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Categorisation is a fundamental cognitive process that plays a central role in everyday behaviour and
action. Whereas previous studies have investigated the categorisation of isolated everyday sounds, this
paper presents an experiment to investigate the cognitive categorisation of everyday sounds within their
original context. A group of eighteen expert and non-expert listeners took part in a free sorting task using
110 sounds identified within ambisonic reproductions of urban soundscapes. The participants were asked
to sort the objects into groups of sounds that served a similar purpose in the overall perception of the
soundscape. Following this, the participants were asked to provide descriptive labels for the groups they
had formed. The results were analysed using hierarchical agglomerative clustering and non-metric mul-
tidimensional scaling (MDS) to explore both the structure and dimensionality of the data. The resulting
hierarchical clustering of objects show three top level categories relating to transient sounds, continuous
sounds, and speech and vocalisations. Sub-categories were identified in each of the top level categories
which included harmonic and non-harmonic continuous sounds, clear speech, unintelligible speech,
vocalisations, transient sounds that indicate actions, and non-salient transient sounds. The first two
dimensions revealed by the MDS analysis relate to temporal extent and intelligibility respectively.
Interpretation of the third dimension is less clear, but may be related to harmonic content.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Categorisation is a fundamental cognitive process [1] that plays
a central role in everyday behaviour and action, supporting the
organisation of knowledge (i.e. through the development of tax-
onomies) and permitting inductive inference about the world (i.e.
through the assumption that members of the same category share
similar properties) [2]. The process of categorisation is grounded in
perceptual and attentional mechanisms capable of detecting simi-
larities and correspondences in the environment [3].

A category exists when two or more objects are judged to be
similar to a category prototype [4] or exemplar [5]. Contemporary
theories of categorisation suggest that attentional mechanisms
allow the salience of different features to vary as a function of con-
text [6,7]. This suggests that categorisation is contingent on task,
context, and by the individual’s intentions, goals, and past experi-
ences [8]. A simple example of this would be the in the comparison
of different coloured shapes; when comparing a red triangle and a
red circle, shape would be a more salient feature than colour,
whereas colour would be a more salient feature than shape when
comparing a red triangle and a blue triangle.

The aim of this study is to investigate the categorisation of
everyday sounds within the context of urban soundscapes.
Research into the perception of complex scenes has traditionally
focussed on the visual domain [see, for example, [9,10]]. Recently
there has been a growing interest in the perception of complex
auditory scenes, particularly in the formation and perception of
auditory objects [11,12]. Enquiry into the perception of auditory
objects has incorporated behavioural [13], psycholinguistic [14],
and neurophysiological [15] approaches. From a neurobiological
standpoint, an auditory object is ‘‘. . .the computational result of
the auditory system’s capacity to detect, extract, segregate and
group spectro-temporal regularities in the acoustic environment
[11]”. A similar definition is offered by Gestalt psychology,
whereby auditory events (or auditory streams) are formed due to
formal similarities in the properties of the acoustic stimulus [16].
In the context of this paper, an auditory object is any sound that
is perceived as a single perceptual entity and can include both
sound events where the source is clearly identifiable (e.g. a car
starting) and sounds where the source isn’t identifiable but is still
perceived as a coherent object (e.g. low frequency noise).
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Studies investigating the categorisation of everyday sounds
have generally been conducted using sounds isolated from their
original context. Vanderveer [17] found that participants grouped
sounds that were either caused by the same event or shared similar
acoustical properties. Marcell et al. [18] found 27 categories of
environmental sounds that described the sound source (i.e. animal,
paper, ground transportation), location (e.g. nature, bathroom,
household), and other ad-hoc categories such as game and recre-
ation. Gygi et al. [19] investigated the similarity and categorisation
of a broad range of environmental sounds; three distinct categories
of sounds were found relating to harmonic sounds, discrete impact
sounds, and continuous sounds. Houix et al. [20] found 4 main
categories for everyday sounds which included solids, liquids,
gases, and machines. In a second experiment focussing on sounds
produced by solid objects, Houix et al. [20] found a distinction
between discrete and continuous sounds. These studies provide
an insight into how listeners categorise individual sounds,
however the results should be interpreted with caution when
considering the categorisation of sounds within complex sound
scenes.

