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ABSTRACT 

A mathematical model is developed for electro-osmotic peristaltic pumping of a non-

Newtonian liquid in a deformable micro-channel. Stokes’ couple stress fluid model is deployed 

to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential 

distribution is implemented owing to the presence of an electrical double layer (EDL) in the 

micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, 

the linearized transformed dimensionless boundary value problem is solved analytically. The 

influence of electro-osmotic parameter (inversely proportional to Debye length), maximum 

electro-osmotic velocity (a function of external applied electrical field) and couple stress 

parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and 

stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid 

case is retrieved as a special case with vanishing couple stress effects. With increasing couple 

stress parameter there is a significant elevation in axial pressure gradient whereas the core axial 

velocity is reduced. An increase in electro-osmotic parameter induces both flow acceleration 

in the core region (around the channel centreline) and also enhances axial pressure gradient 

substantially. The study is relevant to simulation of novel smart bio-inspired space pumps, 

chromatography and medical microscale devices. 

Keywords: Peristalsis; couple stress fluids; electric double layer; external electric field; 

trapping; space bio-inspired pumps. 
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1. INTRODUCTION 

Electro-osmotic and electro-kinetic flows have stimulated significant interest for several 

decades, owing to advances in microfluidics technology. In such flows, the application of an 

external electric field mobilizes bulk flow of electrolytes due to Coulombic forces exerted on  

ions present in the electric double layer. Developments in electro-osmotic pumping devices 

have been motivated not least due to new progress in astronautical systems e.g. heat pipes and 

alternative pumping systems for space stations [1-3]. They also find applications in medicine, 

industrial micro-flow control, actuators, mixing processes and chromotography [4-6]. The 

ever-growing sophistication of microfluidic devices requires enhanced levels of fluid control 

in microchannels. The application of an electric field in micro-channels (on microelectrodes) 

successfully generates electro-kinetic pumping. The most popular systems for electrically 

induced pumping exploit DC electro-osmotic phenomena and therefore need quite large 

voltages. Electro-osmotic pumping systems have the great advantage over other systems in that 

no moving parts are required which greatly reduces maintenance problems, especially for 

remote applications (space missions) [7, 8]. These pumps can also achieve consistently high 

flow rates and pressures per device volume and are capable of functioning compactly with 

many different types of working fluid e.g. deionized water, acetone, buffered aqueous 

electrolytes, methanol etc. In many of these systems, the operating fluid is non-Newtonian i.e. 

it does not obey the Navier-Stokes viscous flow model. Working fluids may be doped with 

suspensions, additives and other agents. These result in shear-stress strain characteristics which 

deviate from the Newtonian model. Although many models have been developed for simulating 

the rheological behaviour of fluids in electro-osmotic micro-devices, the couple stress model 

offers characteristics which cannot be captured with other models (viscoplastic, viscoelastic, 

shear-thinning etc). The presence of the micro-structures in many fluids employed in 

electrokinetics suggests that the particle-size effect is significant and this is best described with 

a micro-structural or micro-continuum model of which couple stress fluids are a simple case. 

Introduced by Stokes [9] to mimic particle-size effects, Stokes’ micro-continuum theory is a 

generalization of the classical theory of fluids where polar effects such as the presence of 

couple stresses, body couples, and an anti-symmetric stress tensor are taken into consideration. 

It is therefore a more realistic constitutive model in which the couple stress effects are 

considered as a consequence of the action of a deforming body on its neighbourhood. Couple 

stresses have been identified in real working fluids which have large molecules. Couple stress 

theory has been implemented in many branches of engineering, biology and energy systems 
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including lubrication design [10, 11], hemodynamic filtration systems [12], blood flows [13] 

and magnetohydrodynamics [14]. Using appropriate mathematical models and 

numerical/analytical methods, the dynamics of couple stress fluids can be simulated quite 

accurately as demonstrated in [10]-[14]. 

