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The control and interaction between nitrogen and carbon assimilatory pathways is essential in both pho-
tosynthetic and non-photosynthetic tissue in order to support metabolic processes without compromis-
ing growth. Physiological differences between the basal and mature region of wheat (Triticum aestivum)
primary leaves confirmed that there was a change from heterotrophic to autotrophic metabolism. Fourier
Transform Infrared (FT-IR) spectroscopy confirmed the suitability and phenotypic reproducibility of the
leaf growth conditions. Principal Component–Discriminant Function Analysis (PC–DFA) revealed distinct
clustering between base, and tip sections of the developing wheat leaf, and from plants grown in the
presence or absence of nitrate. Gas Chromatography-Time of Flight/Mass Spectrometry (GC-TOF/MS)
combined with multivariate and univariate analyses, and Bayesian network (BN) analysis, distinguished
different tissues and confirmed the physiological switch from high rates of respiration to photosynthesis
along the leaf. The operation of nitrogen metabolism impacted on the levels and distribution of amino
acids, organic acids and carbohydrates within the wheat leaf. In plants grown in the presence of nitrate
there was reduced levels of a number of sugar metabolites in the leaf base and an increase in maltose
levels, possibly reflecting an increase in starch turnover. The value of using this combined metabolomics
analysis for further functional investigations in the future are discussed.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nitrogen is a major plant nutrient, being an essential compo-
nent of amino acids, peptides and proteins, chlorophyll, nucleic
acids and many cofactors and plant defence compounds. For most
higher plants, particularly when growing in well-aerated soils,
nitrate is the primary source of inorganic nitrogen. Nitrate is
reduced to nitrite, then ammonium, prior to assimilation into
amino acids, in a series of reactions that are highly compartmenta-
lised within cells and tissues (Tobin and Yamaya, 2001). Nitrogen
assimilation interacts with carbon assimilation and degradation
in a complex network that adjusts the balance between N and C
according to the physiological status of the tissue and the environ-
mental conditions (Nunes-Nesi et al., 2010), in both photosynthetic
and non-photosynthetic tissue (Smirnoff and Stewart, 1985).

Nitrate assimilation and amino acid biosynthesis require a sup-
ply of reductant (NAD(P)H and/or reduced ferredoxin) and ATP as
well as a range of organic acids to act as carbon skeletons. In pho-
tosynthetic cells, reductant and ATP can be derived from photosyn-
thesis, while mitochondrial respiration also provides
supplementary ATP and reductant even in light (Kromer, 1995;
Nunes-Nesi et al., 2010). Carbon skeletons can be produced from
newly synthesised carbohydrates that are converted into organic
acids via respiration (glycolysis, TCA cycle and oxidative pentose
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Fig. 1. Mesophyll cell number and age along the developing wheat leaf. Mesophyll
cell numbers (large closed circle) and cell age (small closed circle) along the length
of 7 day old primary leaves. Data points represent the mean of 5 independent
growth studies, sampling 5 seedlings per replicate. Error bars show ±SE of the mean.
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phosphate pathway), or from stored organic compounds (Nunes-
Nesi et al., 2010; Sweetlove et al., 2010). In non-photosynthetic
cells, reductant and ATP are supplied by respiration, with carbohy-
drates being imported, as sucrose from photosynthetic tissue or
released from reserves. The cost of transporting sucrose to the
roots, as well as respiration to generate ATP and reductant, makes
roots and other non-photosynthetic tissue more energetically
‘costly’ as sites for nitrate assimilation. The energetic advantages
of photosynthetic tissue becomes increasingly compromised as
light intensities fall to the point where photosynthesis becomes
light-limited. Under these conditions nitrate assimilation com-
petes with the Calvin cycle for reductant and ATP, leading to a
reduced rate of carbon assimilation (Canvin and Atkins, 1974). If
carbohydrate concentrations fall it can result in a depletion of
amino acid pools, either due to a limited supply of carbon skeletons
for amino acid synthesis or due to the catabolism of amino acids to
maintain respiration (Matt et al., 1998; Usadel et al., 2008). Even
under high light, the presence of nitrate can shift the flow of pho-
tosynthetic carbon towards amino acid (Champigny and Foyer,
1992) and organic acid synthesis (Scheible et al., 1997), while car-
bohydrate synthesis is decreased, and a greater proportion of
assimilated carbon is incorporated into organic and amino acids
(Stitt et al., 2002). These examples illustrate the need for nitrogen
and carbon assimilation pathways to be coordinated in order that
there is an adequate supply of carbon to support amino acid
biosynthesis without compromising growth. They also indicate sig-
nificant differences in the metabolic networks that exist within
non-photosynthetic compared to photosynthetic tissue.

To date there have been some extremely informative integra-
tive ‘omics’ approaches for assessing nitrogen status in the model
dicotyledonous plant Arabidopsis. For example Hirai et al. (2004)
combined transcriptomics and metabolomics to gain a better
understanding of nutritional stress responses in Arabidopsis.
Whilst Albinsky et al. (2010) over expressed rice full-length cDNA
clones in Arabidopsis and then performed transcriptome and
metabolome analyses to learn more about the processes related
to nitrogen metabolism. A more sophisticated experimental design
and the measurement of relevant enzyme activities, in addition to
classical targeted metabolite quantification, allowed Tschoep et al.
(2009) to interpret Arabidopsis nitrogen deficiency phenotypes.
Such studies in Arabidopsis have, by necessity, not accounted for
the fact that certain tissues of the leaf are undergoing different
metabolic processes with respect to autotrophic and heterotrophic
metabolism. Also all these studies have used multiple leaf pools
from multiple plants meaning that it is not possible to compare
respiring versus photosynthetic tissues and no consideration can
be given to leaves from different positions and of different ages.

In order to identify metabolic networks and their fluctuations in
response to changing N supply and C assimilation, we have used
the natural developmental gradient that exists within the wheat
primary leaf. This system has advantages over comparisons
between leaf and root assimilation because it provides tissue that
is anatomically comparable (i.e. composed of mesophyll, vascular
and epidermal cells) and is readily characterised. As cell division
is restricted to a basal meristem, this generates a measurable gra-
dient of cell age and development along the leaf blade with a tran-
sition from non-photosynthetic cells at the base to fully
photosynthetic cells at the leaf tip (Tobin et al., 1985). Hence,
within a single tissue we are able to identify distinct changes in
metabolic networks as the pathways for nitrogen assimilation
operate within cells that are transitioning from wholly respiratory
to fully photosynthetic.