The perception of complex auditory scenes has been explored
within the field of soundscapes [21], which aims for listener-
centric assessments of environmental sound scenes. Work in this
area has focussed on perceptual dimensions of listener experience
[22–25], emotional dimensions [26], the influence of expectation
and contextual factors [27], and ecological validity of artificial
reproduction [28,25]. Despite this relatively large body of work, lit-
tle is known regarding how listeners categorise auditory objects in
complex soundscapes.

Davies et al. [21] found that the language people use when talk-
ing about soundscapes could be grouped into three categories:
sound sources (identification of the source), sound descriptors
(descriptors related to sound sources), and soundscape descriptors
(descriptors related to the totality of what is heard). Guastavino
[29] identified two main categories of environmental sounds in
complex soundscapes relating to the presence or absence of human
activity. In an investigation into the categorisation of complex
audio-visual scenes, Rummukainen et al. [30] found a three dimen-
sional perceptual space was found relating to calmness, openness,
and the presence of people. Other perceptual categories that com-
monly emerge in soundscapes reseach are ‘‘Natural”, ‘‘human”, and
‘‘mechanical” (see Payne et al. for a review [31]).

Giordano et al. [32] have highlighted the links between the pro-
cessing of certain categories of environmental sound and language,
showing that the evaluation of sounds from living sources is biased
towards sound independent semantic information whereas sounds
from non-living sources are biased towards physical properties of
the sound. The relationship between environmental sounds and
semantic processing mirrors Gaver’s distinction between musical
and everyday listening [33,34]. Musical listening occurs when the
listener focusses on low level auditory features, whereas in every-
day listening the listener uses sound to interpret information about
the environment. In the perception of soundscapes, Raimbault [35]
identified a ‘‘descriptive listening” mode in which listeners identify
sources or events and a ‘‘holistic hearing” mode in which the lis-
teners processes the soundscape as a whole. Similarly, Maffiolo
et al. [36] makes the distinction between ‘‘event sequences” where
listeners distinguish between individual sounds and ‘‘amorphous
sequences” where individual sounds are not distinguished. Cate-
gorisation systems have been found to differ between ‘‘expert”
and ‘‘non-expert” listeners [37,38] and according to the emotional
response to the sound [39]. This suggests that listening mode influ-
ences categorisation. It may be expected that by placing listeners
in a situation where they are asked to categorise individual sounds
that have been isolated from their original context, the listener will
be in a musical listening mode according to Gaver’s distinction.
Considering the literature reported in this section, it is evident
that the strategies used by listeners to form different categories
of sound are reliant on context, the scale at which attention is
focused, and listening mode. It is therefore possible that listeners’
categorisation of everyday sounds will change when the sounds
are presented within their original context, compared to when
the sounds are presented in isolation. At present, there have been
no studies investigating the categorisation of everyday sounds
within their original context. This means that it is currently not
clear if the findings of previous categorisation studies are applica-
ble in real world contexts. The study reported in this paper inves-
tigates the perception and categorisation of environmental sounds
within complex auditory scenes. The study aims to address the
question of how auditory objects are cognitively structured within
complex urban soundscapes, and is a further analysis of the data
reported in [40].
2. Methods and materials

2.1. Ethics statement

The experiments described in this paper were approved by the
University of Salford ethics committee. Participants took part in
the experiments voluntarily, and written consent was taken prior
to the test session. Participants were told that they were free to
withdraw from the experiment at any time, without needing to
give a reason to the researcher.

2.2. Participants

Eighteen participants took part in the experiment, 8 of whom
had formal training in acoustics or practical experience in audio
engineering, and 10 of whom had no training in acoustics or prac-
tical experience in audio engineering. All participants reported
having normal hearing.

2.3. Stimuli

Audio recordings of urban soundscapes were made in eight
locations on a single day in the city centre of Manchester, UK.
The locations were an urban park, a junction on a busy street in
the city centre, a market in a busy area and a quiet area, a inside
a busy shop, inside a quiet shop, inside a large museum, inside a
bar, and inside a busy cafeteria. The locations were selected to pro-
vide a variety of different soundscapes, and many of the locations
corresponded with locations used in previous soundscape research
[21,27]. A map of the locations of the recordings is shown in Fig. 1.
The recordings were made using a Soundfield microphone to allow
first order ambisonic reproduction. Guastavino et al. [28] and
Davies et al. [25] have shown that first order ambisonic reproduc-
tion in laboratory conditions elicits a similar listener response to
in-situ observations.

