,'-k',tE_rt,fit_rt,'--r') 
                end 
                % title for top row 
                if f==1 
                    title({'Decay curve'; ''; [num2str(cfs(f)) ' Hz octave 

band']}) 
                else 
                    title([num2str(cfs(f)) ' Hz octave band']) 
                end 
                % x label for bottom row 
                if f==length(cfs) 
                    xlabel('Time [s]') 
                else 
                    set(gca,'xticklabel',[]); 
                end 
                ylabel('Energy [dB]') 
                set(gca,'position',[1 1 1 

1.05].*get(gca,'position'),'ylim',[-70 0],'xlim',[0 max(tE_rt)]); 
                % choose legend according to EDT request 
                fitstr = num2str(abs(diff(options.y_fit))); 
                if nargout==5 
                    legend('Energy decay curve',['Linear fit (RT' fitstr 

')'],'Linear fit (EDT)','location','northeast') 
                else 
                    legend('Energy decay curve',['Linear fit (RT' fitstr 

')'],'location','northeast') 
                end 
            end 
        end 
        % DRR 
        if nargout>=2 
            drr(n) = 10.*log(... 
                trapz(x(max(1,t0(n)-correction):t0(n)+correction,n).^2)/... 
                trapz(x(t0(n)+correction+1:end,n).^2)... 
                ); 
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        end 
        % Cte 
        if nargout>=3 
            if t0(n)+te+1>size(x,1) 
                warning(['Early time limit (te) out of range in channel ' 

num2str(n) '. Try lowering te.']) 
                cte(n) = NaN; 
            else 
                cte(n) = 10.*log(... 
                    trapz(x(max(1,t0(n)-correction):t0(n)+te).^2)/... 
                    trapz(x(t0(n)+te+1:end,n).^2)... 
                    ); 
            end 
        end 
    end 

     
    %% write output 

  
    switch lower(options.spec) 
        case 'full' 
            rt = rt_temp; 
        case 'mean' 
            rt = mean(rt_temp(cfs==500 | cfs==1000,:)); % overall RT 
            edt = mean(edt(cfs==500 | cfs==1000,:)); % overall EDT 
        otherwise 
            error('Unknown ''spec'': must be ''full'' or ''mean''.') 
    end 

  
end 

  
function [t,E,fit] = calc_decay(z,y_fit,y_dec,fs,f) 
% CALC_DECAY calculate decay time from decay curve 
% Returns the time for a specified decay y_dec calculated 
% from the fit over the range y_fit. The input is the 
% integral of the impulse sample at fs Hz. The function also 
% returns the energy decay curve in dB and the corresponding 
% fit. 

  
    E = 10.*log10(z); % put into dB 
    E = E-max(E); % normalise to max 0 
    if any(isinf(E)) 
        E = E(1:find(isinf(E),1,'first')-1); % remove trailing infinite 

values 
    end 

     
    % find yfit x-range 
    IX1 = findDB(E,max(y_fit),1,f); 
    IX2 = findDB(E,min(y_fit),length(E),f); 
    IX = IX1:IX2; 

  
    % calculate fit over yfit 
    diff_y = abs(diff(y_fit)); % dB range diff 
    x = reshape(IX,1,length(IX)); 
    y = reshape(E(IX),1,length(IX)); 
    p = polyfit(x,y,1); 
    fitLength = max(length(E),(1.1*diff_y/abs(length(E)*p(1)))*length(E)); 

% evaluate fit over sufficient dynamic range 
    fit = polyval(p,1:fitLength); % actual fit 
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    fit0 = fit-max(fit); % fit anchored to 0dB 
    t = (y_dec/diff_y)*findDB(fit0,-diff_y,[],f)/fs; % estimate decay time 
    fit = fit(1:length(E)); 

  
end 

  
function IX = findDB(E,dB,default,f) 
% FINDDB find dB value in energy decay 

  
    IX = find(E<=dB,1,'first'); 
    if isempty(IX) 
        if isempty(default) 
            error('Impulse response has insufficient dynamic range at %i Hz 

to evaluate at %i dB.',f,dB) 
        else 
            warning('Impulse response has insufficient dynamic range at %i 

Hz to evaluate at %i dB. Evaluating at %.1f dB instead.',f,dB,E(default)) 
            IX = default; 
        end 
    end 

     
end 
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Appendix P - Peak-to-Peak Values by Position 

Grouping 
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