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Abstract: In this article, the Cattaneo-Christov heat flux model is implemented to study non-

Fourier heat and mass transfer in the magnetohydrodynamic (MHD) flow of an upper convected 

Maxwell (UCM) fluid over a permeable stretching sheet under a transverse constant magnetic 

field. Thermal radiation and chemical reaction effects are also considered. The nonlinear partial 

differential conservation equations for mass, momentum, energy and species conservation are 

transformed with appropriate similarity variables into a system of coupled, highly nonlinear 

ordinary differential equations with appropriate boundary conditions. Numerical solutions have 

been presented for the influence of elasticity parameter (), magnetic parameter (M2), 

suction/injection parameter (𝜆),  Prandtl number (Pr), conduction-radiation parameter (Rd), sheet  

stretching parameter (A), Schmidt number (Sc), chemical reaction parameter  (𝛾𝑐) , modified  

Deborah number with respect to relaxation time of heat flux (i.e. non-Fourier Deborah number) on 

velocity components, temperature and concentration profiles using the successive Taylor series 

linearization method (STSLM) utilizing Chebyshev interpolating polynomials and Gauss-Lobatto 

collocation. The effects of selected parameters on skin friction coefficient, Nusselt number and 

Sherwood number are also presented with the help of tables. Verification of the STSLM solutions 

is achieved with existing published results demonstrating close agreement. Further validation of 

skin friction coefficient, Nusselt number and Sherwood number values computed with STSLM is 

included using Mathematica software shooting quadrature. 

 

Keywords: Heat and Mass transfer; Magnetohydrodynamics; UC Maxwell viscoelastic fluid; 

Heat flux; Radiative flux; STSLM Numerical solution. 

 

1. INTRODUCTION 

Heat transfer is an important area of research due to its numerous applications in different 

industrial and engineering processes. These include cooling of nuclear reactors, thermoplastic 
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fabrication, heat pumps, materials processing, cooling of electronic devices, biophysical heat 

conduction process in tissues, rocket thermal ablation and energy production. The Fourier law of 

heat conduction [1] has been the classical approach for thermal conduction heat transfer 

simulation. The main drawback of this model however is that it reduces the heat conservation 

formulation to a parabolic energy equation which shows that the medium under observation 

experience an initial disturbance. In order to overcome this difficulty, Cattaneo [2] introduced a 

relaxation time term in Fourier’s law of heat conduction. Christov [3] presented a frame indifferent 

formulation for the Maxwell-Cattaneo model with finite-speed heat conduction. Ostoja-Starzewski 

[4] described mathematically the Maxwell-Cattaneo equation with the help of a material time 

derivative for heat flux. Tibullo and Zampoli [5] investigated the uniqueness and stability of 

solutions obtained by the Cattaneo-Christov heat flux model for incompressible fluid. Straughan 

[6] numerically examined incompressible thermal convection flows using the Cattaneo-Christov 

model. He found that thermal relaxation coefficient is more significant if the Cattaneo number is 

very high and the convection phenomena transform from stationary convection to oscillatory 

convection having narrower cells. A study of thermal instability incorporating fluid inertia using 

heat flux model through a Brinkman porous medium was conducted by Haddad [7]. Ciarletta and 

Straughan [8] addressed the structural uniqueness and stability of Cattaneo-Christov heat flux 

equations. They show that the solution to a backward in time problem relies on continuously on a 

relaxation time. Al-Qahtani and Yilbas [9] presented a closed form solution for Cattaneo and stress 

equation by means of the Laplace transform method. Papanicolaou et al. [10] examined the effects 

of thermal relaxation in the Cattaneo-Maxwell equations using horizontal and vertical gradients. 

Recently, Han et al. [11] studied the boundary layer flow of Maxwell fluids from a stretching sheet 

with the Cattaneo-Christov heat flux model. Mustafa [12] investigated analytically and 

numerically the non-Fourier convection in rotating Maxwell fluid flow. He presented both 

analytical and numerical solution and showed that both the results are in excellent agreement. 

Bissell [13] examined oscillatory convection flow using Cattaneo-Christov heat flux model in 

place of parabolic of parabolic Fourier law to enhance the possibility of oscillatory convection in 

a classic Bernard problem. Nadeem et al. [14] studied numerically the heat transfer in boundary 

layer flow of an Oldroyd-B nanofluid model towards a stretching sheet with a non-Fourier thermal 

flux model. They observed that the Brownian motion parameter enhances the Nusselt number and 

Sherwood number.  
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 In recent year’s boundary layer flows of both Newtonian and non-Newtonian fluids have 

stimulated considerable attention in engineering science research owing to growing applications 

in metallurgical processing, chemical engineering transport phenomena (paints, gels, foodstuffs), 

extrusion of molten polymers, fabrication of wrapping foils and plastic sheets. Species, heat and 

momentum transfer play a prominent role in such processes. Polymeric sheets may be elongated 

in certain directions to enhance mechanical properties via doping with other materials and also 

thermal loading [15]. Non-Newtonian fluids arise in an extensive spectrum of chemical 

engineering systems including lubricants, medical linctus suspensions, detergents, foams, 

biotechnological liquids and so on. Rosali et al. [16] studied the stagnation point flow with a heat 

transfer towards a porous stretching/shrinking sheet. They found that the dual solution exist for 

shrinking case. Qasim [17] examined simultaneously the effects of heat and mass transfer on non-

Newtonian Jeffreys viscoelastic fluid flow in the presence of heat source/sink. Mukhopadhyay 

