
1 

 

Proceedings of the Institution of Mechanical Engineers- Part N: 
Journal of Nanomaterials, Nanoengineering and Nanosystems 

 
eISSN: 23977922 | ISSN: 23977914 

 
PUBLISHER: SAGE PUBLISHING 

 

ACCEPTED MARCH 16TH 2017  

 
FINITE ELEMENT COMPUTATION OF TRANSIENT DISSIPATIVE DOUBLE DIFFUSIVE MAGNETO-CONVECTIVE 

NANOFLUID FLOW FROM A ROTATING VERTICAL POROUS SURFACE IN POROUS MEDIA. 
 

Thirupathi Thumma1*, O. Anwar Bég2 and Siva Reddy Sheri3 

 
1Department of Mathematics, B V Raju Institute of Technology, Medak, 502313, Telangana, India. 

2 Fluid Mechanics, Spray Research Group, Petroleum/Gas Engineering Division, Newton Bldg., University of 

Salford, Manchester, M54WT, UK. 
3Department of Mathematics, Gandhi Institute of Technology/Management University, Hyderabad, India. 

*Corresponding author-Email: thirupathi.thumma@gmail.com 

 

Running head: 
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Abstract: 

This paper aimed to investigate the transient dissipative MHD double diffusive free convective 

boundary layer flow of electrically-conducting nanofluids from a stationary or moving vertical 

porous surface in a rotating high permeability porous medium, considering buoyancy, thermal 

radiation and first order chemical reaction. Thermo-diffusion (Soret) and diffuso-thermal 

(Dufour) effects are also considered. Darcy’s law is employed. The mathematical model is 

formulated by considering water-based nanofluids containing metallic nano-particles for both 

stationary and moving plate cases. Three nanofluids are examined, namely copper, aluminium 

oxide or titanium oxide in water. The transformed non-linear, coupled, dimensionless partial 

differential equations describing the flow are solved with physically appropriate boundary 

conditions by using Galerkin weighted residual scheme. For prescribed permeability, 

numerical results are presented graphically for the influence of a number of emerging 

parameters. Validation of finite element solutions for skin friction and Nusselt number is 

achieved via comparison with the previously published work as special cases of the present 

investigation and very good correlation obtained. Increasing rotational parameter is observed 

to reduce both primary and secondary velocity components. Primary and secondary velocities 

are consistently elevated with increasing Soret, Dufour, thermal Grashof and solutal Grashof 

numbers. Increasing Schmidt number, chemical reaction and suction parameter both suppress 

nano - particle concentration whereas the converse behavior is computed with increasing Soret 

number. The study is relevant to high temperature rotating chemical engineering systems 

exploiting magnetized nanofluids and also electromagnetic nanomaterial manufacturing 

processes.  

 

Keywords: Double diffusive convection; Nanofluid; Rotating fluid; Buoyancy; Chemical 

reaction; Radiation. 
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Introduction 

Magnetic nanofluids are emerging as a new branch of possible working fluids with potential 

in, for example, electrical transformer technologies, medical engineering and fusion power 

systems. These fluids are manufactured by dispersing magnetic nanoparticles in base fluids e.g. 

water, and are responsive to the application of magnetic fields. To simulate the manufacture of 

such materials, magnetohydrodynamics provides an excellent platform. Additionally many 

stable magnetic nanofluids are synthesized at high temperatures and this invokes thermal 

radiative heat transfer (Zaid et al. [1]; Sergis et al. [2]). Recently, the study laminar 3 

dimensional convection flow of 32OAl -water bio-nanofluids in a circular tube under constant 

wall temperature conditions was simulated with FVM (Finite Volume Method) by Beg et al. 

[3] as well as flow past in wavy channel by adopting control volume approach investigated by 

Rashidi et al. [4]. Metallic nanoparticles have been shown to hold excellent features for 

radiation absorption due to the plasmon resonance absorption band in the visible and near IR 

spectrum that can be tuned by engineers to optimize properties. Other effects may also arise 

e.g. chemical reaction and rotation of systems (Borbath et al. [5]). In nuclear engineering 

implementation of magnetic nanofluids, many of these effects can also arise simultaneously. 

Furthermore the deployment of magnetic nano-particles in drug delivery may also benefit from 

investigations of chemically reactive magnetic nanofluids with rotational body forces. It is 

therefore of benefit to improving such designs and optimizing performance that continuous 

development in mathematical and computational models is sustained and refined. This 

motivates the present numerical investigation.  

 

In recent years a number of investigations of magnetohydrodynamic nanofluid convection 

flows have been reported. These studies have extended the pioneering work into coolants of 

Choi at Argonne National Laboratory in the United States in the mid-1990s (Choi [6]; Choi et 

al. [7]) coined the term nanofluid to describe fluids engineered by suspending small volumetric 

nanoparticles ),,,,,,( 232 AlNSiNSiCTiOOAlAlCu  with average sizes less than 100 nm in 

conventional heat transfer fluids ( ), 2622 OHCOH  and also other base fluids like engine oil, 

mineral oil, bio-fluids and poor heat transfer fluids. The thermal-enhancing properties of 

magnetic nanofluids have attracted increasing interest in ever-diversifying fields such as 

electronics, optical devices, material synthesis, high power x-rays, lasers and biomedical 

sciences.  Most studies of magnetic nanofluid transport have utilized the Lorentz magnetic 

body force formulation. (Oztop et al. [8]) studied the hydromagnetic natural convection in an 

enclosure from two semi-circular heaters on the bottom wall. (Chamkha and Aly [9]) reported 

on magnetic free convective flow of a nanofluid with heat sink/source effects. (Ellahi [10]) 

studied the MHD flow of non-Newtonian nanofluid in a pipe. Recently, the fourth order Runge-

Kutta Shooting technique is employed to investigate the unsteady MHD laminar convective 

nanofluid flow over permeable accelerated stretching vertical surface by Freidoonimehr et al. 

[11]. (Sheikholeslami et al. [12]) investigated magnetic field effects on nanofluid flow and heat 

transfer in a semi-annulus enclosure by considering the effects of thermophoresis and 

Brownian motion and evaluated the gradient of nanoparticles volume fraction. 

  

Rotating flows of nanofluids have also garnered considerable attention. Such studies invoke 

Coriolis body force terms due to the rotation of the nanofluid. (Mahajan and Arora [13]) 

considered convective instability in a thin layer of a rotating magnetic nanofluid, considering 

Brownian diffusion, thermophoresis and magnetophoresis effects. Using a Chebyshev pseudo 
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spectral numerical method and considering different  boundary conditions, they found that for  

water and ester based magnetic nanofluids, the magnetic field dominates the buoyancy 

mechanism in fluid layers about 1 mm thick. (Nadeem and Saleem [14]) investigated with a 

homotopy analysis method (HAM) the transient mixed magnetohydrodynamic rotating 

nanofluid convection on a rotating cone with magnetic field, and considered three different 

cases where the fluid is rotating and the cone is at rest, the fluid and the cone are rotating with 

equal angular velocity in the same direction and where only the cone is in rotation. They 

showed that magnetic field depresses velocity magnitudes and that velocity field is modified 

significantly depending on the rotation case employed. (Beg et al. [15]) analyzed the transient 

stagnation-point boundary layer flow of nanofluids from a spinning sphere, using both 

homotopy and Adomian decomposition methods. They showed that with increasing rotational 

parameter i.e. stronger swirl effect proportional to the rotational velocity of the sphere), 

primary velocity is enhanced whereas secondary velocity is reduced and also temperatures and 

nano-particle concentration magnitudes decreased. (Rana et al. [16]) studied with a variational 

finite element algorithm, the transient magneto-hydrodynamic boundary layer flow and heat 

transfer in an incompressible rotating nanofluid over a stretching continuous sheet, showing 

that both primary and secondary velocity are strongly retarded with increasing Hartmann 

