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Abstract 

Motivated by petro-chemical geological systems, we consider the natural convection boundary layer 

flow from a vertical isothermal wavy surface adjacent to a saturated non-Darcian high permeability 

porous medium. High permeability is considered to represent geologically sparsely packed porous 

media. Both Darcian drag and Forchheimer inertial drag terms are included in the velocity boundary 

layer equation. A high permeability medium is considered. We employ a sinusoidal relation for the 

wavy surface. Using a set of transformations, the momentum and heat conservation equations are 

converted from an (x,y) coordinate system to an (x, ) dimensionless system. The two-point boundary 

value problem is then solved numerically with a pseudo-spectral method based on combining the 

Bellman-Kalaba Quasi Linearization Method with the Chebyschev Spectral collocation technique 

(SQLM). The SQLM computations are demonstrated to achieve excellent correlation with smoothed 

particle hydrodynamic (SPH) Lagrangian solutions. We study the effect of Darcy number (Da), 

Forchheimer number (Fs), amplitude wavelength (A) and Prandtl number (Pr) on the velocity and 

temperature distributions in the regime. Local Nusselt number is also computed for selected cases. 

The study finds important applications in petroleum engineering and also energy systems exploiting 

porous media and undulating (wavy) surface geometry. The SQLM algorithm is shown to be 

exceptionally robust and achieves fast convergence and excellent accuracy in nonlinear heat transfer 

simulations. 

Key words: Natural convection; wave amplitude; porous media; Darcian drag; Forchheimer drag; Nusselt 

number; Spectral Quasi Linearization Method (SQLM), Smooth Particle Hydrodynamics (SPH); petroleum  

and geological flows. 
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1. INTRODUCTION  

The analysis of fluid flow and heat transfer past wavy surfaces and in wavy channels is of fundamental 

importance in many areas of chemical, petroleum and mechanical engineering.  Wavy walls which are 
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a form of surface re-structuring (e.g. riblets on internal surfaces in contact with conveyed fluids) have 

been implemented in various systems in petroleum and energy engineering since reduction of viscous 

drag in a flow through ducts reduces the pressure losses which in turn decreases costs associated with 

gas compression [1-3]. Many fundamental studies of flow from wavy surfaces have been 

communicated. For example, Caponi et al. [4] studied the laminar viscous boundary layer flow over a 

moving wavy wall.   

Another key area of application for wavy surfaces is heat transfer. A number of numerical and 

experimental studies in this area have been reported. Yao [5] considered the free convection heat 

transfer past a wavy vertical wall.  Moulic and Yao [6] studied the free convection flow past a wavy 

wall in the presence of uniform heat flux at the wall. Chow and Oosthuizen studied experimentally the 

natural convection from short cylinders with wavy surfaces. Rees and Pop [7] studied the boundary 

layer flow and heat transfer on a moving plane numerically. They analyzed the effect of spatially 

stationary surface waves on the forced convection regime for the case where the Reynolds number, 

assuming that surface waves have order of unity amplitude and wavelength. Numerical solutions for 

the local skin friction coefficient  and the local Nusselt number for both the cases of a constant wall 

temperature and a constant wall heat flux were obtained using the Keller box finite difference method. 

More recently Hossain et al. [8] presented numerical solutions for free convection past a vertical wavy 

surface with variable viscosity effects. Tashtoush and Abu-Irshaid [9] numerically investigated the 

heat transfer along a wavy surface with a variable prescribed heat flux. Solutions were obtained for 

various values of the heat flux exponent, amplitude and Prandtl number. The wavelength of the local 

Nusselt number and surface temperature variation was shown to be equal to the wavy surface, whereas 

the wavelength of the average Nusselt number was shown to be half of the wavy surface. Abbassi and 

Tajik [10] considered the laminar free convection over an inclined wavy surface with constant heat 

flux using a computational method. Hossain and Islam [11] studied computationally the transient heat 

transfer in wavy channels. Shalini & Kumar [12] used the finite element method to analyze the natural 

convection from a wavy vertical wall to a thermally stratified porous enclosure under non-Darcian 

assumptions has been analyzed numerically by the finite element method. The effect of inertial forces 

due to non-Darcian Forchheimer term, thermal stratification level, vertical wavy wall amplitude, wave 

phase, roughness parameter, and Rayleigh number on the convection process was discussed in detail. 

The computations revealed multiple circulation zones in flow field, thermal boundary layer 

development along the lower segment of wavy wall and the occurrence of a “cold region” with large 

stratification in the temperature field. It was also shown that the Nusselt number could be altered by as 

much as 90% by varying the phase of the wavy surface. In the presence of thermal stratification, the 

influence of non-Darcian effects was shown to be maximized when wave phase of the wavy wall was 

approximately 300°. Rahman and Badr [13] presented an experimental study of the natural convection 

heat and mass transfer from a vertical wavy surface in a non-Darcian porous medium Mass-transfer 

http://serials.cib.unibo.it/cgi-ser/start/it/spogli/ds-s.tcl?authors=%22+Abu%2dIrshaid%2c+E%22&language=ITALIANO
http://serials.cib.unibo.it/cgi-ser/start/it/spogli/ds-s.tcl?authors=%22+Abu%2dIrshaid%2c+E%22&language=ITALIANO
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coefficients were obtained experimentally for vertical wavy surfaces of varying amplitude-to-

wavelength ratio.  