[18] investigated the magnetized boundary layer flow with heat transfer through an exponentially 

stretching sheet in a thermally stratified medium. He observed that in the presence of thermal 

stratification effect, heat transfer rate rises whereas the magnitude of the velocity profile diminish 

for higher values of magnetic parameter. Khalili et al. [19] studied the unsteady stagnation point 

nanofluid flow with heat transfer through a stretching/shrinking sheet embedded in a porous 

medium under the effects of a magnetic field. They found that the dual solution domain rises due 

to an increment in magnetic parameter, permeability parameter and velocity ration while it remains 

constant for different values of solid volume fraction of nanoparticles. Further, they found that the 

permeability parameter has a more influence on a flow and heat transfer of nanofluid as compared 

to magnetic parameter. Later, Khalili et al. [20] considered the MHD effects on stagnation point 

nanofluid flow on a porous stretching/shrinking permeable plate. They considered three types of 

nanoparticles such as Copper, alumina and titania with water as a base fluid. Further, they found 

that the skin friction coefficient and Nusselt number rises in all the three cases for higher values 

of nano particle volume fraction. Bhatti et al. [21] studied numerically the Maxwell fluid flow 

through a shrinking porous sheet using the successive linearization method.  

 In various high-temperature materials processing operations, thermal radiation heat 

transfer also plays an important role. The constitution of manufactured materials can be effectively 

manipulated with radiative flux. Thermal radiation is also significant in various other areas 

including rocket plume combustion, nuclear power plants, furnace operations, re-entry aero-
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thermodynamics etc. Seddeek and Abdelmeguid [22] studied the simultaneous effects of thermal 

radiation and thermal diffusivity on stretching surface flow with variable heat flux. Mukhopadhyay 

and Layek [23] investigated the impact of variable fluid viscosity and thermal radiation on free 

convection flow from a porous stretching sheet. They found that the suction parameter opposes 

the skin friction coefficient and enhances the heat transfer rate. However, for blowing case, the 

behavior is opposite. Moreover, they also observed that due to injection/suction fluid velocity 

increases/decreases at a particular point. Due to rise in thermal radiation parameter, temperature 

profile diminishes. Pal [24] analyzed the simultaneous effects of heat and mass transfer with 

thermal radiation and buoyancy force from a stretching surface. Mukhopadhyay [25] studied the 

unsteady mixed convection flow with heat transfer and thermal radiation through a porous media. 

Uddin et al. [26] simulated computationally the nonlinear magnetized slip flow from a stretching 

sheet with thermal radiative flux using with Maple quadrature. Mabood et al. [27] numerically 

analyzed the boundary layer convection flow of nanofluid from a nonlinear stretching sheet. Daniel 

and Daniel [28] examined the thermal radiation effects on buoyancy-driven magnetic stagnation 

point flow through porous media. Bhatti and Rashidi [29] considered the simultaneous effects of 

thermal radiation and Soret thermo-diffusion on non-Newtonian viscoelastic nanofluid transport 

from a shrinking/stretching sheet. Recently, Akbar and Khan [30] explored the effects of thermal 

radiation and variable thermal conductivity on nanofluid stretching sheet flow with convective 

boundary conditions.  

 Magnetohydrodynamics (MHD) free convection flow is also an important area in modern 

engineering sciences. Recent developments in materials synthesis, electromagnetic flow control, 

magnetic levitation in metallurgy and electro-conductive polymers have stimulated significant 

interest in magneto-convective flow simulations. The resurge in renewable energy devices 

employing electromagnetic pumps and hydromagnetic generators has also mobilized substantial 

efforts in MHD heat transfer analysis. Makinde [31] investigated the combined influence of 

transverse magnetic field and thermal radiation on mixed convection flow with higher order 

chemical reaction through vertical porous media. Makinde [32] also analyzed studied magneto-

convective heat and mass transfer from a moving vertical plate with surface convective boundary 

conditions. Ellahi and Hameed [33] studied numerically magnetohydrodynamic convection flow 

with nonlinear wall slip conditions. Akbar et al. [34] examined radiative flux effects on MHD 

stagnation point nanofluid flow from a stretching surface. Bég et al. [35] employed the PSPICE 
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network simulation code to study the non-isothermal hydromagnetic boundary layer flow from a 

porous cone with pressure work and wall mass flux effects. Gaffar et al. [36] used a finite 

difference scheme to analyze the non-isothermal hydromagnetic flow of a tangent hyperbolic fluid 

from a vertical porous cone. Noor et al. [37] discussed the thermal radiation and heat absorption 

effects using a non-Newtonian fluid model through a vertical stretching sheet. They 

simultaneously used the shooting method with Homotopy Pade solutions. Moreover, they found 

that the heat flux rises due to the increment in heat absorption and thermal radiation parameter. 

Halim et al. [38] considered the Maxwell fluid model with active and passive control flow in the 

presence of nanoparticles. They have also applied the shooting method to obtain the solution of 

the nonlinear equations. They found that the temperature profile in passive control model is lower 

as compared to the active control model. Moreover, they observed that Nusselt number, skin 

friction coefficient, and Sherwood number diminish due to the increment in hydrodynamic slip 

parameter. Further, they noticed that the stagnation point parameter provides excellent heat 

transfer performance of nanofluid in the presence of both passive and active control models. 

