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ABSTRACT 

In this paper, we have examined the magnetohydrodynamic flow of a nanofluid past a radiating sheet. The Navier 

velocity slip, Newtonian heating and passively controlled wall boundary conditions are considered. The governing 

equations are reduced into similarity equations with the help of Lie group. A collocation method is used for 

simulation. The influence of emerging parameters on velocity, temperature, nanoparticle volumetric fraction profiles, 

as well as on local skin friction factor and local Nusselt number are illustrated in detail. It is found that the friction 

(heat transfer rate) is lower (higher) for passively controlled boundary conditions as compared to the case of an 

actively controlled boundary condition. The magnetic field decreases both the skin friction and the rate of heat 

transfer. The findings are validated with existing results and found an excellent agreement. The model explores new 

applications in solar collectors with direct solar radiative input using magnetic nanofluids. 

 

KEYWORDS: Lie group, Navier slip flow; Newtonian heating, Nonlinear radiation, Passively controlled 

boundary condition, MHD. 

 

1.INTRODUCTION 

Sustainable energy generation has emerged a critical issue in the global economic environment. The 

depletion of worldwide fossil fuels coupled with unacceptably high emissions has driven engineers and 

scientists to seriously consider new ecologically-friendly and sustainable energy systems. Solar energy is 
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one of the significant sources of renewable energy which can meet the future energy necessities. The sun, 

wind, biomass and hydropower constitute substantial sources of renewable energy. Scientists, engineers and 

applied mathematician are exploring these and other novel energy sources to develop new energy 

technologies which maintain clean and sustainable energy sources and to combat climate change. The most 

significant source of renewable energy is the sun. The energy found from nature in the form of solar 

radiation can be transformed into electricity without greenhouse emission. Investigators are paying attention 

to explore new technologies and sources for the sustainable energy [1]. Solar energy is one of the main 

sources of renewable energy with less environmental impact [2]. Solar power is widely used to produce 

electricity and heat from nature. Thermal radiative transport is also important in many engineering 

applications namely furnaces, forest fire dynamics, heating/cooling chambers, open water reservoirs and 

many other processes associated with the environment. Nanomaterials have emerged in the past decade or so 

as a new energy material. These materials are able to absorb thermal radiation. Solar collector designs have 

been proven to achieve enhanced performance using nanofluids. A review on the applications of nanofluids 

in solar energy systems is presented by Alibakhsh et al. [3]. It is mentioned that Hunt [4] was the first person 

who apply the idea of using small particles to collect solar energy.  

 

It is now established both experimentally and theoretically that mixing nanoparticles in a liquid (a nanofluid) 

improves the thermophysical properties of the carrier fluid. Nanoparticles are capable of enhancing the 

radiative properties of liquids which interns improved the efficiency of the absorption of solar collectors. 

The heat transfer resulting from solar energy radiation is important due to its diverse engineering 

applications. The energy efficient heat transfer fluids are required to minimize the manufacturing and 

operating cost of hybrid-power engines, microelectronics, nano-electronics, fuel cells and pharmaceutical 

products. Effective coolants are required to keep the temperature of heat-generating devices within 

prescribed limits. Techniques that have been suggested to increase heat transfer in various situations can be 

classified into two major groups: (i) active techniques and (ii) passive techniques. In the case of active 

techniques, external energy is required namely, mechanical mixing, rotation, vibration, and magnetic field, 

which have been effectively applied to enhance heat/mass transfer, leading to efficient heat pumps, 
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separators and reactors and faster processing [5]. However external energy input is costly and inconvenient 

under compact situations [6]. Passive techniques, heat transfer amplification can be found by modifying 

fluids properties, surface geometry, surface roughness, special surface geometries, and suction/injection of 

fluid, fluid motion (laminar versus turbulent) or fluid additives (ultra-fine nano/micro-particles). However 

their inherent limitation is the relatively low thermal conductivity of heat transfer fluids [6]. Following 

