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a b s t r a c t

Efficient manipulation of sound waves by some resonant acoustic metasurface designs
has recently been reported in the literature. This paper presents a general theoretical
framework for the description of sound wave interaction with the resonant metasurface
that is independent of the nature of resonators and the excitation. The equations governing
the behaviour of the metasurface are upscaled from the rigorous description of its unit
cell using the two scale asymptotic homogenisation. The procedure relies on the existence
of the boundary layer confined in the vicinity of the resonators operating in the deep
subwavelength regime. Themodel is capable of describing sound interactionwith the array
of resonators positioned above or upon the substrate, so that the out of plane direction
becomes an additional degree of freedom in the design. It is shown that at the leading order,
the behaviour of the resonant surface is described in terms of the effective admittance,
whose unconventional properties makes it possible to achieve the total sound absorption
at multiple frequencies, broadband absorption, the phase reversal of the reflected wave at
resonance and the control of the enclosure modes. The theory is validated by experiments
performed in the impedance tube and in the anechoic environment using a surface array
of spherical Helmholtz resonators with the extended inner neck. Experimental results
confirm the effectiveness and robustness of the resonant surface for control of sound
waves.
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1. Introduction

This article is devoted to the theoretical and experimental study of a resonant surface, that is a two-dimensional array of
resonators arranged at a surface in a regular lattice. Both resonators and the spacing between themare small compared to the
wavelength at the resonance frequency (condition of scale separation). Resonant surfaces are of interest in many domains
of physics. They can be used, for instance, to control wavefields through tunable boundary conditions [1–3], or to achieve
the perfect absorption of an incident wave [4,5]. In acoustics, examples of resonant surfaces include perforated panels with
air cavity behind [6], quarter wavelength tubes folded in a bulky shape [7] or loaded membranes arranged above gas-filled
cavity [5]. While the frequency selective absorption is often the targeted function of such surface arrays, other applications
are emerging. One of them is to use arrays with graded properties to alter the phase of the reflection coefficient and realise
wavefront manipulation [7], somewhat similarly to room diffusers [8]. While resonant surfaces are usually effective in a
narrow frequency range close to the resonance, the use of several mistuned resonators per period can broaden the working
frequency range [9], but it complicates the design as the period has to remain small compared to the wavelength.

Although several structures have been shown to achieve some remarkable effects in response to some particular incident
wavefields (usually plane waves at normal incidence), it seems that a theoretical framework suitable for the description of
surface effects in a general case is still lacking. This subject is addressed in this work. Here, a general analytical model
based on the method of two-scale asymptotic homogenisation [10–12] is presented which can be applied to any acoustic
resonant surface arranged on a rigid backing. No particular assumptions are made about the nature of the resonators or
the incident field, except for the condition of scale separation. While the theory of two-scale asymptotic homogenisation is
usually applied to find the effective constitutive laws of periodic bulk media, here it is used to derive the effective boundary
condition satisfied by the propagating field at the surface array [13–20] by means of a boundary layer analysis. The model
provides a systematic analysis of total sound absorption at single or multiple frequencies, broadband absorption, a phase
reversal of reflected field at resonance, and control of enclosure mode. In particular, the model addresses the case when the
resonators are positioned above the rigid backing, which makes the out-of-plane direction an additional degree of freedom
in the design. The theory is validated experimentally using surface arrays of Helmholtz resonators with an extended inner
duct designed in [21,22]. This design allows for a compact stacking of the resonators at the surface. The experiments are
performed in both impedance tube and an anechoic chamber, with the former providing a basic technique for unit cell
characterisation and the latter used to characterise absorption by finite-size surfaces.

The article is organised as follows. The two-scale asymptotic homogenisationmethod is presented in Section 2 and is used
for the derivation of an equivalent surface admittance. The unconventional effects accompanying sound reflection from the
structured surface are described in Section 3. The approach to the design of the resonant surface is described in Section 4,
and the experimental results are presented in Sections 5 and 6.

2. Resonant surface admittance

In this section, the propagation of air-borne acoustic waves under ambient conditions is studied in the presence of the
resonant surface and in the linear harmonic regime. At equilibrium, the density of air is ρe = 1.213 kg/m3, the atmo-
spheric pressure Pe = 1.013 × 105 Pa, the adiabatic constant γ = 1.4, the thermal conductivity κ = 0.026 W/(Km), the
heat capacity at constant pressure cp = 1.005 × 103 J/(kg K), the viscosity µ = 1.85 × 10−5 Pa s, and the sound speed
c =

√
γ Pe/ρe ≈ 342 m/s. The study is performed at frequencies ω/2π (time convention e−iωt ) close to the natural fre-

quency of the resonators arranged on the surface. Following the model of Boutin & Roussillon developed for applications in
elastodynamics [16], the acoustic behaviour of the resonant surface is described in terms of an effective surface condition
derived bymeans of the two-scale asymptotic homogenisation [10–12]. The approach relies on the scale separation between
the long wavelength at resonance and the characteristic lengths of the surface micro-structure, which leads to the existence
of a boundary layer confined in the vicinity of the surface array [13–20].

2.1. Scale separation and boundary layer

The array under study is the 2-D periodic repetition of the Representative Elementary Volume (REV)Ω at a plane surface
S, with inward normal vector n directed at air. The REVΩ includes N linear acoustic resonators and the rigid backing, see
Fig. 1. The nature of the resonators is not specified at this stage. They can be positioned upon or above the rigid backing as
well as fully or partially embedded in it. In order to describe this array of three-dimensional REVs by an equivalent surface
condition, the homogenisation process must be performed along with a reduction of one space dimension. To do so, the
following condition of scale separation is required: the characteristic size ℓ of the REV (microscopic scale) has to be much
smaller than the reduced wavelength L = λ/(2π) (macroscopic scale) of the propagating field in air. This condition is
quantified by the scale parameter ϵ = ℓ/L ≪ 1 which defines the applicability of the model.

The resonators in the REVs experience resonancewithin the frequency range of scale-separation. To satisfy this condition,
a specific design of resonators is required, that leads to a regime of co-dynamics [21] between the microscopic and
macroscopic scales. This regime has been described as early as 1985 by Auriault & Bonnet in elastodynamics [23] (see
Ref. [24] for an English version). Since the 2000s, the specific features of this regime have been extensively used to engineer
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Fig. 1. An example of the resonant surface at a rigid backing. Illustration of the condition of scale separation in 2-D: The size ℓ of the REVΩ is much smaller
than the reduced wavelength λ/(2π) of the propagating field. Example of resonators in the REV: Helmholtz resonator; air-filled elastic shell; folded tube,
and loaded membrane covering cavity.

bulk resonant metamaterials [25,26] and metasurfaces [15,16,20]. For structured surfaces, the regime of co-dynamics
fundamentally differs from the so-called surface roughness effect [27,28], which is due to surface geometry only (that is,
without resonance).

When excited by the long-wavelength propagating field, with the pressure P and the particle velocityV, the resonators of
the resonant surface act as mutually-interacting secondary sources that prescribe the particle velocity v at their boundary.
Hence, the velocity distribution at the air/array boundary is locally Σ-periodic while being modulated at the macroscopic
scale. Due to the scale-mismatch with the local periodicity, the long-wavelength propagating field is unable to balance such
a velocity distribution on its own. To achieve the scale-transition between the propagating field and the velocity distribution
at the boundary, a Boundary Layer (BL) is formed in the vicinity of the surface [11,14,16,18]. The BL field, with the pressure
p⋆ and the particle velocity v⋆, is superimposed upon the propagating fields P and V to satisfy the locally-periodic boundary
conditions. Under the condition of the scale separation, the boundary layer is confined near the resonant surface, being
formed by evanescent waves which fade away at some distance from it. Such diffuse modes [29] inherited from the surface
heterogeneity, have been mentioned in some specific cases of surface roughness [27] or membrane arrays [5] in acoustics.
In the following, the BL field is shown to be the keystone in the description of the resonant surface in terms of an equivalent
boundary condition for the propagating field.