(magnetic) number whereas temperature and nanoparticle concentration are enhanced. They 

also found that greater rotational parameter decelerates both primary and secondary velocity, 

and reduces temperature and nanoparticle concentration. (Sheikholeslami et al. [17]) used a 

fourth-order Runge–Kutta method to study magnetohydrodynamic (MHD) nanofluid flow and 

heat transfer in a rotating parallel plate channel system, considering copper, silver, alumina and 

titanium oxide nano-particles suspended in water. They showed that Nusselt number is a 

maximum for the titanium oxide-water nanofluid case whereas it is strongly reduced with 

increasing magnetic parameter. (Hamad and Pop [18]) also examined rotating hydromagnetic 

nanofluid convection from a permeable plate, noting that with increasing rotation and heat 

source parameters, the skin friction is reduced as is the temperature and thermal boundary layer 

thickness. 

 

Chemical reaction and thermal radiative effects in nanofluid flows are, as elaborated earlier, 

also of interest, in particular during high-temperature synthesis of nano-particle suspensions.  

Usually a first order chemical reaction model is employed, although reactions may be more 

complex. They can be homogenous or heterogeneous and also may be of second or higher 

order. Interesting studies of chemically-reacting nanofluid flows (with 

magnetohydrodynamics) have appeared quite recently in the literature. (Ramzan and Bilal  

[19]) employed a homotopy method (HAM) to obtain power series solutions for three-

dimensional flow of viscoelastic conducting nanofluid along a bidirectional stretching sheet 

with species diffusion and chemical reaction, showing that chemical reaction exerts a strong 

influence on temperature and nano-particle concentration transfer rate (Sherwood number). 

They also noted that temperature is elevated whereas nano-particle concentration reduced with 

increasing Brownian motion parameter whereas primary and secondary velocity are both 

suppressed with greater viscoelasticity of the nanofluid. (Uddin et al. [20]) studied different 

order chemical reaction effects on natural convection nanofluid boundary layers using Maple 

numerical software. They demonstrated that velocities and temperatures are enhanced whereas 

nanoparticle volume fraction is reduced with increasing order of chemical reaction. Recently, 

Rashidi et al. [21] studied two dimensional laminar free convective boundary layer flow of an 

Ostwald-de Waele Power-law nanofluid induced by a steadily rotating infinite disk to a non-

darcian fluid past an upward facing chemically reacting horizontal plate saturated in a porous 

medium by employing OHAM (Optimal Homotopy Analysis Method). 
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Thermal radiation is traditionally simulated in boundary layer flows with Rosseland’s diffusion 

flux model, which approximates the radiative heat transfer as an algebraic flux model. Several 

investigators have addressed radiative effects on nanofluid transport. (Turkyilmazoglu and Pop 

[22]) derived analytical solutions using the Rosseland flux model for radiative heating effects 

on transient free convection nanofluid boundary layer flows, for copper, titanium, silver, 

aluminium oxide nanofluids. (Satya Narayana et al. [23]) derived perturbation solutions for 

radiative magnetic rotating nanofluid flow with heat generation in a porous medium, showing 

that greater radiative contribution significantly increases nanofluid temperatures. Very 

recently, (Siva Reddy and Thirupathi [24]) investigated heat and mass transfer effects on 

natural convection flow in the presence of volume fraction for copper-water nanofluid. (Uddin 

et al. [25]) investigated radiation flux and hydrodynamic, thermal and solutal slip effects on 

nanofluid extending/contracting sheet flow with lie group methods and shooting quadrature, 

noting that heat transfer rates are strongly influenced by radiative heat transfer as are nano-

particle mass transfer rates. Further studies considering thermal radiation in nanofluid 

convection flows have been reported by (Ibanez et al. [26]) who considered entropy generation 

in MHD radiative nanofluid slip flow in micro-channels. 
 

The combined influence of Soret and Dufour diffusional phenomena are also a significant area 

of interest in materials processing systems. Such effects become prominent when species are 

introduced at a surface in a fluid domain. The relations between the driving potentials and 

fluxes are of a highly intricate nature. The energy and mass fluxes are generated via 

composition and temperature gradients respectively. These fluxes are also termed diffusion-

thermo (Dufour) and thermal-diffusion (Soret) effects. When both effects occur together, such 

flows are defined as double-diffusive convection flows. The study of double diffusive natural 

convection in porous media finds numerous applications in radio-nuclide storage and transport 

in geological materials, chromatography, bio-chemical contaminant transport in aquifers, 

filtration technologies, materials fabrication etc. Extensive theoretical and numerical studies of 

double diffusive convection in both external boundary layer flows and internal flows for 

different geometrical configurations have been communicated. These include transport from a 

permeable sphere (El-Kabeir et al. [27]), micropolar convection from a sphere (Beg et al. [28]) 

heat and mass transfer in inclined square cavities (Chandrasekhar and Kishan, [29]), 

magnetohydrodynamic flow, heat and mass diffusion from a stretching sheet in porous media 

(Beg et al. [30]) and boundary layer flow from a conical geometry in porous media, from 

truncated cone (Rashad and Chamkha [31]). Soret and Dufour effects were shown in these 

studies to exert a marked influence on velocity, temperature and concentration fields.   

The above investigations generally did not consider the collective effects of thermal radiation, 

viscous dissipation, species and thermal buoyancy or chemical reaction for rotating nanofluid 

flows. In realistic synthesis operations, these effects are important. Manufacturing of magnetic 

nanofluids involves frequently high temperature and destructive chemical reaction effects as 

highlighted by Venkateswarlu and Narayana [37]. Furthermore rotational body force and 

porous media (filtration media) can be exploited to better control boundary layer processes in 

such fluids which lead to more homogenous distributions of nanoparticles. Actual flow 

processes are also unsteady i.e. time-dependent, in manufacturing systems as elaborated by 

Borbath et al. [5]. In systems with diffusing species (nano-particles) cross-diffusion effects can 

also arise. In the present article it is therefore consider transient magnetohydrodynamic (MHD) 

double-diffusive free convective boundary layer flow of nanofluids from a stationary/moving 

vertical porous plate in rotating porous media. Wall suction (lateral mass flux) and viscous 
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heating effects are also incorporated. An attempt is made to investigate comprehensively, the 

influence of pertinent parameters on primary and secondary velocity distributions for both the 

stationary plate )0(  and moving plate )1(  cases as well as temperature and 

concentration distributions for three different water-based nanofluids: OHCu 2

OHOAland 232   and OHTiO 22  . Generally two models are popular for simulating 

nanofluids, namely the (Buongiorno [32]) Buongiorno model (which includes many 

mechanisms but which emphasizes the contribution of Brownian diffusion and thermophoresis 

for heat transfer enhancement) and the Tiwari-Das formulation (Tiwari and Das [33]) (which 

features a nano-particle volume fraction). Very recently, Garoosi et al. [34] used finite volume 

discretization method to study the natural convection heat transfer of nanofluid in a two-

dimensional square cavity containing several pairs of heaters and coolers (HACs) using 

Buongiorno model. The latter implement in the present study. The transformed boundary layer 

equations which governs the flow and heat and mass transfer of nanofluids are strongly 

nonlinear in nature and a numerical method is required for solution of the transformed 

boundary value problem. The finite element method (FEM) is employed. In section 2 the 

mathematical model is developed. In section 3 numerical solutions are described with 

validation and grid-independence. Section 4 contains the discussion and evaluation of the 

numerical results. Finally the important observations are summarized in the section 5 

(Conclusions). The current study is relevant to high-temperature, magnetohydrodynamic 

(MHD) nanofluid materials processing systems employing rotational body forces. 