Maxwell [7], many scholars investigated both theoretically and experimentally the influence of solid–liquid 

mixtures on augmentation of heat transfer. However this mixture encountered serious difficulties including 

abrasion, clogging, and fouling and extra pressure loss of the system, which becomes problematic for heat 

transfer systems [8]. To overcome these problems, Choi [9] introduced ultra-fine nanoparticles (<50 

nanometers in diameter) dispersed in the base fluid and thereby introduced nanofluids. Nanofluids, a more 

efficient type of working fluid, are achieved by dissolving nanometer-sized particles/fibres between 1-100 

nm with the conventional heat transfer fluids. Nanoparticles have unique mechanical, optical, electrical, 

magnetic, and thermal properties. The size of these suspended particles is of the order of a few nano-meters. 

Some commonly used nanoparticles are Al2O3, CuO, TiO2, ZnO and SiO2. The volume fraction of 

nanoparticles is normally engineered to be 3% to 5% [10], so that the nanofluid exhibits hydrodynamic 

behavior similar to the carrier fluid. Many models have been proposed to display the enhancement of 

thermal conductivity. It was shown by the previous researchers that, some of the factors responsible for 

enhance in thermal conductivity in nanofluids are (a) dispersion of nanoparticles [11], (b) the turbulence due 

to the presence of nanoparticles, and (c) the effect of the rotation of the nanoparticles [12]. A proper theory 

is required to estimate the thermal conductivity of a nanofluid. The theoretical models proposed by 

Maxwell-Garnett [13], Wang et al. [14] give much lower values than those acquired in the laboratory. Both 

experimental and theoretical results have revealed that for forced convective nanofluid flow, heat transfer 

characteristics are enhanced whereas the opposite trend is observed for natural convection. An experimental 

examination of natural convective heat transfer due to nanofluids was carried out by Putra et al. [15] and 

Wen and Ding [16]. They found that heat transfer rate reduces as concentration of nanoparticles enhances 

(contradicting Khanafer et al. [17]). Reviews have been conducted of the latest developments in nanofluid 

technology and are available in the papers of Wang and Mujumdar [18], Adnan et al. [19], Mahdi et al. [20], 



4 

 

Mauro et al. [21] etc. and in the monographs of Tiwari and Das [10], Sattler [22], Murshed et al. [23] and 

Minkowycz et al. [24] etc. Recently, many studies have been communicated deploying Buongiorno's model 

for both steady and unsteady nanofluid dynamics. Nield and Kuznetsov [25] studied the Cheng–Minkowycz 

problem of natural convective flow along a vertical plate. Kuznetsov and Nield [26] presented similarity 

solution of natural convective flow. The heat and mass transfer due to unsteady natural convective flow over 

a radiating vertical flat plate was studied by Turkyilmazoglu and Pop [27]. Recently, Kuznetsov and Nield 

[28] revised their previous model by incorporating passively controlled boundary condition to get physically 

realistic results. Sheikholeslami et al. [29] have reported the effect of thermal radiation on a 

magnetohydrodynamics nanofluid flow and heat transfer. The natural convective heat transfer flow past a 

horizontal plate was examined Zargartalebi et al. [30] taking into account variable thermophysical 

properties. 

 

The magnetic field influences on flow, heat/mass transfer have received the attention of researcher due to 

many engineering applications. Examples include nuclear reactors, geothermal energy extraction, boundary 

layer control, electromagnetic launch technology etc. [31], manipulation of fluid flows in micro-devices, 

combustion control  [32]. Magnetic nanofluids have many biomedical applications such as in intelligent 

biomaterials for wound treatment, gastric medications, sterilized devices etc. [33]. Some other significant 

applications relevant to industries are: crystal growth, MHD stirring of molten metal, and liquid metal 

cooling blankets for fusion reactors etc. [29]. Recent reviews addressing the applications of magnetic 

nanofluids can be found in Azizian et al. [34], Mehdi and Hangi [35], Kabeel et al. [36]. The magnetic field 