Thus far, to the knowledge of the authors’, the free convection heat flow past a sinusoidal 

wavy vertical surface to a Newtonian fluid in a non-Darcian isotropic porous medium has received 

limited attention in the literature. This regime is of relevance to petro-chemical (geological) transport 

phenomena e.g. flows of oils near boundaries of ducts with filters [1-3], solar collectors [14-17] and 

also petro-chemical materials processing operations [18-20]. In the present study we employ a pseudo-

spectral numerical algorithm which combines the Bellmann-Kalaba quasi-linearization method [21] 

and the Chebyschev spectral collocation method [22] to obtain accelerated convergence and improved 

stability for nonlinear boundary value problems. Validation is attained with a smoothed particle 

hydrodynamic (SPH) [23] code. Details of numerical formulations for both methods employed are 

described in detail 

 

2. MATHEMATICAL MODEL 

Consider the steady, laminar free convection flow past a vertical wavy surface embedded in a 

saturated non-Darcian porous medium.  The physical regime is shown in figure 1 below. The wavy 

surface is maintained at a constant wall temperature, Tw. The porous medium is modeled as an 

isotropic, homogenous system. For a general 3-dimensional anisotropic medium in a generalized 

Cartesian coordinate system (X, Y, Z), Coussy [24] has shown that the permeability tensor, KP is 

second order tensor of the form: 
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Generally the coefficients are not all unique so that the permeability tensor is symmetric in three-

dimensional flows and it is therefore assumed that, Kp
XX= Kp

YX, Kp
YZ, Kp

ZY and Kp
ZX = Kp

XZ. The 

permeability coefficients Kp
XX, Kp

YY and Kp
ZZ define the permeability in the X, Y and Z directions and 

therefore only three values are needed to simulate a general three-dimensional anisotropic porous 

medium. Clearly for the special case of isotropic flow in three dimensions, all three permeabilities will 

be identical i.e. Kp
XX= Kp

YY =  Kp
ZZ = Kp. For two- dimensional porous isotropic flow, as considered in 

this paper, this simplification still holds and we simulate the hydraulic conductivity of the porous 

medium with a single permeability, Kp. Under this assumption, for a Darcy-Forchheimer porous 

medium, the pressure gradient is related to the porous drag forces, following Vafai and Tien [25], as:  

VVV-V-P
PP K
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where P is pressure,  is density of the non-Newtonian fluid,  is the dynamic viscosity of the fluid, Kp 

is the permeability of the porous medium, V is velocity vector and b is the Forchheimer inertial 

parameter which is related to the geometry of the porous medium. The geometry of the wavy surface 

is defined by the following relation:  

 *)*sin(**)(* XKaXY      (3) 

where * is a geometrical function, a* designates the  wavy surface amplitude, K* is the wave number 

(=2/L), L is the characteristic length associated with the wavy surface.  The surface is therefore 

arbitrary and specific characteristics can be prescribed by assigning particular values to a* and K*, 

which are appropriate for the heat transfer system being considered. We assume that in the free 

convection flow, density differences are only incorporated in the buoyancy force i.e. following the 

Oberbeck-Boussinesq approximation, and implement expressions (2) and (3) above. Additionally 

viscous dissipation and thermal dispersion effects in the porous medium are ignored as are pressure 

work effects. Under these approximations, the governing boundary layer equations for the transport of 

mass, heat and momentum can be shown to take the form:  
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where U* and V* are the X* and Y* direction velocities,  is the coefficient of volume expansion, g 

denotes gravitational acceleration, T is the free stream temperature (far from wavy surface), T is 

temperature in the fluid,  is the thermal diffusivity and all other parameters have been defined 

previously. The corresponding boundary conditions are prescribed at the wall and in the free stream as 

follows: 

wTTVUXYAt  ,0**:)(*:0*            (8) 

  **;;0*;0*:* PPTTVUYAs          (9) 
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3. TRANSFORMATION OF BOUNDARY LAYER EQUATIONS 

We introduce a series of transformations, to eliminate the influence of the wavy surface geometry 

from the boundary conditions and drop the Y* momentum equation from the analysis. Defining: 
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where  X and Y are dimensionless X*, Y* coordinates, a is dimensionless amplitude, U and V are 

dimensionless X, Y velocities, Gr is the generalized Grashof number, P is dimensionless pressure,  is 

dimensionless temperature function,  is dimensionless wavy surface geometry function, Uc is the 

characteristic velocity,  is dynamic viscosity,  is thermal diffusivity, Pr is Prandtl number. 