Sheikholeslami and Bhatti [39] studied the influence of Coulomb force on forced convective heat 

transfer using Fe3O4-Ethylene glycol nanofluid using Control Volume based Finite Element 

Method. 

 Relatively few studies of magnetohydrodynamic non-Newtonian convective heat and mass 

transfer have appeared utilizing a non-Fourier formulation for thermal conduction. In the present 

article, the objective is therefore to study the hydromagnetic forced convection heat and mass 

transfer in boundary layer flow of an upper-convected Maxwell fluid from a horizontal permeable 

stretching surface with the non-Fourier Cattaneo-Christov heat flux model. Additionally the 

collective effects of thermal radiation flux and chemical reaction are taken into account. This flow 

problem is relevant to polymeric materials processing operations in which thermal loading may be 

of the non-Fourier type [40-43]. The governing flow problem is modelled with the help of 

similarity transformation variables. The successive Taylor series linearization method (STSLM) 

[44-46] is used to solve the dimensionless boundary value problem. The physical influence of the 

emerging parameters on velocity, temperature and concentration profiles is elaborated with the aid 

of graphs. A numerical verification of the STSLM computations is also presented with an 

alternative numerical method as well as with existing published results. This paper is formulated 

in the following way. Sec 1 relates the detailed background and introduction, Mathematical 
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formulation of the problem is given in Sec. 2. Sec. 3 describes the numerical solution of the 

problem. Sec. 4 discusses validation with shooting quadrature and published literature. Sec. 5 

contains numerical and graphical results of the problem. 

 

2. MATHEMATICAL FORMULATION 

Consider the steady forced convective magnetohydrodynamic heat and mass transfer in 

boundary layer flow of an electrically-conducting, reactive non-Newtonian polymeric fluid (of the 

upper convected Maxwell type) with thermal radiative flux, from a porous permeable stretching 

sheet at 𝑦 > 0, as depicted in fig. 1.  

 

Fig 1: Physical model for reactive radiative magnetized stretching heat and mass transfer 

 

An external constant magnetic field, Bo, is applied in the transverse direction (y). The 

influence of induced magnetic is assumed to be negligible here due to small magnetic Reynolds 

number. The flow occurs on the origin of the stretching sheet due to the presence of two forces 

with opposite signs and equal values. The governing equations for the transport in the boundary 

layer may be written as [5, 6, 29] 

∂𝑢

𝜕�̅�
+

∂�̅�

𝜕�̅�
= 0,  (1) 
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�̅�
𝜕𝑢

𝜕�̅�
+ �̅�

𝜕𝑢

𝜕�̅�
= 𝜈

𝜕2𝑢

𝜕�̅�2
− Λ [�̅�2 𝜕2�̅�

𝜕�̅�2
+ �̅�2 𝜕2�̅�

𝜕�̅�2
+ 2�̅��̅�

𝜕2𝑢

𝜕�̅�𝜕�̅�
] −

𝜎𝐵0
2

𝜌
[�̅� + Λ�̅�  

𝜕𝑢

𝜕�̅�
],  (2) 

The thermal boundary layer equation using Cattaneo-Christov heat flux model in the presence of 

thermal radiation can be written in the following form [9, 12]: 

�̅�
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ Λ1 [�̅�

𝜕𝑢

𝜕�̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕𝑢

𝜕�̅�

𝜕�̅�

𝜕�̅�
+ 2�̅��̅�

𝜕2�̅�

𝜕�̅�𝜕�̅�
+

�̅�2 𝜕2�̅�

𝜕�̅�2
+ �̅�2 𝜕2�̅�

𝜕�̅�2
] = �̅�

𝜕2�̅�

𝜕�̅�2
−

1

𝜌𝑐𝑝

𝜕�̅�𝑅

𝜕�̅�
,  

(3) 

The species conservation boundary layer equation takes the form: 

�̅�
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
= 𝐷

𝜕2�̅�

𝜕�̅�2
− 𝑘1(𝐶̅ − 𝐶∞̅).   (4) 

where �̅�  and �̅�  are the velocity components in the �̅�  and �̅�  direction respectively, 𝛬 is the 

relaxation time, 𝐵0 is the applied magnetic field, 𝜈 is the kinematic viscosity, 𝜌 is the density of 

the fluid, 𝜎 is the electrical conductivity of the fluid, 𝒒 is the heat flux, Λ1 is the relaxation time of 

heat flux, �̅� is the temperature, 𝑘 is the thermal conductivity of the fluid, �̅� is the velocity vector, 

respectively. Eq. (3) can be reduced to Fourier’s law by taking Λ1 = 0. 

 In eqn. (3), the nonlinear radiative heat flux term may be re-written as [21]-[26]: 

�̅�𝑟 = −
4�̅�

3𝑘′  
𝜕�̅�4

𝜕�̅�
= −

16�̅��̅�3

3𝑘′

𝜕�̅�

𝜕�̅�
.  (5) 

The boundary conditions at the wall and in the free stream are imposed as follows:  

�̅� = 𝑎�̅�, �̅� = −�̅�𝑠, �̅� = �̅�𝑤, 𝐶̅ = 𝐶�̅�  𝑎𝑡 �̅� = 0,  (6) 

�̅� → ∞, �̅� = �̅�∞, 𝐶̅ = 𝐶∞̅ 𝑎𝑡 �̅� → ∞. (7) 

In the above equations, 𝑎 is constant, �̅�𝑠[> 0] corresponds to a suction velocity whereas �̅�𝑠[< 0] 

is associated with a blowing (injection) velocity at the wall, 𝑐𝑝 is the specific heat, 𝑘′ is the mean 

absorption coefficient, 𝑘1 is the chemical reaction parameter, 𝜎 is the Stefan-Boltzmann constant 

and D is the coefficient of mass (species) diffusivity.  