Peristaltic pumping is a significant biological mechanism which is generated by the 

symmetrical contraction and expansion of a flexible boundary. It arises in many diverse 

systems in human physiology and nature including embryological transport, earthworm and 

snake locomotion, plant trans-location (phloem dynamics) and gastro-intestinal motion. A 

comprehensive analysis of peristaltic flow has been made by Fung [15]. Other fundamental 

studies of peristaltic propulsion have been conducted by Jaffrin and Shapiro [16], and Brown 

and Hung [17]. In the context of biomimetic pumping systems for spacecraft systems, 

important progress was made at Caltech’s Jet Propulsion Laboratory (JPL) in the 1990s, as 

elaborated by Bar-Cohen and Chatig [18]. These bio-inspired peristaltic pumps for chemical 

and nuclear engineering waste transport have been shown to avoid the inherent problems of 

conventional pumping systems e.g. leakage, backflow, corrosion, bubble formation etc. Further 

details are documented in Shkolnikov et al. [19]. Stimulated by these and other applications, 

mathematical modelling of peristaltic flows of couple stress fluids has also received extensive 

attention. Elsehawey and Mekheimer [20] presented perturbation solutions for peristaltic 

pumping generated via a sinusoidal travelling wave along the walls of a two-dimensional 

channel filled with a viscous incompressible couple-stress fluid, observing that with an increase 

in couple stress parameter the mean axial flow is strongly decelerated. Mekheimer and 

Abdelmaboud [21] investigated theoretically the influence of an endoscope on the peristaltic 

flow of a couple stress fluid in an annulus under lubrication approximations, showing that 

pressure rise, frictional forces and trapping phenomena are all modified substantially with 

couple stresses. Other studies of peristaltic propulsion of couple stress fluids include Rathod et 

al. [22] who employed Beavers-Joseph boundary conditions and Ramesh and Devakar [23] 

who considered magnetohydrodynamic heat and mass transfer effects. Abdelmaboud et al. [24] 

derived analytical solutions for axial velocity, stream function, temperature and axial pressure 

gradient in two-dimensional thermo-fluid peristaltic pumping of couple stress fluids. Tripathi 

and Bég [25] presented closed-form solutions for magnetized unsteady peristaltic propulsion 

of electrically-conducting, couple stress fluids in a finite length channel, noting that increasing 

couple stress effect induces axial flow acceleration and pressure gradient reduction. 
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The above studies did not simultaneously consider electro-osmotic transport in non-Newtonian 

fluids. In recent years this area has become increasingly attractive to researchers owing to 

newly fabricated electro-rheological fluids which can combine desirable electro-kinetic and 

non-Newtonian effects in microscale devices. Several theoretical investigations have therefore 

been reported using a variety of robust non-Newtonian formulations. Li et al. [26] derived 

closed-form solutions for the electrical potential distribution in rotating electro-osmotic flow 

of an incompressible third grade Reiner-Rivlin fluids in a microchannel, observing that with 

increasing dimensionless electro-kinetic width, increasing Reynolds number and non-

Newtonian parameter, the flow is decelerated and volumetric flow rates reduced. Siddiqui and 

Lakhtakia [27] investigated transient electro-osmotic flow of an Eringen micropolar fluid in a 

rectangular microchannel with height significantly greater than the Debye length, noting that 

under a spatially uniform electric field (applied as an impulse of finite magnitude), decay times 

of the fluid velocity are markedly lesser for micropolar fluids than Newtonian fluids. Afonso 

et al. [28] used the Phan-Thien–Tanner (PTT) constitutive equation to simulate electro-osmotic 

viscoelastic flow in a channel with pressure gradient and  asymmetric boundary conditions 

(different zeta potentials at the walls). Sousa et al. [29] further studied electro-osmosis and 

pressure gradient forcing in PTT viscoelastic microchannel Poiseuille skimming flows. Tang 

et al. [30] used a lattice Boltzmann method to computationally simulate the electroosmotic 

power-law rheological flow in micro-channels, showing that power-law index markedly alters 

the electroosmotic flow pattern and that shear thinning fluids constrain the electrical double 

layer effect in a small zone nearer the wall surface. Tang et al. [31] used the Herschel–Bulkley 

model to analyse viscoplastic pressure-driven electro-osmotic flow of non-Newtonian fluids in 

porous media.  Li et al. [32] studied analytically time-dependent electroosmotic flow of 

generalized Maxwell viscoelastic fluids through both a micro-parallel channel and a microtube, 

deriving close-form solutions for the linearized Poisson–Boltzmann equation. Rezaei et al. [33] 

investigated the effect of electric field and temperature on electrokinetic flow characteristics. 