 

 

 

Mathematical formulation of the problem 

 

The schematic model of the coordinate system and the physical problem under investigation 

are depicted in Figure 1. The Cartesian coordinate system is selected such that  the axisx   

is along the direction of the plate through which fluid flow in the upward direction is 

considered, axisy   is perpendicular to the plate and axisz   is normal to the planeyx   

i.e. transverse to the plane of the plate. Now consider the magnetohydrodynamic free 

convection flow with heat and mass transfer (species diffusion) of an electrically-conducting 

nanofluid from the semi-infinite vertical porous plate adjacent to a homogenous, isotropic 

porous medium, in the presence of uniform suction in a rotating frame of reference. Darcy’s 

model is employed for porous medium drag effects. The plate is assumed to be in rigid body 

rotation with constant angular velocity,  about the axisy  . A uniform magnetic field of 

strength, B0, is imposed transversely to the flow i.e. along the axisy  .  
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Figure 1. Physical model and coordinate system for the problem. 

 

The plate is moving with the velocity 0u ,  being a constant. It is assumed that flow is driven 

by the motion of the plate which oscillates with constant frequency n  in time t  , so that plate 

temperature oscillates to tnTTT ww
  cos)( . A uni-directional radiative flux acts normal 

to the plate surface. The nanofluid which saturates the porous medium is dissipative and is 

absorbing, emitting and gray but not scattering. Hall current and Maxwell displacement current 

effects are neglected.  Initially at time 0t , both the plate and fluid are maintained at uniform 

temperature, 
T and uniform nano-particle concentration 

C . Once the plate starts moving 

0,.. twhenei  along axisx  direction against gravitational field, the temperature is raised 

to wT   which is higher than the ambient temperature 
T and the species (nano-particle) 

concentration at the surface is maintained uniformly at wC  . Since the plate is assumed to be of 

infinite extent along yandx  directions then all the physical quantities are dependent solely 

on yandt  . In comparison with the external magnetic field applied, it is assumed that induced 

magnetic field is negligible since the magnetic Reynolds number of flow is taken to be very 

small (Liron and Wilhelm [35]). Thus this assumption is justified, since the magnetic Reynolds 

number is very small for metallic liquids and partially ionized fluids.  Finally, it is also assumed 

that there is no applied voltage then there is no external electric field is applied so that the 

polarization of the fluid is negligible (Cramer and Pai [36]), the base fluid and suspended nano 

particles are in thermal equilibrium state, the nanoparticles are assumed to have a uniform 

shape, size and plate is electrically non- conducting and the reaction is assumed to take place 

entirely in the stream.  

 

By considering the aforementioned assumptions the governing boundary layer equations of 

conservation of mass, momentum, energy and concentration equations by following 

Venkateswarlu and Satya Narayana [37] for unsteady free convective flow under the 

Boussinesq approximation are given by: 
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The final terms on the right hand side of equations (2) and (3) represent the Darcian linear drag 

forces for the primary and secondary flow respectively. The corresponding initial and boundary 

conditions (Ishigaki [38]; Ganapathy [39]; Das et al. [40]) on the vertical surface and in the 

freestream can defined as:  
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Here vu  ,  are velocity components along zandx  directions respectively and  denotes the 

direction of motion of the plate. When 0 the plate is said to be in stationary state and when

1  this corresponds to the case where the plate is moving vertically upwards. It is worth 

mentioning here that nomenclature is presented in Appendix 1. The nanofluid properties (Oztop 

and Abu-Nada [41]) are given by: 
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The effective thermal conductivity of the nanofluid is adopted from Brinkman [42] model as 
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integrating this results 0ww  , where constant 0w is the normal suction velocity at the plate 
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and q


is constant. For an optically thick (photon mean free path is very small) fluid, in addition 

to emission there is also self-absorption and usually the absorption coefficient is wavelength 

dependent so thus the net radiative heat flux term (Brewster [43]) is then approximated using 

the Rosseland diffusion model as: 
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(5.6697*10-8Wm-2K-4) respectively. This model has been applied in a diverse range of both 

magnetic and non-magnetic heat and mass transfer problems and has been shown to be quite 

accurate for optically-dense regimes, as elaborated by (Beg et al. [44-47]). It is assumed that 

the temperature difference within the flow are sufficiently small such that 4T   may be 

expressed as a linear function of the temperature by expanding in a Taylor series about 
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...)(6)(4 22344 
 TTTTTTTT  , and by neglecting the higher order terms it 

gives: 

)9(34 434


 TTTT  

Hence, from Eq. (8), using Eq. (9), the resultant is: 

 

)10(
3

16

2

23

y

T

k

T

y

qr















 

Proceeding with the analysis, a set of non-dimensional variables defined as follows: 
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Substituting nanofluid properties and the above dimensionless variables i.e., equations (7a)-

(7c), (10) and (11) into equations (2) – (4) yields the following system of unsteady coupled, 

non-dimensional nonlinear partial differential equations.  
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These expressions contain nano-particle volume fraction and other property contributions. The 

appropriate initial and boundary conditions in non-dimensional form take the form: 

 

)16(

0),(,0),(,0),(,0),(

1),0(,cos1),0(,0),0(,),0(0
0

0),(,0),(,0),(,0),({0




















tCttvtuyas

tCntttvtuyat
tfor

tyCtytyvtyuytfor







  

 

Finite element computational solutions and validation 

 

The transformed system of non-linear, coupled and non-homogeneous dimensionless partial 

differential equations (12) - (15) under the boundary conditions equation (16) are solved 

numerically by using the extensively-validated and robust finite element method with a 

Galerkin weighted residual scheme. This method comprises five fundamental steps, namely 

discretization of the domain, derivation of the element equations, assembly of element 

equations, imposition of boundary conditions and finally iterative solution of the assembled 

equations with a robust method e.g. Cholesky decomposition, Gaussian elimination etc. Details 

of the finite element approximations are provided in the Appendix 2. An excellent description 

of these steps are presented in the text books of (Reddy [48]) and Further details of this 

methodology as applied to nanofluids are given in (Rana et al. [49]). Dimensionless primary 

velocity (u), secondary velocity (v), temperature () and nano-particle concentration (C) are 

computed.  