Implementing eqn. (10) into the boundary layer equations (4) to (7) we arrive at the following non-

dimensional equations: 
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Proceeding with the analysis, equation (13) is multiplied by X and the result added to eqn. (12), a 

process which eliminates the transverse spatial pressure gradient term, 
Y

P
Gr




4

1

 from both equations 

(12) and (13) and leads eventually to the single (X-direction) momentum equation for the regime: 
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The boundary conditions now become: 

1,0:0  VUYAt          (16) 

0;0:  UYAs          (17) 

 

To further simplify the model we introduce now a stream-function transformation. Defining:  
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The momentum and energy conservation equations therefore reduce to their final forms, as follows: 
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The corresponding transformed boundary conditions are:  
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Here F is the reduced stream function, 


F
 is dimensionless velocity and  is spanwise pseudo-

similarity variable (in Y-direction). In due course we shall present a numerical solution for the set of 

partial differential equations (19) and (20) together with boundary conditions (21) and (22), based on 

the pseudo-spectral method. For practical engineering problems several parameters are of interest 

including the local Nusselt number and heat flux at the wall. We shall discuss these later. We first 
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describe several important cases of the general model derived which allows a comparative study with 

previous work.  Several important special cases of the flow model can be retrieved. Wavy free 

convection in a Darcian regime is retrieved for the scenario where heat transfer processes may take 

place at low filtration velocities so that inertial effects can be ignored. Prescribing Fs = 0 negates the 

Forchheimer drag in the momentum conservation equation (19). The energy conservation equation 

(20) is unaffected. For wavy free convection in a pure fluid regime, the regime corresponds to the case 

of infinite permeability, Kp   so that the Darcy number, Da, becomes infinite. Both porous drag 

force terms in (19) are therefore removed as the medium now becomes purely viscous Newtonian fluid 

i.e. the solid matrix particles vanish. A third important case is obtained for free convection from a 

vertical plate in a Darcy-Forcheimmer porous medium, by setting the wavy surface geometry 

amplitude to zero, i.e. a= 0,  and therefore   0 i.e. the wavy geometric features are eliminated. This 

corresponds to the case therefore of a “flat wall”.  

 

4. ENGINEERING FLOW PARAMETERS 

Of considerable interest in materials processing systems is the local Nusselt number, Nu, which gives 

a measure of the heat transfer rate at the wavy surface. An appropriate definition for this is: 
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In addition we also define the heat flux, Qw, as follows: 
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For the special case of free convection along a vertical plate in a Darcy-Forchheimer porous medium, 

amplitude a 0 so that X  0 and expression (23) contracts to: 
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Similarly the heat flux Qw also for the vertical plate case becomes: 
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5. NUMERICAL SOLUTIONS  

The two-point boundary value problem defined by equations (19) and (20) with conditions (21) and 

(22) can be solved by a variety of numerical methods including finite elements, generalized 

differential quadrature, implicit finite difference methods, homotopy analysis, dual recriprocity 

boundary elements, Lattice Boltzmann techniques etc Here we elect to employ a relatively novel and 
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highly optimized, fast convergence procedure, termed the pseudo-spectral method.  This is a 

modification of classical spectral methods and both approaches have been implemented to resolve 

numerous boundary value problems in multi-physical transport phenomena in recent years. Owens et 

al. [26] developed a spectral element technique for non-Newtonian flow from a sphere. Shateyi and 

Motsa [27] studied radiative heat flux effects on transient stretching flows with a spectral homotopy 

method. Shateyi and Motsa [28] further analyzed viscosity effects on hydromagnetic convection 

Sakiadis flow with spectral algorithms. Sibanda et al. [29] derived spectral solutions for viscoelastic 

channel flow using a Reiner-Rivlin differential fluid model. Bég et al. [30] studied electrical Hartmann 

and electrical Reynolds number effects on ion drag pumping flows with the Chebyschev spectral 

collocation method, showing excellent correlation of solutions with network simulation and shooting 

quadrature. Hoque et al. [31] investigated curved tube hydromagnetic Dean blood flow using spectral 

collocation and Fourier series, identifying new bracelet vortex patterns. Several studies of micropolar 

flows with spectral methods have been communicated. Liang et al. [32] used a spectral finite 

difference algorithm to visualize transient flows of micropolar compressible liquids. They employed a 

basic Rusanov solver to compute the interface inviscid fluxes and an averaging for viscous fluxes at 

these interface, and considered steady and unsteady flow from a two-dimensional cylinder and also 

flow from a flapping wing behind an oscillating cylinder. Recently this procedure has also been 

implemented to simulate reactive viscoelastic gel propellant flows [33] and also micro-morphic plume 

dynamics in geosystems [34]. An excellent perspective on spectral techniques is provided by Gottlieb 

and Orszag [35] with details of convergence addressed by Don and Solomonoff [36]. To solve 

equations (19)–(20) we initially employ the Bellman-Kalaba quasi-linearization method [37]. The 

quasilinearisation method (QLM) is essentially a generalized Newton-Raphson Method for solving 

functional equations. The QLM scheme is derived by linearizing the nonlinear component of the 

governing equations using Taylor series expansion with the assumption that the difference between the 

value of the unknown functions at the current iteration level (denoted by r + 1) and the value at the 

previous iteration level (denoted by r) is small. Applying the QLM on eqns. (19, 20) generates a  

linearized system of coupled differential equations with variable coefficients and these are then solved 

iteratively for r = 1; 2 with the Chebyshev pseudo- spectral method. Starting from a given set of initial 

approximations F0, 0, the iteration schemes can be solved iteratively for Fr+1(,); r+1(,) when r = 