2.2. Homogenisation scheme

To describe the resonant surface in terms of an equivalent boundary condition, the method of two-scale asymptotic
homogenisation [10–12] is used. This theoretical framework, well-known since the late 1970s, has already been applied
to a wide range of physical problems, extended to framed structures [30–32], generalised to micromorphic media [33],
and used for media with multiple scales of porosity [34,35]. It is based on the two-scale description of space and
asymptotic expansions of the fields. While this method is usually applied to derive the constitutive laws and effective bulk
parameters of 3-D periodic media, it can also be adapted for derivation of an equivalent boundary condition at the surface
array [13–20]. The present homogenisation scheme combines the usual two-scale asymptotic formulation for periodic
continuous media [10–12], with that for the discrete media [30–32] where Taylor expansions of the fields are applied. The
homogenisation formulation is described in detail in Appendix A.

This hybrid formulation is justified by the fact that, while the boundary layer is continuous in space, the 2-D periodicity
of the array enforces the discretisation of the resonant surface: a countable number of REVsΩn, where n is an integer, forms
the surface array. Similarly, the resonators within the REVs are the discrete entities, which aremutually coupled through the
acoustic fields that act at their boundaries. This is evident when defining the local (exact) boundary conditions that have to
be satisfied by the total pressure P + p⋆ and velocity V+ v⋆. These conditions are as follows (see Fig. 2 for the notations). In
response to the external field P+p⋆, the resonator j ∈ [[1,N]]of the unit cellΩn produces theparticle velocity v

j
n = Rj(P+p⋆)

at its boundaryΓ j
n , where the linear operatorRj depends on the inner dynamics of the resonator j (see Section 2.4). In return,

the velocity vjn is balanced by the total velocity field V+v⋆ at the boundaryΓ j
n , that is (V+v⋆) ·nj

n = vjn ·nj
n, where the vector

nj
n is normal to Γ j

n and directed at air. The same equations hold at the rigid substrate Γ j=0
n withinΩn, with R0

· n0
n = 0.

2.3. Main results at the leading order

Themost significant results found from two-scale asymptotic homogenisation are summarised here. In the leading order
approximation, the boundary layer is shown to be in a quasi-static and quasi-incompressible regime. This is consistent with
the fact that, under the condition of scale separation, the BL thickness is much smaller than the wavelength of propagating
field. These properties are combined with the local Σ-periodicity and evanescence of the boundary layer to obtain the
following results. First, the BL pressure p⋆ is shown to be one order of magnitude smaller than that of the propagating field,
that is p⋆ = O(ϵP). For this reason, it can be neglected in the leading order approximation. However, the BL velocity field v⋆
cannot be neglected, instead, the BL incompressibility prescribes the following mass conservation law for the macroscopic
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Fig. 2. Schematic at the local scale (three cells are represented) of a resonant surface with a single resonator j in the REVΩn . The resonator inΩn has the
boundary Γ j

n with normal vector nj
n . The rigid substrate inΩn has the boundary Γ 0

n with normal vector n0
n . Representation of the column Cn of air in and

above the REVΩn where the equilibrium is integrated withΣ-periodicity conditions applied at its lateral surface, see Appendix A. The plane surface S and
the centroid position xn of the boundaries Γ j

n are also shown.

field in the REVΩn:

V(xn) · n =


j∈[[1,N]]

Q j
n

|Σ |
; Q j

n =


Γ

j
n

vjn · nj
n dΓ ; (1)

where Q j
n is the acoustic flux produced by the resonator j in the REVΩn; xn is the centroid of the boundaries Γ j

n in the REV
Ωn; and |Σ | is the surface area of the 2-D periodΣ . This means that the propagating field balances the flux produced by all
resonators within the REV, per unit area of the 2-D period Σ . As a result, at the leading order, the exact knowledge of the
geometry Γ j

n or velocity distribution vjn is not required to formulate the mass conservation law at the boundary. Moreover,
any arrangement producing no acoustic flux


j Q

j
n = 0 (e.g., a distribution of acoustic moments or rigid surface roughness)

leads to an effective boundary condition equivalent to that of a rigid surface, that is V(xn) · n = 0. Hence, microscopic
surface corrugation has no significant effects at the leading order, except for a small phase-shift of the order O(ϵ) related to
the position of the surface S relatively to the rigid backing. Note also that Eq. (1) remains valid if the velocity vjn is prescribed
by a periodic array of sources that satisfies the condition of scale separation, e.g., for active metasurface applications [36].

Since the propagating pressure field P prevails at the leading order and is shown to be uniform within the REV Ωn, the
velocity vjn produced by the resonator j inΩn results from the pressure P only and reads vjn = P(xn)Rj(1). Using this result,
the acoustic flux Q j

n produced by the resonator is derived in the form Q j
n = Y jP(xn), where the admittance Y j is related to

the response of resonator j to a unitary pressure field:

Y j
=


Γ j

Rj(1) · nj dΓ . (2)

Note that the admittance Y j is independent on the position xn because the cells Ωn are structurally identical. Further,
combining Eq. (2) with (1) provides an admittance condition for the propagating fields, V(0) ·n = −ϒP , where the effective
admittance reads ϒ(xn) = −


j Y

j/|Σ |. The minus sign is introduced to comply with the convention of defining a surface
admittance using the outward normal vector −n. Since under the condition of scale separation the discrete positions {xn}
form a fine mesh on the plane surface S that includes them, the admittance ϒ can be extrapolated to the whole surface
[30–32]. As a result, the propagating field is governed by the equations of momentum and mass conservation along with
the condition of equivalent admittance:

iωρeV = gradP; iωP = γ PedivV; V · n = −ϒP on S; ϒ = −


j∈[[1,N]]

Y j

|Σ |
. (3)

The expression for the effective admittance ϒ of the array can be seen as the extension of the averaged surface admittance
derived for perforated panels with resonators behind [6] to the case when the resonators are located above the rigid sur-
face or only partially embedded in it. As expected from the condition of scale separation ℓ ≪ L, the effective admittance ϒ
is independent on the thickness of the REV Ω , contrary to effective fluid layer models [37–39]. Note also that the macro-
scopic description has been derived exclusively from the description of the system at the microscopic scale and is valid for
any propagating field that satisfies the condition of scale separation. The results are accurate up to the precision ϵ. This
up-scaling homogenisation method is thus different from other approaches, where the macroscopic effective description
is chosen phenomenologically (usually in the same form as that at the microscopic scale) and the effective parameters are
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adjusted to satisfy a rule of micro–macro equivalence (e.g., matching first-order scattering modes [40] or plane wave reflec-
tion/transmission coefficients through an array [37–39]). Such a prerequisite-free approach is all the more important for
complex media that constitutive equations at the macroscopic scale can depart greatly from those at the microscopic scale,
especially when resonances occur. Examples of such atypical up-scaling relations are effective negative mass [23,24,41] or
double-gradient models [42] which apply at the macroscopic scale while usual Newton’s Law governs the behaviour of the
micro-structures.

2.4. Response function of the resonators

To describe the response function Rj of the resonator j, the dynamic equilibrium of the fields inside the resonator must
be considered. The condition of the response linearity and momentum conservation are used, along with Dirichlet and/or
Neumann boundary conditions at its surface. Assuming weak inner dissipation, the particle displacement field uj inside the
resonator satisfies the following equation (theorem of virtual work), with û as a test field and P the external pressure field
acting at its boundary Γ j:

K j(uj, û)− iωLj(uj, û)− ω2Mj(uj, û) = F j(P, û) (4)

where K j, Lj and Mj are scalar products associated with the stiffness, losses and mass of the resonator j respectively, and
F j(P, û) = −


Γ j Pnj

· û dΓ is the source term. Using normal mode expansion [43], the displacement uj is given as a series,
where the contribution of eachmodem takes the formof an eigenvectorϕj

m multiplied by a frequency dependent coefficient:

uj(x) =


m

1

M j
m

F j(P,ϕj
m)

(ω
j
m)2 − iζ j

mω − ω2
ϕj

m(x) (5)

where the eigenfrequencies ωj
m satisfy K(ϕ

j
m, û) = (ω

j
m)

2M(ϕ
j
m, û), the modal mass is M j

m = M(ϕ
j
m,ϕ

j
m) and the

dissipation term is ζ j
m = L(ϕ

j
m,ϕ

j
m)/M

j
m ≪ ω

j
m. Since the propagating field is locally uniform on the REV Ωn, that is

P ≡ P(xn), it can be factorised out of the integral function F j, deriving the displacement uj
n in the resonator j within the

REVΩn in the form:

uj
n(x) = −P(xn)


m

Aj
m/M

j
m

(ω
j
m)2 − iζ j

mω − ω2
ϕj

m(x) (6)

whereAj
m = −F j(1,ϕj

m) is themodal area. This procedure is illustrated inAppendix B for the case of the quarter-wavelength
resonator and the elastic shell with air inside. Note that under a poor scale separation, the field P cannot be assumed uniform
on the REV, which leads inevitably to the non-local contributions [16,44,45] in the effective boundary condition (corrector
terms in the asymptotic homogenisation).