 

The grid independence is conducted by dividing the entire domain into successively sized grids 

of mesh density 151151,131131  and 171171 . The boundary conditions for y  at  are 

replaced by a sufficiently large value where the velocity, temperature and concentration profiles 

approach zero.  The MAPLE-based FEM code is ran when the suction parameter 5.0S  for 

different step sizes and very good agreement between the results for all the profiles is achieved 

as presented in Table 1. After many trials for computational flexibility 8max y  is imposed 

where maxy i.e., external to the momentum, energy and concentration boundary layers and 

here adopted for all the computations, 150 intervals of equal step size 0.053. At each node, four 

functions are to be evaluated, so that following assembly of elements a set of 604 non-linear 

equations are formed. Therefore an iterative scheme is adopted and by introducing boundary 

conditions the system of equations are solved systematically. The solution is assumed to be 

converged when the solution difference satisfies the desired accuracy 10-7. An excellent 

convergence for all the results is achieved. Thermo-physical properties of ,2OH ,Cu Ag, 

32OAl and 2TiO -water nanofluids are adopted from (Oztop and Abu-Nada [41]) and 

documented in Table 2. Furthermore, it is important to calculate the engineering quantities of 

interest. These include the skin-friction (surface wall shear stress function) which is obtained 

as

0
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y

nff
y

u
C  . The rate of the heat transfer at the plate is defined as a Nusselt number 
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and given by
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. The rate of mass transfer of nano-particles at the wall is 

computed using the Sherwood number which is given by
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In order to validate the accuracy of the numerical results obtained through the MAPLE-based 

finite element code, the present results are compared for skin friction and Nusselt number with 

the results obtained through earlier analytical studies. The current model reduces to that of 

(Hamad and Pop [18]) in the absence of thermal radiation, heat generation and mass transfer 

(i.e. neglecting the species diffusion equation and associated terms). The comparison is 

documented in Table 3, showing very good correlation. Furthermore comparisons of the 

present finite element solutions with (Venkateswarlu and Satya Narayana [37]) have also been 

conducted, for the case of constant surface temperature and oscillatory plate velocity without 

heat generation terms and these are shown in Table 4. The comparisons confirms that the 

present results are indeed valid and in agreement with the published literature. Therefore, these 

favorable comparisons justify confidence in the finite element code employed which can be 

used therefore in presenting further results quantitatively and graphically. 

Results and discussion 

 

Extensive numerical computations have been performed with the finite element code. Here this 

article address the influence of   ,2k ,2M ,Sr ,Du ,Gr ,Gc ,Ec , ,R Pr, Sc  and Kr  on the 

nanofluid velocity, temperature and species concentration distributions. Solutions are depicted 

graphically in Figures 2 to 26. Numerical solutions are illustrated in these figures by fixing the 

values ,10n ,2/nt ,02.0 19.0t 5.0Kand  (time is therefore not explicitly 

studied in the Figures 2 to 26). The CPU took 1.31 seconds for 151 nodal points with the Intel 

core i3 processor under windows platform, which is computed by using the Maple command 

time ( ) for computation of velocity, temperature and concentration profiles. The following 

default values were adopted to represent physically realistic flows for finite element 

computation as follows: ,42 k ,0.1S ,0.12 M ,3.1Sr ,15.0Du ,5Gr ,4Gc

,001.0Ec ,1.0 ,5.0R ,2.6Pr  45.0Sc and 5.0Kr . It is noted that the influence of 

some parameters on physical quantities are not presented graphically for briefness and are 

noted in other studies of nanofluid boundary layers. A parametric investigation is now 

undertaken to elucidate the thermo-physical characteristics of the flow. In all plots the 

asymptotic profiles for large y confirm that an adequately large boundary condition is imposed 

in the freestream and that solutions are indeed correctly converged.  

  

Figures 2 to 5 depict the primary )(u  and secondary )(v  velocity (for 0 1and cases), 

temperature and concentration profile distributions for three different water-based nanofluids 

OHCu 2 (copper water), OHOAl 232   (Aluminium oxide-water) and OHTiO 22   (Titanium 

oxide-water). Figure 2 demonstrates that both primary and secondary velocity profiles for the 

stationary plate scenario )0(   are initially zero (the plate is stagnant) and with progressive 

distance along the plate in the y-direction, values grow as the boundary layer grows. The peak 

magnitudes in both cases are attained relatively close to the leading edge and thereafter 

decreased to zero at a sufficiently large value of y. Thus, substantially larger magnitudes of 

both primary and secondary velocity are observed for OHCu 2  nanofluid. Progressively 
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lower values correspond to the OHOAl 232  OHTiOand 22  nanofluids. Significant flow 

acceleration is therefore achieved with OHCu 2 nanofluid whereas strong deceleration is 

associated with the OHOAl 232  OHTiOand 22  nanofluids. Figure 3 shows that a very 

different response in the primary and secondary velocity profiles is computed for the moving 

plate )1(  scenario. For this case, primary velocity commences with the actual moving plate 

velocity and progressively decreases to zero asymptotically in the freestream. Primary velocity 

exhibits monotonic decay for all nanofluid types. However secondary velocity reveals a similar 

pattern as observed in the stationary plate case, in that magnitude of the secondary velocity 

profiles grows from the leading edge, peaks some distance from the leading edge and then 

decays asymptotically to zero, in accordance with the freestream boundary conditions. 

Generally significantly greater magnitudes of secondary velocity are sustained compared with 

primary velocity with distance along the plate )(y . Higher values of primary velocity are 

computed for the stationary plate at intermediate distances from the leading edge, whereas for 

the moving plate scenario the value at the wall is maximized. It is also interesting to note that 

a slight displacement in peak secondary velocity occurs when the nanofluid is changed from 

OHCu 2  to OHOAl 232  and then to OHTiO 22  . As with the stationary plate scenario, 

Titanium oxide-water nanofluid attains lowest primary and secondary velocity magnitudes 

whereas the copper-water nanofluid consistently attains highest magnitudes. Figures 4 and 5 

demonstrate that temperature )(  and concentration )(C  profiles for OHCu 2 are markedly 

higher as compared with the OHOAl 232  OHTiOand 22  nanofluids. This is attributable to 

the high thermal conductivity of Cu  relative to 32OAl 2TiOand which manifests in an 

enhancement of the thermal and species diffusion in the boundary layer regime. As a result the 

thermal and concentration boundary layer thicknesses for OHCu 2 nanofluid are greater than 

for 32OAl
2TiOand nanofluids. The profiles for temperature and concentration are always 

monotonic decays from the leading edge to the freestream. A greater modification in 

magnitudes is achieved for temperatures compared with concentrations. 