In this paper initial studies were carried out to characterise the
physiological differences between basal and mature regions of
wheat primary leaves of nitrate-grown plants. Following charac-
terisation by metabolite fingerprinting with Fourier Transform
Infrared (FT-IR) spectroscopy, non-photosynthetic, semi-auto-
trophic and fully photosynthetic leaf sections were taken from
plants grown in the presence or absence of nitrate and subjected
to metabolite profiling using Gas Chromatography-Time of Flight/
Mass Spectrometry (GC-TOF/MS). The metabolite data were ana-
lysed using multivariate chemometric approaches, point-by-point
(univariate) data interpretation, as well as by Bayesian network
(BN) based correlation analyses.

We discuss the extent to which these metabolomics approaches
are able to distinguish the different tissues and treatments and we
identify major changes in metabolite networks during the transi-
tion from heterotrophic to fully photosynthetic metabolism in
response to increased N supply. The value of this approach when
undertaking functional investigations of plants grown in different
scenarios is also considered.
2. Results

2.1. Changes in metabolism during leaf development

In wheat plants grown in the presence of a continuous N supply
by growing on compost, mesophyll cell number was highest in the
basal 5 mm of the leaf blade (approximately 11 � 107 cells g�1

fwt), and then rapidly decreased to a constant lower number of
ca. 2 � 107 cells g�1 fwt beyond 20 mm from the leaf base
(Fig. 1), confirming that cell division is restricted to the basal
5 mm and the mesophyll cell elongation zone occurred within
the basal 20 mm of the leaf (0–20 h old). Cell age increases rapidly
over the basal region, where the cells are actively dividing, and
then increases at a constant rate with distance from the leaf base
(Fig. 1).

The total chlorophyll concentration markedly increased from
the leaf base to the tip (Fig. 2a and b). The data are plotted in alter-
native forms to show how distance along the leaf from the base
(Fig. 2a) equates to cell age in hours (Fig. 2b). In subsequent graphs
the data are presented against cell age. There is a ‘switch over’ from
heterotrophic metabolism, where respiration predominates up
until the end of the elongation zone of the leaf (Fig. 2d), to auto-
trophic metabolism, where photosynthesis predominates towards
the leaf tip (Fig. 2c). Photosynthetic activity reaches its maximum
at the leaf tip, coinciding with the maximum size and development
of the chloroplasts (Figs. 2c, S1). Based on this metabolic distinc-
tion, metabolite fingerprinting and profiling of the basal, mid and
terminal 20 mm sections of the developing wheat leaf allows a
comparison to be made between heterotrophic, ‘semi-autotrophic’
and fully autotrophic metabolism. Basal tissue contains cells up to
24 h old, which includes all the meristematic cells as well as those
undergoing elongation. Although they contain some chlorophyll



Fig. 2. Changing chlorophyll concentration, CO2 dependent O2 evolution and dark
respiration along the length of 7 day old primary wheat leaves. Chlorophyll
concentration was measured on a (a) spatial, and (b) temporal scale. (c) CO2

dependent O2 evolution was measured using a leaf disc electrode at saturating
concentration of CO2. (d) Dark respiration was also measured using a leaf disc
electrode. Data points represent the mean of at least 3 independent growth studies,
sampling at least 5 seedlings per replicate. Error bars show ±SE of the mean.

Fig. 3. Soluble and insoluble carbohydrate, protein and free amino acid, changes
along the developing wheat leaf. Changes in (a) soluble carbohydrate, (b) insoluble
carbohydrate, (c) protein, and (d) total free amino acid pool in relation to cell age
along the length of 7 day old primary wheat leaves. Data points represent the mean
of a minimum of 5 independent growth studies, sampling at least 5 seedlings per
replicate. Error bars show ±SE of the mean.
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(Fig. 2b) there is no detectable photosynthesis (Fig. 2c) and they
are dependent on respiration (Fig. 2d) to supply ATP and reductant
for nitrogen assimilation. Carbohydrates are present, with the sol-
uble forms predominating (Fig. 3a and b). The soluble protein con-
centration (Fig. 3c) showed maximal levels in the youngest cells at
the leaf base, rapidly decreasing to a minimum towards the end of
the elongation zone (20 h). In the mid-section (60–80 mm from the
base) the cells are 70–90 h old and while respiratory activity has
decreased (Fig. 2d) they are still developing photosynthetically,
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reaching 50% of the maximum capacity that is attained at the leaf
tip (Fig. 2c). In this region of the leaf the soluble carbohydrate
(Fig. 3a), proteins (Fig. 3c) and amino acid pools (Fig. 3d) are begin-
ning to increase. Finally, the tip sections are fully developed, with
minimum rates of dark respiration (Fig. 2d) and maximum rates of
photosynthesis (Fig. 2c).

2.2. Metabolite fingerprinting of wheat leaf development

FT-IR spectroscopy was first used to assess the suitability and
reproducibility of the leaf system growth conditions, as well as
sample harvest and enzymatic quenching protocols. It also pro-
vided a rapid fingerprint (or phenotypic) comparison of the bio-
chemical composition for each experimental class. A Standard
Normal Variate (SNV) baseline correction was performed on the
FT-IR spectra (Fig. 4a), which was then followed by the calculation
of the first derivative spectra. PC–DFA was generally capable of dis-
criminating the experimental classes (base, mid and tip) taken
from plants grown in the presence or absence of nitrate (Fig. 4b).
The co-clustering of the test and the training data indicates a high
degree of reproducibility between biological and analytical repli-
cate data of the same class (Fig. 4b), suggesting that the experi-
mental approach was appropriate for more in depth metabolite
profiling.