The duration of each of the clips was 75 s. For each of the clips,
the first author of the present paper identified all of the auditory
objects that were audible. This list of objects was subsequently
verified and amended by 4 additional listeners, all of whom had
training in audio and acoustics. In total, 110 objects were identified
across all of the clips. The objects identified in each of the clips are
shown in Table 1. It can be seen from this table that the objects
included in the test include living and non-living sounds as well
as action and non-action sounds.

It can be noted that the sounds identified in Table 1 include
both sound events and objects where the source hasn’t been
identified. Dubois et al. [14] suggest that sounds are processed pri-
marily as meaningful events, and where source identification fails



Fig. 1. Map of the soundscape recording locations.

Table 1
Auditory objects identified in each of the sound clips.

Clip 1 Clip 2 Clip 3 Clip 4 Clip 5 Clip 6 Clip 7 Clip 8 Clip 9

Low frequency noise Hum of traffic Distant traffic
noise

Distant traffic
noise

Store music Unintelligible
voices

Music Air
conditioning
sound

Unintelligible
voices

Birdsong Footsteps Clattering
pushchairs

Unintelligible
voices

Till drawer
closing

Rustling Unintelligible
voices

Squeaking Paper
crumpling

Hum of traffic Clock tower bells Unintelligible
voices

Laughter Male shop
assistant voice

Creak Plate impact Muffled
announcer
voice

Chair scraping
on floor

Clinking of coins in
parking meter

High Frequency
braking sound

Children’s
voices

Female voices Female laugh Click Cutlery rattling Unintelligible
voices

Plate clanking

Brushing sound Alarm sound Male voice Shuffling
footsteps

Unintelligible
voices

Clunk Clicking sound Impact Rustling

Impact sound Bus hissing Female voices Till drawer
closing

Impact Scrape of paper
against table

Dishwasher
drawer opening

Shuffling
footsteps

Can opening

Voice Vehicle
accelerating

Jangling coins Paper rustling Cough Door opening Door closing Metallic
impact

Car starting Clunk of
manhole cover

Creaking
sound

Footsteps Jangling sound Door creaking Female voice Female voice

Siren Voices Impact sound Rustling Phone
notification
whistle

Shuffling
footsteps

Distant bang Knock on
table

Car accelerating Hooting sound Male voices Blowing nose Guitar Door closing Door opening Rattling door
High Frequency

vehicle braking
sound

Male voice
singing

Cough Plastic rustling Vehicle Reverberant
music

Rattling flap

Footsteps Brass music Clink Beep Footsteps Male voice
Low frequency

vehicle sound
Child’s voice
Ow

Laugh Stapler
clicking

Latch

Rattling Store music
Male voice Male voices

Stapler
Velcro ripping
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sounds are processed in a more abstract manner according to phys-
ical or low level perceptual parameters. This suggests that the
including a mixture of sound events and other sounds described
in terms of acoustical properties could bias participants’ categori-
sation strategies. However, the results presented in Section 3.1
show no evidence of such a bias in the identified top level clusters.
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2.4. Reproduction

All material was reproduced via Genelec 8030A loudspeakers
[Frequency response: 58 Hz–20 kHz (2 dB), 55 Hz–21 kHz
(�3 dB)] arranged in a 5.0 configuration according to ITU-R BS.
775 [41] in a semi-anechoic chamber at the University of Salford.
The radius of the loudspeaker layout was 1.30 m and the listener
was seated in the centre of the array. The loudspeakers were
adjusted to have equal gains by generating a full scale pink noise
signal for each loudspeaker and adjusting the gain of the loud-
speaker so that the sound pressure level in the centre of the array
was equal (85 dBA) for each loudspeaker. The programme material
was reproduced from 24-bit wav files sampled at 48 kHz via an
RME UFX soundcard. The B-format recordings were decoded to
5.0 using the Soundfield Surround Zone VST plugin.

2.5. Procedure

Participants were provided with a set of cards, on each of which
was printed the name of a single sound that occurred in one of the
clips. The cards were also printed with the time of the first occur-
rence of the sound and the clip in which the sound occurred. A test
interface developed in Pure Data and presented via a laptop com-
puter allowed the participants to freely switch between the nine
clips, and to rewind, fast-forward, and pause the clips. In order to
hear all of the sounds in the sorting task participants were required
to listen to the clips in their entirety at least once, and they were
free to listen to each of the clips as many times as they wished.