0; 1; 2. We discretize the equation using the Chebyshev spectral collocation method in the  

(transverse) direction and use an implicit finite difference method in the  (streamwise) direction. In 

this investigation, we apply the spectral collocation method approach described in [27, 28]. Before 

applying the spectral method, it is convenient to transform the domain on which the governing 

equation is defined to the interval [-1,1] where the spectral method can be implemented. For the 

convenience of the numerical computations, the semi-infinite domain in the space direction is 

approximated by the truncated domain [0;L], where L is a finite number selected to be large enough to 
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represent the behaviour of the flow properties when  is very large. We use the transformation  = 

L(Y +1)/2 to map the interval [0;L] to [-1,1]. The basic idea behind the spectral collocation method is 

the introduction of a differentiation matrix D which is used to approximate the derivatives of the 

unknown variables F() at the collocation points (grid points) as the matrix vector product: 
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Here Nx + 1 is the number of collocation points and F is the vector function at the collocation points. 

A similar vector function corresponding to  is denoted by , respectively. Higher order derivatives 

are obtained as powers of D, that is: 
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where p is the order of the derivative. The matrix D is of size (Nx + 1) X (Nx + 1). The grid points on 
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where Nx + 1, Nt + 1 are the total number of grid points in the -, -directions respectively, and  is 

the spacing in the -direction. The finite difference scheme is applied with centering about a mid-point 

halfway between n+1 and n. This mid-point is defined as n+1/2 = (n+1 + n)/2. The derivatives with 

respect to  are defined in terms of the Chebyshev differentiation matrices. Applying the centering 

about n+1/2 to any function, e.g. stream function, F(, ) and its associated derivative we obtain: 
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Thus, applying the spectral method with the finite differences in   yields: 

 



 10 






































































2

1

1

1

2221

1211

1

1

1

1

2221

1211 KF

BB

BBF

AA

AA

n

r

n

r

n

r

n

r
       (31) 

 

where Aij ;Bij ; (i; j = 1; 2) and Ki (i = 1; 2) are (Nx + 1) X(Nx + 1) matrices and (Nx + 1) X 1 vectors, 

respectively. In all the spectral-based numerical simulations a finite computational domain of extent L 

= 30 was chosen in the -direction. Through numerical experimentation, this value was found to give 

accurate results for all the selected governing physical parameters used in the generation of results. 

Increasing the value of  does not affect the results to a significant extent. The number of collocation 

points used in the spectral method discretization was Nx = 100 in all cases. We remark that the SQLM 

algorithm is based on the computation of the value of some quantity, say F n+1
r+1 , at each time step. 

This is achieved by iterating using the quasilinearization method using a known value at the previous 

step, n, as initial approximation. The iteration calculations are carried until some desired tolerance 

level, , is attained. In this study, the tolerance level was set to be  = 10-7. The tolerance level is 

defined as the maximum values of the infinity norm of the difference between the values of the 

calculated quantities, that is: 

 

 














 },,max{ 11

1

11

1

11

1

n

r

n

r

n

r

n

r

n

r

n

r GGFF      (32) 

 

To ensure accuracy of the results, a sufficiently small step size   was used. The step size was chosen 

to be small enough such that further reduction did not change the obtained results for the flow 

properties of physical interest. Further details of the formulations and applications of the spectral 

method are given in [38]. 

 

6. VALIDATION WITH SMOOTH PARTICLE HYDRODYNAMICS (SPH) 

To verify the accuracy of the SQLM algorithm described above, we also employ a robust SPH 

algorithm to solve the same boundary value problem defined by eqns. (19-22). SPH is a mesh-less 

particle-based Lagrangian fluid dynamics simulation technique, in which the fluid flow is represented 

by a collection of discrete elements or pseudo-particles. It was introduced originally for astrophysical 

fluid dynamics simulations in the late 1970s [39]. It was then further developed for shock gas 

dynamics and free surface hydrodynamics problems in the 1980s and 1990s by Monaghan and co-

workers [40-43]. It has also been applied to viscous-dominated (low Reynolds) number flows [44], 

ocean hydrodynamics [45], manufacturing fluid mechanics [46], transient pipe flows [47], porous 

media diffusion [48] and thermal conduction heat transfer [49]. Very recently SPH has been applied to 

simulate splashdown problems for spacecraft landing modules [50] and also magnetohydrodynamic 

porous media thermal convection flows for electro-conductive polymer processing [51]. A good 
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review of modern applications is given in [52]. In comparison to the Eulerian-based conventional 

numerical methods, SPH has several distinct advantages, which make it particularly adaptable to 

nonlinear heat transfer, porous media flows and other branches of viscous fluid dynamics. Within the 

SPH formulation, the computational domain is discretised by a finite set of interpolating points 

