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Abstract 

An unsteady two-dimensional free convection flow of a viscous incompressible 

fluid past an impulsively started semi-infinite vertical cylinder adjacent to a non-

Darcian porous media in the presence of chemical reaction of first order is 

investigated. The governing boundary layer equations are formulated with 

appropriate boundary conditions and are solved using an implicit finite-difference 

method of Crank-Nicholson type. The problem is shown to be controlled by seven 

thermophysical and hydrodynamic dimensionless parameters, namely thermal 

Grashof number (Gr), species Grashof number (Gm), Darcy number (Da i.e. 

permeability parameter), Forchheimer number (Fs i.e. second order inertial porous 

parameter), Prandtl number (Pr), Schmidt number (Sc) and chemical reaction 

parameter (K1). The effects of thermophysical parameter on the transient 

dimensionless velocity, temperature and concentration are illustrated graphically. 

Also, the effects of the various thermo-physical parameters on the Skin friction, 

Nusselt number and Sherwood number are presented and discussed. This model 

finds applications in polymer production, manufacturing of ceramics or glassware 

and food processing.  

Keywords: Transient thermal convection; chemical reaction; Forchheimer number; 

Nusselt number; Sherwood number; vertical cylinder. 

Nomenclature 

C  species concentration 

C dimensionless concentration  

Da Darcy number 

Fs Forchheimer number 

g gravitational acceleration 

Gr thermal Grashof number 

Gm species Grashof number 

K permeability of porous medium 

k thermal conductivity of fluid 

K1 chemical reaction parameter 

Pr Prandtl number 

R dimensionless radial coordinate 

r radial coordinate 

Sc Schmidt number 

t time 

   temperature 

  dimensionless temperature 

T, C free stream temperature, concentration  

X   dimensionless axial coordinate  

x axial coordinate measured vertically upward   

U,V dimensionless velocity components along 

the X- and R-directions 

u,v velocity components along the x, r directions 

Nux dimensionless local Nusselt number 

Nu  average Nusselt number 

Shx dimensionless local Sherwood number 

Sh  average Sherwood number 

Greek symbols 
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 thermal diffusivity 

 volumetric thermal expansion coefficient 

 dynamic viscosity of fluid 

 kinematic viscosity of fluid 

* volumetric coefficient of expansion with 

concentration 

x dimensionless local shear stress function 

(skin friction) 

 

1. Introduction 

Unsteady free convection flow of a viscous incompressible fluid along a vertical or horizontal 

heated cylinder is an important problem relevant to many engineering applications such as 

geothermal power generation and drilling operations, where the free-stream and buoyancy induced 

fluid velocities are of roughly the same order of magnitude. The exact solution for these types of 

non-linear problems is still out of reach. Sparrow and Gregg [1] provided the first approximate 

solution for the laminar buoyant flow of air bathing a vertical cylinder heated with a prescribed 

surface temperature, by applying the similarity method and power series expansion. Minkowycz 

and Sparrow [2] obtained the solution for the same problem using the non-similarity method. Fujii 

and Uehara [3] analyzed the local heat transfer results for arbitrary Prandtl numbers. Lee et al. [4] 

investigated the problem of natural convection in laminar boundary layer flow along slender 

vertical cylinders and needles for the power-law variation in wall temperature. Rani [5] has 

investigated the unsteady natural convection flow over a vertical cylinder with variable heat and 

mass transfer using the finite difference method. Ganesan and Loganathan [6] solved the problem 

of unsteady natural convective flow past a moving vertical cylinder with heat and mass transfer. 

Chemical reactions can be codified as either heterogeneous or homogeneous processes. This 

depends on whether they occur at an interface or as a single phase volume reaction. In many 

chemical engineering processes, there does occur the chemical reaction between a foreign mass 

and the fluid in which the cylinder is moving. These processes take place in numerous industrial 

applications, e.g., polymer production, manufacturing of ceramics or glassware and food 

processing. Mass transfer effects on moving isothermal vertical plate in the presence of chemical 

reaction studied by Das et al [7]. The dimensionless governing equations were solved by the usual 

Laplace transform technique and the solutions are valid only at lower time level. Ghaly and 

Seddeek [8] presented Chebyshev finite difference solution for viscosity effects on the chemically-

reacting heat and mass transfer along a semi-infinite horizontal plate. Muthucumaraswamy and 

Ganesan [9] presented finite-difference solutions for the effect of first-order chemical reaction on 

flow past an impulsively started vertical plate with uniform heat and mass flux, showing that 

chemical reaction parameter reduces velocities. Ganesan and Loganathan [10] investigated the 

chemically reactive heat and mass transfer in boundary layer convection from a moving vertical 

cylinder.   