  
Figures 6 and 7 present the response in primary and secondary (cross flow) velocity profiles 

again for both cases of a stationary and a moving plate, for different values of rotational 

parameter )( 2k  and the three different nanofluid suspensions. The rotational parameter features 

in the Coriolis body force terms arising in both the dimensionless primary momentum equation 

(12) and the dimensionless secondary momentum equation (13).  These terms are respectively 

vk 22  and uk 22 , respectively. The term 
2

0

2 / uvuk f  is directly proportional to the 

angular velocity of the rotating plate. As 2k  is increased the Coriolis force is also enhanced 

i.e. the rotation of the plate is more intense but the body force which is negative for primary 

flow becomes stronger also and this leads to a significant deceleration in the primary and 

secondary flow (note the plate is stationary only in the sense that it is not moving vertically 

upwards for 0  in Figure 6).  Although the secondary rotational body force is increased, 

the dominant effect is that of the primary rotational body force (Coriolis force) which leads to 

a concurrent deceleration also in the secondary flow i.e. damping of the flow velocity. These 

observations are also consistent with classical Newtonian rotating plate flow studies 

documented in (Greenspan [48]). The trends computed in Figure 6 are also in general 

agreement with the findings of Venkateswarlu and Satya Narayana [37] for rotating plate 

nanofluid dynamics. In Figure 6 it is observed that the primary and secondary velocity 

magnitudes are considerably greater for OHCu 2 nanofluid compared with OHOAl 232   
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nanofluid. Although retardation of the flow is prominent, flow reversal is never observed i.e. 

magnitudes of both primary and secondary velocity remain positive for all values of y 

irrespective of the magnitude of 2k  or the nanofluid case. In Figure 7, for the vertically upward 

moving plate scenario )1(  , again the primary and secondary velocity profiles are markedly 

different. There is a gradual decay in primary velocity from the leading edge with distance y to 

vanishing velocity in the freestream. However the secondary velocity profile is similar to the 

case in Figure 6 for the stationary plate scenario with zero magnitude at the leading edge, 

followed by a peak shortly thereafter and then a progressive decay to the freestream. Both 

velocity components however decrease (as in Figure 6) with greater values of the rotational 

parameter and again highest magnitudes correspond to the OHCu 2 nanofluid whereas lowest 

magnitudes are associate with OHOAl 232   nanofluid. 

 

Figures 8 and 9 depict the primary and second velocity profile response to a change in magnetic 

field parameter )( 2M . The primary and secondary momentum equations i.e. Eqs. (12) and (13) 

each feature a Lorentzian magnetohydrodynamic body force component, specifically uM 2  

and vM 2 . Both primary and secondary velocity fields are therefore directly influenced by the 

magnetic field effect. The parameter M  is related directly to the applied magnetic field 

strength, Bo. Increasing magnetic field strength therefore elevates the Lorentzian drag force 

which inhibits both primary and secondary flows, for both stationary and moving plate cases. 

Effectively the application of transverse magnetic field to the electrically-conducting nanofluid 

generates a resistive type force, which acts against the motion of the nanofluid. When 12 M

the magnetic body force is equal to the viscous hydrodynamic force. For 12 M  the magnetic 

force is dominant. The deceleration (retardation) in the boundary layer flow results in an 

increase in momentum boundary layer thickness. For the stationary plate case (Figure 8), peak 

velocity arises some distance from the leading edge and as noted in earlier graphs, decays 

asymptotically to zero at the edge of hydrodynamic boundary layer. For the moving plate 

scenario (Figure 9) again primary velocity is a maximum at the leading edge and drops 

gradually to vanish in the freestream, whereas the secondary velocity assumes a similar 

behavior to the stationary plate scenario and again peaks close to the leading edge i.e. exhibits 

a parabolic profile. For both plate cases, OHCu 2 nanofluid achieves greater acceleration 

than OHOAl 232   nanofluid. Again it is apparent that despite the strong magnetic field values 

considered, flow reversal (backflow) is never induced in either the primary or secondary flows. 

However the application of a magnetic field achieves excellent flow control in the regime and 

provides a simple but effective mechanism for regulating nanomaterial’s processing 

operations. 

 

Figures 10 to 13 display influence of thermo-diffusive Soret number )(Sr  and diffuso-thermo 

Dufour number )(Du on the primary and secondary velocity for both the cases of stationary 

and moving plates. Soret number arises in the term, 













2

2

y
Sr


in the concentration 

conservation equation (15). This term represents the influence of temperature gradient on the 

concentration field. It is therefore one of two cross-diffusion terms, the other being, 















2

2

y

C
Du  which arises in the temperature equation (14), features the Dufour number and 

signifies the influence of concentration gradient on the temperature field. In Figures 10 and 11, 
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an increase in Soret number )(Sr  is found to generally enhance the primary and secondary 

velocity magnitudes for all values of the coordinate y . The magnitudes of primary velocity are 

however significantly greater for the stationary plate case (Figure 10). For the moving plate 

case (Figure 11) again higher values of primary velocity arise at the leading edge but elsewhere 

the secondary velocity is found to be greater. Increasing Soret number therefore evidently aids 

in momentum development and accelerates both primary and secondary flow component 

velocities. Again copper-water nanofluid achieves consistently greater magnitudes of both 

primary and secondary velocity compared with aluminium oxide nanofluid. Figures 12 and 13 

show that increasing Dufour number exerts a similar influence to Soret number i.e. it enhances 

both primary and secondary velocities. Overall therefore the contribution of both cross 

diffusion gradients is assistive to the primary and secondary flow fields. 

 

Figures 14 and 15 present the response in primary )(u and secondary )(v velocity to various 

thermal Grashof numbers )(Gr . Thermal Grashof numbers signifies the relative magnitude of 

the thermal buoyancy force and the opposing frictional force (viscous hydrodynamic force) 

acting on the water- based nanofluids. Physically ,0Gr ,0Gr 0Gr represent cooling of 

the plate, heating of the plate and absence of free convection currents respectively (this last 

case corresponds to forced thermal convection where 0.0Gr eliminates the thermal buoyancy 

force term, CGrA2  in the primary momentum equation (12)). The thermal buoyancy term 

therefore couples the primary momentum equation (12) with the energy conservation equation 

(14). Since the non-zero values specified for Gr  are 5 or -5, the thermal buoyancy force 

dominates over the viscous force (only when 1Gr  are both forces of equivalent magnitude). 

For the stationary plate case (Figure 14), negative Grashof number clearly induces a 

deceleration in the primary flow whereas positive Grashof number accelerates the flow. 

Assistive thermal buoyancy (cooling of the plate) therefore aids in momentum development 

whereas opposing thermal buoyancy (heating of the plate) destroys momentum. The converse 

effect is computed for the secondary flow field however where cooling of the plate )0.5( Gr  

is observed to accelerate the flow (less negative values of secondary velocity) whereas heating 

of the plate )0.5( Gr induces strong deceleration (greater negative values of secondary 

velocity). The secondary flow for the stationary plate case is always reversed since values of v 

are always negative. Only positive values of primary velocity are computed indicating that 

backflow does not arise in the primary flow field. It is evident from Figure 14 that the shape of 

the primary velocity and magnitude of the secondary velocity for the case of stationary plate 

are the same but in opposite directions i.e. the primary and secondary velocity components 

demonstrate a symmetry about the line 0y . Thermal buoyancy however does not feature in 

the secondary momentum equation (13) implying that the impact on secondary velocity is 

indirectly experienced via coupling with the primary momentum equation (12). Generally 

OHCu 2 nanofluid induces strong acceleration in both the primary and secondary flow 

compared with OHOAl 232   nanofluid. Profiles for both primary and secondary flow for the 

moving plate scenario (Figure 15) deviate significantly from the stationary plate scenario 

(Figure 14). In both flow fields, reversal of flow is never observed. Primary velocity decays, 

as noted in earlier plots from a maximum at the leading edge to a minimum in the freestream, 

whereas secondary velocity ascends from zero at the leading edge to peak a short distance from 

this point and then decays smoothly to zero.  Again OHCu 2 nanofluid results in much greater 

primary and secondary velocity values than OHOAl 232   nanofluid. The moving plate 

scenario also achieves generally a more stable flow pattern for both primary and secondary 

components since backflow is completely eliminated in this case. 
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Figures 16 and 17 depict the evolution in primary and secondary flow velocities for both cases 

of stationary and moving plates, respectively, with variation in solutal Grashof number )(Gc . 