effects on convective nanofluid flow, heat and mass transfer past various geometries subject to various 

boundary conditions have been studied extensively. For example, natural convective flow past a stretching 

sheet was explored by Hamad [37]. Govindaraju et al. [38] computed the entropy generation in water based 

nanofluid flow. Ganesh et al. [39] studied the MHD flow of water based metal nanofluids. Rashidi et al. [40] 

considered the buoyancy effect on MHD flow of water based nanofluid. Kefayati [41] studied shear-thinning 

fluids in a lid-driven enclosure. Hakeem et al. [42] considered magnetic field effect on nanofluid over a 

http://www.sciencedirect.com/science/article/pii/S0304885314006921
http://www.sciencedirect.com/science/article/pii/S0304885314012128
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stretching/shrinking sheet.  Some recent articles of nanofluids and their application are found in Dhanai et al. 

[43-45], Uddin et al. [46], Rana et al. [47-48]. 

 

Most of the mentioned researchers restricted their investigation to simple nanofluid boundary layer flows 

past a vertical surface. However, the natural convective heat transfer flow past a horizontal plate has 

received limited attention. Though, Pradhan et al. [49] explored the natural convective heat transfer flow 

past a stationary horizontal plate. They used convectional no-slip boundary conditions and constant 

nanoparticle volume fraction at the fluid-solid interface. However, no-slip boundary conditions and constant 

nanoparticle volume fraction at the wall can generate unrealistic results for heat and mass transfer rates [28, 

,44]. In addition to the boundary conditions, sheet stretching is also an important characteristic in 

manufacture of nanomaterials. An experimental investigation carried by Vleggaar [51] revealed that the 

surrounding fluid motion can be idealized by a tangentially moving boundary with a velocity proportional to 

linear/nonlinear function of the distance from the slit. Hence to get physically realistic and practically 

applicable results, we have incorporated the simultaneous effects of velocity slip, Newtonian heating and 

zero mass flux boundary conditions on the boundary layer flow of nanofluid over an upward facing 

nonlinearly radiating horizontal stretching sheet. Solar radiation heat flux, as elaborated earlier, is of 

relevance to collector design and is therefore also analyzed in the present article. 

 

2.NANOFLUID TRANSPORT MODEL 

2.1 Assumptions 

The two-dimensional steady viscous incompressible flow of a nanofluid over an upward facing non-linearly 

moving radiating horizontal plate is considered (Fig.1).  

http://www.sciencedirect.com/science/article/pii/S0304885314012128
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Fig. 1: Coordinate system and flow model. 

The non-reflecting, non-absorbing, transparent semi-infinite sheet receives an incident radiation flux having 

intensity, rq . This radiation flux penetrates the plate and absorbed in an adjacent fluid having absorption 

coefficient, k1. Implicit in the Rosseland approximation employed to model uni-directional radiative flux is 

the high optical thickness of the fluid. The plate reduces heat to the ambient fluid having heat transfer 

coefficient sh  [62]. A variable magnetic field of strength,    
4/5

0/ /B x L B x L


 (where B0 is the constant 

magnetic field strength and L is the characteristic length), is applied perpendicular to the plate. One can 

expect that when    
4/5

0/ /B x L B x L


 , there is a singular point at 0x   (i.e. at the leading edge). 

However, the boundary layer equations are not true there. The induced magnetic field is assumed to be 

insignificant in comparison with the external magnetic field. Further, the imposed and induced electrical 

fields are assumed to be negligible. Newtonian heating boundary condition at the plate is imposed. It is 

assumed that the flow properties are constants except the density in the buoyancy terms. The field variables 

are: velocity vector V , the temperature, T  and the nanoparticle volume fraction) C . 

2.2 Equations of the model 

2.2.1 Dimensional form 

 

Based on the above mentioned assumptions, the governing equations in dimensional form are below [28]. 