2.5. Properties of the effective surface admittance

The normalised admittance ρecϒ of the resonant surface is derived from Eqs. (2), (3) and (6). First, suppose that the
REV of the resonant surface contains a single resonator j. The frequency range is supposed to be sufficiently close to the
eigenfrequency ωj

m for the contributions from all other modes to be negligible in Eq. (6). The normalised admittance takes
the form:

ρecϒ =
−iηjmω

ω
j2
m − iζ j

mω − ω2
; ηjm =

ρec A
j
m
2

M j
m|Σ |

, (7)

where ηjm will be called the admittance parameter (recall that j stands for the resonator andm for themode). The normalised
admittance ρecϒ is plotted against frequency in Fig. 3(a). In the low (ω ≪ ω

j
m) and high (ω ≫ ω

j
m) frequency ranges, the

admittance ϒ is much smaller than that of air, hence the surface acts as an effectively rigid boundary. In contrast, at the
resonance ω → ω

j
m, the normalised admittance is real and equal to ρecϒ = η

j
m/ζ

j
m. This value can be large provided that

the resonators are weakly damped, that is ζ j
m ≪ η

j
m. If several resonators of different types are arranged within the REV, the

normalised admittance takes the form:

ρecϒ =


j∈[[1,N]]


m

−iηjmω

(ω
j
m)2 − iζ j

mω − ω2
(8)

where ηjm has already appeared in Eq. (7). The eigenfrequencies ωj
m can be well separated to produce a sharp admittance

contrast at targeted frequencies, or they can be close to each other to broaden the region of high admittance value. These
two cases are illustrated in Fig. 3(b) and (c) respectively. Recall however that only themodes satisfying the condition of scale
separation are considered here.
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Fig. 3. Real and imaginary parts of the normalised effective admittance against normalised frequency for a metasurface with: (a) one Single Degree
Of Freedom (SDOF) resonator per period with the natural frequency ω1

0; (b) three SDOF resonators per period, with well separated natural frequencies
ω2

0/ω
1
0 = 0.4 and ω3

0/ω
1
0 = 1.4; and (b) three SDOF resonators per period, with slightly detuned natural frequencies ω2

0/ω
1
0 = 0.94 and ω3

0/ω
1
0 = 1.06 for

broadband effects. Calculations with ζ j
0/ω

j
0 = 6% and ηj0 = ζ

j
0 for each type j = {1, 2, 3} of resonators.

3. Sound filtering by the resonant surface

To illustrate the unconventional properties of the admittance ϒ , plane wave propagation is studied in the presence of
the resonant surface. To simplify the analysis, the REV is supposed to include one single degree of freedom resonator with
the parameters (ω0,M0, A0, ζ0,ϕ0) and η0 = ρecA2

0/(M0|Σ |).

3.1. Plane wave reflection from the resonant surface

Reflection of the plane wave pIeiωdI ·x/c from the admittance surface S is studied, where pI is the complex amplitude and
dI is the unit vector in the direction of propagation. The coordinate system (O, e1, e2,n) is used, with the origin O on the
boundary S. The unit vector e2 ∈ S is in the plane of incidence (dI ,n) such that dI · e2 > 0. Since the effective surface
admittance ϒ is uniform, the incident wave gives rise to a reflected wave pReiωdR·x/c which satisfies Descartes’ Laws, see
Eq. (3). This means that the unit vector dR belongs to the plane of incidence and has the same horizontal component as the
incident field, i.e., dR · e2 = dI · e2. The pressure reflection coefficient R = pR/pI takes the usual form:

R =
cos θ − ρecϒ
cos θ + ρecϒ

(9)

where θ > 0 is the angle of incidence (counted from the normal n so that dR · n = −dI · n = − cos θ ). Using Eq. (7), the
frequency dependence of the reflection coefficient is derived:

R(ω) =
ω2

0 − ω2
− iω (ζ0 − η0/ cos θ)

ω2
0 − ω2 − iω (ζ0 + η0/ cos θ)

. (10)

The reflection coefficient is plotted against frequency in Fig. 4 for different values of the dissipation parameter ζ0 and angles
of incidence θ . Far from the resonance (ω ≪ ω0 and ω ≫ ω0) it tends to that of the rigid surface R → 1, consistently with
the admittance analysis in Section 2.5. As follows from (10), in the case of no dissipation (ζ0 = 0) the surface is perfectly
reflecting for all frequencies and angles of incidence, that is |R| ≡ 1. At the resonance frequency, aπ radianphase shift occurs,
independently from the angle of incidence. In that case, the resonant surface acts as an all pass filterwith the phase reversal at
resonance. In practical applications, however, the dissipation within the resonators cannot be avoided and the introduction
of even small dissipation (ζ0 ≪ ω0) leads to a partial reflection |R| ≤ 1 and a higher sensitivity to the angle of incidence θ .
In particular, around the resonance (ω → ω0), the reflection coefficient tends to R(ω0) = [ζ0 cos θ − η0] / [ζ0 cos θ + η0].
Hence, the phase-reversal still occurs at resonance provided that η0 > ζ0 cos θ . Moreover, if the so-called critical coupling
cos θ = η0/ζ0 ≤ 1 is achieved [46,47], the reflected wave vanishes at the resonance frequency, R(ω0) → 0. In this case, the
resonant surface acts as a band stop filter, i.e., the incident wave of frequency ω = ω0 is fully absorbed.

3.2. Memory effect and frequency localisation

The displacement field uj
n in the resonator j within the REV Ωn, subject to the superposition of the incident and the

reflected plane waves P(xn) = (1 + R)pIeiωdI ·xn/c , is derived using Eqs. (6) and (10):

uj
n(x) =

−2(A0/M0) pIeiωdI ·xn/c

ω2
0 − ω2 − iω(ζ0 + η0/ cos θ)

ϕ0(x). (11)
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Fig. 4. Plane wave reflection from the resonant surface with resonance frequency ω0 . Amplitude (a) and phase (b) of the reflection coefficient R against
normalised frequency. Calculations are performed for oblique (θ = π/3) and normal (θ = 0) incidence assuming weak (ζ0/ω0 = 6%) or no (ζ0 = 0)
dissipation and η0/ω0 = 6%.

Using convolution, the complex nature of the transfer function uj
n(x)/pI in the frequency domain can be straightforwardly

related to the so-called ‘‘memory effect’’ in the time domain [11,12,48]. For instance, if the incident signal is a unitary Dirac
delta function, the time dependence of the displacementuj

n at the point xwithin the resonator is given by the inverse Fourier
transform of Eq. (11). Provided that ξ = (ζ0 + η0/ cos θ)/(2ω0) < 1 (weak dissipation), it gives:

uj
n(x, t) =

−2A0ϕ0(x)
M0ω0

sin(ω0(t − tn))e−ξω0(t−tn) (12)

where tn = dI · xn/c andω0 = ω0

1 − ξ 2.

The displacement uj
n experiences oscillations with the angular frequency ω0 ≤ ω0 and its amplitude decreases

exponentially with the characteristic time 1/(ξω0). Contrary to the instantaneous response of a rigid surface, the resonant
surface thus exhibits a delay in the response: the spectral energy of the incident wave corresponding to the frequencyω0 is
stored within the resonators and is gradually released into the upper half space within the time interval O(1/(ξω0)).