The solutal (nano-particle species) buoyancy force also arises solely in the primary momentum 

equation (13) via the term CGcA2 . This term effectively couples the primary momentum 

equation (12) directly to the nano-particle species (concentration) conservation equation (14). 

Only values of 0Gc are considered i.e. 2, 2.2 and 2.4 for which the species buoyancy force 

significantly exceeds the viscous force in the regime. Reverse flow is never computed in either 

Figure 16 and 17 since only assistive species buoyancy forces are present )0( Gc . In Figure 

16 (stationary plate flow case) the primary velocity and secondary velocity are both enhanced 

with greater )(Gc  values and OHCu 2 nanofluid achieves markedly greater magnitudes than 

the OHOAl 232   nanofluid. In Figure 1 (moving plate scenario), the customary response in 

primary and secondary velocity distributions is observed. Primary velocity peaks at 0y and 

descends to vanish for large y. Secondary velocity climbs from zero at 0y and thereafter 

exhibits a parabolic profile with increasing y values. Increasing species Grashof number, )(Gc  

clearly induces a strong acceleration in both the primary and secondary flow. As before the 

magnitudes are lower however for OHOAl 232   nanofluid compared with OHCu 2

nanofluid, a characteristic again probably caused by the greater thermal conductivity of the 

copper nano-particles. Figures 14 to 17 strongly emphasize that both thermal and species 

buoyancy exert a non-trivial influence on velocity components in the nanofluid boundary layer 

flow regime. 

 

Figures 18 and 19 illustrate the modification in primary )(u  and secondary )(v velocity 

components for the stationary and moving plate cases, with different values of the nano-particle 

volume fraction )( . As volume fraction increases, the thermal conductivity of nanofluid is 

elevated. Therefore thermal diffusion is assisted in the regime. Primary and secondary velocity 

magnitudes are however strongly decreased with increasing )(  values as seen in Figure 18 for 

the stationary plate case. Although primary velocity is greater initially than secondary velocity, 

with progressive distance along the plate i.e. greater y values, this trend is reversed and 

secondary velocity weakly exceeds primary velocity far from the leading edge i.e. closer to the 

freestream. Here OHCu 2 nanofluid again achieves consistently greater magnitudes of both 

primary and secondary velocity as compared with OHOAl 232   nanofluid. However, further 

note that the primary velocity magnitudes even with OHOAl 232   nanofluid are distinctly 

greater than the secondary velocity values with OHCu 2 nanofluid. Figure 19 shows that for 

the moving plate case, a significant deceleration is also computed in both primary and 

secondary velocity components with greater nanoparticle volume fraction )( . The influence 

on primary velocity is consistent however for all values of the coordinate along the plate )(y  

whereas it is only sustained for a finite distance for the secondary velocity and the reverse effect 

is observed near the freestream (as in Figure 18). Significantly lower magnitudes of the primary 

velocity are computed in Figure 19 as compared with Figure 18. However the dominance of 

OHCu 2 nanofluid over OHOAl 232   nanofluid is maintained even in the moving plate 

scenario i.e. copper water nanofluid achieves better performance.  

 

Figure 20 illustrates the effect of Rosseland thermal radiation parameter, R  on temperature 

distributions for OHCu 2  and OHOAl 232   nanofluids. It is evident that with greater R  
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values temperatures are markedly enhanced throughout the boundary layer along the plate. 

Thermal radiation arises in the augmented thermal diffusion term in the energy conservation 

equation (14) i.e. 
2
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role of thermal radiative heat transfer to thermal conduction heat transfer. When 1R both 

modes contribute equally. When 1R thermal conduction dominates and when 1R thermal 

radiation dominates. For the values of R examined in Figure 20 i.e. 0.1, 0.2, 0.3, 0.4 the 

contribution of thermal radiation is progressively greater. This intensifies the heat transfer and 

energizes the nanofluid boundary layer which manifests in an elevation in temperatures. 

Copper water nanofluid again responds more successfully than aluminium oxide water 

nanofluid to a change in radiative flux since it consistently attains higher temperatures. The 

effect of thermal radiation is therefore very significant on the variation of temperature. It is 

seemed that temperature increases rapidly in an increase in the thickness of thermal boundary 

layer. Nanofluid material properties may therefore be strongly manipulated via the imposition 

of a relatively weak radiative flux in manufacturing operations.  

 

Figure 21 depicts the influence of Dufour number on temperature distributions. The 

contribution of concentration gradients to thermal energy flux in the flow regime is measured 

with the Dufour number )(Du . From the graph it is noticed that temperature increases strongly 

with an increase in Dufour number )(Du  and this results in an elevation in thermal boundary 

layer thickness. This is due to increase in convective heat exchange at the plate surface. The 

cross diffusion term, 











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2

2

y

C
Du  which arises in the temperature equation (14), therefore 

exerts a prominent effect on temperatures in the boundary layer. Again it is noted that 

OHCu 2  attains substantially greater temperatures for all values of the y-coordinate as 

compared with OHOAl 232   nanofluid. 

 

Figure 22 presents the variations in the temperature profiles for different values of Prandtl 

number (Pr) . Prandtl number refers to the relative contribution of momentum diffusion to 

thermal diffusion in the boundary layer regime. Furthermore, an increase of Prandtl number 

results in a decrease in temperature distribution in thermal boundary layer. The physical reason 

is that smaller values of Prandtl number are associated with greater thermal conductivity, and 

therefore heat is able to diffuse away from the heated surface more rapidly than at higher values 

of Prandtl number i.e. the energy diffusion rate is greater than the momentum diffusion rate for 

1Pr  whereas the converse is evident for 1Pr  . For 1Pr  both the energy and momentum 

diffusion rates are equivalent and the momentum and thermal boundary layer thicknesses the 

same. Effectively the rate of heat transfer is reduced and an increase in Pr induces a reduction 

in thickness of the thermal boundary layer. Significantly greater temperatures are however 

computed with copper water nanofluid relative to aluminium oxide water nanofluid at any 

Prandtl number, indicating that thermal conductivity of nano-particles has a dominant influence 

in nanofluid boundary layer transport phenomena. 

 

Figure 23 presents the evolution in temperature profiles with variation in Eckert number )(Ec . 

This parameter is associated with the viscous heating effect and is usually very small for 

incompressible flows, as studied here and further elaborated in (Gebhart et al. [50]). It 

expresses the relationship between the kinetic energy in the flow and the boundary layer 
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enthalpy difference. It therefore represents the quantity of conversion of kinetic energy into 

internal energy by work done against the viscous fluid stresses. An increase in Eckert number 

via dissipation of mechanical energy (caused by internal friction between molecules of the 

nanofluid) into thermal energy (heat) will enhance the temperature of the water-based 

nanofluids in the porous regime, as observed in Figure 23. The classical velocity overshoot 

observed in many studies is also computed in Figure 23, and arises near the plate leading edge. 