Participants were given the following instruction:

‘‘Please sort the cards into groups such that the sounds in each
group serve a similar function or purpose in the composition of
the scene.”
The participants were told that they could form as many groups
as they wished, and that the relative positions of the groups on the
table was unimportant. They were asked to use all of the cards on
the table such that the sorting task was conducted for all of the
sounds in all of the clips. Once the participant had completed their
grouping, they were asked to provide a descriptive label for each of
the groups they had formed. The label for each group was written
on an envelope, one envelope per category, which was used to
store the cards from each of the groups the participant had formed.

In general, it took participants around half an hour to complete
the task. Most participants adopted the strategy of starting to
forming groups during the first clip they listened to; sounds from
subsequent clips were added to these groups as they occurred or
new groups were created as needed.

2.6. Analysis

Data from the sorting task were subject to agglomerative hier-
archical cluster analysis according to the Ward method [42]. This
analysis was conducted on an M � N matrix [where M is the num-
ber of objects (110) and N is the total number of categories (93)]
that contained a 1 when an object was included in a certain cate-
gory and a 0 otherwise. This resulted in hierarchical dendrograms
that show the clustering of the individual auditory objects.

To aid the interpretation of the clusters of objects, the number
of times a descriptive category label associated with a given object
occurred in each cluster was calculated (these will be reported in
tables). Additionally, the category labels that were unique to each
cluster were identified (these will be reported in the text of the
results section).

Additionally, for each participant an M �M co-occurrence
matrix was generated that contained a 1 if a pair of objects were
grouped in the same category and a 0 otherwise. These matrices
were averaged across the participant group resulting in a similarity
matrix. This similarity matrix was subject to non-metric multidi-
mensional scaling [43].
3. Results

3.1. Clustering of objects

The median number of groups formed by participants was 5,
with the minimum being 2 and the maximum being 10.

The dendrogram in Fig. 2 shows the results of the hierarchical
agglomerative clustering analysis described in Section 2.6. The
dendrogram shows 3 top level categories, which are indicated by
the dashed rectangles. From top to bottom of the figure, the first
of the three top level categories is related to human vocalisations.
In total, there are 48 category labels associated with the objects in
this cluster, 5 of which are unique to the cluster. The unique labels
associated with this category are ‘‘Intelligible voices”, ‘‘Human
voice”, ‘‘Sounds by humans”, ‘‘Speech by humans”, ‘‘Background
sounds - Human undistinguished voices”. The 10 most frequently
used category labels associated with the objects in this cluster
are shown in Table 2.

The second top level category is related to background sounds
with a long temporal extent, and includes traffic, air conditioning
sounds, and music. In total, there are 60 category labels associated
with the objects in this cluster, 11 of which are unique to the clus-
ter. The unique labels associated with this category include ‘‘Nat-
ure background noise”, ‘‘Background sounds - Harmonic sounds”,
‘‘Sounds by alive creatures i.e. animals”, ‘‘Background noise
(urban)”, ‘‘Background sound which indicate the scene”, ‘‘Music
in vicinity”, ‘‘Useful sounds - Music related”, ‘‘Music”, ‘‘Ambient
music/playback of recorded music”, ‘‘Music (non-artificially
added)”, and ‘‘Key information”. The 10 most frequently used cat-
egory labels associated with the objects in this cluster are shown in
Table 2.

The third top level category is related to transient sounds. In
total there are 70 category labels associated with the objects in this
cluster, 4 of which are unique to the cluster. The unique labels
associated with this category include ‘‘Vehicle sounds”, ‘‘Move-
ment speeding up”, ‘‘Useful sounds - Traffic Movement slowing
down”. The 10 most frequently used category labels associated
with the objects in this cluster are shown in Table 2.
3.2. Multidimensional scaling

Using the method described in Section 2.6 a 110 � 110 similar-
ity matrix was built. This matrix was subject to non-metric multi-
dimensional scaling (MDS), which allows the visualisation of the
similarity matrix in a low dimensional space. The dimensions that
result from a multidimensional scaling analysis of a similarity
matrix are generally interpreted as being orthogonal perceptual
dimensions [44]. The main aim of multidimensional scaling is to
determine a configuration of a group of objects in an R-
dimensional multidimensional space to provide a visual represen-
tation of pairwise distances or (dis) similarities between objects in
the group. By studying the configuration of points in this multidi-
mensional configuration it is possible to identify the perceptual
attributes that underlie the group of objects, each of the R dimen-
sions being orthogonal and therefore representative of a salient
perceptual attribute underlying the group of objects represented
in the space.