2.3. GC-TOF/MS metabolite profiling of nitrate supplemented and
limited developing wheat leaves

A total of 115 metabolite features were detected by GC-TOF/MS
in wheat primary leaves grown in the presence or absence of
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Fig. 4. FT-IR spectra and data analysis of primary wheat leaf sections from plants
grown in the presence or absence of nitrate. FT-IR analysis of primary wheat leaf
base, mid and tip sections taken from plants grown in the presence or absence of
nitrate. (a) SNV baseline corrected FT-IR absorbance spectra. (b) PC–DFA scores plot
of FT-IR spectra. The validated PC–DFA model was based on independent projection
of a test dataset (black border on symbol) on to a training dataset model. The data
represents six biological replicates analysed in triplicate per class (n = 18). Leaf base
in presence (red circle) or absence (red triangle) of nitrate, mid leaf in presence
(green circle) or absence (green triangle) of nitrate, leaf tip in presence (blue circle)
or absence (blue triangle) of nitrate.
nitrate, of which a total of 51 metabolites were identified by library
matching (Table S1). Chemometric analysis of the GC-TOF/MS
metabolite profiles focused upon the selection of differentially
expressed metabolites that revealed significant trends either
between the leaf regions or in response to growing the plant in
the presence or absence of nitrate. Three approaches to the data
mining were applied. First multiblock Consensus (C)-PCA was
applied (Biais et al., 2009; Smilde et al., 2003; Westerhuis et al.,
1998; Xu and Goodacre, 2012), where models combine several dif-
ferent but potentially connected data sets (called ‘‘blocks’’), with
emphasis upon modelling the ‘‘common trend’’ between the
blocks. The sample distribution of each individual block are shown
in their respective ‘‘block scores’’ plot and the contribution of
metabolites in relation to the observed trend are shown in their
‘‘block loadings’’ plot (Biais et al., 2009). The first C-PCA model
(Fig. 5a and b) arranged the data into two blocks consisting of
nitrate supplemented and nitrate deprived samples. The second
C-PCA model (Fig. 5c and d) arranged the data into three blocks
consisting of leaf base, mid leaf, and leaf tip. The multiblock C-
PCA scores plot (Fig. 5a) gave distinct clustering patterns for all
three leaf regions within the two blocks corresponding to the pres-
ence or absence of nitrate, the multiblock C-PCA scores plot
(Fig. 5c) also gave distinct clustering patterns for plants grown in
the presence or absence of nitrate within the three blocks corre-
sponding to each leaf section, and thus the respective PC loadings
were derived (Fig. 5b and d) and further investigated. Secondly var-
iable selection analyses using the univariate Wilcoxon rank-sum
test were performed (Table S1). Each of the three leaf tissue sec-
tions were compared under the two respective nitrate conditions,
and each respective tissue section was compared between the
two nitrate conditions. Finally, BN analyses were performed upon
all features where a metabolite identification was attained via
library matching and focused upon comparisons of the leaf base
(fully heterotrophic) and tip (fully autotrophic) in the absence or
presence of nitrate.

2.4. Metabolite levels altered during wheat leaf development

Of the metabolites with known identity, 35 (68.6%) were differ-
entially present between at least one of the leaf regions on the
basis of the Wilcoxon rank-sum test (False Discovery Rate (FDR)
q-value 0.05) (Fig. 6, Table S1). The results of BN analysis are pre-
sented in the form of correlation heat maps (Fig. 7), a traditional
network topology (Fig. S2) and plots of peak area log2 ratio
(Fig. S3). After BN analysis, t-tests (FDR q-value 0.05) are applied
to highlight the metabolites that are significantly altered. The
significant metabolites are displayed as traditional correlation
networks (Fig. S2a–h). To simplify the presented results, each net-
work is split into two component parts. For example, all metabo-
lites which were significantly altered in the base or tip regions of
plants grown in the absence of nitrate are correlated in a network
based on the base (Fig. S2a) or tip (Fig. S2b) data only. As a first step
BN analysis was used to assess metabolites that strongly correlated
between the leaf base and tip when grown in the absence (Figs. 7a,
S2a,b, S3a,b) or presence (Figs. 7b, S2c,d, S3c,d) of nitrate.

The levels of the amino acids, gamma-aminobutyric acid
(GABA), alanine, glutamine, glutamic acid, glycine, leucine, phenyl-
alanine, serine, threonine, tyrosine and valine decreased signifi-
cantly between the base and the tip of the leaf (Fig. 6, Table S1).
These changes in amino acids were confirmed significant with both
the Wilcoxon rank-sum test and BN analyses (Table S1, Figs. 7a and
b, S2a–d, S3a–d), indicating the approaches were significantly
complementary.

BN analysis and application of the Wilcoxon rank-sum test both
indicated that levels of TCA cycle organic acids, including fumaric-,
malic-, aconitic- and succinic-acids significantly decreased
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between the leaf base and tip sections (Figs. 6, 7a and b, S2a–d,
S3a–d, Table S1). By contrast, the levels of dehydroascorbic and
2-oxoglutaric acids significantly increased from the base to the
mid and to the tip of the leaf (Figs. 6, 7a and b, S2a–d, S3a–d,
Table S1). Lactic acid was decreased in the mid leaf compared to
the tip and base under both nitrate conditions (Fig. 6, Table S1).

The level of sucrose increased significantly from the base to the
mid and tip of the leaf, as revealed by Wilcoxon rank-sum test and



Fig. 6. Box and whisker trend plots of significant metabolites determined by GC-TOF/MS. Metabolite levels in leaf base (B), mid leaf (M) and leaf tip (T) sections from the
developing primary wheat leaves of plants grown in the presence (+) or absence (�) of nitrate measured using GC-TOF/MS. The normalised peak areas representing the mean
of each metabolite and experimental class are displayed as box and whisker plots. Within the plots, the box represents the interquartile range (25% and 75%), the whiskers
(error bars) represent data points not considered as outliers defined by 1.5� the interquartile range deviation from the mean. In cases where the data distribution is very tight
and values lie only just outside of the 25% or 75%, the whiskers may not be clearly visible due to overlap with the box.
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BN analyses. Other unidentified sugar metabolites (monosaccha-
rides and/or disaccharides and/or sugar alcohols) 7, 53, 59, 90,
92, 93, and 95 (Table S1) increased significantly from the base to
the tip section of the leaf based upon multiblock C-PCA loadings
(Fig. 5a and b, Table S1) and the Wilcoxon rank-sum test
(Table S1). Multiblock C-PCA and BN analysis indicated that malt-
ose and fructose levels were significantly greater within the leaf tip
(Figs. 5a and b, 7a and b, S2a–d, S3a–d, Table S1). In contrast, the
level of glucose-6-phosphate (G-6-P) declined significantly
between the leaf base and mid leaf, but remained constant to the
leaf tip, as indicated by all three statistical approaches (Figs. 5a
and b, 6, 7a and b, S2a–d, S3a–d, Table S1).