Shit et al. [34] presented a mathematical model to analyze the electroosmotic flow of power 

law fluids through a microchannel and discussed the effects of Joule heating and thermal 

radiation. In another investigation [35], they have studied electro-osmosis modulated MHD 

flow and heat transfer through the microchannel. They have observed that magnetic field and 

Joule heating are significantly responsible for electroosmotic flow control. 

These investigations did not consider electro-osmotic peristaltic flows i.e. they assumed the 

channel boundaries to be rigid. However both Newtonian and non-Newtonian electro-osmotic 
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peristaltic flows have been addressed owing to their significance in novel microfluid devices. 

El Sayed et al. [36] used the Oldroyd viscoelastic model to analyze dielectric peristaltic 

pumping in a channel with heat transfer effects. Goswami et al. [37] used the Ostwald-DeWaele 

model to analyze both shear thinning and thickening electro-kinetic peristaltic pumping. 

Further studied include Chakraborty [38] and Tripathi et al. [39]. Electrofluid dynamics of 

couple stress fluids has also found interest among smart materials systems. Excellent studies 

in this regard include the works of Rudraiah et al. [40], Shankar et al. [41] and Rudraiah et al. 

[42] which have explored electrical Rayleigh number effects, interphase mass transfer and 

travelling-wave mode hydrodynamic stability aspects. Further investigations on peristaltic 

transport of nanofluids through asymmetric channels have considered Williamson fluid flow 

through stenosed arteries, water/ethylene glycol based nanofluids and Jeffrey fluids in a non-

uniform rectangular duct [43-47]. 

In the present article, we consider for the first time, the peristaltic transport of an aqueous 

electrolyte solution (simulated as a couple stress non-Newtonian suspension) through a flexible micro-

channel. Analytical solutions for the linearized transformed dimensionless boundary value 

problem are derived for axial velocity, volumetric flow rate, pressure gradient, local wall shear 

stress and stream function. The influence of electro-osmotic (EO) parameter, (inversely 

proportional to Debye length ( 02

B d

n a
aez

K T


 
  ), maximum electro-osmotic velocity (

HSU  which is directly proportional to external applied electrical field, E , as
c

E
U HS




  ), 

and couple stress parameter () on flow characteristics is evaluated in detail. Trapping 

phenomena are also examined. The work is relevant to smart EO space pumps and medical 

microfluidics. 

 

2. MATHEMATICAL FORMULATION AND ANALYTICAL SOLUTION 

Peristaltic transport of an aqueous electrolyte couple stress non-Newtonian fluid solution through a 

flexible walled two-dimensional microchannel is considered, as depicted in Fig.1. Couple 

stress fluids are a sub-set of polar non-Newtonian fluid theories, which considers couple 

stresses in addition to the classical Cauchy stresses in viscous fluid dynamics. Unlike other 

more complex micro-continuum models, the kinematics of such fluids is completely 

encompassed in the velocity field, as elaborated by Eringen [48]. The concept of couple stresses 
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arises from the consideration of mechanical interactions in the fluid medium. The key 

characteristic of couple stresses is to introduce a length-dependent effect, which is absent in the 

classical nonpolar fluid dynamics (Navier-Stokes) model. The advantage of the couple stress 

model is that although it introduces extra terms, which are of fourth order (maximum case), 

these terms are linear. It is therefore much simpler than other nonlinear micro-stuctural non-

Newtonian models, yet representative of the physics of many important thermal process fluids. 

The main effect of couple stresses is to introduce a size-dependent effect that is not present in 

the classical viscous theories. In the latter the stress tensor is symmetric as a result of assuming 

there is no rotational interaction among particles. However, this cannot be true for the cases of 

fluid flow with suspended particles (of interest in electro-kinetic propulsion) and thus the need 

of couple stress theory arises. In fact the microrotation of freely suspended particles gives rise 

to an anti-symmetric stress, known as couple stress. The need for a separate spin momentum 

(micro-rotation) balance is therefore not required, as with micropolar fluids. Implicit in the 

present simulations is the assumption of zero angular velocity at the micro-channel walls i.e. 

vanishing of couple stresses and hence zero traction due to couple stresses must also be zero 

there as noted by Naduvinamani and Siddangouda [49]. The geometry of the flexible channel 

walls is defined analytically as follows: 

2( , ) cos ( )h x t a b x ct



   ,                                                                                               (1) 

where a ,b , , x , c , and t  are the half width at the inlet, amplitude, wavelength, axial 

coordinate, wave velocity, and time respectively. In fig. 1 a peristaltic wave propagates from the 

left reservoir (Anode, +ve ion) to the right reservoir (Cathode, -ve ion) with a wave velocity c.  