To determine an optimum dimensionality of the scaling, solu-
tions were calculated in 2–9 dimensions and the non-metric stress
was inspected. A three dimensional solution resulted in a non-
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Fig. 2. Dendrogram showing hierarchical agglomerative clustering of auditory objects.
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Table 2
10 most frequently used category labels for the three top level categories. N is the number of times each label was associated with the category.

Category 1 Category 2 Category 3

1 Human noises (N = 28) Background sound (N = 13) Individually recognisable noises (N = 62)
2 Presence of people (N = 27) Setting/environment (N = 13) Sounds resulted from human activities (N = 53)
3 Vocal (like) (N = 25) Background (instruments) (N = 12) Background (N = 48)
4 People around (N = 25) Where are we? (N = 10) General background (N = 45)
5 Sounds by humans (N = 24) Background (N = 9) Non dominant event sound (N = 43)
6 Secondary (N = 21) Scene defining. Large temporal extent (N = 8) Where are we? (N = 42)
7 Information (N = 21) General background (N = 8) Object sounds (N = 41)
8 Human sounds (N = 20) Background traffic, voices, etc. not distinguishable,

give an idea about location (N = 8)
Single event sounds (N = 41)

9 Soft (N = 20) Background sound which indicate the scene (N = 8) Tonal. Musique concrete (N = 39)
10 Where are we? (N = 19) Background noise (urban) (N = 8) Noise (N = 36)
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metric stress of 0.11, which suggests a fair fit with the original data
[45]. Figs. 3 and 4 show the three dimensional solution. For read-
ability, a random sample of 1/3 of the auditory objects are shown
in these figures. The full configurations are available from http://
dx.doi.org/10.17866/rd.salford.3497936.

4. Discussion

The aim of the work presented in this paper is to investigate the
categorisation of everyday sounds within complex auditory scenes,
namely urban soundscapes. Participants were asked to sort objects
within complex soundscapes according to their function in the
scene. Cluster analysis revealed a hierarchical structure with a
top layer consisting of three main categories. These categories
related to human vocalisation, background sounds with a long
temporal extent, and transient sounds. This top level categorisation
supports the findings of Houix et al. [20], who found a clear distinc-
tion between continuous and discrete sounds and Gygi et al. [19]
who identified categories relating to continuous, discrete, and
harmonic sounds as well as vocalisations. This partitioning is also
supported by the work of Giordano et al. [32], which revealed
differences in the way the brain processes living and non-living
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Fig. 3. Dimensions I and II of the MDS
sounds. Similar results have also been found in studies into the cat-
egorisation of complex urban soundscapes such as the distinction
found by Maffiolo et al. [36] between ‘‘event sequences” where lis-
teners distinguish between individual sounds and ‘‘amorphous
sequences” where individual sounds are not distinguished. These
findings suggest that many of the categorisation frameworks found
in previous studies into the categorisation of isolated everyday
sounds may be extended to the categorisation of auditory objects
within urban soundscapes.

4.1. Sub-categories in the clustering top level clusters

Examining the dendrogram in Fig. 2, there are a number of clear
sub-categories within each of the three top level clusters. In the
category containing speech and vocalisations there are three clear
categories. The first of these categories is related to vocalisations,
and includes sounds such as ‘‘laugh” and ‘‘cough”. The second of
the sub-categories is related to intelligible speech, and includes
sounds such as ‘‘male voice” and ‘‘female voice”. The third of the
sub-categories is related to unintelligible speech, and includes
sounds such as ‘‘unintelligible voices” and ‘‘muffled announcer
voice”.
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In the category of continuous sounds there are two clear sub-
categories. The first of these clusters is related to sounds with har-
monic content, and includes sounds such as ‘‘birdsong” and ‘‘mu-
sic”. The second of the sub-clusters is related to sounds
dominated by noise, and includes sounds such as ‘‘hum of traffic”
and ‘‘air conditioning”. This partitioning into harmonic and non-
harmonic sounds was also observed by Gygi et al. [19].