0,V             (1) 

Quiescent fluid, 0

, ,

u

T C p



  


 

i 

iii 
ii 

, , ,u T C p  

g

y      

nanofluid  

 , 0, , /

(ideally transparent sheet)

T

s B r

DT C T
h T D B x L

y y T y
q



  
   

    

slip, wx u u u   
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       2 ,1 1p f

V
V V p V C C T T g

t
J B     

 
  
   


          


 (2) 

   2 1
,r

pf

T
pp Bpf

q

c y

DT
c V T k T c D C T T T

t T 
 



   
          







         


 (3) 

2 2 .T
B

DC
V C D C T

t T

 
      

 
 

 (4) 

Using Oberbeck–Boussinesq approximation, the momentum equation can be written as [28]: 

        2 1p f fp
V

V V V C C C T T g
t

J B      

 
   
   


         


  (5) 

Here J V B  is the electrical current density and B  is the magnetic induction vector. Using order of 

magnitude analysis so as, the governing equations are [43]: 

0,
u v

x y

 
 

 
 (6) 

2

0

2/5

2

2
,

f

Bp
u

x x

u u u
u v

x y y


 

  
     

  
  

  
 (7) 

       1 0,f p f

p
C g T T g C C

y
     


        
 

 (8) 

2
2

2
,

1T
B

r

pf

DT T T C T T
u v D

x y y y y T y

q

c y
 



                          





 (9) 

2 2

2 2
.T

B

DC C C T
u v D

x y y T y

    
    

    
 (10) 

The relevant boundary conditions are [44],  

   slip
/ / (NH),

0

, 0, (IP),

at 0,

0, , , as ,

w s w

T
B

T
x L h x L T T T

y

DC T

y y

u u u v k

D y
T

u T T C C p p y





  


  



 
 

 

  



    

 (11) 
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where 
 p f

k

c



  is the thermal diffusivity of the fluid and 

 

 
p p

p f

c

c





  is the ratio of heat capacities, f  is 

the density of the base fluid,   is the dynamic viscosity of the base fluid,  is the volumetric expansion 

coefficient of nanofluid, p is the density of the nanoparticles,  p f
c  is the heat effective heat capacity of the 

fluid,  p p
c  is the effective heat capacity of the nanoparticle material, k  is the effective thermal conductivity, 

g is the gravitational acceleration. Here BD  represents the Brownian diffusion coefficient and TD  signifies for 

the thermophoretic diffusion coefficient,  
1/5

2/5/w

x
u x L Ra

L L




 
  

 
is the velocity of the sheet, 

 1slip
/

u
u N x L

y









 is the variable linear slip velocity,  

2/5

1 1 0

x x
N N

L L

   
   

   
is the velocity slip factor with 

 1 0
N constant velocity slip factor,  

2/5

0s s

x x
h h

L L

   
   

   
is the variable heat transfer coefficient,  

0sh is the 

constant heat transfer coefficient, 0   is associated with a stretching sheet, 0  corresponds to a shrinking 

sheet and 0  stands for stationary plate. We assumed that the boundary layer is optically thick and the 

Rosseland diffusion approximation for radiation is valid [53]. Thus, the radiative heat flux for an optically thick 

boundary layer (with intensive absorption) is defined as 
4

1

1

4

3
r

T
q

k y

 
 


, where 1 (=5.67×10−8 W/m

2
 K

4
) is 

the Stefan-Boltzmann constant and 1k (m
−1

) is the Rosseland mean absorption coefficient [54]. 