 

Figure 1: Schematic of the peristaltic transport of an aqueous electrolyte couple stress fluid through a 

flexible parallel plate micro-channel.  
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The equations of motion that characterize a couple stress fluid flow under the effect of an axial 

external electric field are given, in vector form, by (Refs.[10-14]): 

  0,
d

div q
dt


                                                                                                                    (2) 

       1 1
,

2 2

s

e x

dq
f curl C div curl div M E

dt
                                                      (3) 

where   is the density of the fluid, q  is velocity vector,  s
  is the symmetric part of the force 

stress diad, M  is the couple stress diad and f , C  are the body force per unit mass and body 

couple per unit mass respectively, and xE  represents the axial applied electric field. The 

constitutive equations concerning the force stress i jt  and the rate of deformation tensor i jd are 

given by (Refs.[10-14]): 

  ,

1
2 , 4

2
ij ij ij ij ijk k k rr kt p div q d m w C              

.                                                (4) 

The couple stress tensor ijm   that arises in the theory has the linear constitutive relation 

(Refs.[10-14]): 

, ,

1
4 4

3
ij ij j i i jm m w w     ,                                                                                                  (5) 

where  
1

2
w curl q  is the spin vector, ,i jw  is the spin tensor, m  is the trace of couple stress 

tensor ijm , p  is the fluid pressure and kC is the body couple vector. A comma in the suffixes 

denotes covariant differentiation and ,k rrw  stands for ,11kw  + ,22kw  + ,33kw . The quantities    and

   are the viscosity coefficients and  ,  ′ are the couple stress viscosity coefficients. These 

material constants are constrained by the inequalities: 

0; 3 2 0; 0; '          .                                                                                       (6) 

 If the fluid is incompressible, in the absence of body forces and body couples the above field 

equations (2) and (3) reduce to:  

  0,div q                                                                                                                                (7) 

           . e x

q
q q grad p curl curl q curl curl curl curl q E

t
   

 
        

.       (8)   
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The Poisson-Boltzmann equation for electric potential distribution is employed due to the 

presence of EDL in the micro-channel and is defined as:  

2 e


    .            (9) 

 Here 2 is the two-dimensional Laplacian operator, e  is the density of the total ionic change 

and   is the permittivity. For a symmetric (z : z) electrolyte, the density of the total ionic energy, 

e is given by: 

)(   nneze ,                    (10) 

Here n and n  are the number of densities of cations and anions respectively and are given by 

the Boltzmann distribution (considering no EDL overlap) which takes the form: 

0

B

ez
n n Exp

K T

  
  

 
                  (11) 

In eqn. (11) 0n  represents the concentration of ions at the bulk, which is independent of surface 

electro-chemistry, e  is the electronic charge, z is charge balance, 
BK  is the Boltzmann 

constant, T  is the average temperature of the electrolytic solution. Introducing a normalized 

electro-osmotic potential function   with zeta potential  of the medium along with other 

non-dimensional variables, like 



   we invoke the Debye-Huckel linearization 

approximation, namely: 

sinh
B B

ez ez

K T K T

  
 

 
.                   (12) 

Furthermore imposing the boundary conditions 

0

0
y

y






 and 1

y
  , the potential 

function is obtained as: 

cosh( )

cosh( )

y

h




  ,                   (13) 
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Here 02

B d

n a
aez

K T


 
  , is known as the electro-osmotic parameter and 

1
d


  is Debye 

length or characteristic thickness of the electrical double layer (EDL).  To facilitate analytical 

solutions it is advantageous to introduce a group of non-dimensional parameters to transform 

the boundary value problem. Noting that the nonlinear terms in the momentum equation (8) 

are  2O Rek , proceeding with the analysis, we define: 

 

2

, , , , , ,
x y tc u v pa

x y t u v p
a c kc c   

                   (14) 

Here 
c

Re


 
  is Reynolds number (based on peristaltic wavelength and velocity), 

a
k


  

denotes the ratio of the transverse length scale to the axial length scale and 
1 1

,l
a



 
   is 

the length parameter, which is a characteristic measure of the “polarity” of the fluid model and 

this parameter is identically zero in the case of non-polar fluids (vanishing couple stresses). 