(particles) with invariant coordinates in the material frame. Although many modifications of SPH have 

been made in recent years, the foundation for using this technique in a generalized three-dimensional 

fluid domain, is the three-dimensional Dirac delta function, )(3  ijx [52] which satisfies the following 

identity: 

  dxxfxf ijii )()()( 3         (33) 

 

The appropriate two-dimensional form is used in the present study, where )}({ 
ixf  is the kernel 

approximation of the scalar field )( 
ixf   at particle i. In SPH the function values and their derivatives 

at a specific particle are interpolated from the function values at surrounding particles using the 

interpolating (smoothing) function and its derivatives, respectively: 
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where m is the mass, ρ is the density and W is the interpolating (smoothing) function with a continuous 

derivative iW. The index i, j respectively, denotes the variables at the particle i, j respectively, and i 

denotes a derivative according to ri which is the position vector. The smoothing function W is defined 

so that its value monotonically decreases as the distance between particles increases. It has a compact 

support domain, for which the radius is defined by the smoothing length h.  The smoothing function is 

normalised and in the limit case, when the smoothing length goes to zero, the smoothing function 

becomes the Dirac delta function, defined for the general 3-D fluid domain in eqn. (33). Within this 

study, we have implemented the well-tested and robust cubic B-spline smoothing function. In the 

current model, numerical tests were conducted to establish computational spatial dependence on the 

number of SPH particles used.  Typically computations do not exceed tens of seconds on an Octane 

SG Desk workstation. The tolerance level was also set, as in the SQLM simulations, at  = 10-7. 

Tables 1-3 depict the comparisons of solutions obtained by both SQLM and SPH for skin friction and 

wall heat transfer gradient distributions. The correlation is excellent. Confidence in the SQLM 

simulations is therefore justifiably very high.  Evidently, all three tables show that skin friction and 

wall heat transfer rates are strongly decreased with increasing streamwise distance. In other words, 
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with further distance from the boundary layer leading edge, the flow is decelerated and the heat 

transferred to the wall from the saturated porous medium is also suppressed. Comparing tables 1 and 

2, we observe that as Darcy number is reduced for Table 2 (it is one tenth the value in Table 1), the 

skin friction is also significantly depressed. The flow is therefore decelerated and this is attributable to 

the increasing Darcian resistance and Forchheimer drag force terms in eqn. (19), both of which are 

inversely proportional to Darcy number. Physically a lower Darcy number (Table 2) implies less space 

in the porous medium for the fluid to percolate through and greater solid material resistance. The 

reduced heat transfer is due to the presence of more fibers which enhances thermal conduction 

between particles and elevates temperatures in the fluid, drawing heat away from the wavy surface. 

This leads to the reduction in wall heat transfer gradients. Comparing Table 3 with Table 1, we also 

observe that skin friction is reduced with larger Forchheimer numbers. The Forchheimer (second 

order) drag force is directly proportional to Fs, and this implies that with increasing Fs, there will be a 

simultaneous enhancement in Forchheimer drag. This results in greater resistance to the flow and a 

drop in skin friction at the wavy wall.  

 

7. RESULTS AND DISCUSSION 

The convection flow regime is dictated by 5 parameters: Darcy number (Da), Forchheimer number 

(Fs), Reynolds number (Re), surface geometrical parameter ( and its derivatives- this is studied by 

varying the amplitude, A) and Prandtl number (Pr).  Representative results for the velocity, 

temperature, skin friction and Nusselt number profiles are illustrated in figures 2-11 below.  

Fig. 2 shows the influence of amplitude parameter, a, on temperature evolution in the boundary 

layer.There is a strong increase in temperature, with a rise in a values. The parameter, a, directly 

influences X. Only the latter appears in the transformed boundary value problem, however the 

relation between a and X, is based on non-dimensionalization of eqn. (3). Greater amplitudes of 

surface waviness clearly accentuate heat diffusion in the boundary layer. The effect is sustained for a 

reasonable range of values from the plate surface ( =0) into the boundary layer regime. The case 

corresponding to fig. 2 is highly permeable i.e. sparsely packed porous medium (Da = 1), which has 

also been studied in the context of solar collector engineering systems. Weak Forchheimer effects are 

present (Fs = 1). Temperature field troughs arise in the wavy surface at x = 0.5, 1, 1.5, 2, 2.5 etc. Peaks 

correspond to x =  0.25, 0.75, 1.25, 1.75.  Similar results for amplitude influence have been reported 

by Moulic and Yao [6] and Rees and Pop [7], however with no tangible explanation of engineering 

implications. Recent more detailed simulations by Bég et al. [53] and Abdallah and Zeghmati [54] 

have shown that at greater amplitude wavelengths, there is a significant increase in thermal boundary 

layer thickness, and this manifests as a corresponding escalation in temperatures within the boundary 

layer. The geometrical nature of the plate significantly influences the growth and ultimate nature of 

thermal (and velocity) boundary layers. The curvature affects the thermal conduction rates from the 
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solid material to the adjacent fluid which in turn influences diffusion of thermal energy in the 

boundary layer. There is a strong advantage therefore to be gained in using corrugated surfaces (wavy 

plates) for materials processing applications, compared with conventional flat plates or stretching 

sheets which achieve lower temperatures in the boundary layer in the collecting fluid. 