Even if there is no structural dissipation (ζ0 = 0), the resonators still experience the apparent dissipation η0/ cos θ .
Due to energy conservation, the energy lost by the resonators is gained by the half-space and the apparent dissipation is
therefore attributed to the energy radiation from the resonators. Note that the radiation damping increases with the angle
of incidence.

The radiation loss explains the phenomenon of total absorption at resonance presented in Section 3.1: If η0/ cos θ =

ζ0 ≪ ω0, the energy stored in the resonators is released back into the upper half-space with the same rate 1/ζ0 as it is
dissipated within the resonators, thus resulting in no reflected wave. In that case, the spectrum of the reflected field would
miss the frequency ω0 while the field inside the resonators would oscillate at the very close frequency ω0 ≈ ω0. Hence,
the resonant surface spatially localises the incident energy corresponding to harmonic with frequencyω0 within the deeply
subwavelength resonators. The memory effects and localisation of the field could be used to realise acoustic buffers or to be
exploited for energy harvesting [5].

3.3. Control of enclosure mode

The resonant surface can be used to modify the modal properties of the enclosures, such as rooms, in the low frequency
range. Suppose that the enclosure consists of a layer of air bounded between the resonant surface and a rigid wall, see Fig. 5.
The standing waves ψ(x) = A cos(ωx/c) + B sin(ωx/c) in the direction x normal to the boundaries have to satisfy the
admittance condition (3) at the resonant surface x = 0, while ∂ψ/∂x = 0 at the rigid wall, x = H . These conditions result
in the following eigenvectors:

ψq(x) = cos(ωqx/c)− iρecϒ(ωq) sin(ωqx/c) (13)

where the eigenfrequencies ωq are the solutions of the following equation, with q being an integer:

i sin(ωqH/c)− ρecϒ(ωq) cos(ωqH/c) = 0. (14)

If ρecϒ → 0, the usualmodes of the enclosurewith rigidwalls are recovered, that isψ e
q(x) = cos(ωe

qx/c)withωe
q = qπc/H .

If the natural frequency ω0 of the resonant surface is close to the fundamental frequency ωe
1 = πc/H of the enclosure with

rigidwalls, a coupling occurs between the twomodes. Using the expression for the normalised admittance ρecϒ given in Eq.
(7), assuming lossless resonators (ζ0 = 0), and performing Taylor expansions for frequencies ωq close to both frequencies
ωe

1 and ωj
0, the following leading order approximation is derived for the eigenfrequencies:

ωq = ω ±


ω2

− ωe
1ω0; ω =

ω0 + ωe
1

2
+
ωe

1η
j
0

4π
. (15)
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Fig. 5. Enclosure consisting of the layer of air bounded between a rigid wall (x = H) and a resonant surface (x = 0).

Fig. 6. Spherical Helmholtz resonator: (a) 3-D view; (b) cross section view.

The fundamental mode of the enclosure with rigid walls is split into two modes, the eigenfrequencies of which are either
higher or lower thanω. Similar results have been reported in other frequency ranges, coupling one or several resonatorswith
cavity modes [49,50] and using the so-called ‘tuned mass damper’ effect [51]. The main difference here is that the coupling
results from the collective behaviour of the large number of resonators experiencing deep subwavelength resonance.

4. Design and characterisation of the resonant surface

In the experimental part of this work, impedance tube and anechoic chamber measurements are performed on
the resonant surface made of multiple Helmholtz resonators. In this section, an approach to the resonator design and
characterisation is described.

4.1. Design

The resonant surface consists of the spherical Helmholtz resonators arranged periodically upon the rigid backing. The
resonator’s spherical cavity of radius a is connected to a straight circular duct of length b, radius e and cross-section area
A = πe2, see Fig. 6. For practicality, the duct is positioned inside the cavity [21]. Since dissipation has been identified as
a key mechanism defining reflection properties of the surface (Section 3.1), a detailed description of the losses within the
resonators is given.

In the first approximation, valid when the scale separation is sharp [21], air in the cavity is assumed quasi-static, while
that in the duct is incompressible. This results in the uniform pressure fieldp in the cavity, and the pistonic motion of air
in the duct with the displacement ù, positive in the direction away from the resonator. Also, the viscous losses in the cavity
and the thermal losses in the duct can be neglected, since gradp = 0 and divù = 0.

When the air is pulsed out from the resonator through the duct, the decrease of pressure in the cavity is p =

−βγ PeA⟨ù⟩/V , where V = 4πa3/3 − Ab is the cavity volume, βγ Pe is the effective bulk modulus of air [52], and ⟨ù⟩ =

A−1

A ù dS is the particle displacement averaged over the cross-section of the duct. That latter satisfies the equation of

momentum conservation −ω2τρe⟨ù⟩ = (p − P)/b where τ is the dynamic tortuosity [52], and P is the pressure act-
ing on the duct aperture from the outside (that is, the propagating field). Combining the two equations, the admittance
Y j

= −iωA⟨ù⟩/P of the resonator is derived. If the REV of the surface contains a single Helmholtz resonator, the effective
admittance ϒ = −Y j/|Σ | normalised by that of air is:

ρecϒ =
−iωη̂/τ

ω̂2
0β/τ − ω2

(16)

where M = ρeAb is the mass of air in the duct, ω̂0 = c
√
A/(bV ) is the natural frequency and η̂ = ρecA2/(M|Σ |) the ad-

mittance parameter for lossless resonators. The duct tortuosity τ and the normalised bulk modulus β of air in the spherical
cavity (neglecting the presence of the duct), are given by τ = 1/(1 − F) and β = 1/[1 + (γ − 1)G], where the functions F
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and G depend on the viscous and thermal skin depths δv =
√
2µ/(ωρe) and δT =


2κ/(ωρecp) in the form:

F =
2δv
e
√
2i

J1


e
√
2i

δv


J0


e
√
2i

δv

 ; G =
3δT
a
√
2i

j1


a
√
2i

δT


j0


a
√
2i

δT

 . (17)

Here, Jn and jn are cylindrical and spherical Bessel functions of the first kind and order n. Around the resonance and for viscous
and thermal skin depths δv and δT much smaller than the duct and cavity radii e and a (weak dissipation in the resonators),
the normalised effective admittance in Eq. (16) can be approximated by that in Eq. (7), that isρecϒ → −iηω/[ω2

0−iζω−ω2
],

with the resonance frequency ω0, the −3 dB frequency bandwidth of the resonance peak ζ , and the admittance parameter
η given by:

ω0

ω̂0
≈ 1 − ν;

ζ

ω0
≈ ν;

η

η̂
≈ 1 −

δ0v

e
(18)

where ν = δ0v/e+ 3(γ − 1)δ0T/(2a) ≪ 1 and δ0v and δ
0
T are viscous and thermal skin depths corresponding to frequency ω̂0.

Design limitations can now be discussed for the normalised admittance to be significant at the resonance frequency under
the condition of scale separation, that is |ρecϒ(ω0)| = η/ζ ≥ O(1)with ϵ0 = ℓω0/c ≪ 1. Neglecting viscous and thermal
effects, the scale parameter at the resonance, ϵ̂0 = ℓω̂0/c , and the admittance parameter η̂ satisfy the following conditions:

ϵ̂0 =


ℓ2A
bV

;
η̂

ω̂0
=

A
|Σ |


V
bA
. (19)

Since the volume V of the cavity is of the order of the REV’s volume, that is V = O(|Σ |ℓ), Eq. (19) leads to the following es-
timates: A = O(ϵ̂20 |Σ |b/ℓ) and η̂/ω̂0 = O(ϵ̂0). Using these estimates and Eq. (18), the condition |ρecϒ(ω0)| = η/ζ ≥ O(1)
leads to the following constraint for viscous and thermal losses: ν ≤ O


ϵ̂0


. To achieve that, the duct radius has to be one

order larger than the viscous skin depth, that is e ≥ O(ϵ̂−1
0 δv(ω̂0)).