Therefore, the nonlinear terms may be dropped in the limit that Re, k  1. In this limit, 

governing equations are reduced to the linearized system: 

0
u v

x y

 
 

 
,                                                                                                                        (15) 

2 4
2

2 2 4

1
,HS

p u u
U

x y y




  
   

  
                                                                                           (16) 

Imposing the following boundary conditions as:  

0
y h

u

 ,  

0

0
y

u

y






, 

2

2
0

y h

u

y






, 

3

3

0

0

y

u

y






.                                                                 (17) 

Solving the linearized axial momentum Eqn.(16) by virtue of the boundary conditions (17), the 

axial velocity emerges as:   
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 

  

( 2 ) 2 2 2

( 2 ) 2 2 2 2 2 2 2

2 2 2 2

4 2

2 2

2 2 2 (2 )
2 (1 )( )

2 (1 )cosh( )cosh( )

h h y

HS

y
y h y

HSh

y h

HS

p p
e e U

x x

e p
u e e U h y

e x

U e e y h

 


 



 

  

    
  

  






     
       

    
   

       
    

  
 
  

.      (18) 

The volumetric flow rate is computed by integrating axial velocity across the channel width 

and is found to be: 

0

h

Q udy  .                                                                                                                             (19)                                                            

Using Eqn.(18) in Eqn.(19), we arrive at: 

5 2 2 3 3 2 3 3

2 2 2 3 3 2 3 3

5 2

3 2 2 2

3 (1 ) ( 3 3 (3 3 ))

3 (1 ( 1 )) ( 3 3 (3 3 ))

3 tanh( )(1 )

.
3 ( )(1 )

h h

HS

h h

HS

h

HS

h

p
hU e h h e h h

x

p
U h e h h h e h h

x

U h e

Q
e

 

 





      

       

 

  

   
           

  
              

  
  
 
 

 
  (20) 

Rearranging the terms of Eqn.(20), axial pressure gradient is obtained as: 

2 3 2 2 2

2 3 2

2 2 3 3 2 3 3

3 ( ( (1 )( ) ( (1 )

(1 ( 1 )))) tanh( )(1 )))

( )( 3 3 (3 3 ))

h h

HS

h h

HS HS

h

e Q hU Q e

U h e h U h ep

x h h e h h

 

 



    

   

      

       
 

        
       

.                                    (21) 

The pressure difference across one wavelength is defined as: 

1

0

p
p dx

x


 


.                                                                                                                         (22) 

The local wall shear stress defined as 
w

y h

u

y








may then also be computed based on Eqn. 

(18) :   
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2 2 2 2 2

2 3 2

2 2 2

(1 ( 1 )) ( (1 )

(1 ( 1 ))) tanh( )(1 )

(1 )( )

h h

HS

h h

HS

w h

p
h e h U e

x

p
h e h U h e

x

e

 

 



    

   


  

 
       

 
       

  
 

.                                    (23) 

The transformations between a wave frame ( , )w wx y moving with velocity c and the fixed 

frame ( , )x y  are given by : 

, , ,w w w wx x ct y y u u c v v      ,                                                                     (24) 

where ( , )w wu v and ( , )u v  are the velocity components in the wave and fixed frame respectively. 