Fig. 3 illustrates the temperature response with an increase in Darcy number. The increase in Darcy 

number accelerates the flow – however the reduction in solid fibers with increasing Darcy number 

reduces thermal conduction heat transfer in the regime. The latter results in a decrease in temperatures 

in the material body of the porous medium, and a corresponding increase in heat transferred to the 

wavy surface. This is advantageous for certain petroleum transport operations and gas conveyance [1-

3]  where high rates of heat transfer are desirable at the surface (plate). Temperatures decay quickly 

from the wall into the boundary layer free stream. The asymptotic nature of solutions with increasing 

transverse coordinate confirms the imposition of an adequately large boundary condition at infinity in 

the SQLM computational simulations.  

Fig. 4 depicts the response of temperature field to variation in Forchheimer number. The deceleration 

in the flow with increasing Fs values, generates a decrease in momentum boundary layer thickness 

which aids in energy diffusion and a thickening in the thermal boundary layer. Temperatures exhibit a 

monotonic decay from a maximum at the wavy surface (wall) to vanishing values towards the edge of 

the boundary layer regime (free stream), in accordance with the imposed boundary conditions. Higher 

velocity flow in the porous medium therefore acts to accentuate temperatures i.e. heats the thermal 

boundary layer and simultaneously enhances thermal boundary layer thickness. Again the smooth 

convergence of all solutions to zero in the free stream further testifies to the prescription of an 

adequately large infinity boundary condition in the SQLM numerical code. 

Fig. 5 presents the influence of Prandtl number on the temperature distributions. Temperature is 

evidently strongly depressed with a rise in Prandtl number from Pr = 0.7 (air) through 1, 6.7 (water) to 

10, 100 (polymeric fluids). Pr defines the ratio of the momentum diffusivity  to thermal diffusivity. It 

also expresses the ratio of the product of dynamic viscosity and specific heat capacity to the thermal 

conductivity of the fluid.  Pr < 1 physically implies that heat will diffuse faster than momentum in the 

fluid. For Pr = 1 the diffusion rates will be the same for heat and momentum i.e. thermal and velocity 

boundary layer thicknesses will be equal. For Pr > 1 momentum will diffuse faster than heat. Clearly 

the temperature response transverse to the wall is similar to that reported for flat plate surfaces in 

classical heat transfer. Temperatures are very effectively suppressed with working fluids with larger 

Prandtl numbers which are characteristic of petro-chemicals, oils etc [2]. This will also manifest with 

greater heat transfer rates to the wall, producing optimized performance. As with earlier figures, the 

distributions converge smoothly to the vanishing values in the free stream, confirming that a 

sufficiently large infinity boundary condition has been prescribed in the SQLM simulations.  

Fig 6. depicts the velocity response to  an increase in wave amplitude, a. near the plate surface there is 

an initial deceleration in the velocity; further into the boundary layer, transverse to the wall, the 
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velocity is elevated. This has also been observed by numerous researchers including Rahman and  

Badr [13] (for Newtonian wavy surface heat transfer in porous media) and also Chiu and Chou [14] 

for non-Newtonian natural convection flow from wavy surfaces. Hydrodynamic boundary layers are 

thicker near the crests of the wavy surface than the troughs, as will be elaborated when we consider 

velocity field variation in the streamwise direction (x-coordinate). The sinusoidal behaviour is not 

featured in the transverse direction (-coordinate). The enhancement in acceleration of the flow is 

maximized further from the wavy surface. This has important implications for drag-reduction since 

lower drag results in lesser pressure losses in actual systems which serve to improve economic 

efficiency in petroleum pumping operations. 

Fig. 7 shows the velocity evolution with a variation in Darcy number. Inspection of the transformed 

momentum equation (19) demonstrates that the Darcian drag, ][
Re)1(

]4[
2

2/1
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F
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, is inversely 

proportional to Darcy number (for fixed wavy amplitude and Reynolds number), the latter being 

directly proportional to the hydraulic conductivity i.e. permeability,
 
of the porous medium. Darcian 

drag force is therefore inversely proportional to permeability. With increasing Da  the porous medium 

permeability in the channel is progressively elevated.  In the limit as Da  , the porous media 

fibres disappear and the regime becomes purely viscous fluid. Effectively higher Da values will 

deplete the Darcian resistance and this will accelerate the flow as observed in fig. 7. There will be an 

associated thinning in the momentum boundary layer thickness and drag reduction. 