If the resonance frequency is around 300 Hz, the viscous and thermal skin depths are δv(ω̂0) ≈ 0.13 mm and δτ (ω̂0) ≈

0.15 mm. Assuming a scale parameter ϵ̂0 = O(10−1), the duct radius would need to be e ≥ O(1 mm), while the REV
size is ℓ = ϵ̂0c/ω̂0 = O(1 cm), that is e = O(ϵ0ℓ). To satisfy the condition of scale separation πe2 = O(ϵ20ℓ

2(b/ℓ)) the
duct length has to be of the order of the REV size b = O(ℓ) = O(ϵ−1

0 e). This means, that the so-called extended neck [53]
has to be designed. Therefore, the slotted cylinders [54] and split hollow spheres [55] are not suitable resonators to design
the surfaces with a sharp scale separation at resonance. Similar constraints have been found to achieve the regime of co-
dynamics between the subwavelength Helmholtz resonators and a porous matrix [21]. Finally, since a = O(ℓ) = O(ϵ−1

0 e)
and viscous and thermal skin depths are of the same order, then δT/a = O(ϵδv/e), that is viscous losses in the duct are
dominant over the thermal losses in the cavity.

4.2. Experimental characterisation of unit cells

Similarly to Ref. [22], the Helmholtz resonator is constructed by drilling a hole in a 4 cm-diameter table tennis ball
and gluing a piece of sipping straw to it, so that it fits inside the ball as shown in Fig. 6. Such resonators have been
characterised using a B&K type 4206 impedance tube with a circular cross-section (diameter DT = 10 cm) and a variable
length 30 cm ≤ H ≤ 50 cm. It is shown in Appendix A.4 that, in the leading order approximation, the propagating field in
the tube satisfies Eqs. (3), with the period area |Σ | replaced by that of the tube cross-section |ΣT |, independently of its exact
geometry. As shownpreviously for square tubes [56], impedance tubemeasurements can be used to emulate the reflection of
plane waves at normal incidence from a resonant surface having a period area |ΣT |. This provides a straightforwardmethod
to retrieve the effective admittance ϒ of the resonant surface.

With a single resonator in the tube, the normalised admittanceρecϒ has one resonance peak, see Fig. 3(a). The resonator’s
parameters, that is the resonance frequency ω0/(2π) and the −3 dB frequency bandwidth ζ/(2π) of the resonance peak,
are easily deduced. Experimental results are presented in Fig. 7 for resonators with the duct diameters 2e = {4, 5, 6, 7} mm
and the duct lengths b = {5, 10, 15, 20, 25, 30} mm. As expected, the wider the duct, the higher the resonance frequency
and the weaker the dissipation. The data is in a good agreement with themodel predictions when ducts are sufficiently long
to provide a resonance frequency so that 2aω0/c < 0.3. For shorter ducts, when the scale separation is not sharp, the model
predictions overestimate the natural frequencies (≈13% error for b = 10 cm) and underestimate the loss factor ζ/ω0 (by
an amount of ≈2.4% for b = 10 cm). This can be attributed to phenomena neglected in the leading order approximation,
such as, for example, end corrections at the duct extremities. Experimentally, for a given duct diameter the loss factor ζ/ω0
is found to be quasi-uniform over the whole range of duct lengths.

The results confirm that a wide range of natural frequencies (180–616 Hz here) and low levels of dissipation (ζ/ω0 ≤

0.11) can be achieved with the adopted design of Helmholtz resonators, by simply varying the duct length and its diameter.
For natural frequencies below 400 Hz, the wavelength λ at the resonance is more than 21 times larger than the diameter of
the resonator, which validates the design for deep subwavelength applications.
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Fig. 7. Modal parameters of spherical Helmholtz resonators with extended neck for 4 duct diameters 2e = {4, 5, 6, 7} mm and six duct length
b = {5, 10, 15, 20, 25, 30} mm: (a) resonance frequency ω0/(2π); (b) loss factor ζ/ω0 and mean value over the range of duct lengths b (grey line).
For each geometry, three specimen have been tested: the mean value (dots) and the standard deviation (error-bar) of the parameters are presented here.
Theoretical predictions (plain line) are shown for comparison. In Figure (a), the diameter 2a of the resonator normalised by the reduced wavelength c/ω0
at the resonance frequency is shown (grey dashed lines).

Fig. 8. Compact arrangements of spherical Helmholtz resonators at the rigid end of the impedance tube: (a) single layer; (b) double layer.

5. Impedance tube measurements

In this section, impedance tube measurements of sound absorption and enclosure mode control using the resonant
surface designed in Section 4 are described.

5.1. Experimental configurations

The configurations tested are presented in Table 1. Along with the Helmholtz resonators, rigid spheres of the same size
have been added in the tube in order to achieve configurations with either 4 or 8 scatterers in the tube. Four scatterers are
arranged symmetrically in a single layer at the rigid end of the tube, see Fig. 8(a). Eight scatterers are arranged in two layers,
with positions of those in the upper layer shifted by the angle π/4 compared to the lower layer, to achieve a higher degree
of compaction, see Fig. 8(b). The centroid of the surface structures is at the distance xSLS ≈ 1.4 cm for the single layer, and
xDLS ≈ 3.1 cm for the double layer, see Appendix A. It has been checked experimentally that the relative positions of the
scatterers (resonators and rigid spheres) and the orientations of the resonators’ duct apertures have negligible influence on
the results. For the measurements described here, the duct apertures are directed towards the main axis of the tube.

Even with a double layer configuration, the thickness of the arrangement is about 7.25 cm which is less than the tube
diameter DT = 10 cm. Hence, the characteristic size of the REV is ℓT = DT and the scale parameter ϵT = ℓTω/c remains
below 1 for frequencies below c/(2πℓT ) = 544.3 Hz. In this section, the data is compared with the admittance model
predictions using either Eq. (16) or Eq. (8) with values of parameters ω0 and ζ measured in Section 4.2.

5.2. Sound absorption

The configurations A toD are designed to achieve the critical coupling η ≈ ζ for the duct diameters 2e = {4, 5, 6, 7} mm.
Experimental results are shown in Fig. 9(a). As expected a nearly total absorption of sound is achieved at the resonance,
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Table 1
Resonant surface configurations (Conf.) tested in the impedance tube: values of the duct
diameter 2e, duct length b, number of resonatorsN , and impedance tube lengthH . Theoretical
estimates for the resonance frequency ω0/(2π), and scale parameter at the resonance ϵ0 =

DTω0/c are given.

Conf. 2e (mm) b (mm) N H(cm) ω0/(2π)(Hz) ϵ0

A 4 25 7 38 203 0.37
B 5 15 4 38 333 0.61
C 6 20 3 38 349 0.61
D 7 23 2 38 383 0.7
E 7 23 4 38 383 0.7
F 7 23 4 48 383 0.7

Fig. 9. Absorption coefficient for: (a) configurations A to D providing a nearly total sound absorption at the resonance frequencies; and (b) combinations
of detuned resonators. Comparison of impedance tube measurements with the model using analytical results (dashed line) and resonators’ parameters ω0
and ζ deduced from characterisation tests (grey line).

with absorption coefficients equal to αexp(ω0) = {0.9973, 0.9999, 0.9957, 0.9977} (theoretical predictions are α(ω0) ≈

{0.98, 0.899, 0.914, 0.947}) for the configuration A to D respectively. The nearly total absorption of sound can be achieved
at several frequencies by combining resonators with different natural frequencies. This is demonstrated in Fig. 9(b), where
the absorption coefficients are presented for double layer configurations of resonators with different resonance frequencies,
that is B + C , B + D and C + D. According to the theoretical results, described in Section 2.5, when the two resonance
frequencies are close to each other, a broader absorption peak is observed, see configurations B + C or C + D. Broadband
effects are further investigated by combining eight resonators having a 4 mm-diameter duct and the duct lengths b =

{10, 12, 14, 18, 22, 26, 28, 30} mm in a double layer configuration. The natural frequencies of these resonators are ranging
from 179 to 290 Hz. The absorption coefficient of this configuration is shown in Fig. 9(b), with values higher than 0.6 in
the frequency range [173–288] Hz. Despite a relatively poor scale separation (limited by the impedance tube diameter), the
theory is in a good agreement with the experiments, particularly when themeasured values of the resonator parametersω0
and ζ are used.