 

2.2.2 Non-dimensional form 

 

Following non-dimensional variables are introduced to normalize Eqns. (6)-(11): 

 

1/5 2/5 1/5

2

4/5

2

, , , , (NH),

(IP), , ,

L L L

L

w f

T Tx y L L
x y Ra u Ra u v Ra v

L L T

L p pT T C C
p Ra

T T C


 

 
 

  



  

 


    

 
  


 

(12) 
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where    31 /L fRa g C T L      is the Rayleigh number based on characteristic length L. A 

dimensionless stream function   defined by 

u
y





 and ,v
x


 


           (13) 

is introduced into Eqns. (7)-(10), leading to 

3 2 2

3 2 2/5

1
Pr 0,

p
M

y x x y y y x x y

           
    

       
  (14) 

1
0,

Pr

p
Nr

y
 


   


 (15) 

  
2

2
3

2

4
1 1

3
0,rT

y x R
Nb Nt

x y y y y y y y

 


          
           

       
   

       
 (16) 

2 2

2 2
0.

Nt
Le

y x x y y Nb y

           
    

                                                                        (17)

 

The boundary conditions in Eqn. (11) become  

 
2

1/5 2/5

2
0, , 1 (NH), 1(IP), ' 0 at  0 ,

0, 0, 0, 0 as .

a x x Nb Nt y
x y y y

p y
y

   
     


 

   
        

   


    


(18)

 

Ten dimensionless parameters feature in Eqns. (14)-(18) and are defined as: Pr



  (Prandtl number), 

TD
Nt




  (thermophoresis), BD C

Nb



  (Brownian motion),

 
 1

p f

f

C
Nr

C T

 

 



 





 (buoyancy ratio), 

B

Le
D


  (Lewis number), 

  2/5

1 0 L

f

N Ra
a

L




 (velocity slip), 

 
0

2/5

sh L

Rak
  (Newtonian heating), 

2 2

0

2/5

L

B L
M

Ra




  

(magnetic field), w
r

T
T

T

  (wall temperature excess ratio), 1

3

14

k k
R

T 

  (convection-radiation). 

 

3.SYMMETRY GROUP OF THE PROBLEM 
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The similarity solution plays an important role in many fields in sciences and engineering. The Lie group 

transformation technique is a well-developed theory on continuous symmetry of mathematical objects and 

structures. It can be used in many areas of applied mathematics, theoretical physics and engineering 

problems. This theory can provide methodology for analyzing the continuous symmetries of the governing 

equations. The application of this technique reduces the number of independent variables of the governing 

partial differential equations under consideration and remains the system and relevant initial and boundary 

conditions invariant. Many researchers used the Lie group transformation technique to various transport 

problems. Examples include Ma et al. [55], Kolomenskiy and Mofatt [56], Asghar et al. [57], and Uddin et 

al. [58]. Reviews for the theory and applications of Lie group analysis to differential equations can be found 

in the texts by Seshadri and Na [59], Olver [60], Cantwell [61], Bluman and Anco [62]. Using Lie group 

method to Eqns. (14)-(17), the infinitesimal generator for the problem can be written as 

1 2 1 2 3 4 ,X
x y p

     
  

     
     

     
                                              (19) 

where the transformations are ( , , , , , ) to ( , , , , , )x y p x y p           . The infinitesimals 1 2 1 2 3, , , ,      

and 4  satisfy the following  equations 

1 2

1 2

3 4

( , , , , , ), ( , , , , , ),

( , , , , , ), ( , , , , , ),

( , , , , , ), ( , , , , , ).

dx dy
x y p x y p

d d

d d
x y p x y p

d d

d dp
x y p x y p

d d

       
 

 
       

 


       

 

 
           

 
           

 
           

 

 

 

                              (20) 

After tedious algebraic manipulation, the infinitesimals are 

 

1 1 2 2 1 3

1 1 4 2 5 3 6 4 5 6 1

2
, ,

5

3 2
, , , ,

5 5

c x c c y c

c c c c c c y c p

 

    

   

      

                                          (21) 

where ( 1,2, ,6)ic i   are arbitrary constants. Hence, the equations admit six finite parameter Lie group 

transformations. Note that the parameters 2 3,c c  correspond to the translation in the variables ,x y , the 

parameters 5 6,c c  correspond to the translation in the variables ,   and the parameter 4c  corresponds to the 
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translation in the variable . The parameter 1c  corresponds to the scaling in the variables ,x y ,  and p  

respectively. The characteristic equation is 

 1 2 5 6
1 3 1 4 2 5 6 1

  .
2 3 2

5 5 5

d x d y d d d d p

c x c c c
c y c c c c c y c p

  