Smooth decay of temperatures following this peak are computed into the freestream. Thermal 

boundary layer thickness is generally enhanced with greater Eckert number and again the effect 

is more prominent in copper water nanofluids than in aluminium oxide water nanofluids. 

  

Figures 24 to 26 represent the influence of Schmidt number )(Sc , Soret number )(Sr and 

chemical reaction parameter )(Kr on nano-particle concentration profiles respectively. Figure 

24 reveals that there is a sustained reduction in concentration magnitudes of nano-particle 

species with increasing Schmidt number. The Schmidt number represents the ratio of the 

momentum diffusivity to the mass (nano-particle species) diffusivity, i.e. it relates the thickness 

of the hydrodynamic boundary layer to that of the concentration boundary layer. It also relates 

the momentum (viscous) diffusion rate to the molecular (nano-particle) diffusion rate. For 

1Sc momentum diffusion is dominated by molecular diffusion. For 1Sc both diffusion 

rates are the same. For 1Sc  momentum diffusion rate exceeds molecular diffusion rate. As 

Sc is increased the nano-particle molecular diffusivity is reduced. This results in decreasing 

species diffusion rates and a lowering in nano-particle concentration magnitudes throughout 

the boundary layer. Physically this also manifests in a decrease in the nano-particle 

concentration boundary layer thickness with increasing Schmidt number. Irrespective however 

of the Schmidt number, the copper-water nanofluid again achieves higher concentration values 

than the aluminium oxide water nanofluid. In Figure 25, it is observed that an increase in Soret 

number )(Sr  induces a significant enhancement in concentration profiles which in turn 

increase the thickness of species concentration boundary layer. Near the plate surface species 

concentration strongly exceeds that in the freestream. The term, 













2

2

y
Sr


in the 

concentration conservation equation (15), therefore boosts concentration magnitudes strongly. 

Hence temperature gradients exert a significant influence on the nano-particle species diffusion 

in the boundary layer. Greater concentration boundary layer thickness is achieved with copper-

water nanofluid compared with aluminium oxide water nanofluid. Finally Figure 26 shows that 

with increasing chemical reaction parameter )0( Kr magnitudes of concentration are 

markedly reduced. The term KrC in equation (15) indicates a destructive chemical reaction 

in which nano-particle species is decreased in the regime for 0Kr . This results in depletion 

also in nano-particle concentration boundary layer thickness.  In both Figures 25 and 26 it is 

observed again that OHCu 2  nanofluid invariably attains much greater nano-particle 

concentration magnitudes for all values of the y-coordinate as compared with OHOAl 232   

nanofluid. Higher concentration boundary layer thickness will therefore also be associated with 

OHCu 2  nanofluid. 
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Conclusions 

 

A mathematical model has been presented for the transient incompressible MHD double 

diffusive free convective boundary layer flow of nanofluids from a rotating vertical porous 

plate considering buoyancy, thermal radiation, viscous heating and chemical reaction effects. 

The non-dimensionalized partial differential equations for primary and secondary momentum, 

energy and species conservation which govern the flow problem have been solved numerically 

by using robust finite element method. Validation of solutions with earlier published results 

has been included.  Mesh-independence study has also been conducted. Both cases of an 

upwardly moving plate and a stationary plate have been considered. Results have been 

computed and depicted graphically for influence of ,2k ,2M  ,Sr ,Du ,Gr ,Gc ,Ec , ,R Pr, Sc

and Kr on the nanofluid velocity, temperature and species concentration distributions. 

Furthermore a variety of water based nanofluids i.e. OHCu 2 , OHOAl 232   and OHTiO 22   

nanofluids have been considered. The numerical solutions have been presented at a selected 

time interval. The principal findings of the current investigation are summarized below. 

 

 The primary and secondary flow are both accelerated with increasing values of

GcandGrDuSr ,, , while they are decelerated with increasing values of andMk 22 , for 

both stationary and moving plate cases. OHCu 2 nanofluid velocity distributions attains 

zero velocity asymptotically faster than the OHOAl 232  nanofluid 

 An increase in DuandEcR, tends to elevate temperatures and therefore increases thickness 

of the thermal boundary layer. Conversely an increase in the parameters Pr decreases 

temperatures and reduce the thickness of thermal boundary layer. 

 The nano-particle concentration magnitudes and therefore species concentration boundary 

layer increases with an increase of Sr , while increasing parameters KrandSc manifests in a 

reduction in nano-particle concentrations and concentration boundary layer thickness. 

 Greater thickness of thermal and concentration boundary layers is achieved for OHCu 2

nanofluid relative to OHOAl 232  nanofluid. 

 Both Soret and Dufour number exert, via the thermal-diffusion and diffusion-thermo cross- 

flow gradient effects, a significant influence on heat and mass transfer characteristics of 

water based nanofluids.  

 
Future scope 

 

The present analysis has been confined to Newtonian nanofluids. Future studies will address 

non-Newtonian nanofluid models such as Eringen’s micropolar theory (Latiff et al. [52]), and 

will be communicated soon. 
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TABLES 

 

Table 1. Grid independence study for different grid sizes when 5.0S  

v :secondary velocity u :primary velocity  : Temperature C :Concentration 

Grid sizes 

131 151 171 131 151 171 131 151 171 131 151 171 

0 0 0 0 0 0 1 1 1 1 1 1 

0.1081 0.1081 0.1081 0.1278 0.1278 0.1278 0.9655 0.9655 0.9655 0.9671 0.9671 0.9671 

0.1961 0.1961 0.1961 0.2354 0.2354 0.2354 0.9322 0.9322 0.9322 0.9351 0.9351 0.9351 

0.2693 0.2693 0.2693 0.3278 0.3278 0.3278 0.9001 0.9001 0.9001 0.9037 0.9037 0.9037 

0.3311 0.3311 0.3311 0.4082 0.4082 0.4082 0.8692 0.8692 0.8692 0.8732 0.8732 0.8732 

0.3836 0.3836 0.3836 0.4789 0.4789 0.4789 0.8393 0.8393 0.8393 0.8434 0.8434 0.8434 

0.4285 0.4285 0.4285 0.5413 0.5413 0.5413 0.8105 0.8105 0.8105 0.8145 0.8145 0.8145 

0.467 0.467 0.467 0.5965 0.5965 0.5965 0.7827 0.7827 0.7827 0.7863 0.7863 0.7863 

0.5 0.5 0.5 0.6453 0.6453 0.6453 0.7558 0.7558 0.7558 0.7589 0.7589 0.7589 

0.5281 0.5281 0.5281 0.6884 0.6884 0.6884 0.73 0.73 0.73 0.7323 0.7323 0.7323 

 

Table 2. Thermo-physical properties of water and nanoparticles 

 
Physical properties H2O Cu Ag Al2O3 TiO2 

Cp(j/kg k) 4179 385 235 765 686.2 

ρ(kg/m3) 997.1 8933 10500 3970 4250 

K(W/m k) 0.613 401 429 40 8.9538 

β X10-5(1/k) 21 1.67 1.89 0.85 0.9 

σ (S/m) 5.5x10-6 59.6x106 62.1x106 35x106 2.6x106 

 

Table 3. Comparison of Skin friction and Nusselt number for various values of Pr 

( ,0R ,K ,0Ec ,0Gc ,0Sr 0Du ) 

 

 

 
 

 

 

 

 

Table 4. Comparison of Skin friction and Nusselt number for various values of Pr 

( ,0Gc ,0Ec ,0Sr 0Du ) 

Pr  
Previous results  [18] Present results 

fC  Nu  fC  Nu  

0.5 2.320 5.967 2.3201221 5.9670425 

1.0 2.258 6.046 2.2581991 6.0460936 

1.5 2.196 6.125 2.1960249 6.1251147 

2.0 2.134 6.206 2.1341135 6.2060256 
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Figure 2. Velocity profiles for different nanofluids. 