5.3. Phase reversal upon reflection

Configuration E is designed so that aπ radian phase shift in the reflection coefficient occurs at the resonance. For normally
incident plane wave, that happens if η/ζ > 1, see Section 3.1. The amplitude and phase of the reflection coefficient are
shown as functions of frequency in Fig. 10. The phase reversal is observed in the experiments and the model predictions
agree well with the data. Note that the reflection coefficient amplitude is relatively low at resonance, |R(ω0)| ≈ 0.36,
despite the weak dissipation (loss factor ζ/ω0 ≈ 4.6%). This means that reflection from a resonant surface is very sensitive
to damping, which cannot be neglected for practical applications, such as wavefront manipulation [7].
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Fig. 10. Reflection coefficient R against frequency for configuration E: (a) amplitude; and (b) phase. Comparison of experimental results with the
admittance model predictions using analytical results (dashed line) and modal properties deduced from characterisation tests (grey line).

Fig. 11. Normalised pressure pT in the impedance tube at x = 39 cm for configuration F : (a) amplitude; and (b) phase against frequency. Comparison
of experimental results with admittance model predictions for the tube with the resonant surface and the rigid termination. Modal properties fitted on
characterisation tests have been used in the model.

5.4. Control of enclosure modes

The resonant surface in configuration F is identical to that in configuration E, but the tube length H has been chosen so
that the resonance frequency c/(2H) of the tube with the rigid termination is close to that of the resonant surface. That
allows to control the enclosure mode by the resonant surface. The pressure field pT (x) in the tube satisfies the admittance
condition (3) at xS = xSLS and the particle velocity vs is prescribed by the speaker at x = H . For better accuracy, dissipation
in the tube is accounted for by considering a complex wavenumber k = ω/[c(1 − iξT )] where the damping ξT = 5.8% has
been retrieved from measurements in the tube with the rigid termination. The pressure pT (x) reads:

pT (x)
ρecvs

=
cos(k(x − xS))− iρecϒ sin(k(x − xS))

i sin(k(H − xS))− ρecϒ cos(k(H − xS))
. (20)

Themodel predictions for the resonant surface and the rigid termination are comparedwith the data in Fig. 11. The resonance
frequency of the tube with the rigid termination is 359 Hz. However, in the presence of the resonators, an antiresonance
occurs at this frequency with pressure being reduced by nearly a factor of 10, that is |pT/(ρecvs)| ≈ 0.5 instead of ≈4.9
with the rigid end. The coupled system exhibits two resonance peaks, in accordance with the model predictions.

6. Anechoic chamber measurements—nearly total sound absorption by a finite array

As shown in the previous section, the nearly total absorption of sound at resonance has been observed in the impedance
tube where the idealised conditions of normally incident plane wave and emulated infinite surface have been achieved. In
this section the robustness of this effect is investigated by performing measurements in anechoic conditions using a point-
source excitation and a finite size resonant surface.

6.1. Experimental setup

The experimental setup is illustrated in Fig. 12. It consists of a square lattice arrangement of 23 × 23 = 529 identical
resonators on a square rigid board (122 cm-wide, 2.5 cm-thick medium density fibreboard), excited by a speaker (Genelec,
type 1029A) hung 157 cm above the centre of the board and facing it. It has been checked experimentally that the speaker
acts as a monopole source located at (x, y, z) = (−5.8, 0, 157) cm in the frequency range below 500 Hz.

The resonators are similar to those of configuration C in Table 1. They have been characterised individually in an
impedance tube. Fig. 13 shows the cumulative distribution of the resonance frequency ω0/(2π) and loss factor ζ/ω0
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Fig. 12. (a) Experimental set-up used for measurements in anechoic chamber. (b) and (c) Cumulative distribution of the resonance frequency and the loss
factor of the resonators used in anechoic chamber measurements. Comparison with normal distribution (grey line) with the following mean values and
standard deviations: frequency: 325 Hz ± 3.5 Hz; and loss factor 5.43% ± 0.15%.

measured. They satisfy the normal distributions having the followingmean values and standard deviations: 325 Hz±3.5 Hz
for the resonance frequency and 5.43%± 0.15% for the loss factor. This confirms that the resonators used in the experiment
are very similar to each other and that the array can be considered as periodicwith a very good approximation. Themeasured
resonance frequency and loss factor are in good agreement with the following theoretical estimates,ω0/(2π) = 349 Hz and
ζ/ω0 = 4.5%, and with the results shown in Fig. 7. The lattice constant ℓ of the resonant surface has been chosen so that
the ratio η/ζ with a single resonator upon Σ is the same as that, ηT/ζT , in configuration C with three resonators in the
impedance tube. That leads to 3/(ζT |ΣT |) = 1/(ζℓ2), with ζT ≈ 6% and |ΣT | = πD2

T/4, which results in ℓ ≈ 5.4 cm and a
scale parameter ϵ0 = ℓω0/c ≈ 0.32 that indicates an actual scale separation around the resonance frequency.

The pressure field p have been measured in the xz plane above the resonant surface (for x ∈ [−60; 60] cm and
z ∈ [0; 140] cm every 20 cm) and in the cavity of central resonator at (x, y) = (0, 0). To measure the pressure field in the
resonator cavity, a quarter-inch-diameter hole has been drilled in it, and the head of a quarter-inch pressure microphone
has been inserted in the hole and sealed to avoid leakages. Measurements have been performed with the speaker alone,
so as to measure the incident field pinc, and in the presence of the rigid board with and without the resonators on it
(pressure fields pres and prig respectively). The input signal fed to the speaker was a Ricker wavelet (input voltage in the
form Vin(t) ∝ [ω2

c /2 − 1] exp

−ω2

c t
2/4


) with central frequency ωc/(2π) close to the resonance frequency 325 Hz.

6.2. Evidence of nearly total sound absorption

In Fig. 13(a) the amplitude of pressure presr = pres − pinc reflected by the resonant surface is shown, normalised to that
reflected from the rigid board, prigr = prig − pinc, at three different heights z = {40, 60, 80} cm above the centre of the
board. While presr ≈ prigr at frequencies lower ω ≪ ω0 and higher ω ≫ ω0 than the resonance frequency ω0/(2π), the
measurements show a nearly total absorption of the incident field at the resonance, with presr → 0 for all three heights.
Experimental results are in a good agreement with the reflection coefficient predictions assuming plane waves, despite the
point source excitation and the finite size of the board. Fig. 13(b) presents the amplitude of pressure po inside the cavity of
the central resonator, normalised to that pS measured at the surface next to the resonator, at (x, y, z) ≈ (−2.7, 0, 0) cm. As
discussed in Section 3.2, it shows the amplification of the pressure in the cavity at resonance, when the field radiated by the
resonant surface is nearly eliminated due to the losses. This provides an experimental evidence of the spatial localisation of
the incident energywithin the resonators at the resonance. Experimental results are in a good agreementwith the theoretical
transfer function po/pS = ω2

0/[ω
2
0 − iζω − ω2

] of the Helmholtz resonator.
The real part of the transfer function between the pressure field p and the input voltage Vin is mapped in the (x, z) plane

above the surface for two frequencies in Fig. 14. Physically, that corresponds to the pressure field thatwould bemeasured if a
sinusoidal signal with unitary amplitudewere fed to the speaker. Maps are shown in the free field (speaker alone) and in the
presence of the rigid boardwith andwithout the resonators on it. Fig. 14(a) shows results at the resonance frequency 325Hz.
While the field amplification around z = 50 cm and the complex wavefronts above the surface are observed above the rigid
board due to the interference between the incident and the reflected waves, the reflection-free spherical wavefronts of the
incident field are recovered when the resonators are arranged on it. That testifies the nearly total absorption of the incident
field at resonance by the resonant surface. By contrast, Fig. 14(b) shows that, at the frequency of 250 Hz which is below the
resonance, the pressure distribution above the rigid and the resonant surfaces are very similar. This illustrates the fact that,
outside the vicinity of the resonance, the resonant surface behaves as if it were rigid, with a negligible absorption of the
incident field.
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Fig. 13. Transfer functions. (a) Amplitude of pressure reflected by the resonant surface normalised to that reflected by the rigid board; (b) amplitude of
pressure inside the resonator cavity normalised to that on the surface next to the resonator. Experimental results compared with (a) admittance model
assuming plane waves (PWA) using resonators’ parameters deduced from characterisation tests; and (b) the Helmholtz resonator transfer function.