 

    


    

  (22) 

From Eqn. (22), the invariants are: 

3 2

5 5
2

5

, ( ), ( ), ( ), ( ).
y

x f p x h

x

                                             (23) 

For simplicity we assume that 0,( 2 6)ic i   . Here    ,f     and    represent the no-dimensional 

velocity, temperature and concentration. 

 

3.2 Similarity Equations 

Substituting (23) into Eqns. (14)  - (18), we obtain:  

23 1 2 2
Pr '' ' ' 0,

5 5 5 5
f f f f h h M f        (24) 

1
' =0,

Pr
h Nr       (25) 

  
323 4 '1 1 0,

5 3
rf Nb Nt T

R
                  

 
 (26) 

3
0.

5

Nt
Le f

Nb
        (27) 

The relevant boundary conditions in Eqn. (19) transformed to  

    , 1 (NH), 1(IP) ' 0 at 0

0 as ,

0, , ,

'

Nb Ntf f a f

f h

     

  

      



     

   
    (28) 

where primes represent ordinary differentiation with respect to .  

 

4. FRICTION AND HEAT TRANSFER RATES 

The knowledge of drag and heat transfer rates at the wall is essential in order to evaluate the performance of 

the various microfluidic/nanofluidics and thermal devices. The information related to wall property variation 
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provides information which enables improvement in the design of devices for superior performance and 

efficiency [63]. Thus the skin friction and heat transfer are key quantities that should be quantified.  These 

quantities can be calculated from the following relations: 

2

0 0

2
, .f x x

wr y y

u x T
C Nu

y T T yU



  

     
    

            
(29) 

Here   21 /rU Tg C L    is the characteristic velocity.   

By substituting from Eqns. (12) and (23) into Eqn. (29), we get  

      
 

 

37/5 1/5
04

Pr 0 , 1 1 1 0 .
3 0

x f x x x rRa C f Ra Nu T
R







 

      
 

 (30) 

Here    31 /xRa g C T x    is the local Rayleigh number.  

 

5. VALIDATION OF MODEL 

It is worth mentioning that in the case of hydrodynamic boundary layer flow past a non-radiating ( R ), 

isothermal ( (0) 1)  stationary plate with no slip boundary conditions at wall ( 0M a    ) the problem 

under consideration reduces to the problem investigated by Pradhan et al. [49] which validates our symmetry 

group analysis.  

 

6. NUMERICAL SOLUTION 

The governing equations are transformed to ordinary differential equations with the help of Lie symmetry 

group method. We will solve the equations (23)-(27) subject to boundary conditions in Eqn. (28) 

numerically using a collocation method. The main advantage of this method is that, it reduces the n
th 

order 

differential equation (s) into n first order differential equations, thus reducing the computational cost on a 

large domain with small step size and a range of parameters. We have simplified the system of equations 

(24)-(28) using the Collocation Method (CM). For the validation of our numerical solution, we have solved 

the system of Eqns. (24)-(27) subject to the actively controlled boundary condition for which  0 1.   We 
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have also presented the comparison in Table 1. An examination of this table reveals that our results are in 

agreement with the results of Pradhan et al. [49] which validates the accuracy of the present numerical code.  

 

Table 1: Values of ''(0)f and '(0)  for Nr=Nt=Nb=0.5, Pr =6.8. 