In the category of transient sounds there are two clear clusters.
There is a significant degree of overlap in the category descriptions
provided by participants for the objects in these clusters, however
the sub-clusters appear to relate to: (1) objects which are salient
to the scene, clearly indicating actions andmovements, such as foot-
steps and vehicle sounds and (2) lower level transient events such
and rustling and scraping sounds. The distinction between salient
and non-salient sounds is supported by evidence that action sounds
are processed differently by the brain than non-action sounds [46]
and by the findings of Houix et al. [20] who found sub-categories
relating to the physical actions that produced the sound.

4.2. Interpretation of perceptual space

Fig. 3 shows the first 2 dimensions of the MDS solution
described in Section 3.2. The 3 top level categories revealed
through the hierarchical cluster analysis can be clearly identified
in the MDS solution. The ordering of the top level categories along
Dimension I show a progression from speech and vocalisations to
continuous sounds to transient sounds. The ordering of the top
level categories along Dimension II shows a progression from a
mixture of speech and transient sounds to continuous sounds.
Fig. 4 shows Dimension III of the MDS solution; there is no clear
separation of the 3 top level categories along this dimension.

The ordering of sounds along Dimension I shows that this
dimension clearly separates the 3 top level categories. The order
of progression of the categories along this dimension suggests that
the dimension is related to the temporal extent of the sounds, with
speech sounds and continuous sounds concentrated at the lower
end of the dimension and transient sounds concentrated at the
upper end.

The ordering of sounds along Dimension II shows that the 3 top
level categories are spread and mixed along this dimension; how-
ever, this dimension separates a number of the sub-categories that
were identified within the top level categories (see Section 4.1).
The category of transient sounds are arranged on Dimension II such
that the sounds within this category progress from sounds indicat-
ing movements and actions (i.e. footsteps) to less salient transient
sounds (i.e. rustling paper). The category of speech sounds are
ordered along Dimension II such that they progress from intelligi-
ble speech (i.e male voice) to unintelligible speech (i.e unintelligi-
ble voices). The category of continuous sounds are not spread along
this dimension, and occupy a narrow range at one extreme of
Dimension II. Taken together, this ordering of sounds on Dimen-
sion II suggest that this perceptual dimension broadly relates to
intelligibility or readability, with sounds that contribute to the
understanding of the action within the scene occurring at one
extreme of the dimension and sounds which don’t occurring at
the other extreme.

The interpretation of Dimension III is less clear than Dimensions
I and II; however, the positioning of sounds along categories of con-
tinuous sounds and transient sounds can be seen to be spread along
Dimension III. The spread of continuous sounds along this dimen-
sion relates to the sub-clustering of this top level category into har-
monic and non-harmonic sounds however this ordering isn’t
evident in the ordering of transient sounds along this dimension.

4.3. Comparison between expert and non-expert listeners

Previous work has indicated differences in the categorisation
strategies between expert and non-expert listeners. In this work,
participants who stated that they had practical experience in audio
engineering were classified as expert listeners. To investigate the
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similarity of the clustering solutions between the expert and non-
expert listener groups, the Rand Index was calculated between the
two solutions [47]. The Rand Index is a measure of the similarity
between two clustering solutions which takes into account false
positives, true positive, false negatives, and true negatives. The
Rand index between the clustering of objects for expert and non-
expert listeners was 78%, indicating that there is a high degree of
similarity in the clustering solutions obtained for the expert and
non-expert listeners. The similarity in structure between the clus-
tering solutions for the expert and non-expert listeners can be seen
in the supporting figures http://dx.doi.org/10.17866/rd.salford.
3497936. Table 3 shows the percentage of objects common to each
of the three top level categories between the expert and non-
expert listener groups. Differences in categorisation between the
two groups included:

� The non-expert group included 3 of the unintelligible voice
objects in the category of continuous sounds, whereas these
objects are in the category of speech and vocalisations in the
expert group’s configuration.
Table 4
10 most frequently used category labels for the three top level categories for the expert li

Category 1 Category 2

1 Human sounds (N = 25) Background s

2 Human noises (N = 25) Where are w
3 Vocal (like) (N = 17) Continuous a
4 Dominant and meaningful event sound (N = 17) Background fi
5 Useful sounds - Human voices, laughters, announcements,

footsteps (N = 16)
Human noise

6 Human generated sounds/noises/vocalisations. Singluar (N = 16) Vocal (like) (
7 Where are we? (N = 15) Background s

voices (N = 8)
8 What is happening? (N = 10) Human gene

Group (N = 8)
9 Intelligible voices (N = 10) Music (N = 7)