Fig. 8 illustrates the distribution of velocity with transverse coordinate and variation in Forchheimer 

number, Fs. The Fs parameter is associated with the second order Forchheimer resistance term, 
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 in the normalized momentum eqn. (19). Forchheimer drag is directly 

proportional to the parameter, Fs. An increase in Fs markedly decelerates the flow but serves to 

enhance the temperatures in the boundary layer. Forchheimer effects are associated with higher 

velocities in porous media transport. Forchheimer drag however is second order and the increase in 

this “form” drag effectively swamps the momentum development, thereby decelerating the flow and 

causing slower momentum diffusion. This aids thermal diffusion and accentuates temperatures. The 

term “non-Darcian” does not allude to a different regime of flow, but to the amplified effects of 

Forchheimer drag at higher velocities. Momentum boundary layer thickness is elevated with 

increasing Forchheimer number and this indicates that the net drag (Darcian first order and second 

order drag) is increased. Forchheimer drag therefore acts in principal in the opposite sense to surface 

waviness and retards the flow. 

Fig. 9 shows the response of velocity field to a variation in Prandtl number. As with temperature field, 

described earlier, velocity field is strongly depressed with greater Prandtl number. Momentum 

(hydrodynamic) boundary layer thickness is conversely enhanced due to the deceleration in the flow.  
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Prandtl number embodies the relative role of momentum diffusion rate to thermal diffusion rate. For 

Pr >1, momentum duffuses faster than heat whereas for Pr < 1 heat diffuses faster than momentum. 

Whereas temperatures decay consistently from the wavy wall into the free stream, velocity initially 

ascends from the wavy surface and achieves a maximum some distance into the boundary layer. 

Thereafter velocity profiles all decay to zero in the free stream. With increasing Prandtl number peak 

velocity is not only depleted, it is migrated closer to the wall. Both pre- and post-velocity gradients are 

considerably increased with greater Prandtl number. The higher Prandtl numbers (10, 100) are more 

characteristic of high-density oils encountered in petroleum operations. These naturally attain lower 

velocities owing to higher viscosities and the wavy surface geometry caan be utilized to achieve 

acceleration in such fluids imporving efficiency of transport.  

Fig. 10 shows the streamwise distribution in Nusselt number (dimensionless heat transfer gradient at 

the plate surface). Evidently the Nusselt number exhibits maximum values on the crests of the wavy 

surface while the minimum values occur on the troughs. Highest temperatures are restricted in the 

troughs since heat is transferred in these zones to fluid essentially by conduction. This results in the 

lowest values for heat transfer rates at the troughs. The magnitude of peaks grows steadily with 

distance along the plate i.e. streamwise coordinate. This pattern has also been reported by Yao [5] and 

many other investigators. It is a classical feature of wavy surface convection flows. The oscillating 

nature of Nusselt number distribution is clearly captured in fig. 10. Near the plate surface the thermal 

boundary layer thickness is greater (higher temperatures, lower heat transfer gradients) and further 

downstream the converse behaviour will occur.  

Fig. 11 illustrates the streamwise distribution in surface shear stress function (skin friction at  the plate 

surface). Generally there is a gradual decay in maximum values (peak magnitudes) of skin friction 

with progression along the plate from the leading edge, downstream. This implies that the flow is 

steadily decelerated at the plate surface with increasing streamwise coordinate. The oscillatory nature 

of the decay is clearly visualized in fig. 11. The general trends are also in good agreement with other 

studies including Yao [5]. 

 

 8. CONCLUSIONS 

A mathematical model for the free convection flow of a viscous Newtonian fluid past a wavy surface 

adjacent to a semi-infinite isotropic non-Darcian porous medium has been presented. This model is a 

simulation of near-wall flows in petro-chemical transport system. Several special cases of the 

transformed boundary layer equations have been discussed. A Darcy-Forchheimer drag force model 

has been utilized to analyze the porous medium impedance effects for highly permeable geomaterials. 

The transformed nonlinear two-point, boundary value problem has been solved with a pseudo-spectral 

computational method, combining the Chebyschev spectral collocation technique with the Bellman-

Kalaba quasilinearization method, and termed spectral quasi-linearization method (SQLM). The 

influence of wave amplitude (geometric parameter), Prandtl number, Forchheimer number, Darcy 
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number on the flow characteristics has been evaluated. Validation of the SQLM solutions has been 

obtained with a two-dimensional smoothed particle hydrodynamics (SPH) code originally developed 

for solar collectors which adapts well also to petroleum conveying ribbed (wavy geometrical) systems. 

The engineering parameters of interest, namely the velocity, temperature, Nusselt number and skin 

friction, have been depicted graphically for the influence of the dominant thermophysical parameters.  

Temperatures have been shown to be enhanced with increasing wave amplitude and Forchheimer 

number but with decreasing Darcy number (less permeable regime) and Prandtl number. Velocity is 

observed to be generally enhanced with wavy amplitude, Darcy number and Forchheimer number but 

suppressed with increasing Prandtl number. Both Nusselt number and skin friction exhibit a sinusoidal 

variation with streamwise coordinate and are respectively enhanced and reduced in magnitude with 

progression along the plate surface downstream from the leading edge. The present study demonstrates 

the robustness of SQLM computations and is currently being extended to consider more complex non-

Newtonian working fluids and viscoelastic flows which are encountered in petroleum operations [55-

57]. The results of these investigations will be communicated in the near future. Furthermore the 

present work may also be extended to electrically-conducting fluids in order to address 

magnetohydrodynamic, slip, dissipative and possibly entropy generation effects, as considered by 