 Introducing the similarity transformation variable 𝜉 with the help of stream function, we 

have [9, 12]: 
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𝑦 = 𝜉√
𝜈

𝑎
, 𝜓 = 𝑥√𝑎𝜈𝑓(𝜉), 𝜃(𝜉) =

�̅�−�̅�∞

�̅�𝑤−�̅�∞
, 𝜙(𝜉) =

�̅�−�̅�∞

�̅�𝑤−�̅�∞
.  (8) 

The dimensional stream function is defined via the Cauchy-Riemann equations as: 

�̅� =
𝜕𝜓

𝜕�̅�
, �̅� = −

𝜕𝜓

𝜕�̅�
.   (9) 

Implementing the transformations defined in eqn. (8) into the momentum, thermal and species 

(concentration) boundary layer eqns. i.e. eqns. (2), (3) and (4), the following system of ordinary 

differential equations emerges: 

𝑓′′′ − 𝑓′2 − 𝑀2𝑓′ + (1 + 𝛼𝑀2)𝑓𝑓′′ − 𝛼(𝑓′′′𝑓2 − 2𝑓′′𝑓′𝑓) = 0,    (10) 

(
1

𝑃𝑟
+

4

3
𝑅𝑑) 𝜃′′ + 𝑓𝜃′ − 𝛾(𝜃′𝑓′𝑓 + 𝜃′′𝑓2) = 0,    (11) 

1

𝑆𝑐
𝜙′′ − 𝛾𝑐𝜙 = 𝑓′𝜙 − 𝑓𝜙′.    (12) 

Their corresponding transformed boundary conditions are: 

𝑓 = 𝜆, 𝑓′ = Α, 𝜃 = 1, 𝜙 = 1 at 𝜉 = 0, (13) 

𝑓′ → 0, 𝜃 → 1, 𝜙 = 0 𝑎𝑡 𝜉 → ∞.   (14) 

In the above equations, 𝛼 = Λ𝑎  is the elasticity parameter, 𝑀2 = 𝜎𝐵0
2/𝑎𝜌  is the magnetic 

parameter, 𝜆 =
�̅�𝑠

√𝜈𝑎
 is the suction/injection parameter,  𝑃𝑟 =

𝜈

�̅�
 is the Prandtl number, 𝑅𝑑 =

4�̅��̅�3

𝜌𝑐𝑝𝑘′ 

is the conduction-radiation parameter, A =
𝑏

𝑎
 is the stretching parameter, 𝑆𝑐 =

𝜈

𝐷
 is the Schmidt 

number, 𝛾𝑐 is the chemical reaction parameter and 𝛾 = Λ1𝑎 is the modified Deborah number with 

respect to relaxation time of heat flux (i.e. non-Fourier Deborah number).  The physical quantities 

of interest i.e. engineering design parameters of relevance to materials processing are skin friction 

coefficient, local Nusselt number and Sherwood number. These are defined in dimensionless form 

as [29]:   

 𝐶𝑓𝑥 = 𝑓′′(0), 𝑁𝑢𝑥 = − (1 +
4

3
𝑅𝑑) 𝜃′(0), 𝑆ℎ𝑥 = −𝜙′(0). (15) 
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3. STSLM NUMERICAL SOLUTIONS 

The nonlinear boundary value problem defined by the reduced momentum, energy and thermal 

boundary layer equations together with the boundary conditions i.e. eqns. (10)-(14), may be solved 

by a variety of computational techniques. In the present study we elect to use the powerful 

successive Taylor series linearization method (STSLM) employing Chebyshev interpolating 

polynomials and Gauss-Lobatto collocation. In order to apply STSLM, let us define  

𝑓(𝜉) = 𝑓𝐼(𝜉) + ∑ 𝑓𝑁(𝜉)𝐼−1
𝑁=0 , 𝐼 = 1,2,3, …,   (16) 

where 𝑓𝐼  are unknown functions which are obtained by iteratively solving the linearized version of 

the governing equation and assuming that 𝑓𝐼  (0 ≤ 𝑁 ≤ 𝐼 − 1) are known from previous iterations. 

Our algorithm starts with an initial approximation,𝑓0, which satisfy the given boundary conditions 

in Eq. (13) according to STSLM. Eq. (10) can be written in the following form 

𝐿(𝑓, 𝑓′, 𝑓′′, 𝑓′′′) + 𝑁(𝑓, 𝑓′, 𝑓′′, 𝑓′′′) = 0, (17) 

Where L and N are linear non-linear part.  

𝐿(𝑓, 𝑓′, 𝑓′′, 𝑓′′′) = 𝑓′′′ − 𝑀2𝑓′, (18) 

𝑁(𝑓, 𝑓′, 𝑓′′, 𝑓′′′) = (1 + 𝛼𝑀2)𝑓′′𝑓 − 𝛼(𝑓′′′𝑓2 − 2𝑓𝑓′𝑓′′) − 𝑓′2. (19) 

Using Eq. (16) and Eq. (10), we have  

𝑓𝐼
′′′ + 𝐴0,𝐼−1𝑓𝐼

′′′ + 𝐴1,𝑖−1𝑓𝐼
′′ + 𝐴2,𝑖−1𝑓𝐼

′ + 𝐴3,𝑖−1𝑓𝐼 − 𝑀2𝑓𝐼
′ = 𝑅𝐼−1(𝜉). (20) 

The corresponding boundary conditions become: 

𝑓𝐼(0) = 0, 𝑓𝐼
′(0) = 0, 𝑓𝐼

′(∞) = 0,  (21) 

where𝐴0,𝐼−1, 𝐴1,𝐼−1, 𝐴2,𝐼−1, 𝐴3,𝐼−1 and 𝑅𝐼−1 can be find using routine calculations. The initial guess 

is chosen in the following form, which satisfies all the corresponding boundary conditions i.e. 