Le ''(0)f  '(0)  

  [49] Present work 

 

 [49] Present work 

 

5 0.8435 0.8435 0.3268 0.3265 

10 0.8806 0.8806 0.3239 0.3238 

100 0.9217 0.9218 0.3135 0.3134 

 

7. RESULTS AND DISCUSSION 

7.1 Variations of the dimensionless velocity with , ,M R  and Le   

Figures 2a-2b show the effects of the magnetic field (M), radiation parameter (R), Lewis number (Le), and 

Newtonian heating parameter (  ) on the non-dimensional velocity. It is observed that increasing M 

depresses the velocity field and the corresponding boundary layer thickness (Fig. 2a). Magnetic field 

therefore controls momentum diffusion rates and serves as a strong decelerating mechanism. It is also found 

from the same figure (Fig. 2a) that increasing the strength of the radiation parameter also depresses the flow 

velocity for both magnetohydrodynamic flow and purely hydrodynamic (M=0) flow. It is observed that 

increasing   boosts the velocity field as well as velocity boundary layer thickness (Fig. 2b). It is further 

found from the same figure (Fig.2b) that increasing the Le also boosts the flow velocity. From, definition of 

Lewis number, it is clear that an increase of Le represent a higher thermal diffusivity of the fluid ( ) for a 

constant mass diffusivity ( BD ). This increases the flow within the boundary layer. For Le<1 the species 

diffusivity exceeds thermal diffusivity and vice versa for Le>1. For Le=1 both thermal and species 

diffusivity will be of same order. 
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Figure 2: Effect of , ,M R   and Le  on the velocity. 

7.2  Variations of the dimensionless temperature with , ,M R   

The effects of the magnetic field (M), radiation parameter (R) and Newtonian heating parameter (  ) on the 

non-dimensional temperature are displayed in Figs. 3a and 3b. It is found that increasing M increases the 

temperature and corresponding thickness of the thermal boundary layer. Temperature is minimum for non-

magnetic flow. Physically this is due to supplementary work is used in dragging the fluid against the action 

of the magnetic field and this is expended as thermal energy, heating the boundary layer. Thermal boundary 

layer thickness is therefore enhanced with increasing strength of magnetic field. The aiding effect of the 

magneto-hydrodynamics body force on the thermal diffusion also helps to elevate the nanoparticle volume 

fraction values . Stronger magnetic field therefore controls the flow field but enhances thermal and species 

diffusion. It is evident from Figs. 3 and 4 that temperature is much greater than nanoparticle volume 

fraction. It should be noted that the present simulations are valid for small magnetic Reynolds numbers 

(which relates the ratio of the fluid flux to the magnetic diffusivity) which is not adequately large for the 

magnetic field so as to be distorted by the flow. In the case of large magnetic Reynolds number, magnetic 

induction effects must be considered and will be communicated in the future. As with the velocity 

distribution, Newtonian heating parameter   also boosts the temperature and thermal boundary layer 

thickness. The influences of M and R on the non-dimensional temperature are shown in Fig.3b. The  

temperature is decreased as the nonlinear radiation parameter R increases (Fig. 3b). Note that the parameter, 

R, signifies the contribution of thermal conduction heat transfer to the thermal radiation heat 

transfer 1

3

14

k k
R

T 

 
 

 
. It appears in the energy conservation Eqn. (21) as a denominator. Therefore for higher 



15 

 

R values, the reduced contribution from the radiative mode of heat transfer will be exhibited by a decrease in 

temperature. A similar trend of temperature is reported by Pantokratoras and Fang [64]. It is found that 

temperature is increased as the Newtonian heating parameter is increased. Physically Newtonian heating 

implies that the heat transfer from the plate surface is proportional to the local surface temperature, as 

simulated in the wall thermal boundary condition in Eq. (22). The effect is prominent for even low values of 

. Temperature is clearly maximized with high . This thermal boundary condition therefore is of significant 

use in both peak solar heating situations and magnetic materials processing, in which higher temperatures 

are experienced at the wall. A similar conclusion is also drawn by Imtiaz et al. [65]. 

 

Figure 3: Effect of , ,M R   and Le  on the temperature. 