Adesanya and co-workers [58-62].  
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TABLES 

x 

F''(0) 

(skin friction) 

 

SQLM 

F''(0) 

(skin friction) 

 

SPH 

-'(0) 

(wall heat  

transfer rate) 

SQLM 

-'(0) 

(wall heat  

transfer rate) 

 SPH 

0.0 0.41700 0.41701 1.16255 1.16256 

0.5 0.14470 0.14471 0.61923 0.61921 

1.0 0.12276 0.12274 0.58951 0.58950 

1.5 0.11996 0.11994 0.57828 0.57826 

2.0 0.11903 0.11902 0.57274 0.57273 

2.5 0.11817 0.11818 0.56838 0.56837 

3.0 0.11734 0.11733 0.56433 0.56432 

3.5 0.11655 0.11654 0.56049 0.56047 

4.0 0.11579 0.11580 0.55683 0.55682 

Table 1: SQLM and SPH comparative computations for skin friction (surface shear stress function) 

with Fs = 1, Da = 1, Re = 10, a = 0.2, Pr = 10. 

 

x 

F''(0) 

(skin friction) 

 

SQLM 

F''(0) 

(skin friction) 

 

SPH 

-'(0) 

(wall heat  

transfer rate) 

SQLM 

-'(0) 

(wall heat  

transfer rate) 

 SPH 

0.0 0.41700 0.41701 1.16255 1.16254 

0.5 0.10846 0.10845 0.53261 0.53262 

1.0 0.10289 0.10290 0.50470 0.50471 

1.5 0.09897 0.09895 0.48516 0.48514 

2.0 0.09591 0.09593 0.46975 0.46973 

2.5 0.09337 0.09338 0.45694 0.45693 

3.0 0.09121 0.09123 0.44597 0.44598 

3.5 0.08932 0.08931 0.43637 0.43638 

4.0 0.08765 0.08764 0.42783 0.42782 

Table 2: SQLM and SPH comparative computations for skin friction (surface shear stress function) 

with Fs = 1, Da = 0.1, Re = 10, a = 0.2, Pr = 10. 

x 

F''(0) 

(skin friction) 

 

SQLM 

F''(0) 

(skin friction) 

 

SPH 

-'(0) 

(wall heat  

transfer rate) 

SQLM 

-'(0) 

(wall heat  

transfer rate) 

 SPH 

0.0 0.41700 0.41702 1.16255 1.16256 

0.5 0.11549 0.11548 0.56050 0.56049 

1.0 0.11048 0.11047 0.53515 0.53514 

1.5 0.10671 0.10672 0.51648 0.51647 

2.0 0.10367 0.10366 0.50139 0.50138 

2.5 0.10112 0.10113 0.48868 0.48867 

3.0 0.09891 0.09892 0.47766 0.47765 

3.5 0.09697 0.09698 0.46795 0.46794 

4.0 0.09523 0.09522 0.45926 0.45927 

Table 3: SQLM and SPH comparative computations for skin friction (surface shear stress function) 

with Fs = 10, Da = 1, Re = 10, a = 0.2, Pr = 10. 
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FIGURES 

 

 

 

Figure 1: Geometry of the two-dimensional flow regime  

 

 

Fig. 2: Temperature distribution with transverse coordinate for Fs = 1, Da = 1, Re = 10, Pr = 10 at x 

= 1 for various amplitude parameters. 
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Fig. 3: Temperature distribution with transverse coordinate for Fs = 1, a = 0.2, Re = 10, Pr = 10 at x 

= 1, for various Darcy numbers. 

 

 

 

Fig. 4: Temperature distribution with transverse coordinate for Da = 1, a = 0.2, Re = 10, Pr = 10 at x 

= 1 for various Forchheimer numbers. 
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Fig. 5: Temperature distribution with transverse coordinate for Da = 1, Fs = 1, a = 0.2, Re = 10 at x 

= 1 for various Prandtl numbers. 

 

Fig. 6: Velocity distribution with transverse coordinate for Fs = 1, Da = 1, Re = 10, Pr = 10 at x = 1, 

for various wave amplitude numbers. 
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Fig. 7: Velocity distribution with transverse coordinate for Fs = 1, a = 0.2, Re = 10, Pr = 10 at x = 1, 

for various Darcy numbers. 

 

Fig. 8: Velocity distribution with transverse coordinate for Da = 1, a = 0.2, Re = 10, Pr = 10 at x = 1, 

for various Forchheimer numbers. 
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Fig. 9: Velocity distribution with transverse coordinate for Da = 1, a = 0.2, Re = 10, Fs = 1,  at x = 1, 

for various Prandtl numbers. 

 

Fig. 10: Nusselt number (dimensionless heat transfer gradient) distribution with streamwise  

coordinate for Da = 1, a = 0.2, Re = 10, Fs = 1,  Pr = 10. 
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Fig. 11: Skin friction (dimensionless surface shear stress) distribution with streamwise coordinate for 

Da = 1, a = 0.2, Re = 10, Fs = 1,  Pr = 10. 