𝑓0(𝜉) = 𝜆 − Α(e−𝜉 − 1).  (22) 

With the help of the initial approximation, Eq. (20) can be solve iteratively to obtain the subsequent 

solution for 𝑓𝑁(𝑁 ≥ 1). The ith-order approximation solutions for 𝑓(𝜉) can be written as : 
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𝑓(𝜉) ≈ ∑ 𝑓𝑁(𝜉)𝐼
𝑁=0 .  (23) 

The right hand side of Eq. (20) for i=1,2,3,… and furthermore the coefficient of each parameter 

can be obtained from the previous iterations. We have applied the Chebyshev spectral collocation 

method to obtain the solution for Eq. (20). This method involves approximating the unknown 

functions using Chebyshev interpolating polynomials defined on the interval [-1,1] by : 

𝐶𝐾(𝜂) = cos[𝐾 cos−1(𝜉)].  (24) 

For the application of this method, the physical infinite region is transformed into the finite region 

i.e. [0, ∞) → [−1,1] with the help of a domain truncation method while the solution are obtained 

in the interval [0, 𝑙] instead of [0, ∞). This leads to the following mapping: 

𝜉

𝑙
=

𝜂+1

2
, −1 ≤ 𝜂 ≤ 1,  (25) 

Here 𝑙 is a scaling parameter which helps to invoke the boundary conditions defined on infinity. 

To define the Chebyshev nodes in [−1,1], we have applied Gauss-Lobatto collocation points. The 

variable 𝑓𝐼 is analyzed using an interpolating polynomial at each collocation point with the help of 

truncated Chebyshev series in the following form:  

𝑓𝐼(𝜂) = ∑ 𝑓𝐼(𝜂𝐾)𝑖
𝐾=0 𝐶𝐾(𝜂𝐽), 𝐽 = 0,1 … 𝑖,  (26) 

where 𝐶𝐾  is the 𝐾𝑡ℎ  Chebyshev polynomial. At the collocation points, the derivatives of the 

variables can be written as: 

d𝑝𝑓𝐼

d𝜉𝑝 = ∑ 𝑫𝑲𝑱
𝒑

𝑓𝐼(𝜂𝐾)𝑖
𝐾=0 , 𝐽 = 0,1 … 𝑖,  (27) 

where 𝑝  is the order of differential matrix and 𝑫 =
2

𝑙
𝓓  in which 𝓓  is a Chebyshev spectral 

differentiation matrix. Using Eq. (26) and (27) in Eqns. (20) and (21), we have: 

𝐴𝐼−1𝐺𝐼 = 𝜙𝐼−1 .  (28) 

Subject to  
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𝑓𝐼(𝜂𝑖) = 0, ∑ 𝑫𝒊𝑲𝑓𝐼(𝜂𝐾) = 0,𝑖
𝐾=0 ∑ 𝑫𝟎𝑲𝑓𝐼(𝜂𝐾) = 0,𝑖

𝐾=0   (29) 

Where  

𝐴𝐼−1 = [𝑰 + 𝐴0,𝐼−1 ]𝑫3 + 𝐴1,𝐼−1 𝑫
2 + [𝐴2,𝐼−1 − 𝑀2𝑰]𝑫 + 𝐴3,𝐼−1,   (30) 

𝐺𝐼 = [𝑓𝐼(𝜂0), 𝑓𝐼(𝜂1), … 𝑓𝐼(𝜂𝑖)]t, (31) 

𝜙𝐼−1 = [𝜙𝐼−1(𝜂0), 𝜙𝐼−1(𝜂1), … 𝜙𝐼−1(𝜂𝑖)]𝑡.   (32) 

In the above equations, t is transpose, 𝐴𝐾,𝐼−1(𝐾 = 0,1,2,3) is a diagonal matrix of size (𝑖 + 1) ×

(𝑖 + 1), and I is identity matrix of size (𝑖 + 1) × (𝑖 + 1). The boundary condition 𝑓𝐼(𝜂𝑖) = 0 is 

employed by removing the last column and last row of 𝐴𝐼−1 and by deleting the last rows of 𝐺𝐼 

and 𝜙𝐼−1. Then the boundary conditions in Eq. (29) are imposed to the last and first row of 𝐴𝐼−1. 

The last and first rows of 𝜙𝐼−1 and 𝐺𝐼 are set to zero. The solution for 𝑓𝐼(𝜂1), 𝑓𝐼(𝜂2), … , 𝑓𝐼(𝜂𝑖−1) 

are iteratively obtained after solving:  

𝐺𝐼 = 𝐴𝐼−1
−1 𝜙𝐼−1.   (33) 

Once the solutions are obtained, we can apply directly the Chebyshev pseudo-spectral method to 

Eq. (11) and Eqs. (12)-(13), leading to:  

ℬℋ = 𝒮.   (34) 

With the relevant boundary conditions 

𝜃(𝜂𝑖) = 𝜙(𝜂𝑖) = 1, 𝜃(𝜂0) = 𝜙(𝜂0) = 0, (35) 

Here ℬ is the linear differential equation, ℋ is a column vector and 𝒮 is a vector of zeros. The 

corresponding boundary conditions in Eq. (35) are replaced in the first and last rows of 𝒮 and ℬ, 

respectively.  