Computational transport modelling of buoyancy flows in geomaterials is of considerable interest 

in environmental and civil engineering sciences. Environmental transport processes in soils, forest 

fire development through brush and dry soils, geothermal processes, radioactive waste storage and 

thermal plumes in magmatic geo-systems constitute just a few important applications of geological 

thermofluid transport modelling. A thorough discussion of these and other applications is available 

in the monographs by Ingham and Pop [11] and Nield and Bejan [12]. The vast majority of porous 

media transport models have employed the Darcian model which for isotropic, homogenous 

materials utilizes a single permeability for simulating the global effects of the porous medium on 

the flow. Effectively in the context of viscous hydrodynamic modelling, for example using 

boundary-layer theory, the momentum conservation equation (unidirectional Navier–Stokes 



B. Vasu et al.                                                    Heat and Mass Transfer Research Journal                                     Vol. 1, No. 1; 2017 

             

  

  

3 
 

equation) is supplemented by an additional body force, the Darcian bulk linear drag. Numerous 

studies in the context of transport modelling in soil mechanics, petroleum displacement in 

reservoirs, geothermics, geo-hydrology and filtration physics have employed such an approach. 

For example, Singh et al. [13] studied the free convection flow and heat transfer in a Darcian 

porous geo-material using perturbation methods; this study also incorporated permeability 

variation via a transverse periodic function. Thomas and Li [14] analyzed numerically the unsteady 

coupled heat and mass transfer in unsaturated soil with a Darcy model. The Darcy model assumes 

that the pressure drop across the geo-material is proportional to the bulk drag force. At higher 

velocities, however, inertial effects become important and the regime is no longer viscous 

dominated. The most popular approach for simulating high-velocity transport in porous media, 

which may occur for example under strong buoyancy forces, through highly porous materials, etc., 

is the Darcy–Forchheimer drag force model. This adds a second-order (quadratic) drag force to the 

momentum transport equation. This term is related to the geometrical features of the porous 

medium and is independent of viscosity, as has been shown rigorously by Dybbs and Edwards 

[15]. In the context of coupled heat and mass transfer studies, Kumari et al. [16] studied the double 

diffusive heat and species transport in porous media using the Darcy–Forchheimer model. Takhar 

and Bég [17] used the Keller–Box implicit difference method to analyze the viscosity and thermal 

conductivity effects in boundary layer thermal convection in non-Darcian porous media. Beg et al. 

[18] studied using NSM the unsteady hydrodynamic couette flow through a rotating porous 

medium channel using a Forchheimer-extended Darcy model. Vallampati et al. [19] presented a 

numerical solution for the free convective, unsteady, laminar convective heat and mass transfer in 

a viscoelastic fluid along a semi-infinite vertical plate. Radiation and mass transfer effects on two-

dimensional flow past an impulsively started isothermal vertical plate were analyzed by Prasad et 

al. [20]. Cookey et al [21] investigated the problem of MHD free convection and oscillating flow 

of an optically thin fluid bounded by two horizontal porous parallel walls with a periodic wall 

temperature. Chuo-Jeng Huang [22] numerically analyzed the heat and mass transfer 

characteristics of natural convection about a vertical flat plate embedded in a saturated porous 

medium with blowing/suction and thermal radiation effects considering Soret and Dufour. Sharma 

and Dutt [23] studied the effect of magnetic field on unsteady free convection oscillatory flow 

through vertical porous plate, when free stream velocity, wall temperature and concentration are 

periodic. The unsteady mixed convective fluid flow through an annulus filled with a fluid saturated 

porous medium in the presence of cross-diffusion effect and constant heat source is numerically 

investigated by Muli and Kwanza [24].  