The levels of sugar alcohols, including 2,3-butanediol, threitol
and/or erythritol and myo-inositol, increased significantly in the
leaf tip compared to the base (Fig. 6, Table S1). Similarly, the
Wilcoxon rank-sum test and BN analysis indicated that the levels
of the fatty acids, octadecanoic-, myristic- and hexadecanoic-acid,
increased significantly along the length of the leaf from base to tip.
In contrast, 2,4-dihydroxybutanoic acid and 3-ureidopropanoic
acid, decreased significantly from the leaf base to the tip (Figs. 6,
7a and b, S2a–d, S3a–d, Table S1).

2.5. Comparison of differential metabolite profiles of each leaf region in
response to nitrate supplementation

To assess which metabolites altered between nitrate conditions
for each respective leaf section, C-PCA loadings were first derived
(Fig. 5, Table S1) and the Wilcoxon rank-sum test was applied,



Fig. 7. Bayesian network (BN) analysis correlation heat maps. Bayesian network (BN) analysis was performed to search for strong probabilistic correlations between
metabolites with respect to growth conditions and leaf position. The BN results were translated into Pearson’s correlation coefficients and are displayed as a heat map. Strong
correlations were searched between metabolites within (a) the base and tip of the leaf when grown in the absence of nitrate; (b) the base and tip of the leaf when grown in the
presence of nitrate; (c) the leaf tip when grown in the absence and presence of nitrate; (d) the leaf base when grown in the absence and presence of nitrate.
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where the null hypothesis was that no significant difference was
observed between the metabolite levels of the respective leaf
sections when plants were grown in the presence compared to
the absence of nitrate (Table S1). BN analyses were in this case
applied to compare the leaf tip (Figs. 7c, S2e,f, S3e,f), or the base
(Figs. 7d, S2g,h, S3g,h) when grown in the presence or absence of
nitrate.

Multiblock C-PCA and BN analysis indicated that the level of
maltose within the leaf base was significantly higher in nitrate
supplemented plants (Figs. 5c and d, 6, 7d, S2g, S3g). In contrast,
significantly lower levels of trehalose were detected in the basal
region of leaves in nitrate supplemented plants, as indicated by
all three statistical approaches (Figs. 5c and d, 6, 7d, S2h, S3h).

Amino acid levels showed differential responses in sections
taken from the primary leaf of plants grown in the presence or
absence of nitrate, as indicated by Wilcoxon rank-sum test and
BN analysis (Figs. 6 and 7, Table S1). The levels of leucine in the
basal region of leaves were significantly lower in nitrate supple-
mented plants (Figs. 6, 7d, S2h, S3h, Table S1). In contrast, the level
of glutamic acid, tyrosine, GABA and alanine were significantly
higher in the basal region of leaves in nitrate supplemented plants
(Figs. 6, 7d, S2g, S3g, Table S1).

As confirmed by both the Wilcoxon rank-sum test and BN anal-
ysis, the levels of the organic acids aconitic- and succinic-acid
increased significantly in the leaf base region in nitrate supple-
mented plants (Figs. 6, 7d, S2g, S3g, Table S1). By contrast, a signif-
icant decrease in the levels of 2-oxoglutaric- and dehydroascorbic-
acid were observed in the tip section of nitrate supplemented
plants (Figs. 6, 7c, S2e,f, S3e,f).

Further metabolites of interest that were mined by BN analysis
(Figs. 7d, S2h, S3h, Table S1) included, sucrose, lactic acid, hexa-
decanoic acid, and 2,3-butanediol, which were all of greater con-
centration in the leaf base of plants grown in the absence of
nitrate (Fig. 6).



106 J.W. Allwood et al. / Phytochemistry 115 (2015) 99–111
3. Discussion

3.1. Metabolic changes

The developing primary wheat leaf provides a model system in
which a gradient of cells exists along the leaf blade in terms of both
age and development (Boffey et al., 1979; Ellis et al., 1983; Leech,
1985; Tobin et al., 1985). Our metabolic studies on wheat plants
grown on compost with a continuous supply of nitrogen confirmed
that photosynthesis, dark respiration and carbohydrate metabo-
lism all changed with development in a manner comparable to that
previously reported for Triticum aestivum var Maris Huntsman
(Baker and Leech, 1977), Zea mays (Baker and Leech, 1977;
Ponnala et al., 2014), Fescue arundinacea (Allard and Nelson,
1991) and Hordeum vulgare (Bowsher and Tobin, 2001;
Thompson et al., 1998). High rates of net deposition of proteins,
soluble carbohydrates and amino acids occurred in the youngest
cells while the highest net rate of deposition of insoluble carbohy-
drates (as structural or storage reserves) occurred within the zone
of elongation. Such changes reflect a change in metabolism or
mobilisation due to the heterotrophic or autotrophic nature of
the cells present at different positions within the leaf blade. For
example, in young non-photosynthetic cells at the leaf base, the
soluble carbohydrates will have been transported from the photo-
synthetic cells at the leaf tip primarily in the form of sucrose
(Allard and Nelson, 1991).
3.2. Metabolite fingerprinting and profiling