 

 
Figure 3. Velocity profiles for different nanofluids. 

 

Figure 4. Temperature profiles for different 

nanofluids. 

 

 

 

Pr  
Previous results  [37] Present results 

fC  Nu  fC  Nu  

0.5 2.3159708 5.9674 2.3159801 5.9674102 

1.0 2.2567503 6.0461 2.2567602 6.0461114 

1.5 2.1972895 6.1259 2.1972743 6.1259021 

2.0 2.1376083 6.2066 2.1376135 6.2066035 
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Figure 5. Concentration profiles for different 

nanofluids.

 
Figure 6. Velocity profiles against y for various 

values of Rotation parameter. 

 
Figure 7. Velocity profiles against y for various 

values of Rotation parameter. 

 
Figure 8. Velocity profiles against y for various 

values of Magnetic field parameter. 

 
Figure 9. Velocity profiles against y for various 

values of Magnetic field parameter. 

 
Figure 10. Velocity profiles against y for various 

values of Soret number. 

 
Figure 11. Velocity profiles against y for various 

values of Soret number. 
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Figure 12. Velocity profiles against y for various 

values of Dufour number. 

 
Figure 13. Velocity profiles against y for various 

values of Dufour number. 

 
Figure 14. Velocity profiles against y for various 

values of thermal Grashof number. 

 
Figure 15. Velocity profiles against y for various 

values of thermal Grashof number. 

 
Figure 16. Velocity profiles against y for various 

values of solutal Grashof number. 

 
Figure 17. Velocity profiles against y for various 

values of solutal Grashof number. 
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Figure 18. Velocity profiles against y for various 

values of volume fraction parameter. 

 
Figure 19. Velocity profiles against y for various 

values of volume fraction parameter. 

 
Figure 20. Temperature profiles against y for various 

values of radiation parameter. 

 
Figure 21. Temperature profiles against y for various 

values of Dufour number. 

 
Figure 22. Temperature profiles against y for various 

values of Prandtl number. 

 
Figure 23. Temperature profiles against y for various 

values of Eckert number. 
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Figure 24. Concentration profiles against y for 

various values of Schmidt number. 

 
Figure 25. Concentration profiles against y for 

various values of Soret number. 

Figure 26. Concentration profiles against y for 

various values of chemical reaction parameter. 
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APPENDIX 1 

 

Nomenclature   

 zyx  ,,   Cartesian coordinates 

 wvu  ,,    Velocities along  zyx  ,,  axes  (ms-1) 

 vu,    Dimensionless velocities along  zx , axes 

 tn ,  Constant frequency and time 

 tn,     Constant frequency and time 

0u          Characteristic velocity 

g   Acceleration due to gravity (ms-2) 

k  Permeability of porous medium 

*k  Mean absorption coefficient 

sc  Concentration susceptibility
 

pc  Specific heat at constant pressure 

  (JKg-1K-1)
 

2k  Rotational parameter 
2M  Dimensionless magnetic field parameter 

R
 Thermal radiation parameter 

Pr  Prandtl number 

Sr  Soret number 

Ec            Eckert number 

Du  Dufour number 

Gr  Thermal Grashof number 

Gc  Solutal Grashof number 

C  Non-dimensional concentration 

Sc  Schmidt number 

Kr  Chemical reaction parameter
 

Dm  Coefficient of mass diffusivity (m2s-1)
 

Kt  Thermal diffusion ratio 

Tm  Mean fluid temperature
 

0B  Constant applied magnetic field 

Ks  Thermal conductivity of the solid  

 (Wm-1K-1)
 

fK  Thermal conductivity of the fluid  

 (Wm-1K-1)
 

nfK  Thermal conductivity of the nanofluid 

  (Wm-1K-1)
 

T    Local temperature of the fluid (K) 

wT    Wall temperature of the fluid (K) 


T   Ambient temperature of the fluid (K) 

Nu  Nusselt number 

fC  Skin friction coefficient 

Sh  Sherwood number 

K   Permeability parameter 

S  Suction parameter 

Greek symbols 

  Constant angular velocity (ms-1) 

  Constant (=0 or 1) 


 Thermal expansion coefficient (K-1) 

f  Coefficient of thermal expansion of the fluid 

(K-1)  

s  Coefficient of thermal expansion of the solid 

(K-1)  

f
 

Density of the fluid friction (Kgm-3) 

s        Density of the solid friction (Kgm-3) 
 

nf  Density of the nanofluid (Kgm-3) 

v  Kinematic viscosity (m2s-1) 

fv
  Kinematic viscosity of the fluid (m2s-1)  


  Dynamic viscosity (Nsm-2) 

f   Dynamic viscosity of the fluid (Nsm-2) 

nf
  Viscosity of the nanofluid (Nsm-2) 

  Electrical conductivity (Sm-1) 

s         Electrical conductivity of the solid (Sm-1)
 

f       Electrical conductivity of the fluid (Sm-1)
 

nf
     

Electrical conductivity of the nanofluid (Sm-1)
 

*       Stefan–Boltzmann constant parameter  

nfpC )(  Heat capacitance of the nanofluid (Jm-3K-1)  

fpC )(
  

Heat capacitance of the fluid (Jm-3K-1)
 

  Volume fraction parameter
 

               Small constant quantity 

  Non-dimensional temperature 

Subscripts
 

sf ,  Fluid, Solid  

nf  Nanofluid 

w  Condition at the wall 

  Condition at freestream 
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C    Dimensional concentration (Kgm-3) 

wC    Concentration at the surface (Kgm-3) 


C   Concentration at freestream (Kgm-3) 

0w  Normal velocity (ms-1) 

 

APPENDIX 2 

 

Variational formulation 

 

The variational formulation associated with Eqs. (12) - (15) over a typical two-node linear 

element  1, ee yy  is given by 
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Where ,1w ,2w 3w  and 4w are arbitrary test functions and may be viewed as the variations in  

,u v  ,   and C respectively. After reducing the order of integration and non-linearity, we arrive 

at the following system of equations. 
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Finite Element formulation 

 

The finite element model may be obtained from Eqs. (17) - (20) by substituting finite element 

approximations of the form: 
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The finite element model of the equations for eth  element thus formed is given by.  
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,1,( nm  )4,3,2,  Are the matrices of order 22  and 12  respectively and )(prime indicates

y

 . These matrices are defined as follows: 
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