This work however only considered the vertical cylinder scenario. Clearly much remains to be 

explored in this topic, both in the way of geometrical bodies in the porous media (e.g. cones, 

spheres, ellipsoids, wedges, cylinders) and also regarding interactive effects of the thermophysical 

parameters. The objective of the present work is therefore to investigate the free convection 

simultaneous heat and mass transfer flow from a vertical cylinder embedded in fluid saturated 

porous medium with Darcian resistance, Forchheimer quadratic drag, chemical reaction, thermal 

Grashof number, species Grashof number, Prandtl number and Schmidt number effects. The 

effects of governing multi-physical parameters on heat and mass transfer characteristics are 

analyzed. The non-linear coupled partial differential equations governing the flow field have been 

solved numerically by using an implicit finite difference method of Crank – Nicolson type. These 

processes take place in numerous industrial applications, e.g., polymer production, manufacturing 

of ceramics or glassware and food processing.   
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The behavior of the velocity, temperature, concentration, skin friction, Nusselt and Sherwood 

numbers have been discoursed for variations in governing parameters, and benchmarked where 

appropriate with previous studies.   

     

2. Mathematical Analysis 

Consider a two-dimensional unsteady free convection heat and mass transfer flow from a vertical 

cylinder of radius r embedded in an isotropic, homogenous, fully-saturated porous medium as 

shown in Figure 1. The x-axis is measured vertically upward along the axis of the cylinder. The 

origin of x is taken to be at the leading edge of the cylinder, where the boundary layer thickness is 

zero. The radial coordinate r is measured perpendicular to the axis of the cylinder. The surrounding 

stationary fluid temperature is assumed to be of ambient temperature (

T ). Initially, i.e., at t=0 it 

is assumed that the cylinder and the fluid are of the same temperature 
T . When 0t , the 

temperature of the cylinder is raised to 
 TTw  and maintained at the same level for all the time 

0t .  

To derive the basic equations for the problem under consideration, the following assumptions are 

made: 

(i) The flow is unsteady and free convection embedded in porous medium. 

(ii) The fluid under consideration is viscous incompressible and electrically conducting with 

constant physical properties. 

(iii) The magnetic Reynolds number is assumed to be small enough so that the induced magnetic 

field can be neglected. 

(iv) The effect of the viscous dissipation and Joule heating are assumed to be negligible in the 

energy equation. 

(v) There is a homogeneous chemical reaction of first order with rate constant lK  between the 

diffusing species and the fluid. 

(vi) Also, the mass diffusion and heat diffusion are assumed to be independent on each other.  

 

Figure 1.  Physical model and Coordinate system 
 

Under these assumptions, the boundary layer equations of mass, momentum and energy with 

Boussinesq’s approximation are as follows: 
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Mass diffusion equation 
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The initial and boundary conditions are: 

:0t  0u , 0v , 
 TT ,  

 CC        for all 0x  and 0r   

:0t  0uu  , 0v ,  wTT  ,  wCC        at 0rr    

            0u , 0v ,  
 TT ,  

 CC          at 0x  and 0rr   

            0u , 
 TT ,  

 CC              as r                                              (5)                     

where u , v  are the velocity components in x , r  directions respectively, t - the time, g - the 

acceleration due to gravity,  - the volumetric coefficient of thermal expansion, * - the 

volumetric coefficient of expansion with concentration, T  - the temperature of the fluid in the 

boundary layer, C - the species concentration in the boundary layer, wT   - the wall temperature, 

wC  - the concentration at the wall, 
T  - the free stream temperature of the fluid far away from the 

plate, 
C  - the species concentration in fluid far away from the cylinder,  - the kinematic 

viscosity,  - the density of the fluid, 
pc - the specific heat at constant pressure, k-permeability, b-

Forchheimer geometrical inertial parameter for the porous medium Kl - Chemical reaction rate and 

D - the species diffusion coefficient. In the momentum equation (2) the first two terms on the right-

hand side represent the thermal buoyancy body force and the species buoyancy body force, 

respectively. The penultimate term is the Darcian linear drag and the final term is the Forchheimer 

quadratic drag force. 

Knowing the velocity, temperature and concentration fields, it is interesting to study the local and 

average skin-friction, Nusselt number and Sherwood numbers are defined as follows. 