Metabolic differences were confirmed by FT-IR spectroscopy,
with distinct clusters between the base and tip leaf sections from
plants grown in the presence or absence of nitrate being observed
in the PC–DFA scores plot. In contrast the mid-leaf section was less
tightly clustered reflecting the semi-autotrophic nature of metab-
olism in this tissue. This combination of FT-IR spectroscopy with
appropriate chemometrics has previously been successfully
employed in the classification of olive oil (Lai et al., 1994), adulte-
ration of cocoa butters (Goodacre and Anklam, 2001), for plant
breeding (Goodacre et al., 2007a), the examination of salinity
effects on tomato fruit (Johnson et al., 2003), to investigate suscep-
tible and resistant interactions of the model plant Brachypodium
distachyon with the rice blast pathogen Magnaporthe grisea
(Allwood et al., 2006), the response of Arabidopsis thaliana to Pseu-
domonas syringae pv. tomato (Allwood et al., 2010), and in identify-
ing biochemical variations in heather leaf tissue in response to
nitrogen level (Gidman et al., 2003, 2005). Applying FT-IR finger-
printing as reported here in a well-characterised monocot model,
can be used to identify the parts of the plant that have the stron-
gest differential response to a varied N-supply. The high levels of
sample throughput provided by FT-IR can permit screening large
ranges of plant genotypes and nutrient conditions in high replica-
tion, prior to selecting the most informative nutrient condition
groups and genotypes to apply more in depth and higher expense
GC–MS profiling to.

The GC-TOF/MS profiles were analysed by multiblock C-PCA
revealing distinct clustering between leaf sections of plants grown
in the presence or absence of nitrate (Fig. 5a and b), and between
respective tissue sections from plants grown in the presence or
absence of nitrate (Fig. 5c and d). Of 115 metabolites detected,
39 were of known chemical structure as defined by matching the
retention index and electron impact mass spectrum to authentic
chemical standards measured in-house (Level 1 identification;
Table S1; Sumner et al., 2007), a further 12 were of level 2 identi-
fication (Table S1) due to MS matching to external metabolite
libraries alone (NIST/EPA/NIH05 and Golm Metabolome Database;
Hummel et al., 2010; Kopka et al., 2005; Sumner et al., 2007).
Thirty-five metabolites of known identity showed significant
changes between the leaf regions when assessed at the univariate
level by the Wilcoxon rank-sum test (Table S1).

BN analysis is a multivariate statistical technique that has only
recently been applied to metabolomics investigations (Gavai et al.,
2009; Li and Chan, 2004). A BN is a graphical model of a probability
distribution over a set of variables of a given problem domain
(Jensen, 2001; Neapolitan, 2003), providing a compact and intui-
tive representation of their relationships. These relationships or
correlations are broadly either (a) ‘‘positive correlations’’ which
indicate that the values of both variables increase or decrease
together, and (b) ‘‘negative correlation’’ which indicates that as
one variable increases, the other decreases. The network structure
of a BN encodes probabilistic dependencies among domain vari-
ables and a joint probability distribution quantifies the strength
of these dependencies (Heckerman, 1995). The resulting graphical
model (network) allows (i) Visualisation of probabilistic relation-
ships: providing direct information on underlying interactions
between metabolites, and (ii) Inference: where the BN is used to
predict outputs or to classify new samples (Correa and Goodacre,
2011).

The trends of significant metabolite levels during leaf develop-
ment and in response to nitrate were mined using this combination
of multivariate based cluster analyses (C-PCA), point-by-point uni-
variate analyses (Wilcoxon rank-sum test), and BN correlation anal-
ysis, and then are most easily visualised using the box and whisker
plots based on experimental class averages (Fig. 6).

The rate of respiration was highest in the youngest tissue at the
base of the primary leaf, and decreased as the leaf became more
photosynthetically developed. Consistent with earlier observations
made by Tobin et al. (1988), the level of the TCA cycle compounds
fumaric-, malic-, 2-oxoglutaric- and succinic-acids, decreased from
the base to the tip of the leaf. As substrates for the four enzymes
identified as the major controlling points in the cycle, namely,
fumarase, malate dehydrogenase, 2 oxoglutarate dehydrogenase
and succinate dehydrogenase (Araujo et al., 2012), the accumula-
tion of these metabolites is indicative of a high flux through the
TCA cycle in the young cells at the leaf base. Furthermore, the lev-
els of the respiratory metabolite aconitic acid is correlated with
carbohydrates which support respiration (Figs. S2a, S3a). Fumaric
acid is a key metabolite in the base and is negatively correlated
to TCA metabolites and carbohydrates.

The amino acids alanine, glutamic acid, glutamine and threo-
nine were significantly higher in the base than the tip of the pri-
mary leaf. The extent and rate of accumulation of different amino
acids markedly varies depending on the plant species and growth
conditions (Fritz et al., 2006; Gibon et al., 2006; Leidreiter et al.,
1995; Lohaus et al., 1995; Noctor et al., 2002; Nunes-Nesi et al.,
2010; Scheible et al., 1997). Such changes reflect the rate of accu-
mulation and the rate at which amino acids are used for protein
synthesis and their rate of export in the phloem. Succinic acid
was correlated with a number of aromatic amino acids, suggesting
a role as the source of C skeletons.

The levels of sucrose, maltose, fructose and a number of uniden-
tified sugar metabolites increased towards the leaf tip, as photo-
synthetic activity developed. Similarly, metabolite profiling
identified an increasing fraction of photosynthate maintained as
sucrose as the developing quaking aspen leaf expands (Jeong
et al., 2004). This will provide a source of carbohydrates to the
young cells at the leaf base (Allard and Nelson, 1991; Sweetlove
et al., 2010).

Fatty acid synthesis in leaves takes place mostly in the chloro-
plast (Harwood, 1975) and requires cofactors, such as ATP and
NADPH, which are more plentiful during active photosynthesis
(Hitchcock and Nichols, 1971). In agreement with previous studies
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on the developing primary leaves of barley, maize, rye grass and
wheat (Bolton and Harwood, 1978), significantly higher levels of
hexadecanoic and octadecanoic acid occurred in the leaf tip when
compared to the base.

The higher levels of ascorbic and dehydroascorbic acid detected
at the leaf tip in this study are consistent with their role as
antioxidants that protect cells from damage resulting from the
generation of free radicals, such as hydrogen peroxide, during pho-
tosynthesis (Foyer and Halliwell, 1976).