4. VALIDATION OF STSLM  SOLUTIONS 

To verify the accuracy of the Successive Taylor series linearization method (STSLM), a 

numerical comparison is presented with shooting method using the symbolic computational 

software Mathematica. The value of 𝑙 in STSLM is considered to be 𝑙 = 15 and the number of 

collocation points is 𝑖 = 60. These values are found to be appropriate for the present flow and are 

in excellent agreement with the results obtained by shooting method. STSLM is computationally 
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more accurate and efficient as compared to other similar methods since it gives more accurate 

results when a governing problem is directly solved. Table 1 shows the numerical results of skin 

friction coefficient and Nusselt number for a range of parameter values for both STSLM and 

Shooting method and very good agreement is achieved. Confidence in the STSLM solutions is 

therefore justifiably high. Table 2 shows the numerical comparison of skin friction coefficient 

with existing published studies [47-50] i.e. Abel et al. [47], Megahed [48], Sadeghy et al. [49] and 

Mukhopadhyay [50] by taking 𝑀 = 𝛼 = 𝜆 = 0 as a special case of our study.  

 

Table 1: Numerical comparison of STSLM and shooting method for skin friction, Nusselt number 

and Sherwood number for different parametric values 

 
  𝐶𝑓𝑥 𝑁𝑢𝑥 𝑆ℎ𝑥  𝐶𝑓𝑥 𝑁𝑢𝑥 𝑆ℎ𝑥 

STSLM Shooting method 

M 0.5 -0.97774 0.52425 1.53471 -0.97774 0.52425 1.53471 

1 -1.26542 0.35126 1.48605 -1.26542 0.35126 1.48605 

1.5 -1.64096 0.19140 1.42749 -1.64096 0.19140 1.42749 

𝛼 0.5 -0.97357 0.48426 1.52839 -0.97357 0.48426 1.52839 

1 -0.96262 0.43875 1.52160 -0.96262 0.43875 1.52160 

1.5 -0.94637 0.39867 1.51583 -0.94637 0.39867 1.51583 

𝜆 -0.4 -0.92921 0.48116 1.44940 -0.92921 0.48116 1.44940 

0 -1.14520 0.78738 1.82200 -1.14520 0.78738 1.82200 

0.3 -1.35238 1.35044 2.15506 -1.35238 1.35044 2.15506 

A 0.5 -0.36251 0.21555 1.19382 -0.36251 0.20567 1.19382 

0.8 -0.70663 0.40449 1.40675 -0.64386 0.34924 1.40675 

0.9 -0.83827 0.46505 1.47193 -0.83827 0.43176 1.47193 

𝑃𝑟  4.5  0.59139   0.59139  

5.5  0.62167   0.62167  

6.8  0.65119   0.65119  

𝑅𝑑 0.4  0.50585   0.50585  

0.6  0.49786   0.49786  

0.8  0.49445   0.49445  

𝛾 0.3  0.49398   0.49398  

0.5  0.51373   0.51373  

0.7  0.53524   0.53524  

𝛾𝑐 0   1.19097   1.19097 

0.6   1.59344   1.59344 

1.2   1.90672   1.90672 

𝑆𝑐 1.2   1.20272   1.20272 

1.6   1.38239   1.38239 

2.0   1.53471   1.53471 

 

 

Table 2: Numerical comparison of skin friction coefficient with existing published results 𝑀 =
𝛼 = 0 
 

 Abel et al. [47] Megahed  [48] Sadeghy et al. [49] Mukhopadhyay  [50] Present results 
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𝐶𝑓𝑥 -0.999962 -0.999978 -1.000000 -0.999996 -1.000000 

 

 

5. NUMERICAL RESULTS AND DISCUSSION 

In this section numerical results are presented Figs. 2-10, order to study the influence of 

the key physical parameters i.e. magnetic parameter (𝑀),  elasticity parameter (𝛼) , 

suction/injection parameter (𝜆) , stretching parameter (A ), Prandtl number ( 𝑃𝑟 ), conduction-

radiation parameter (𝑅𝑑)  and non-Fourier Deborah number (𝛾)  on the heat, momentum and 

species characteristics in the regime.  

Figs. 2a,b depicts the variation of elasticity parameter (𝛼) on both velocity components 

i.e. u-component and v-component. These figures elucidate that greater elasticity parameter 

(𝛼) causes a marked reduction in the velocity profiles i.e. stronger elastic effects decelerate the 

boundary layer flow and increase momentum boundary layer thickness. 𝛼 is directly proportional 

to the relaxation time () of the polymer (viscoelastic fluid). An elasticoviscous material such as 

the upper convected Maxwell (UCM) fluid has a fading memory; it retains information of recent 

deformation. With greater relaxation time, the elastic effects dominate rather than the viscous 

effects. This results in retardation in the flow with higher values of . The case of   = 0 

corresponds to purely viscous flow (vanishing elastic effect) and clearly for this case the velocity 

components are maximized i.e. there is flow acceleration. We further note that the u-velocity 

component decays monotonically from the wall into the free stream, whereas the v-component 

grows from the wall to the free stream, irrespective of the value of the elasticity parameter. 