Local and average skin-friction are given respectively by 
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Local and average Nusselt number are given respectively by 
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Local and average Sherwood number are given respectively by 






















CC

r

C
x

Sh
w

rr

x
0

                                                                                                                                    

(10) 

dx
CC

r

C

Sh

L

w

rr

L 






































0

0

                                                                                                                             

(11) 

In order to write the governing equations and the boundary conditions in dimensionless form, the 

following non-dimensional quantities are introduced. 
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The corresponding initial and boundary conditions are  

:0t  0U , 0V , 0T ,  0C     0X  and 0R   

:0t  1U , 0V ,  1T ,  1C       at 1R   

0U , 0V ,  0T ,  0C               at 0X  and 1R                                                  (17)

0U , 0T ,  0C                as R     

where Gr is the thermal Grashof number, Gc - solutal Grashof number, Pr  - the Prandtl number, 

Da-Darcy number, Fs- the Forcheimmer inertial number, Sc - the Schmidt number and K1- non-

dimensional chemical reaction parameter. 

Local and average skin-friction in non-dimensional form are given by 
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Local and average Nusselt number in non-dimensional form are given by 
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Local and average Sherwood number in non-dimensional form are given by 
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3. Numerical Solution 

In order to solve these unsteady, non-linear coupled equations (13) to (16) under the conditions 

(17), an implicit finite difference scheme of Crank-Nicolson type has been employed. This method 

was originally developed for heat conduction problems [25]. It has been extensively developed 

and remains one of the most reliable procedures for solving partial differential equation systems. 

It is unconditionally stable. It utilizes a central differencing procedure for space and is an implicit 

method. The partial differential terms are converted to difference equations and the resulting 

algebraic problem is solved using a tri-diagonal matrix algorithm. For transient problems a 

trapezoidal rule is utilized and provides second-order convergence. The Crank-Nicolson Method 
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(CNM) scheme has been applied to a rich spectrum of complex multiphysical flows. Kafousias 

and Daskalakis [26] have employed the CNM to analyze the hydromagnetic mixed convection 

Stokes flow for air and water. Edirisinghe [27] has studied efficiently the heat transfer in 

solidification of ceramic-polymer injection moulds with CNFDM. Sayed-Ahmed [28] has 

analyzed the laminar dissipative non-Newtonian heat transfer in the entrance region of a square 

duct using CNDFM. Nassab [29] has obtained CNFDM solutions for the unsteady gas convection 

flow in a porous medium with thermal radiation effects using the Schuster-Schwartzchild two-flux 

model. Prasad et al [20] studied the combined transient heat and mass transfer from a vertical plate 

with thermal radiation effects using the CNM method. The CNM method works well with 

boundary-layer flows. The finite difference equations corresponding to equations (13) to (16) are 

discretized using CNM as follows 
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The region of integration is considered as a rectangle with sides maxX (=1) and maxR (=14), where 
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maxR corresponds to R , which lies very well outside the momentum, energy and concentration 

boundary layers.  The maximum of R  was chosen as 14 after some preliminary investigations, so 

that the last two of the boundary conditions (17) are satisfied. Here, the subscript i - designates the 

grid point along the   X  - direction, j  - along the R - direction and the superscript n along the t - 

direction. An appropriate mesh size considered for the calculation is X  = 0.05, R  = 0.25, and 

time step t  = 0.01.  During any one-time step, the coefficients 
n

jiU ,  and 
n

jiV ,  appearing in the 

difference equations are treated as constants.  The values of   and CU, V, T are known at all grid 

points at t = 0 from the initial conditions.  The computations of   and CU, V, T at time level (n+1) 

using the known values at previous time level (n) are calculated as follows. 

The finite difference Equation (27) at every internal nodal point on a particular i - level constitute 

a tri-diagonal system of equations. Such a system of equations is solved by Thomas algorithm as 

described in Carnahan et al. [30]. Thus, the values of C are found at every nodal point on a 

particular i at (n+1)th time level. Similarly, the values of T are calculated from the Equation (29).  

Using the values of C  and T at (n+1)th time level  in the Equation (26), the values of U at (n+1)th 

time level are found in a similar manner.  Thus the values of U C, T  and are known on a particular 

i - level. The values of V are calculated explicitly using the Equation (25) at every nodal point on 

a particular   i - level at (n+1)th time level.  This process is repeated for various i - levels.  Thus, 

the values of C, T, U and V are known at all grid points in the rectangular region at (n+1)th time 

level. Computations are carried out till the steady state is reached. The steady state solution is 

assumed to have been reached, when the absolute difference between the values of U as well as 

temperature T and concentration C at two consecutive time steps are less than 10-5 at all grid points.  