The volumetric flow rate in the wave frame is given by 

0 0

( 1)

h h

w w w wq u d y u dy    ,                                                                                                (25) 

which, on integration, yields:  

wq Q h  .                                                                                                                          (26) 

Averaging volumetric flow rate along one time period, we get 

1 1

0 0

( )wQ Qdt q h dt    ,                                                                                                    (27) 

which, on integration, yields 

1 / 2 1 / 2wQ q Q h        .                                                                             (28) 

Using the D’Alembert mass conservation Eqn. (15), the stream function (obeying the Cauchy-

Riemann equations, u
y





and v
x


 


) is also readily derived as: 
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



   

       

         
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         (29) 

3. NUMERICAL RESULTS AND DISCUSSION 

Extensive computations have been performed using Mathematica symbolic software and are 

presented in Figs. 2a-c, 3a-c, 4a-c, 5a-c and 6a-g.  
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Fig.2. Velocity profile (axial velocity vs. transverse coordinate) at 0.9, 1.0, 1
p
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1, 1HSU    (b) 1, 5     (c) 1, 1HSU   . 
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Fig.3. Pressure gradient along the channel length  at 0.2,Q 0.5    and (a) 5, 1HSU    (b) 

5, 1     (c) 5, 10HSU    
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Fig.4. Pressure difference across one wavelength vs time averaged volumetric flow rate at

0.2,Q 0.5    and (a) 5, 1HSU    (b) 5, 1     (c) 1, 5HSU    
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Fig.5. Local wall shear stress along the channel at 0.2,Q 0.5    and (a) 5, 1HSU    (b) 

5, 1     (c) 1, 5HSU    
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Fig.6. Stream lines in wave frame at 0.6, 0.9Q    and (a) 2, 1, 1HSU    , 

(b) 5, 1, 1HSU     (c) 10, 1, 1HSU     (d) 2, 0, 1HSU     

(e) 2, 1, 1HSU      (f) 2, 1, 5HSU     (g) 2, 1, 10HSU     

Figs 2a-c illustrate the evolution in axial velocity across the channel span with variation in 

electro-osmotic parameter (), maximum electro-osmotic velocity ( HSU ) and non-Newtonian 

couple stress parameter (), respectively. With increasing  values, fig. 2a shows that, under 

constant axial pressure gradient ( 1




x

p
 ) there is a strong acceleration in axial velocity in the 

vicinity of the micro-channel walls and a very weak acceleration in the core zone (around the 

centre line). In the central zone there is however a symmetric drop in axial velocity and a weak 

increase at the centre line, irrespective of the value of electro-osmotic parameter.  This 

parameter arises in the electrical potential term in the linearized momentum Eqn. (16), 

HSU2 . We note that in the limiting case of   the axial velocity (9) reduces to the case 

for electro-kinetic couple stress peristaltic transport through a very thin electric double layer. 

Evidently the electro-kinetic body force effect aids momentum development in the micro-

channel and achieves a non-trivial acceleration effect. Furthermore with the additional 

condition of 0 , we obtain the electro-kinetic Newtonian peristaltic transport through a 

very thin electric double layer. Fig. 2b demonstrates that for negative or zero values of the 

maximum electro-osmotic velocity i.e. Helmholtz-Smoluchowski velocity ( HSU ) axial velocity 

magnitudes are consistently negative across the channel span. However for UHS > 0 the profiles 

are positive and reflective symmetry is observed about the y-axis. Increasing electro-osmotic 

velocity clearly induces a substantial acceleration in the axial flow. Fig. 2c shows that with 

increasing couple stress parameter (decreasing couple stress effect), the axial flow is 

accelerated in proximity to the micro-channel walls and also in zones on either side of the 

channel centre line. However at the centre line i.e. centre of the core flow zone, there is a slight 

deceleration generated with greater couple stress effect. The couple stress parameter arises as 

an inverse function in the linear fourth order derivative, 
4

4

2

1

y

u







.As  values increase the 

contribution of this body force is reduced and this implies that stronger polarity i.e. greater 

couple stress effect the flow will be decelerated, an observation which concurs with many other 

studies including the non-electrical peristaltic flow analysis of Elsehawey and Mekheimer [26] 

and the electrical couple stress model of Shankar et al. [44]. Furthermore this observation has 

also been confirmed in the seminal work of Cowin [50].  
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Figs. 3a-c illustrate the distributions of axial pressure gradient (
x

p




) with axial coordinate (x) 

with different values of the electro-osmotic parameter (), maximum electro-osmotic velocity 

( HSU ) and non-Newtonian couple stress parameter (), respectively. The periodic nature of the 

flow is clearly captured in these visualizations and is caused by the peristaltic wave motion i.e. 