3.3. Impact of nitrate on metabolism

Appraisals of the extracted infrared peak areas confirmed that
total protein, carbohydrate and lipid levels, detected in the leaf
base of plants grown in the absence of nitrate were higher than
levels seen in the tip. In contrast, levels in the leaf tip were higher
in plants grown in the presence of nitrate, suggesting a switch in
metabolism not detected by the physiological analyses.

Only glutamic acid, tyrosine and alanine levels increased com-
monly in all three leaf sections when plants grown in the presence
of nitrate were compared to those grown in its absence, reflecting
the different metabolic processes occurring in autotrophic and het-
erotrophic tissues. However, based upon comparisons between
each respective leaf section, the numbers of metabolites that
increased in the presence of nitrate are far greater. The availability
of nitrate to the plant will lead to higher production of glutamic
acid and glutamine via the GS/GOGAT pathway. As alanine is
derived from glutamic acid, its level, as observed in this study,
may also be expected to increase. This may also reflect the role
of glutamine in plants as a nitrogen transport compound
(Ireland, 1990; Tobin and Yamaya, 2001). The limited change of
other amino acids might suggest amino acid synthesis in young
leaves is not dependent on an external nitrogen source. Alterna-
tively, amino acid flux through to other areas of metabolism,
may limit changes detected by GC-TOF/MS measurements.
Although technically much more demanding, fluxomics with mass
isotopomer analysis (Winder et al., 2011) could be applied to spe-
cifically target amino acid flux (Gauthier et al., 2010).

In plants grown in the presence of nitrate, reduced levels of a
number of sugar metabolites were observed in the basal section
of the leaf when compared with levels in plants grown in the
absence of nitrate. In contrast, maltose levels were higher in the
leaf base of plants grown in the presence of nitrate. As leaf cells
are respiring and not photosynthesising in the basal section, starch
degradation is the most likely source of soluble and insoluble car-
bohydrate. It is well-established that starch breakdown leads to
the production of maltose, and that a decline in starch accumula-
tion occurs under nitrate stress (Niittylä et al., 2004; Weise et al.,
2004), making it tempting to speculate that the higher level of
maltose reflects an increased starch turnover.

An increased level of 2-oxoglutaric acid and succinic acid was
seen in the leaf base of nitrate-treated plants. Scheible et al.
(1997) demonstrated that nitrate supply to tobacco plants pro-
moted the synthesis of 2-oxoglutaric acid and other TCA cycle
organic acids by enhancing the transcript levels and enzyme activ-
ity of phosphoenolpyruvate carboxylase, pyruvate kinase, citrate
synthase, and isocitrate dehydrogenase. A GC–MS profiling study
of tomato plants grown in the presence of nitrate also showed
the levels of 2-oxoglutaric acid and other organic acids increased
in the leaves (Urbanczyk-Wochniak and Fernie, 2005). As 2-oxo-
glutaric acid plays an important role in the TCA cycle and nitrogen
assimilation (Stitt and Krapp, 1999), its metabolic shift between
these two pathways must be tightly regulated. Glutamate dehy-
drogenase (GDH) catalyses a reversible enzymatic reaction involv-
ing the assimilation of ammonium into glutamic acid and the
deamination of glutamic acid into 2-oxoglutaric acid and ammo-
nium (Lancien et al., 2000). The direction of the GDH enzymatic
reaction depends on the nitrogen and carbon source. Furthermore,
GDH activity is very much under the control of NADH/NAD. The
increased level of glutamic acid in plants grown in the presence
of nitrate favours the deamination reaction of 2-oxoglutaric acid
production (Lancien et al., 2000) in the base of nitrate-treated
plants.

An increase in the level of malic acid at the tip of the leaf was
observed when plants grown in the presence of nitrate were com-
pared with plants grown in its absence. Malic acid concentrations
are known to rise in response to surplus photosynthetic electron
transport (Backhausen et al., 1998), especially during periods of
nitrate assimilation (Schieble et al., 2000). In spinach and tobacco,
nitrate reduction stimulates the anaplerotic production of malic
acid to counter the imbalances in charge and pH caused by its
assimilation (Muller et al., 2001; Schieble et al., 2000). As nitrate
assimilation is dependent on substrate availability (Forde, 2002),
and nitrate is more actively assimilated in the mature regions of
wheat leaves (Tobin et al., 1988), the increase in malic acid levels
at the leaf tip from nitrate-treated plants is not unexpected. Malic
acid has an important role in the coordination of photosynthesis,
glycolysis, TCA activity, glyoxysomal/peroxisomal activity and
nitrate assimilation, as seen by its central positioning in the net-
work correlation (Fig. S2e; Champigny, 1995; Hanning and Heldt,
1993; Martinoia and Rentsch, 1994; Muller et al., 2001; Schieble
et al., 2000). The decreased malic acid level observed in the leaf
base might be related to its degradation or conversion to other
form(s) of metabolites in specific response processes to nitrate
induction.

The level of trehalose was significantly higher in the primary
leaves of plants grown in the absence of nitrate compared to those
grown in its presence. A clear role of trehalose in stress tolerance,
in particular drought, has been demonstrated for cryptobiotic spe-
cies, such as the desiccation-tolerant Selaginella lepidophylla
(Zentella et al., 1999), and higher vascular plants, like Myrothamnus
flabellifolius (Bianchi et al., 1993; Drennan et al., 1993). Our results
could reflect trehalose being produced by plants experiencing
stress due to a lack of nitrate in the nutrient media. Trehalose accu-
mulation in the leaf base may also protect the cells of the meri-
stem. The inverse relationship between trehalose and G-6-P in
plants grown in the presence of nitrate compared to those grown
in its absence is indicative of sugar phosphates being diverted
away from glycolysis into trehalose synthesis (Paul et al., 2008;
Pellny et al., 2004; Schluepmann et al., 2003).
4. Conclusions