The derivatives involved in the Equations (24) to (27) are evaluated using five-point approximation 

formula and the integrals are evaluated using Newton-Cotes closed integration formula. The 

truncation error in the finite-difference approximation is O  XRt  22 and it tends to zero 

as, X , R , 0t  . Hence the scheme is compatible. The finite-difference scheme is 

unconditionally stable as explained by Vasu et al [31]. Stability and compatibility ensures 

convergence.   
 

4. Results and Discussion 

Extensive computations have been performed for the effects of the controlling thermofluid and 

hydrodynamic parameters on dimensionless velocity (U), temperature (T) and concentration (C), 

and also local Skinfriction (x), local Nusselt number (Nux), local Sherwood number (Shx). Only 

selected computations are presented in figures (2) to (20) have been reproduced here for brevity. 

Default values of the parameters are as follows: thermal Grashof number (Gr) = 10, species 

Grashof number (Gc) = 10, Prandtl number (Pr) = 0.7 (air), Darcy number (Da) = 0.1, Schmidt 

number (Sc) = 0.6 Forchheimer parameter (Fs) = 0.1, and Chemical parameter (K1) = 0.5, which 

represents physically buoyant non-Darcian case of hydrogen diffusing in a hydromagnetic 

boundary layer through porous media present. All graphs therefore correspond to these values 

unless specifically indicated on the appropriate graph. The present analysis concerns the case of 

optically thick boundary layers, where the thermal boundary layer is expected to become very 

thick as the medium is highly absorbing.  

Figure (2) to (4) illustrates the dimensionless transient velocity (U), temperature (T) and 

concentration (C) responses with various Forchheimer parameters (Fs) vs. R (transverse co-

ordinate). The Forchheimer effect is a second-order nonlinear porous medium inertial resistance. 
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It arises also in the momentum equation (14) i.e. - FsU2. Increasing Fs will evidently boost this 

Forchheimer drag which will decelerate the flow in the boundary layer as seen in figure (2). For 

increasing Fs values, the time, t, required to attain the steady state scenario is also elevated 

considerably. A velocity peak is again witnessed close to the cylinder surface. At some distance 

from the wall all profiles tend to merge and the effect of increasing Fs is greatly diminished.  

 

 

Figure 2. Steady State velocity profiles at X=1 for different Fs 

Figure (3) shows that temperature, T is increased continuously through the boundary layer with 

distance from the cylinder surface, with an increase in Fs, since with flow deceleration; heat will 

be diffused more effectively via thermal conduction and convection. The boundary layer regime 

will therefore be warmed with increasing Fs and boundary layer thickness will be correspondingly 

increased, compared with velocity boundary layer thickness, the latter being reduced. An increase 

in the Forchheimer parameter (Fs), shown in Figure (4), is seen to boost the concentration 

distribution, in particular, in the regime, i.e. as Forchheimer drag increases, and the flow field is 

decelerated, contaminant is found to increase in concentration along the wall. The slower flow in 

the geometrical, therefore, does not have time to distribute contaminant along the wall, which 

accounts for higher values of C at the lower vicinity with increasing Fs values. 
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Figure 3. Steady state temperature profiles at X=1 for different Fs 

 

Figure 4. Steady state concentration profiles at X=1 for different Fs 

 

Figure (5) and (6) depicts the effects of the bulk porous medium drag parameter, Da, on the 

transient velocity (U) and concentration (C) versus R profiles. This parameter, Da is directly 

proportional to the permeability of the regime and arises in the linear Darcian drag force term in 

the momentum equation (14), viz. 
Da

U
 . As such increasing Da will serve to reduce the Darcian 

impedance since progressively less fibers will be present adjacent to the cylinder in the porous 

regime to inhibit the flow. The boundary layer flow will therefore be accelerated and indeed this 

is verified in figure (5) where we observe a dramatic rise in flow velocity, U, with an increase in 

Da from 0.1 through 0.125, 0.15, 0.175 to 0.2. In close proximity to the cylinder surface a velocity 

shoot is generated; with increasing Darcy number this peak migrates slightly away from the wall 

into the boundary layer. Evidently lower permeability materials serve to decelerate the flow and 

this can be exploited in materials processing operation where the momentum transfer may require 

regulation.  
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Figure 5. Steady State velocity profiles at X=1 for different Da 

 

In figure (6) the concentration evolution (C) from the cylinder surface to the free stream with 

various Darcy numbers is depicted. Contrary to the velocity response, diffusion of species is stifled 

with increasing Darcy number i.e. concentration values decrease owing to an increase in 

permeability of the medium. Therefore, lower permeability media aid in the diffusion of species 

in the boundary layer while higher permeability regimes oppose it.  
 