successive troughs and peaks in pressure gradient. Increasing electro-osmotic parameter () 

markedly elevates the magnitudes of pressure gradients and eliminates the negative values 

observed for lower  values. The sharper profiles computed with lower electro-osmotic 

parameter are also smoothed somewhat to more oblate, flattened distributions with greater 

electro-osmotic effect i.e. higher  values. Fig. 3b shows that with increasing Helmholtz-

Smoluchowski velocity ( HSU ) from negative, through zero, to positive values, a significant 

reduction in pressure gradient magnitudes is generated along the entire x-axis. On the other 

hand, a strong enhancement in pressure gradient is also computed with increasing couple stress 

parameter,, i.e. weaker couple stress body force effect in fig. 3c. The influence of all the key 

electro-physical and rheological parameters is significant and demonstrates that even for 

linearized models, as elaborated in the present work, these effects can still retain an important 

influence.  

Figs. 4a-c illustrate the evolution in pressure difference across one wavelength vs time averaged 

volumetric flow rate for different values of the electro-osmotic parameter (), maximum electro-

osmotic velocity ( HSU ) and non-Newtonian couple stress parameter (), respectively. These 

graphs provide a perspective of the response in pressure difference for both positive (aligned 

in the direction of axial electrical field) and negative (opposite to axial field orientation i.e. x-

axis) to a change in time-averaged volumetric flow rate ( Q ). Maximum flow rate, Q is 

however fixed at 0.5 and the peristaltic wave amplitude is relatively low at   = 0.2 in these 

plots. With an increase in electro-osmotic parameter, as depicted in fig. 4a, there is a consistent 

albeit weak enhancement in pressure difference for both Q <0 and Q >0. However negative 

pressure difference is always associated with negative flow rate and vice versa for positive flow 

rate. Pressure difference never vanishes for any value of Q. Clearly the electro-osmotic effect 

exerts a tangible influence on pressure difference in the peristaltic regime. Similarly fig. 4b 

reveals that with increasing Helmholtz-Smoluchowski velocity i.e. greater strength of imposed 

axial electrical field, there is also an associated increase in pressure difference, again for both 

negative and positive flow rates. The influence is again sustained irrespective of values of Q . 
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Again vanishing pressure difference is never computed at any value of flow rate. Greater axial 

electrical field therefore generally boosts the pressure difference in the regime and this will 

contribute to an increase in efficiency of peristaltic propulsion in the systems. It causes a 

stronger influence than the electro-osmotic effect. Fig. 4c shows that couple stress parameter 

(and therefore couple stress effect) induces less consistent modification in pressure difference 

in the conduit. For negative flow rates ( Q <0) i.e. reversed flow, and small values of positive 

flow rate ( Q >0), increasing couple stress parameter decreases the pressure difference. In other 

words weaker couple stress rheological effect reduces pressure difference in this range of flow 

rates. However for larger values of positive flow rate ( Q >>0), the opposite effect is induced 

and there is a growth in pressure difference with increasing couple stress parameter (i.e. 

decreasing couple stress rheological effect).  

Figs. 5a-c illustrate the response in local wall shear stress  (w) profiles with axial coordinate 

(x) for different values of the electro-osmotic parameter (), maximum electro-osmotic velocity 

( HSU ) and non-Newtonian couple stress parameter (), respectively. A significant acceleration 

in flow and therefore a corresponding increase in wall shear stress magnitudes (note the graph 

ordinate is plotted so that values decrease upwards along the ordinate) accompanies an increase 

in the electro-osmotic parameter (), as observed in fig. 5a. Similarly figs. 5b and 5c also 

demonstrate that increasing maximum electro-osmotic velocity ( HSU ) and non-Newtonian 

couple stress parameter (), both serve to enhance wall shear stress i.e. accelerate the flow at 

the micro-channel walls. This implies that respectively greater axial electrical field and weaker 

couple stress (micro-structural non-Newtonian behaviour) both boost the momentum in the 

microchannel flow and manifest in a significant acceleration at the micro-channel walls. The 

impact of electrical field (maximum electro-osmotic velocity) is however less prominent than 

that of couple stress non-Newtonian effect. 

