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Summary 

The conservation of biodiversity requires an understanding of its patterns of occurrence. In the marine 

environment, however, this information is often limited or completely lacking. New technologies for 

remotely collecting data coupled with predictive models can help address these information gaps. The 

utility of using remotely sensed predictors to model biodiversity metrics will depend on the 

transferability of models generated with biodiversity data, collected over a limited number of sites, to 

un-sampled areas. Here we assess the transferability of biodiversity models and the factors that affect 

transferability. We developed Boosted Regression Tree (BRT) models for fish species richness at each 

of eight sites in Western Australia. Models were used to make predictions within (internal) and 

between (external) locations.  Distance between locations had little or no effect on model 

transferability. Overall, model transferability was surprisingly high, though it varied depending on 

the error metric used. Transferability appears to be most affected by the variability of the predictors or 

the response variable, suggesting that future sampling of biotic features that aims to develop models 

to predict into unsampled space should, where possible, focus on areas of highest abiotic and biotic 

variability. 

 
Introduction 

Marine biodiversity is threatened by a suite of anthropogenic impacts, many of which are increasing 

in distribution and/or magnitude (Halpern et al., 2008). Ocean zoning and the designation of protected 

areas are increasingly used to conserve biodiversity and improve management of the marine 

environment (Douvere, 2008; Yates et al., 2015). However, the scarcity of data on the distribution of 

marine biodiversity makes spatial planning processes less effective than they might otherwise be. One 

possibility for supporting more effective management is to underpin spatial planning with predictive 

models, whereby species and community distributions are predicted with known accuracy and 

precision. 

Predictive models of biodiversity have advanced a great deal over recent decades, both in terms of the 

methods used to construct them and the technological advances in sampling methodologies. Despite 

these advances and associated increases in information, very substantial areas of the marine 

environment remain extremely poorly sampled. For many locations only abiotic and spatial data exist. 

It is in these situations that powerful predictive models would be of greatest utility; if a model 

developed for one location, where both biotic and abiotic data have been collected, can predict well 

the characteristics of the biotic communities at other locations where only abiotic data is available. 

Currently, however, it is not well understood how transferrable such models of biotic communities 

are, nor do we know how model transferability may be enhanced.  Here we investigate the 

transferability of predictive models of fish species richness on the continental shelf of south Western 

Australia and investigate a range of factors that may affect transferability. 



Materials and Methods 

Using data from the Marine Futures Project (www.marinefutures.fnas.uwa.edu.au), we developed 

predictive models for eight locations in Western Australia. We used boosted regression tress (BRTs) 

(Elith et al., 2008) to model the relationship between environmental characteristics, generated by 

acoustic sonar imagery (multibeam), and fish species richness, obtained from Baited Remote 

Underwater Video (BRUVS). Individual ‘best’ models of species richness were developed for each of 

the eight locations, using the combination of predictors and model parameters that resulted in the 

lowest mean prediction error (MPE). These models were used to make internal predictions (within the 

same location) and external predictions (to each of the seven other locations). 

We defined transferability as external prediction performance compared to internal predictive 

performance; if the external prediction error was similar or lower than the internal prediction error the 

transferability of the model was considered to be high. We compared the predictive capacity of the 

internal prediction to the seven external predictions using two measures of predictive error: MPE and 

R2 (predicted vs observed). We examined the change in external prediction performance 

(transferability) as a function of (i) increasing distance from the original model location, (ii) 

geographic location, and (iii) bioregion. We also measured the variability of both predictor and 

response variables within locations. 

 

Results and Discussion 

Model transferability depended on the metric being used. In general models developed at one location 

(their origin) performed worse when transferred to another location. However, the MPE of the vast 

majority (over 70%) of models transferred from an origin to another location fell within the range of 

the internal MPE for the best model at each location. Some models even performed better at other 

locations than at their origin. These patterns suggest that model transferability was high. However, in 

terms of R2, overall model transferability was much lower and there was much more variation in 

predictive performance depending on the model origin and the location it was being transferred to. 

Increasing distance did not significantly reduce model transferability, such that model developed at 

distant locations had similar predictive performance as those developed neighbouring locations, but 

the transferability of models did vary somewhat by geographic region. Transferability of models 

appears to be affected by variability in either the predictors or the response variable, depending on the 

error metric used (MPE or R2), with locations with low variability producing less transferable models.  

The transferability of future models may thus be enhanced by sampling which focuses on highly 

variable locations. 
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