 

Figure 6. Steady state concentration profiles at X=1 for different Da 

 

The effects of thermal Grashof number, Gr on velocity and temperature profiles are shown Figures. 

(7) and (8).  Figure (7) indicates that an increase in Gr strongly boosts velocity in the boundary 

layer. There is rapid rise in the velocity near the wall and the peak value of the velocity at Gr = 25. 

The profiles descend smoothly towards zero although the rate of descent is greater corresponding 

to higher Grashof numbers. Gr defines the ratio of the thermal buoyancy force to the viscous 

hydrodynamic force and as expected to accelerate the flow. The temperature distributions descend 

smoothly from their maxima of unity at the wall (R = 0) to zero at the edge of the boundary layer. 

Thermal buoyancy therefore depresses the temperature in the medium, a result which agrees with 

the fundamental studies of free convection [5].     
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Figure 7. Steady State velocity profiles at X=1 for different Gr 

 

 

Fig 8. Steady state temperature profiles at X=1 for different Gr 

The effects of species Grashof number Gc on dimensionless transient velocity (U) and 

concentration (C) functions are presented in Figures (9) and (10). The velocity U is observed to 

increase substantially with a rise in Gm from 10 to 25. Hence species Grashof number boosts the 

velocity of the fluid indicating that buoyancy has an accelerating effect on the flow filed.  

Concentration, C, however undergoes a marked decrease in value with a rise in species Grashof 

number, as illustrated in Figure (10) The depression in concentration is maximized by larger 

species Grashof numbers. All profiles decay smoothly from unity at the cylinder surface to zero as 

R →. 
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Figure 9. Steady State velocity profiles at X=1 for different Gc 

 

Fig 10. Steady state concentration profiles at X=1 for different Gc 

The effects of Prandtl number on the dimensionless transient velocity (U) and temperature (T) 

profiles are depicted in Figures (11) and (12). Pr encapsulates the ratio of momentum diffusivity to 

thermal diffusivity. Larger Pr values imply a thinner thermal boundary layer thickness and more 

uniform temperature distributions across the boundary layer. With increasing Pr values, the time, t, 

required to attain the steady state scenario is also elevated considerably. For Pr=1, the momentum 

and thermal boundary layer thicknesses, as described by Schlichting [32], are approximately of equal 

extent. Smaller Pr fluids have higher thermal conductivities so that heat can diffuse away from the 

surface of the cylinder than for higher Pr fluids. We therefore expect that an increase in Pr the thermal 

boundary layer will be decreased in thickness and there will be corresponding uniformity of 

temperature distributions across the boundary layer. The computations show that the velocity is 

therefore reduced as Pr rises from 0.71, through 1.0, 2.0 and 4.0, since the fluid is increasingly 

viscous as Pr rises. Hence the fluid is decelerated with a rise in Pr. Figure (12) indicates that a rise 

in Pr substantially reduces the temperature, in the fluid saturated porous regime. For all cases, 

velocity and temperature decay smoothly to zero as R→, i.e. in the free stream.  
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Figure 11. Steady State velocity profiles at X=1 for different Pr 

 

Figure 12. Steady state temperature profiles at X=1 for different Pr 

The effect of Sc on dimensionless concentration is shown Figure (13). Sc, i.e. Schmidt number, 

embodies the ratio of the momentum to mass diffusivity. Sc therefore quantifies the relative 

effectiveness of momentum and mass transport by diffusion in the hydrodynamic and concentration 

boundary layers.  We have presented the computations for Pr = 0.7. In all profiles for different Sc 

values, Pr Sc . The thermal and species diffusion regimes are of different extents. As Sc increases, 

Figure (13) shows that concentration (C) values are strongly decreased, as larger values of Sc 

correspond to a decrease in the chemical molecular diffusivity i.e. less diffusion therefore takes place 

by mass transport. The time required to reach the steady state increases with the increase in Sc. The 

dimensionless concentration profiles all decay from a maximum concentration of 1 at 0R   (the 

wall boundary condition) to zero in the free stream.    
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Figure 13. Steady state concentration profiles at X=1 for different Sc 