Figs. 3a,b illustrates the impact of magnetic body force parameter (𝑀) on both velocity 

components i.e. u-component and v-component. The transverse magnetic field (imposed in the y-

direction i.e. -direction) generates an impeding Lorentz magnetohydrodynamic body force along 

the x-direction. Magnetic body force terms arise twice in the momentum conservation eqn. (12) 

i.e. −𝑀2𝑓′ and (𝛼𝑀2)𝑓𝑓′′. This creates a significant resistance to the boundary layer flow and 

induces a deceleration in both u and v velocity component. The case of M= 0 corresponds to 

electrically non-conducting polymer flow in which magnetohydrodynamic effects vanish. 

Physically, in the as M increases, the Lorentz force  also increases and this produces significant 

control of the boundary layer flow and substantial retardation which may be exploited in materials 

processing operations. The trends in the computations are also qualitatively similar to the results 
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obtained by Alizadeh-Pahlavan et al. [51]. Again there is a consistent decay in the u-velocity 

component with increasing transverse coordinate () whereas the v-velocity component grows 

with increasing transverse coordinate ().Effectively momentum boundary layer thickness is 

increased with stronger magnetic parameter (M) values.  

Figs. 4a,b elucidates the behavior of suction/injection parameter (𝜆) on both  u-component 

and v-component of velocity. Fig. 4a indicates that an enhancement in suction (𝜆 > 0) causes a 

marked reduction in the u-component of velocity. Greater suction induces stronger adherence of 

the boundary layer to the wall in the stretching sheet regime. This decelerates the flow and 

increases momentum boundary layer thickness.  Conversely increasing injection effect ( 𝜆 <

0), induces the opposite effect. Blowing (injection) of fluid through the porous wall enhances 

momentum transfer which accelerates the u-velocity component strongly and decreases 

momentum (hydrodynamic) boundary layer thickness. These results agree with the patterns 

computed in other studies e.g. Mukhopadhyay [25] and Uddin et al. [26]. Fig. 3b indicates that 

the opposite response is computed for the effects of suction/injection parameter on v-component 

of velocity. Greater injection ( 𝜆 < 0)  clearly retards the v-component velocity (increases 

momentum boundary layer thickness) whereas greater suction ( > 0), significantly accelerates 

the v-component (decreases momentum boundary layer thickness). Furthermore whereas u-

component is consistently zero at the wall (irrespective of injection or suction at the wall), the v-

component is generally non-zero at the wall. The wall value of v-component velocity is greatest 

with strongest suction. 

Figs. 5 to 8 shows the behavior of temperature profile with respective variation in  Prandtl 

number 𝑃𝑟 , Radiation parameter 𝑅𝑑 , non-Fourier Deborah number 𝛾 and Hartmann number 𝑀. 

Fig. 5 shows that an increment in Prandtl number 𝑃𝑟  progressively decreases the temperature 

profile and therefore reduces thermal boundary layer thickness. The higher Prandtl number values 

studied i.e. Pr >1 are representative of polymeric non-Newtonian fluids. The Prandtl number 

defines the ratio between momentum diffusivity and thermal diffusivity. Higher values of Prandtl 

number are associated with lower thermal diffusivity. Furthermore Prandtl number is inversely 

proportional to thermal conductivity. Polymers possess lower thermal conductivities and therefore 

higher Prandtl numbers than for example liquid metals. The decrease in thermal conductivity with 

greater Prandtl number results in a strong decrease in temperatures in the boundary layer.  
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Fig. 6, shows that with increase in conduction-radiation parameter ( 𝑅𝑑)  consistently 

enhances temperature magnitudes and thereby elevates thermal boundary layer thickness. 

Physically, when the radiation parameter 𝑅𝑑 is high, the radiative flux energizes the polymeric 

flow which adds thermal energy to the regime. This boosts the temperatures in the boundary layer. 

For low values of 𝑅𝑑 thermal conduction heat transfer is more dominant compared with thermal 

radiation and this results in  decreased temperatures.  

Fig. 7 shows that when the magnetic parameter (𝑀) increases, temperature magnitudes are 

strongly enhanced. The supplementary work expended in dragging the polymer against the action 

of the magnetic field (figs. 3a,b) is dissipated as thermal energy i.e. heat. This energizes the 

boundary layer and also leads to an increase in thermal boundary layer thickness. We further note 

that the smooth profiles in the freestream in the plot (and indeed also in all other figures) indicate 

that a sufficiently high value for infinity is imposed in the STLSM solutions. 

Fig. 8 shows that higher values of non-Fourier Deborah number (𝛾) there is a marked 

decrease in temperatures throughout the boundary layer and an associated reduction in thermal 

boundary layer thickness. The modified Deborah number 𝛾 embodies the supplementary effect die 

to heat flux relaxation time which is captured in the non-Fourier model and is absent in the classical 

Fourier model. The non-Fourier Cattaneo-Christov heat flux model can be reduced to simple 

Fourier law of heat conduction by taking 𝛾 = 0. Fluids with shorter heat flux relaxation time are 

associated with higher temperatures while the fluid with longer heat flux are associated with lower 

temperature. With increasing Deborah number (𝛾), a longer heat flux is achieved which causes a 

higher rate of heat transfer from the fluid to the wall and therefore a lower temperature within the 

fluid i.e. heat is depleted from the fluid. This also results in a decrement in thermal boundary layer 

thickness.  