Fig. 14. Real part of the measured transfer function between the pressure field and the input voltage fed to the speaker: (a) at the resonance frequency
325 Hz; (b) at the frequency 250 Hz. Experimental results shown in free field condition (speaker alone); with the resonant surface; andwith the rigid board
without the resonators (Colour online).

7. Conclusions

The coincidence within the same frequency range of the long wavelength dynamics of sound waves propagating in
air with the subwavelength resonances occurring in the close vicinity of the boundary is the specific feature defining the
acoustical properties of the resonant metasurfaces. Under the condition of scale separation for both in-plane and out-of-
plane characteristic lengths, the two-scale asymptotic homogenisation model, based on the fundamental principles applied
to the local scale, is shown to successfully predict the macroscopic behaviour of resonant surfaces. In particular, it provides
a simple effective admittance formula suitable for fast computations and identifies the four design parameters: resonance
frequency ω0, the scale separation parameter at the resonance ϵ0 = ℓω0/c , the admittance parameter η = ρecA2/(M|Σ |)
and the loss factor ζ/ω0. The homogenisationmodel offers a general theoretical framework for linear resonators of any kind,
whether they are upon, above or partially embedded in the supporting surface. According to the model, resonant surface
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effects are more related to the acoustic flux distribution the resonators create at the boundary than to their exact nature. In
this paper themodel has been applied to predict the total absorption of sound through deep subwavelength critical coupling,
broadband absorption of sound, the phase reversal upon reflection (which is critical for the wavefront manipulation by
graded arrays), enclosure mode control and memory effects related to the co-dynamics between the resonators and the
long wavelength field. In the design of the resonant surface for the laboratory measurements, a particular attention has
been paid to the construction of the resonators that satisfy the condition of scale separation. This resulted in the use of
spherical Helmholtz resonators with extended inner necks. These cheap and easy-to-realise resonators have been used as
the basic elements of the thin and light resonant surface, with the thickness h 26 times smaller than sound wavelength
λ0 at resonance, the lattice size ℓ nearly 20 times smaller than λ0, the filling fraction, i.e., the fraction of the REV volume
occupied by the resonator, V/(ℓ2h) ≈ 0.28, and the added mass of 0.875 kg/m2. The model predictions have been first
validated in the experiments performed under the idealised conditions of the impedance tube where the incident wave is
plane and the infinite surface is emulated. After that, the experiments have been performed in the anechoic chamber with a
point source and the surface array of the finite size. A good agreement between the model and the data is demonstrated in
both cases confirming the robustness of the surface design. With the array designed according to the theoretical principles,
the regime of co-dynamics between the long wavelength field and the resonators has been observed in the experiments, in
particular through the direct measurement of the local field inside the resonators. It is planned to apply this model to study
the conditions for surface waves generation and to extend it to surface arrays with graded properties.
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Appendix A. Homogenisation

A.1. Two-scale description and Taylor expansions

Given the existence of the two characteristic sizes L and ℓ = ϵL in the system, the usual space variable x is normalised
by either length to provide two dimensionless variables x = x/L and y = x/ℓ = ϵ−1x and their respective del operators
∇x and ∇y. As a result, differentiation is modified according to ∇ = L−1


∇x + ϵ−1

∇y

. This allows the description of the

field variations at both scales, with x and y describing variations at the macroscopic and microscopic scale respectively. The
macroscopic fields P and V vary significantly over distances O(L). For this reason their spatial variations ate described by
the variable x, that is P(x) and V(x). The BL fields p⋆ and v⋆ are locallyΣ-periodic with the macroscopic modulation in the
plane S. Consequently, their dependence on the two normalised space variables is introduced [11,12] in the form p⋆(xS, y)
and v⋆(xS, y), where the index S denotes the projection on the plane S. The BL fields are Σ-periodic and evanescent over
y while the first variable xS is used to describe the in-plane modulation. The particle velocity vjn produced by the structure
j in the REV Ωn, and the vector nj

n normal to the boundary Γ j
n of that structure, depend exclusively on the variable y, that

is vjn(y) and nj
n(y). Further, the macroscopic variations of the propagating fields (P,V) and BL fields (p⋆, v⋆) are down-

scaled to each cell Ωn. Since a subwavelength distance O(ℓ) ≪ L can be considered as a small increment for the variable
x, the macroscopic variations at any point x = Lx = ℓy of the REV Ωn can be deduced from those at the centroid position
xn = Lxn = ℓyn =


j


Γ j x dS/


j |Γ

j
|

ofΩn using Taylor expansions [31,32]. For instance, and similarly for p⋆, V and v⋆:

P(x) = P(xn)+ ϵ [gradxP]x=xn · (y − yn)+ ϵ2 . . . . (A.1)

A.2. Governing equations at the local scale

The governing equations ofmass andmomentum conservation arewritten for the superposition of the propagating fields
(P,V) and the BL fields (p⋆, v⋆)with the two-scale differentiation:

Liω
γ Pe

(P + p⋆) =

divx + ϵ−1divy


(V + v⋆); Liωρe(V + v⋆) =


gradx + ϵ−1grady


(P + p⋆). (A.2)

Due to BL evanescence, the propagating field (P(x),V(x)) prevails some distance away from the surface, where it satisfies
the conservation equations on its own, expressed with the space variable x:

Liω
γ Pe

P(x) = divxV(x); LiωρeV(x) = gradxP(x). (A.3)
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Subtracting (A.3) from (A.2) using the linearity of the problem, the BL field (p⋆, v⋆) is found to satisfy the following equations
of mass and momentum conservation:

Liω
γ Pe

p⋆ =

divx + ϵ−1divy


v⋆; Liωρev⋆ =


gradx + ϵ−1grady


p⋆. (A.4)

Besides, the boundary conditions at the surface Γ j
n of the structure j in the REVΩn, that is the resonators j ∈ [[1,N]] and the

rigid substrate j = 0, take the form:

vjn = Rj(P + p⋆) and (V + v⋆) · nj
n = vjn · nj

n at Γ j
n. (A.5)

Note that the spacing between the structures within the REV is supposed to be significantly larger than viscous and thermal
skin depths. This allows neglecting viscous and thermal losses in air.

A.3. Asymptotic expansions and problem at the leading order

The resonant surface is assumed to play a significant role in themass balance, for this reason all particle velocities are set
to be of the same order, i.e. v⋆ = O(V) = O(vjn). Next, all unknown fields are expanded asymptotically in powers of ϵ ≪ 1.
For instance, for the pressure in the BL this expansion is

p⋆(xS, y) = p⋆(0)(xS, y)+ ϵp⋆(1)(xS, y)+ ϵ2 . . . (A.6)
where the order of the terms is indicated by the bracketed superscripts. Similar expansions are performed for P , V, v⋆ and
vjn. These asymptotic expansions are then substituted in Eqs. (A.1)–(A.5). Terms of equal powers of ϵ are collected, which
results in a series of problems that can be solved successively in increasing order of powers of ϵ. At the leading order (power
ϵ0), the following problem holds:

grady p
⋆(0)

= 0; (A.7a)

divy v⋆(0) = 0; (A.7b)

(V(0) + v⋆(0)) · nj
n = vj(0)n · nj

n on Γ j
n; (A.7c)

vj(0)n = Rj
[P (0) + p⋆(0)] on Γ j

n; (A.7d)

v⋆(0) → 0 and p⋆(0) → 0 as y · n → ∞ (A.7e)

P (0)(x ∈ Ωn) = P (0)(xn); (A.7f)

V(0)(x ∈ Ωn) = V(0)(xn); (A.7g)

p⋆(0)(xS, y) = p⋆(0)(xn, y); (A.7h)

v⋆(0)(xS, y) = v⋆(0)(xn, y). (A.7i)