Figures (14) to (16) display the influence of chemical reaction parameter (K1) on the transient 

velocity (U), temperature (T) and concentration (C) profiles and time, t. The effect of velocity for 

different chemical reaction parameter (K1 = 0.5, 1.0, 2.0, 4.0), Gr = Gc = 5, Fs = Da = 0.1, Pr = 0.71 

and Sc = 0.6 are shown in Figure (14). It is observed that the velocity increases with decreasing 

chemical reaction parameter. It is seen that as an increase of chemical reaction parameter leads to 

increase temperature profiles. Figure (16), represents the effect of concentration profiles for different 

chemical reaction parameter K1. The effects of chemical reaction parameter play an important role 

in concentration field. There is a fall in concentration due to increasing the values of the chemical 

reaction parameter. However, with progressive of time the concentration is found to be decreased in 

the boundary layer regime. 
 

 

Figure 14. Steady state velocity profiles at X=1 for different K1 
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Figure 15. Steady state temperature profiles at X=1 for different K1 

 

Figure 16. Steady state concentration profiles at X=1 for different K1 

Knowing the velocity and temperature field, it is customary to study the skin-friction, the Nusselt 

number and Sherwood number. The derivatives involved in the equations (18) to (23) are evaluated 

using five-point approximation formula and then the integrals are evaluated using Newton-Cotes 

closed integration formula. 

The Local values of the skin-friction, Nusselt number and Sherwood number for fixed parameters 

Gr = Gc = 10, Pr = 0.71, Da = 0.1, Fs = 0.1, K1 = 0.5 and Sc = 0.6 are plotted in Figures (17) to 

(20) respectively. Local skin-friction values are evaluated from equation (28) and plotted in Figure 

(17) as a function of the axial coordinate. The local wall shear stress increases with increasing 

chemical reaction parameter. The value of the skin-friction becomes negative, which implies that 

after some time there occurs a reverse type of flow near the moving cylinder. Physically this is 

also true as the motion of the fluid is due to cylinder moving in the vertical direction against the 

gravitational field. The rate of heat transfer increases with decreasing values of the chemical 

reaction parameter. The Local Nusselt number for different values of the both Forchheimer 

parameter, Darcy number and chemical reaction parameter is shown in Figure (18). The trend 

shows that the Local Nusselt number decreases with increase both chemical reaction parameter 

and Forchheimer parameter while Darcy number decreases. The Local Sherwood numbers for 
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different values of the chemical reaction parameter and Forchheimer parameter are shown in 

Figure (19) and (20). The trend shows that the rate of concentration decreases the presence of 

chemical reaction and Forchheimer parameter than their absence. 

 

 

Figure 17. Local Sherwood number distribution for several of K1 and Fs.  

 

Figure 18. Local Sherwood number distribution for several of Da and Sc.  
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Figure 19. Local Nusselt number distributions  

 

Figure 20. Local Skin friction distributions for various K1 

5. Conclusions 

A detailed mathematical study for the chemically-reactive unsteady, free convection heat and mass 

transfer boundary layer flow along a vertical cylinder embedded in a non-Darcy porous medium, 

has been conducted. Computational solutions to the dimensionless conservation equations have 

been obtained using the implicit finite-difference scheme of Crank-Nicolson type. It has been 

shown that an increasing Darcy number is seen to accelerate the flow but decreases concentration 

values in the regime. Increasing Forchheimer inertial drag parameter (Fs) reduces velocities but 

elevates temperatures and concentration values.  The velocity as well as concentration decreases 

with increasing the chemical reaction parameter (K1). Local Sherwood number is enhanced with 

a rise in Schmidt number Sc and Da, decreases with increasing Fs and K1. i.e. greater rates of 

concentration transfer of contaminant occur for lower porous resistance effects. The present 

numerical code based on the robust, implicit finite-difference scheme of Crank-Nicolson type has 

been shown to produce excellent results. Very good correlation between the present computations 

and the trends of other previous studies has been identified. Further investigations will consider 

transient effects and employ the Keller-box method to consider more complex chemical 

engineering phenomena including electrophoretic deposition, nanofluids and thermophoresis.  
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