10 Not significant sounds - Human realted (N = 10) Scene definin

Table 5
10 most frequently used category labels for the three top level categories for the non-exper

Category 1 Category 2

1 People around (N = 21) Noise (N = 19)
2 Soft (N = 20) Background traffic, voices, e

give an idea about location
3 Presence of people (N = 20) Background (instruments) (
4 Secondary (N = 20) Background (N = 16)
5 Information (N = 19) Setting/environment (N = 15

6 Sounds by humans (N = 17) Background (N = 14)
7 Clearer sounds can be identified (N = 12) Observed events (N = 12)
8 Human voice (N = 11) General background (N = 11
9 Background (N = 10) Clearer sounds can be ident
10 Observed events (N = 9) Sounds by other objects (N

Table 3
Percentage of objects common to each of the 3 top level categories between the
expert and non-expert group.

Continuous
sounds (%)

Transient
sounds (%)

Speech and
vocalisations (%)

Continuous sounds 86 0 14
Transient sounds 17 83 0

Speech and vocalisations 8 20 72
� The non-expert group categorised the sub-category of vehicle
sounds in the top level category of continuous sounds, whereas
the expert listener groups categorised these objects in the top
level category of transient sounds.

� The non-expert group categorised footstep objects in the top
level category of transient sounds, whereas the expert listener
group categorised these objects in the top level category that
included speech and vocalisations.

Tables 4 and 5 show the 10 most frequently used category
labels for the three top level categories for the expert and non-
expert listener groups respectively. As with the clustering solu-
tions, the descriptive labels applied by the expert and non-expert
listener groups are similar. This similarity in language coupled
with the high percentages of common objects between the top
level categories suggest that the expert and non-expert listener
groups adopted similar categorisation strategies.

5. Conclusions

This paper has presented an experiment to investigate the cog-
nitive categorisation of sounds within the context of complex
urban soundscapes. Eighteen participants, comprising expert and
non-expert listeners, completed a free sorting task in which they
were asked to sort a set of sounds occurring in ambisonic repro-
ductions of complex urban soundscapes into groups of sounds that
served a purpose in the overall perception of the soundscape. Three
top level categories were revealed through hierarchical cluster
analysis relating to transient sounds, continuous sounds, and
speech and vocalisations. The top level clusters were found to con-
tain a number of clear sub-clusters relating to harmonic and non-
stener group. N is the number of times each label was associated with the category.

Category 3

ound (N = 21) Individually recognisable noises
(N = 62)

e? (N = 17) Single event sounds (N = 42)
morphous background (N = 14) Object sounds (N = 41)
ller/bed (N = 13) Where are we? (N = 39)
s (N = 9) Tonal. Musique concrete (N = 39)

N = 9) Non dominant event sound (N = 39)
ounds - Human undistinguished Low level event sounds (N = 32)

rated sounds/noises/vocalisations. Not significant sounds - Artificial noise
(N = 31)
High level foreground event sounds
(N = 27)

g. Large temporal extent (N = 7) What is happening? (N = 23)

t listener group. N is the number of times each label was associated with the category.

Category 3

Sounds resulted from humans activities (N = 53)
tc. not distinguishable
(N = 18)

Background (N = 48)

N = 16) General background (N = 42)
Noise (N = 30)

) Background traffic, voices, etc. not distinguishable
give an idea about location (N = 29)
Background (instruments) (N = 27)
Quieter sounds (N = 25)

) Secondary (N = 25)
ified (N = 11) Background (N = 23)
= 11) Louder sounds (N = 22)

http://://dx.doi.org/10.17866/rd.salford.3497936
http://://dx.doi.org/10.17866/rd.salford.3497936
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harmonic continuous sounds, clear speech, unintelligible speech,
vocalisations, transient sounds that indicate actions, and non-
salient transient sounds. Similar categorisation strategies were
observed between the expert and non-expert listener groups.
Non-metric multidimensional scaling revealed a 3 dimensional
perceptual space. The first two dimensions of this space related
to temporal extent and intelligibility respectively; however, inter-
pretation of the third dimension was less clear. These results pro-
vide an insight into the cognitive categorisation of individual
sounds within the context of complex soundscapes. The results
suggest that previous studies into the categorisation of isolated
everyday sounds may be extended to the categorisation of auditory
objects within urban soundscapes.
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