This study has shown that non-targeted metabolite profiling
can detect changes along the developing wheat leaf of plants
grown under different nitrate conditions and provides an insight
into the metabolic adjustments that occur during leaf develop-
ment. The clearest insight of plant metabolic differences during
wheat leaf development was that obtained using PC–DFA for FT-
IR data or multiblock C-PCA in the case of the GC-TOF/MS data.
However, by combining the loadings derived from such multivari-
ate analyses, with the results of univariate significance testing and
BN analysis, a more detailed consensus interpretation and appreci-
ation of the most important biological relationships and complex-
ities between the metabolites and various experimental conditions
is obtained. This study is one of the first to illustrate that BN anal-
ysis is a suitable approach for identifying significant metabolite
differences which complements the commonly applied PCA and
univariate significance tests. The various chemometric analyses
revealed that different developmental stages along the primary
wheat leaf could be distinguished from one another on the basis
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of their metabolite composition. Furthermore, growing plants in
the presence or absence of nitrate had an additional impact on
metabolite levels during wheat leaf development. The change in
metabolites along the developing wheat leaf may be taken as indic-
ative of different metabolic processes occurring within young and
mature wheat leaf cells, including photosynthesis, respiration,
nitrogen metabolism, sugar metabolism, fatty acid synthesis and
the ascorbate–glutathione pathway. Our study also confirms that
nitrate nutrition has an impact on leaf metabolism with high
nitrate supply resulting in increases of some amino acids and
organic acids and decreases in the level of several carbohydrates.
As the data generated in this study match the interpretation from
other metabolic studies, this work can now be incorporated into
further functional studies to explore, for example, metabolite reg-
ulation during leaf development or to examine nitrogen use
efficiency. Furthermore, combining this approach with the type
of quantitative transcriptomic and proteomic analyses recently
performed in developing maize leaves (Ponnala et al., 2014) will
produce a powerful methodology for integrated metabolic
modelling.
5. Experimental procedures

5.1. Plant growth and physiological analysis

For physiological studies wheat (T. aestivum L. cv Maris Hunts-
man) seeds from Plant Breeding International (Cambridge, UK)
were grown in Levingtons M2 medium nutrient potting compost
(Levington Horticulture Ltd., www.levington.com) in a controlled
environment chamber (Fi-totron PG1400; Sanyo Gallenkamp,
www.sanyo-biomedical.co.uk) with a 16 h photoperiod at 20 �C/
10 �C and a constant humidity of 70%. Quantum flux was measured
daily at 2 h into the light period with a Skye Light metre (Skye
Instruments, www.skyeinstruments.com) and ranged between
232 and 348 lmol m�2 s�1 photosynthetic photon flux. For the
metabolomics work, wheat (T. aestivum L. cv Paragon) seeds from
Plant Breeding International were grown on 0.2% (w/v) Phytagel
nutrient media (Paul and Stitt, 1993) in the presence or absence
of 10 mM KNO3 as described by Gummadova et al. (2007), with
all other growth conditions as described above.

Plants were harvested 2–3 h into the photoperiod after 7 or
8 days, when leaf height reached approximately 12 cm. The pri-
mary leaf was dissected from the seedling and 2 cm sections cut
as described previously (Gummadova et al., 2007). All harvesting
processes were carried out by hand, except for the metabolite pro-
filing experiments where forceps were used to handle material.
Following harvesting, tissue sections were either used immediately
or flash frozen in liquid nitrogen and stored at �80 �C.

Mesophyll cell number was determined according to Dean and
Leech (1982) with transverse sections taken along the leaf length
of 5 primary wheat leaves at 5 mm intervals. Cell age was calcu-
lated by measuring the displacement velocity of marked regions
along the leaf as described by Hopkins et al. (2002). The chloro-
phyll concentration was determined according to the method of
Arnon (1949).

Photosynthesis was measured with a Hansatech leaf disc elec-
trode (Hansatech Ltd., Norfolk, UK) as the rate of CO2 dependent
O2 evolution in 1 cm transverse leaf sections from 10 primary
leaves taken at 0, 20, 40, 60 and 80 mm above the leaf base, with
saturating CO2 (5% v/v) and light (PAR at 900 lmol m�2 s�1)
according to Walker (1990). Dark respiration was measured in
the same way as photosynthesis but in the absence of light.

The total soluble and insoluble carbohydrate content of primary
leaf tissue was determined colorimetrically at 623 nm using Drey-
woods anthrone reagent (Morris, 1948). For determining amino
acid free pools, sequential 1 cm tissue sections were taken from
5 primary leaves, frozen in liquid N2 and ground to a fine powder
with 1 ml 80% (v/v) ethanol, and left to stand for 30 min at 4 �C.
Following vortexing, the extract was centrifuged at 10,000g for
10 min and the resulting supernatant centrifuged a further 2 times
under the same conditions. The pooled supernatant was frozen in
liquid N2 and freeze dried overnight before re-dissolving in 1 ml
of 12.5 lm L-a-aminobutyric acid (AABA) and centrifuging at
10,000g for 10 min. The supernatant was kept at 4 �C and centri-
fuged at 10,000g for 10 min immediately prior to HPLC analysis
(LKB Bromma 2156 Solvent controller, 2152 LC Controller, 2159
HPLC pump) using a 3.9 � 150 mm Resolve C18 90A 5 lm reverse
phase column (Waters Chromatography, www.waters.com) with a
LDC Analytical-FluroMonitor III florescence detector (LDC Analyti-
cal Inc., Florida, USA).

5.2. Leaf sample processing for metabolite profiling

Freeze-dried primary leaf material from wheat grown on Phyta-
gel media, corresponding to leaf tip (upper 2 cm), leaf base (lower
2 cm), and mid leaf (6–8 cm from base), was ground in 2 ml micro-
centrifuge tubes containing a clean 5 mm stainless steel ball bear-
ing for 120 s at 25 cycles per second with an MM200 ball mill
(Retsch, www.retsch.com). The grinding components of the mill
were pre-cooled in liquid N2.