Eq. (A.7a) shows that BL pressure p⋆(0) is independent on the local spatial variable y. Consequently it is uniform onΩn and
is equal to zero due to the evanescence condition (A.7e). Eq. (A.7b) of the BL incompressibility is integrated with respect to
y over the column Cn of air inside and aboveΩn, see Fig. 2. The boundary ∂Cn of the column Cn consists of the rigid backing,
the surface Γ j

n of the structures, its cross-sectionΣ located at y ·n → ∞ and its lateral surface Γlat. Applying the divergence
theorem and using the BLΣ-periodicity and evanescence, the following equation is derived:

Cn

divy v⋆(0) dΩy = −


j∈[[0;N]]


Γ

j
n

v⋆(0) · nj
n dΓy = 0. (A.8)

Further, since V(0) is uniform at the local scale, see Eq. (A.7g), the following relation also holds:

−


j∈[[0;N]]


Γ

j
n

V(0) · nj
n dΓy + |Σ |yV(0)(xn) · n = 0 (A.9)

where |Σ |y =

Σ

dΣy. The term |Σ |yn ·V(0) results from the flux through the section of Cn located at y ·n → ∞. Eq. (A.7c)
is now integrated over the boundary Γ j

n , providing the following balance of flux:
Γ

j
n

(V(0) + v⋆(0)) · nj
n dΓy =


Γ

j
n

vj(0)n · nj
n dΓy. (A.10)

Combining Eqs. (A.8)–(A.10), with v0(0)n · n0
n = 0 at the rigid substrate (j = 0), the mass conservation law at the boundary is

found for the macroscopic field:

V(0)(xn) · n =


j∈[[1;N]]

1
|Σ |y


Γ

j
n

vj(0)n · nj
n dΓy. (A.11)
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Rewriting (A.11) using the usual space variable x, Eq. (1) is derived. If a sharp scale separation is achieved, the leading
order description (power ϵ0) is sufficient to provide a reasonably accurate description of the propagating field. Otherwise,
corrective terms of order ϵ, ϵ2, etc. in the asymptotic expansions need to be considered.

A.4. Impedance tube characterisation

Eqs. (A.8)–(A.11) still hold if rigid boundary conditions V · n = 0 and v⋆ · n = 0 are prescribed at the lateral surface
Γlat of the column Cn instead of periodicity conditions: in the former case, the flux through Γlat is equal to zero, while, in
the latter case, the flux is self-balanced due to periodicity. As a result, the mass law (A.11) and, consequently, the effective
admittance condition (3) remain valid at the leading order if the column Cn is, in fact, an impedance tube in which a unit
cell of the resonant surface is arranged. In this case, the cross-section of the impedance plays the role of the periodΣ .

Appendix B. Admittance of other types of resonators

In this Appendix, the admittance Y of the quarter-wavelength resonator and the air-filled elastic shell. For simplicity,
the analysis is performed here for lossless resonators but the dissipation can be introduced a posteriori, as explained for the
case of the quarter-wavelength resonator.

B.1. Quarter-wavelength resonator

Consider the resonator made of the straight tube with the length h, and circular cross section A of radius a, and denote z
the coordinate along the tube axis. The pressure field po(z) and the outward axial particle displacement uo(z) in the resonator
are governed by the following equations of momentum and mass conservation:

− ω2ρeuo = −
∂po
∂z

; po = −γ Pe
∂uo

∂z
. (B.1)

The resonator is connected to the outer space at the aperture z = 0 where the macroscopic pressure field P is prescribed,
while the tube is closed at the other end, that is uo = 0 at z = −h. Themodal analysis of this problem, performedwith P = 0,
results in the eigenfrequenciesωm = (2m+1)ωo, whereωo = πc/2h andm ≥ 0 is an integer, and in themodal displacement
ϕm(z) = cos(ωmz/c). Consider now the weak formulation of the momentum conservation, with the displacement û as the
test-field:

− ω2ρe

 z=0

z=−h
uoû dz = −

 z=0

z=−h

∂po
∂z

û dz. (B.2)

Integrating the right-hand side by parts, applying the boundary conditions, and using the mass conservation yield:

γ Pe

 z=0

z=−h

∂ û
∂z
∂uo

∂z
dz − ω2ρe

 z=0

z=−h
uoû dz = −Pû(0). (B.3)

This equation is in the form of Eq. (4). Following the same procedure as in Section 2.4 and using the orthogonality of the
modes, the displacement uo is found in the form:

uo(z) = −P

m

A/Mm

ω2
m − ω2

ϕm(z), (B.4)

where the modal mass is Mm = ρeS
 z=0
z=−h ϕ

2
m dz = M/2, with M = ρeAh being the mass of air in the tube. Finally, the

resonator admittance Y = −iωAuo(0)/P is given by:

Y = iω

m

2A2/M
ω2

m − ω2
. (B.5)

The weak damping in the resonator can be taken into account by introducing the dissipation terms −iζmω at the
denominators of the admittance Y , see Eq. (7), where the loss factors ζm/ωm ≪ 1 can be found from characterisation tests,
see Section 4.2. Note that, for the first resonance to occur under the condition of scale separation, that is ϵo = ℓωo/c ≪ 1,
the following design constraint must be satisfied: h/ℓ = ϵ−1

o π/2, that is, the tube length must be one order larger than the
size of the REV. If the tube of the quarter-wavelength resonator is folded so as to obtain a bulky shape that fits in the REV, the
following condition must hold also: Ah ≤ O(|Σ |ℓ). Combining the two relations yields A ≤ O(ϵo|Σ |), that is, the tube cross
section must be (at least) one order smaller than the area |Σ | of the array period. Similarly to Helmholtz resonators, viscous
and thermal losses are stronger in narrow tubes, see Section 4.1, which limits theminiaturisation of the quarter-wavelength
resonator for deep-subwavelength applications.
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B.2. Air-filled elastic shell

Consider an elastic shell E with air inside. For the elastic shell, the displacement u and the stress tensor σ satisfy the
following equations of dynamic equilibrium and stress/strain relationship, with the density ρ and the elastic tensor C:

div(σ) = −ρω2u; σ = C : e(u), (B.6)

where e(u) =

grad(u)+

Tgrad(u)

/2 is the strain tensor. In the enclosure Vin formed by the shell, air is at the quasi-

static equilibrium, which results in the (quasi-)uniform pressure field pin, while the particle displacement uin satisfies the
following equation of mass conservation:

pin = −γ Pediv(uin). (B.7)

At the outer boundary Γ (outward normal vector n), the uniform macroscopic pressure P is prescribed, while at the
inner boundary Γin (normal vector n′ directed at the enclosure), the conditions of surface stress and normal displacement
continuity hold. These boundary conditions take the form:

σ · n = −Pn at Γ ; σ · n′
= −pinn′ at Γin; u · n′

= uin · n′ at Γin. (B.8)

First, integrate the mass conservation Eq. (B.7) over the volume Vin of the enclosure. Using the divergence theorem and the
continuity of normal displacement at Γin, this yields:

|Vin|pin = γ Pe


Γin

uin · n′ dΓ = γ Pe


Γin

u · n′ dΓ . (B.9)

Now, consider the weak formulation of the dynamic equilibrium of the elastic shell. Using û as the test field, this leads to:
E

σ : e(û) dE − ρω2


E

u · û dE . =

Γ

û · [σ · n] dΓ +


Γin

û · [σ · n′
] dΓ . (B.10)

Using the boundary conditions and the stress/strain relationship in the shell, Eq. (B.10) takes the form:
E

e(u) : C : e(û) dE − ρω2


E

u · û dE + pin


Γin

û · n′ dΓ = −P

Γ

û · n dΓ . (B.11)

Finally, using Eq. (B.9), Eq. (B.10) can be written in the same form as Eq. (4), that is:

K(u, û)− ω2M(u, û) = −P

Γ

û · n dΓ , (B.12)

where

K(u, û) =


E

e(u) : C : e(û) dE +
γ Pe
|Vin|


Γin

u · n′ dΓ

Γin

û · n′ dΓ (B.13)

and

M(u, û) = ρ


E

u · û dE . (B.14)

The samemodal analysis as that presented in Section 2.4 can then be performedwith these operators to derive the resonator
admittance.
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