Figs. 6a-g visualize the streamline distributions in the channel for various values of electro-

osmotic parameter (), maximum electro-osmotic velocity ( HSU ) and non-Newtonian couple 

stress parameter (). Comparing fig. 6a,b and c, for which both UHS and  are given fixed 

values of unity, and electro-osmotic parameter () varies, it is evident that with greater electro-

osmotic effect, the intensity of streamlines near the micro-channel walls is reduced and there 

is weaker circulation here. A very weak relaxation in the central zone is induced with a slight 

growth in the dual bolus system present. The streamlines here become more divergent with 
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greater electro-osmotic effect. Comparing fig. 6d and e, for which both   and  are fixed at 

values of 2 and 1, respectively, and UHS decreases from 0 to -1, it is apparent that with an 

decrease in axial electrical field (to which UHS is proportional) there results an intensification 

in streamlines near the micro-channel walls although there is no significant modification to the 

double trapping bolus patterns in the central zone of the channel. The symmetry of the stream 

function plot is not altered to any great extent; only a very marginal reduction in bolus 

magnitudes is observed. Finally inspection of fig. 6f and 6g, for which both   and UHS are 

fixed at values of 2 and 1, respectively, and  increases from 5 to 10, a much stronger growth 

is witnessed in the two trapping boluses and the streamlines become increasingly divergent 

near the micro-channel walls. Therefore with weaker actual couple stress rheological effect, 

bolus growth is encouraged in the regime. The circulation zones near the micro-channel walls 

are increasingly less constrained and diverge from each other and there is also greater distortion 

of the streamlines towards the central zone. The non-Newtonian nature of the fluid therefore 

imparts a significant influence on bolus dynamics in the micro-channel and leads to a decrease 

in bolus magnitudes.   

 

4. CONCLUSIONS 

A theoretical investigation has been conducted for peristaltic propulsion of a couple stress non-

Newtonian electro-osmotic electrolyte solution in a micro-channel under the action of a 

constant strength axial electrical field. The conservation equations for mass, momentum and 

electrical potential conservation have been linearized using long wavelength, low Reynolds 

number and Debye-Huckel linearization approximations, the latter invoking the concept of a 

normalized electro-osmotic potential function. Closed-form solutions for the linearized non-

dimensional boundary value problem have been carefully derived for axial velocity, volumetric 

flow rate, pressure gradient, local wall shear stress and stream function. Numerical evaluation 

of these expressions with Mathematica software has allowed a parametric study of the influence 

of electro-osmotic parameter, maximum electro-osmotic velocity and couple stress rheological 

parameter on the electro-hydrodynamic characteristics of the peristaltic pumping flow. These 

computations have shown that: 
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(i) Axial pressure gradient (
x

p




) is elevated with increasing electro-osmotic parameter and 

couple stress parameter (decreasing couple stress rheological effect) and decreased with 

greater Helmholtz-Smoluchowski velocity. 

(ii) Axial velocity is consistently enhanced with with increasing electro-osmotic parameter, 

couple stress parameter (decreasing couple stress rheological effect) and Helmholtz-

Smoluchowski (maximum electro-osmotic) velocity. 

(iii) Pressure differences are consistently enhanced with increasing electro-osmotic 

parameter and Helmholtz-Smoluchowski (maximum electro-osmotic) velocity both for 

positive and negative values of the time-averaged volumetric flow rate. However an 

increase in couple stress parameter (i.e. decrease in couple stress rheological effect) 

only elevates pressure difference for positive values of time-averaged volumetric flow 

rate, with the contrary effect for negative flow rates.  

(iv) With greater values of the couple stress parameter i.e. progressively weaker couple 

stress non-Newtonian effect, a non-trivial growth is computed in the two trapping 

boluses and the streamlines become increasingly divergent near the micro-channel 

walls. Bolus growth is therefore greater for weaker couple stress fluids than stronger 

couple stress fluids.  

(v) With weaker assistive axial electrical field (i.e. decreasing Helmholtz-Smoluchowski 

or maximum electro-osmotic velocity) streamlines are intensified near the micro-

channel walls although there is no marked alteration in the symmetry or magnitudes of 

the dual trapped boluses in the central zone of the channel. 

(vi) With increasing electro-osmotic parameter the intensity of streamlines near the micro-

channel walls is reduced (weaker circulation) and furthermore there is a minor growth 

in the dual trapped boluses present in the core zone of the micro-channel. 
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