5.3. FT-IR preparation and analysis

Prior to sample loading, a ‘96 well’ silicon transmission plate
(Bruker, www.bruker.com) was pre-washed in analytical grade
methanol three times followed by dH2O three times, and the plate
dried. To 30 mg (±1 mg) of ground leaf tissue 1.5 ml of sterile ultra
pure dH2O was added and the sample thoroughly mixed. Thirty
microlitre homogenates of each biological replicate were loaded
onto the pre-washed sample plate to generate technical replicates,
and three readings were taken from each sample spot to serve as
analytical replicates. The plate was oven dried at 50 �C until sam-
ples were completely dry prior to loading into the motorised
high-throughput stage (HTS-XT; Bruker) attached to a Bruker Equi-
nox 55 FT-IR (Winder et al., 2004, 2006). The FT-IR transmission
mode protocol was based precisely on the method previously
described by Harrigan et al. (2004). Spectra were collected over
the wavelength range of 4000–600 cm�1 with a resolution of
4 cm�1. To improve signal-to-noise ratio, the resulting spectra
were co-added and averaged. Spectra were displayed in terms of
absorbance as calculated using Opus 4 software, which uses the
background spectrum of the reference well subtracted from the
spectra recorded from the sample wells.

5.4. Extraction for GC-TOF/MS metabolite profiling

Homogenised leaf material was pre-weighed (50 ± 1 mg) into
2 ml microcentrifuge tubes (Eppendorf, UK. PN 0030 120.094).
The metabolite extraction procedure used was based on that of
Fiehn et al. (2000) and further developed by Lisec et al. (2006),
and is previously described in detail in Biais et al. (2009). The inter-
nal standard solution consisted of 0.3 mg ml�1 succinic acid-d4,
glycine-d5 and malonic acid-d2 dissolved in HPLC grade water.
Once extracted, the samples were analysed within a month.

5.5. GC-TOF/MS analysis and data processing

Polar extracts were dried, derivatised and analysed by GC (Agi-
lent 6890N gas chromatograph, Agilent Technologies Inc., www.
agilent.com) coupled to an electron impact TOF/MS instrument
(Pegasus III, LECO Corp., St. Joseph, USA; http://www.leco.com)

http://www.levington.com
http://www.sanyo-biomedical.co.uk
http://www.skyeinstruments.com
http://www.waters.com
http://www.retsch.com
http://www.bruker.com
http://www.agilent.com
http://www.agilent.com
http://www.leco.com
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following the method described in Biais et al. (2009) and Moing
et al. (2011). Using ChromaTof v2.15, raw data processing (chro-
matographic deconvolution) was performed where S/N threshold
was set at 10, baseline offset at 1.0, data points for averaging at
5, and peak width at 3. Metabolite peaks were identified by match-
ing against three mass spectral libraries, NIST/EPA/NIH05 (http://
www.nist.gov/srd/nist1.htm), the Golm Metabolome Database
(GMDB; Hummel et al., 2010; Kopka et al., 2005; http://csbdb.
mpimp-golm.mpg.de/csbdb/gmd/gmd.htm1), and an in-house
mass spectral/RI library (Begley et al., 2009; Brown et al., 2009).
Identifications followed MSI guidelines (Sumner et al., 2007) and
were only considered as unambiguous (identification level 1) if a
matching score of >700 was attained when comparing the sample
mass spectrum with that of an authentic reference compound
(Sigma–Aldrich or Acros Organics) analysed under the same condi-
tions and instrument and showing the same RI (±10). Prior to fur-
ther analysis, all of the deconvolved and aligned GC-TOF/MS
profiles were exported to Microsoft Excel. Peak area data were cor-
rected for derivatisation and sample injector errors using the suc-
cininc-d4 acid internal standard, while sample weight error, which
was relatively small (±2%), was not necessary to correct for. In
addition the normalised peak areas for each metabolite were
imported into MatLab R2008a (The MathWorks Inc., www.math-
works.com) where box and whisker plots were generated for the
experimental group averages. Within the plots, the box represents
the interquartile range (25% and 75%), the whiskers (error bars)
represent data points not considered as outliers defined by 1.5�
the interquartile range deviation from the mean. In cases where
the data distribution is very tight and values lie only just outside
of the 25% or 75%, the whiskers may not be clearly visible due to
overlap with the box.
5.6. Principal Component–Discriminant Function Analysis of FT-IR
metabolite fingerprints

The spectra obtained from FT-IR were converted to ASCII format
from the instrument manufacturer’s software and imported into
MatLab R2008a (The MathWorks Inc., www.mathworks.com). For
FT-IR data, after Standard Normal Variate (SNV) baseline correc-
tion, the first derivative spectra were calculated using the Sav-
itzky–Golay algorithm with 5-point smoothing (Savitzky and
Golay, 1964). The data were first analysed using the unsupervised
clustering method PCA (Jolliffe, 1986), which was followed by
supervised PC-DFA (Manly, 1994). PCA and PC-DFA (Goodacre
et al., 1998) were performed and validated in an identical manner
as previously described (Allwood et al., 2006; Biais et al., 2009;
Kaderbhai et al., 1995).
5.7. Multiblock Consensus-Principal Component Analysis of GC-TOF/
MS metabolite profiles

The deconvolved and internal standard normalised GC-TOF/MS
peak areas were directly imported from Microsoft Excel into Mat-
Lab R2008a (The MathWorks Inc., www.mathworks.com). Multi-
block Consensus (C)-PCA was performed as described previously
(Biais et al., 2009). The first C-PCA model arranged the data into
two blocks consisting of nitrate supplemented and nitrate deprived
samples. The second C-PCA model arranged the data into three
blocks consisting of leaf base, mid leaf, and leaf tip, wheat leaf sec-
tions. After arrangement of data into blocks, with each experimen-
tal class consisting of a balanced number of sample replicates (6),
each block was auto-scaled (i.e. each variable has a mean of 0
and a standard deviation of 1), and C-PCA was applied with results
displayed as scores and loadings multiblock bi-plots. Additionally,
a Wilcoxon rank-sum test was applied to test the difference
between GC-TOF/MS profile variables at a 95% confidence limit
(FDR q-value 0.05).

5.8. Bayesian network analysis

The BN analysis was undertaken based on the approach
described by Correa and Goodacre (2011), only library-matched
(identified) metabolite features of the basal and tip sections of
the leaf were analysed, variables were only ranked as significant
following the t-test after down adjustment for FDR correction
(q-value 0.05). All statistical analyses followed recommendations
from the metabolomics standards initiative (Goodacre et al.,
2007b).
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