Fig. 9 and 10 shows the response in concentration profile with chemical reaction parameter 

(𝛾𝑐)and Schmidt number (𝑆𝑐). Fig. 9 demonstrates that increasing chemical reaction parameter 

(𝛾𝑐) causes a marked reduction in the concentration profile. The reaction term in the dimensionless 

concentration boundary layer eqn. (14) i.e. −𝛾𝑐𝜙 is based on a first-order irreversible chemical 

reaction which takes place both in the bulk of the fluid (homogeneous) as well as at the wall which 

is assumed to be catalytic to chemical reaction. Although chemical reactions generally fall into 

one of two categories i.e. homogenous or heterogenous, the former is of interest in the present 

study. Homogenous chemical reactions take place uniformly throughout a given phase and exert a 
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similar influence to an internal source of heat generation. We consider the destructive type of 

homogenous chemical reaction. Increasing the chemical reaction parameter (𝛾𝑐)  produces a 

decrease in velocity. The momentum boundary layer thickness is therefore increased substantially 

with greater chemical reaction effect. It is noticed that concentration distributions decrease when 

the chemical reaction increases. Physically, for a destructive case, chemical reaction takes place 

and progressively destroys the original species diffusing in the polymeric viscoelastic fluid. This, 

in turn, suppresses molecular diffusion of the remaining species which leads to a fall in 

concentration magnitudes and a decrease in concentration boundary layer thickness.  

Fig. 10 reveals that an increment in Schmidt number (𝑆𝑐)  decreases the concentration 

magnitudes strongly i.e. reduces 𝜙  values. The Schmidt number embodies the ratio of the 

momentum to the mass diffusivity i.e. DvSc / . The Schmidt number therefore quantifies the 

relative effectiveness of momentum and mass transport by diffusion in the hydrodynamic 

(velocity) and concentration (species) boundary layers. For 1Sc  momentum diffusion rate 

exceeds the species diffusion rate. The opposite applies for Sc < 1. For Sc =1 both momentum and 

concentration (species) boundary layers will have the same thickness and diffusivity rates will be 

equal.  It is observed that as the Schmidt number increases, species (concentration) profiles 

gradually decrease. Smaller values of Sc are equivalent to increasing the chemical molecular 

diffusivity and vice versa for larger values of Sc. Concentration boundary layer thickness is 

therefore significantly reduced with greater Schmidt number. Fig. 11 revels the effects of Deborah 

number on Nusselt number profile.   

 

 

(a) 
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(b) 

Fig. 2 Effect of elasticity parameter 𝛼 on velocity profile. (a) 𝑢-component, (b) 𝑣-component.  

(a) 

(b) 

Fig. 3 Effect of magnetic parameter 𝑀 on velocity profile. (a) 𝑢-component, (b) 𝑣-component. 
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(a)

(b) 

Fig. 4 Effect of suction/injection parameter 𝜆  on velocity profile. (a) 𝑢 -component, (b) 𝑣 -

component. 

 

Fig. 5 Effect of Prandtl number 𝑃𝑟 on temperature profile. 



19 
 

 

 

 

Fig. 6 Effect of radiation parameter 𝑅𝑑 on temperature profile. 

 

Fig. 7 Effect of magnetic parameter 𝑀 on temperature profile. 

 

Fig. 8 Effect of Deborah number 𝛾 on temperature profile. 
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Fig. 9 Effect of chemical reaction 𝛾𝑐 on concentration profile. 

 

Fig. 10 Effect of Schmidt number 𝑆𝑐 on concentration profile. 

 

Fig. 11 Effect of Deborah number 𝛾 on Nusselt number. 
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6. CONCLUSIONS 

In this article, a mathematical model has been developed to investigate the influence of chemical 

reaction, thermal radiation and wall mass flux on magnetohydrodynamic heat and mass transfer in 

the flow of an upper convected Maxwell fluid from a permeable stretching sheet under the effects 

of constant magnetic field. The non-Fourier Cattaneo-Christov heat flux model has been 

implemented. (The Cattaneo-Christov heat flux model can be reduced to the classical Fourier law 

of heat conduction when Deborah number 𝛾 = 0). Numerical solutions are presented for the 

transformed, dimensionless boundary value problem with appropriate wall and free stream 

conditions, using the successive Taylor series Linearization method (STSLM) which utilizes both 

Chebyshev interpolating polynomials and Gauss-Lobatto collocation. Validation of STSLM 

computations has also been included using a Mathematica-based shooting algorithm and also 

published results from the literature. The major conclusions from the present computations may 

be summarized as follows:  

i. Both (u,v) velocity components diminish due to the increment in elasticity parameter. 

ii. Both (u,v) velocity components are decreased with an increase in magnetic parameter. 

iii. When the suction/injection parameter increases then the velocity of the fluid decreases 

markedly along u-component of velocity whereas the converse behaviour is computed for 

the v-component of velocity. 

iv. Higher values of radiation and magnetic parameter induce a significant increase in 

temperature profile and thermal boundary layer thickness.  

v. Thermal boundary layer thickness and temperature magnitudes decrease for large values 

of non-Fourier Deborah number and Prandtl number.  

vi. Concentration magnitudes are suppressed with large values of Schmidt number and 

chemical reaction parameter.  

 

The present study has ignored magnetic induction effects which are invoked at higher magnetic 

Reynolds number. These are currently being investigated.  
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