7.3 Variations of the dimensionless nanoparticle volume fraction with , ,M R    

Figures 4a-4b are drawn to display the effects of the magnetic field (M), radiation parameter (R), and 

Newtonian heating parameter (  ) on the dimensionless concentration. From Fig.4a it is revealed that 

increasing magnetic field parameter (M) enhances the concentration field as well as concentration boundary 

layer thickness. It is found from the same figure (Fig.4a) that increasing the strength of the Newtonian 

heating parameter depresses the concentration for both magnetohydrodynamic flow and purely 

hydrodynamic (M=0) flow. From Fig.4b it is evident that increasing radiation parameter R boosts the 

concentration as well as concentration boundary layer thickness. Decreasing thermal radiation flux therefore 

exacerbates nano-particle diffusion and the radiation effect needs to be addressed carefully to achieve a 

compromise in nano-particle distribution in the medium, since the latter aids thermal diffusion. 
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Figure 4: Effect of , ,M R   on the nanoparticle volume fraction. 

7.4 Variation of the dimensionless friction factor with , ,M R   

We now focus our attention to thermal engineering design quantities. Figures 5-6 depict the effect of the 

various parameters on the dimensionless friction, and the heat transfer rates. The friction is decreased as the 

magnetic field parameter increases (Fig.5a) for both actively and passively controlled boundary conditions. 

The friction factor for passively controlled boundary condition is lower than that achieved with an actively 

controlled boundary condition (Fig. 5a-5b). Hence to reduce friction, a passively controlled boundary 

condition appears more promising. Friction is increased with the conduction-radiation and Newtonian 

heating parameters.  

 

                                  (a)                                                                    (b) 

 

Figure 5 : Effect of , ,M R   on the nanoparticle friction. 

7.5 Variation of the dimensionless heat transfer rate with , ,M R     
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It is observed from Fig.6 that heat transfer rates decreases with the magnetic field, and conduction-radiation 

parameter and increases with the Newtonian heating parameter for both actively and passively controlled 

boundary conditions. Note heat transfer rate is higher for passively controlled boundary conditions 

compared to actively controlled boundary condition. 

 

                             (a)                                                                         (b) 

Figure 6 : Effect of , ,M R   on the heat transfer rates. 

 

7.6 Variation of the dimensionless heat transfer rate and skin friction with , rM T  . 

Figures 7 a and b shows the effects of M and Tr on the dimensionless heat transfer rates and friction. 

From figure 7 a it is noticed that heat transfer rates increases as wall excess temperature ratio increases for 

both actively controlled and passively controlled boundary condition. It is observed from figure 7b that heat 

friction increases with the wall excess temperature ratio for both actively and passively controlled boundary 

conditions. 

 

                                               (a)                                                                                (b) 

Figure 7 : Effect of , rM T  on the heat transfer rates and skin friction . 
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8. CONCLUSIONS 

Steady-state nanofluid flow from an upward facing radiating horizontal sheet has been illustrated by 

combined Lie symmetry group and numerical analysis techniques. Navier velocity slip, Newtonian heating 

effects and zero mass flux boundary conditions have been used to get realistic results. With the aid of Lie 

symmetry group method, the transport equations have been reduced to a nonlinear, coupled system of 

similarity equations. The resulting equations have been solved numerically using a Generalized Collocation 

Method. Solutions have been verified with previous results from the literature and very good correlation is 

obtained. The present computations have shown that: 

(i) Friction is decreased as the velocity slip and sheet stretching parameters increase 

(ii) Friction factor for passively controlled boundary condition is lower than that of actively controlled 

boundary condition. 

(iii) Heat transfer rate decreases with the thermal slip, conduction-radiation but increases with 

Newtonian heating parameter 

(iv) Heat transfer rate is higher for passively controlled boundary conditions compare to actively 

controlled boundary condition. 

The finding of the present paper can be used to enhance the performances of the solar collectors as well as 

by the experimentalists in designing various thermal devices. The present study can be extended for 

unsteady flow and various non-Newtonian fluids, and efforts in this direction will be communicated in 

the near future.  
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